The Challenges of Non-linear Parameters and Variables in Automatic Loop Parallelisation

Armin Größlinger December 2, 2009

Rigorosum

Fakultät für Informatik und Mathematik Universität Passau

Automatic Loop Parallelisation

Non-linearity?

The polyhedron model can handle some codes in, e.g.,

- Simulation, image processing, linear algebra.
- Today, parallelism is everywhere:
 - Multi-core CPUs, many-core CPUs, graphics card computing (GPGPU)
 - Automatic parallelisation helps not to burden software developers with the parallelism.
 - Non-linearities make the polyhedron model more widely applicable:
 - Handle more programs,
 - Target more diverse hardware.

Non-linearity

- Linear: A[2*i + 3*j 4*m + 5*n + 7] expressions linear in the variables and the parameters.
- Non-linearity:
 - A[n*i + m*m*j + n*m]

Expressions still linear in the variables ("non-linear parameters").

A[i*j + m*j*j]

Arbitrary polynomials in the variables and parameters.

for (i=1; i<=n; i++) for (j=1; j<=n-i; j++) ...</pre>

Part 1: Non-linearity in Dependence Analysis

Dependence Analysis Example

"When is A[x] accessed again?"

Which iterations (i,j) access the same array element?

Result of our automatic analysis:

$$\begin{split} (i,j) &\to (i+1,j-\frac{p}{2}) \quad \text{if } \begin{cases} p \equiv_2 0, m \geq 1, -2m \leq p \leq 2m, 0 \leq i \leq m-1, \\ \max(0,\frac{p}{2}) \leq j \leq \min(m,m+\frac{p}{2}) \end{cases} \\ (i,j) &\to (i+2,j-p) \quad \text{if } \begin{cases} p \equiv_2 1, m \geq 2, -m \leq p \leq m, 0 \leq i \leq m-2, \\ \max(0,p) \leq j \leq \min(m,m+p) \end{cases} \end{split}$$

(Trying to use weak quantifier elimination in the integers to compute the dependences yields an output with > 20,000 lines.)

p=3

p=4

A Non-linear Parameter Example

$$4 \cdot i + 2 \cdot j = \mathbf{p} \cdot i' + 1$$
$$(i \ j \ i') \begin{pmatrix} 4\\2\\-p \end{pmatrix} = 1$$

Solutions for $i, j, i' \in \mathbb{Z}$ in dependence of $p \in \mathbb{Z}$? For $p \equiv_2 0$: no solution. For $p \equiv_2 1$:

$$egin{aligned} & i = t_1 \ & j = (-2p-2) \cdot t_1 - p \cdot t_2 - rac{p+1}{2} \ & i' = -4t_1 - 2t_2 + 1 \ \end{aligned}$$
 for $t_1, t_2 \in \mathbb{Z}$.

Linear Diophantine Equation Systems

To solve a system of linear Diophantine equations $x \cdot A = b$ with $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^n$ for $x \in \mathbb{Z}^m$, all we need is an algorithm to compute GCDs. (More precisely, for $c, d \in \mathbb{Z}$, we must be able to compute $g, u, v \in \mathbb{Z}$ such that: $gcd_{\mathbb{Z}}(c, d) = g = u \cdot c + v \cdot d$.)

Result: We can perform a similar procedure when A and b depend on $p \in \mathbb{Z}$, i.e., we want to solve $x \cdot A(p) = b(p)$ for x in dependence of p.

Armin Größlinger and Stefan Schuster. On Computing Solutions of Linear Diophantine Equations with One Non-Iinear Parameter. In *Proc. of SYNASC 2008*, pages 69–76. IEEE Comp. Soc., 2009.

Generalisation

How do we generalise the classical procedure to solve

(4)

$$\begin{array}{l} (i \ j \ i') \begin{pmatrix} 2 \\ -p \end{pmatrix} = 1 \qquad ? \\ \end{array}$$
 What is the GCD of 2 and p? $\gcd_{\mathbb{Z}}(2,p) = \begin{cases} 2 & \text{if } p \equiv_2 0 \\ 1 & \text{if } p \equiv_2 1 \end{cases}$

Modelling p by the unknown X of $\mathbb{Z}[X]$ does not work: $gcd_{\mathbb{Z}[X]}(X,2) = 1$ if

$$\operatorname{gcd}_{\mathbb{Z}[X]}(f,g)(p) \neq \operatorname{gcd}_{\mathbb{Z}}(f(p),g(p))$$

(in general)

"polynomial GCD" "pointwise GCD"

Is there a polynomial ring $\supseteq \mathbb{Z}[X]$ in which polynomial and pointwise GCD coincide?

Entire Quasi-polynomials

Definition. A function $c : \mathbb{Z} \to \mathbb{Q}$ with period $l \ge 1$, i.e., $\forall p \in \mathbb{Z} : c(p) = c(p+l)$ is called a *periodic number*. Notation: $[c(0), \ldots, c(l-1)]$, e.g., [1, 2, 3].

Definition. $f = \sum_{i=0}^{u} c_i X^i$ with periodic numbers c_i as coefficients is called a *quasi-polynomial*. Evaluation: $f(p) := \sum_{i=0}^{u} c_i(p) \cdot p^i$ for $p \in \mathbb{Z}$.

Entire quasi-polynomials: $EQP = \{f | \forall p \in \mathbb{Z} : f(p) \in \mathbb{Z}\}$ Example:

 $f = \begin{bmatrix} \frac{3}{2}, \frac{1}{2} \end{bmatrix} X + \begin{bmatrix} 1, \frac{1}{2} \end{bmatrix} \in EQP$ because $f(1) = \frac{1}{2} \cdot 1 + \frac{1}{2} = 1$, $f(2) = \frac{3}{2} \cdot 2 + 1 = 4$, etc.

Division with Remainder in EQP

- GCDs can be computed using division with remainder.
- We can define a kind of division with remainder in EQP, e.g.:

$$X^{2} = \left(\frac{1}{2}X - [0, \frac{1}{2}]\right) \cdot 2X + [0, 1]X$$

Only complication: zero-divisors.
No divisions in components that are zero.

GCDs in EQP

This division in *EQP* allows to construct **finite** remainder sequences:

$$\operatorname{gcd}_{EQP}(f_0, f_1)(p) = \operatorname{gcd}_{\mathbb{Z}}(f_0(p), f_1(p))$$

Weak and Pointwise Echelon Form

 $S_1 = \begin{pmatrix} [1, \bigcirc X & 1 \\ 0 & 1 \end{pmatrix}$ is in echelon form, because $[1, 0]X \neq 0$ and $1 \neq 0$.

But $S_1(p)$ is *not* echelon for p = 0, $p \equiv_2 1$: $S_1(p) = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$

Serious problem: periodically vanishing pivots Solution: Additional row operations in the vanishing components.

$$S_1 \rightsquigarrow S_2 = \begin{pmatrix} [1,0]X & 1\\ 0 & [1,0] \end{pmatrix}$$

subtract first row times [0, 1] from second row

 $S_2(p)$ is echelon for all $p \in \mathbb{Z} - M$, $M = \{0\}$.

Dependence Analysis Summary

- Entire quasi-polynomials allow to compute pointwise solutions of a system of linear Diophantine equations with one non-linear parameter.
- This also generalises Banerjee's data dependence to one non-linear parameter.
- Previously, only syntactic treatment of non-linearities (Pugh et al. 1995) or approximations.

Part 2: Non-linearities in Transformations

Non-linear Transformations

- Transformations may introduce non-linearities for different reasons, e.g.:
 - Explicit non-linear schedules which are better than the best linear schedules (Achtziger et al. 2000),
 - Non-linear parameter models a compile-time unknown (e.g. number of processors for tiling for a variable number of processors).

Quantifier Elimination vs Algorithm + QE

- Some transformations (e.g., computing a schedule) can be expressed as quantifier elimination (QE) or QE with answer problems.
- Unfortunately, QE is too slow even for small examples.
- Alternative: Enhance a classical algorithm with the help of QE to handle non-linear parameters. Successful for, e.g.,
 - Fourier-Motzkin elimination,
 - Simplex,
 - Chernikova's algorithm.

Armin Größlinger, Martin Griebl, and Christian Lengauer. Quantifier Elimination in Automatic Loop Parallelization. *Journal of Symbolic Computation*, 41(11):1206–1221, Nov. 2006. 17

Classical Algorithm + QE

 Classical algorithms (like Simplex) make case distinctions on the signs of values in a coefficient matrix:

$$\begin{pmatrix} 1 & 2 & -4 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} p & p^2 - q & -p & 0 \end{pmatrix}$$

if c >= 0 then
A else
B A B A B

- With non-linear parameters, values are symbolic expressions in the parameters.
 → Case distinctions in the result.
- QE is used to prune paths with inconsistent conditions.
- Correctness by construction.
- Termination has to be proved.

Scheduling Example

Dependence: $i \rightarrow i + n$

Desired schedule: $\theta(i) = \lfloor \frac{i}{n} \rfloor$

Observations:

- Both QE with answer and Simplex+QE compute the desired schedule in a short time. (about 2 seconds on Core2Duo 2.4 GHz)
- QE with answer fails (is too slow or uses too much memory) for more complex examples (2-dimensional iteration domain, 2 dependences).

Tiling

- The parallelism often has to be coarsened by grouping operations into bigger chunks.
- Example: tiles with width w and height h; Coordinates of the tiles: (T,P)

Armin Größlinger. Some Experiments on Tiling Loop Programs for Shared-Memory Multicore Architectures. Dagstuhl seminar number 07361 proceedings, 2008.

Transformations Summary

- Non-linear transformations are becoming more desirable as we try to apply the polyhedron model to a wider range of programs or hardware.
- Even "harmless" transformations may cause nonlinearities to appear.

Part 3: Code Generation for Non-linearly Bounded Iteration Domains

Non-linear Code Generation?

- Why non-linear code generation?
 - Non-linear parameters and variables are introduced by transformations (cf. Part 2).
- A single non-linearity makes it impossible to use current code generation techniques (e.g., Bastoul 2004).

Armin Größlinger. Scanning Index Sets with Polynomial Bounds Using Cylindrical Algebraic Decomposition. Technical Report MIP-0803, Fakultät für Informatik und Mathematik, Universität Passau, 2008.

The Essence of Code Generation

No case distinctions inside the loops!

for (x=c+1; x \leq d; x++) for (y=f; y \leq h; y++) T₂; 24

Polyhedral Code Generation

- Compute partitionings of the iteration domains and their projections onto outer dimensions by
 - intersections and differences of polyhedra,
 - projections of polyhedra.
- Invariant: intersections, differences and projections yield finite unions of polyhedra.

→ finitely many convex sets

 Partitions (polyhedra) can be ordered in each dimension. The choice of the partitioning only affects the efficiency of the generated code.

Loops for Polyhedra with Non-linear Parameters

- Using QE we can generalise polyhedral code generation to non-linear parameters:
 - Fourier-Motzkin (or Chernikova) used to compute projections.
 - QE used to compute disjoint unions of polyhedra and ordering of polyhedra.
- The prototype implementation can generate code for all examples in CLooG's test suite.

Loops for Semi-algebraic Iteration Domains

- Semi-algebraic set = defined by polynomial (in-)equalities
- Can be non-convex:
 - $$\begin{split} &1\leq x\leq 7\\ &1\leq y\leq 9\\ &0\leq (y-4)^2+12-3x \end{split}$$

- Convexity is not necessary for code generation.
- The analogy to dimension-wise ordered convex sets is cylindrical (algebraic) decomposition.

A Semi-algebraic Example

 $0 \le (y-4)^2 + 12 - 3x$

Cylindrical Decomposition

Let $R \subseteq \mathbb{R}^n$ connected, $R \neq \emptyset$. Then $R \times \mathbb{R}$ is called a *cylinder* over R. Let $f_1, \ldots, f_r : R \to \mathbb{R}$ continuous and $\forall x \in R : f_1(x) < f_2(x) < \cdots < f_r(x)$. Then (f_1, \ldots, f_r) defines a *stack* over R. The graphs of the f_i are called *sections*, and the regions between the graphs are called a *sectors*.

Cylindrical algebraic decomposition: f_i are roots of (multi-variate) polynomials.

Code for the Example

Simplified Code

Code Generation Summary

- QE allows to generalise polyhedral code generation to non-linear parameters.
- Cylindrical decomposition enables to generate code for arbitrary semi-algebraic iteration domains.
- Prototypical implementations available:
 - Using FM/Chernikova+QE: NLGen (to be released soon).
 Can generate code for all of CLooG's test cases.
 - Using CAD: CADGen version 0.1, available at https://www.infosun.fim.uni-passau.de/trac/LooPo/wiki/CADGen Can generate code for a few of CLooG's test cases.
- Open question: relation of code generation to formula simplification (e.g., GEOFORM formulas)?

Conclusions

- The applicability of automatic loop parallelisation is restricted by many cases that are "slightly" outside the polyhedron model.
- In all three phases of the parallelisation process non-linearities can be handled.
- Dependence analysis is most challenging.
- Code generation is solved in theory.
- Quantifier elimination with answer is often too general and, therefore, too slow.
- Combining polyhedral methods (for polyhedral subproblems) with the more general ones may improve the efficiency.