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ANALYSIS OF SMOOTHED AGGREGATION MULTIGRID METHODS
BASED ON TOEPLITZ MATRICES*

MATTHIAS BOLTENT, MARCO DONATELLI¥, AND THOMAS HUCKLE?

Abstract. The aim of this paper is to analyze multigrid methods based on smoothed aggregation in the case of
circulant and Toeplitz matrices. The analysis is based on the classical convergence theory for these types of matrices
and yields optimal choices of the smoothing parameters for the grid transfer operators in order to guarantee optimality
of the resulting multigrid method. The developed analysis allows a new understanding of smoothed aggregation and
can also be applied to unstructured matrices. A detailed analysis of the multigrid convergence behavior is developed
for the finite difference discretization of the 2D Laplacian with nine point stencils. The theoretical findings are backed
up by numerical experiments.
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1. Introduction. In this paper we consider smoothed aggregation (SA) multigrid methods
for solving the linear system

(1.1) Az = b,

where z,b € CV and A is an ill-conditioned symmetric positive definite N x N matrix.
Mainly, we analyze the case of multilevel Toeplitz matrices, while some numerical results will
be presented also for the discretization of non-constant coefficient partial differential equations
(PDEs) based on a local stencil analysis.

On the one hand, the development of multigrid methods for 7-matrices and Toeplitz
matrices goes back to [10], the two-level case being considered in [11]. Using the same
ideas, methods for circulant matrices were developed later in [25]. While these works provide
the basis to develop and analyze multigrid methods for Toeplitz matrices and matrices from
different matrix algebras including the 7- and circulant algebra, they do not provide a proof
of optimality of the multigrid cycle in the sense that the convergence rate is bounded by a
constant ¢ < 1 independent of the number of levels used in the multigrid cycle. Such a proof
was added later in [1, 2]. In [9], two-grid optimality is proved in the case of a cutting greater
than two for Toeplitz matrices. This analysis can be useful for 1D aggregation methods and
will be extended to multidimensional problems in this paper.

The theory that is used to build up the two-grid and multigrid methods and to prove
their convergence is based on the classical variational multigrid theory as it is presented in,
e.g., [16, 18,19, 22].

Aggregation based multigrid goes back at least to [4], where the so-called aggrega-
tion/disaggregation methods [7, 17] have been used in a multigrid setting. The idea of
aggregation based multigrid is to avoid a C/F-splitting, i.e., a partitioning of the unknowns
into variables that are present on the coarse and the fine level and variables that are present
on the fine level only. Rather than grouping the unknowns together into aggregates, these
aggregates form one variable on the coarse level each. Pure aggregation can be improved
by incorporating smoothing [28] in the prolongation and/or the restriction leading to faster
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convergence. Recent results on the convergence of aggregation-based multigrid methods can
be found in [5, 6, 20, 21].

In this paper, firstly we extend the two-grid optimality results in [9] to multidimensional
problems. Using these new convergence results, we provide an analysis of aggregation
operators for multilevel Toeplitz matrices. We show that pure aggregation provides only two-
grid optimality, but, according to the literature [20], this is not enough for V-cycle optimality.
Therefore, we study a simple smoothing aggregation strategy based on a damping factor
chosen as the value that provides the best convergence rate. In contrast to previous analysis in
the literature [6, 20, 21], our analysis uses a symbolic approach to discuss convergence and to
choose the optimal damping factors. A detailed study for the finite difference discretization
of the 2D Laplacian with nine point stencils shows that our symbolic approach can be easily
performed and implemented and, at the same time, is also very effective. In particular, we
show how to design the smoothed aggregation incorporating more than one smoother or
allowing nonsymmetric projection such that it leads to fast convergence without increasing
the bandwidth of the coarser systems. Finally, numerical results are provided also in the
non-constant coefficient case using the local stencil of the operator.

The outline of the paper is as follows. In Section 2 we introduce Toeplitz and circulant
matrices, multigrid methods, and some well-known results on multigrid methods for Toeplitz
matrices. The main theoretical results appear in Section 3, where the aggregation and the
smoothed aggregation optimality conditions are studied in the case of circulant matrices. In
Section 4 we discuss how the results obtained in the circulant case can be applied to Toeplitz
matrices or to the discretization of non-constant coefficients partial differential equations.
Special attention is devoted to the discretization of the 2D Laplacian by nine points stencils
in Section 4.3. A wide range of numerical experiments is presented in Section 5, and some
concluding remarks complete the paper in Section 6.

2. Preliminary. In this section we introduce some well-known results on Toeplitz matri-
ces and multigrid methods.

2.1. Toeplitz and circulant matrices. A Toeplitz matrix 7;, € C"*" is a matrix with
constant entries on the diagonals, i.e., T}, is of the form

to t-1 - t1n
2.1 T, = b o
: e
th—1 -+ to

As a consequence, the matrix entries are completely determined by the 2n — 1 values
t_pn+1,---,tn—1. There exists a close relationship between a Toeplitz matrix and its gen-
erating symbol f : R — C, a 27-periodic function given by

N o 1/ o
2.2) f(fE) — Z tjel27rjx, tj _ % / f(I)eil%‘—]zdaj,
j=—o00 7

with the matrix entries ¢; on the diagonals taken as Fourier coefficients of f. The generating
symbol f always induces a sequence {7, (f)}>2, of Toeplitz matrices 7,,(f). In the case
of f being a trigonometric polynomial, the resulting Toeplitz matrices are band matrices for n
large enough. There are various theoretical results on sequences of Toeplitz matrices and
their generating symbol. Most important for the analysis of iterative methods for Toeplitz
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matrices is the fact that the distribution of the eigenvalues of the Toeplitz matrix is given by
the generating symbol in the limit case n — oo; cf. [27].

Circulant matrices are of a very similar form. A circulant matrix is a Toeplitz matrix with
the additional property t_, = t,—x, k =1,2,...,1.e,

to  tp—1 - 11
C — tl tO :
. . tnfl
tp—1 - tq to
C), is diagonalized by the Fourier matrix F,,, where
1 _om ik i
(F”)]}k:ﬁe "j, ],kz(),...,n—l,
ie.,
(23) C, = F, diag \™)FH

for \(") = ()\8”), e )\7(1"7)1) given by )\gn) = f(2mj/n),j =0,...,n—1. Allowing negative
indices to denote the diagonals above the main diagonal as in the Toeplitz case, i.e., in (2.1),
results in demanding ¢y, = tx mod »- Using the generating symbol f in (2.2) similarly to the
Toeplitz case, a sequence {Cy, (f)}>2; of matrices C,, (f) is defined. In contrast to the Toeplitz
case, the circulant matrices form a matrix algebra as they are diagonalized by the Fourier
matrix F,.

The concept of Toeplitz and circulant matrices can easily be extended to the block case,
i.e., the case where the matrix entries are not elements of the field of complex numbers but
rather of the ring of m x m matrices. In this case the generating symbol becomes a matrix-
valued 27-periodic function, and the matrices are called block Toeplitz and block circulant
matrices, respectively. The aforementioned properties of the matrices transfer to this case,
e.g., a block circulant matrix with block size m x m and n blocks on the main diagonal is
block diagonalized by F), ® I,,, where ® denotes the Kronecker product and I,,, denotes the
identity matrix of size m x m. The analysis of multigrid methods with more general blocks is
beyond the scope of this article; for further details see, e.g., [15].

An interesting special type of block matrices that we will deal with is the case where
the blocks themselves are again Toeplitz/circulant. The resulting matrix will be called block
Toeplitz Toeplitz block (BTTB) or block circulant circulant block (BCCB), and it can be de-
scribed by a bivariate 27-periodic generating symbol f. This is related to the two-dimensional
case d = 2. In the general d-level case, the generating symbols are 27-periodic functions
f : R? — C having Fourier coefficients

1 iy
= —i{jlz) S (s : d
b /[m]df (@)e™ dz, j = (51, Ja) € L7,

where (- | -) denotes the usual scalar product between vectors. From the coefficients ¢;, one
can build the sequence {C,(f)}, n = (n1,...,n4) € N9, of multilevel circulant matrices
of size N = Hle n,. Defining the d-dimensional Fourier matrix F,, = F,, ® --- ® Fy,,
the matrix C,,(f) can be written again in the form (2.3), where now the eigenvalues \(™) are
defined by

n 21y 2my . .
A = (LB it L =

b )
ny Ngq

ordered according to the tensor product structure of the eigenvectors.
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2.2. Multigrid methods. A multigrid method is a method to solve a linear system of
equations. When traditional stationary iterative methods like Jacobi iteration are used to
solve a linear system, they perform poorly when the system becomes more ill-conditioned,
e.g., when the mesh width of the discretization of a PDE is decreased. The reason for this
behavior is that error components belonging to large eigenvalues are damped efficiently, while
error components belonging to small eigenvalues get reduced slowly. In the discretized PDE
example, the first correspond to the rough error modes, while the latter correspond to the
smooth error modes. For this reason methods like Jacobi iteration are known as “smoothers”.

To construct a multigrid method, various components have to be chosen. In the following,
the coefficient matrix of the linear system (1.1) on the finest level is denoted by Ay = A, the
multi-index of the size is denoted by ng = n € N?. The multi-indices of the system sizes on
the coarser grids are then denoted by n; < n;_1,% = 1,..., lnax, Where [y ax is the maximum
number of levels used. Defining N; = H;lzl (n;);, to transfer a quantity from one level to

another, restriction operators R; : CNi — CNi+r, 4 =0,...,lmax — 1, and prolongation
operators P; : CNi+t — CNi, 45 =0,...,lmax — 1, are needed. Furthermore, a hierarchy
of operators A; € CNi*Ni j = 1 ... I, has to be defined. On each level, appropriate

smoothers S; and Si and the numbers of smoothing steps v; and v, have to be chosen. We
limit ourselves to stationary iterative methods although other smoothers like Krylov-subspace
methods can be used as well. After v; presmoothing steps using S;, the residual r,,, € CYi is
computed and restricted to the coarse grid; the result is r,,, . On the coarse grid the error is
computed by solving

AiJrlenH,l = rni+17

and in the multigrid case this is done by a recursive application of the multigrid method. The
resulting error is interpolated back to obtain the fine-level error e,,,, and the current iterate is
updated using this error. Afterwards, the iterate is improved by postsmoothing. When only one
recursive call is applied, like in this paper, the whole iteration is called a V-cycle. The process
of correcting the current iterate using the coarse level is known as coarse-grid correction,
which has the iteration matrix

M; =1 - P A7\ RA;.

In summary, the multigrid method MG, is given by Algorithm 1.

Algorithm 1 Multigrid cycle x,,, = MG;(Zy,, bn,)-
Tn; 81?1 (xm s bn,-)
T, < bp, — AiTp,
Tris, & Rty
en,y <0
if i + 1 = [hax then
—1

enlmax F Almaxrnlmax
else

€nit1 — Mgi+1 (em‘+1 ) rnq‘,+1)
end if
en; < Pien, .,
Tp, < Tp, + €n,;

To show convergence of a multigrid method, usually, R; is chosen to be the adjoint of F;,
and the coarse-grid operator A; 1 is chosen as the Galerkin coarse-grid operator P A; P;. The
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classical algebraic convergence analysis is based on two properties, the smoothing property and
the approximation property, which are coupled together by an appropriately chosen norm || - ||,
where in the classical algebraic multigrid theory, the AD~!A-norm with D = diag(A) is
chosen, cf. [22], and in the circulant case, the A%-norm turns out to be helpful; cf. [2].

DEFINITION 2.1 (Smoothing properties). An iterative method S; with iteration matrix S;
fulfills the presmoothing property if there exists an o > 0 such that for all v,,, € Ci it holds
that

2

(24) ”Slvnz A; < anz ?4 _aHSi’Uni 2

7 *°

Analogously, it fulfills the postsmoothing property if there exists a 5 > 0 such that
(2.5) 1Sivn 1%, < N4, — Blloa, 12

The following theorem is useful to prove convergence of two-grid methods since the
forthcoming condition (2.7) is usually weaker and easier to verify than the approximation

property

(2.6) [ Mivy,

2
e

124i < Y[Jvn,

THEOREM 2.2 ([22]). Let A; 6~(CN1'XN"' be a positive definite matrix, and let S; be the
postsmoother with iteration matrix S; fulfilling the postsmoothing property (2.5) for 5 > 0.
Assume that R; = PiH , Ay = PiH A; P;, and that there exists v > 0 independent of N; such
that

2.7) min |z — Py|p, <ylzl%,,  VaeeCN,
yECNiJFl i 7

where D; is the main diagonal of A;. Then v > 3 and

HSIMZ,U’H,I A; S V ]- - 5/7 ||'Un1 A Vv’ni € (CNL

2.3. Multigrid methods for circulant and Toeplitz matrices. In the following, we
introduce multigrid methods for circulant matrices and briefly review the convergence results
for these methods as our analysis of aggregation based methods is based on these results. After
that, we provide an overview over the modifications necessary to deal with Toeplitz matrices
in a conceptually very similar way.

Let f; be the symbol of A;; in this paper we assume f; > 0 thus A; is positive definite'.
In general, to design a multigrid method, the smoother, a coarse level with fewer degrees
of freedom, the prolongation, and the restriction have to be chosen appropriately. Here, the
common choice for both, pre- and postsmoothing is relaxed Richardson iteration, i.e., S; is
chosen as

=S

and S; is chosen like this but with a different ;. Note that for Toeplitz matrices, relaxed
Richardson iteration is equivalent to relaxed Jacobi iteration since the diagonal of the coefficient

! A; could be singular for circulant matrices if f vanishes at a grid point. In such case a rank-one correction like
in [2] could be considered, but it is not necessary in practice; see [3].
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matrix is a multiple of the identity. Using appropriate relaxation parameters w; and c;, this
smoother fulfills the presmoothing property (2.4), respectively the postsmoothing property (2.5)
as stated by the following theorem, which can be found in [1, Proposition 3].

THEOREM 2.3 ([1]). Let A; = Cp,(f;), where f; : R? — R. Let S; be defined in (2.8)
with w; € R and 5’1 be defined in the same way as S; but with the parameter &; € R.
Then if w;,w; € (0,2/| filloo), the smoothing properties (2.4) and (2.5) are fulfilled with
Il =1 e

Regarding the choice of the coarse level, for circulant matrices usually we assume that
the number of unknowns in each “direction” is divisible by 2, i.e., (m)g mod 2 = 0 for
j=1,...,d. Then on the coarse level we choose every other degree of freedom, effectively
dividing the number of unknowns by 2¢ when moving from level i to level i + 1. This
corresponds to standard coarsening in geometric multigrid. Other coarsenings, e.g., by a factor
different from 2 [9] or corresponding to semi-coarsening [12, 14] are derived and used in a
straightforward way. The reduction from the fine level to the coarse level is described with
the help of a cutting matrix K,,, € C™+1*" ([23]), which on the fine level in the case of a
1-level circulant matrix of even size is given by

10

The effect of this cutting matrix is that every even variable is skipped when it is transferred to
the coarse level. Regarding the action of the cutting matrix on the Fourier matrix, we obtain

1 1
(29) KmFm = ﬁ[la 1] ® Fni+1 = %Fni+l([l7 1] ® Ini+1)

in the 1-level case ([24]). In the d-level case the cutting matrix is defined by the Kronecker
product

(2.10) Knl :K(”i)l ®”'®K(”i)d'
Combining (2.9) with (2.10) and due to the properties of the Kronecker product, we have

1

- ﬁ (F("i+1)1 ([17 1] ® I(m+1)1)) Q- (F(W+1)d ([1’ 1] ® I(”'Hrl)d))

1
2.11) = ﬁFnHl@nHl’

where ©,,,,, = ([1,1] ® I(5,,,),) ® --- @ ([1,1] @ I(n,,,),)- With the help of the cutting
matrix, the prolongation is now defined as

P, =C,,(pi) KL

n;

given some generating symbol p;, and the restriction is defined as the adjoint of the prolonga-
tion, i.e., R; = PiH . To study the approximation property, we first define the set (z) of all
“corners” of = given by

Qz) ={y:y; € {zj,z; + 7}}
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and the set M () of all “mirror points” ([11]) of x as

M(x) = Qx)\{z}.

To obtain optimality, i.e., level independent multigrid convergence, the generating symbol p;
of the prolongation has to fulfill certain properties. For that purpose let 20 € [—7, 7)? be the
single isolated zero of the generating symbol f; of the system matrix on level i. Choose p;
such that

pi(y)
fl(w)

(2.12) limsup max < o0, =0, lmax — 1,

z—z0 YEM(z

and such that for all z € [—7, 7)¢ we have

(2.13) 0< > IpilP), =0, lna— 1.
yeQ(x)

Using (2.12) and (2.13) (cf. [1]), the approximation property (2.6) can be verified for circulant
matrices with a constant independent of the level ¢, and the V-cycle optimality can be proved.

THEOREM 2.4 ([1]). Let A; = Cy,,(f;) with f; being the d-variate nonnegative generating
symbol of A; having a single isolated zero in [—m, )% If smoothers are chosen according
to Theorem 2.3 and the projectors P; = C,, (p;) K TIZ and R; = PH such that p; fulfills (2.12)
and (2.13), then

IMGM|la <& <1,

where MG M is the V-cycle iteration matrix and & is independent of I ax.
If the order of the zero x° of the generating symbol is 2¢, a natural choice for p; is

d
=c- H cos(z —&—cos(acj))q7

j=1

with a constant c.

If the system matrix A is not circulant but Toeplitz, a few changes are necessary. In the
case of a Toeplitz matrix that has a generating symbol f being a trigonometric polynomial
of degree at most one, the matrix is in the 7-algebra. Matrices out of the 7-algebra are
diagonalized by the matrix

2 jkm )
(Qn)j’k:\/:81n<n+l>’ j,k:l,...,n

Assuming n; odd, the cutting matrix K, is chosen as

(2.14) K, =
10

in the 7-case, and the results on multilevel matrices and convergence transfer to this case
immediately if @Q,, is taken instead of F;, and the appropriate cutting matrix is used. If A is
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Toeplitz but the generating symbol is a higher degree trigonometric polynomial of degree 9,
the cutting matrix has to be chosen as

0 -~ 0 10
(2.15) K, (6) = . :

where the first and last 6 columns are zero, so the non-constant entries in the first 6 and in
the last § rows and columns are not taken into account on the coarser level to guarantee the
Toeplitz structure on all levels.

We now focus on the choice of p; in an aggregation based framework.

3. Aggregation and SA for circulant matrices. In the following, we start with the
definition of simple aggregation based multigrid methods for 1-level circulant matrices corre-
sponding to one dimensional problems. Emphasizing the downside of pure aggregation, we
then introduce SA in the circulant setting and finally transfer the results to the d-level case.

3.1. 1-level case. Let n = 2!=F! In a 1D aggregation-based multigrid method with
aggregates of size 2, this corresponds to a prolongation operator P; given by

1 1

?

PH = ) € Cri+1Xni
11

Transferring this to the circulant case yields a prolongation P; = C,, (p;) K, ,7; with p; = aq 2,
where

ajg: [-m,m) —C

iz

rrara(r)=1+e"

Note that C,,, (p;) is not Hermitian. This projector fulfills (2.13) since
12
Z la1 2(y)|* = Z [14+e7 ] = Z 2+ 2cos(y) > 0.
yeQ(x) yeQ(x) yeQ(x)

If the symbol f; has a single isolated zero of order 2 at the origin, like the Laplacian, this
projection does not fulfill (2.12), but it fulfills a weaker condition sufficient for two-grid
optimality, namely

2

3.1 limsup max pi(y)]

<400, i=0,.. . e — L.
r—z0 YEM(x) |fl($)|

Hence, the aggregation defines an optimal two-grid method, but it is not strong enough for the
optimality of a V-cycle. This agrees with results in [20].

To fulfill the stronger condition (2.12), the prolongation can be improved by smoothing,
i.e., applying a step of an iterative method used as a smoother. In the case of Richardson
iteration this corresponds to the generating symbol

Siw(x) =1—wfi(z).
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Under the assumption that f; has its single maximum at position x = 7, no additional zero
is introduced in s; ,, when w is chosen as w = 1/ f(7), and the symbol of the prolongation
operator

pi(z) = 8i1/f(m) (7) a1,2(7)

fulfills (2.12) since 8; 1/ ¢(x)(m) = 0.

We like to note that if the introduced zero is of second order, it suffices to smooth either
the prolongation or the restriction operator, as the symbol of the pure aggregation already has a
zero of order 1 at the mirror point = 7. Since in this case R; # P, the previous theory does
not apply. Nevertheless, defining R; = K,,,Cy,, (r;), in [8] it is shown that condition (2.13)
can be replaced with

(3.2) 0< Z ri(Y)pi(y), i=0,...,0max — 1,
yeQ(x)
and the two-grid condition (3.1) with
limsup max Mg—&—oo, 1=0,...,lmax — 1.
z—z0 YEM() |f¢(5€)‘

Similarly, assuming that r;p; > 0, condition (2.12) can be replaced with

ri(y)pi(y)
fi(z)

The resulting coarse matrix A;11 = R;A; P; is A;y1 = Cp(fiy1) with

(3.3) limsup max

< 400, 1=0,...,lnx — 1.
r—20 YEM(x)

(34 fin@ =5 3 nwhwn),

yeQ(x/2)

and hence it is nonnegative definite for 7;p; > 0. Smoothing only the restriction or the
prolongation operator, we have

ri(2)pi(z) = 85w (x)a1 2(x)a1 2(x) = 8iw(2)(2 + 2cos(x)).

Under the assumption that f has its maximum at 7, s; 1/7(r) is nonnegative and has a zero of
order at least 2 at 7. Hence, conditions (3.2) and (3.3) are satisfied, and A;; is nonnegative
definite.

REMARK 3.1. This choice of p; is only valid for system matrices A = C,,(f) where the
generating symbol has a single isolated zero at ¢y = 0. In general for a system matrix with
generating symbol f; having a single isolated zero at ¢, we choose p; as

p;:|—mm)—=C
x - pi(z) = 14 e i@+,
For this prolongation operator we have
Ips(z)|> = 2+ 2 cos(z + zo),

s0 (2.13) and (3.1) are fulfilled, the latter for a single isolated zero z( of order 2. The stronger
condition (2.12) is fulfilled in the case that f; has its single maximum at 2y + 7 by smoothing
the operator using w-Richardson iteration with w = f;(z¢ + 7).
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In general, aggregation with aggregates of sizes g corresponds to using the cutting matrix

10 --- 0
(3.5) Ky, q=

with g — 1 zero columns after each column containing a one. The prolongation defined by this
cutting matrix and the generating symbol p; = a; 4 with

ai,g: [—mm) = C
g—1

T ay4(z) = Ze_ikx
k=0
is

(3.6) Py = Cn,(pi) Ky, 4
The effect of the cutting matrix applied to the Fourier matrix is similarly to (2.9) described by
1 1
Kpigbp = —el @F,, , = —F,., (e ®@1I,,,),
g \/g g +1 \/§ +1( g +1>
where eg = [1,...,1] € N9, and the set of mirror points consists of the g — 1 points in
My(x) = Qg(x)\{z}, where
o
Qg(z) = {y:yz+m(mod27r), jO,l,...,gl}.
g

Assuming ng = n = g'maF1, for a given matrix A; = C,,(f;), the coarse-level matrix

i

Ai+1 = PL-HAZ'H, Niy1 = ni/g7 is given by Ai+1 = C’ni+1 (fi+1) with

1
fm+1 ((L‘) = Z |p|2f(y>7 T e [—7‘1‘,7‘(‘).
y€Q (x/g)
For further details see [9], where it is proved that the two-grid convergence follows as in
the case g = 2 outlined in Section 2.3 with the requirements (3.1) and (2.13) stated on the
sets M and €, respectively. In more detail, the two-grid optimality requires

. pi(y)|? ;
3.7 limsup max < +o00, 1=0,...,lpax — 1,
z—a0 YEMg(z) ‘fz($)|
(3.8) 0< Y Iplw),  i=0, . loax— 1,
yEQ, (x)

for all x € [—m,7); see Theorem 5.1 in [9]. The V-cycle optimality for a coarsening factor
g > 2 is an open problem, but a natural conjecture is that in (2.12), similarly to (3.1), it is
enough to replace M with M, namely

pi(y)

i(z)
As the pure aggregation p; = a4 fulfills only (3.7) but not (3.9), the prolongation has to be
improved for all mirror points possibly resulting in more than one smoothing parameter w and
thus multiple necessary smoothing steps. Note that the extension of these results to the case of
zeros at other positions is possible analogously to the case outlined in Remark 3.1 with the
same symbol p;(z) = 1 + e i(z+w0),

3.9 limsup max < 400, 1=0,...,lnx — 1.

z—z0 YEMy(x)
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3.2. Cutting in the d-level case for d > 1. Using the 1-level case as motivation, prior
to introducing aggregation and SA multigrid for d-level circulant matrices with d € N
(usually associated to d-dimensional problems), we have to extend the theoretical results in [9]
to d > 1. For that purpose, let A = C,,(f), where f : R? — C is a nonnegative function
27-periodic in each variable, n € N%, and g € N? be the size of the aggregates. Assume that
n = glmxH, ie,n; = gj»"‘“ﬂ, j =1,...,d. As before, we define the fine-level operator
Ao = A, with fo = f, and recursively the system size as n; 11 = n;/g (all the multi-index
operations in the paper are intended componentwise), the prolongation as in (3.6), where
Knig=Km)ig @ @ Kn,), g.0 and the coarse-grid operator as A; 11 = P/Y A; P;. The
set of all corners of z € R? associated to the cutting matrix K,,, , is

Qq(z) = {y

2
yje{xj—i-;Tk(mod27r)},k::O,...,gj—l,jzl,...,d}.
J

To simplify the following notation we define G = H?Zl gj-

Analogously to the 1-level case, the generating symbol of the system matrix of the coarser
level is given as stated in the following lemma.

LEMMA 3.2. Let A; = Cp,(f:), P; defined in (3.6), and let n;v1 = g-n; € N9,
where the multiplication is intended componentwise. Then the coarse-level system matrix
Ai+1 = PZHAZPZ is Ai-i—l = Cn,iJrl (fi+1)7 where

(.10) Sl =g X PRG),  welmt

Y€ (x/g)

Proof. The proof is a generalization of the proof of [25, Proposition 5.1]. First we note
that in analogy to (2.11), we have

1
- ﬁ (F(71i+1)1 (6; ® I(m+1)1)) - (F(m+1)d (egd ® I("11+1)d))

1
- ﬁ (F(”i+l)1 @ ® F(m+1)d) ((651 ® I(m+1)1) Q- ® (egd ® I("Hl)d))

so that

1
an,Fni = ﬁFni+1®”t+l797
where ©,,,,, 4 = (eg1 L)) ® - ® (egd ® Itn,,,),)- Hence, for Aj 1 = PH A, P; we
have
PiHAiPi = ngcﬁ(pv)cm(ﬁ)cm (pl)KH = Km,aniD"i (|p7|2f1) FHKH

ni,g ni = "Ni,g

1
= —Fpy.,Oniy1.gDn, (Ipi?f) O, FH

Qi Nit1,9" Nt
Here,
Dni(f) = diagogjgnﬁed (f((%)])) )
where (z;); = 2mj/ni = (2mj1/(ni)1, - .., 27ja/(ni)a)” and 0 < j < n; — eq means that

0 < jr < (ny)g— 1, fork =1,...,d, assuming the standard lexicographic ordering. All
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operations and inequalities between multi-indices are intended componentwise. For a given
multi-index k = (k1,...,kq), 0 < kj < (nij+1);, we have

g—e€d

(®n7;+1,gx)k = Z T4,
=0

SO we obtain

g—e€d

@ni+17gDni (|pi|2fi) @£i+1,g = Z Dy, g (‘pz|2fz) )
=0

where

Dni,g,l(f) = diagnH_l-lgj’gni+1~(l+ed)fed (f((xl)f)) :

For an example of the multi-index notation in the case d = g = 2, we refer to the proof of
Proposition 5.1 in [25]. As a result we obtain

1 g—e€d
RHAZH = aFnH—l (Z Dm,-,g,l (|pl|2fl)> F}zi_la
=0

and with
(i) = (@ig1);/g+7-1 (mod 27), 0<j<ni1—eq j=7+niq-1,

where [ is a multi-index and products and sums are intended componentwise, we obtain
PlHAZPl = C’M+1 (fi+1)7 with fi+1 defined in (3 10) 0

REMARK 3.3. If the two conditions (3.7) and (3.8) are satisfied with 2 € [~ 7)9, we
obtain as a consequence of Lemma 3.2 that if 20 is a zero of f;, then g - 2° mod 27 is a zero
of f;41 of the same order.

The two-grid optimality can be obtained similarly to the 1-level case. The following result
shows that the two-grid conditions (3.7) and (3.8) are sufficient for condition (2.7).

THEOREM 3.4. Let A; := Cy,,(f:), with f; being a d-variate nonnegative trigonometric
polynomial (not identically zero), and let P, = Cy,, (pi) K, Z g be the prolongation operator
with p; a trigonometric polynomial satisfying condition (3.7) for any zero of f; and globally
satisfying condition (3.8). Then, there exists a positive value vy independent of n; such that
inequality (2.7) is satisfied.

Proof. The proof is a combination of [9, Theorem 5.1] and [25, Lemma 6.3], but we report
it here for completeness. First, we recall that the main diagonal of A; is given by D; = a;Iy;
with a; = (27)¢ f[*ﬂ,ﬂ')d fi(x)dx > 0sothat || - |5, =y = ail| - 3.

In order to prove that there exists a value v > 0 independent of n; such that for any
x € CNi

min ||z — Pyl[p, = a; min |z — Pyl <]zl
yeCNi+1 yeCNi+

we choose a special instance of y. For any z € CVi, let y = 7j(x) € CNi+1 be defined as
y=[PFP] - PHz. Therefore, (2.7) is implied by

lz — Pgll3 < (v/ai)lal,, Vo eC™,
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where the latter is equivalent to the spectral matrix inequality

(3.11) W, (pi) "W, (pi) < (v/ai)Chn, (£1),

with W, (p;) = In, — P; [P P}] ~' PH_ Given two matrices A and B, the matrix inequal-
ity A < B means that the matrix B — A is Hermitian and positive semi-definite. Since
Wi, ()W, (pi) = Wa, (p;), inequality (3.11) can be rewritten as

(3.12) Wi, (pi) < (v/ai)Cn, (fi)-

Let p = (p1,...,puq) with 0 < g, < (njp1)r — 1,7 = 1,...,d, and let p;[u] € C
whose entries are given by the evaluations of p; over the points of Q(x,(f”)) with

x,(f”) = (2mu1/(ni)1, .-, 2wpa/(ni)a). Using the same notation for f;[u], we denote by
diag(f;[u]) the diagonal matrix having the vector f;[u] on the main diagonal. There exists a
suitable permutation by rows and columns of FT{{ W, (p;) Fy, such that we can obtain a G x G
block diagonal matrix and the condition (3.12) is equivalent to

. . T
(3.13) I — W < (y/ai)diag(filu]),  Vu.

By the Sylvester inertia law [13], the relation (3.13) is satisfied if every entry of

. . T
aing( 1) 2 (1 = PP diag 1172

[l
is bounded in modulus by a constant, which follows from conditions (3.7) and (3.8) as it is
shown in detail in the proof of Proposition 4 in [1]. a

Since the post-smoothing property holds unchanged, combining Theorem 2.3 and Theo-
rem 3.4 with Theorem 2.2, it follows that the two-grid convergence speed does not depend on
the size of the linear system.

3.3. The aggregation operator. In the pure aggregation setting, the generating symbol
of the prolongation is given by

d g;—1

(3.14) e H Z e ks z e [—m )
gt

THEOREM 3.5. For the function aq 4 defined in (3.14), there exists a constant c with
0 < ¢ < 400 such that

(3.15) limsup max M =c,
z—0 YEMy( $)Z i—1 .’L‘]

where

z::d—#{yj|yj:0,j:1,...7d}

is the number of directions along which aq. 4 is zero. Furthermore, if f; has a single isolated
zero of order 2 at the origin, p; = aq, 4 fulfills (3.8) and (3.7).

Proof. The limit (3.15) follows from the Taylor series of aq,4: consider y € M, (z), i.e.,
yj =z + QT’ZZ (mod 2w) for £ = 0,...,g; — 1, then the j-th factor of ag 4(y) is

gj71 9]71 —i2nwke

_ ik 2t
§ e—lky_7 _ § e 1 (IJJF ) 2 :e 95
k=0

k=0

—1ka:j
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d=2,9=(33) d=3,9=1(2272)

FIG. 3.1. Order of y € My(0) for the aggregation operator aq.4: © — order = 1, 0 — order = 2,
O — order = 3.

Since

1 .
—i2mke . ifi=0
g e =4 9! B
0 otherwise,

the j-th factor in (3.14) has an infinite Taylor series with the constant term equal to zero only
if ¢ #0.
If f; has a single isolated zero of order 2 at the origin, then

limsup%:é, 0 < ¢ < oo,

x—0 Zj:l 1‘3

and hence p; = aq,q4 fulfills (3.7).

Regarding (3.8), let x be such that |aq 4|*(z) = 0. If z lies on the axes, then 0 € Q, ()
and |ag,4]2(0) > 0. If 2 does not lie on the axes, then there exists a y € {2, () that lies on an
axis and fulfills |aq,q|*(y) > 0. 0

Figure 3.1 gives a visual representation of the behavior of p; = ag4 4 at M,(0) for two
examples. The previous Theorem 3.5 states that if the symbol f has a zero at the origin of
order two, then the two-grid method is optimal. On the other hand, the V' -cycle cannot be
optimal since p; = agq,4 vanishes only with order one at the mirror points located along the
cardinal axes. For the same reason, when f vanishes at the origin with a zero of order greater
than two, e.g., for the biharmonic problem, also the aggregation two-grid method cannot be
optimal. To overcome this weakness of the aggregation operator, smoothing techniques for the
projector are usually employed. A simple strategy of this kind will be analyzed in the next
section.

3.4. Smoothing the projector by weighted Richardson iteration. The order of the
zeros at the points where p; = agq 4 is zero in one direction only can be improved by applying
smoothing. For that purpose we again use an w-Richardson smoother. In the d-level case the
generating symbol of this smoother is given by

Siw ! [77r,7r)d — C

(3.16) T = siw() =1 —wfi(z).
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LEMMA 3.6. Assume that f; > 0 has a single isolated zero of order 2 at the origin and
that f; attains the maximum only at all y € M 4(0) lying on the axes, and let §j be one of these
points. Then the symbol of the smoothed prolongation given by

pi(r) = Si,1/f(9) () ad,g(z)

fulfills (3.9) and (3.8).

Proof. Since ¥ is a point of maximum for f;, the function s; ;,¢(z) is nonnegative and
vanishes for y € M,(0) lying on the axes with order at least one. From Theorem 3.5, a4 4
vanishes at y € M,(0) with order one if y lies on the axes and with order at least two
otherwise. Therefore, p; = s; 1/f(j) aa,o vanishes with order at least two for all y € M 4(0),
and hence it fulfills (3.9).

Regarding (3.8), the assumptions on f; imply that s; 1, ¢ (y) = 0 only for y € M(0)
lying on the axes. Hence, {x | s;1/f(5)(7) = 0} C {x|aay(x) = 0} and p; = aq,¢5;,1/¢(z)
fulfills (3.8) since it is already satisfied by p; = a4, 4 thanks to Theorem 3.5. a

In general w should be chosen to improve the projector where the aggregation operator
is less effective, that is, at the mirror points located along the cardinal axes, i.e., the points
belonging to

(3.17) Ag(0) = {y € My(0), #{y;ly; #0, j=1,...,d} =1},

the set of mirror points where only one component does not vanish. Therefore, w is obtained
by imposing that s; .,(y) = 0 for a certain y € A,4(0). If different points in A,(0) lead to
different values of w, then more smoothing steps with different w’s should be added to the
aggregation. For a detailed discussion see Section 4.3.

Again, if the smoother introduces a zero of order two, it is sufficient to smooth either the
prolongation or the restriction operator generalizing the results in [8] to g > 2. Moreover, like
in Remark 3.1, the aggregation operator for a zero at a position z° # 0 € R? is defined by

d
pi(z) = H

4. Analysis and design of SA for some classes of matrices. Firstly, we observe that
the theoretical results obtained in the previous section to design SA for circulant matrices can
be applied in a straightforward way to Toeplitz matrices. Subsequently, we study in detail
matrices arising from the finite difference discretization of some PDEs.

As noted at the end of Section 2.3, the circulant case can be applied and extended to the
Toeplitz case. In analogy to (2.14), the cutting matrix K, 4 given by (3.5), in the Toeplitz
case reads as

=

J

Q

d

. 0
e ih@ity) x € [—m,m)%.
0

k=

Km,g = . s

where the first and last (g — 1)/2 columns are zero. The multilevel counterpart is formed with
the help of Kronecker products. In the case that the degree of the trigonometric polynomial is
smaller than the maximum of all components of g, the Toeplitz structure is kept on the coarser
levels. This is a general advantage of multigrid methods that use reductions of the system size
greater than 2. If the degree is higher, the cutting matrix can be padded with zeros as in (2.15).
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In the following we consider the finite difference discretization of PDEs, in particular the
2D Laplacian, with constant coefficients. Nevertheless, the analysis can be used to design a SA
multigrid also in the case of non-constant coefficients. Indeed, while non-constant coefficients
do not lead to circulant or Toeplitz matrices, circulant or Toeplitz matrices can be used as a
local model by freezing the coefficients and analyzing the resulting stencils by the methods
derived for the constant coefficient case. This approach is employed in [8] and is similar
to local Fourier analysis (LFA) for multigrid methods, which is used to analyze geometric
multigrid methods. For a detailed review of LFA, see [29]. The developed theory can be
used to choose different smoothers based on the local stencil within the smoothing process
in general SA multigrid methods. Hence, the used smoother is of the form I — Q; A; with a
diagonal matrix €2;, where each ); is related to a frozen local stencil. This strategy will be
employed in Section 5.6.

4.1. Symmetric projection for the 2D Laplacian. Now we turn to the finite difference
discretization of the 2D Laplacian with constant coefficients. In this case we are able to
formulate some results based on the developed theory. In the following we allow only the
same coarsening in x and y direction, and therefore we denote the coarsening g by only one
integer, g = 2, 3,4, or 5.

LEMMA 4.1. Let f be an even trigonometric polynomial obtained by an isotropic
discretization of the 2D Laplacian. If g = 2 or g = 3, there always exists a smoother s; ,,
defined in (3.16) with a unique w such that the resulting projection p; = s; ., ao_ g fulfills (3.9).
In particular,

i) for g =2 we obtainw = 1/f(0,7),
ii) for g = 3 we obtainw =1/ f(0, 2% ).

Proof. The function f is nonnegative and vanishes only at the origin with order two. The
isotropic discretization leads to a symmetry of f such that (0, z) = f(z,0) that is inherited
by sg,,. From (3.17) it holds that

A(2,2)(O) = {(Ovﬂ-)v (71-’0)} and "4(3,3)(0) = {(Oa 2%)’ (07 4?”)7 (2?”70)7 (4?%’0)}

Therefore, w has to be chosen such that s¢,(0,7) = 1 — wf(0,7) = 0 for g = 2 and
50,w(0,47m/3) = 50,,(0,27/3) =1 — wf(0,2w/3) = 0 for g = 3. The coarse symbols f;,
1 > 0, preserve the properties of f thanks to Lemma 3.2 and Remark 3.3. a

In the case that every fourth point is taken in each direction, i.e., the number of unknowns
is reduced by a factor of 16, we obtain a similar result:

LEMMA 4.2. Let f be an even trigonometric polynomial obtained by an isotropic
discretization of the 2D Laplacian. If g = 4, then we need two smoothers with two different
w values given by w1 = 1/f(0,7/2) and wy = 1/ f(0, ) such that the resulting projection
Di = Siwy Siyw, A2,g fulfills (3.9). For g = 5, the same results holds for wy = 1/f(0,2m/5)
and we = 1/f(0,47/5).

Proof. The proof is analogous to that of Lemma 4.1 using the sets A4 4) and A(s 5).
Two different values of w are necessary in view of cos(w/2) = cos(37/2) # cos(w) and
cos(2m/5) = cos(8m/5) # cos(4n/5) = cos(67/5). a

For anisotropic stencils, even with standard coarsening, two w values are needed.

LEMMA 4.3. Let f be an anisotropic discretization of the 2D Laplacian. If g = 2,
we need two different w values given by wy = 1/ f(m,0) and we = 1/ f(0, 7) such that the
resulting projection p; = 8; ., S; ., G2,g fulfills (3.9). For g = 3, we also need two w values,
namely wy = 1/f(27/3,0) and wy = 1/f(0,27/3). For g = 4 and g = 5, four w values are
necessary.
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Proof. Due to the anisotropic discretization, f(7,0) # f(0,7) in general, and hence
twice the number of w’s with respect to the isotropic case is required in Lemmas 4.1 and 4.2 .

ad

4.2. Non-symmetric projection for the 2D Laplacian. The SA projection is defined
by applying the aggregation prolongation C,, (ag,4) K. in the restriction and the prolongation
step and the additional smoothers S; := I — w;diag(A) ™1 A, j = 1,..., k. In the symmetric
application we include each S; in the restriction and the prolongation generating in total
k = 2k’ smoothing factors. In the nonsymmetric application we include each S; only once,
either in the restriction or in the prolongation resulting in & = k’. Hence, the coarse system is
related to the matrix

KnCll(a4,9) Sk S1AS1 . .. S Cr(aa,g) KL
in the symmetric case and in the nonsymmetric application, e.g., to

Kan(ad’g)Sl..SlASl+1 e Sern(ad,g)Kg .

THEOREM 4.4. To maintain the original block tridiagonal structure also on the coarse
levels, the overall number k of smoothers that can be included in both restriction and prolon-
gation is restricted by k < g. Therefore, if we incorporate the smoothing only in the restriction
or the prolongation, k' = k < g smoothers are allowed in SA. If we use symmetric projection
with R = P, then we have to satisfy k' < g/2, respectively, 2k' = k < g:

Proof. The projection has block bandwidth given by g — 1 upper diagonals, and the
matrix A and the smoothers are block tridiagonal with 1 upper diagonal. Hence, applying
k smoothers leads to g + k upper diagonals. Picking out every g-th diagonal gives a block
tridiagonal 9-point stencil if & < g. a

g |

allowed k' for nonsymmetric case

3|4
213
allowed k' for symmetric application 111

DN | O

2
1
0

THEOREM 4.5. To arrive at the right number of zeros in the restriction/prolongation such
that (3.3) holds, the number k' of smoothers necessary on the whole is given by:

g ||

necessary k' in the isotropic case

2|3
111
necessary k' in the anisotropic case || 2 | 2

Proof. The symmetric application of the aggregation gives the right order of zeros at
all mirror points that are not lying on the coordinate axes. Following the analysis in Lem-
mas 4.1 and 4.2, the smoothers, respectively w;, have to be chosen to add zeros on f(0, 27 /g),
f(27j/g,0), 5 = 1,...,9g — 1. Because of the identities cos(27/3) = cos(4x/3),
cos(2m/4) = cos(67/4) and cos(27/5) = cos(87/5), cos(4n/5) = cos(67/5), in the
isotropic case, many of the mirror points coincide, and it is only necessary to smooth the
restriction or prolongation to satisfy (3.3). For the anisotropic case, we have to consider the
two axes x and y separately and hence to double the number of smoothers like in Lemma 4.3.

ad
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To achieve both goals for the order of zeros and the block tridiagonal structure, combining
Theorems 4.4 and 4.5, we can apply the SA according to the following cases:
1. isotropic case and nonsymmetric projection for all g,
2. isotropic case and symmetric projection for g = 3 or g = 5,
3. anisotropic case and nonsymmetric projection for g = 3 or g = 5,
4. anisotropic case and symmetric projection for no g.

4.3. SA for the 2D Laplacian with 9-point stencils. Now we want to discuss exemplar-
ily and in detail the application of the smoothed aggregation technique to the 2D Laplacian
with 9-point stencils. We design the projections such that on all levels we derive again 9-point
stencils, and we use smoothers in the projection to get zeros of order at least 2 at all mirror
points besides the origin according to condition (3.3). Therefore, our analysis will be focused
on obtaining a stable stencil according to the following definition.

DEFINITION 4.6. A stencil associated to a symbol f; is stable if there exist r; and p; that
satisfy (3.3) and fi11 = o, f; with a;; > 0.

Of course, if the stencil f at the finest level is stable, then the same holds for all f; at the
coarser levels i = 1,..., lax.

Applying the nonsymmetric projection, e.g., by including the smoothers only in the
prolongation or in the restriction, the coarse matrix will again be symmetric because of the
cutting procedure, but the coarse system might get indefinite. Therefore, we have to analyze
the resulting coarse-grid matrix and determine when it is symmetric positive definite. An
obvious criterion that we use here is the M-matrix property.

According to items 1-3 at the end of the previous section, we study in detail items 1 and 2
for the isotropic stencil

1 - -1 —c
4.1 -1 4+4c -1 >0
(“.1) el e B

which is associated to the symbol

(42)  f(z,y) = (2 — cos(x) — cos(y) + ¢(2 — cos(z + y) — cos(z — y))) /(2 + 2¢) ,
and item 3 for the anisotropic case

4.3) f(z,y) = (1 —cos(z)) + b (1 —cos(y)), b> 0.

Firstly, we compute stable stencils for the isotropic case with nonsymmetric projection
(item 1) forg = 2,...,5.

THEOREM 4.7. For g = 2 and nonsymmetric smoothing, the stencil (4.1) with ¢ = 1//2
is stable. Moreover the coarse system is a block tridiagonal M-matrix for all ¢ > 0.

Proof. From the symbol (4.2), only one w = (1 + ¢)/(1 + 2¢) is necessary to ensure that
1 —wf(0,7) = 0 and hence to satisfy (3.3). Using the function

9(z,y) = f(z,y)(1 —wf(z,y))(1 + cos(x))(1 + cos(y)),

from (3.4) it follows that

1 T xT xT T xT T T
fl(x,y):1(9(56)+9(§+7Ta§)+9(§7§+77)+9(§ +m, 4 +m).

This function can be evaluated at (0, 0), (0, 7), and (7, 7) leading to

£(0,0)=0, fl(ovﬂ):ﬁ’ fl(ﬁ,ﬂ)zlf%'
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These function values are related to a 9-point stencil, respectively the trigonometric polynomial
fi(z,y) = o — d(cos(z) + cos(y)) — ecos(z) cos(y)
with

1+ 6¢ + 6¢2 c 1+ 2¢+ 262
O = —FV—/——————————~ 6:7 =

S(1+20)(1+c)’ 11+20)° T 81+200+0)

resulting in the coarse-grid stencil

1 —1/4—¢c/2—c?/2 —c—c? —1/4—¢c/2—c?/2
- —c—c? 1+ 6¢ + 6¢2 —c—c? ,
SU+20)A+0) | /4 _cjp—2/2 - —1/d—c/2—3)2

which gives an M-matrix for all ¢ > 0.

For a stable stencil the functions f and f; have to be equivalent up to a scalar factor, or

_ . . . _ 1
2¢d = €, which is satisfied for ¢ = 75 O

The following theorems can be shown using the same technique, where the coarse
symbol f; is computed generalizing (3.4) to g > 2 like in Lemma 3.2.

THEOREM 4.8. For g = 3 and nonsymmetric smoothing, the stencil (4.1) with ¢ = 1//2
is stable. Moreover, the coarse stencil

—3—4.5¢—3c% 3/2—9c—12¢2 -3 —4.5¢— 3c?
3/2—9c—12¢ 6+ 5dc+60c>  3/2 —9c — 12¢2
—3—4.5¢—3c¢® 3/2—9c—12¢> —3 —4.5¢ — 3c?

1
18(1+2¢)(1+¢)

defines a block tridiagonal M-matrix for ¢ > _3'*'T\/ﬁ ~ 0.140388.

THEOREM 4.9. For g = 4 and nonsymmetric smoothing, the stencil (4.1) with c = 0 or
c = 1 is stable. Moreover, the coarse stencil

1
X
8(14¢)(1 4+ 2¢)?
—5¢ — 8¢2 — 5¢? —2—-2¢—8c2 -6 —5¢ — 8¢ — 5¢?
—2—-2¢—8c2 -6 8+ 28¢c+64c% +44¢3 -2 —2¢— 4% — 663
—5¢ — 8¢2 — 5¢? —2—2¢—8c% -6 —5¢ — 8¢ — 5¢?

defines a block tridiagonal M-matrix for all ¢ > 0.

THEOREM 4.10. For g = 5 and nonsymmetric smoothing, the stencil (4.1) with
c = 1.910044687.. and ¢ = 0.2296814707.. is stable. Moreover, the coarse stencil

1
20(1 4+ ¢)(1 4 2¢)
2 — 13¢ — 24¢? — 1662 -9 —4¢—12¢%2 — 83 2 — 13¢ — 24¢% — 1662
—9 —4¢—12¢> — 8% 28 4 68c + 144¢? +96¢® —9 —4e — 12¢% — 83
2 —13¢ — 24¢2 — 16¢° —9—4e—12¢2 — 83 2 —13¢c — 24¢2 — 16¢3

2><

defines a block tridiagonal M-matrix for ¢ > 0.1234139034.
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Consider now the isotropic case and symmetric projection (item 2).
THEOREM 4.11. For g = 3 and symmetric smoothing, the stencil (4.1) with c = 1 or
c = 0 is stable. Moreover, the coarse stencil

1
1201+ 2021 1 ¢)
—Tc—12¢2 — 82 —3—4¢—12¢%2 — 8 —Tc—12¢2 — 82
—3—4c—12¢2 — 8¢ 12+ 44c+96¢% + 64¢® —3 — 4de — 12¢2 — 82
—Tc—12¢% — 83 —3—4¢—12¢%2 — 83 —Tc—12¢2 — 88

defines a block tridiagonal M-matrix for all ¢ > 0.

THEOREM 4.12. For g = 5 and symmetric smoothing, the stencil (4.1) with
c = 0.1991083336.. or ¢ = 0.8931363030.. is stable. Moreover, the coarse-grid matrix
is a block tridiagonal M-matrix for ¢ > 0.1475660601...

Finally, we consider the anisotropic case and nonsymmetric projection (item 3).

THEOREM 4.13. For g = 3 and nonsymmetric smoothing, the anisotropic stencil of the
symbol (4.3) is stable, and the coarse-grid matrix is again an M-matrix for all b > 0.

Proof. We need two w values, w; = 2(;:}’) and wy = w These lead to
2b 2
) =2 ) Oa =T 1> 70 =77
fi(m,m) f1(0, ) 5 fi(m,0) 0
Therefore, the coarse-grid symbol is
b 1

fi(z,y) = a(l — cos(x)) + B(1 — cos(y)), with S = Ty o= T

5. Numerical examples. All numerical tests were obtained using MATLAB R2014a.
We implemented the outlined method based on the developed theory for circulant and Toeplitz
d-level matrices with generating symbols with second order zeros at the origin. The optimal w
was chosen automatically on each level by computing the values of the symbol at all the
critical mirror points lying on the axes. Two steps each of Richardson iteration were used
as pre- and postsmoother. The coarsest-grid was of size g¢ in the circulant case and 1 in the
case of Toeplitz matrices. For even cut sizes g we consider the circulant case only to allow
for a meaningful geometric interpretation of the resulting aggregation method. We report the
number of iterations required to achieve a reduction of the residual by a factor of 10710, the
operator complexity, and the asymptotic convergence rate given by the residuals of the last
two cycles.

5.1. 2-level isotropic examples. We consider stencils of the general form (4.1)

—c -1 —c
5D -1 4+4c -1
4+ 4c e 1 e

For ¢ = 0 this yields the second-order accurate 5-point finite difference discretization of the
Laplacian with the stencil

(5.2) -1 4 -1,
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TABLE 5.1
Results for the circulant case for the 5-point Laplacian (5.2) for g = 2 and nonsymmetric smoothing.

# dof #iter. | op. compl. | asymp. conv.
4x4 19 1.1000 0.3164
8 x 8 18 1.3000 0.3164
16 x 16 17 1.3750 0.3040
32 x 32 18 1.3938 0.3101
64 x 64 18 1.3938 0.3089
128 x 128 18 1.3996 0.3065
256 x 256 18 1.3999 0.3074

TABLE 5.2

Results for the circulant case for the 5-point Laplacian (5.2) for linear interpolation and full-weighting.

# dof #iter. | op. compl. | asymp. conv.
4x4 18 1.2000 0.3164
8% 8 18 1.5000 0.3164
16 x 16 17 1.5750 0.2955
32 x 32 18 1.5938 0.3096
64 x 64 18 1.5984 0.3069
128 x 128 18 1.5996 0.3070
256 x 256 18 1.5999 0.3074

while for ¢ = 1 we obtain the second-order accurate 9-point finite element discretization of
the Laplacian given by the stencil

L[ -1
(5.3) g1 8 -1
-1 -1 -1

We start with the case g = 2. To prevent unbounded growth of the operator complexity,
we do not consider symmetric prolongation and restriction, but we rather consider a smoothed
prolongation operator only. As mentioned above, we only consider the circulant case. The
results for the 5-point Laplacian with stencil (5.2) can be found in Table 5.1. For the purpose
of comparison we ran the same test with the same parameters but with the common linear
interpolation and full-weighting restriction as described in, e.g., [2]. Comparing the results in
Table 5.2, we like to emphasize that while the asymptotic convergence rate and the number
of iterations needed to reduce the residual by a factor of 10719 are comparable, the operator
complexity of the smoothed aggregation-based method is lower, i.e., each multigrid cycle
is cheaper. Results for the 9-point stencil (5.3) are found in Table 5.3. As a last example
we considered the stencil given by (5.1) with ¢ = 1/+/2 that was shown to be stable in
Theorem 4.7; the results are displayed in Table 5.4.

Next, we consider g = 3. In this case symmetric smoothing of prolongation and restriction
does not lead to stencil growth, so we first start with this approach. We tested it for the 5-
and 9-point Laplacian that are stable due to Theorem 4.11. The results for these stencils in
the Toeplitz case can be found in Tables 5.5 and 5.6, and the results for the circulant case are
comparable. If non-symmetric smoothing of the prolongation only is applied, the 5-point
discretization of the Laplace operator leads to an indefinite stencil from level 2 onwards, so
we did not consider it here. Note that it does not fulfill the requirements of Theorem 4.8, so
the positive definiteness is not guaranteed anyway. The results for the 9-point stencil (5.3)
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TABLE 5.3
Results for the circulant case for the 9-point Laplacian (5.3) for g = 2 and nonsymmetric smoothing.

# dof #iter. | op. compl. | asymp. conv.
4x4 12 1.1111 0.1526
8 x 8 13 1.2778 0.1944
16 x 16 12 1.3194 0.1922
32 x 32 12 1.3299 0.1841
64 x 64 12 1.3325 0.1862
128 x 128 12 1.3331 0.1849
256 x 256 12 1.3333 0.1854

TABLE 5.4

Results for the circulant case for the stable stencil (5.1) with ¢ = 1/+/2 for g = 2 and nonsymmetric smoothing.

# dof #iter. | op. compl. | asymp. conv.
4 x4 13 1.1111 0.1746
8 x 8 12 1.2778 0.1952
16 x 16 13 1.3194 0.1982
32 x 32 13 1.3299 0.1875
64 x 64 13 1.3325 0.1881
128 x 128 13 1.3331 0.1850
256 x 256 13 1.3333 0.1860

are given in Table 5.7; those for the stencil (5.1) with ¢ = 1/ \/5, which is stable due to
Theorem 4.8, can be found in Table 5.8. We also considered the 5-point Laplacian (5.2) in
the case g = 4. In this case the stencil is stable; cf. Theorem 4.9. As in the case g = 2, we
only present results for the circulant case, which can be found in Table 5.9. Finally, results
for the stencil (5.1) with ¢ = 0.22968147.. are presented in Table 5.10 for the Toeplitz case
with g = 5. The stencil is stable due to Theorem 4.10, and the results for the circulant case
are similar. In all cases we see a nice convergence behavior that is independent of the number
of levels. As expected, the convergence rate deteriorates when more aggressive coarsening is
chosen. This could be overcome by adding more smoothing steps or by using more efficient
smoothers.

5.2. 2-level anisotropic examples. We consider matrices with the stencil

1 _ _6b—2a 1
Ga—2b 120712 Ga—2b
G4 T 12aF12b 1 T 120120 |
1 _ _6b—2a 1
12 1201120 12
yielding the symbol
12a — 4b 126 — 4 1
flx)=1- m cos(x1) — T+12ab cos(xa) — 3 cos(x1) cos(xz).

This corresponds to a discretization of an anisotropic PDE. First we consider an example with
a slight anisotropy where we choose ¢ = 1 and b = 1.1. To reduce the growth of the operator
complexity we again choose to smooth the prolongation only. The results for the Toeplitz
case are presented in Table 5.11; those for the circulant case are similar. If the anisotropy is
increased, the convergence rate deteriorates, as expected. The results for a = 1 and b = 2 can
be found in Table 5.12. The consideration of even higher anisotropies is not meaningful as
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TABLE 5.5
Results for the Toeplitz case for the 5-point Laplace (5.2) for g = 3 and symmetric smoothing.

#dof | #iter. | op. compl. | asymp. conv.
9x9 22 1.1328 0.3679
27 x 27 32 1.1906 0.5485
81 x 81 33 1.2129 0.5721
243 x 243 33 1.2209 0.5729
TABLE 5.6

Results for the Toeplitz case for the 9-point Laplace (5.3) for g = 3 and symmetric smoothing.

#dof | #iter. | op. compl. | asymp. conv.
9x9 14 1.0800 0.2308
27 x 27 20 1.1082 0.3970
81 x 81 21 1.1191 0.4203
243 x 243 21 1.1230 0.4217
TABLE 5.7

Results for the Toeplitz case for the 9-point Laplace (5.3) for g = 3 and nonsymmetric smoothing.

#dof | #iter. | op. compl. | asymp. conv.
9x9 18 1.0784 0.3083
27 x 27 23 1.1080 0.4073
81 x 81 23 1.1191 0.4252
243 x 243 24 1.1230 0.4374
TABLE 5.8

Results for the Toeplitz case for the stable stencil (5.1) with ¢ = 1/\/§for g = 3 and nonsymmetric smoothing.

#dof | #iter. | op. compl. | asymp. conv.
9x9 19 1.0784 0.3245
27 x 27 24 1.1080 0.4306
81 x 81 25 1.1191 0.4457
243 x 243 25 1.1230 0.4464
TABLE 5.9

Results for the circulant case for the stable 5-point stencil (5.2) for g = 4 and nonsymmetric smoothing.

#dof | #iter. | op. compl. | asymp. conv.
16 x 16 60 1.0625 0.7377
64 x 64 58 1.0664 0.7303

256 x 256 59 1.0667 0.7308
TABLE 5.10

Results for the Toeplitz case for the optimal stencil (5.1) with ¢ = 0.22968147.. for g = 5 and nonsymmetric
smoothing.

# dof ‘ # iter. ‘ op. compl. | asymp. conv.
25 x 25 65 1.0317 0.7229
125 x 125 81 1.0395 0.7841

625 x 625 81 1.0412 0.7845



ETNA
Kent State University
http://etna.math.kent.edu

48 M. BOLTEN, M. DONATELLI, AND T. HUCKLE

TABLE 5.11
Results for the Toeplitz case for the anisotropic stencil (5.4) witha = 1 and b = 1.1 for g = 3.

#dof | #iter. | op. compl. | asymp. conv.
9x9 17 1.0784 0.2717
27 x 27 27 1.1080 0.4604
81 x 81 28 1.1191 0.4863
243 x 243 28 1.1230 0.4869
TABLE 5.12

Results for the Toeplitz case for the anisotropic stencil (5.4) witha = 1 and b = 2 for g = 3.

# dof ‘ # iter. ‘ op. compl. | asymp. conv.
9x9 23 1.0784 0.3797
27 x 27 38 1.1080 0.5903
81 x 81 40 1.1191 0.6118
243 x 243 40 1.1230 0.6126

other coarsening strategies like semi-coarsening [26] or the use of stretched aggregates [20] is
advisable then.

5.3. 3D example. The stencil of the Laplacian in 3 dimensions using linear finite ele-
ments is given by

4 -4 -8 —4 -8 0 -8 -4 -8 —4
- =8 0 -8 0 128 0 -8 0 -8
-4 -8 —4 -8 0 -8 -4 -8 —4

The results for the Toeplitz case with g = 3 are displayed in Table 5.13. The results for the
circulant case are very similar, so we omit them. The results show that our approach works as
expected for higher levels/dimensions as well.

5.4. An example with a dense system matrix. The approach is not limited to sparse
circulant and Toeplitz matrix, but it is rather generally applicable to matrices where the
generating symbol has an isolated zero of even order. To illustrate this, we present result for
the 1-level Toeplitz matrix with generating symbol

f(z) =22

As the Fourier coefficients of f are given by

(—1)k%  otherwise,

72/3 for k =0,
ap =
k2

this results in a sequence of dense matrices. The described smoothed aggregation multigrid
method works for this example as expected. Results for ¢ = 2 and nonsymmetric smoothing
of the prolongation operator are found in Table 5.14. We like to note that all coarse-level
matrices are non-Toeplitz matrices that are not just a low-rank perturbation of a Toeplitz matrix
due to the dense prolongation operator. While our aggregation-based method works for this
problem, a method that is tailored for this kind of problems, like the one presented in [9], is
better suited than our general approach.
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TABLE 5.13
Results for the Toeplitz case for the finite element discretization of the 3D Laplacian using cubic finite elements
for g = 3 and symmetric smoothing.

# dof ‘ # iter. ‘ op. compl. ‘ asymp. conv.
9x9x9 14 1.0292 0.2212
27 x 27 x 27 19 1.0421 0.3932
81 x 81 x 81 21 1.0469 0.4197
TABLE 5.14

Results for the Toeplitz case for matrices with generating symbol f(x) = x> with g = 2.

#dof | #iter. | op. compl. | asymp. conv.
4 16 1.2857 0.2532
8 22 1.3226 0.3758
16 24 1.3307 0.4148
32 25 1.3327 0.4318
64 25 1.3332 0.4375
128 25 1.3333 0.4399
256 25 1.3333 0.4411

5.5. Optimality of w. To illustrate the optimality of w resulting from our analysis, we
varied the value of w. We chose the 9-point stencil (5.3) for the Toeplitz case with g = 3 as
this is a stable stencil according to our theoretical results. We changed the optimal w obtained
with the developed theory by multiplying it by a factor o € [0.8, 1.2] on each level. In each
case we were solving a system of size 3° x 3° using the same right hand side and a zero
initial guess. The resulting asymptotic convergence rates are provided in Table 5.15. While
the asymptotic convergence rate does not vary much in a neighborhood of the optimal w, the
optimal w yields the best convergence rate. This shows that the theory is valid, but the methods
seem to be relatively robust regarding the choice of the smoothing parameter.

5.6. The non-constant coefficient case. The obtained results can be used to define SA
methods for the non-constant coefficient case straightforwardly. For this purpose we use
Jacobi iteration as smoother, but we introduce a diagonal matrix {2 to damp the relaxation in a
pointwise manner. We deal with model problem 3 in [26, p. 131], i.e.,

—€Ugy — uyy = f (xay) € Q = (07 1)27
u=g (z,y) €09,

with varying € and discretize the problem using the stencil

1 -1
5 |—€ 2(1+¢€) —e
h -1

We choose € as
1
e(x,y) = 5(2 + sin(27z) sin(27y))
and scale the matrix symmetrically such that it has ones on the diagonal. We build regular

3 x 3 aggregates, i.e., dealing with the case g = 3. For the traditional SA approach, we smooth
the prolongation and restriction operator with w-Jacobi iteration; in accordance with [28] we
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TABLE 5.15
Asymptotic convergence rate for slight perturbation of w in Toeplitz case with g = 3, system size 3° x 35 and
symmetric smoothing of the grid transfer operators.

o | 08 | 09 | 10 | 11 | 12
asymp. conv. | 0.4897 [ 0.4260 | 0.4217 | 0.4270 | 0.4777

TABLE 5.16
Results for the Toeplitz case for the finite element discretization of the 3D Laplacian using cubic finite elements
for g = 3 and symmetric smoothing.

# dof | 9x9 | 27x27 | 81 x 82 | 243 x 243
#iter. (w = 2/3) 27 39 52 68
asymp. conv. (w = 2/3) | 0.4053 | 0.5415 | 0.6315 0.6996
# iter. (opt. w) 21 31 39 45

asymp. conv. (opt. w) 0.3160 | 0.5156 | 0.5717 0.6142

choose w = 2/3. For our adaptive approach using the local model, we build a local stencil for
each grid point and calculate the locally optimal w’s. As the problem is locally anisotropic, we
obtained two values of w that were used to set up two diagonal matrices €27 and {25 for the
smoothing of the prolongation and the restriction operator, respectively, by multiplying them
by

S, =T—QA, i=1,2.

Nonsymmetric smoothing is used to prevent the operator complexity from growing. While
the operator complexity is the same for both approaches, the achieved convergence rates and
iteration counts vary. They can be found in Table 5.16 and in Figure 5.1. The choice of
smoothing parameters that is achieved is illustrated in Figure 5.2, where the two w values that
are chosen in the 27 x 27 case are plotted. Our modification clearly outperforms the traditional
approach.

6. Conclusion. Aggregation-based multigrid methods for circulant and Toeplitz matrices
can be analyzed using the classical theory. The non-optimality of non-SA-based multigrid
methods can be explained easily by the lack of fulfillment of (2.12) by the prolongation and
restriction operator in that case. Guided by this observation, sufficient conditions for an
improvement of the grid transfer operators by an application of Richardson iteration can be
derived, including the optimal choice of the parameter. The results carry over from aggregates
of size 2 to larger aggregates. Numerical experiments show that the theory is valid and that it
can be used as a local model to choose the appropriate damping in SA even for the non-constant
coefficient case. As a result, the application of more than one smoother is recommended in
connection with nonsymmetric coarsening in order to match the necessary order of the zeros
in the projection without increasing the sparsity of the coarse matrices.
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FIG. 5.1. Convergence history of the standard SA method with w = 2/3 and the proposed version with
adaptively chosen w based on the local stencil, aggregate size in both cases was 3.
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