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Formal specification and verification techniques have been used successfully to detect fea-
ture interactions. We investigate whether feature-based specifications can be used for this
task. Feature-based specifications are a special class of specifications that aim at modularity
in open-world, feature-oriented systems. The question we address is whether modularity
of specifications impairs the ability to detect feature interactions, which cut across feature
boundaries. In an exploratory study on 10 feature-oriented systems, we found that the
majority of feature interactions could be detected based on feature-based specifications,
but some specifications have not been modularized properly and require undesirable
workarounds to modularization. Based on the study, we discuss the merits and limitations
of feature-based specifications, as well as open issues and perspectives. A goal that under-
lies our work is to raise awareness of the importance and challenges of feature-based
specification.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Feature interactions are phenomena that have been
studied for years in telecommunication systems [1]. A fea-
ture interaction occurs when a feature (i.e., an end-user-vis-
ible unit of behavior) influences the behavior of another
feature in an unexpected way (e.g., regarding the expected
control flow or visible behavior). Typically, the behavioral
influence induced by a feature interaction cannot be easily
deduced from the individual behaviors of the features in-
volved [1]. The feature-interaction problem is to detect,
manage, and resolve interactions among features.

Feature interactions are often desired and need to be
planned and managed properly. For example, in a database
system, the features for managing transactions and collect-
ing statistics interact: Statistics are collected about trans-
actions at runtime, and access to statistics data is done
under the umbrella of transactional control. But feature
interactions may be inadvertent and even critical. Consider
the canonical example of a building-automation system
with flood and fire control [2]. Fire control activates sprin-
klers when sensors detect a fire. Flood control cuts off
water supply when water is detected on the floor. Individ-
ually, both features operate as desired, but they interact in
an inadvertent and critical way: When a fire is detected,
the fire-control feature activates sprinklers, the flood-con-
trol feature detects standing water, turns off the water
main, and the building burns down.

Two converging developments, software product lines
and software ecosystems, make the feature-interaction
problem especially challenging. First, recent product-line
and generator technology gives rise to systems with many
features and even more valid feature combinations [3,4].
Systems such as the Linux kernel provide thousands of
configuration options, of which myriads of system variants
can be generated, only by selecting the desired features
(with only 33 independent features, one can generate a
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Fig. 1. Feature-interaction detection based on verification and feature-
based specifications.
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distinct system variant for each person on the planet).
Anticipating, detecting, understanding, and handling all
possible feature interactions in such systems is a major
challenge. Second, the advent of software ecosystems (fur-
ther) shifts software-engineering practice to an open world
[5]. Much like in the telecommunication systems studied
in the early days of feature-interaction research, there is
no central instance that oversees the development process
or system operation of a software ecosystem. Ecosystems
such as Android, Firefox, and Eclipse are composed of
many features (plugins, extensions, services, apps), mostly
developed and tested separately by different parties. The
independent development of features and the composition
and deployment at customer site worsens the feature-
interaction problem, because desired interactions cannot
be planned properly and undesired ones cannot easily be
anticipated.

In the remainder of the paper, we abstract from the spe-
cifics of telecommunication systems, product lines, and
software ecosystems, by building our discussion on the
paradigm of feature orientation [4]. A key idea of feature
orientation is to make features explicit in design and code.
Decomposing the design and implementation of a system
along its features into composable units (components, ser-
vices, plugins, aspects) has four benefits:

� Features can be implemented independently of one
another.
� Based on a user’s feature selection, the corresponding

implementation units can be composed automatically
by a generator.
� Features and their implementations can be reused in

several systems.
� Different feature combinations result in different sys-

tem variants.

In the past, researchers and practitioners proposed var-
ious approaches to tackle the feature-interaction problem
[1]. Here, we concentrate on approaches that leverage for-
mal specification and verification techniques to detect
inadvertent and undesired feature interactions in feature-
oriented systems [1,6–12]. The idea is to verify that a cer-
tain feature combination satisfies a corresponding
specification.

For example, in the building-automation system from
above, the specification should state that, if flood and fire
control are active, fire control has precedence over flood
control. This example illustrates an interesting aspect of
specification. The example specification is global and con-
cerns the overall system behavior. Global specification is
problematic as it impairs modularity. Even if all features
are known in advance, it is desirable to specify and imple-
ment them modularly. This way, the amount of global
knowledge and control is minimized and thus reduces
complexity and dependencies among features. In an open
world, it is even impossible to specify a system globally,
as not all features are known (e.g., it is challenging to antic-
ipate all plugins of Firefox or Eclipse).

Clearly, it is desirable and natural to specify a feature-
oriented system in terms of the features it provides. In this
scenario, each feature comes with an implementation in
the form of a composable unit (component, plugin, aspect,
etc.), and a specification that states which properties must
hold when the feature is present in the system [7], called
feature-based specification [13]. A feature-based specifica-
tion refers only to its own implementation and the imple-
mentation of the features it imports and refers to (e.g., via
function calls).

Having said that, readers may object that feature inter-
actions are inherently anti-modular [1,14]—they emerge
from the interplay of multiple features and cannot be de-
tected by looking solely at individual features. So, tech-
niques for feature-interaction detection have to consider
(at some point) combinations of features (e.g., entire sys-
tem variants). Nevertheless, the key research question we
will address here is whether we can detect feature interac-
tions based on feature-based specifications, as illustrated
in Fig. 1. In other words, can we attain modularity at the
level of specifications? In our example, we would need a
specification of the desired behavior of the fire-control fea-
ture without referring to other independently developed
features such as flood control.

In particular, we make two contributions to the state of
the art:

� We devise the concept of feature-based specifications,
and raise awareness of their importance and relation
to the feature-interaction problem.
� We report on our experience with feature-based speci-

fication in the verification of 10 feature-oriented sys-
tems, and we discuss the merits and limitations of
feature-based specification, as well as open issues and
perspectives.

The focus we set in this paper is on feature interactions
in software systems. In Section 3.4, we discuss whether and
how our results generalize to other kinds of systems such
as networked systems.

2. Feature orientation and feature interactions

A feature-oriented system is decomposed into compos-
able units along the features it provides [4]. A key idea of



1 The combination of the two operators A and G states that the
proposition must hold globally for all execution paths.
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product-line engineering is to compose features in differ-
ent combinations giving rise to different system variants
(variants, for short). The resulting variants share certain
features but differ in other features. A product line is a
set of system (or product) variants that can be created by
a set of features.

2.1. Basic concepts

Throughout the paper, we use a number of metavari-
ables denoting basic concepts of feature-oriented systems:
F is the set of features, f1, . . . , fn 2 F denote individual fea-
tures, V # 2F is the set of valid system variants (i.e., a prod-
uct line), and v1, . . . ,vm 2 V denote individual system
variants, with vi # F. In product-line engineering, typi-
cally, a feature model defines which system variants are
valid [3], but details about this are not relevant for the
remaining sections.

A unique property of feature-oriented systems is that
features are explicit in design and code. That is, ideally,
for each feature there is one composition unit that imple-
ments the feature. This way, a system variant can be gen-
erated based on a selection of desired features solely by
composing the corresponding implementation units:
impl(f) denotes the implementation unit of feature f, and
impl(v) denotes the composition of the features (i.e., of
their implementation units) of variant v:

implðvÞ ¼ implðf1Þ � . . . � implðfnÞ ð1Þ

where f1, . . . , fn are the features of variant v (with v = {f1, . . . ,
fn}), and �: I � I ? I is the composition operator over the set
I of valid implementation units.

Typically, feature implementations depend (or build) on
other feature implementations. Independently, of the
implementation language, we say in this case that the
implementation of one feature imports the implementation
(or parts of it) from another feature (e.g., via import decla-
rations in Java or #include directives in C).

Several composition operators for feature implementa-
tions have been proposed, including component aggrega-
tion, service orchestration, plugin mechanisms, aspect
weaving, and superimposition [3,4,15,16]. For our discus-
sion, the choices of programming language, import mech-
anism, and composition operator are not relevant, as long
they allow the programmer to implement a feature within
a single implementation unit and to compose multiple
units upon feature selection. The mapping between fea-
tures and implementation units may be more complex
[17,18]; for now, we suffice with a simple one-to-one
mapping.

Example. For illustration, we use the running example of a
simple, feature-oriented e-mail client [9], inspired by Hall
[14], including optional support for message encryption
and forwarding. For the purpose of the example, features
are implemented in C, in terms of feature modules, and
composed by means of superimposition [19], as illustrated
in Fig. 2. Feature EmailClient implements a basic e-mail
client; it introduces a structure email for representing e-
mails and the two functions outgoing and incoming for
handling incoming and outgoing e-mails. Feature Encrypt
encrypts outgoing e-mails; it extends the existing struc-
ture email by adding the two new fields isEncrypted and
encryptionKey and function encrypt, and it overrides the
existing function outgoing to actually encrypt outgoing e-
mails (keyword original invokes the overridden function).
Feature Forward forwards incoming e-mails to another
host; it introduces a function forward and overrides the
existing function incoming to forward incoming e-mails.

Once a user selects a set of desired features, superimpo-
sition merges the code of all feature modules recursively
based on nominal and structural similarity. If two features
contain structures or classes with equal names, their mem-
bers are superimposed, as well; see Fig. 2, for an example.
This process recurses until basic program elements such as
fields and functions are reached. Typically, there is a given
total order over features, because feature composition is
not commutative [19]. In our case studies, we use the tool
FEATUREHOUSE [20] for superimposition.

2.2. Feature-oriented specification

To verify the correctness of a feature-oriented system,
one has to prove that its implementation satisfies its spec-
ification. The question we raised in the introduction was
whether feature-based specifications can be used to detect
feature interactions. To this end, we distinguish between
three types of specifications [13]:

� A global specification spec(V) defines the properties of
each system variant of a product line V.
� A variant-based specification spec(v) defines the proper-

ties of a single system variant v.
� A feature-based specification spec(f) defines the proper-

ties of feature f that apply to all variants that contain f.
Example. In our e-mail example, a possible global specifi-
cation is that an outgoing e-mail message must have valid
sender and receiver addresses. In temporal logic, we can
express this global specification (which is essentially a
safety property) as follows1:

AG outgoingðemail eÞ ) validaddrðe:fromÞ ^ validaddrðe:toÞ
ð2Þ

where validaddr is an auxiliary predicate stating the validity
of a host address.

A feature-based specification that concerns only feature
Encrypt is that the encryption key must be valid:

AG outgoingðemail eÞ ) ðe:isEncrypted) validkey

ðe:encryptionKeyÞÞ ð3Þ

where validkey is an auxiliary predicate stating the validity
of an encryption key. The formula states that, whenever an
outgoing e-mail message is sent, the corresponding
encryption key must be valid. Note that, for system vari-
ants that do not contain feature Encrypt, this specification



Fig. 2. Three feature implementations of the e-mail client in the form of feature modules, written in C [9] (impl(EmailClient), impl(Encrypt), impl(Forward)),
and their composition using superimposition (impl(Forward) � impl(Encrypt) � impl(EmailClient)).
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cannot even be checked, as it contains references to En-
crypt’s implementation.

The three types of specification, give rise to three corre-
sponding verification procedures for feature-interaction
analysis of an entire product line V:

� Feature-interaction detection based on a global specifi-
cation spec(V):
8v 2 V : implðvÞ � specðVÞ ð4Þ
� Feature-interaction detection based on variant-based
specifications spec(v):
8v 2 V : implðvÞ � specðvÞ ð5Þ
� Feature-interaction detection based on feature-based
specifications spec(f):
8v 2 V : 8f 2 v : implðvÞ � specðf Þ ð6Þ
Using a global specification, a verification tool needs to
check only a single specification, whereas the number of
product-based specifications grows, in the worst case,
exponentially with the number of features. In contrast,
the number of feature-based specifications grows only lin-
early with the number of features.

Note that, in Eqs. (4)–(6), we verify every system vari-
ant individually. This strategy is naive and can be opti-
mized in that individual features are verified separately
as far as possible, or verification takes advantage of simi-
larities among system variants; a recent survey describes
several strategies in detail [13], but their differences are
orthogonal to the problem of modularity of feature specifi-
cations. In the remainder of the paper, we assume the na-
ive variant-based strategy, for simplicity.

Finally, as suggested in Eqs. (4)–(6), we can verify the
implementations directly using proper verification tech-
nology—without the need of extracting intermediate mod-
els manually [9].

2.3. Modularity of feature-based specifications

What does modularity precisely mean to specifica-
tions in feature-oriented systems? The answer consists
of two parts. First, rather than assigning a specification
to one or more system variants (such as with global
and variant-based specifications), using feature-based
specifications, each feature has its own specification
(which may be empty). Every system variant that con-
tains the feature has to fulfill the feature’s specification
(cf. Eq. (6)).

But there is more to feature-based specification than
only assigning specifications to individual features. It is
certainly not the point of feature-based specification to for-
mulate a global specification that concerns many features
and system variants, and then assign it to a single feature.
In a truly open world, when developing and integrating a
feature, a programmer is not aware of other features, ex-
cept certain features, whose implementation units are im-
ported. A feature’s specification has no global knowledge.

The implementation base baseimpl(f) of a given feature f is
determined by the imports of f:
baseimplðf Þ ¼ ffg [ fg j importsðimplðf Þ; implðgÞÞg ð7Þ

where imports(impl(f), impl(g)) states that the implementa-
tion of feature f imports the implementation (or parts of it)
of feature g. The actual definition of imports depends on the
underlying language and composition mechanism [21]. In
our setting, imports are defined either explicitly via import

or #include directives, or implicitly via references across
feature boundaries (in the form of functions calls, field
and global-variable accesses, and type references).

Example. From Fig. 2 we infer that baseimpl(Encrypt) =
{Encrypt, EmailClient}, because the implementation of fea-
ture Encrypt refers to the implementation of EmailClient.
Similarly, we infer that baseimpl(Forward) = {Forward,
EmailClient}.

Likewise, a feature’s specification may depend on the
implementations and the specifications of other features,
called its specification base:

basespecðf Þ ¼ffg [ fg j importsðspecðf Þ; specðgÞÞ _ imports

ðspecðf Þ; implðgÞÞg ð8Þ

Based on Eqs. (7) and (8), we refine our notion feature-
based specification: we call a specification of feature f fea-
ture-based, iff basespec(f) # baseimpl(f).

Example. In our e-mail example, the specification of
feature Encrypt in Eq. (3) is feature-based: Encrypt’s
specification refers only to its own implementation and
the implementation of feature EmailClient, which belongs
to its implementation base:

fEncrypt; EmailClientg
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

basespecðEncryptÞ

# fEncrypt; EmailClientg
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

baseimplðEncryptÞ

ð9Þ

If the specification of feature Encrypt referred to feature
Forward, it would not be feature-based anymore. In Sec-
tion 2.4, we will discuss such an example in the context
of feature-interaction detection.
2.4. Feature interactions

Specification and verification techniques have been
used successfully for feature-interaction detection [1,6–
10,12]. In a closed world, in which all features are known
a priori, feature-interaction detection can take advantage
of global or variant-based specifications, because each
specification may import any other feature’s specification
or implementation, making desired and undesired interac-
tions explicit (e.g., ‘in all variants that contain both fire
control and flood control, fire control takes precedence
over flood control’).

In an open world, not all features are known a priori.
Here, global and variant-based specifications are not an op-
tion as they are necessarily incomplete. If a new feature is
introduced, the results of analyses using global or variant-
based specifications are obsolete. In an open world, fea-
ture-based specifications are desirable. But can we detect
interactions between features that do not know of each
other?
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Example. Hall designed the e-mail system such that it
actually contains a critical interaction between the fea-
tures Encrypt and Forward (based on experience with
interactions in real systems at AT&T) [14]. The interaction
occurs if one host sends an encrypted e-mail to a second
host that forwards the e-mail automatically to a third host.
If the second host does not have the public key of the third
host, it forwards the e-mail in plain text (the implemen-
tation of feature Forward does not know whether an e-mail
is encrypted).2

Intuitively, the interaction between Encrypt and For-
ward violates the intention of feature Encrypt. But would it
have been detected in an open world, using a feature-based
specification? A straightforward specification would be the
following3:

AG ðincomingðemail eÞ ^ e:isEncryptedÞ ) ððforwardðemail eÞ
) e:isEncryptedÞ R forwardðemail eÞÞ ð10Þ

But this specification is not feature-based, because it refers
to the implementation of feature Forward, which is not part
of Encrypt’s implementation base (and possibly not known
in an open world): basespec(Encrypt) 6# baseimpl(Encrypt).

With this issue in mind, we can formulate a feature-
based specification of feature Encrypt:

AG ðincomingðemail eÞ ^ e:isEncryptedÞ ) ððoutgoingðemail eÞ
) e:isEncryptedÞ R outgoingðemail eÞÞ ð11Þ

The difference to the first attempt is that the feature-based
specification does not refer to function forward of feature
Forward, but to the underlying implementation of feature
EmailClient, so basespec(Encrypt) # baseimpl(Encrypt).

Having such a modular specification of feature Encrypt,
can we detect the critical interaction with feature Forward?
For this example, the answer is yes, as we illustrate in
Section 2.5).
2.5. Detection of feature interactions

There is a multitude of approaches to detect feature
interactions. For illustration, we use the approach of fea-
ture-aware verification [9]: (1) we compose all feature
modules of a product (or even product line), (2) we weave
all specifications as assertions into the program code to
signal undesired events and program states, and (3) using
a model checker, we check whether the assertions can be
reached in any execution path.

For example, assume we check the product that con-
tains the features EmailClient, Encrypt and Forward, as
shown in Fig. 2. As a use case, we consider the situation,
in which a client Alice sends an e-mail to client Bob, and
Bob has enabled forwarding to client Dan. Whether the
2 Recall, this is canonical example of a feature interaction inspired by
experience with real-world systems [14]. Of course, one could alter the
implementation such that the interaction disappears, but this is exactly the
point: We want to find such inadvertent feature interactions, to resolve
them.

3 The operator R states that the proposition to the left must hold until
(and including) the state described by the proposition to the right has been
reached.
original e-mail message is encrypted in the first place,
and whether the clients have exchanged encryption keys
is left open.

When running this use case in a model checker, it ex-
plores possible program executions until it arrives at a
choice where the next step depends on the value of an
unresolved decision (for example, whether the e-mail is
encrypted). At this point, the model checker enumerates
all possible choices and executes them sequentially. Once
it has reached the end of the program in one path, it re-
sumes exploring another path, until all paths have been
fully explored or it reaches an assertion (see Fig. 3).

In our example, an assertion is reached when the model
checker explores the path, in which the original e-mail is
encrypted and Bob cannot encrypt it upon forwarding it
to Dan (he does not have the correct key). Technically,
the specification is encoded by adding a flag arrivedEncrypt-

ed to email and by including a corresponding assertion in
the code of function outgoing.

3. Exploratory study

In the e-mail example, we are able to detect the feature
interaction between the features Encrypt and Forward
based on their modular, feature-based specifications. But
is that generally possible? The underlying issue we want
to address here is whether and to what extent feature-
based specifications are capable of detecting feature
interactions.
3.1. Research questions

In our exploratory study, we want to answer the follow-
ing research questions:

RQ1: What fraction of specifications of feature-oriented
systems are feature-based?

RQ2: Are feature-based specifications used to detect fea-
ture interactions?

RQ3: What are possible reasons for non-modularity of
specifications?

3.2. Research method and sample systems

In order to answer our research questions, we conducted
an exploratory study on the basis of 10 feature-oriented sys-
tems with existing specifications. Since not many such sys-
tems are publicly available, we included all systems we
were able to locate (even when we found subsequently that
some systems do not contain feature interactions):

� The EMail system of Hall [14] models an e-mail com-
munication suite. The suite provides several features
that can be activated or deactivated, for example,
encryption, automatic forwarding, and e-mail
signatures.
� The Elevator system has been developed by Plath and

Ryan [22]. It is a model of an elevator that is extensible
with various features such as stopping when the eleva-
tor is empty or priority service for a special floor.



e−mail is encrypted?

Bob has Dan’s key?
yesno

no yes

Fig. 3. Exploring possible program paths of the e-mail example using a
model checker.
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� The MinePump system is based on a work of Kramer
et al. [23]. It simulates a water pump in a mining oper-
ation. The pump keeps the bottom of the mine shaft dry,
but must be deactivated when the mine contains com-
bustible methane gas. The system has several features
that vary its behavior.
� The CAN system models a protocol for peer-to-peer net-

works [7]. It consists of basic routing mechanisms and
of advanced features such as load measurement and
the simulation of malicious peers.
� The POSIX FS system models a POSIX file system [7],

including basic file-system operations such as move
and create, and advanced features such as symbolic
links and block management.
� The BankAccount system is a product line for bank-

account management [10]. It models basic concepts
such as accounts and users, as well as features for lim-
iting withdrawals and for calculating interests and
credit worthiness.
� The DiGraph system is a library for representing and

manipulating directed graph structures [24]. Beside
basic graphs, it supports various operations such as
removal, traversal, and transposition, implemented as
optional features.
� The ExamDB system is an exam database management

system [24]. It manages exams to be passed by stu-
dents, including features for subscription and backout-
ing, bonus points, and statistics.
� The Paycard system is a smartcard-payment software

that supports optionally transaction logging and statis-
tics (e.g., operations failed and maximum record) [24].
� The ListPL system is a feature-oriented implementation

of a list structure for storing integer values and
corresponding basic operations [11]. Based on the fea-
ture selection, the list behaves like a stack or a sorted
list.

Let us emphasize that all of the sample systems have
been developed prior to and independently of our explor-
atory study. They have been used in prior studies to assess
automated feature-interaction detection and product-line
verification [7–11,14,22,24,25]. Only three systems (CAN,
POSIX FS, and EMail) have been developed explicitly with
feature-oriented specifications in mind [7,9].

Technically, the sample systems have been developed,
either from scratch in a feature-oriented style, or by refac-
toring existing monolithic implementation into feature
modules. EMail, Elevator, and MinePump are implemented
in Java, and their specifications are given in terms of As-
pectJ [26] aspects that weave exceptions into the code
(available at fosd.net/FAV/). CAN and POSIX FS have
been implemented in FeatureAlloy [7], and their specifica-
tions are given in terms of assertions (available at fosd.-
net/fh/). The remaining five systems have been modeled
and specified using the Java Modeling Language (JML) [27]
(available at spl2go.cs.ovgu.de/).

For each sample system, we manually analyzed its spec-
ifications, and we determined which specifications were
already feature-based. Furthermore, we consulted the sys-
tems’ documentations as well as corresponding original
publications to collect the feature interactions that have
been detected and documented by the original authors.
In the original systems, all feature interactions have been
detected automatically, either model checking or deduc-
tive verification.

Of all known feature interactions, we determined how
many feature interactions have been detected by the origi-
nal authors using the existing feature-based specifications.
We use the collected quantitative information to answer
the research questions RQ1 and RQ2.

Subsequently, we examined all specifications that were
not feature-based in the original systems, and we analyzed
whether we could rewrite the existing specifications (or
corresponding implementations) to make them feature-
based. To answer research question RQ3, we qualitatively
assess possible reasons for non-modularity and discuss
alternatives.
3.3. Results and discussion

In Table 1, we provide an overview of the quantitative
results of our study. For each sample system, we show
the overall number of features, system variants, specifica-
tions, and known interactions, as well as the number of
feature-based specifications and interactions detected
based on feature-based specifications.

Regarding the research questions RQ1 and RQ2, the
majority of all specifications of the original sample systems
were feature-based (88%), and the majority of the known
feature interactions of these systems could be detected
using feature-based specifications (75%).

With regard to research question RQ3, a manual analy-
sis of the remaining specifications that were not feature-
based revealed that none of them was really global or var-
iant-based. Every non-modular specification we found was
concerned with exactly two features, and, in every case,
the two features gave rise to a feature interaction.

For illustration, we discuss two examples taken from
our study, one for a feature-based specification, and one
for a specification that is not feature-based.

Example (Feature-based). Let us give an example of a
specification that is feature-based. It is based on the
elevator system of Plath and Ryan [22]. In its basic
configuration, the system comes with several specifica-
tions defining the intended behavior of the elevator. One of
these specifications is that ‘‘the elevator will not change



Table 1
Overview of the study results (jFj: number of feature; jVj: number of variants, specs: specifications; itns: interactions).

Sample system jFj jVj Specs Known itns Feature-based specs Detected itns (feature-based)

EMail 9 40 8 10 6 8
Elevator 6 20 8 8 8 8
MinePump 7 64 5 4 5 4
CAN 8 48 2 3 1 1
POSIX FS 8 64 10 4 7 1
BankAccount 6 24 5 0 5 0
DiGraph 4 8 4 0 4 0
ExamDB 4 8 4 0 4 0
Paycard 4 6 4 0 4 0
ListPL 5 16 6 3 5 2
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direction while there are calls in the direction it is
traveling’’ [22] (for simplicity, we consider only the
downward direction):

AG ð8i > j : ððfloor ¼ i ^ elevBut:pressedðjÞ ^ direction

¼ downÞ ) A ðdirection ¼ down U floor ¼ jÞÞÞ ð12Þ

In the basic elevator, this specification is not violated, but
that may change when we add features that modify the
elevator’s behavior. To verify that a product satisfies the
specification of Eq. (12), we encode it into the program
code as an assertion that signals the undesired event or
program state. Much like in Section 2.5, we can use a mod-
el checker to check whether the assertion can be reached.

Suppose we check the specification of Eq. (12) against
the product that contains the features BasicElevator and
PriorityService (gives priority to calls from the top floor). An
assertion will be reached when the model checker explores
the program path in which the elevator is going down,
there is a call from a lower floor, and there is a priority call
from the top floor. In this case, feature PriorityService will
change the elevator direction ignoring the call from the
lower floor, and the assertion will be triggered. Conse-
quently, the model checker reports this assertion, which
identifies the feature interaction.

The specification given in Eq. (12) is feature-based,
because all referenced program elements (floor indicators,
elevator buttons, and direction indicator) are implemented
in the base system. Consequently, the specification can be
verified solely with respect to the base system, and still it is
useful to identify violations induced by other features that
are unknown to the specification.
Example (Not feature-based). Let us give an example of a
specification that is not feature-based. It is taken from
the e-mail system and concerns the features Verify and
Encrypt. In Fig. 4, we show the relevant parts of their
implementations. In addition to the original e-mail
example of Fig. 2, feature Encrypt introduces a function
isReadable to indicate whether an e-mail is encrypted or
plain text. Feature Verify implements support for signing
e-mails and verifying signatures. To verify a signature, it
computes a hash of the e-mail text. To this end, Verify
needs the e-mail in plain text, which can be specified
as follows:

AG verifySignatureðemail eÞ ) isReadableðeÞ ð13Þ
This specification is violated by an interaction between the
features Verify and Encrypt. In this case, it may happen that
the receiver of an e-mail message cannot decrypt a signed
message (e.g., because of a missing or wrong key) and that
thus the (possibly valid) signature cannot be verified. A
model checker can detect this feature interaction by check-
ing the reachability of assertions that signal this undesired
behavior (a valid signature cannot be verified), much like
in the example of Section 2.5.

The important point here is that, while the specification
of feature Verify (Eq. (13)) can be used to detect the
interaction between Verify and Encrypt, it is not feature-
based! It refers to function isReadable of feature Encrypt,
which is independent of feature Verify and not in the
implementation base of Verify. To attain modularity, we
could move function isReadable to feature Verify or to a
common base feature (e.g., EmailClient), but this is clearly a
hack, as from the point of the domain expert the function
belongs to feature Encrypt.

We found that, in principle, we could transform all non-
modular specifications to feature-based specifications: we
could (1) move parts of the code of one feature to another
feature that belongs to the implementation base of both
interacting features or (2) we could create a new feature
module to store the specification in question, with both
interacting features as implementation base. However,
these transformations would only mask the problem of bro-
ken modularity: we would end up with modules that con-
tain entangled code that belongs to different, independent
features. So, we conclude that there are indeed some feature
interactions that cannot be detected properly by feature-
based specifications (overall, 25% in our sample systems).

Another notable observation is that, in the JML sample
systems, some specifications refine other specifications
[13]. Much like C and Java code, specifications can be com-
posed by means of superimposition. But, interestingly, this
refinement relation between specifications does not impair
modularity, if the refining specification invokes the refined
specification via the keyword original (much like methods
in the example of Fig. 2), as was always the case in our
JML-based sample systems. The reason is that original does
not require the presence of a particular feature. Merely it re-
quires the presence of any feature that contains a corre-
sponding contract, and a corresponding feature is always
present in the implementation base (otherwise the product
line would not be type safe [28]). So, specification



Fig. 4. Excerpts of the implementations of Encrypt and Verify of the e-mail system.
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refinement seems to be useful to improve modularity of
specifications for features, which shall be explored in fur-
ther work.

3.4. Threats to validity

Next, we discuss threats to internal and external
validity.

3.4.1. Internal validity
Our study results are based on a set of sample systems.

Especially, we rely on the correctness of the documentation
of specifications and feature interactions provided by the
original authors. As all have been documented in the origi-
nal publications, and, due to the fact that we worked with
most of the systems before, we consider this threat as minor.

3.4.2. External validity
The selection of sample systems may threaten external

validity. Do our findings apply to other kinds of systems, of
other domains, specified and implemented with alternative
languages? We cannot answer this question conclusively,
but we aimed at controlling this threat in the context of
our study goals. We deliberately limited our focus to fea-
ture-oriented systems (excluding networked systems), that
have been developed and used for purposes other than our
study, that contain specifications, and for which feature
interactions are documented. Still, our set of sample sys-
tems covers multiple application domains and different
specification and implementation languages. But, it is too
small to investigate the influence of these different factors.

Another issue is the size of the samples systems. Do our
findings apply to larger systems? We argue that feature-
based specification scales as long as features can be imple-
mented modularly. However, feature-interaction detection
based on formal verification (e.g., model checking) may
limit scalability, which is an orthogonal issue. Approaches
based on testing seem to be appropriate in this case [29].

Finally, all sample systems contained feature interac-
tions that concern the desired functional behavior.
Although we see no reason for why feature-based specifi-
cation of non-functional properties is not feasible, we can-
not make verified statements about their ability to detect
non-functional feature interactions [30].
4. Related work

The role of feature-based specifications in feature-ori-
ented systems has been discussed before by Apel et al.
[7]; we devised the concept, and analyzed and discussed
its implications. Feature-based specifications have been
used before for model checking [7,9,12] and deductive ver-
ification [10,31,32] of software product lines. Furthermore,
Thüm et al. [24] discuss composition and refinement oper-
ators of feature-based specifications, and Poppleton [33]
proposes a combination of feature-based and variant-
based specification (which allows a programmer to specify
each feature individually and to enrich the derived specifi-
cation for every system variant). None of these papers
actually explore the capability of feature-based specifica-
tions to detect feature interactions.

An interesting line of research aims at the modular verifica-
tion of features [34–36]. The idea is to verify features of fea-
ture-oriented systems as far as possible in isolation.
Properties of one feature that depend on the presence of other
features are described in semantic interfaces, which are then
used to discover feature interactions. This verification ap-
proach is promising to be combined with feature-based
specifications. Other attempts to verify product lines and
feature-oriented systems do not explicitly consider or discuss
feature-based specifications in the light of feature-interaction
detection, but could be combined with them [6,8,25].

A different line of research aims at the modularity of
feature interactions in the sense that the code that coordi-
nates the mutual behavior of interacting features is modu-
larized [17,18,37,38]. Specification and feature-interaction
detection is not considered explicitly.

Finally, there is a large body of research that investi-
gates feature interactions in the telecommunications do-
main and networked systems [1,39,40]. While feature-
based specifications are in these systems similarly relevant
as in software systems, it is open whether our results can
be generalized.

5. Conclusion

Feature-based specifications are appealing in an open
world. The question we addressed was whether the modu-
larity of feature-based specifications impairs the ability to
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detect feature interactions. After introducing modularity to
the specification of feature-oriented systems, we raised
awareness of the potential strengths and weaknesses of fea-
ture-based specifications, compared to global and variant-
based specifications. Based on this discussion, we conducted
an exploratory study on 10 feature-oriented systems. In par-
ticular, we analyzed whether and how feature-based specifi-
cations have been used to detect feature interactions. We
found that the majority of all specifications of the sample sys-
tems were feature-based (75%), and that the majority of the
feature interactions in these systems could be detected using
feature-based specifications (88%). That is, feature-based spec-
ifications are useful to detect feature interactions in feature-
oriented systems, but in some cases they fail. This means that
developers have to resort to undesirable workarounds such as
moving code between features to regain modularity.

In summary, we can confirm the usefulness of feature-
based specifications for feature-interaction detection, but
recognize also their limitations. An underlying goal of this
work was to raise awareness of the importance and chal-
lenges of feature-based specification, especially, in open
feature-oriented systems. We believe that the trend in
software-engineering practice will further go toward mod-
ularity, and feature-based specification will be an impor-
tant foundation, on which approaches such as modular,
feature-based verification will build. There are many open
issues to address, including the role of specification and
implementation languages used in the development of fea-
ture-oriented systems. There is also the question of
whether we can come up with a classification of feature
interactions that explains why some interactions are inher-
ently anti-modular and require global specifications.
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