The Challenges of Non-linear Parameters and
Variables in Automatic Loop Parallelisation

Armin Grof3linger
December 2, 2009

Rigorosum

Fakultat fur Informatik und Mathematik
Universitat Passau

Automatic Loop Parallelisation

for (i=1; i<=n; i++) for (t=1; t<=n; t++)
for (j=1; j<=n-1i; j++) parfor (p=1; p<=t; p++)
A[1][j]=Al1-1][]j]+A[1][]-1]; Alt-p+1][p] = ...;
l el o T
generation

— — — — —
Transformation(s)

1 <1<n Loop bounds and 1<t<n
- array indices are -
1<j<n—1i linear (affine) expressions. 1 <p <t
Dependences: - Polyhedron model

(4,5) — (2,7+1) (t,p) = (t+1,p+1)

Non-linearity?

The polyhedron model can handle some codes in, e.q.,
= Simulation, image processing, linear algebra.
Today, parallelism is everywhere:

= Multi-core CPUs, many-core CPUs,
graphics card computing (GPGPU)

= Automatic parallelisation helps not to burden software
developers with the parallelism.

= Non-linearities make the polyhedron model more widely
applicable:

= Handle more programs,
= Target more diverse hardware.

Non-linearity

= Linear: A[2* + 3* — 4*m + 5*n + 7]
expressions linear in the variables and the parameters.
= Non-linearity:
= A[n*I + m*m*] + n*m]

Expressions still linear in the variables
("non-linear parameters”).

= A[iI* + m*j*j]
Arbitrary polynomials in the variables and parameters.

for (i=1; i<=n; i++)
for (j=1; j<=n-i; j++)

lAnaIysis Part 1.
Non-linearity In

Dependence Analysis

Dependence Analysis Example

for (i=0; i<=m; i++) AN N € ¢
for (J:@’ j<=m; j++) ¢ \& \& \& \¢ o 0\0
... A[p*i+2%j] ... NN\ \

"When is A[x] accessed again?” ¢ **\\°*\\° . \-\-k-k-
Which iterations (i,j) access /TR N N N ; ‘\‘\‘\‘\‘\‘
T_> i p=3

the same array element?

Result of our automatic analysis:

(p=20,m>1,-2m<p<2m,0<i<m—1,

2 T\max(O, £) <Jj < min(m, m+3%)

,
= 1,m>2,—m<p<m,0<i<m—2,
(i,§) = (42,5 —p) i 7 2 = P S

\maX(O,p) < j < min(m, m+p)

(Trying to use weak quantifier elimination in the integers to compute the
dependences yields an output with > 20,000 lines.)

A Non-linear Parameter Example

for (i=0; i<=m; i++) { . q e —=m.q!
for (j=0; j<=n; j++) { 4 Z_I_Q J p-?t _l_l
L A[A*i42%5] ... 4
} . .) .
... A[p*i+1] ... i)l 2) =1
} —p

Solutions for 7, j, ¢ € Z in dependence of p € Z ?

For p =5 0: no solution.

For p =5 1:
1 =11
: p+1
J=(=2p=2) ti—p-t2 = ——

i = —4t; — 2ty + 1 for t1,t2 € Z.

Linear Diophantine Equation Systems

To solve a system of linear Diophantine equations
r-A=5> with A € Z™*™, b € Z"
for x € Z™, all we need is an algorithm to compute GCDs.

(More precisely, for ¢,d € Z, we must be able to compute
g,u,v € Z such that: gedy(c,d) =g=u-c+v-d.)

Result: We can perform a similar procedure when A and b
depend on p € Z, i.e., we want to solve

z - A(p) = b(p)

for x in dependence of p.

Armin GroBlinger and Stefan Schuster. On Computing Solutions
of Linear Diophantine Equations with One Non-linear Parameter.
In Proc. of SYNASC 2008, pages 69-76. IEEE Comp. Soc., 2009.

Generalisation

How do we generalise the classical procedure to solve

4
(iji')(Q)l ?
—p y

What is the GCD of 2 and p? ged,(2,p) = < 2 itp=20

\1 f D =2 1
Modelling p by the unknown X of Z|X| does not work:
ngZ[X] (X,2)=1 é

gedyx(f, 9)(p) # gedy, (f(p), 9(p)) (in general)
“polynomial GCD” “pointwise GCD"

Is there a polynomial ring O Z|X| in which
polynomial and pointwise GCD coincide? 5

Entire Quasi-polynomials

Definition. A function ¢ : Z — QQ with period [> 1,

l.e., Vp € Z : c(p) = c(p+1) is called a periodic number.
Notation: [c(0),...,c(l —1)], e.g., [1,2,3].

Definition. f = > "' ,¢; X" with periodic numbers ¢;
as coefficients is called a quasi-polynomial.
Evaluation: f(p) :=>_." ,ci(p) -p* forp e Z.

Entire quasi-polynomials: EQP = {f |Vp € Z : f(p) € Z}
Example:

f=15,3]X +[1,3] € EQP
because f(1) =3 -1+ 2 =1, f(2) =2 -2+1=4, etc.

10

Division with Remainder in EQP

= GCDs can be computed using division with remainder.

= We can define a kind of division with remainder in EQP,

e.g.:

X?=(i1x-[0,1])-2Xx + [0,1]X

= Only complication: zero-divisors.
No divisions in components that are zero.

11

GCDs in EQP

This division in EQP allows to construct finite remainder
seguences:

fo=qo0- fi+ fa fo(p) = qo(p) - f1(p) + f2(p)
Ji=aq - J2+ J3 fi(p) = a1(p) - f2(p) + f3(P)
fn—l = n—1 - fn fn—l(p) — Qn—l(p) . fn(p)
U Y

Jn :ngEQP(fmfl) fn(p) :ngZ(fO(p)afl(p))

[sed o (fo, f1)(p) = gedz (fo(@), £1())]

12

Weak and Pointwise Echelon Form

10X 1 iIs in echelon form, because
Sl:(0 1) 1,0]X # 0 and 1 # 0.

But Si(p) is not echelon for p =0, p =5 1: S1(p) = (8 1)

Serious problem: periodically vanishing pivots

Solution:
Additional row operations in the vanishing components.

_ [17 O]X 1 subtract first row times [0, 1]
51~ 52 = (0 [17 O] from second row

S2(p) is echelon for all p € Z — M, M = {0}.

13

Dependence Analysis Summary

= Entire quasi-polynomials allow to compute pointwise
solutions of a system of linear Diophantine equations
with one non-linear parameter.

= This also generalises Banerjee's data dependence to
one non-linear parameter.

= Previously, only syntactic treatment of non-linearities
(Pugh et al. 1995) or approximations.

14

—> . . > —P
Transformation(s)

Part 2:
Non-linearities in Transformations

15

Non-linear Transformations

= Transformations may introduce non-linearities for
different reasons, e.qg.:

= Explicit non-linear schedules which are better than the
best linear schedules (Achtziger et al. 2000),

= Non-linear parameter models a compile-time unknown
(e.g. number of processors for tiling for a variable number
of processors).

16

Quantifier Elimination vs

Algorithm + QE

= Some transformations (e.g., computing a schedule) can
be expressed as quantifier elimination (QE) or QE with
answer problems.

= Unfortunately, QE is too slow even for small examples.

= Alternative: Enhance a classical algorithm with the help
of QE to handle non-linear parameters. Successful for,

e.g.,
= Fourier-Motzkin elimination,
= Simplex,

= Chernikova's algorithm.

Armin GroBlinger, Martin Griebl, and Christian Lengauer.

Quantifier Elimination in Automatic Loop Parallelization.
Journal of Symbolic Computation, 41(11):1206-1221, Nov. 2006. 17

Classical Algorithm + QE

Classical algorithms (like Simplex) make case
distinctions on the signs of values in a coefficient matrix:

(1 2 -4 0) (p p°—q —-p 0)
if ¢ >= 0 then

A > pzm<0
elsBe A 3

With non-linear parameters, values are symbolic
expressions in the parameters.
— Case distinctions in the result.

QE is used to prune paths with inconsistent conditions.
Correctness by construction.
Termination has to be proved. "

Scheduling Example

Dependence:
1 —1+n o

Desired schedule: 0(i) = L%J

Observations:

= Both QE with answer and Simplex+QE compute the
desired schedule in a short time.

(about 2 seconds on Core2Duo 2.4 GHz)

= QE with answer fails (is too slow or uses too much
memory) for more complex examples
(2-dimensional iteration domain, 2 dependences).

19

P
A

Tiling

The parallelism often has to be coarsened by grouping
operations into bigger chunks.

Example: tiles with width w and height h;
Coordinates of the tiles: (T,P)

» 60— 0—>0—>0—

N MV

06— *0—>0—>0— 0—>0—>0— —>—>6—>¢

YAy AV

C—>C— > C—>C—>¢- 0—>0—>0— —>—>¢

O A A

AR AN A N AN A4 0—»0—»0— —>6 O < D — h - P < h—1

> t

Armin GroBlinger. Some Experiments on Tiling Loop Programs
for Shared-Memory Multicore Architectures.
Dagstuhl seminar number 07361 proceedings, 2008.

20

Transformations Summary

= Non-linear transformations are becoming more
desirable as we try to apply the polyhedron model to a
wider range of programs or hardware.

= Even "harmless” transformations may cause non-
linearities to appear.

21

for (t=1; t<=n; t++)
parfor (p=1; p<=n-(n-t)"2; p++)

Part 3: Cod
Code Generation for . cration T
Non-linearly Bounded

lteration Domains

22

Non-linear Code Generation?

= Why non-linear code generation?

= Non-linear parameters and variables are introduced by
transformations (cf. Part 2).

= A single non-linearity makes it impossible to use current
code generation techniques (e.g., Bastoul 2004).

Armin GroBlinger. Scanning Index Sets with Polynomial Bounds
Using Cylindrical Algebraic Decomposition. Technical Report MIP-0803,
Fakultat fur Informatik und Mathematik, Universitat Passau, 2008.

23

The Essence of Code Generation

Enumerate iterations in
lexicographic order.

for (x=a; x<d; x++) {
for (y=e; y<h; y++) {

if (F%<c/Ne<yp<F) T1;
if (bsee=<d ATfy<h) T»;
}

; For efficiency:
No case distinctions
inside the loops!

for (x=b; x<c; x++) {

for (y=£f; y<g; y++) { T1; T2; }
for (y=g+1; y<h; y++) To;

¥

for (x=c+1; x<d; x++)
for (y=f; y<h; y++) Ta; o4

Polyhedral Code Generation

= Compute partitionings of the iteration domains and their
projections onto outer dimensions by

= Intersections and differences of polyhedra,
= projections of polyhedra.

= |nvariant: intersections, differences and projections yield
finite unions of polyhedra.
- finitely many convex sets

= Partitions (polyhedra) can be ordered in each dimension.
The choice of the partitioning only affects the efficiency
of the generated code. =

Loops for Polyhedra with

Non-linear Parameters

= Using QE we can generalise polyhedral code
generation to non-linear parameters:

= Fourier-Motzkin (or Chernikova) used to compute
projections.

= QE used to compute disjoint unions of polyhedra and
ordering of polyhedra.

= The prototype implementation can generate code for all
examples in CLooG's test suite.

26

Loops for Semi-algebraic

Iteration Domains

= Semi-algebraic set =
defined by polynomial (in-)equalities

= Can be non-convex:

7
9

S = =
IA TN TA
VASRVA

T
(7
(y —4)* + 12 — 3z

= Convexity Is not necessary for code generation.

= The analogy to dimension-wise ordered convex sets is
cylindrical (algebraic) decomposition.

27

A Semi-algebraic Example

| for (x=1; x<4; x++)
for (y=1; y<9; y++)
T(x,y);
for (x=4+1; x<7; x++) {
for (y=1; y<|4—/3x—12|; y++)
T(x,y);
for (y=|4+/3x—12
> X T(x,y);

; y<9; y++)

\‘ —— — — — —

O QU

S ==
VANVANNVA
R N O

VASVA

y—4)°+12 -3z

28

Cylindrical Decomposition

Let R C R™ connected, R # &.

Then R x R is called a cylinder over R.
Let f1,..., fr : R — R continuous

and Ve € R: fi(x) < fo(z) < --- < fr(@).

Then (f1,..., fr) defines a stack over R.
The graphs of the f; are called sections, and
the regions between the graphs are called a sectors.

Cylindrical algebraic
decomposition: f; are roots of
(multi-variate) polynomials.

sectors

29

cylinder

Code for the Example

for (x=1; x<1; x++) {

y for (y=1; y<1; y++) for (x=4+1; x<7-1; x++) {
T(x,y); for (y=1; y<1; y++)
A for (y=1+1; y<9-1; y++) T(x,y);
| T(x,y); for (y=1+1; y§[4—\/3x—12 —1; y++)
9 X for (y=9; y<9; y++) T(x,y);
T(x,y); for (y=[4—/3x—12]; y<[4—V3x—12]; y++)
} T(x,y);
for (x=1+1; x<4-1; x++) { for (y=[4+3x—12|; y<[4+V3x—12]; y++)
7 — for (y=1; y<1; y++) T(x,y);
T(x,y); for (y=L4+\/3x—12J +1; y<9-1; y++)
for (y=1+1; y<9-1; y++) T(x,y);
T(x,y); for (y=9; y<9; y++)
for (y=9; y<9; y++) T(x,y);
T(x,y); }
4 —— } for (x=7; x<7; x++) {
for (x=4; x<4; x++) { for (y=1; y<1; y++)
for (y=1; y<1; y++) T(x,y);
| T(x,y); for (y=[4+v3x—12]; y<|4+V3x—12]; y++)
| for (y=1+1; y<4-1; y++) T(x,¥);
T(x,y); for (y=L4—|—\/3X—12J+1; y<9-1; y++)
1 X X for (y=4; y<4; y++) T(x,y) ;
| | T(x,y); for (y=9; y<9; y++)
| | X fO;((Y=;l+1; y<9-1; y++) T(x,y);
X,y);
1l 4 for (y=9; y<9; y++) J
T(x,y);

) 30

Simplified Code

for (x=1; x<4; x++) {
for (y=1; y<9; y++)
T(x,y);
}

for (x=4+1; x<T7; x++) {
for (y=1; y<[4—/3x —12]; y++)
T(x,y);

for (y=[4—|—\/3x— 12-|; y<9; y++)
T(x,¥);

Generated code can be simplified
automatically.

31

Code Generation Summary

QE allows to generalise polyhedral code generation to
non-linear parameters.

Cylindrical decomposition enables to generate code for
arbitrary semi-algebraic iteration domains.

Prototypical implementations available:

= Using FM/Chernikova+QE: NLGen
(to be released soon).
Can generate code for all of CLooG's test cases.

= Using CAD: CADGen version 0.1, available at
https://www.infosun.fim.uni-passau.de/trac/LooPo/wiki/CADGen
Can generate code for a few of CLooG's test cases.

Open question: relation of code generation to formula
simplification (e.g., GEOFORM formulas)?

32

https://www.infosun.fim.uni-passau.de/trac/LooPo/wiki/CADGen

Conclusions

The applicability of automatic loop parallelisation is
restricted by many cases that are "slightly” outside the
polyhedron model.

In all three phases of the parallelisation process
non-linearities can be handled.

Dependence analysis is most challenging.
Code generation is solved in theory.

Quantifier elimination with answer is often too general
and, therefore, too slow.

Combining polyhedral methods (for polyhedral sub-
problems) with the more general ones may improve the
efficiency.

33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

