
Segregating Feature Interfaces to Support
Software Product Line Maintenance

Bruno B. P. Cafeo
Opus Research Group, PUC-Rio,

Brazil
bcafeo@inf.puc-rio.br

Claus Hunsen
University of Passau, Germany
hunsen@fim.uni-passau.de

Alessandro Garcia
Opus Research Group, PUC-Rio,

Brazil
afgarcia@inf.puc-rio.br

Sven Apel
University of Passau, Germany

apel@uni-passau.de

Jaejoon Lee
Lancaster University, UK
j.lee3@lancaster.ac.uk

Abstract
Although software product lines are widely used in practice,
their maintenance is challenging. Features as units of be-
haviour can be heavily scattered across the source code of a
product line, hindering modular reasoning. To alleviate this
problem, feature interfaces aim at enhancing modular reason-
ing about features. However, considering all members of a
feature interface is often cumbersome, especially due to the
large number of members arising in practice. To address this
problem, we present an approach to group members of a fea-
ture interface based on their mutual dependencies. We argue
that often only a subset of all interface members is relevant to
a maintenance task. Therefore, we propose a graph representa-
tion that is able to capture the collaboration between members
and apply a clustering algorithm to it to group highly-related
members and segregate non-related members. On a set of
ten versions of a real-world product line, we evaluate the
effectiveness of our approach, by comparing the two types
of feature interfaces (segregated vs. original interfaces) with
co-change information from the version-control system. We
found a potential reduction of 62% of the interface members
to be considered during maintenance.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques—Modules and Inter-
faces; K.6.3 [Software Engineering]: Software Management
—Software Maintenance

Keywords Software Product Lines, Feature Interface, Fea-
ture Dependencies.

1. Introduction
Software product lines have gained considerable momentum
in recent years, both in industry and in academia [4]. Product-
line engineering facilitates software reuse by decomposing
software into units of functionality, called features [4]. Fea-
tures are cohesive units of behaviour and used to express
commonalities and variabilities of the products of a product
line [7]. Features often need to cooperate with other features
to fulfil specific tasks [4], inducing feature dependencies. A
feature dependency manifests in the source code of a prod-
uct line whenever one or more program elements (e.g., code
blocks, methods, or fields) inside the boundaries of a feature
depend on elements external to that feature [33]. A simple ex-
ample is a variable defined in one feature and used in another
feature.

The maintenance of industry-strength product lines is
particularly hard due to the lack of feature modularity [10,
34]. First, features are often scattered across the source
code [18]. Hence, product-line developers are forced to
consider all scattered code to reason about a given feature
during a maintenance task. This problem is exacerbated in
preprocessor-based software lines, which are very common
in the software industry [16]. Second, and more importantly,
the communication between a feature with other features is
often realised by many code-level dependencies also scattered
across the source code [33]. As a consequence, a lot of effort
spent in product-line maintenance is devoted to identifying
and understanding program elements responsible for giving
external access to other features as well as to reading code of
potentially affected features [33].

Developers cope with the complexity of maintaining soft-
ware systems by reasoning about interfaces [30]. The benefits

of identifying and structuring interfaces in software systems
have been a major focus of studies in the 80s [29, 30, 35],
but there is a also growing interest in understanding how to
tame the complexity of so-called feature interfaces in soft-
ware product lines [19, 22, 34]. In the context of software
product lines, the interface of a feature contains the pro-
gram elements in the source code that are responsible for
providing external access to other features [10, 33]. In partic-
ular, researchers have found that explicitly reasoning about
feature interfaces reduces the effort of developers to main-
tain the system [34]. However, only identifying and making
feature-interface members explicit may be insufficient for
enhancing modular reasoning of features [10]. First of all,
feature interfaces may have many members responsible for
the communication between features. As a consequence, fea-
ture interfaces may be large and not helpful for supporting
developers during maintenance. Furthermore, according to
previous experience [10, 36], among the many members of
a feature interface, only a small group of members may be
relevant to a given maintenance task—as it contains a set of
highly related members always used together, for example.
So, a simple list of all interface members might rather hinder
than improve modular reasoning of features. As an extension
to existing studies, we investigate how to support developers
in identifying and structuring feature interfaces.

To tackle this problem, we propose a technique for au-
tomating the segregation of feature interfaces (i.e., grouping
of interface members) based on their mutual dependencies.
The background is that developers cope with the complexity
of large software systems by grouping (clustering) related
members into cohesive groups [29]. In object-oriented design,
for instance, interface members are segregated into more co-
hesive groups according to their clients [29]. In the same vein,
feature interfaces shall be segregated into cohesive clusters
of members, such that the members of a cluster collaborate
closely to accomplish a part of the overall purpose of a feature
in cooperation with another feature (i.e., feature dependency).
If a change must be made in a member of a cluster, the
members of the same cluster are likely highly relevant to be
revised during maintenance. In other words, only a subset of
all interface members may be relevant to a maintenance task.

To achieve this goal, we formulate interface segregation
as a clustering problem and conduct a study on an industrial
product line. While using maintenance tasks (i.e., inferred
from commits) as a foundation, we analyse the number of
interface members likely to be unnecessarily considered by
developers to the clusters of the segregated feature interface,
on the one hand, and to the original interface (i.e., one
subset of all interface members), on the other hand. To
this end, we propose a graph representation to capture the
collaboration between interface members, and we apply a
clustering algorithm on this representation to identify the
clusters of members, containing only members that are highly
related. The results show a pronounced difference (≈ 62%)

in favour of segregated interfaces regarding the reduction
of interface members likely unnecessarily considered by
developers—i.e., members not changed in a commit—during
maintenance. Therefore, by capturing cooperating interface
members and clustering them, we are able to reduce the
overall amount of code considered by developers during a
maintenance task. In summary, our contributions are:
• A graph representation for relating feature-interface mem-

bers.
• A tool that is able to generate segregated feature inter-

faces, and the use of this tool to generate the segregated
interfaces for all features of 10 versions of BusyBox.

• Evaluation of our approach by comparing the original
feature interfaces with the segregated interfaces by means
of the Jaccard distance (using the co-changed interface
members as oracle); we found that segregated interfaces
potentially reduce the overall amount of code considered
by developers in product-line maintenance.

2. Preliminaries
To lay a foundation for the subsequent sections, we introduce
the relevant concepts of software product lines, features, and
feature dependencies. Furthermore, we introduce a motivat-
ing example to illustrate the problem of understanding feature
dependencies by means of feature interfaces.

2.1 Software Product Lines and Features
A software product line is “a set of software intensive systems
that share a common managed set of features satisfying the
specific needs of a particular market segment or mission” [11].
Software product lines enable the systematic construction of
individual software products via mass customisation. Cus-
tomers tailor their products by selecting particular combina-
tions of product-line features. The use of software product
lines promises significant benefits, such as a reduction of
development costs, enhancement of quality, and reduction of
time-to-market [11]. To this end, product lines are organised
and structured in terms of features. Features are units of be-
haviour of by which different products within a product line
can be differentiated and defined [4, 37], thus, playing a key
role for mass customisation.

In this work, we look at product lines implemented with a
preprocessor and conditional compilation, which is a widely-
used approach to implement and configure product-line
features [16]. The preprocessor identifies the code that should
be compiled or not based on preprocessor directives and
propositional expressions over features they contain, called
the presence conditions. In this setting, a feature is a set
of program elements surrounded by preprocessor directives
using the same presence condition. It is important to notice
that features might be scattered accross several modules (e.g.,
compilation units) of the source code and tangled with other
feature code. Hence, the maintenance of product-line features
is often more challenging than the maintenance of modules.

As an example, we will use a simple product line for
managing devices (such as printers, displays, and the like),
implemented using preprocessor directives and conditional
compilation. The user is able to control devices, either via
the internal screen or externally via a terminal connection.
Figure 1 illustrates a code snippet of how a feature might be
represented in the source code in our exemplary product line,
specifically, parts of the feature SCREEN implementing the
basic internal screen functionality. In this snippet, we show
the declaration of the fields responsible for the width and
height of the screen (Line 3), and the methods responsible for
setting the values of these fields (Lines 7–8).

1 public class General {
2 #ifdef SCREEN
3 int width; int height;
4 #endif
5 ...
6 #ifdef SCREEN
7 public void setWidth(int x) {this.width = x;}
8 public void setHeight(int y) {this.height = y;}
9 #endif

10 }

Figure 1. Excerpt of the code of feature SCREEN.

2.2 Feature Dependencies and Feature Interfaces
A feature dependency defines which program elements of
a feature depend on other elements of other features (e.g.,
a method is defined in one feature and called by another
feature) [10]. In other words, feature dependencies arise,
among others, from structural dependencies (such as feature
control-flow dependencies and inheritance calls) between
program elements of different features.

Figure 2 illustrates an example of a feature dependency
between the feature ADMINPANEL and SCREEN in our
example. ADMINPANEL is responsible for setting values
to devices. The feature dependency arises from the method
calls highlighted in Lines 4, 5, 6, 7, 11, and 12, while some
of these methods belong to feature SCREEN (Lines 9–14,
Figure 1). Thus, a part of the ADMINPANEL feature depends
on elements of feature SCREEN. Furthermore, we have a
feature INFOPANEL responsible for presenting the current
settings to the user (no code snippet given), which accesses
the methods getFrequency and getResolution, among
others, that just read the values configured.

A feature interface consists of the program elements that
are responsible for providing external access to other features.
A provided feature interface, similarly to a provided module
interface, consists of the program elements belonging to a
feature and used by another feature. We focus on provided
feature interfaces as required feature interfaces can be in-
ferred once the former ones have been identified. So, from
hereafter, unless otherwise stated, the term “feature interface”
is used to refer to the provided feature interface. The meth-
ods called in Lines 5, 6, 7, 8, 16, and 17 of Figure 2 are the
elements responsible for providing external access to feature
SCREEN. Therefore, the methods setWidth, setHeight,

1 public class Controller {
2 #ifdef ADMINPANEL
3 public void resetConfig() {
4 scr.setWidth(1920);
5 scr.setHeight(1080);
6 scr.setBrightness(80);
7 scr.setContrast(30); ...
8 } ...
9 public void correctAspectRatio(int x, int y) {

10 // adjust aspect ratio if necessary
11 scr.setWidth(x*factorW);
12 scr.setHeight(y*factorH); ...
13 }
14 #endif
15 }

Figure 2. Excerpt of the code of feature ADMINPANEL,
giving rise to a feature dependency (underlined).

setBrightness, and setContrast are members of the fea-
ture interface SCREEN.

2.3 A Maintenance Problem
We now introduce an example of a maintenance problem to
illustrate the need for feature interfaces. In our exemplary
product line, there are two sets of functions belonging to
feature SCREEN that participate in feature dependencies:
(i) the functions showFrequency and showResolution are
responsible for external access to feature SCREEN by provid-
ing necessary information, and (ii) the functions setWidth,
setHeight, setBrightness, and setContrast allow the
user to set configuration parameters. These elements, all be-
longing to the feature SCREEN, are scattered across several
files of the code base, as shown in Figure 3.

Let us suppose a maintenance task where the developer
is going to limit the size of the screen to values between a
minimum and maximum possible size. So, it is expected a
change in feature SCREEN to accomplish the maintenance
task. However, since features the ADMINPANEL and IN-
FOPANEL depend on feature SCREEN, the developer should
revisit the code of all these dependent features to ensure that
their expectations are met. Figure 4 illustrates the interface
of feature SCREEN.

Making feature-interface members explicit would help
spotting feature dependencies. For instance, developers can
associate members starting with the prefix set with the fea-
ture ADMINPANEL. However, despite the seeming bene-
fit, reasoning solely about a list of interface members—the
so-called original feature interface—may be still too compli-
cated. Original feature interfaces may be large and not helpful
for supporting developers during maintenance. A simple list

Image.java General.java Conf.java

setBrightness()
setContrast()
...

...

setWidth()
setHeight()
...

...
getFrequency()
getResolution()
...

...

Figure 3. Methods of feature SCREEN involved in feature
dependencies.

Figure 4. Features ADMINPANEL and INFOPANEL ac-
cessing methods of feature SCREEN.

of all interface members might rather hinder than enhance
modular reasoning of features. In the subject system of our
study (Section 4.2), for instance, we found interfaces with
more than 20 members. In this case, analysing each feature
interface member to reason about feature dependencies dur-
ing a maintenance task may be even worse than not having a
explicit feature interface.

In the context of our example, the previously-mentioned
maintenance task would touch the interface members setWidth
and setHeight of feature SCREEN. In addition, it may also
demand changes to the code of feature ADMINPANEL,
which is referring to setWidth and setHeight. On the
other hand, the other interface members of feature SCREEN,
other parts of feature ADMINPANEL, and the code of feature
INFOPANEL may not be important to be considered in this
specific maintenance task. Therefore, the key idea is to group
members of a feature interface that are closely related, which
may help developers to focus only on important members of
the feature interface relevant to the maintenance task. This
way, the lack of modular reasoning of features could be
reduced as well as the maintenance-task difficulty.

3. Automated Interface Segregation
Creating a human-perceivable model of the structure of a
complex system is one of the many problems of software
engineering [27]. In our attempt to alleviate the complexity
of reasoning about features as modular units of behaviour,
we propose a technique for automated feature-interface seg-
regation to support developers creating a more understand-
able model of the program structure in terms of features
and their dependencies. The goal of our approach is to auto-
matically partition1 the members of a feature interface into
clusters based on their dependencies to other features. By
doing that, the resulting clusters increase the chance of in-
terface members of the same cluster being important to be
understood together. The clusters, once discovered, will rep-
resent a higher-level abstraction of a feature interface based
on the global feature-dependency structure. Each cluster con-
tains a set of interface members that cooperate to perform
a high-level function together. The following sections detail
our approach to organise feature interfaces using clustering.

1 We use the term partition in the traditional mathematical sense, that is, the
decomposition of a set of elements (e.g., nodes of a graph) into mutually
disjoint clusters.

Figure 5. Example of an MRG of feature SCREEN before
and after clustering.

3.1 Interface Organisation as a Clustering Problem
Clustering is the task of grouping a set of objects, such that
objects in the same group (i.e., on the same cluster) are
more similar (in some sense or another) to each other than to
those in other groups (clusters). Clustering is widely used in
many applications, such as data mining, Web analysis, and
computational biology [13].

By grouping related members of a feature interface
together—i.e., members that cooperate to perform a high-
level function together—developers should be pointed to
members that actually correspond to the current maintenance
task. This way, the effort to comprehend dependencies could
be reduced, and thus the maintenance-task difficulty and
number of potentially related program elements to observe.

To cluster feature interfaces, we exploit the relationships
between interface members and apply a clustering algorithm
to partition the members of feature interfaces according to our
approach. In Section 3.2, we define the graph representation
used to capture those relationships.

3.2 Member Relationship Graph
To cluster the members of a feature interface, the straight-
forward representation is a graph, which we call Member
Relationship Graph (MRG). Formally, an MRG = (M,R)
consists of two components M and R, where M is the set of
members in a specific feature interface, and R ⊆M ×M is a
set of pairs of the form 〈u, v〉 which represents the members’
relationships. Figure 5 illustrates the idea of the MRG by
means of our example.

A relationship between two feature interface members
of a single feature exists when the same program element
of a dependent feature refers to both feature interface mem-
bers. For instance, based on the example presented in Sec-
tion 2.3, the interface members setWidth and setHeight
of feature SCREEN are referred to by two program elements
(resetConfig and correctAspectRatio). The rationale
behind this graph structure is that interface members referred
to by the same program element from another feature are
likely to cooperate to perform part of the functionality the
other feature needs. As a consequence, they likely give to-
gether a more complete insight into the corresponding feature
dependency. In addition, each edge of the graph has a weight.

The weight of an edge represents the number of distinct pro-
gram elements referring to the pair of members. The more the
pair is used together the more related they are in the source
code. An edge between two vertices with a high weight means
the elements should be in the same cluster. In our example pre-
sented in Section 2.3, the interface members setWidth and
setHeight are referred to together twice by different pro-
gram elements (resetConfig and correctAspectRatio).
This means they are closely related. In this example, only
these elements are together in the same cluster likely due to
the weight of the edge.

The idea of applying clustering to this representation
is to identify close feature-interface members as clusters,
such that the overall number of program elements that must
be considered during feature maintenance will be reduced
guided by the clusters of the segregated feature interfaces.
Figure 5 (right part) illustrates a possible clustering the
MRG extracted from the feature interface SCREEN (cf.
Section 2.3).

4. Methodology
In this section, we describe our study in terms of its goal
(Section 4.1), the subject system used to evaluate the segre-
gation of feature interfaces (Section 4.2), and the evaluation
procedure used to conduct the study (Section 4.3).

4.1 Research Question
The goal of our study is to analyse how well segregated fea-
ture interfaces can be used to perform maintenance tasks
against the original feature interface. We use the co-changes
of interface members in commits as our oracle for the relevant
subset of interface members. Then, we compare the number
of interface members likely to be unnecessarily considered
by developers to the clusters of the segregated feature inter-
face, on the one hand, and to the original interface, on the
other hand. Therefore, we formulate the following research
question:
RQ: How well can segregated feature interfaces be used
to perform code maintenance in software product lines,
compared to the original feature interfaces?

4.2 Subject System
We selected BusyBox2 as a paradigmatic case study, rep-
resenting many other product-line implementations based
on conditional compilation [19]. BusyBox is a real-world
resource-efficient product line of UNIX utilities implemented
in C. BusyBox runs in a variety of POSIX environments, such
as Linux, Android, FreeBSD, and others [19]. Variability in
BusyBox includes both variability at the composition level,
automated by the build system, and variability at source-code
level, encoded with preprocessor directives. In our study, we
focus on variability at the source-code level. We selected
10 major versions of BusyBox. Table 1 provides general

2 http://busybox.net/

data about the 10 versions, including lines of code (KLOC),
number of features (# Features), and number of feature de-
pendencies (# Dependencies).

Table 1. BusyBox releases selected for our study.
Release KLOC # Features # Dependencies

1.13 183 646 630
1.14 188 668 620
1.15 185 696 671
1.16 191 722 702
1.17 196 738 681
1.18 209 759 718

1.18.5 199 759 719
1.19 192 776 761
1.20 194 781 762
1.21 195 766 749

mean 193 731 701

We chose BusyBox because of three main reasons:
(i) BusyBox is a widely-known system already used in dif-
ferent studies, and its sources (and commits) are openly
accessible; (ii) it is a real-world product line with a large
number of features and feature dependencies; and (iii) Busy-
Box has been developed by an open-source community since
1999 and is still evolving. Furthermore, we aim at conducting
a longitudinal study of one single product line. The idea was
to carefully analyse the feature interfaces proposed before
and after clustering to discuss in-depth the implications of
our results and answer the research question. To do so, we
needed to understand the semantics of the interface members
as well as the semantics of feature dependencies. This would
not be possible if we conduct a wider and more superficial
study using many different product lines.

4.3 Evaluation Procedure
Our study is divided in three major phases: (i) data extraction
of feature dependencies, feature interfaces, member relation-
ship graphs (MRG), and co-changes of interface members,
(ii) clustering, and (iii) evaluation. In the following, we give
more details on the three major phases of our study.

4.3.1 Data Extraction
We extracted 10 releases of BusyBox based on the correspond-
ing tags in the version-control system. We scanned each C
file in the selected releases (in total, 6,858 source-code files)
to mine feature dependencies in the source code using the
tool TypeChef [20]. It is important to mention that we have
a feature model for BusyBox, which we used by supplying
it to TypeChef. Therefore, we only consider configuration-
relevant features in our approach.

Feature-dependency and feature-interface extraction.
To extract feature dependencies, we analyse the variability-
aware control-flow graph [23] of each release of BusyBox
using TypeChef. Each node of the control-flow graph, rep-
resenting a program element, is associated with a feature or
set of features. Feature dependencies are identified by control
flows between nodes (i.e., program elements) of different fea-
tures. In the context of our study, we consider a dependency

between features A and B if: (i) A references an attribute of
B, or (ii) A calls a method of B. Once we extracted all nodes
participating in feature dependencies, we group them in de-
pendee and dependent features. Then, we classify nodes of a
feature that have incident edges (i.e., they are used by another
feature) as members of such feature’s provided interface

Feature-interface filtering and MRG construction.
Once we extracted all feature interfaces, we select only
interfaces with more than one member, as we do not need to
segregate the feature interface for these cases. After that, we
construct the MRG (cf. Section 3.2). To this end, we devel-
oped a TypeChef extension that takes the variability-aware
CFG output from TypeChef and constructs the MRG from
it. Furthermore, we used R scripts3 for graph processing.
The aim of this step is to relate feature interface members.
Edges between nodes in the MRG, therefore, represent the
relationships that exist between the members of a feature
interface. In this case, the topology of the graph becomes
informative regarding the structure of feature dependencies.

Co-change extraction. The last step of data extraction is
to mine changes on interface members from the BusyBox
repository using Codeface4 [15]. The idea is to identify inter-
face members that co-change (i.e., simultaneously change) in
a single commit.

Overall, we extracted 2,286 feature interfaces out of 7,311
features. After filtering out feature interfaces with only one
member, the resulting number of feature interfaces was 650.
The total number of feature-interface members under analysis
was 3,154; the biggest feature interface contains 46 members.
The total number of analysed feature dependencies is 7,013,
while the maximum number in a release is 762. Regarding
the co-changes extracted from the BusyBox repository, we
extracted a total of 3,382 changes in program elements,
comprising 2,592 commits for the 10 releases of BusyBox.

4.3.2 Clustering
We use the Markov Cluster (MCL) algorithm [12] to cluster
the extracted MRGs. MCL is a cluster algorithm for graphs
based on the simulation of stochastic flows in graphs. It is
based on the graph-clustering paradigm, which postulates
that natural groups in graphs have the following property:

“A random walk in a graph that visits a dense cluster will
likely not leave the cluster until many of its vertices have
been visited” [12]. Natural groups (clusters) in a graph
are characterised by the presence of many edges (or more
weighted edges) between the members of that cluster. In
particular, this number should be high, relative to node pairs
that span different clusters. In other words, random walks on
the graph will infrequently go from one cluster to another.

The MCL algorithm finds cluster structures in graphs by a
mathematical bootstrapping procedure. The MCL algorithm
respects edge weights and considers them as a means of

3 http://www.r-project.org/
4 http://siemens.github.io/codeface/

similarity. The process deterministically computes (the prob-
abilities of) random walks through edges and edge weights in
the graph. This way, the algorithm uses stochastic matrices
(also called Markov matrices) that capture the mathematical
concept of random walks on a graph.

The MCL algorithm simulates random walks in a graph
by alternation of two operators called expansion and inflation.
Expansion computes random walks of high length, which
means random walks with many steps. An expansion as-
sociates new probabilities to all pairs of nodes, where one
node is the point of departure and the other is the destination.
Since high-length paths are more common inside clusters
than between different clusters, the probabilities associated
with node pairs lying in the same cluster will be relatively
large [12]. Inflation will have the effect of boosting the prob-
abilities of intra-cluster walks and will relegate inter-cluster
walks. Iterating expansion and inflation results in the separa-
tion of the graph into different segments. The collection of
resulting segments is then interpreted as a clustering [12].

We chose the MCL cluster algorithm because of several
advantages. First, the algorithm fits our idea of a cluster in the
MRG: functions that are densely linked and, hence, are used
together in a workflow are in the same cluster. A developer
will likely use many other functions of a single cluster in a
workflow before using a function of a different cluster, thus
matching the MCL algorithm property. Second, it performs
two simple algebraic operations on matrices. There are no
high-level procedural instructions for assembling, joining, or
splitting of groups. In other words, the MCL algorithm was
designed with the consideration of scalability, which is very
important for our use case. Third, in the MCL algorithm,
the number of clusters can not be specified in advance,
differently from other well-known clustering algorithms (e.g.,
K-means [25], Lloyd’s [24], etc.).

The MCL algorithm was applied to the MRGs of the Busy-
Box using an R library called MCL5. To calibrate the MCL
algorithm regarding its only parameter (i.e., the inflation pa-
rameter), we used a tool called clm dist, implemented by the
creator of the MCL algorithm and located in the same library
of the algorithm. The tool can suggest the value of the param-
eter based on the number of elements to be clustered. After
generating the clusters for all BusyBox releases, we executed
the clm dist tool. The value 2 was the suggested value to be
used in our case.

4.3.3 Evaluation
To validate the segregation of feature interfaces produced by
the MCL algorithm, we used the Jaccard distance between
the feature interfaces (segregated and original), on the one
side, and co-changes of interface members within a commit,
on the other side. The Jaccard distance is a statistic used for
measuring the dissimilarity between finite sample sets, and
it is defined by subtracting the size of the intersection from

5 https://cran.r-project.org/web/packages/MCL/

the size of the union, divided by the size of the union of the
sample sets:

dJ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
(1)

Values of the Jaccard distance are bound between 0 and 1.
Values closer to 1 mean a higher dissimilarity between the
sets. Values closer to 0 mean lower dissimilarity between
the sets. By using the Jaccard distance, we are able to find
the number of interface members unnecessarily considered
by the developer during a single maintenance task based on
our ideal model of clusters (i.e., the commits of the product
line). For instance, in our example presented in Section 2.3,
two interface members would change in a commit (our ideal
cluster). In the original interface, the Jaccard distance would
be dJ(A,B) ≈ 0.67, being A the set of members of a
commit and B the set of members of a specific cluster. In the
original interface, we consider the whole interface as a single
cluster. Therefore, we are able to use the results and make
statements such as “67% of the members of a feature interface
(or a cluster of a feature interface) have been unnecessarily
considered by developers during a maintenance task”.

Our goal is to reduce the number of interface mem-
bers that are likely to be unnecessarily considered by de-
velopers during maintenance. In our example presented in
Section 2.3, the members setBrightness, getFrequency,
getResolution and setContrast would be unnecessarily
considered by a developer in the context of this maintenance
task. Those interface members increase the complexity of
reasoning about feature and their dependencies. Therefore,
the more dissimilar a cluster of interface members is, when
compared to the commit changes, the worse is the feature-
interface organisation (segregated or original interface).

We conducted the comparison of feature interfaces with
the co-changes as follows. For each set of co-changes of
interface members, we compute the Jaccard distance with
every cluster of feature interfaces generated by the MCL
algorithm. In an original feature interface, we consider the
whole interface as a single cluster to simulate the mindset of
members to be considered by the developer in a maintenance
task. We calculate the Jaccard distance between all elements
of the commit belonging to a single feature and each cluster
of the feature interface (original and segregated). To have a
single value for each interface, the average Jaccard distance
is calculated using the values found for each interface cluster.
Finally, the Jaccard distance found for each commit is used
to calculate the average of a release. Therefore, we have
a Jaccard distance for each release and the type of feature
interface (original and segregated).

5. Results
The goal of our study is to analyse the amount of code a
developer needs to consider in a change task with a segregated
interface compared to the original interface. A high Jaccard
distance indicates the percentage of interface members that
might have been inspected unnecessarily during product-

line maintenance based on commit changes. Table 2 shows
the results of the Jaccard distance for both types of feature
interfaces for each release analysed of BusyBox.

Looking at Table 2, we notice that the values for segre-
gated interfaces ranges between 0.1 and 0.4. That is, in the
worst case, the number of feature members likely to be un-
necessarily considered by developers is, at most, 40% of the
interface members. The concentration of Jaccard distance
distribution for the original interface close to 0.9 means that
approximately 90% of the feature-interface members were
not related to the commits.

The Jaccard distance for segregated interfaces is always
lower when compared to the original interfaces. In addition,
the difference of mean between segregated and original in-
terface is almost 62%. This means that, using segregated
interfaces, reduces the number of interface members unnec-
essarily analysed by 62%. So, since we are using the Jaccard
distance in our study as a measure of the number of elements
likely to be unnecessarily revisited during maintenance, we
can say the number of feature interface members to be consid-
ered in a maintenance task is lower than the one in a original
interface.

To gain confidence in this result, we computed the differ-
ence between Jaccard distances for segregated and original
interfaces using the paired Mann-Whitney test [28] and the
paired Cliff’s Delta effect size [14]. We used these tests be-
cause the data are not normally distributed. First, we used the
Mann-Whitney test to analyse whether there is a significant
difference between the Jaccard distances of clustered and
non-clustered interfaces. Significant differences are indicated
by p-values lower than 0.01. Then, we use the Cliff’s Delta
effect size (d) to measure the magnitude of the difference be-
tween the Jaccard distance between segregated and original
interfaces. Cliff’s Delta is bound between +1 and -1. Values
close to +1 mean that all selected values from one group
are higher than the selected values in the other group, values
close to -1 when the reverse is true. The value 0 expresses two
overlapping distributions. The effect size is considered negli-
gible for |d| < 0.147, small for 0.147 ≤ |d| < 0.33, medium
for 0.33 ≤ |d| < 0.47, and large for |d| ≥ 0.47 [14].

The p-value of the Mann-Whitney test is smaller than
9e-5. This result suggests that the difference between the

Table 2. Jaccard distances for both types of interfaces.

Release Segregated Interface Original Interface
1.13 0.2263464 0.9015086
1.14 0.3745138 0.8869625
1.15 0.2767011 0.8712999
1.16 0.1973850 0.8545383
1.17 0.2588888 0.9149021
1.18 0.2375843 0.9578755

1.18.5 0.3611111 0.9007790
1.19 0.1918869 0.8614765
1.20 0.4325397 0.8878205
1.21 0.1071429 0.8289116

mean 0.2764 0.8866

Figure 6. Original interface of CONFIG_HUSH.

two distributions is statistically significant. The Cliff’s Delta
measured on both distributions is d = −1. This means that
the effect size is statistically large and the difference between
both distributions is relevant. In other words, based on the
results, we argue that segregated feature interfaces have the
potential to support developers in reasoning about features
and their dependencies during maintenance of product lines.

To answer the research question, the results of the
Jaccard distance as well as the p-value and Cliff’s Delta
effect size allow us to say the segregated feature inter-
faces can better support developers to perform mainte-
nance tasks in software product lines when compared
against original feature interfaces.

6. Discussion

6.1 The Impact of Segregating Feature Interfaces
The difference when comparing the Jaccard distance between
segregated and original interfaces (Table 2) indicates a sig-
nificant reduction of the number of members that need to be
considered when developers need to reason about product-
line maintenance (≈ 62% of reduction, on average).

As an example to illustrate such reduction, commit 2127
from release 1.17 of BusyBox touched only one interface
member (the method expand_vars_to_list) of feature
CONFIG_HUSH. This feature has 23 interface members,
in total, though. Figure 6 illustrates the original interface of
the feature CONFIG_HUSH.

In a original interface, a simple change in expand_vars-
_to_list would demand that the other 22 (out of 23) inter-
face members need to be considered by the developer when
reasoning about the effects of this change—that is, about 96%
of the members would have been unnecessarily considered
in commit 2127. In the segregated interface of feature CON-
FIG_HUSH, there are five clusters. The cluster containing the
member touched in commit 2127 (expand_vars_to_list)
has only two members. Figure 7 illustrates the segregated
feature interface of feature CONFIG_HUSH. With our segre-
gated interface, among the 23 members, the developer needs
to consider only one member more (o_finalize_list) out
of 23 interface members (i.e. ≈ 4%). Members of other clus-

Figure 7. Segregated interface of CONFIG_HUSH.

ters are unlikely to be related to expand_vars_to_list,
thus do not need to be considered by developers.

Despite the benefits, our approach may produce wrong
results. Figure 7 illustrates one possible improvement in
our clustering approach. The member syntax_error-
_unexpected_ch seems to be located in the wrong cluster.
Members starting with the prefix syntax_error_ may be re-
lated and should be considered together by developers. How-
ever, four members starting with the prefix syntax_error_
are located in one cluster while syntax_error_unex-
pected_ch is in a different one. A possible reason for the
wrong location is related to the MRG (cf. Section 3.2). The
MRG represents relationships between interface members
found in the source code. In this specific case, the weight
of the edge between the members starting with the prefix
syntax_error_ and syntax_error_unexpected_ch had
a low value. As a consequence, the clustering algorithm seg-
regated parts of the MRG, thus relating syntax_error_un-
expected_ch to the other members. As future work, we
shall consider the similarity of names as a variable in our
MRG (i.e., semantic coupling). Similar names could have
different weights in the MRG, thus avoiding segregation of
related members.

6.2 Stability of Interfaces
An important issue for the adoption of our approach is the
stability of the segregated interfaces. A stable interface is
an interface that is not subject to significant changes of its
members during evolution. Frequent changes of clustered in-
terfaces during evolution could be a barrier for the adoption of
our solution. Developers would need to become familiar with
a new organisation of interfaces again and again. However,
we observed that, since there are no considerable changes
in the structure of the product line, the clustered interfaces
also does not suffer many changes in their structure. This
fact can be observed in Table 3. We can notice that situation
by observing that the number of features, number of feature
members, and the average number of members in a cluster
do not vary widely during the evolution of BusyBox.

Table 3. Information about the number of feature interface
members of BusyBox.

Release # of
features

of feature
members

Avg. # of
feature members

per cluster
1.13 54 263 3.81
1.14 57 309 3.96
1.15 59 315 3.89
1.16 60 314 3.83
1.17 55 304 4.11
1.18 58 325 4.11

1.18.5 59 326 4.07
1.19 62 334 4.07
1.20 61 333 4.06
1.21 61 331 4.04

mean 58.6 315.4 3.9

For instance, Table 3 shows a variation of 7 features from
the first release (54 features) to the last release (61 features).
In addition, the number of feature members (variation of 68
members) remained stable. It is also important to mention
that we observed the members themselves also experienced
only few changes along the evolution. So, we can consider
that the evolution of BusyBox was not subject to considerable
changes. In this case, we should expect that the average num-
ber of members in a cluster remains stable. In fact, the average
number of members in a cluster showed a very low variation
along the evolution of BusyBox. Moreover, the structure of
each cluster also did not suffer considerable changes along
the evolution. Based on this result, we conclude that it is
likely that features and their dependencies stabilise as the
product-line evolution also stabilise. As a consequence, it is
also likely that segregated interfaces also stabilise with time.
In this context, we argue that the adoption of our approach in
evolving product lines does not demand a lot of effort from
developers to become familiar with segregated interfaces.

6.3 Nature of Changes
Another important factor that impacts our results are the com-
mits used to validate our approach. Depending on characteris-
tics of the commit, the Jaccard distance for some segregated
interfaces tends to be high when compared to the majority of
the results. For instance, commit 2121 involved changes to 20
interface members of 9 different features. One can notice that
many interface members (possibly from multiple features)
have been changed in this single commit. In this commit, the
number of features being changed is exceptionally high. The
reasons for a coarse-grained commit like that are many. For
example, intrinsic characteristics of the maintenance task may
demand changes in several interface members. The problem
is that, the more members are changed in a single commit,
the lower is the chance that a cluster comprises all these
members. Developers might have to analyse several interface
clusters within a feature to comprise all members that must be
considered. Even worse, when commits involve changes of
members from different features, it is challenging to reach a
good result, since we are using commits as our ideal model of
cluster. In the example presented here, we can notice that the

Table 4. Information about the number of program elements
changed per commit.

Release # of
commits

of
elements
changed

Avg. # of elements
changed per commit

1.13 384 626 1.63
1.14 272 535 1.97
1.15 438 775 1.77
1.16 422 646 1.53
1.17 356 485 1.36
1.18 5 30 6.00

1.18.5 49 48 0.98
1.19 229 283 1.24
1.20 166 197 1.19
1.21 271 257 0.95

mean 259.2 388.2 1.86

number of members changed in a single commit (20 interface
members of 9 different features) is higher than the average
number of members within a cluster (3.9 members per cluster,
see Table 3). As a consequence, the Jaccard distance mea-
sured for this commit is expected to be high. Therefore, we
can say that coarse-grained commits can compromise the
effectiveness of our solution.

Despite of the aforementioned issues, the majority of
the commits usually comprise changes in program elements
that are somehow related. Table 4 provides information re-
garding the number of commits, number of program ele-
ments changed in a release, and average of program elements
changed per commit. One can observe that, in general, re-
leases with an average number of program elements per com-
mit greater than the total average number (i.e., 1.86 elements
per commit) had the longest Jaccard distances (see Table 2).
In this case, we can argue that only exceptional cases of
commits may compromise our approach. Still, the results are
better than the obtained results for original interfaces.

7. Threats to Validity
Conclusion validity. Conclusion validity concerns the rela-
tionship between the treatment and the outcome. In this study,
potential threats arise from the statistical tests used to support
our conclusions. To mitigate this threat wherever possible, we
used statistical tests obeying the characteristics of our data. In
particular, we used non-parametric tests, which do not make
any assumption on the underlying data distribution regarding
variances and types.

Internal validity. Internal validity is the degree to which
conclusions can be drawn about the causal effect of inde-
pendent variables on the dependent variables. In our study,
potential threats arise from the tuning of the MCL algorithm
that may affect the results. Changing the only parameter of the
algorithm (i.e., the inflation parameter) will affect the granu-
larity of the clusters, thus affecting the Jaccard distances used
to compare the results. We mitigated this threat by calibrating
the algorithm to use the recommended value indicated by
the author of the algorithm, which is based on the number
of members to be clustered (Section 4.3.2). A further threat

arises from the fact that we focus on conditional compilation
as the variability mechanism for implementing features in
the source code. With conditional compilation, features are
often tangled and scattered in the source code. This choice
means that a feature may have (i) many members in its in-
terface, and (ii) many of them may not be cohesively related
to each other and, therefore, may not be relevant for each
change propagation. This situation could have been differ-
ent if we had decided to analyse product lines implemented
using a compositional approach (e.g., aspect-oriented pro-
gramming). However, we argue that conditional compilation
is the most-widely used mechanism to implement product-
line features [16]. Moreover, BusyBox (Section 4.2) is an
industrial project. So, we believe the results extracted from
this product line can be a first step towards the generalisation
of the results. In fact, BusyBox contains categories of fea-
tures implemented in a wide range of different ways: from
fully-modularised features to scattered and tangled features.

External validity. Threats associated with external valid-
ity concern the degree to which the findings can be gener-
alised to the wider classes of subjects from which the exper-
imental work has drawn a sample [31]. In our work, this is
a particularly important threat to validity in face of the wide
range of diverse product lines implemented using conditional
compilation. In the experiment reported here, this threat to
validity is somewhat mitigated by the fact that we selected
BusyBox (Section 4.2) to conduct our study. BusyBox can
be considered as a paradigmatic case study, which represents
many other product-line implementations based on condi-
tional compilation due to, for example, its size, number of
features, and number of valid configurations [19]. In addition,
since we are analysing different releases of the same prod-
uct line, there is no risk that the variation due to individual
differences of releases is larger than due to the treatment.

8. Related Work
Feature modularity. Feature modularity has been a long-
standing goal of feature-oriented software development [4].
While some researchers view features as modular units of
behavior and composition, others pointed out that, at the
source-code level, most implementation mechanisms provide
merely syntactic compositions, and thus lack proper interface
abstractions and modular reasoning. In this context, Käst-
ner et al. pinpoint two different notions of feature modularity:
one based on locality and cohesion, another based on infor-
mation hiding and interfaces [18]. Modularity means locality
and cohesion when a feature is viewed as a unit of composi-
tion that has the goal of making itself explicit in design and
implementation [4]. Therefore, everything related to a feature
is placed into a separate structure called feature module [3].

Another view of feature modularity is rooted in the con-
cept of information hiding and interfaces. The idea is to
distinguish between an internal and an external part of a fea-
ture module. The internal part is hidden. The external part

is called interface and controls the communication between
different feature modules [18]. Most of the work on feature
modularity has focused on locality and cohesion of features
as a criterion for system decomposition and assembly. Exam-
ples of approaches for improving feature modularity include
architecture-based product lines (based on frameworks or
components) [8], feature-oriented programming [32], aspec-
tual feature modules [3], and superimposition [5]. Despite
the improvement of feature modularity in those cases, simple
solutions such as conditional compilation prevail in prac-
tice [17]. Nevertheless, there is a lack of studies driving
efforts towards feature interfaces in solutions based on (i)
locality and cohesion, and (ii) in widespread adopted solu-
tions such as conditional compilation. Our work suggests a
way of organising feature interface. This organisation is based
on structural properties of feature dependencies agnostic of
the implementation approach. This way, our work enhances
feature modularity by providing organised feature interfaces
to support change propagation in both compositional and
annotative approaches.

Finally, there is substantial progress in solving problems
that threat modularity of features. The feature-interaction
problem is considered a major threat to modularity in that the
behavior of one feature may be affected by the presence
of another feature [6]. So, developers must analyse the
consequences of all possible feature interactions to find
the undesired ones. In other words, the feature-interaction
problem also hinders independent feature maintenance. Some
studies address with feature interactions and its problems [2,
6, 9]. Despite the similar focus of these studies to our
approach, none of them aims at improving feature interfaces
to support product-line maintenance.

Feature interfaces. Ribeiro et al. proposed an approach
for generating interfaces of product-line features [33, 34].
They defined the concept of emergent interfaces for product
lines implemented with conditional compilation. Their ap-
proach aims at establishing interfaces between features on
demand – based on source code –, with the goal of preventing
developers from breaking other features when performing
maintenance tasks. Despite the generation of interfaces, this
approach generates only interfaces related to specific parts
of the source code that are of interest, and thus do not allow
having a global view of the system. In other words, unlike
our work, emergent interfaces do not address the problem of
large/monolithic interfaces by segregating them.

Schröter et al. proposed the idea of feature-context inter-
faces for composition-based product lines [36]. The idea is
to show the developer of a feature the interface members of
other features that can be safely accessed from the current
context without risking dangling references. The reasoning
about the presence of the feature interface members is based
on the feature model. We also use the current context in our
approach, but, in contrast, we aim at identifying related inter-
face members within the same feature interface. Furthermore,

we focus on preprocessor-based product lines and we do not
use the feature model to reason about the presence of other
features in the current context.

There is further work that concentrates on interfaces in
approaches used to implement product lines or in variability-
aware analysis approaches supported by interfaces. For exam-
ple, Kästner and colleagues propose a variability-aware mod-
ule system for product lines [19]. This approach infers inter-
faces for modules focusing on type checking of product-line
configurations. Kiczales and Mezini propose aspect-aware
interfaces, computing an aspect’s dependencies on a system’s
join points and displaying these dependencies as annotations
on the explicit interfaces of advised code [21]. Li et al. pro-
pose a new methodology to verify cross-cutting features as
open systems by using a model of semantic interfaces that sup-
ports automated, compositional, and feature-oriented model
checking [22]. However, none of these studies considers in-
terfaces in the light of for supporting maintenance tasks.

Automatic Modularisation. The problem of automatic
modularisation (also referred to as automatic-system cluster-
ing) has been extensively studied [27]. The idea is to help
developers creating a good mental model of system’s organ-
isation. The field was established by the seminal work of
Mancoridis et al. [26, 27, 35]. In this work, the authors use a
hill-climbing algorithm as the primary search technique for
automated software-module clustering. Several other meta-
heuristic search techniques have been applied, including ge-
netic algorithms [26]. However, all these studies focus on the
most common application of clustering in automatic mod-
ularisation: software-module clustering. We apply the idea
of clustering to enhance the modularity of features by seg-
regating feature interfaces. Regarding the automatic modu-
larisation of interfaces, after the introduction of the interface
segregation principle [29], some studies have proposed ways
of segregating feature interfaces. For instance, in a recent
work, Romano et al. propose a way of refactoring fat inter-
faces (i.e., interfaces whose clients invoke different subsets
of their members) of classes of object-oriented programs us-
ing genetic algorithms [35]. We do not consider refactoring
ill-defined interfaces. Furthermore, identifying the interfaces
of classes in an object-oriented program is much easier than
in conditional-compilation-based product lines since all the
classes are already modularised. We focus on segregating
interfaces of product-line features instead of classes’ inter-
faces. Our study was the first to systematically investigate and
compare the co-relation of segregated and original interfaces.

9. Conclusion
In practice, the lack of feature modularity complicates the
maintenance of complex preprocessor-based product lines [4].
As features can be heavily scattered across the source code,
developers need to consider many program elements to un-
derstand the feature itself and its dependencies. Developers
usually cope with the complexity during maintenance using

interfaces. Analogously, a feature interface contains all pro-
gram elements of the source code belonging to the feature
that provides external access for other features. As reasoning
about all feature interface members alone is complex, we ar-
gue that often only a subset of interface members is relevant
to a single maintenance task.

In this paper, we proposed a technique for automating
the segregation of feature interfaces to maximise the cohe-
sion of interface members. We proposed a representation
(the member relationship graph, MRG) that is able to cap-
ture the collaboration between interface members and apply
a clustering algorithm on it to group highly-related mem-
bers. To evaluate our approach, we selected ten versions of
Busybox, we constructed the MRGs for all versions and re-
organised the feature interfaces using our technique. Using
changes in the commits of the subject system as a founda-
tion, we analysed how well segregated feature interfaces can
support developers with maintenance tasks in comparison to
the original feature interfaces. In other words, we analysed
the number of interface members likely to be unnecessarily
considered by developers in both types of feature interfaces.
The results of our study show a pronounced difference of
approximately 62% in favour of segregated interfaces regard-
ing the reduction of interface members likely unnecessarily
considered by developers during maintenance. Furthermore,
we observed that our segregated interfaces stabilise with time.
So, the adoption of our approach in product-line evolution
does not demand a lot of effort from developers to become
familiar with our segregated interface after every change in a
release. Finally, we learned that segregating feature interfaces
may help developers to refer to members that potentially
correspond to a maintenance task. This way, the effort to
reason modularly about features can be reduced, and thus the
maintenance-task difficulty and number of potentially related
program elements to observe.

As future work, we plan (i) to analyse other software
product lines with our approach, (ii) to use product lines im-
plemented with other approaches (e.g., aspect-oriented pro-
gramming, feature-oriented programming, etc.), (iii) to use
other maintenance factors (e.g., bugs) instead of co-changes
to assess the usefulness of segregated interfaces, (iv) to eval-
uate our approach using different clustering algorithms and
other techniques to improve the clustering based on other
properties (e.g., similarity of methods’ names [1]), and (v) to
incorporate approaches to select only relevant commits to be
considered in our study (e.g., [38]).

10. Acknowledgements
We thank T. Bock and M. Joblin for their fruitful comments.
This research was supported by CAPES (14565-13-7 and
project numbers 483882/2009-7, 485348/2011-0, 175956),
CNPq (305526/2009-0, 308490/2012-6, 141308/2015-0),
FAPERJ (E-26/102.211/2009, E-26/010.001421/2015), PUC-
Rio (productivity grant), and the German Research Founda-
tion (AP 206/2, AP 206/4 and AP 206/5).

References
[1] N. Alhindawi, N. Dragan, M. Collard, and J. Maletic. Im-

proving Feature Location by Enhancing Source Code with
Stereotypes. In Proc. ICSM, pages 300–309. IEEE, 2013.

[2] S. Apel and D. Beyer. Feature Cohesion in Software Product
Lines: An Exploratory Study. In Proc. ICSE, pages 421–430.
ACM, 2011.

[3] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebra
for Features and Feature Composition. In Proc. AMAST, pages
36–50. Springer, 2008.

[4] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-
Oriented Software Product Lines: Concepts and Implemen-
tation. Springer, 2013.

[5] S. Apel, C. Kästner, and C. Lengauer. Language-Independent
and Automated Software Composition: The FeatureHouse
Experience. TSE, 39(1):63–79, 2013.

[6] S. Apel, A. von Rhein, T. Thüm, and C. Kästner. Feature-
Interaction Detection Based on Feature-Based Specifications.
Computer Networks, 57(12):2399 – 2409, 2013.

[7] S. Apel, A. von Rhein, P. Wendler, A. Grösslinger, and
D. Beyer. Strategies for Product-Line Verification: Case Stud-
ies and Experiments. In Proc. ICSE, pages 482–491. IEEE,
2013.

[8] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, 2 edition, 2003.

[9] D. Batory, P. Höfner, and J. Kim. Feature Interactions, Products,
and Composition. In Proc. GPCE, pages 13–22. ACM, 2011.

[10] B. B. P. Cafeo, E. Cirilo, A. Garcia, F. Dantas, and J. Lee.
Feature Dependencies as Change Propagators: An Exploratory
Study of Software Product Lines. Information and Software
Technology, 69(1):37–49, 2016, online first.

[11] P. C. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software Engineering.
Addison-Wesley, 2001.

[12] S. Dongen. A Cluster Algorithm for Graphs. Technical Report
CAG-868986, National Research Institute for Mathematics and
Computer Science, 2000.

[13] B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Wiley
Publishing, 4th edition, 2009.

[14] R. J. Grissom and J. J. Kim. Effect Sizes for Research: A Broad
Practical Approach. Lawrence Erlbaum, 2nd edition, 2005.

[15] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle.
From Developer Networks to Verified Communities: A Fine-
Grained Approach. In Proc. ICSE, pages 563–573. IEEE,
2015.

[16] C. Kästner and S. Apel. Virtual Separation of Concerns
– A Second Chance for Preprocessors. Journal of Object
Technology, 8(6):59–78, 2009.

[17] C. Kästner, S. Trujillo, and S. Apel. Visualizing Software
Product Line Variabilities in Source Code. In Proc. ViSPLE,
pages 303–312, 2008.

[18] C. Kästner, S. Apel, and K. Ostermann. The Road to Feature
Modularity? In Proc. SPLC, pages 51–58. ACM, 2011.

[19] C. Kästner, K. Ostermann, and S. Erdweg. A Variability-Aware
Module System. In Proc. OOPSLA, pages 773–792. ACM,
2012.

[20] A. Kenner, C. Kästner, S. Haase, and T. Leich. TypeChef:
Toward Type Checking #Ifdef Variability in C. In Proc. FOSD,
pages 25–32. ACM, 2010.

[21] G. Kiczales and M. Mezini. Aspect-oriented Programming and
Modular Reasoning. In Proc. ICSE, pages 49–58. ACM, 2005.

[22] H. C. Li, S. Krishnamurthi, and K. Fisler. Interfaces for
Modular Feature Verification. In Proc. ASE, pages 195–204.
IEEE, 2002.

[23] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and
C. Lengauer. Scalable Analysis of Variable Software. In Proc.
ESEC/FSE, pages 81–91. ACM, 2013.

[24] S. Lloyd. Least Squares Quantization in PCM. TIT, 28:129–
137, 2006.

[25] J. Macqueen. Some methods for classification and analysis
of multivariate observations. In 5th Berkeley Symposium on
Mathematical Statistics and Probability, pages 281–297, 1967.

[26] K. Mahdavi, M. Harman, and R. M. Hierons. A Multiple Hill
Climbing Approach to Software Module Clustering. In Proc.
ICSM, pages 315–324. IEEE, 2003.

[27] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and E. Gansner.
Using Automatic Clustering to Produce High-Level System
Organizations of Source Code. In Proc. IWPC, pages 45–52,
1998.

[28] H. B. Mann and D. R. Whitney. On a Test of Whether one of
Two Random Variables is Stochastically Larger than the Other.
The Annals of Mathematical Statistics, 18(1):50–60, 1947.

[29] R. C. Martin. The Interface Segregation Principle: One of the
many Principles of OOD. C++ Report, 8:30–36, 1996.

[30] D. L. Parnas, P. C. Clements, and D. M. Weiss. The Modular
Structure of Complex Systems. In Proc. ICSE, pages 408–417.
IEEE, 1984.

[31] K. Praditwong, M. Harman, and X. Yao. Software Module
Clustering as a Multi-Objective Search Problem. TSE, 37(2):
264–282, 2011.

[32] C. Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. In Proc. ECOOP, pages 419–443. Springer, 1997.

[33] M. Ribeiro, F. Queiroz, P. Borba, T. Tolêdo, C. Brabrand, and
S. Soares. On the Impact of Feature Dependencies when
Maintaining Preprocessor-Based Software Product Lines. In
Proc. GPCE, pages 23–32. ACM, 2011.

[34] M. Ribeiro, P. Borba, and C. Kästner. Feature Maintenance
with Emergent Interfaces. In Proc. ICSE, pages 989–1000.
ACM, 2014.

[35] D. Romano, S. Raemaekers, and M. Pinzger. Refactoring Fat
Interfaces Using a Genetic Algorithm. In Proc. ICSME, pages
351–360. IEEE, 2014.

[36] R. Schröter, N. Siegmund, T. Thüm, and G. Saake. Feature-
Context Interfaces: Tailored Programming Interfaces for Soft-
ware Product Lines. In Proc. SPLC, pages 102–111. ACM,
2014.

[37] S. Trujillo, D. Batory, and O. Diaz. Feature Refactoring a
Multi-Representation Program into a Product Line. In Proc.
GPCE, pages 191–200. ACM, 2006.

[38] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Mining
Version Histories to Guide Software Changes. In Proc. ICSE,
pages 563–572. IEEE, 2004.

