
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–44
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Modeling and Optimizing MapReduce Programs

Jens Dörre, Sven Apel, Christian Lengauer
University of Passau

Germany

SUMMARY

MapReduce frameworks allow programmers to write distributed, data-parallel programs that operate
on multisets. These frameworks offer considerable flexibility to support various kinds of programs and
data. To understand the essence of the programming model better and to provide a rigorous foundation
for optimizations, we present an abstract, functional model of MapReduce along with a number of
customization options. We demonstrate that the MapReduce programming model can also represent
programs that operate on lists, which differ from multisets in that the order of elements matters. Along
with the functional model, we offer a cost model that allows programmers to estimate and compare the
performance of MapReduce programs. Based on the cost model, we introduce two transformation rules
aiming at performance optimization of MapReduce programs, which also demonstrates the usefulness
of our model. In an exploratory study, we assess the impact of applying these rules to two applications.
The functional model and the cost model provide insights at a proper level of abstraction into why
the optimization works. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: MapReduce, Hadoop, distributed computing, list homomorphisms, multiset
homomorphisms, program transformation, program optimization

1. INTRODUCTION

Since the advent of (cheap) cluster computing with Beowulf Linux clusters in the 1990s
[1], Google’s MapReduce programming model [2] has been one of the contributions with
highest practical impact in the field of distributed computing. MapReduce is closely
related to functional programming, especially to the algebraic theory of list homomorphisms:
functions that preserve list structure [3]. List homomorphisms facilitate program composition,
optimization of intermediate data, and parallelization. Basically, list algorithms that are
parallelizable via the divide-and-conquer paradigm are homomorphisms or can be made so by
simple pre- and postprocessing [4]. MapReduce is a special case.

To put these theoretical benefits to practical use, we strive for a combination of the
formal basis of list homomorphisms with the scalability and industrial-strength distributed
implementation of MapReduce.

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2

MapReduce Programming Model Viewed at an abstract level, MapReduce is a simple
data-parallel programming model enhanced with sorting, grouping, and reduction capabilities,
and with the ability to scale to very large volumes of data. Looking more closely, MapReduce
offers many customization options with many interdependences. For example, one can set
the total amount of buffer memory to be used during sorting, as well as the total memory
available to a task—a value by which the former parameter is bounded. Another example is
the SortComparator function: the user can supply a custom function to specify the order in
which the members of a group will be passed to the Reducer function of a MapReduce program,
but the same parameter will also be used to specify groups that are passed to another function,
the Combiner function. MapReduce programmers must keep many details in mind. Making
the wrong choices can result in two kinds of bugs: correctness bugs and performance bugs.
First, the program may be incorrect, which may be noticed only for larger inputs—a condition
which makes testing difficult. Second, the program may be correct, but it may run not much
faster than a sequential program, yet consume far more resources. The program may even fail
due to a lack of resources. So, our foremost question is: What is the essence of the MapReduce
programming model? Answering this question will help to avoid these bugs. To address it, we
develop a functional model, an abstract view of the behavior of MapReduce computations.

Cost Model The functional model also allows us to extract the primitive operations that
we have to consider in a corresponding cost model for MapReduce computations, which we
develop on top. The cost model includes startup, computation, and I/O costs for the different
phases of a MapReduce computation. It is parameterized with the input size of the problem
to be solved, with selected properties of the MapReduce program executed, as well as with
properties of the MapReduce cluster environment on which the program is being run. This
helps the programmer to estimate the scaling behavior, and to compare different MapReduce
programs, taking the underlying cluster platform into account. More importantly, the cost
model is the foundation for the optimization rules that we develop further on.

Focus on Order We put a special focus on a class of MapReduce programs that operate on
lists, in which elements are ordered by their position. Standard MapReduce programs work
only on multisets, in which order is of no importance. This is explained by the fact that,
in a distributed computation, it can become very costly to preserve (list) order, because this
requires additional synchronization between distributed nodes. So, there are good reasons
for the MapReduce programming model not to preserve order by default. Still, there are
many practical uses of MapReduce programs that operate on lists, for example, the Maximum
Common Subsequence problem, or the analysis of consecutive revisions of a file in version
control systems for the accumulated effect of changes, or different analyses of financial time
series (of stock prices), or many others that are formulated in a (sequential) way that requires
list structure implicitly. We demonstrate that, with our functional model, it is possible—with
reasonable extra effort—to write MapReduce programs that respect list order. To this end,
we require that the input data be encoded as a sequence of key–value pairs with consecutive
indices as keys. Furthermore, we describe which of the user-defined functions (with which the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

3

MapReduce framework is parameterized) need to be made order-aware, and we give example
implementations of them. We do not have to change the MapReduce framework itself.

Optimization Rules To demonstrate the expressiveness and applicability of the model,
we propose optimization rules for MapReduce programs that are applicable to two important
classes of parallel algorithms. These classes are

1. multiset homomorphisms that aggregate data to produce a small result, and
2. list homomorphisms that aggregate data to produce a small result.

We formulate the optimization rules based on our functional model. Using our cost model, we
show that these rules are beneficial when applied to MapReduce computations on input sizes
above a certain threshold. Furthermore, we validate these theoretical predictions in several
experiments.

Experiments We have conducted a series of experiments to provide an initial evaluation
of our cost model and optimization rules on a 16-node, 128-core Hadoop cluster. (Apache
Hadoop MapReduce [5] is the most widely used MapReduce framework, written in Java.) To
this end, we use the example problems described next, create different Hadoop Java programs
per problem, and measure and compare their executions on the Hadoop cluster. We obtain
speedups between 16 and more than 64 for larger input sizes. These results provide initial
evidence that the functional and cost model are practical and that the optimization rules work.

Example Programs For experimentation, we have developed, for two canonical problems,
different Hadoop MapReduce programs that vary in parallelism and performance. The
two problems are the Maximum (Max) problem and the Maximum Segment Sum (MSS)
problem [6, 7], of which the latter is a classical example of data-parallel programming, skeletal
parallelism, and list homomorphisms [3]. These problems are canonical in the sense that they
represent a whole class of useful and relevant applications. For example, the Max problem
can easily be extended to record also the indices of the maximal elements in the input, or
changed to perform a sum computation instead. Basically, all standard database aggregation
operators are covered by the Max example, along with many customization possibilities not
easily possible in standard database management systems.

For each of these two problems, we have created three MapReduce programs. Beginning
with a sequential program, we use a first optimization rule to introduce parallelism without
sacrificing correctness, which leads us to a two-step parallel program involving huge amounts of
communication. Then, we use a second optimization rule to fuse both steps into a single-step
parallel program with minimized communication. For the Max problem, these optimizations
are just more formal and structured descriptions of best practices, whereas for the MSS
problem, they involve intricate control of list order to preserve correctness.

Contributions Let us summarize our contributions:

• a formal model of MapReduce programs suitable for optimization (comprising a
functional model and a cost model),

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4

• an approach to design MapReduce programs that operate on lists instead of on multisets
only,

• a total of four optimization rules for MapReduce programs formulated on top of our
formal model,

• experiments to validate the model and the optimization rules.

Structure The rest of this article is structured as follows, In Section 2, we give
some background on the relevant functional concepts of MapReduce and discuss related
work. In Section 3, we introduce our functional model and cost model of MapReduce
computations. Section 4 presents the optimization rules applicable to two classes of
MapReduce algorithms: multiset homomorphisms and list homomorphisms. To be able to deal
with list homomorphisms, we present a general approach for creating MapReduce programs
that depend on proper handling of list order. In Section 5, we apply each rule to an example
program. To this end, we start with a simple Maximum computation and continue with
the Maximum Segment Sum problem—thereby outlining our approach to model MapReduce
programs that operate on lists. We report on an exploratory performance evaluation, using
these examples on a practical Hadoop cluster. In Section 7, we conclude and outline avenues
of further work.

2. BACKGROUND

Let us discuss the background on Google’s MapReduce as well as on universal algebra and list
homomorphisms, on which our work is based.

2.1. MapReduce

MapReduce is a framework for large-scale, distributed, data-intensive batch processing,
developed by Google. Google has promoted MapReduce in several publications [2, 8, 9],
which has lead to the creation of multiple alternative implementations and their adoption
in industry. In parallel, many research groups from different communities have pinpointed
limitations and proposed improvements, extensions, and alternative frameworks in over a
thousand publications to day that cite one of Google’s MapReduce publications [10].

Mapper and Reducer Conceptually, MapReduce is an algorithmic template that leaves, in
the simplest variant, two functions to be implemented by the user. The Mapper function
transforms a key and a value to a list of key–value pairs; the type of keys may differ from the
type of values. The Reducer function transforms its parameters—a key and a list of values—
to a list of key–value pairs. The framework applies these functions in the following manner,
yielding a useful template applicable to many problems: It applies the Mapper function to
all key–value pairs in the input, groups the resulting intermediate data by key, applies the
Reducer function to each group, and, finally, stores all the results. All this happens in a
distributed fashion and, after a brief startup phase, without any sequencing.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

5

Infrastructure A distributed implementation of the MapReduce framework requires an
underlying distributed file system to access input data, giving preference to local access, and
to store output and log data. Consequently, MapReduce normally runs as a set of server
processes on each node in a cluster, and manages most of the available disk space.

Hadoop Apache Hadoop∗ [5] is an open-source Java implementation of Google’s MapReduce
and the distributed Google File System. Users can choose to run it in their own environment
or on a virtual cluster in a cloud environment. Hadoop is the MapReduce implementation
most widely used today, available in different distributions from different vendors. It was this
maturity and popularity that let us chose to base our work on Hadoop MapReduce. From now
on, we will mean Hadoop MapReduce when we speak of MapReduce, and few details may be
specific to this implementation.

Further Functions In MapReduce, partitioning is done (usually by hashing) to form larger
chunks (that is, partitions) of intermediate data to be grouped. Grouping and (optional)
ordering of the data in each partition are achieved by an external sorting function. MapReduce
operates on pairs of keys and values (although, theoretically, one could, in the Mapper, store
all data in the keys, thus making the values obsolete). Between the execution of Mapper

and Reducer, all intermediate data are re-distributed to the different nodes in the cluster, as
specified by the partitioning. To reduce the amount of communication, an additional Combiner
function can be used, which the framework can invoke on parts of intermediate data to reduce
their volume. For example, MapReduce can be used with Combiner functions to count the
number of occurrences of each word in a set of documents: The Mapper function extracts each
word from a document, uses it as the key and associates it with the value 1 as the occurrence
count. The Reducer function then accepts a word together with a long list of 1’s and computes
the sum. Finally, a Combiner function sum up all the local values of a node executing the
Mapper function, before they are transmitted over the network and passed to the Reducer

function.

Data Parallelism MapReduce aims at data parallelism, in which each constituting piece
of data is (implicitly) processed by the same function in parallel. This is in contrast to task
parallelism, in which possibly heterogeneous concurrent tasks (or threads) need to be created
explicitly and synchronized, while avoiding deadlocks, starvation, or the corruption of shared
data. In data parallelism, the mental model of a programmer can be sequential: there is no need
to consider complex interactions between different parallel processes, because all interactions
are made explicit via function parameters and return values. Despite the simplicity of this
model of parallelism, there are many real applications.

Task Farming MapReduce employs the concept of task farming : a job is divided
automatically into many tasks. (More exactly, the input data is divided into many chunks.)
Each task is assumed to take the same amount of time to complete. If this is not the case,

∗http://hadoop.apache.org

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6

we have probably encountered data skew. This problem is partly solved by creating multiple
smaller tasks per processor (core) in a node, and by the use of dynamic scheduling: tasks are
scheduled at run time, such that the scheduler can react to imbalances. Large differences in
task completion time that are not due to inherent characteristics of the task input data, but
rather stem from temporary differences in node performance in the distributed environment,
are addressed by a specific latency optimization [2].

2.2. Foundations from Universal Algebra

When we talk about correctness and different classes of MapReduce programs in our functional
model later on, we take an algebraic view of data structures. In universal algebra, data are
represented by basic singleton (one-element) structures (of type X) and a binary operator ⊕
(of type X→ X→ X) on (non-empty, basic or complex) data. Assume an operator S from
numbers to a singleton structure of type X, we can formulate the following example data
structure (subsequently named d1): (S(0)⊕ S(7))⊕ S(0), which we will use in the remaining
discussion.

Trees, Lists, Multisets, and Sets The data structure defined varies depending on the
algebraic properties of the binary operator ⊕ used in our example. In particular, these
properties specify which instances of the data structure are considered equal, that is, cannot
be distinguished. This will be important later on when optimizing MapReduce programs
(Section 4), because the optimizations require some of the following properties to hold for the
data processed and the user-defined functions employed.

• If we know nothing about operator ⊕, we need to store all information of the operator tree
defining an instance like d1: We have defined a tree, the simplest (easiest to define) data
structure in algebra. Trees are only considered equal iff their syntactical representations
are identical. For example, the following tree t2 differs from tree d1, because it has a
different structure: S(0)⊕ (S(7)⊕ S(0)).

• If operator ⊕ is known to be associative (∀ xs, ys, zs : xs, ys, zs ∈ X : (xs⊕ ys)⊕
zs = xs⊕ (ys⊕ zs)), we can neglect the operator/tree structure and use a linear
representation without parentheses: we are speaking of lists. As lists, both d1 and
t2 are the same as the following l1: S(0)⊕ S(7)⊕ S(0). Yet they are all different from
this l2: S(0)⊕ S(0)⊕ S(7).

• If, in addition to associativity, we also have the commutativity (∀ xs, ys : xs, ys ∈ X :

xs⊕ ys = ys⊕ xs) of ⊕, we can also neglect the order of construction. We can, for
example, choose some arbitrary order to define a normal form to represent the elements
of this multiset (or bag), thereby grouping multiple identical elements. Alternatively,
we may choose not to impose a specific order, but rather work with any existing
ordering, which is very useful in a distributed context, in which any order, if imposed,
would necessitate synchronization. As multisets, l1 and l2 and the following m1:
S(7)⊕ S(0)⊕ S(0) are equal, too. Still, they differ from the following m2: S(0)⊕ S(7).

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

7

• Finally, if the operator ⊕ is also idempotent (∀ xs : xs ∈ X : xs⊕ xs = xs), we do not
even need to consider multiples of an element: we have defined sets. As sets, m1 and m2

and the following s1: S(7)⊕ S(0) are also equal.
Of course, the simplest data structure to use is the set, which is why it plays such
an important role in mathematics and also, for example, in the semantics of relational
databases.

As an aside, there are also other important properties, for example, the existence of a
(left/right) neutral element to allow for empty data, and other combinations of the algebraic
properties mentioned.

2.3. Correctness Conditions for Combiner Functions

A Combiner function is a Reducer function whose output type coincides with its input type
and that is associative and commutative (when viewed as a binary operator ⊕ on individual
key–value pairs (k1, v1)). When viewed as a unary function (for example, function C of type
X→ X) on multisets, it should also be idempotent (∀ xs : xs ∈ X : C(C(xs)) = C(xs)), because it
may be applied multiple times (at least, in newer versions of Hadoop). The Combiner function
may not even be applied at all by the framework. To ensure correctness in this case, the
user-defined Reducer function should first apply the Combiner function on its input, and may
only then conduct an arbitrary computation.

2.4. Combinators and List Homomorphisms

Important ingredients of functional programming are higher-order functions or combinators—
functions that have other functions as parameters or results. In this sense, they are (usually
very small) algorithmic templates.

Lists in Functional Programming Usually, the basic data structure in functional
programming is the immutable linked list. This is why most standard combinators can be
defined on lists. Such a list, if finite, corresponds largely to a stack, which only offers access
to one end of the linked data structure. For example, in the syntax of the functional language
Haskell, the type of homogeneous lists with elements of type a is denoted by [a].

Basic List Combinators Two of the simplest higher-order functions on this kind of lists are
map and reduce. Function map is of type (a→b)→[a]→[b]. It applies a user-defined function to
all elements of an input list, and it returns an output list consisting of the results of all these
applications. The type of reduce is (a→a→a)→[a]→a. It applies a user-defined associative
binary function successively to two neighboring elements of the list. The consideration of
some special cases is instructive: Because reduce cannot possibly be written to return any
concrete element of an arbitrary type a (a type selected at invocation time), it cannot handle
the empty list. Thus, we will restrict its input to non-empty lists. If we wanted to allow

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8

also non-associative functions as parameters of reduce, we would have to specify the order of
iteration over the list.†

List and Multiset Homomorphisms A list homomorphism is a function that operates on
lists, preserving their algebraic structure. Recall that, in universal algebra, unlike in functional
programming, list structure is defined through a list concatenation operator, where a list with
at least two elements is viewed as a concatenation of two non-empty segments; in the extreme
case, at least one of the segments is a singleton list. All list homomorphisms can be written
in Haskell as the composition of a map before a reduce combinator. The function map exposes
(massive) independent data parallelism, because its application-specific function parameter
(say f) can be applied to all list elements in parallel. In parallel functional programming, the
function reduce is also assumed to be data-parallel, because, exploiting the associativity of its
function parameter (say g), it can be implemented as a balanced tree of applications of g; in
consequence, its execution requires a logarithmic number of parallel steps. Applications of list
homomorphisms will often also use a post-processing function, which shall be a constant-time,
sequential function. In summary, every list homomorphism can be formulated in Haskell as
[11]:

listHomomorphism = (postProcess) . reduce(g) . map(f)

This code uses the right-to-left function composition operator . , the map and the reduce

combinator, and three user-defined function parameters, each put between brackets.
A multiset homomorphism is a function that respects the algebraic structure of multisets.

The only difference to a list homomorphism is that a multiset homomorphism may disregard
the order of its input, because the algebraic multiset concatenation (or better: union) operator
is commutative, as we have seen above. (It follows that the function parameter, say g, of the
combinator reduce must also be commutative.)

MapReduce and Combinators MapReduce does not offer the combinators map and
reduce directly. Rather, it offers a map (or, more exactly, a concatMap), followed by a groupBy
on sorted lists and a second map (concatMap), where the second map is often parameterized
by a user-implemented reduce [12]. This standard case is known as a segmented reduction in
the MPI community [13] Consequently, although MapReduce is not simply a composition of a
reduce after map (as the name would suggest), there is often a reduce involved in MapReduce
programs. For details, refer to our functional model of MapReduce (Section 3.1).

Combinators in Practical Distributed Systems We have just seen that MapReduce is
rooted in functional programming with combinators. One of the Google MapReduce papers [8]
even cites earlier work on the parallelization of combinators [14]. Yet, unlike the combinators
used in functional programming, Google’s MapReduce is available as a robust, large-scale,
distributed system that is used in practice by companies all over the world (in the form of its
open-source clone Apache Hadoop). In this regard, it is comparable with the Message Passing

†In Haskell, a generalized reduce, iterating from left to right with an additionally supplied initial value is
known as foldl.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

9

Interface (MPI) [13], which offers functional combinators (called collective operations) on
distributed data, which include, for example, a variant of reduce and a segmented reduction.
Though one can use MPI without using its collective operations, it has been the distributed
platform offering functional combinators with the most practical impact before the rise of
Google’s MapReduce. Of course, the C-based MPI has many downsides from the point of
view of functional or high-level programming, one of which is its lack of abstraction and a type
system: there are no data structures, no static types (everything is a void*), and in the C
implementation, code is not even made type-safe using run-time checks.

3. A MODEL OF MAPREDUCE

In a first step, we present a functional model of MapReduce. Based on it, we proceed to
develop a cost model. Both models are inspired by the semantics of Apache Hadoop.

3.1. Functional Model

We use the functional language Haskell [15] to represent our functional model of MapReduce
in a concise way, expressing all transformations as state-less data flow.

3.1.1. Types In the functional model, a MapReduce program is expressed as a function
(mapReduce) from input to output that is parameterized with user-defined functions that
employ three user-defined types. Function mapReduce is a generic function, parametric in the
types of its input (m), its intermediate data (r), and its final output (o). We begin with an
explanation of the types of the six user-defined function parameters of function mapReduce.

mapReduce ::

(m -> [r]) -- Mapper

-> ([r] -> [r]) -- Combiner

-> ([r] -> [o]) -- Reducer

-> (r -> r -> Ordering) -- Partitioner

-> (r -> r -> Ordering) -- SortComparator

-> (r -> r -> Ordering) -- GroupingComparator

-> [[m]] -- input

-> [[o]] -- output

The first three parameters of mapReduce (Mapper, Combiner and Reducer; see the comments)
describe transformations from input type m to intermediate type r, within intermediate type
r, and from r to output type o, respectively. All three functions can produce multiple results
or no result at all; this is modeled with list types as result types. In the same vein, whereas the
Mapper input is a single value, both Combiner and Reducer take a (non-empty) group of values
as input, which is passed lazily as an iterator in Hadoop MapReduce; we represent this in the
functional model with the Haskell list type. We make the model abstract enough to neglect the
possible distinction of key and value, resulting in a simplification of all types involved. This
does not preclude the possibility to instantiate the model with standard MapReduce key–value

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10

pairs—or, alternatively, with a more database-oriented view in which all data is in the keys
only, and part of these data are projected away when not needed.

Comparator Functions Since we do not distinguish between keys and values, we need
the remaining three function parameters (Partitioner, SortComparator, and Grouping-

Comparator): they are different comparison operators, each on two values of the intermediate
type r, returning whether their first value parameter is less than, equal to, or greater than their
second parameter, according to a user-defined order. They are used by function mapReduce

to guarantee that intermediate data is sent to the correct partition (Partitioner), processed
together with (only) the values in the correct group (GroupingComparator) in this partition,
and that all groups in a partition are processed in the correct order (SortComparator). (Note
that, in Hadoop, Partitioner is not defined using comparison, but rather using hashing, which
enables slightly faster processing; nevertheless, we abstract from this detail, for consistency
with sorting and grouping.) Finally, function mapReduce takes as a last parameter a distributed
input of values of type m, and produces a distributed output of values of type o. Using nested
lists (denoted [[a]] for elements of type a), we model the fact that there are multiple values,
distributed in different partitions, and that the individual values in a partition are read or
written sequentially.

3.1.2. Basic Syntax We assume basic knowledge of Haskell syntax and of some standard
library functions. Additionally, we use x0 $> f x1 ... xn to denote left-to-right function
application, similarily to object-oriented method calls x0.f(x1, ..., xn) in Java. (Think of
data flowing in the direction of the arrow head to a parameterized function that will process
it.) Furthermore, we use custom variants of the Haskell functions map, concat, groupBy, and
mergeBy. Their names carry the prefix mr (for MapReduce) to mark non-standard behavior;
extra prefixes of d (or s) denote distributed (or sequential) execution, whereby multiple prefixes
describe, from left to right, the computation from the outermost list level to more deeply nested
levels. For example, the prefix ds means outer distributed, inner sequential computation. So,
function dsMap is the map combinator that applies its argument function to a two-level list,
whereby only the outer level is executed in a distributed manner. All the remaining functions
used are described next.

3.1.3. Data flow Our functional model of MapReduce describes the data flow from input to
output in different steps.‡ The six user-defined function parameters of function mapReduce all
end in F (for function), and they use shortened names (for example, mapF for Mapper function).

Let us start with a general remark on the types of the data passed between the different
steps. When the level of nesting of the lists that hold the data changes between any two
consecutive steps, this change is indicated in the comment after the first step with the new
type of the data just produced. To enable this form of explanation, we model explicitly—by
means of an extra step in both Mapper and Reducer tasks—the flattening of the innermost
list level using dMap mrConcat, although this happens implicitly in MapReduce.

‡In reality, all steps are fused, and the only global synchronization happens after the shuffling.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

11

mapReduce mapF combF redF partF sortF groupF input =
input -- [[m]]

-- in Mapper tasks
$> dsMap mapF -- [[[r]]]
$> dMap mrConcat -- [[r]]
$> dMap (mrGroupBy partF) -- [[[r]]]
$> dMap (repeatUntilSorted (\ir -> ir

$> sMap combF
$> sMap (oneRunOfExternalSortBy sortF)

))

-- pulled by all Reducer tasks from all Mapper tasks
$> dmrShuffle partF

-- in Reducer tasks
$> dMap (mrMergeBy sortF) -- [[r]]
$> dMap (mrGroupBy groupF) -- [[[r]]]
$> dsMap redF
$> dMap mrConcat -- [[o]]

Figure 1. Data-flow implementation of the mapReduce function in Haskell; changes of the nesting depth
are indicated in comments.

Mapper execution We start with the input, which is modeled as a two-level list with inner
elements of type m in Figure 1. The outer level is distributed across the cluster nodes that
execute the Mapper function in parallel, and the nested lists represent the mostly local data
that are read sequentially by each node. For each input value, the first four steps are executed
together in a pipeline on the same Mapper node. Overall, this takes place in a distributed
fashion in the Mapper tasks on many cluster nodes (all four functions are prefixed with d):
This way, we can also take the global view of all the data being processed “at once” on all
nodes, producing a single global, distributed result after each of the four steps:

1. The user-defined Mapper function mapF is applied to each inner element of the input,
possibly producing multiple results (of different type r) per input element. Consequently,
an additional third list level is introduced.

2. The new third list level is then fused (using mrConcat) at the second list level, denoting
sequentially accessed data.

3. The result is grouped according to the user-defined Partitioner function partF, again
producing an additional third list level. Each of the resulting third-level lists represents
a partition that will be sent to a different Reducer node.

4. These third-level data are sorted according to the user-defined sort function sortF. An
external sort algorithm is used to cater for intermediate data too big to fit into the main
memory available to the Mapper task effecting the sort. Sorting possibly requires multiple
runs across the data. These runs are interspersed with calls to the user-defined Combiner

function combF, whose purpose is to combine a list of multiple elements (which will be
equal according to sortF) into a smaller list, this way reducing the size of intermediate
data to be further processed.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12

Shuffle execution The step in the middle of the computation (dmrShuffle) models the
global communication and synchronization between the computation by the Mapper tasks just
described, and the subsequent computation by the Reducer tasks. Here, we take again a global
view, modeling a completely distributed computation as a single function call. In practice, each
Reducer task pulls “its” partition of intermediate data from each Mapper task. Synchronization
is implied by each Reducer task waiting for each Mapper task to supply all the data needed.
This synchronization cannot be avoided, because the merging procedure done in the next step
is a pipeline breaker, a computation that will not produce output before it has consumed all
of its input. (For simplicity, our function dmrShuffle may use partF, although this is not
needed in practical implementations.)

Reducer execution The last four steps are executed, again, in a distributed fashion but,
this time, in the Reducer tasks on the different nodes. In the following description, we take a
local view of one Reducer task.

1. All sorted partitions (one from each Mapper task) are merged into a single local list using
sortF.

2. The single local list is divided into different groups according to the user-defined grouping
function groupF, creating one more level of nested list structure.

3. Each of the groups (consisting of multiple elements) is passed in one function call to
the user-defined Reducer function redF, which produces, for each group, a list of output
elements of type o.

4. Finally, all the lists produced by one Reducer task (for different groups) are fused (using
mrConcat) into a single local output list (per Reducer task).
The distributed list containing all these local lists forms the output of the MapReduce
job.

Overall, we have crafted a data-flow model of MapReduce that is customizable via a handful
of function parameters. It is as complex as needed to represent different classes of MapReduce
programs (see Section 4), and as simple as possible for this undertaking.

3.2. Modelling Performance

We start with some preliminaries about the platforms on which MapReduce programs are
typically executed; then, we give a general overview of the kinds of resources and costs that
our cost model addresses.

Cluster Environment MapReduce is designed for cluster-local execution on cost-effective
homogeneous nodes with large local hard disks. As a consequence, network latency can largely
be ignored. Considering network bandwidth, the situation is different. Each node’s local
bandwidth is limited. And, there is another bottleneck: for large installations, full network
bisection width is very costly to realize, and thus rare. Because this is likely to change, we do
not consider limits of bisection width.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

13

Chunked I/O An important design goal of MapReduce has been to avoid random access
patterns for input/output (I/O) operations. This is in line with its functional roots: Customary
data structures, such as arrays or graphs, do not require random memory access, and existing
data are never updated, new data are created instead. As a consequence, MapReduce shares
many properties with data-flow and stream programming, although it is batch-oriented. For
I/O, this means that data are read in large, contiguous chunks using sequential disk scans;
this is also the goal when writing data. Hence, caches are effective in hiding disk and memory
latency, both of which are ignored by our cost model.

Resources Ignoring caches, the following resources remain to be considered: CPUs (the
number of CPU cores), memory and disks (both with bandwidth, without latency, and with
size), and network (with local bandwidth, without latency). Because the location of data in
a MapReduce cluster can hardly be controlled, we will assume sufficient disk space on every
node in the cluster, and ignore disk size. For reasons of coherence, we will also exclude memory
size from our considerations.

Cost We are interested in MapReduce job latency. This is opposed to other cost measures
such as throughput, or utilization, in a shared cluster or efficiency of usage of individual
resources, as achieved by low-level improvements in the implementation of the Hadoop
framework. We define cost as the minimum latency of MapReduce job execution on an
otherwise unused cluster.

Skew in Data The minimum in this cost measure corresponds to the best case, which is
never attained in practice because of skew in the data: the division of the job into tasks is
not perfect because it is driven only by the input size and not by the processing effort needed.
Consequently, some tasks take longer to complete than others. Yet, in practice, there is
often only a small deviation. This is partly due to an optimization that executes speculation a
redundant copy of the slowest tasks that have yet to complete (see the discussion on “stragglers”
[8]). But, often enough, there is sufficient skew in either the input or the intermediate data,
to let the MapReduce job in question will never come close to the best case because some
of the tasks in its execution will need considerably longer than the average to complete. We
specifically do not model this aspect.

Performance Portability Furthermore, we assume the same, fixed processing speed for
all CPU cores; we do not model the performance of programs ported to different hardware
(despite the fact that porting a Hadoop program is easy because it is written in run-anywhere
Java for a framework that hides most machine details).

In summary, we restrict ourselves in several dimensions. Nevertheless, the experiments
confirm that our model of MapReduce performance is relevant, (see Section 5).

3.3. Cost Model

Given the considerations in Section 3.2, we propose the analytical model of the performance
of MapReduce programs, as shown in Figure 2. It is a linear model for costing time, so the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14

unit of each summand (1a–h) is time in seconds. Each summand is a product of a per-unit
cost factor and the number of units affected. The unit differs between startup costs (seconds)
and processing costs (seconds per byte processed).

3.3.1. Basic Parameters Let us describe the three different kinds of basic parameters, used
in the formula of Figure 2, before we explain the total cost of a MapReduce job (a run of a
MapReduce program in a given environment) and each of its summands in detail.

Input and Dependent Data (size in bytes)

inputSize is the size of the job’s input in bytes.

mapOutputSize is the total size of the output of all Mapper tasks, directly after applying the
Mapper function only.

combineOutputSize is the total size of the output of all Mapper tasks, after application of the
Combiner function (if applied; otherwise, it is equal to mapOutputSize).

outputSize is the total size of the job’s output.

These sizes enter into calculations involving the size of data processed by different kinds of
tasks.

Cluster Configuration Parameters (various units)

numCpuCores (unitless) is the number of processor cores in the cluster.

chunkSize (size in bytes) is the size of a chunk of data in an I/O operation (about 64MByte).

These parameters will be used to calculate the number of tasks into which the MapReduce job
is divided.

cost = (1a)

costjobStartup (1b)

+ costtaskStartup ∗
(inputSize
chunkSize + numReducers)

numCpuCores
(1c)

+ (costreadDFS + costMapper) ∗
inputSize

numCpuCores
(1d)

+ (costsort + costCombiner) ∗
mapOutputSize

numCpuCores
(1e)

+ costwrite ∗
combineOutputSize

numCpuCores
(1f)

+ (costreadNet + costmerge + costReducer) ∗
mapOutputSize

numReducersEff
(1g)

+ costwriteDFS ∗
outputSize

numReducersEff
(1h)

Figure 2. The MapReduce cost model.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

15

Program Parameters (unitless)

numReducers is the number of Reducer tasks requested by the program.

numReducersEff is the number of Reducer tasks used effectively: those that receive data to
process; it can be, at most, numReducers (in the best case); it may be smaller, if there are
Reducer tasks that receive little or no data groups to process. Its actual value depends
on how well the user-defined Partitioner function divides the intermediate data into
chunks of equal size.

Parameter numReducers is the most important tuning parameter for many MapReduce
programs but, in practice, the number of Reducer tasks that do useful work during a job
may be smaller, which is modelled by parameter numReducersEff .

3.3.2. Explanation of Each Cost Term Next, we explain the total cost of running a MapReduce
program and each of the cost summands (1a–h) in detail, including the basic costs from which
the cost summands are composed.

Absolute Performance (time in seconds)

cost (1a) is the estimated (minimum) latency of the execution of a MapReduce job, consisting
of a MapReduce program (which may have been defined just-in-time before execution),
a cluster configuration (or the default configuration for local single-threaded execution
with one Reducer task only), and an input to be processed.

We define the total cost as the sum of individual startup costs and processing costs, as described
below. This implies a sequencing and barrier synchronization between the different processing
steps which, in practice, occurs only between some of these steps. As a consequence, we can
model CPU-bound as well as I/O-bound jobs, but we will over-estimate the costs of jobs
that need much processing and much I/O. We could model this over-estimation with some
maximum operators, but decided that this would complicate our model unnecessarily.

Startup Costs (time in seconds)

The startup costs depend on the cluster configuration, especially, on whether execution is local
or distributed.

costjobStartup (1b) is the cost incurred when submitting a MapReduce job, including the time
needed by the Splitter function (see Section 3.3.3 for more detail) to compute the split
boundaries of all files in the input; it can be ignored for realistic input sizes.

costtaskStartup (1c) is the cost incurred when starting an additional task in a job. For local
execution, is it negligible, whereas it amounts to some time for distributed execution; it
can be ignored if each input file’s size is larger than chunkSize, the input is divided with
a standard Hadoop Splitter into large partitions, and thus the processing time of each
task outweighs its startup costs. This cost must be multiplied with the (average) number
of tasks (Mapper plus Reducer tasks) per CPU core (numCpuCores). The number of

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16

Reducer tasks is specified explicitly by parameter numReducers, whereas the number of
Mapper tasks depends on the Splitter used, which, by default, divides each file into
chunks of size of, at most, chunkSize. This is an under-approximation, as we abstract
slightly from the fact that the input consists often of multiple files, whose sizes may not
be multiples of chunkSize. So, in practice, there may be one additional small chunk per
input file.

Processing Costs (1/throughput in seconds/byte)

costreadDFS (1d) is the cost of reading a byte from the distributed file system (DFS). In most
cases, the MapReduce framework schedules Mapper tasks to be executed on the node on
which their input data are located; then, it is equal to the cost of a local read. Like all
other read and write costs, it includes (de-)serialization overhead.

costMapper is the cost of executing the Mapper function on the byte of input just read. It
is often negligible, but it can be arbitrarily large, depending on the Mapper code (for
example, in the extreme case of running a complete, possibly non-terminating sequential
program in a single Mapper task). The sum of these two costs has to be multiplied with
the (average) size of the input (inputSize) that is processed in parallel, per CPU core
(numCpuCores).

costsort (1e) is the cost of sorting a byte externally (which is necessary because the entire task
output may not fit into the main memory available to the Mapper task).

costCombiner is the cost of executing the Combiner function on a byte of input. As for the Mapper
function, this cost depends on the application code. The sum of the last two cost items
has to be multiplied with the size of the data on which they operate (mapOutputSize),
which is often similar to the size of the input; but, in some cases, it is an order of
magnitude larger, and, in some cases, it is considerably smaller. Furthermore, the
cost model makes the assumptions that sorting is linear and that it only occurs before
the Combiner function sees the data. Both these assumptions are gross abstractions:
Hadoop MapReduce uses external QuickSort and MergeSort, and the Combiner function
is applied after each of the normally multiple rounds of external sorting in practice.
So, in the worst case, in which the Combiner function is superfluous because it is the
identity on its input, it will be executed in each round of external sorting on the entire
intermediate data, wasting resources.

costwrite (1f) is the cost of writing a byte to local disk. It is multiplied with
(combineOutputSize), the size of the data on which it operates which, in most cases,
will be considerably smaller than (mapOutputSize), and often a constant.

costreadNet (1g) is the cost of reading a byte that has to be transmitted across the cluster
network.

costmerge is the cost of externally merging a byte from pre-sorted inputs just read from the
network. This establishes the grouping of the complete input of one Reducer task into

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

17

different groups, which will then be processed by the Reducer function, one group at a
time. Additionally, it establishes the ordering in which the groups are handed over to
the Reducer function, and can also be used to establish some order inside each group.

costReducer is the cost of executing the Reducer function on a byte of input. As for the Mapper
and Combiner functions, this cost depends on the application code.

costwriteDFS (1h) is the cost of writing a byte to the distributed file system. This is a local
write plus, typically, two additional redundant copies on other nodes in the same cluster.

3.3.3. Relation to the Functional Model Our cost model is based on our functional model.
Yet, there are some differences.

First, there are some functions in the functional model that are not explicit in the cost
model. This includes the user-defined comparison functions partF, sortF, and groupF. These
functions are comparison operators on user-defined data. As such, they should take constant
time per comparison, and their total cost should be subsumed by the costs of sorting and
merging, which are already part of our model. Recall that the choice of function parameter
partF influences the value of numReducersEff heavily, so its effect is already incorporated
indirectly in our cost model. In the same vein, we have also mentioned the Hadoop Splitter

function in the cost model without attributing a separate cost to it. This is legitimate because
the Splitter function induces negligible overhead when it computes the split points for each
input file; later on, this guarantees that each task has at most chunkSize input data to
process, so the data will be more evenly distributed between tasks. Furthermore, we also do
not attribute costs to dmrConcat because, in practice, it does not constitute an extra step of
computation, but rather happens on the fly without incurring a discernible cost.

Second, there are additional cost terms that do not refer explicitly to elements of the
functional model. This includes the startup costs of jobs and tasks (1a–b), which are
considerable for some MapReduce jobs, although they do not appear in a simplified data-flow
view. More importantly, our cost model contains individual I/O costs for input, intermediate,
and output data, which takes the amount of data transferred at the different stages of a
MapReduce computation into account. We believe that an explicit inclusion of I/O in the
functional data-flow model would complicate this model unnecessarily, whereas, in the cost
model, I/O is too important to omit.

4. OPTIMIZATION OF MAPREDUCE PROGRAMS

To demonstrate the feasibility of our functional model and our cost model, we use them as
a basis for formulating optimization rules for MapReduce programs. The transformations
that we discuss in this section aim mainly at performance optimization. Nevertheless, the
transformations are undirected: they can be applied forward, in the direction of target code,
to optimize performance or, alternatively, backward, in the direction of source code, to refactor
MapReduce programs into a more modular and less tangled form. We formulate two pairs of

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18

transformation rules for MapReduce programs—one pair for each of the algorithm classes
considered, as we explain next.

Classes of Algorithms Considered We concentrate on two important classes of
homomorphisms that are compatible with MapReduce, namely, homomorphisms on multisets
(Section 4.3) and on lists (Section 4.4), both with one restriction concerning resource
consumption: they may only produce a single result of constant size. To produce a global
result, as homomorphisms do, the MapReduce programs considered here must have a single
Reducer task in the final program step.§ This is in line with the common view that, in the
MapReduce world, only linear-time, constant-space algorithms are considered to be really
scalable. More precisely, the size of the data processed by each parallel task created should
be bounded by a constant. As a consequence, all programs that do not reduce the volume
of data massively—using heavy filtering (in the Mapper function) or heavy reduction (in the
Combiner function)—need multiple Reducer tasks in the first MapReduce program step. This
also amounts to producing only a single result of constant size in the single Reducer task in
the last program step, for example, a single maximum value or a single count of entities of
some kind. Results that are more complicated are also allowed, for example, a histogram
of values (which consists of a fixed number of counts of entities of some kind). Results
whose size depends on the size of the input are not considered. This excludes many simple,
embarrassingly parallel map-only problems, which is okay because we do not consider them
to be very interesting. It also excludes interesting complex data transformations with big
distributed results, which form only a small percentage of MapReduce programs executed,
although the MapReduce programming model really excels at them. In contrast, we include
most reporting and summarization problems, which makes our optimizations very relevant in
practice.

4.1. Implementing Homomorphisms Using MapReduce

First, we show how to implement basic versions of both classes of homomorphisms in
MapReduce. We start with multiset homomorphisms and then extend the approach to include
preservation of order, thus handling list homomorphisms as well.

From Multiset Homomorphisms to MapReduce Programs MapReduce does not
directly offer the combinators map and reduce, which are normally used to implement list
homomorphisms (see Section 2.4). Let us demonstrate how to replace these combinators
with appropriate MapReduce counterparts. Because we need a single global result, computed
by taking all input values into account, we can only use one segment of the segmented
reduction, which must contain all data. Then, although all Mapper tasks can work in
parallel in a distributed fashion, the real work is done sequentially by a single Reducer task.
So, the simplest MapReduce implementation of a homomorphism is effectively sequential.
Furthermore, because we want only a single group in the only segment, we need to regard
all keys as equal during grouping. If the keys are not used in computing the result, then the

§There is no such restriction on the other program steps in these MapReduce programs.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

19

simplest way to guarantee this is to project all input keys to the same constant intermediate
key in the Mapper function.¶ Then, the function subject to a map in a homomorphism has to
be applied to the current value by the Mapper. Similarly, the function subject to a reduce in
a homomorphism has to be applied to any two values in the iterator by the Reducer—so, the
programmer needs to implement also the reduce combinator in the Reducer.

From List Homomorphisms to MapReduce Programs Next, we show how to
extend our approach of creating MapReduce programs from multiset homomorphisms to list
homomorphisms. To implement list homomorphisms in MapReduce, we have to take special
care to preserve the order of input elements in all steps. To begin, we need some representation
of the input list order. We use positions (or indices), for simplicity. In Hadoop MapReduce,
there is no notion of a global index for a datum in the input; to remedy this limitation, we
assume that the input has been preprocessed and each element is carrying a globally unique
index, which is exactly 1 greater than the index of its predecessor (we will call such indices
contiguous). An even better (but more costly, and thus not pursued) solution would be to
use ranges of begin and end indices, because they allow to represent exactly the segments on
which list homomorphisms work.

4.2. Optimization Rules

We can now proceed to the formalism that we use to describe optimization rules for MapReduce
programs.

Rule Notation Formally, we denote a program transformation rule as follows. A tuple
of original program steps is transformed (denoted by a horizontal line) into a tuple of new
program steps. Often, these tuples only have a single element, in which case we omit the
enclosing parentheses. In all rules, we denote variables in italics, and constants and predicates
in sans-serif font. As a simple but not very useful example, Rule Example, which divides,
under a specific condition, a MapReduce program s into two MapReduce program steps i and
t, would look as follows:

isCompositionOf(s, (i, t))

s → (i, t)
(Example)

In the condition (premise) of a rule, above the horizontal bar, we use binary relations (for
example, isCompositionOf), whose names hint at their meaning when they are read as infix
relations (“s is composition of (i, t)”). Multiple conditions are combined with conjunction.

Number of Reducer Tasks as Parameter In addition to the parameters introduced in
the functional model (Section 3.1), the transformation rules depend on the number of Reducer
tasks specified in the MapReduce program. We specify the number of Reducer tasks as an
additional parameter that can be either zero (0), one (1), or more than one (N). These three

¶Of course, alternatively, one could employ a user-defined GroupingComparator instead.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20

cases correspond to three semantically different kinds of behavior: do not execute Reducer

tasks, always execute a single (sequential) task, and execute at least two tasks (in parallel, if
the cluster has more than one CPU core). The latter case corresponds to the optimal number
of parallel, distributed Reducer tasks given the specification of the problem and the cluster at
hand.

4.3. Optimization of Multiset Homomorphisms

Let us describe first the two optimization rules on multiset homomorphisms (see Section 2.4).
The basic idea of the first rule is to parallelize a sequential MapReduce program, whereas
the second rule optimizes this or another parallel program further by reducing communication
overhead and discarding intermediate results. Before we come to the rules, we provide some
technical context that is common to both rules.

Context Although there is no order in multisets, programs on multisets make special
use of the three order-related parameters (Partitioner, SortComparator, and Grouping-

Comparator) of our functional model (see Section 3.1).

• For grouping, all keys are considered equal (allEqualCmp). This gives us more freedom
in defining keys.

• For sorting, we do the same to avoid some of the overhead associated with sorting.
• We do not change the default (hash) Partitioner function, because it is well suited for

distributing most kinds of data to different partitions.

These order-related functions are the same for all programs treated by the multiset rules. For
brevity, we omit the parameters for SortComparator and GroupingComparator from all rules.
We keep the parameter for the Partitioner function to be able to show that, in cases that have
only a single Reducer task, the choice of the Partitioner function does not matter (which we
denote by an asterisk, ∗). Other than the order-related parameters, we have four parameters
for each MapReduce program step: the user-defined Mapper, Combiner, and Reducer function,
and the number of Reducer tasks. Because Combiner functions are optional in MapReduce,
we model the absence of a Combiner function with the special value ε. Functionally, if we do
not consider differences in performance, this amounts to specifying the identity function as
Combiner.

4.3.1. Multiset Parallelization Rule The first rule (Rule M-Par, short for multiset
parallelization) describes the transformation of a sequential MapReduce program to a
potentially faster two-step MapReduce program with parallelism.‖ The two parameters m
and r of the original program describe fully the multiset homomorphism that we want to
optimize.

‖Note that, for performance, we desire distributed execution mostly for the parallelism gained; fault tolerance
and other aspects are not in the center of our discussion.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

21

isCompositionOf(m, (m’,oneKeyMapper))
isMapperFor(m’, (stdPartitioner,N)) isCombinerFor(c, r)

(m, ε, r,1, ∗) → ((m’, ε, c,N, stdPartitioner), (oneKeyMapper, ε, r,1, ∗))
(M-Par)

Parallelism In the original program, only the Mapper function is executed in parallel. We
consider the original MapReduce program to be sequential, for its sequential execution of the
single Reducer task. This judgment stems from the view that it is the Reducer function
parameter that is responsible for the expressiveness of homomorphisms, and of much of
MapReduce as well. In the resulting two-step MapReduce program, the first step is parallel
(N means many Reducer tasks; the number is approximately one Reducer task per processor
core), while the subsequent reduction in the second step is executed sequentially by a single
Reducer task (1). Of course, the only step of the sequential program has a single Reducer

task as well.

Computation on Values, only Grouping on Keys For simplicity, we have chosen to
use the keys of the key–value pairs as meta-data only. So, the original program needs to
store all user data in the value part of the key–value pairs on which it works, and to use
the keys only to make the MapReduce framework use the default partitioning and grouping
(and sorting) on them. This is asserted by the condition isCompositionOf, which constrains
the original program’s Mapper function m. To this end, it makes use of one special function,
named oneKeyMapper, which has to be predefined to be used in MapReduce programs for
homomorphisms. It maps each input key–value pair to a pair consisting of a single constant
key and the value of the input. This way, we can guarantee that the output produced by
this Mapper function only contains a single key, which will then lead to a single group to
be processed by a single Reducer task. Likewise, the condition isMapperFor asserts that
the Mapper function m’ in the transformed program produces sufficiently many different keys
to make up N different partitions of roughly equal size when using the default partitioning
function (stdPartitioner). Note that, here, we benefit from the fact that all keys are considered
equal for grouping. This way, we can use a key type with many different values, allowing for
a balanced partitioning of keys, while still grouping and reducing all values in a partition into
a single value.

Decomposition of Multiset Homomorphisms in MapReduce Rule M-Par is a variant
of a classical bookkeeping rule [16], for multiset homomorphisms in a MapReduce framework.
The idea is to decompose the Reducer function r into a Combiner function that is executed
in a parallel, distributed fashion, and a Reducer function for the final computation on
the intermediate results. So, in the target program, we make use of segmented reduction
implemented by MapReduce. This program produces multiple partial results: one local result
for each of the many Reducer tasks. We regard these partial results as intermediate results in

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22

a compound computation (a multi-step program or workflow∗∗) consisting of two MapReduce
programs. The parallelism in the target program has the structure of a two-level tree with
the global result as the root, the intermediate results as its children, and all partitions of the
initial input in the first MapReduce job as the grandchildren.

Correctness Condition for Decomposition For correctness, function c, used as the
Reducer function in the first step of the transformed MapReduce program, must also be a
Combiner function compatible with r as a Reducer function: isCombinerFor asserts that
both functions implement the same reduction, and composing them in the order stated does
not change the result. This is needed to guarantee that the composition of a segmented
reduction and a global reduction (the two MapReduce programs in the transformed program) is
semantically equivalent to a single global reduction (the original program). We need to impose
this constraint on function c, not allowing arbitrary Reducer functions here, because a Reducer
function in MapReduce is more general: after executing a reduction, a Reducer function may
also execute some other function (for example, an additional map or filter function). In the
same vein, note that a function parameter m for specifying a Mapper function is not even
needed to implement global reduction; allowing only an identity function here would suffice
to implement multiset homomorphisms. However, parameter m gives the user the flexibility
to specify an additional preprocessing function to be applied to each input value, which is
executed in the same MapReduce program step, without creating the need to add an extra
program step with its associated (communication) overhead.

Cost If we compare the original program (left of the arrow) of Rule M-Par and the
transformed program (right of the arrow) using our cost model, there are several things to
note. First, there are two MapReduce program steps in the transformed program, so it may
take up to twice the resources of the original program, including twice the time. Actually, this
is the worst case, which happens only for small input sizes, in which the startup overheads
outweigh any other costs. Second, through parallelization on numReducers nodes, the cost
associated with the execution of the Reducer function (see 1g in the cost model of Figure 2) is
decreased by a factor of numReducers. In the best case, this cost dominates all other costs.
For large input sizes, this is also more or less the expected typical case. So, we can expect to
attain a cost reduction by a factor of between numReducers

2 and numReducers when applying
Rule M-Par to real programs. The resulting program can be optimized further using the
following transformation rule.

4.3.2. Multiset Combiner Rule The second rule (Rule M-Comb, multiset Combiner) describes
the transformation of a two-step MapReduce program without Combiner function (for example,
a program produced by applying Rule M-Par above) to a (somewhat faster) single-step
program that uses a standard Hadoop Combiner function.

∗∗Although not directly modeled in the basic MapReduce papers of Google [2, 8, 9] and by Lämmel [12], multi-
step MapReduce programs are very common in practice. A drawback of using them is that the programmer
support provided by MapReduce implementations (libraries) is limited even for single-step MapReduce
programs, and quasi non-existent for workflows. Thus, the use of multiple, chained MapReduce programs
places a significant additional burden on the programmer.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

23

isCompositionOf(m, (m’,oneKeyMapper))
isMapperFor(m’, (stdPartitioner,N)) isCombinerFor(c, r)

((m’, ε, c,N, stdPartitioner), (oneKeyMapper, ε, r,1, ∗)) → (m, c, r,1, ∗)
(M-Comb)

Parallelism Observe that it is not obvious whether the transformed program is sequential
(like the input program to Rule M-Par) or parallel (which it is, in fact). The only syntactic
difference between these two programs is the presence of a Combiner function (c) in the
transformed program. Yet, a syntactic difference may not be a semantic difference and, more
importantly, a semantic difference may not be visible in the syntax.†† The important difference
here is semantic: the Combiner function c is reducing the size of the intermediate data by a
factor large enough that the subsequent single Reducer task can run in very short time, shorter
than that of an average Mapper task. If this were not the case, the transformed program would
also be sequential, like the input program to Rule M-Par. Of course, this line of argument
also applies to the two-step program produced by Rule M-Par, but it is easier to show using
the example just discussed.

Overview Both programs, the original one on the left and the transformed one on the right
side of Rule M-Comb, implement a global reduction in MapReduce. In contrast, the first
step of the original program alone implements a segmented reduction, a local reduction in
each partition/segment of input data. The idea is best explained by applying three smaller
transformations in a row: first move the reduction in the first step of the original MapReduce
program to the empty Combiner position, then move the single-Reducer reduction of the second
step in the original MapReduce program to the now empty position of the Reducer, and finally
omit the now empty second MapReduce program step. The first part of this transformation
is only possible because the original program does not make use of the repartitioning and
grouping facilities of MapReduce. Actually, this is an instance of a bigger pattern:

If, in a MapReduce program with multiple Reducer tasks, you need only the (Map
and) Reduce part(s) but not the implicit Group-By or Sort-By, try to make use of
a Combiner function to speed up processing.

Details In the original program, parameters m’, c, and r describe fully the multiset
homomorphism that we want to optimize. A necessary correctness condition is here that
the function parameter c is a Combiner function that is compatible with the Reducer function
r (isCombinerFor; see above). As a slight generalization beyond multiset homomorphisms, in
both the original and the transformed program, function parameter r may, again, apply also
some other function (for example, an additional map or filter function) after this reduction.
Much like in Rule M-Par, we also need isCompositionOf to constrain the Mapper function
m’ in the original program with respect to Mapper function m in the transformed program.

††Without changing the semantics, we could add an identity Combiner function in the other program, thus,
removing any difference in syntax between the two programs with Combiner function.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

24

Effects on Parallelism and I/O Rule M-Comb does not change the degree of parallelism:
both the original and the optimized program are equally parallel. Only the second MapReduce
program step in the original program and the Reducer task execution in the optimized program
are sequential—and necessarily so, as described earlier. The costs for I/O operations are
reduced only slightly (because we do not create redundant copies of intermediate data). The
performance optimization intended here is to reduce the delay and the overhead incurred by
a second MapReduce program step.

Effects on Programming Comfort Having only a single program left also avoids the
hassle of programming multiple consistent MapReduce programs. As described in Section 2,
Combiner functions have been introduced in MapReduce for a closely related kind of
optimization [MR]: they shall reduce the size of intermediate data that has to be communicated
from all the Mapper nodes over the cluster-network to all the Reducer nodes. Because the
original MapReduce model [MR] assumes a single MapReduce program, this is the only
application that could have been thought of. Yet, in our case of a chain (workflow) of two
consecutive, closely related MapReduce programs, the benefit of using Combiner functions is
even greater than in the original use case.

Cost In the case of a small input, the cost decreases by, at least, a factor of 2, because
the overhead of creating an extra MapReduce job with all its tasks disappears. This is the
best case for Rule M-Comb. There cannot be a cost increase due to additional Combiner
runs compared to a single Reducer run in the original program, because the result of each
application of the Combiner function c to intermediate data of any size has constant size.
As a consequence, in the worst case, the transformed program incurs the same cost as the
original program. Furthermore, because the first program step in the original program incurs
much cost for the data transfer between Mapper and Reducer tasks to achieve a deterministic
grouping (which is not actually needed), the transformed program will be faster for large input
sizes. In summary, we expect a speedup of slightly more than a factor of 2 for most practical
problem sizes.

4.4. Optimization of List Homomorphisms

Now that we have seen two optimization rules for the comparatively simple case of multiset
homomorphisms, we strive to port these optimization rules to the more difficult-to-parallelize
case of list homomorphisms. Recall that the basic idea of the first rule is to parallelize the
execution of Reducer functions, whereas the second rule fuses a two-step MapReduce program,
possibly created by the first rule, into a—likely faster—single-step program. In the end, we
will see these rules ported from multiset to list homomorphisms but, first, we have to work
out what even a basic sequential list homomorphism looks like when cast as a MapReduce
program. As mentioned earlier, in MapReduce, the order of input data is not preserved by
default. Yet, to implement list homomorphisms, we need exactly this feature. We will have
to take extra care to preserve order in all MapReduce programs of this section, including the
sequential program that is the starting point of the transformations.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

25

Preserving Order in MapReduce Programs (Sequential) One might assume that the
original, sequential program need not take the list order into account, because computation
can proceed along the list. But, because MapReduce is inherently parallel, this is not
true—at least not after the shuffle has happened in the execution of a MapReduce program:
Even though the single Reducer function works only on a single partition, we need non-
standard SortComparator and GroupingComparator functions to preserve order and create
a single group. Sorting is achieved using the natural ordering on the indices (naturalCmp;
this is different from the multiset case!) and, for grouping, all indices are considered equal
(allEqualCmp). Of course, these two functions and the Partitioner function must match
the types of the data to be processed; this needs to be coded manually, by overloading these
functions on the data types used. Fortunately, we can even re-use the SortComparator and
GroupingComparator functions from the original program in both optimized programs. For
simplicity, we will also omit them from the rules for list homomorphisms. So, compared to
the rules for multiset homomorphisms, we do not need to add additional parameters to each
program step. As for multiset homomorphisms, once again we use keys only as meta-data.

4.4.1. List Parallelization Rule The third rule (Rule L-Par, list parallelization) describes the
transformation of a sequential MapReduce program on lists to a two-step program. It is a
variant of the bookkeeping rule for list homomorphisms, applied to MapReduce.

isListMapperFor(m, (semiContiguousPartitioner,N))

isCombinerFor(c, r)

(m, ε, r,1, ∗) → ((m, ε, c,N, semiContiguousPartitioner), (idMapper, ε, r’,1, ∗))
(L-Par)

Preserving Order (Parallel) The transformed program works in parallel on individual list
segments, which form individual partitions of intermediate data. We need to take special care
of the contiguity of index values in both steps of this MapReduce program.

In the first program step, we depend on the previously stated assumption of contiguous
indices in the input, and use a custom partitioner function (semiContiguousPartitioner) that
preserves this contiguity (as much as possible, i.e., for input sizes of at most 231 records).
The Partitioner function in Hadoop MapReduce projects the indices to the small data
range of partition numbers (a Java int value). Furthermore, the Mapper function m needs
to produce roughly the same number of keys in each of the different partitions for the
parallelization to be effective (compare for the discussion of the parameter numReducersEff in
the cost model, Section 3.3.1). We combine all these constraints into the following condition:
isListMapperFor(m, (semiContiguousPartitioner, N)).

In the second program step, the input data have no longer contiguous indices, because all
values of one partition have been combined into a single value, with a single index as the
key, leaving a gap between subsequent indices. As mentioned previously, we could resort to
transforming indices to ranges, either directly in the first Mapper function (m), incurring an
additional overhead of around 20% for storing and transferring six instead of five numeric
values per record, or in the first Reducer function (c), which would then no longer be a
Combiner function. We have opted for another solution: We continue working with indices,

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

26

and accept that we will not be able to detect errors (that is, intermediate data in an incorrect
order) in a fail-fast manner, but only at the end of the computation. This means that, in
the second Reducer function (r’), we reduce any values with strictly increasing indices, and
we can only detect (programming) errors when there are duplicate or decreasing indices. Put
simply, we perform a relaxed check on the indices.

Input and Output Programs The input program (left of the arrow) of Rule L-Par

consists of one program step. It has variable Mapper (m) and Reducer functions (r),
no Combiner function, uses a single Reducer task (1) and any partitioner function. The
output program is a two-step MapReduce program, with a parallel first step (N) and a
sequential second step (1). Like the input program, it does not use Combiner functions. It is
parameterized with the Mapper function (m) of the original program, a Combiner (c) function
used as a Reducer function, and a second Reducer function (r’), as described above. In the
second step, it uses an identity function as the Mapper function (idMapper). We could also use
the oneKeyMapper function here, that we introduced in Rule M-Par, with the advantages
of not having to store a key for each record, and of more flexibility in the Mapper function of
the original program, but we prefer to pursue an alternative approach that spares us one rule
condition. Once again, because the second step is sequential, any Partitioner function can
be used (∗).

Additional Rule Conditions In addition to constraint isListMapperFor described above,
this rule is only applicable if the Reducer functions c and r are in relation isCombinerFor,
that is, if the first Reducer function c is a Combiner function compatible with the second
Reducer function r.

Cost The cost estimates are very much the same here, for ordered (list) data, as those for
unordered (multiset) data, except for two small differences. One difference is the extra sorting
step necessary to guarantee preservation of order. Although the data are almost sorted (as they
consist of a comparably small number of sorted chunks), they need to undergo the complete
process of external sorting with multiple reads and writes to disk. There seems to be some
opportunity for optimization in the Hadoop framework here. Yet, this work is also needed
to achieve grouping alone, and so there is no difference to the case for multisets. The second
difference concerns the type of data processed. In the multiset case, we do not need to store
anything in the keys of intermediate data whereas, in the list case, we have chosen to store
unique (and contiguous) list indices. Consequently, we incur more overhead during I/O and
comparison. But the additional overhead is present in both list programs, before and after
application of Rule L-Par, so there is no difference compared to Rule M-Par for multisets:
We expect the same best and worse cases and, for real programs, we can expect to attain a
cost reduction by a factor of between numReducers

2 and numReducers via Rule L-Par.

4.4.2. List Combiner Rule The fourth rule (Rule L-Comb, list Combiner) describes the
transformation of a two-step MapReduce program on lists to a single-step program that uses a
custom Combiner function that is run exactly once. In this rule, the two steps of the original

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

27

program together implement a global, ordered reduction in MapReduce (whereas the first step
alone implements a segmented, ordered reduction).

isListMapperFor(m, (semiContiguousPartitioner,N))

isMapperWithCombinerOnceFor(mc1, (m, c”)) isCombinerFor(c, r)

((m, ε, c,N, semiContiguousPartitioner), (idMapper, ε, r’,1, ∗)) → (mc1, ε, r’,1, ∗)
(L-Comb)

Hadoop Combiner Function The idea of Rule L-Comb is, once again, to speed up
processing using a Combiner function. Unfortunately, we cannot use Hadoop Combiner

functions on list data for three reasons that are caused by reasonable design choices in
distributed programming. First, to be able to reduce the volume of intermediate data as
much as possible, Hadoop applies Combiner functions arbitrarily often; thus, they must
be idempotent. This is problematic because our Combiner function does not preserve the
contiguity it requires, and an alternative Combiner function that preserves contiguity by
transforming indices to ranges is not idempotent either. Second, to keep the implementation
simple and fast, Hadoop Combiner functions are applied to arbitrary subsets of intermediate
data; thus, they must be associative-commutative. This means that non-contiguous values will
occur frequently, rendering the Combiner function almost useless. Third, Hadoop prioritizes
sorting over combining, so Combiner functions are only applied to groups of values that are
equal according to GroupingComparator and also SortComparator—and, for sorting, we need
groups of single values, which cannot be combined, rendering the Combiner function a no-op.

Preserving Order (Optimized Parallel) As a resort, we use a custom-built function
(mc1). It is a Mapper function that also executes the logic of a Combiner function, but
only once, on the complete list of intermediate values produced by the Mapper, and in
the order in which they have been produced. This requirement is expressed by relation
isMapperWithCombinerOnceFor, which is parameterized with the new Mapper function mc1
and the defining Mapper and Combiner functions (here, m and c”). For our experiments
(Section 5), we have implemented this by refactoring the Combiner code, thereby adding
a new function that can perform the reduction in a streaming fashion, and we call this
function from the Mapper code for each new intermediate value produced. This eliminates
problems with memory management (the worry of whether the intermediate values fit into
the memory assigned to the Mapper task), and it does not require a reimplementation of the
rather complicated interface between Mapper and Combiner functions (a read-once iterator
reusing mutable singleton containers for possibly serialized keys and values, grouped by some
function).

Variables Rule L-Comb is parameterized with two different Mapper functions (m, mc1), and
different variants of Combiner (c, c”) and Reducer functions (r, r’). The difference between
the Reducer functions is that function r’ only performs a relaxed check, as described above;
the Combiner function c” does not perform any check at all.

Input and Output Programs The input program is a two-step MapReduce program. It
uses the functions idMapper and semiContiguousPartitioner described above. More precisely,

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

28

it is of the form produced by Rule L-Par. The resulting program is single-step. It uses the
custom-built function mc1 as its Mapper function, no Hadoop Combiner function (as explained
above), the relaxed Reducer function r’, any Partitioner function, and it has only a single
Reducer (1; no parallelism here). All parallelism is associated with function mc1.

Additional Rule Conditions isListMapperFor and isCombinerFor are the same as
in Rule L-Par, with the same parameters as mentioned there; concerning the relation
isMapperWithCombinerOnceFor, see the explication on preserving order given above.

Cost All arguments that we have given for Rule M-Comb also hold for Rule L-Comb. So,
we expect a speedup of slightly more than a factor of 2 for most practical problem sizes.

5. EXPERIMENTS

So far, we have developed much theory: We have started with a functional model of
MapReduce, continued with a cost model, and finished with four optimization rules—two
rules for each of two classes of programs, resembling multiset and list homomorphisms.

We do not prove the correctness of these rules formally, an approach others have pursued
[17]. Instead, we take an experimental approach to illustrate their feasibility. While a rigorous
empirical study would be certainly worthwhile, applying our models and optimizations to
a wide array of application is well beyond the scope of the article. Instead, we limit our
attention to two instances of the two problem classes, which serve as canonical representatives
for whole classes of practical applications: the Maximum problem, as an instance of a
multiset homomorphism, and the Maximum Segment Sum problem, as an instance of a list
homomorphism.

5.1. Research Question

We consider Hadoop Java programs and perform tests to measure performance and speedup.
Our research question is: “Do the optimization rules achieve the indicated performance gain?”
So, we report on an exploratory evaluation of the optimization rules in this section. Our
conclusion is that the results justify the formal model, on which the rules are based.

5.2. Experimental Setup

In the following, we describe the code of the Hadoop MapReduce programs that we have
implemented. First, we describe briefly the Java interface to Hadoop that we developed to
resemble our functional model. Then, we proceed with the example programs for two problems
to which we apply the optimization rules.

5.2.1. Java MapReduce Skeleton Hadoop MapReduce programs are meta-programs that make
heavy use of Java reflection. In particular, the semantics and the type of result data depend
on a numeric parameter (called numReducers in the cost model). When porting the formal

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

29

model of MapReduce (in Section 3.1) from Haskell to Java with Generics, we needed to create
two Java instances to enable type checking: one with a Hadoop Combiner function and one
without.‡‡ In Java, we do represent the key–value pairs that we have abstracted away in
the functional model. They are modelled as separate keys and values, forgoing the notion of
being part of a pair. So, the Mapper function parameter in our formal model (Section 3.1)
with Haskell type m -> [r] becomes an object parameter of our Java skeleton, which takes
the form of a Java function; the object needs to be an instance of the generic Hadoop class
Mapper<K1,V1, K2,V2>, where K1 and V1 are the Java types of the keys and values in the
input type m, and K2 and V2 are the Java types of the keys and values in the result type
r (the list in the result type [r] is not represented explicitly). When passed to Hadoop,
the Mapper function parameter will have the even less expressive reflective type of Class<?
extends Mapper>. In both instances of the Java skeleton, parameter numReducers is also
passed on to Hadoop. Furthermore, we pass on some more type parameters needed by Hadoop
for (de)serialization. Lastly, we use Hadoop’s Partitioner function on keys and values instead
of a third comparator. Apart from this, the two resulting Java skeletons are straightforward
adaptations of our Haskell skeleton. More information on the Java skeletons are available in
Appendix A as well as in Doerre et al. [18].

5.2.2. Subject Programs For each of the two pairs of optimization rules, we created an example
program from the class of programs to which the first rule of the pair applies, optimized it
according to this rule, and optimized it further using the second rule of the pair. This enables
us to assess the performance of the original and the transformed programs. Thus, for both
multiset and list homomorphisms, we have three program variants of an example program
each.

Sequential: the original, unoptimized program, using one Hadoop program step; the baseline
variant

TwoStep: the program after application of the corresponding parallelization rule (Rule M-

Par or L-Par), using two Hadoop program steps; no Combiner function

Optimized: the final program after also applying the corresponding Combiner rule (Rule M-

Comb or L-Comb), using one Hadoop program step; a suitable Combiner function

Multiset Homomorphism: Maximum We will first apply the optimization rules on
multisets to the Maximum (Max) problem. The problem consists of finding the maximum
value in a list of signed 32-bit Java int values. This problem represents a whole set of database
aggregation operators, for example, count, sum, and average (i.e., it can be easily modified to
implement these operators). Because the binary operator max is associative and commutative,
Max is a multiset homomorphism.

Given the Java MapReduce skeleton for Hadoop, it is now straightforward to implement
the Sequential Maximum problem in Hadoop, and to derive the TwoStep and the Optimized

‡‡Two additional instances will be needed to support MapReduce programs without a Reducer function

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

30

variant using the optimization rules stated in Section 4.3. Each of them makes use of the
same user-defined Reducer function that implements a max computation on a list (or, more
exactly, on an iterator) of intermediate values. Note that, for Maximum, the optimized parallel
MapReduce program is known and easy to write without this method. This example is mainly
used as an intermediate step to the more complex Maximum Segment Sum problem that
follows.

List Homomorphism: Maximum Segment Sum Our next example is the Maximum
Segment Sum (MSS) problem, which is defined as follows: For an input list of integers, look
at each segment (a sublist containing only consecutive list elements), and compute its sum;
return the maximum of these sums. We have selected MSS for several reasons: It works
on lists, it is non-trivial to parallelize, using a complex operator on intermediate data and
post-processing, and it has been studied extensively in parallel functional programming [3].
Nevertheless, MSS is grounded in a practical use case: Its original two-dimensional formulation
was intended to be used as a simplified maximum likelyhood estimator on digital images [6].
A naïve implementation of this algorithm is of cubic time complexity. Optimal sequential
implementations have linear time complexity and run in a streaming fashion (as a linear
scan), requiring only constant space at any time. The algorithm described next will also
have these properties when run sequentially. Nevertheless, we are concerned with parallel
implementations here. MSS is both an instance of the divide-and-conquer program skeleton
and a list homomorphism [3].

As with the Maximum problem, we have created three different MapReduce implementations
of MSS. More information on the subject programs are available in Appendix B.

5.2.3. Test Input Data Now that we have described the test programs, let us describe the test
input data which they process.

Format The test input data are made up of random 32-bit signed integer values. For
consistency, we use the same input data for both problems in the evaluation. This means
that, although this is only needed for list homomorphisms, all input records also contain the
current (32-bit signed integer) index in the key part of a key–value pair. For ease of access, each
input record is stored as the textual representation of the key and the textual representation
of the value, separated by a tab and terminated by a newline.

Scaling Because Hadoop is optimized for larger files, we start testing with a size of 16 million
(224) input records (see parameter chunkSize of our cost model, described in Section 3.3.1).
We double the input size between consecutive tests, which gives us an evenly-spaced doubly-
logarithmic scale. Technically, we re-use the input file(s) of the smaller size and add the same
number of input files of size 224 records each to reach the next (binary) order of magnitude. We
stop at 231 input records for two reasons. First, disk space and run time do not allow for much
bigger inputs, given the cluster on which we run our experiments, as described in Section 5.3.1.
Second, and more importantly, the return type of the Java Object’s hashCode method is a 32-
bit signed integer (a Java int). It is used pervasively by the Hadoop MapReduce framework for

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

31

partitioning and cannot be changed easily to a bigger type. We depend on this functionality
when preserving order for list homomorphisms and, for consistency, we use the same input
sizes also for multiset homomorphisms.

5.3. Experiments

Next, we describe the experiments performed, to quantify the performance gains obtainable
using the optimization rules.

5.3.1. Measurement Setup The measurement environment consists of hardware, software, and
measurement tools.

Hardware All experiments were run on the same 16-node cluster (which has one additional
master node with a similar configuration); the input was distributed across the cluster (in the
Hadoop distributed file system); each node has

• 2 ∗ 4 CPU cores (Intel(R) Xeon(R) CPU E5405 @ 2.00GHz)
• 16 GB of RAM (plus 8 GB of swap space on hard disk)
• 1 hard disk volume (striped on 2 ∗ 72 GB physical disks; one node has 2 ∗ 600 GB)
• 1 GBit Ethernet, connected through a switch

In total, there are 16 ∗ 2 ∗ 4 = 128 CPU cores in the cluster. In the optimal case, CPU-bound
programs that can run fully parallel will be able to make use of this degree of parallelism. Any
additional speedup is likely due to cache effects.

Third-Party Software The operating system was a 64-bit openSUSE 10.3 Linux (kernel
2.6.22.17-0.1-default). The Java Virtual Machine (from Oracle) was: Java(TM) SE Runtime
Environment (build 1.6.0_15-b03) with Java HotSpot(TM) 64-Bit Server VM (build 14.1-b02,
mixed mode).

Hadoop Configuration With the given data encoding, inputSize is 310MB for each file
of 224 records. Given the chunkSize of 64MB, this amounts to 6 input splits per input file.
We have verified that the outputSize for all programs is a very small constant (some dozen
bytes). We used a replication factor of 2 in the Hadoop DFS. In Hadoop MapReduce, we
used at maximum 8 Mapper tasks and 8 Reducer tasks per 8-core cluster node, allowing for
potentially full utilization in all phases, even if only Mapper or only Reducer tasks are at work.
Following standard guidelines [numReducers in Hadoop Wiki], in all parallel program steps,
we used 111 Reducer tasks (which is slightly less than the number of CPU cores).

Measuring Runtime We used the tool GNU time 1.7 to measure the wall-clock run time,
including startup overheads of the user program. The server processes on each cluster node
ran for weeks, and the Java just-in-time compiler and the data caches have been warmed up
with the real input data for both programs before the measurements start for each input size.
We only measured each point once, because the small measurement differences that occurr
have little influence on the trends that we expected to observe and compare.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

32

5.3.2. Performance Results In the Figures 3 and 4, we show, for both the Max and the MSS
problem, the performance of the original program and the program after applying only the
first and both optimization rules, respectively.

For both problems, we used the same setup. The results are plotted on a doubly-logarithmic
scale. On the horizontal axis, we have the binary (or dyadic) logarithm of the number of
elements in the input, as described in Section 5.2.3; it starts at 224, because this is the minimum
number of input records. The vertical axis records the binary logarithm of the program run
time in seconds, as just described. The raw results are also shown in Table I.

24 25 26 27 28 29 30 31

0
2

4
6

8
1
0

1
2

input size: log2(records)

ru
n
 t
im

e
:
lo

g
2
(s

e
c
o
n
d
s
)

● ● ● ● ●

●

●

●

Max problem

●Sequential TwoStep Optimized

Figure 3.Wall-clock run time of the Sequential, TwoStep, Optimized programs for the Max problem
on input sizes between 224 and 231 records.

24 25 26 27 28 29 30 31

0
2

4
6

8
1
0

1
2

input size: log2(records)

ru
n
 t
im

e
:
lo

g
2
(s

e
c
o
n
d
s
)

● ● ● ● ●

●

●

●

MSS problem

●Sequential TwoStep Optimized

Figure 4.Wall-clock run time of the Sequential, TwoStep, Optimized programs for the MSS problem
on input sizes between 224 and 231 records.

Max Problem For the Max problem, the TwoStep program is much faster than the
Sequential program for large inputs (by a factor of 24.2), and the Optimized program is even
faster for all inputs (up to a factor of 25.2 compared to the Sequential program).

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

33

MSS Problem For the MSS problem, the TwoStep program is orders of magnitude faster
than the Sequential program for medium and large inputs (up to a factor of 24.8), and the
Optimized program is even faster for all inputs (up to a factor of 26.4).

Raw data Table I shows the raw data for Figure 3 and Figure 4, again as doubly-logarithmic
values. The run time for input sizes between 224 and 231 records is shown in log2 seconds.

5.4. Discussion

Next, we discuss the performance gains obtained by applying the optimization rules, and the
consequences for both the functional and the cost model.

Performance Overall, the results for the optimization of the Max and MSS problems are
very similar. The biggest difference is that Max is up to twice as fast as MSS, especially when
comparing the Sequential variants for the two problems. So, let us discuss them together.
Looking at the diagrams, the Sequential variants take very long for larger input sizes (more
than 228 records); the TwoStep variants are much faster and the Optimized variants are the
fastest by some factor of 2. For smaller input sizes (224 to 228 records), the execution times
of the non-sequential variants do not depend on the input size, but are constant; this can be
explained by the dominance of the startup overhead. For even smaller input sizes, this is likely
to apply also to the Sequential variants. The TwoStep variants take around three times as
long as the Optimized variants—except for the Max program with large inputs, in which case
the slowdown factor is 2, not 3.

Speedup Compared to the Sequential variant, the speedup of the TwoStep program for the
Max problem grows from 2−1 to 24.2 with an increase of a factor of 27 in input size (from 224

to 231 records), and the speedup of the Optimized program grows from 20.4 to 25.2 in the same
frame. Likewise, for the MSS problem, the TwoStep program shows a speedup of between
2−0.4 and 24.8 (with a slightly different slope), and the Optimized program exhibits a speedup
of between 21.1 and 26.4 (which is a speedup of around 85).

Table I. Raw data (log2 of wall-clock run time in seconds) of the Sequential, TwoStep, Optimized
programs for both the Max and the MSS problem on input sizes between 224 and 231 records.

Max MSS

log2 records Optimized TwoStep Sequential Optimized TwoStep Sequential

24 5.07 6.48 5.50 5.06 6.55 6.18
25 5.07 6.48 5.70 5.06 6.52 6.48
26 5.07 6.48 6.40 5.06 6.56 7.42
27 5.16 6.50 7.38 5.08 6.57 8.48
28 5.24 6.41 8.52 5.15 6.59 9.49
29 5.79 6.86 9.76 5.70 7.06 11.19
30 6.32 7.37 11.11 6.09 7.61 12.27
31 7.05 8.04 12.25 6.88 8.44 13.28

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

34

Interpretation The observed speedups are not unexpected. In Section 4, we describe the
cost reduction associated with each optimization rule. These costs ranged from a slowdown
by a factor of 2 (as exhibited by the TwoStep program variant of the Max problem on the
smallest input size) to a speedup of 2 ∗ numReducers ≈ 2 ∗ 128 = 256 = 28 (theoretically, if
the best cases of both rules apply to the same input size; we observed 26.4 for the Optimized
program variant of the MSS problem on the biggest input size). The data points between
these extreme values also align well with our expectations.

Justification We have chosen a formal and algebraic approach to explore the possibilities
of MapReduce program optimizations. Our approach has the advantage of being both better
founded and able to give more practical advice than the current best practice for MapReduce
program development, namely, rules of thumb as, for example, the following one, taken
from the introduction of the Hadoop documentation: If your program is slow, try to use a
Combiner function. We had to apply several simplifications in the functional and cost model
and the optimization rules compared to the practical evaluation using Hadoop. We have
already discussed the performance-related points in Section 3.2, Section 3.3.3 and Section 4.2.
Nevertheless, the optimization rules worked. This is because, at least, for the problem classes
described, the models seem to match the Hadoop programs well.

Recommendation of Use For all but trivially small input sizes, the parallelization sule M-

Par and L-Par should be applied to MapReduce programs. Concerning the combiner rules M-

Comb and L-Comb, the situation is less clear: The performance gain alone (a factor of 2 or 3)
may not pay off, given the development effort needed to implement it. But, the target program
has the extra benefit of expressing a one-step computation (in the logical/homomorphism view)
by a one-step program (instead of two separate MapReduce steps). This is more intuitive, and
it renders operations more manageable.

Further Applications We have demonstrated that our functional model and our cost model
are useful and principled tools for formulating and reasoning about performance optimization
of MapReduce programs. Beyond formulating further optimizations, the models can serve as
a basis for reasoning about properties other than performance. First, the functional model
can be a foundation for modeling and reasoning about functional correctness of MapReduce
programs and their optimizations. Second, the cost model can be extended to cover also
other non-functional properties, such as reliability and energy consumption. Overall, a formal
approach to this domain—as taken by us—will help to classify, compare, inspire, and guide
further work on MapReduce programming and similar models for distributed programming.

6. RELATED WORK

Since its invention, a huge amount of research has been conducted on Hadoop MapReduce
optimization [10]. Yang et al. [19] state the main principles and requirements of MapReduce
implementations.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

35

The authors of MapReduce themselves recommend that one should take advantage of natural
indices whenever possible [9]. This supports our interest in list homomorphisms, in which order
plays an important role. Map-Join-Reduce extends MapReduce by user-specified join functions
that allow to control the order or items during joining [20].

HaLoop optimizes the execution of MapReduce programs by caching intermediate results
between MapReduce jobs [21]. This is an alternative to our approach of merging jobs
structurally based on our model. Similarly to HaLoop, iMapReduce also optimizes the
execution of MapReduce programs, not by caching, but by pooling and reusing suspended
MapReduce jobs [22].

The MRShare system transforms a batch of queries into a new batch by merging jobs into
groups and an evaluating each group as a singlen query [23]. The transformation is based on
a cost model. Again, this is not really a structural program rewrite, as we do it.

Babu [24] introduces a profiler that monitors, based on instrumentation, the execution
of a Hadoop MapReduce program, and a cost-based optimizer that tunes the underlying
parameters of the Hadoop framework. This is parameter tuning, which is complementary
to our approach of a structural program optimization. Similarly, Herodotou et al. [25, 26, 27]
perform parameter tuning, in this case, based on clustering.

The Manimal system performs a static analysis to determine relational optimizations and
to generate proper indexes for the raw data [28, 29], no architectural optimization, as we do
it.

Several approached concentrate on increasing fault tolerance, mostly by monitoring and
job re-scheduling: ParaTimer [30, 31], LATE [32], RAFT [33, 34] and Hadoop++ [35].
Several systems perform optimization on logical query plans, much like in ordinary databases:
FlumeJava [36], Pig Latin [37] and Tenzing [38].

Finally, some tools provide declarative interfaces to Hadoop, but these are rather SQL-like
data processing interfaces, and not architectural models like ours: Sawzall [39], Pig Latin [37],
Tenzing [38], Hive [40] and SQL/MapReduce [41].

7. CONCLUSIONS AND FUTURE WORK

Google’s MapReduce programming model has been one of the contributions with highest
practical impact in the field of distributed computing in the recent year. It is closely
related to functional programming, especially to the algebraic theory of list homomorphisms.
List homomorphisms facilitate program composition, optimization of intermediate data, and
parallelization. To put these theoretical benefits to practical use, we strive for a combination of
the formal basis of list homomorphisms with the scalability and industrial-strength distributed
implementation of MapReduce.

In particular, we have developed a formal model of MapReduce programs suitable for
optimization (comprising a functional model and a cost model), an approach to model
MapReduce programs that operate on lists instead of on multisets only, a total of four
optimization rules for MapReduce programs formulated on top of our formal model, and a
series of experiments to validate the model and the optimization rules.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

36

We believe that the development of MapReduce programs, for example using Hadoop,
benefits from the use of a formal functional model and cost model. Our work is a first step
on the way to better understand and ease MapReduce programming, and further step shall
follow:

• The power of our transformational approach rests on the fusion of MapReduce phases,
which avoid barrier synchronization and the storage of intermediate data. That this
fusion principle is very powerful has been demonstrated previously in the literature
[3, 42]. We offer a few transformations here to prove the point that MapReduce is a
suitable target for this approach. Further such transformations shall be pursued.

• Although it proved promising in our first experiments, our cost model has, so far, received
limited study. For real-world applications, one will likely want to refine it—which does
not necessarily mean complicating it! In the end, it were nice if MapReduce programs
could be optimized automatically based on the cost model. We believe that our formal
approach to modeling and reasoning about MapReduce programs would simplify this
task greatly.

• Also, it is certainly useful to look beyond Hadoop and try to apply our approach to other
implementations of MapReduce.

8. ACKNOWLEDGEMENTS

This work received financial support under DFG project MapReduceFoundation, grant no. Le
912/13-1.

References

1. Sterling TL, Savarese D, Becker DJ, Dorband JE, Ranawake UA, Packer CV. BEOWULF: A parallel
workstation for scientific computation. Proc. Int. Conf. Parallel Processing (ICPP), vol. 1, CRC Press,
1995; 11–14. 1

2. Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Proc. USENIX Symp.
Operating Systems Design and Implementation (OSDI), USENIX Association, 2004; 137–150. 1, 4, 6, 22

3. Gorlatch S. Toward formally-based design of message passing programs. IEEE Trans. Software Engineering
(TSE) 2000; 26(3):276–288. 1, 3, 30, 36

4. Gorlatch S. Extracting and implementing list homomorphisms in parallel program development. Science
of Computer Programming (SCP) 1999; 33(1):1–27. 1

5. White T. Hadoop: The Definitive Guide. 3rd edn., O’Reilly, 2012. 3, 5
6. Bentley J. Programming pearls: Algorithm design techniques. Comm. ACM 1984; 27(9):865–873. 3, 30
7. Bird R. Algebraic identities for program calculation. Computer J. 1989; 32(2):122–126. 3
8. Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Comm. ACM 2008;

51(1):107–113. 4, 8, 13, 22
9. Dean J. MapReduce: A flexible data processing tool. Comm. ACM 2010; 53(1):72–77. 4, 22, 35

10. Sakr S, Liu A, Fayoumi AG. The family of MapReduce and large-scale data processing systems. ACM
Comp. Surveys 2013; 46(1):44 pp. Article 11. 4, 34

11. Bird R. Lectures on constructive functional programming. Technical Report PRG-69, Programming
Research Group, Oxford University Computing Laboratory Sep 1988. 8

12. Lämmel R. Google’s MapReduce programming model – Revisited. Science of Computer Programming
(SCP) 2008; 70(1):1–30. 8, 22

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

37

13. Forum MPI. MPI: A Message Passing Interface Standard, Version 2.1. High-Performance Computing
Center Stuttgart, 2008. 8, 9

14. Gorlatch S. Systematic efficient parallelization of scan and other list homomorphisms. Proc. European
Conf. Parallel Processing (Euro-Par), Vol. II, LNCS 1124, Springer, 1996; 401–408. 8

15. Marlow S ((ed.)). Haskell 2010 Language Report. haskell.org, 2010. URL http://www.haskell.org/
onlinereport/haskell2010/. 9

16. Bird R. Introduction to Functional Programming using Haskell. 2nd edn., Prentice Hall Series in Computer
Science, Prentice Hall Europe, 1998. 21

17. Ono K, Hirai Y, Tanabe Y, Noda N, Hagiya M. Using Coq in specification and program extraction of
Hadoop MapReduce applications. Proc. Int. Conf. Software Engineering and Formal Methods (SEFM),
LNCS 7041, Springer, 2011; 350–365. 28

18. Dörre J, Apel S, Lengauer C. Static type checking of Hadoop MapReduce programs. Proc. Int. Workshop
on MapReduce and its Applications (MapReduce), ACM, 2011; 17–24. 29, 39

19. Yang HC, Dasdan A, Hsiao RL, Parker DS. Map-Reduce-Merge: Simplified relational data processing on
large clusters. Proc. Int. Conf. Management of Data (SIGMOD), ACM, 2007; 1029–1040. 34

20. Jiang D, Tung AKH, Chen G. Map-Join-Reduce: Toward scalable and efficient data analysis on large
clusters. IEEE Trans. Knowledge and Data Engineering (TKDE) 2011; 23(9):1299–1311. 35

21. Bu Y, Howe B, Balazinska M, Ernst MD. HaLoop: Efficient iterative data processing on large clusters.
Proc. VLDB Endowment 2010; 3(1–2):285–296. 35

22. Zhang Y, Gao Q, Gao L, Wang C. iMapReduce: A distributed computing framework for iterative
computation. J. Grid Computing 2012; 10(1):47–68. 35

23. Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in
MapReduce. Proc. VLDB Endowment 2010; 3(1–2):494–505. 35

24. Babu S. Towards automatic optimization of MapReduce programs. Proc. Int. Symp. Cloud Computing
(SoCC), ACM, 2010; 137–142. 35

25. Herodotou H, Babu S. Profiling, what-if analsyis, and cost-based optimization of MapReduce programs.
Proc. VLDB Endowment 2011; 4(11):1111–1122. 35

26. Herodotou H, Dong F, Babu S. MapReduce programming and cost-based optimization? Crossing this
chasm with starfish. Proc. VLDB Endowment 2011; 4(12):1446–1449. 35

27. Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin FB, Babu S. Starfish: A self-tuning system for
big data analytics. Proc. Bienn. Conf. Innovative Data Systems Research (CIDR), Online proceedings,
2011; 261–272. 35

28. Cafarella MJ, Ré C. Manimal: Relational optimization for data-intensive programs. Proc. Int. Workshop
on the Web and Databases (WebDB), ACM, 2010; 10:1–10:6. 35

29. Jahani E, Cafarella MJ, Ré C. Automatic optimization for MapReduce programs. Proc. VLDB Endowment
2011; 4(6):385–396. 35

30. Morton K, Balazinska M, Grossman D. ParaTimer: A progress indicator for MapReduce DAGs. Proc. Int.
Conf. Management of Data (SIGMOD), ACM, 2010; 507–518. 35

31. Morton K, Friesen A, Balazinska M, Grossman D. Estimating the progress of MapReduce pipelines. Proc.
Int. Conf. Data Engineering (ICDE), IEEE Computer Society, 2010; 681–684. 35

32. Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I. Improving MapReduce performance in
heterogeneous environments. Proc. USENIX Symp. Operating Systems Design and Implementation
(OSDI), USENIX Association, 2008; 29–42. 35

33. Quiané-Ruiz JA, Pinkel C, Schad J, Dittrich J. RAFTing MapReduce: Fast recovery on the RAFT. Proc.
Int. Conf. Data Engineering (ICDE), IEEE Computer Society, 2011; 589–600. 35

34. Quiané-Ruiz JA, Pinkel C, Schad J, Dittrich J. RAFT at work: Speeding-up MapReduce applications
under task and node failures. Proc. Int. Conf. Management of Data (SIGMOD), ACM, 2011; 1225–1228.
35

35. Dittrich J, Quiané-Ruiz JA, Jindal A, Kargin Y, Setty V, Schad J. Hadoop++: Making a yellow elephant
run like a cheetah (without it even noticing). Proc. VLDB Endowment 2010; 3(1–2):515–529. 35

36. Chambers C, Raniwala A, Perry F, Adams S, Henry RR, Bradshaw R, Weizenbaum N. FlumeJava: Easy,
efficient data-parallel pipelines. Proc. Int. Conf. Programming Language Design and Implementation
(PLDI), ACM, 2010; 363–375. 35

37. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: A not-so-foreign language for data
processing. Proc. Int. Conf. Management of data (SIGMOD), ACM, 2008; 1099–1110. 35

38. Chattopadhyay B, Lin L, Liu W, Mittal S, Aragonda P, Lychagina V, Kwon Y, Wong M. Tenzing A SQL
implementation on the MapReduce framework. Proc. VLDB Endowment Aug 2011; 4(12):1318–1327. 35

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/

38

39. Pike R, Dorward S, Griesemer R, Quinlan S. Interpreting the data: Parallel analysis with Sawzall. Science
of Computer Programming (SCP) 2005; 13(4):277–298. 35

40. Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hive – A
warehousing solution over a Map-Reduce framework. Proc. VLDB Endowment 2009; 2(2):1626–1629. 35

41. Friedman E, Pawlowski PM, Cieslewicz J. SQL/MapReduce: A practical approach to self-describing,
polymorphic, and parallelizable user-defined functions. Proc. VLDB Endowment 2009; 2(2):1402–1413.
35

42. Wedler C, Lengauer C. On linear list recursion in parallel. Acta Informatica 1998; 35(10):875–909. 36

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

39

A. JAVA SKELETON FOR HADOOP MAPREDUCE

In this section, we provide more detail of the Java incarnation of our functional model. We
pay special attention to the typing issues that arise because of the use of generic types in Java,
in continuation of our work on improved static typing for MapReduce programs [18].

On the implementation side, we use Java and Hadoop for our example MapReduce programs.
In our functional model (Section 3.1), we have extracted the most important parameters from
the many parameters that Hadoop and other MapReduce frameworks accept. If we port
the functional model to Java, the result is a Java program skeleton that is very similar to
our Haskell program skeleton of MapReduce. The main difference is that, on the Java side,
because of the pervasive use of reflection in Hadoop, we really have a meta-program with more
flexibility than we could attain in plain Haskell. This flexibility allows us to introduce an
additional parameter (a natural number) that specifies exactly the number of Reducer tasks
to run. (We have already used this parameter in the cost model and in the optimization rules.)
There are three possible kinds of behavior and associated (Java) types of result data depending
on the value of this numeric parameter.

• With zero Reducer tasks, only the Mapper function is run. The user-defined
Partitioner, SortComparator, GroupingComparator, Combiner, and Reducer

functions are not used. Consequently, the user-defined type of the final output data
is given by the return type of the Mapper function, and not by the return type of the
Reducer function, as would normally be the case.

• With one Reducer task, any Partitioner specified produces only a single partition.
Thus, the single Reducer task processes all intermediate data, and it has a global view
of this data.

• With any larger number of Reducer tasks, everything happens as normal (as described
in Section 2.1).

The types in last two cases can be unified, regarding a single result as a singleton list, but the
MapReduce program skeleton still has two different possible result types.

No Compile-Time Checks Of course, the flexibility of selecting different behaviors, via a
numeric value at run time, comes at a price. For example, unlike in Haskell (the programming
language of our functional model), two MapReduce programs using the Java skeleton cannot
be composed in a type-safe manner, because they are not fully type-checked until run time.
One would need to take the number of Reducer tasks specified into account to be able to
decide between the two possible result types of the first MapReduce program, and to verify
type correctness. Of course, this would be possible using an external type checker; yet, in our
current implementation, this is impossible to achieve at compile time, because there is only a
thin wrapper library around the Hadoop Java API that uses the standard Java type-checker
and its support for generics. The best we could do is to provide a separate skeleton for the
case of zero Reducer tasks, and to throw a run-time error if the user specifies a zero value
in the normal skeleton which would, thus, be restricted to accept only a number of Reducer
tasks larger than zero as parameter. Using this approach, we could then extract the skeleton

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

40

parameters into different variants of data objects, and provide a type-safe composition function
with run-time checks for them.

Types To represent the parametric types of our functional model, we have to resort to Java
Generics. The drawbacks of using Java Generics are the following: they have no representation
of type parameters at run time, not even in reflective values, and their interaction with
subclassing is difficult. So, our Java skeleton is a Java method parameterized with six type
parameters for the types of keys and values of input, intermediate and output data (Figure 5).
Let us proceed to explaining the parameters of this method. Its first parameter (of type Job)
will be explained further down. We represent the most important parameters using normal
Java values to circumvent some of the problems with Java reflection mentioned. These are
the Mapper and Reducer function (and the Combiner function in the variant of the skeleton
with Hadoop Combiner function). We check that the Mapper and Reducer function work on
the same type of intermediate data (key–value pairs with key of type K2 and values of type
V2). The next parameter for the (natural) number of Reducer tasks is represented using a
Java int. All other parameters are reflective Java values (Class<Type>). For them, we also
document expected nested type parameters in Figure 5 in comments (/* ... */). The first
of these parameters is the Partitioner function, defined on keys and values of intermediate
data. The comparator functions for sorting and grouping are specified next; they work on
serialized data. Compared to the functional model, there are four additional parameters: the
types of keys and values of intermediate data and of final output data, respectively. They are
needed for serialization.

public static <K1,V1, K2,V2, K3,V3>
void mrSkeletonNoCombiner(Job job,

Mapper <K1,V1, K2,V2> mapF,
Reducer <K2,V2, K3,V3> redF,
int numReduceTasks,
Class<? extends Partitioner/*<? super K2, ? super V2>*/> partF,
Class<? extends RawComparator/*<K2>*/> sortF,
Class<? extends RawComparator/*<K2>*/> groupF,
Class<K2> mapKeyClass, Class<V2> mapValueClass,
Class<K3> keyClass, Class<V3> valueClass)

throws IllegalStateException { /* ... */ }

Figure 5. The signature of a variant (without Hadoop Combiners) of our skeleton in Java, interfacing
Hadoop.

Implementation The return type of our skeleton is void, because its implementation is
based on a side-effect. It uses Hadoop’s Java API to set, in a Hadoop Job object (the first
parameter of our skeleton), the corresponding reflective values for all skeleton parameters,
whether they be already reflective values or given as Java objects. This Job object can then
be used to start a distributed Hadoop job. (As an aside: a job already running cannot be
configured any further, which leads to the IllegalStateException mentioned in the type.)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

41

In Figure 6, we show a call to this Java skeleton, which is suitable for the Sequential variant
of the MSS example program. As described before, the first parameter is the Hadoop Job

object to be configured.

public class MssMainIndexedSequential /* ... */ {

Mapper<LongWritable, Text, LongWritable, LongWQuadruple>
map = new IndexedTextToLongWQuadrupleValueMapper();

Reducer<LongWritable,LongWQuadruple, LongWritable,LongWQuadruple>
reduce = new IndexedMssReducerRelaxed();

mrSkeletonNoCombiner(job,
map,
reduce,
1,
HashPartitioner/*<LongWritable,Object>*/

/*<Object,Object>*/.class,
NaturalLongWritableComparator.class,
AllEqualComparator/*<LongWritable>*/ /*<Object>*/.class,
LongWritable.class, LongWQuadruple.class,
LongWritable.class, LongWQuadruple.class);

/* ... */
}

Figure 6. A call (from the Sequential program for the MSS problem) to the Java skeleton shown in
Figure 5.

We store the Mapper (map) and Reducer (reduce) objects in separate variables make the
types that they use explicit. The input (when read by the standard Hadoop TextInputFormat)
consists of the (binary) position offset in the current input file as the key of type LongWritable,
and the textual values of index and data item as the value of type Text. These are the first
two type parameters of the Mapper object used. The text is then parsed, the index is stored
in the intermediate key of type LongWritable, and the data item is stored as a quadruple
with four identical entries in the value of type LongWQuadruple. This is needed to apply a
homomorphism to the data: we need to store this additional information in the intermediate
data to be able to re-combine partial results (for contiguous data) in multiple passes, and
even to forgo the need to store all input data. The Reducer function implements a true
reduction on this intermediate data; in consequence, it produces output of the same type.
The Mapper and Reducer objects are the second and third parameters of the MapReduce
skeleton (in the variant without Hadoop Combiner function), which guarantees that the types
of intermediate data used by Mapper and Reducer function coincide. This can be checked by
looking at the declarations of map and reduce. They also need to coincide with the types
represented by the Java class literals that are the four last parameters of the skeleton (two
for intermediate keys/values, two for output keys/values). The remaining parameters are the
number of Reducer tasks in a sequential program (1), and the class literals of the functions
for partitioning, sorting, and grouping the type of intermediate data used.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

42

B. DESCRIPTIONS OF SUBJECT PROGRAMS

In this section, we describe how the optimization rules (Section 4) must be instantiated for
the subject programs used in the experiments (Section 5.2.2).

B.1. Multiset Homomorphism: Max

The Max problem can be defined using an associative, commutative, binary reduction operator
max (which is the parameter of reduce; see Section 2.4). Commutativity entails that the order
of elements in the input list (and also in possible intermediate result lists) does not matter,
so the input can be regarded as a multiset. Furthermore, every reduction can be regarded
as a list homomorphism with the identity function (id), both as the parameter to the map

combinator and as the post-processing function. Thus, a Haskell implementation of the Max
problem might look as follows:

maximum = (id) . reduce(max) . map(id)

Finally, every list homomorphism with a commutative reduction operator is a multiset
homomorphism. So, this Haskell implementation of Max is a multiset homomorphism, too.

Max MapReduce Programs Let us now describe three different implementations of Max
in MapReduce, and how to get from one to the next, using the optimization rules stated
in Section 4.3.

Sequential There are two variables on the left-hand side of rule M-Par (Section 4.3.1),
which have to be instantiated for the Max problem: Mapper function m and Reducer function
r. The Mapper function m is called on each a line of the input text file. It splits the line into
key and value, discards the unnecessary index in the key, parses the value into a Java long

integer, converts it to a Hadoop LongWritable, and returns it together with a constant key.
The Reducer function r iterates over the LongWritable values that are passed to it, converts
each value into a Java long integer, reduces all these values using the max function, and finally
converts the single result to a Hadoop LongWritable and returns it together with a constant
key.

TwoStep We use rule M-Par to create a two-step parallel MapReduce program for the
Max problem. On the right-hand side of rule M-Par, Reducer function r is already bound
to the value used on the left-hand side of this rule. The additional variables that need to be
instantiated are Mapper function m’ and Combiner function c. They are constrained by the
relations in the condition of the rule. The choice of Combiner function c is given by Reducer

function r. Concerning Mapper function m’, there is some freedom in the set to which the
input keys are mapped: we need to map the set of all input keys to a (not too) small set
of different intermediate keys. This is because we need a certain number (some hundreds or
thousands) of segments, which will be processed in parallel. So, we need sufficiently many
keys for parallelism in the first MapReduce program step and, at the same time, not too many

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

43

groups of keys in this step, to reduce the input size in the first program step only, such that the
second step does not dominate execution time. Having the GroupingComparator defined to
yield always a single group simplifies things: we need not bother about the number of groups,
and we can just re-use the input key set (long integer).

Optimized Now we can use rule M-Comb to derive an even more optimized, single-step
parallel MapReduce program for the Max problem. Combiner function c and Reducer function
r on the right-hand side of rule M-Comb are already bound by the left-hand side. As to Mapper
function m, we can just re-use the Mapper function from the Sequential Max program (also
named m there).

B.2. List Homomorphism: MSS

To parallelize MSS, we formulate it as a list homomorphism, a function that operates on
lists while respecting their structure. To encode MSS as a list homomorphism, we need, as a
parameter to the map function, a simple function f that maps a value to a quadruple (encoded
as a pair of pairs), which is necessary to store additional intermediate values. These are needed
if we do not process all input sequentially. Parameter g of the reduce function has to operate
on two of these quadruples, producing a third, and will consequently be more complex than f.
It can be expressed as a combination of one addition operator and two maximum operators.
The post-processing function will then extract the first component from the single final nested
pair.

MSS MapReduce Programs As with the Max programs, we now describe three different
MapReduce implementations of MSS, and how to get from one to the next.

Sequential In the first variant of the MSS Hadoop program, we also have a single group
and a single partition of intermediate values, as for the Max program. Additionally, the
elements of the only group have to be in input order for correctness. We state this in the
program by specifying an own SortComparator that compares elements based on their indices.

TwoStep We use rule L-Par to create a two-step parallel MapReduce program for the
MSS problem. Because we have multiple partitions, it is now also important in which way
the data are partitioned. By default, Hadoop uses hashing and modulo calculations here. To
preserve correctness, we must only process contiguous list segments at a time (instead of lists of
interleaved list elements). So, we specify an own Partitioner function that uses long integer
division internally.

Optimized We can now use rule L-Comb to derive an even more optimized, single-step
parallel MapReduce program for the MSS problem. In other words, we would like to replace
the Reducer tasks in the first MapReduce job with a Combiner function, to be able to fuse the
two jobs later on. Unfortunately, in Hadoop, the framework may choose to run a Combiner

function more than once. This has two consequences for a MapReduce program using standard
Hadoop Combiner functions.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

44

First, correctness is lost if a Combiner function assumes to be fed original input while
it cannot be applied in a semantically correct way to intermediate results. This happens,
for example, if a Combiner function for MSS assumes contiguous indices in its input, yet
it produces non-contiguous ones, for it can only keep one index for all the values which it
consumes.

Second, efficiency may degrade even more seriously if a Combiner function does not reduce
the data volume much. Then, the Combiner function runs multiple times over largely the same
data, mostly incurring costs without achieving much.

As a consequence, we cannot use the way in which Hadoop runs Combiner functions. Instead,
we call the Combiner function directly from our Mapper function. This is a manual replacement
for the former Hadoop behavior, and it assures that the Combiner function is only called once,
thus, preserving correctness and efficiency.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

	Introduction
	Background
	MapReduce
	Foundations from Universal Algebra
	Correctness Conditions for Combiner Functions
	Combinators and List Homomorphisms

	A Model of MapReduce
	Functional Model
	Types
	Basic Syntax
	Data flow

	Modelling Performance
	Cost Model
	Basic Parameters
	Explanation of Each Cost Term
	Relation to the Functional Model

	Optimization of MapReduce Programs
	Implementing Homomorphisms Using MapReduce
	Optimization Rules
	Optimization of Multiset Homomorphisms
	Multiset Parallelization Rule
	Multiset Combiner Rule

	Optimization of List Homomorphisms
	List Parallelization Rule
	List Combiner Rule

	Experiments
	Research Question
	Experimental Setup
	Java MapReduce Skeleton
	Subject Programs
	Test Input Data

	Experiments
	Measurement Setup
	Performance Results

	Discussion

	Related Work
	Conclusions and Future Work
	Acknowledgements
	Java Skeleton for Hadoop MapReduce
	Descriptions of Subject Programs
	Multiset Homomorphism: Max
	List Homomorphism: MSS

