
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-04-2011

Flexible Dynamic Software Updates of Java
Applications: Tool Support and Case Study

M. Pukall, C. Kaestner, W. Cazzola, S. Goetz, A. Grebhahn,
R. Schroeter, G. Saake

Arbeitsgruppe Datenbanken

�

2

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.:

3

FIN-04-2011

Flexible Dynamic Software Updates of Java
Applications: Tool Support and Case Study

Arbeitsgruppe Datenbanken

M. Pukall, C. Kaestner, W. Cazzola, S. Goetz, A. Grebhahn,
R. Schroeter, G. Saake

Technical report (Internet)
Elektronische Zeitschriftenreihe
der Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg
ISSN 1869-5078

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120
39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Technical_reports.html
Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss:

Bezug: Otto-von-Guericke-Universität Magdeburg
 Fakultät für Informatik
 Dekanat

4

Mario Pukall

mario.pukall@iti.cs.uni-magdeburg.de

30.03.2011

Flexible Dynamic Software Updates of Java
Applications: Tool Support and Case Study

Mario Pukall1, Christian Kaestner2, Walter Cazzola3, Sebastian Goetz4,
Alexander Grebhahn, Reimar Schroeter1, and Gunter Saake1

1 University of Magdeburg
mario.pukall@iti.cs.uni-magdeburg.de

{alexander.grebhahn, reimar.schroeter}@st.ovgu.de
saake@ovgu.de

2 Philips-University Marburg
kaestner@informatik.uni-marburg.de

3 University of Milano
cazzola@dico.unimi.it

4 TU Dresden
sebastian.goetz@acm.org

Abstract. Software is changed frequently during its life cycle. New re-
quirements come and bugs must be fixed. To update an application it
usually must be stopped, patched, and restarted. This causes time pe-
riods of unavailability which is always a problem for highly available
applications. Even for the development of complex applications restarts
to test new program parts can be time consuming and annoying. Thus,
we aim at dynamic software updates to update programs at runtime.
There is a large body of research on dynamic software updates, but so
far, existing approaches have shortcomings either in terms of flexibil-
ity or performance. In addition, some of them depend on specific run-
time environments and dictate the program’s architecture. We present
JavAdaptor, the first runtime update approach based on Java that (a)
offers flexible dynamic software updates, (b) is platform independent, (c)
introduces only minimal performance overhead, and (d) does not dictate
the program architecture. JavAdaptor combines schema changing class
replacements by class renaming and caller updates with Java HotSwap
using containers and proxies. It runs on top of all major standard Java
virtual machines. We evaluate our approach’s applicability and perfor-
mance in a nontrivial case study and compare it to existing dynamic
software update approaches.

1 Introduction

Once a program goes live and works in productive mode its development is not
completed. It has to be changed because of bugs and new requirements. In order
to maintain a program, it usually must be stopped, patched, and restarted. This
downtime is always a problem for applications that must be highly available.
But, also for the development of complex applications restarts to test the new

5

program parts can be time consuming and annoying. This is also true for end-user
desktop applications that have to be restarted because patches must be applied
[4]; end users prefer update approaches that do not interrupt their tasks. For
that reasons, we aim at dynamic software updates (DSU), i.e., program updates
at runtime.

Even though dynamic languages like Smalltalk, Python, or Ruby natively
support runtime program changes, we address Java for several reasons. First,
Java is a programming language commonly used to implement highly avail-
able applications. Examples are Apache Tomcat, Java DB, or JBoss Application
Server. Second, in most fields of application Java programs execute faster than
programs based on dynamic languages [11]. Thus, developers often prefer Java
over dynamic languages in time-critical scenarios. Amongst others, one reason
for the better performance is that Java is a statically typed language. Unfor-
tunately, compilation prevents Java and other statically typed languages such
as C or C++ from natively offering powerful instruments for runtime program
updates.

Literature suggests a wide range of DSU approaches for Java (see related
work in Section 6). The flexibility of an approach can be determined by answer-
ing the following three questions: Are unanticipated changes allowed (i.e., can
we apply requirements for which the running program was not prepared)? Can
already loaded classes (including their schema) be changed, and is the program
state kept beyond the update? Other quality criteria for a DSU approach are the
caused performance overhead, the influence on the program architecture and the
platform independency. We believe that it is impossible to prepare an application
for all potential upcoming requirements. Furthermore, only offering modifica-
tions of not previously executed program parts while disregarding the executed
parts (e.g., already loaded classes) restricts the application of program changes.
In addition, state loss and major performance overhead are unacceptable in
many scenarios as well. Next, we argue that DSU approaches should not dictate
the program’s architecture, i.e., they should be capable of being integrated into
the program’s natural architecture (different application domains might require
different architectures). Last but not least, runtime update approaches should
not force the customer to use a specific platform for program execution, e.g.,
to use a Windows based Java Virtual Machine even though the customer only
runs Linux based machines. For all these reasons, we aim at (a) flexible, (b)
platform independent, and (c) performant runtime update approaches that (d)
do not affect the program’s natural architecture. However, we do not (yet) aim
at a solution that fully ensures consistency regarding runtime semantics (which,
to our best knowledge, is not supported by any existing DSU approach which is
applicable in real world scenarios). In other words, our goal is to provide Java
with the same runtime update capabilities known from dynamic languages.

Researchers spent a lot of time to overcome Java’s shortcomings regarding
runtime program adaptation. Approaches like Javassist [6,7] and BCEL [8] allow
to apply some unanticipated changes, but only to program parts that have not
been executed yet. In contrast, Steamloom [17], Reflex [41], PROSE [29], DUSC

6

Construct to be changed Related Elements
C
la
ss
e
s

(1) Class Declaration Modifiers, Generic, Inner Classes, Superclass, Subclasses,
Superinterfaces, Class Body, Member Declarations

(2) Class Members Fields, Methods

(3) Field Declarations Modifiers, Field Initialization, Field Type

(4) Method Declarations Modifiers, Signature (Name, Parameters), Return Type,
Throws, Method Body

(5) Constructor Declarations Modifiers, Signature (Name, Parameter), Throws, Con-
structor Body

(6) Blocks Statements

(7) Enums Enum Declaration, Enum Body

In
te

rf
a
c
e
s

(8) Interface Declaration Modifiers, Generic, Superinterface, Subinterface, Interface
Body, Member Declarations

(9) Interface Members Fields, Method Declarations

(10) Field (Constant) Declarations Field Initialization, Field Type

(11) Abstract Method Declarations Signature (Name, Parameters), Return Type, Throws

(12) Blocks Statements

(13) Annotations Annotation Type, Annotation Element

Table 1. Language Constructs of Java 1.6 [13].

[31], AspectWerkz [3], Wool [36], or JAsCo [43] allow unanticipated changes even
of executed program parts; however, Steamloom, Reflex, PROSE, AspectWerkz,
Wool, and JAsCo do not support class schema changing runtime updates. Al-
though DUSC allows class schema changes the program loses its state. Another
dynamic software update approach is JRebel [19] which puts abstraction layers
between the executed code and the JVM. It enables class schema changes except
from modifications of the inheritance hierarchy. Kim presents in [21] a DSU ap-
proach based on proxies which, similar to JRebel, only enables schema changes
that not affect the inheritance hierarchy.

We present JavAdaptor, the first (to our best knowledge) dynamic software
update approach that fulfills all our quality criteria postulated above: it is flexi-
ble, platform independent, performant, and it does not affect the architecture of
the program to be updated. To meet the criteria, we utilize Java HotSwap in an
innovative way and combine it with class replacement mechanisms. Technically,
we update all classes with a changed schema via class replacements and update
their callers with the help of Java HotSwap. The key concepts of our solution are
class renamings (to replace classes) and containers respectively proxies (to avoid
caller class replacements). Furthermore, we contribute a discussion of desired
properties for DSU approaches and a detailed survey off related approaches and
their trade offs. Last but not least, we demonstrate the applicability of our ap-
proach in a nontrivial real world scenario and show that the performance drops
are minimal.

7

2 Motivating Example

Program maintenance is not a trivial task, which usually affects many parts of a
program. Depending on the requirements, it ranges from single statement mod-
ifications to complex structural modifications, i.e., it might affect all language
constructs of Java as listed in Table 1.

TempSensor

Sensor {
...

currentTemp() {

}

}

TempDisplay {

TempSensor ts;

...

displayTemp() {

ts.currentTemp();

...

}

}

TempSensor {

Sensor s;

...

currentTemp() {

}
}

TempDisplay {

TempSensor ts;

...

displayTemp() {

ts.currentTemp();

...

}

}

TempSensor {

Sensor s;

...

averageTemp() {

}

}

TempDisplay {

TempSensor ts;

...

displayTemp() {

ts.averageTemp();

...

}

}

1st
DSU

2nd
DSU

Fig. 1. Weather station.

The weather station program depicted in Figure 1 examplifies that even sim-
ple program changes can affect many parts of a program. The weather station
program consists of 2 classes. One class (TempSensor) measures the air tem-
perature while the other class (TempDisplay) is responsible for displaying the
temparature. Consider a maintenance task: the actual measuring algorithm (av-
erage temperature) must be replaced by another measuring algorithm (current
temperature). Because the service provided by the weather station must be non-
stop available, stopping the program in order to apply the necessary changes is no
option; we want to change it at runtime. The application of the new functionality
requires to change different parts of the program. First, method averageTemp of
class TempSensor must be replaced by method currentTemp which requires to
change the class schema. Second, in order to execute the new algorithm method
displayTemp of class TempDisplay must be reimplemented. Short time after ap-
plying the new measuring algorithm it was also decided to let TempSensor inherit
from class Sensor in order to add new functions to TempSensor while avoiding
to implement them again. Therefore, statement extends Sensor has to be ap-
plied to class TempSensor. Additionally, member s of original class TempSensor

8

has to be removed because superclass Sensor let it become useless. However,
changing the program code is only the first step toward an updated application.
In addition, all objects that exist in the program must be also updated to let
them access the new program parts as well as to keep the program state.

Even if the required program changes seem to be simple, they affect many
different parts of the program (i.e., points 1-6 of Table 1). Therefore, we search
for a new mechanism in Java that allows to change every part of a program at
runtime without anticipating the changes.

3 The Java Virtual Machine

In order to understand what is provided or possible in Java and what challenges
remain regarding runtime adaptation, it is necessary to understand the standard
design of Java’s runtime environment – the Java virtual machine (JVM)[45]. As
shown in Figure 2, a Java program is stored in the heap, in the method area,
as well as on the stacks of the JVM. Within the heap the runtime data of all
class instances are stored [25]. In case a new class instance has to be created,
the JVM explicitly allocates heap memory for the instance, whereas the garbage
collector cleans the heap from data bound to class instances no longer used by
the program. Unlike the heap, the method area stores all class (type) specific
data such as runtime constant pool, static field information and method data,
and the code of methods (including constructors) [25]. The stacks contain the
currently executed program parts.

Changing a program during its execution in the JVM requires to modify the
data within the heap, the method area, and on the stacks. For instance, program
changes such as depicted in Figure 1 which also include method replacements
require to extensively change the data of a class. In general, they require to
modify the class schema. Unfortunately, the JVM does not permit class schema
changes, because class schema changes may let the data on the stack, on the
heap, and the class data stored in the method area become inconsistent while
the JVM does not provide functions to synchronize them. In order to disallow
the developer class schema changing updates, the JVM enforces a strict class
loading concept. To load a class, the JVM requests the following basic class
loaders (in this order): (a) the bootstrap class loader (root class loader – loads
system classes), (b) the extension class loader (loads classes of the extension
library), and (c) the application class loader (loads classes from classpath). The
first class loader in this hierarchy that is able to load the requested class will be
finally bounded to this class, i.e., none of the other class loaders is allowed to
load or reload this class. The only way (beside customized class loaders that we
will discuss in later sections) to reload (update) a class with a changed schema is
to unload the old class version, which is only possible if the owning class loader
can be garbage collected. Unfortunately, a class loader can only be garbage
collected if all classes (even the unchanged ones) loaded by this class loader are
dereferenced, which is equivalent to a (partial) application stop.

9

class loader
subsystemclass files

runtime data areas

method
area heap Java

stacks
pc

registers

native
method
stacks

execution
engine

native method
interface

Native
method

libraries

Fig. 2. Program representation – HotSpot JVM [45].

Java HotSwap. Despite the insufficient native runtime adaptation support
of the JVM there is one feature that provides some simple runtime update ca-
pabilities – called Java HotSwap [9]. It is provided by the Java Virtual Machine
Tool Interface (JVMTI) [39] and allows to replace the body of a method (which
partly covers points 4 - 6 of Table 1) while the program is running. Even if
HotSwap is not a standard feature, it is implemented by all major Java virtual
machines commonly used in production, i.e., the HotSpot JVM, the JRockit
JVM, and IBM’s JVM.

The class data restructuring via Java HotSwap consists of the following steps:
First, an updated version of a class is loaded into the JVM. It contains the new
method bodies. Second, it is checked if old and new class version share the same
class schema. Third, the references to the constant pool, method array, and
method objects of the old class are successively (in the given order) redirected
to their (up-to-date) counterparts within the updated class. After this is done, all
corresponding method calls refer to the redefined methods. Unfortunately, Java
HotSwap (and other features of JVMTI) neither allows to swap the complete
class data nor removing or adding methods, i.e., it does not allow class schema
changes.

10

4 Dynamic Software Updates via JavAdaptor

Having described the shortcomings of Java’s runtime environment, i.e., the JVM,
regarding flexible runtime program updates, we present JavAdaptor which over-
comes the limitations of the Java VM and adds flexible DSU to Java while not
causing platform dependencies, architecture dependencies, and significant per-
formance drops. It combines Java HotSwap and class replacements, which are
implemented via containers and proxies.

Implement updates via IDE

Connect to running application

Update running application

Disconnect from running application

connected?

more
updates?

no

yes

no

yes

Fig. 3. Update process.

4.1 Tool Description and Demonstration

Before we describe the concepts of our DSU approach, let us illustrate the general
architecture and update process of JavAdaptor.

Tool Description. Figure 3 describes JavAdaptor from the developers point
of view. The current implementation of our tool comes as a plug-in which
smoothly integrates into the Eclipse IDE (conceptually JavAdaptor could be
integrated into any other IDE or even used without an IDE). The implemen-
tation of the required program updates conforms to the usual static software
development process, i.e., the developer implements the required functions using
the Eclipse IDE and compiles the sources. This ensures type-safety because of
the static type checking done by the compiler.

When the developer decides to update the running application, JavAdaptor
establishes a connection to the JVM executing the application (see Figure 4).

11

IDE

JavAdaptor

JDI

Target JVM

Application

JVMTI

Update Thread Class Loaders
Update Logic

Class
Class_v1
Class_v2
Class_v3
Class_v4
Class_v5

code change

create new class version using Javassist

Invoke JVMTI to: load new class versions,
update caller, and hotswap method body

implementations

Developer

load

Fig. 4. Dynamic software update architecture.

In more detail, it connects to the JVM’s Java Virtual Machine Tool Interface
(JVMTI) which is used to control the JVM [39] (accessible from outside the JVM
through the Java Debug Interface which is part of the Java Platform Debugger
Architecture [40]). Once the update process is triggered, JavAdaptor prepares
the classes changed within Eclipse so that they can be applied to the running
application. The required bytecode modifications are performed by Javassist.5 In
order to load and instantiate new class versions, a special update thread is added
to the target application. This thread is only active when the running program
is updated and, thus, causes no performance penalties during normal program
execution. After the update, JavAdaptor disconnects from the application. The
described process can be repeated as often as required.

Tool Demonstration. Because abstract descriptions on the usage of tools
are sometimes hard to understand and do not reflect the reality well, we cre-
ated a tool demonstration showing JavAdaptor in action. Concretely, we used
JavAdaptor to update the well-known arcade game Snake at runtime. The up-
date consists of 4 different steps which each add new functions to the (at startup)
very basic game. It required to redefine existing methods, to add new methods
and fields, and even to update inheritance hierarchies. That is, the demonstra-
tion covers all kinds of updates essential to flexibly update running applications.
For more information about our tool demo see [34]. The corresponding demo
video is available on YouTube.6

5 http://www.csg.is.titech.ac.jp/~chiba/javassist/
6 http://www.youtube.com/watch?v=jZm0hvlhC-E

12

In the following, we describe the basic mechanisms how JavAdaptor changes
applications running in the target JVM, namely class replacements using con-
tainers and proxies.

4.2 Class Reloading

As stated in Section 3, the JVM disallows updating an already loaded class when
the update alters the class schema. In order to circumvent these restrictions we
perform class replacements (updates) through class renaming. As exemplified in
Figure 5, the key idea is that, while we cannot load a new class version with the
same name, we rename the new version and load it under a fresh name. Since
the resulting class name is not registered in any class loader, the updated class
can be loaded by the same class loader that also loaded the original class.

TempSensor_v2 { ... }TempSensor { ... } Replacement

Fig. 5. Class renaming.

Listing 1.1 sketches how class loading based on class renaming is implemented
in JavAdaptor. The renamed and updated class (here class TempSensor v2 from
our motivating example depicted in Figure 1) is created by our adaptation tool
(using the source level API of Javassist to manipulate the bytecode in Lines 7-8).
In the next step, the adaptation tool invokes method loadClass (Line 12) of class
UpdateHelper which resides in the update thread added to the target application
on application start. By invoking loadClass within the target application, the
new class version is loaded by the same class loader that loaded the original
class (Listing 1.2, Line 20), which ensures that our DSU approach is compatible
with any application employing multiple class loaders (e.g., component based
applications).

4.3 Caller Side Updates

As demonstrated above, our class reloading mechanism allows us to load a new
version of an already loaded class even if the class schema has changed. However,
the mechanism only triggers the loading of the updated class. To let the class
become part of program execution, all references to the original class have to be
changed to point to the new class version. For the sake of clarity, we will name
the classes which hold references to classes to be reloaded (updated) callers and
the classes subject to updates callees. In addition, the terms caller side and callee
side cover the class itself as well as all its instances.

When it comes to short-lived objects, such as local variable local of class
TempDisplay (Figure 6), only method body redefinitions are required to refer

13

Listing 1.1. JavAdaptor – class reloading.

1 class ClassUpdateLoader {
2 VirtualMachine targetJVM;
3 ...
4 void replaceClass(String oldClassName) {
5 if(isOldClassLoaded) {
6 ...
7 CtClass c = classpool.getCtClass(oldClassName);
8 c.replaceClassName (oldClassName, newClassName);
9 ...

10 ReferenceType refT = targetJVM.classesByName("UpdateHelper").get(0);
11 ObjectReference uHelper = refT.instances(0).get(0);
12 uHelper.invokeMethod(t, loadClass, args[newClassName], options);
13 }
14 }
15 }

Listing 1.2. Target VM – class reloading.

16 class UpdateHelper extends Thread{
17 ClassLoader origClassLoader;
18 ...
19 void loadClass(String newClassName) {
20 origClassLoader.loadClass(newClassName);
21 }
22 }

TempDisplay {

...

copy() {

...

TempSensor v2 local =

TempSensor v2();

...

}

}

TempDisplay {

...

copy() {

...

TempSensor local =

TempSensor();

...

}

}

Javassist / HotSwap

Fig. 6. Caller side updates in case of short-lived objects.

to the new class version. This is because with each method execution the local
variables are newly created. Thus, after redefining a method, such as depicted in
Figure 6, the local variables created during method execution will be of type of
the updated class (here of class TempSensor v2). Those updates can be easily
located and applied using the source level API of Javassist and Java HotSwap.

A snippet of the corresponding update code is depicted in Listing 1.3. For
each application class, JavAdaptor checks whether the class references the class
to be updated. Technically, all classes referenced by the caller side are requested
using Javassist method getRefClasses (Line 4). If references to short-lived ob-
jects of type of the old callee class (here of class TempSensor) are found (Line
9), they are redirected method by method to the updated class (Lines 10-17).
After this is done, the updated caller method is redefined using Java HotSwap
(Line 19).

14

Listing 1.3. JavAdaptor – caller update in case of short-lived objects.

1 class CallerUpdateShortLived {
2 ...
3 void detectAndUpdateCaller(CtClass caller) {
4 Collection col = caller.getRefClasses();
5 Iterator colIterator = col.iterator();
6 ...
7 while(colIterator.hasNext) {
8 CtClass callee = (CtClass) caller.getNext();
9 if(callee.getName.compareTo(oldClassName) == 0) {

10 CtMethod[] methods = caller.getDeclaredMethods();
11 ClassMap classMap = new ClassMap();
12 classMap.put("oldClassName", "newClassName");
13 ...
14 for(int i = 0; i < methods.length; i++) {
15 ...
16 methods[i].setBody(bodyCopy, classMap);
17 }
18 ...
19 targetVM.redefineClasses(callerClass);
20 ...
21 }
22 }
23 }
24 }

Different from references to short-lived objects, references to long-lived ob-
jects (such as class or instance field references) are vital beyond method execu-
tions, i.e., they are inherent parts of the caller side. Thus, caller side updates
because of references to long-lived objects of type of the callee must be handled
in a different way. Those updates require four steps: (1) caller detection, (2)
instantiation of the updated callee class, (3) callee side state mapping, and (4)
reference updates.

Listing 1.4. JavAdaptor – caller detection.

1 class CallerUpdateLongLived {
2 ...
3 List<ClassObjectReference> detectCallers() {
4 ReferenceType refL = targetJVM.classesByName(oldClassName);
5 List<ObjectReference> oRefL = refL.instances(0);
6 ...
7 oRefL.get(i).getReferringObjects(0);
8 ...
9

10 }
11 }

Caller Detection. In order to replace the references to instances of the origi-
nal callee class by instances of the new callee class version (as required for class
TempSensor from our motivating example) we have to detect all callers and their
instances that refer to long-lived objects of the original callee class. The JVMTI
supports this operation. A snippet of the caller detection implementation is de-

15

picted in Listing 1.4. First, the class object of the old callee class is retrieved from
the target JVM (Line 4). This object is used to get all instances of the old callee
class (Line 5) via reflection. Again, using the instances all callers are retrieved
(Line 7). This includes even callers whose global fields are of type of a super
class the old class extends, which is possible because the function requests the
objects runtime type and not the static type. In addition, JavAdaptor searches
all application classes for class and instance fields of type of the old callee class
(using Javassist method getRefClasses). This is necessary in order to detect
even caller classes which are not yet loaded, instantiated, or whose instances do
not refer to the callee side because the corresponding class or instance fields are
not yet initialized.

Callee Class Instantiation. In the next update step, JavAdaptor creates for
each instance of the original callee class an instance of the new class version
(here of class TempSensor v2 from our motivation). The new instances will be
used later on to replace the instances of the old class and, thus, to update the
caller side (i.e., class TempDisplay).

Listing 1.5. JavAdaptor – instantiation.

1 class UpdateInstantiation {
2 ClassObjectReference updateHelper;
3 ...
4 void createInstance(String newClassName) {
5 ...
6 updateHelper.invokeMethod(t, newInst, args[newClassName], options);
7 }
8 }

Listing 1.6. Target VM – instantiation.

9 class UpdateHelper extends Thread {
10 Unsafe unsafe;
11 ClassLoader applClassLoader;
12 ...
13 Object newInst(String cName) {
14 Class c = Class.forName(cName, false, applClassLoader);
15 return unsafe.allocateInstance(c);
16 }
17 }

Again, the instantiation is triggered by our adaptation tool. The correspond-
ing code is depicted in Listing 1.5. Method createInstance of our update tool
takes as argument the name of the new class version and invokes method newInst

of class UpdateHelper in the target application which creates an instance of the
new class. Listing 1.6 shows a code snippet of method newInst of the helper
class at application side. Via method forName we retrieve the class object of
the updated class (Line 14). Then we call method allocateInstance of class
sun.misc.Unsafe which performs the instantiation. The reason why we use
sun.misc.Unsafe instead of method newInstance of class Class for instantia-
tion is that it prevents us from initializing the objects twice, i.e., it would require

16

to initialize the objects when they are created and again when they get the state
from their outdated counterparts, which would be inefficient.

Listing 1.7. Target VM – callee state mapping.

1 class UpdateHelper extends Thread {
2 ...
3 void mapState(Object oldObj, Object newObj) {
4 ...
5 newObj.setValue(newField, oldObj.getValue(oldField));
6 ...
7 }
8 }

Callee Side State Mapping. Having finished the instantiation step, JavAdap-
tor has to map the state from old to corresponding new instances. In our example,
this means to map the state from instances of old class TempSensor to instances
of class update TempSensor v2. Due to the simplicity of one-to-one mappings
(mappings of values from fields that exist in both class versions) and mappings
where either fields are removed or added they can be executed automatically.
However, for more complex (indefinite) mappings, e.g., mappings where the type
of a field differs between old and new class but the field name remains the same,
a mapping function must be manually defined by the user. Listing 1.7 sketches
how our adaptation tool implements one-to-one mappings.

Reference Updates. Finally, once for each instance of the original callee class
an instance of the new class version has been created and initialized with the
state of its outdated counterpart, JavAdaptor updates the caller side. That is,
all instances of the original callee class (such as class TempSensor from our
motivation) have to be replaced by the instances of the new callee class (here
class TempSensor v2). Unfortunately, updated and outdated callee class are not
type compatible, thus, objects of the updated class cannot be assigned to fields
of type of the outdated class (such as required to update field ts of caller class
TempDisplay).

Containers. To solve the type incompatibility problem, we use containers
whose usage is exemplified in Figure 7. Before program start, JavAdaptor pre-
pares the program for the container approach, i.e., it adds field cont (Line 11)
to each class in the program using Javassist. The container field does not affect
program execution as long as no callee of the caller class has to be replaced.
To replace a callee instance referenced by the caller class, the program has to
be changed as depicted in the right part of Figure 7. First, JavAdaptor creates
a container class (via Javassist) used to store instances of the new callee class.
Second, our tool assigns a newly created callee instance to an instance of the
container. The container instance is then assigned to field cont within the caller

17

1 TempDisplay {

2 TempSensor ts;

3 ...

4 displayTemp() {

5 ts.averageTemp();

6 ...

7 }

8 }

Program
Start

9 TempDisplay {

10 TempSensor ts;

11 IContainer cont;

12 ...

13 displayTemp() {

14 ts.averageTemp();

15 }

16 }

17 TempDisplay {

18 TempSensor ts;

19 IContainer cont;

20 ...

21 displayTemp() {

22 cont.update.currentTemp();

23 }

24 }

25 Container

26 IContainer {

27 TempSensor v2 update;

28 ...

29 }

DSU

+averageTemp()
TempSensor

+currentTemp()
TempSensor_v2

+averageTemp()
TempSensor

Fig. 7. Containers.

class. Third, the tool redirects all accesses of the old callee instance to the up-
dated callee instance located in the container (Line 22), i.e., the tool redefines
all method bodies (using Javassist) in which the old callee instance is accessed
and swaps the resulting method bodies via HotSwap.

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 TempSensor getSensor() {

6 ts;

7 }

8
9 setSensor(TempSensor ts) {

10 .ts = ts;

11 }

12 }

DSU

13 TempDisplay {

14 TempSensor ts;

15 IContainer cont;

16 ...

17 TempSensor getSensor() {

18 Proxy(cont.update);

19 }

20
21 setSensor(TempSensor ts) {

22 cont.update = ((Proxy)ts).update;

23 }

24 }

25 Proxy TempSensor {

26 TempSensor_v2 update;

27 ...

28 }

Fig. 8. Proxies.

Proxies. The basic container approach described in Figure 7 is sufficient
in many cases. However, it fails when the caller class to be updated contains
methods whose parameters or returned objects are of type of the old callee
class (such as shown in Figure 8, Line 5 and 9). One workaround would be

18

to replace the caller class as well. But, this strategy may result in additional
class replacements which at the worst require to essentially replace all classes of
the system and thus let our DSU approach become inefficient. In order to avoid
cascading class replacements, we extend our approach by proxies (see Figure 8).
Caller updates work in the same manner as described above. Only difference is,
that, in addition to the container class a proxy class is generated.

The idea of proxies is to guide objects of an updated callee class through
the caller methods that require or return objects of type of the old callee class.
The usage of proxies is exemplified on the basis of method getSensor of class
TempDisplay which returns an instance of callee class TempSensor (Line 6). After
replacing callee class TempSensor by class TempSensor v2, method getSensor

has to return an instance of the new callee class which is not possible because
TempSensor and TempSensor v2 are not type compatible. To achieve type com-
patibility, we wrap the instance of TempSensor v2 with an instance of class
Proxy (Line 18). Since the proxy extends class TempSensor it can be returned
by method getSensor. Technically, we use method allocateInstance from class
sun.misc.Unsafe for the proxy instantiation, because it allows us to create
proxy instances even if the proxies super class has no default constructor. In
order to use the returned object wrapped by the proxy at receiver side (i.e.,
within the class that called method getSensor) the object is unwrapped. That
is, the proxy is only used to guide instances of the new callee class through type
incompatible methods. The receiver will finally work with the new callee object
and not with the proxy object. How to propagate instances of the updated callee
class back to the caller (more precisely to the container) is exemplarily shown
in Figure 8 (Line 22). Before method setSensor is called, its parameter (i.e,
an instance of TempSensor v2) is wrapped by a proxy. In order to unwrap and
use the received instance of class TempSensor v2, proxy ts must be cast to type
Proxy.

Listing 1.8. Bytecode modifications proxy: return.

1 TempSensor getSensor() {
2 0 aload_0
3 1 astore_1
4 2 aconst_null
5 3 astore_2
6 4 aload_1
7 5 getfield #15 <TempDisplay.fieldContainer1265725244704>
8 8 checkcast #17 <TempDisplay_Cont_1>
9 11 getfield #21 <TempDisplay_Cont_1.ts>

10 14 astore_2
11 15 aload_2
12 16 invokestatic #27 <TempSensor Proxy 1.newInst>
13 19 checkcast #29 <TempSensor>
14 22 areturn
15 }

Proxy Bytecode Modifications. Up to this point, most of the required
bytecode modifications described above could be processed using the source level

19

API of Javassist which makes bytecode modifications easy to handle. However,
the modifications required to apply proxies exceed the power of Javassist’s source
level API. The source level API cannot terminate the type of local variables
referenced through the method’s local variable table. Because parameters are
stored in local variables by default, it is not possible to apply the code to unwrap
them using the source level API. The same problem occurs when locally stored
objects that have to be returned must be wrapped by a proxy. For that reasons,
we manage the application of proxies manually, i.e., with the bytecode level API
of Javassist.

Listing 1.9. Bytecode modifications proxy: parameters.

1 void setSensor(TempSensor ts) {
2 0 aload 1
3 1 checkcast #23 <TempSensor Proxy 1>
4 4 getfield #34 <TempSensor Proxy 1.call>
5 7 astore 1
6 8 aload_0
7 9 aload_1
8 10 astore_3
9 11 astore_2

10 12 aload_2
11 13 getfield #36 <TempDisplay.fieldContainer1265725244704>
12 16 checkcast #17 <TempDisplay_Cont_1>
13 19 aload_3
14 20 putfield #38 <TempDisplay_Cont_1.ts>
15 23 return
16 }

Listing 1.8 shows the bytecode modifications (here of method getSensor

of example class TempDisplay) required to wrap returned objects. First, we call
method newInst (Line 12) of the Proxy class which takes as parameter an object
of the updated callee class (here of class TempSensor v2), wraps the object by a
newly created proxy instance, and returns the proxy. Second, the returned proxy
is casted to the type of the old callee class (here of example class TempSensor,
Line 13).

How to modify the bytecode in order to unwrap proxy based parameters (here
of method setSensor of example class TempDisplay) is depicted in Listing 1.9
(Lines 2-5). First, we load the parameter stored in a local variable (Line 2).
Second, we cast the parameter to the related proxy type (Line 3). Third, we
unwrap the updated class instance (here of class TempSensor v2) stored in field
call of the proxy object (Line 4). Fourth, to avoid recurring unwrappings, the
unwrapped instance is stored in the local variable that previously stored the
proxy (Line 5).

Concurrent Updates of Multiple Classes. So far, we described the mecha-
nisms and concepts of JavAdaptor on the basis of the very simple weather station
example given in Section 2. This example only consists of one single class update
and the corresponding caller side update. However, JavAdaptor does not only

20

allow the developer to update a single class but multiple classes in one step,
which is essential to update complex real world applications. On the one hand,
this is because updates of real world applications normally span many different
classes. On the other hand, concurrent updates of multiple classes is essential
for inheritance hierarchy updates, because superclass updates implicitly require
to update and reload corresponding subclasses, too.

Class Reloading

Caller Side Updates

Class 1 Class 3Class 2 Class n...

Callee
Instance
Creation

Callee
Side State
Mapping

Reference Updates

HotSwap

Callee
Instance
Creation

Callee
Side State
Mapping

Callee
Instance
Creation

Callee
Side State
Mapping

Callee
Instance
Creation

Callee
Side State
Mapping

Caller Side Detection

...

...

Fig. 9. Concurrent multiple class updates.

Figure 9 sketches how JavAdaptor handles concurrent updates of multiple
classes. At first, JavAdaptor reloads all classes with changed schemas (as de-
scribed in Section 4.2). Afterwards, it identifies all classes (callers) with refer-
ences to the classes to be reloaded (see Section 4.3). This information is gained
in one atomic step for efficiency reasons. That is, having an overview about all
changes required to update the running program allows us to create possible
containers and proxies in one single step. In addition, we only have to touch
each class one-time in order to modify its bytecode. However, in the next two
steps JavAdaptor creates the new callee instances and maps the state (as we de-
scribed in Section 4.3 and 4.3). If this is done, JavAdaptor updates all references
conform to the workflow described in Section 4.3. Since we already gained infor-
mation about all dependencies between callers and callees, this can be efficiently

21

done in one atomic step, too. In the last update step, we update all modified
and hotswapable classes at once using Java HotSwap. This includes not only all
callers of reloaded classes, but also classes which are explicitly changed by the
developer.

In summary, JavAdaptor allows us to flexibly change applications during
their runtime. The update granularity can vary from minor changes (i.e., of
single classes) to system wide changes (i.e., of multiple classes). In addition,
JavAdaptor will only update the changed classes and the corresponding caller
classes. All other classes remain untouched which minimizes the influence of the
update on the running program.

5 Evaluation

Our goal was to develop an update approach which allows running Java applica-
tions to be updated in every possible way (a feature only known from dynamic
languages). In addition, the approach should not introduce performance drops.

In order to check whether JavAdaptor meets the goals, we applied it to a
nontrivial case study. To simulate a real world scenario which requires flexible
runtime updates, we proceeded as follows. We chose a reasonable application to
update, which was HyperSQL7 (HSQLDB) amongst others used by OpenOffice
(we chose HSQLDB because it is a database management system for which
runtime adaptation promises benefits of no-downtime, it is entirely written in
Java, and an open source application whose source code is available for the
latest program version and earlier versions). We started version 1.8.0.9 of it
downloaded from the HSQLDB website and applied all changes to evolve it to
the next version 1.8.0.10 without shutting down the application. After program
start, we ran the open source database benchmark PolePosition8 in order to
generate and query some data which ensured that HSQLDB was fully activated
and deployed.

5.1 Dynamic Software Updates

The new version of HSQLDB (released 9 month after version 1.8.0.9 came out)
comes with a bunch of changes. It fixes major bugs that cause null-pointer ex-
ceptions, problems with views, timing issues, corrupted data files, and deadlocks.
Additionally, new and improved functionality such as new lock-file implemen-
tations and performance improvements to the web server are included. To lift
the running program from version 1.8.0.9 to the new version 1.8.0.10, we had
to update 33 of 353 classes. The updates affected many language constructs
(points 1-7 of Table 1). In case of 21 out of 33 classes the changes did not af-
fect the class schema, i.e., the changes could be applied by our tool solely using
Java HotSwap. Apart from that, 12 classes were affected by schema-changing

7 http://hsqldb.org/
8 http://polepos.sourceforge.net/

22

Replaced Class Caller Updates
kind of Update Short-lived Obj. (places) Container (places) Proxy (places)

FontDialogSwing
8 (9×) 0 (-) 0 (-)

structural
HsqlDatabaseProperties

11 (98×) 2 (25×) 11 (23×)
functional
LockFile

1 (9×) 10 (5×) 11 (47)
functional
LockFile$HeartbeatRunner

2 (2×) 0 (-) 0 (-)
functional
Logger

22 (93) 3 (93×) 3 (4)
structural
NIOLockFile

0 (-) 0 (-) 0 (-)
changed inheritance hierachy
ScriptReaderZipped

3 (3×) 0 (-) 0 (-)
functional
SimpleLog

9 (105×) 3 (27×) 0 (-)
structural
Token

5 (671×) 0 (-) 0 (-)
structural
Trace

80 (1306×) 0 (-) 0 (-)
structural
Transfer

4 (6×) 0 (-) 0 (-)
structural
View

3 (37×) 3 (13×) 3 (16×)
functional

Table 2. Required class replacements.

program modifications. JavAdaptor replaced them using class replacements.
The state mappings that came along with the replacements span one-to-one
mappings, added, and removed fields, i.e., they were automated by JavAdap-
tor. Table 2 lists all classes that had to be replaced. Note that updating class
NIOLockFile also included changes to the inheritance hierarchy. In addition,
with class LockFile$HeartbeatRunner we had to update even a nested class.
Inheritance hierarchy updates as well as updates that involve nested classes are
supported by JavAdaptor. However, Table 2 also provides information about
the required caller updates, i.e., how many caller classes are updated in the con-
text of short-lived objects, containers, or proxies. The number of places within
method bodies that have to be changed to update the caller classes is given as
well (in brackets). In 148 out of 197 cases (75.1%) updates because of references
to short-lived callee objects (via Java HotSwap) were required to update the
callers. 21 caller classes (10.7%) had to be updated through containers. 28 caller
class updates (14.2%) required proxies.

In order to verify that HSQLDB was still correctly working (in a consistent
state) after the update, we reran the PolePosition benchmark. In the result,
HSQLDB passed the benchmark without errors, i.e., all database operations
were correctly executed after the update. In a second test we checked whether
the updates were applied and active. Therefore, we hooked the JVM profiler
VisualVM 9 into the running application and checked what classes/methods were

9 https://visualvm.dev.java.net/

23

executed during the PolePosition benchmark. We found out that 5 of the 12
replaced classes were active and central part of program execution during the
PolePosition benchmark which confirms that they were updated correctly.

5.2 Performance

Having demonstrated JavAdaptor’s ability to update complex real world appli-
cations, it is time to take a look at the performance penalties induced by our
tool, i.e., the execution speed of the changed program parts.

To measure the performance penalties of the program updates we proceeded
as follows. We ran the PolePosition benchmark (mentioned above) immediately
after runtime updating HSQLDB to version 1.8.0.10 and compared the results
with the benchmark results of HSQLDB version 1.8.0.10 not updated at runtime.
We could not measure any statistically significant difference, i.e, the benchmark
results of the HSQLDB instance updated at runtime were as good as the results
of the HSQLDB instance not updated at runtime. In other words, the runtime
updates performed by us did not affect the performance of HSQLDB in a mea-
surable way.

However, even if we did not measure performance penalties because of our
runtime update approach in a real world scenario, we assumed that our ap-
proach does not come entirely without performance overhead in some borderline
cases. To get evidence about this assumption, we additionally implemented a
micro benchmark that is able to detect even minimal performance penalties. It
measures the costs of crossing the version barrier from old program parts (i.e.,
callers) to the new ones (i.e., updated callees).

Type Original Callee Update cons. Callee Update Caller Update

ns ns ns ns

invoke Method
void m(Callee)

load 0× 0 (+0,0137) 31 (±0,1089) 30 (±0,1150) 0 (+0,0078)

load 1× 70 (±0,0507) 86 (±0,1605) 85 (±0,1531) 62 (±0,0493)

load 2× 140 (±0,0762) 145 (±0,1580) 146 (±0,1543) 119 (±0,0605)

invoke Method
Callee m()

load 0× 0 (+0,0019) 30 (±0,1140) 31 (±0,1201) 0 (+0,0020)

load 1× 69 (±0,0493) 84 (±0,1206) 85 (±0,1158) 58 (±0,0562)

load 2× 139 (±0,0620) 143 (±0,1141) 142 (±0,1072) 117 (±0,0615)

invoke Method
Callee m(Callee)

load 0× 0 (+0,0059) 62 (±0,1609) 63 (±0,1598) 0 (+0,0062)

load 1× 70 (±0,0537) 99 (±0,1444) 99 (±0,1396) 62 (±0,0431)

load 2× 140 (±0,0781) 158 (±0,1704) 159 (±0,1765) 120 (±0,0830)

Table 3. Performance overhead when using proxies.

To get reliable results, we ran thousand samples of one million invocations
of all major invocation types and for each calculated the average access time

24

in nanoseconds. For containers and local updates, no statistically significant
performance overhead was measurable (calculated through a one-way analysis
of variance), i.e., programs updated using containers and local updates perform
as fast as the original program. One reason for the good results is the just-in-
time compiler of the JVM that is able to optimize the code used to instrument
the containers.

In Section 4.3, we described the need for proxies to avoid implicit caller re-
placements in case the callee appears to be an argument of a caller method,
a returned object, or both. To measure the proxy performance with our micro
benchmark, we again ran thousand samples of one million method invocations
and calculated the average access time. The results of our benchmark (average
and, in brackets, the confidence interval with a probability value of 95%) are
shown in Table 3: proxies induce slight constant overhead compared to the orig-
inal program (between 30 and 63 nanoseconds per method call). In order to get
to know how the results scale, we put some workload on the methods and let
them compute sinx one time respectively two times. As shown in Table 3, even
small workload as introduced by the equation consumes clearly more computing
power than proxy instrumentation. Furthermore, updating the caller via class
replacement recovers the original performance of the program (see Table 3).

All in all, the results of our case study and the micro benchmark confirm that
runtime program changes by JavAdaptor produce only minimal performance
overhead. Only proxies produce a measurable overhead. Caller updates through
local changes and containers do not cause measurable performance drops.

5.3 Update Speed

Even if the contributions of our current JavAdaptor implementation are oth-
ers than applying updates the fastest way, we evaluated how well JavAdaptor
performs in this regard. That is, we measured the time JavAdaptor pauses the
application during the update process in order to avoid program inconsisten-
cies. Our measurements base on two different programs representing different
application scenarios.

At first, we measured the time required to update our HSQLDB case study
under different conditions. With our first test, we measured the time period
required to update HSQLDB with an empty database (i.e., without any data
object stored), which was 1070 milliseconds. In further tests, we ran the Pole-
Position benchmark creating thousands, ten thousands, and hundred thousands
of data objects before the update. The corresponding update times ranged from
1249 milliseconds (thousands of data objects), over 1658 milliseconds (ten thou-
sands of data objects), to 5363 milliseconds (hundred thousands of data objects),
which seems to be not outstanding fast but sufficient in many scenarios. By con-
trast, as shown in Table 4, restarts and reinitializations of HSQLDB (e.g., filling
caches, reloading data objects, creating views, creating users, etc.) as we sim-
ulated them using PolePosition took more time. However, as shown in Table 4
column 5, what may be a bottleneck of our current JavAdaptor implementa-
tion is method getReferringObjects, which execution times notably increase

25

the more objects are present in the JVM, even if the number of objects to be
updated remains unchanged (we will discuss in later sections how to solve this
problem and moreover how to avoid time periods of unavailability during the
update at all).

Pole Position Config. Restart DSU with JavAdaptor

Overall Mapping, HotSwap, getReferringObjects

Reference updates

(ratio to restart) (ratio to overall) (ratio to overall)

Original 6632 1249 (18,83 %) 1147 (91,83 %) 102 (8,17 %)

Original 10x 16563 1658 (10,01 %) 1335 (80,52 %) 323 (19,48 %)

Original 100x 86664 5363 (6,19 %) 2814 (52,47 %) 2549 (47,53 %)

Table 4. Times of unavailability: restart vs. JavAdaptor (in milliseconds).

The other application for which we measured the update times was the Snake
demo we briefly described in Section 4.1 and presented in [34]. Compared to the
update of HSQLDB, which affects wide parts of the system (the update spans
changes made during 9 months of development), each Snake update step consists
only of small changes to few classes. Thus, the Snake updates represent scenar-
ios common to the software development process, i.e., frequent minor changes
and immediate application of the changes. As our demo video on YouTube10

suggests, the update times are rather short ranging from 28 milliseconds to 142
milliseconds.

All in all, the update times we measured suggest that our current JavAdaptor
implementation could be beneficial in many different scenarios (even if currently
other DSU approaches such as presented in [46] and [15] may offer shorter update
times). However, high speed updates were not yet in our scope. Therefore, our
current JavAdaptor implementation is not optimized for them. But of course,
optimizations to the update speed are subject to future versions of JavAdaptor.

6 Related Work and Comparison

In this section we provide an overview of recent work to overcome Java’s limita-
tions regarding dynamic software updates. For better comparability and because
of the broad range of related work ranging from theoretical to practical solutions,
we focus on practice-oriented approaches which, like JavAdaptor, can be directly
applied in real world scenarios. We group the related work into three groups
based on their main strategies: Customized Java Virtual Machines, Customized

10 http://www.youtube.com/watch?v=jZm0hvlhC-E

26

Class Loaders, and Wrappers. For each group we discuss the general mechanism
and some representative approaches.

In addition, we evaluate the quality of JavAdaptor and of the related work
based on the criteria given in Section 1. That is, we analyze an approach’s flex-
ibility, platform independency, performance and its influence on the program
architecture. We chose the criteria because they let us describe the differences
between the approaches. For instance, considering consistent program update
support would be irrelevant, because only approaches, such as presented in [44]
and [22], address program consistency theoretically, but they are not yet avail-
able as practical tool. Furthermore, the criteria align with our goals presented in
Section 1. We derived the criterion flexibility from the fact that static software
development allows the developer to change a program in any way, no matter
when and where the changes must be applied. Runtime update approaches should
provide the same flexibility in order to cover all update scenarios. We further
choose platform independency because platform independence is one of the rea-
sons for the success of Java, i.e., DSU approaches should not cause dependencies
to specific JVM implementations. In Section 1, we argued that Java’s perfor-
mance in terms of program execution speed is better than the performance of
dynamic languages, which natively provide flexible runtime updates. Ending up
with an updated Java program whose execution speed is worse than the execu-
tion speed of the same updated program based on a dynamic language might be
a good reason to prefer dynamic languages. Users virtually always prefer a good
performing approach over a comparable but worse performing one (particularly
when the program is supposed to be used in production). Finally, we pick up
the program architecture criterion because in software development there is no
such thing like “one architecture fits all scenarios”. As already mentioned in Sec-
tion 1, different scenarios require different architectures. Thus, DSU approaches
should not restrict the usage of different architectures. However, different cri-
teria might be of different importance to different stakeholders. For instance,
users might emphasize flexibility whereas administrators might attach great im-
portance to platform independence. That is, in order to satisfy the stakeholders,
a DSU approach must fulfill all mentioned criteria.

6.1 Customized Java Virtual Machines

As mentioned in Section 3, the JVM disallows the developer to reload a class
whose schema has changed and thus forbids flexible dynamic software updates.

Therefore, researchers suggest virtual machine patches that enable to reload
classes with changed schemas. For instance, Malabarba et al. [27] add dynamic
class loaders to their Dynamic Virtual Machine (DVM) for this purpose. JDrums
[35] is a JVM that uses handles to decouple classes and objects from each other
in order to reload classes. The Jvolve VM [38] decouples classes using meta-
objects that can be easily changed to refer to updated classes. In addition to
Java HotSwap, which allows the developer to redefine methods bodies of al-
ready loaded classes, Dmitriev [9] patched the Hotspot JVM in such way that it

27

supports even class schema changes. Unfortunately, unlike Java HotSwap, this
feature never made it into a standard JVM.

Flexibility. All in all, customized Java virtual machines perform well when
it comes to flexibility. They allow unanticipated changes of virtually all parts
of a program. Furthermore, they all provide mechanisms to keep the program
state beyond the update. Customized JVMs provide this flexibility because the
update mechanism is implemented within the JVM itself and not at application
level which otherwise would complicate or prevent flexible updates.

Platform Independency. Even if virtual machine customization seems to
be the most natural way to enhance Java’s runtime update capabilities (because
it does not require to operate at application level to apply the update approach),
different problems arise from it. First of all, there is a standard which precisely
defines the functionality and structure of a JVM [25]. Changing the standard in
order to add dynamic software updates is difficult because it would require to
change all existing JVM implementations. Thus, there are only slight chances
that DSU becomes a standard. However, as long as DSU is not part of the JVM
specification it must be added via patches. One problem with JVM patches is
that they base on a specific JVM implementation and might not be applicable to
other JVMs. In addition, each new release of the JVM must be patched again.
This might be difficult (eventually impossible) in case the JVM implementation
has largely changed in the new JVM version. Last but not least, companies rather
prefer standard (certified) JVMs over customized ones to run their applications
in productive mode. This is why dynamic software update approaches are needed
that operate on top of different standard virtual machines.

Performance. First of all we point out that it is virtually impossible to
exactly measure and compare the performance of the referred approaches. Some
JVMs are not available for download and those that are available do (partly) sup-
port only outdated Java versions (e.g., JDRUMS only executes programs based
on Java version 1.2). Thus, we were not able to benchmark them and get mean-
ingful benchmark results. Instead, we searched the literature for information
regarding the performance. We found that the four patched JVMs significantly
differ in terms of performance (see [38] and [46]). DVM [27] executes programs
in interpreted mode only, which is commonly known to be slow. JDrums [35]
aims at lazy updates and uses transformer functions to migrate the state from
old objects to their updated counterparts which introduces noticeable constant
performance overhead. Jvolve [38] immediately updates applications, i.e., it ap-
plies the updates in one step and thus avoids considerable performance penalties.
Würthinger et al. present in [46] a new and improved version of Dmitriev’s JVM
patch [9] that comes without any performance overhead.

Program Architecture. As previously described, JVM customization aims
at integrating the update mechanisms with the JVM which makes changes to
the application architecture unnecessary.

28

6.2 Customized Class Loaders

As mentioned above, the basic idea of JVM patches is to enhance the JVM
with capabilities to reload and thus update classes. In addition to the basic
class loaders required to load and run a program, the class loading capabilities
of a program can be extended even at application level by customized class
loaders [23], which is common technique to load updated versions of already
loaded classes or components. For instance, the OSGi Service Platform [1] or
Oracles FastSwap [30] utilize customized class loaders to update components.
Javeleon [15] allows to flexibly update NetBeans based applications and thus
uses customized class loaders, too. Zhang and Huang [47] presented Dynamic
Update Transactions (DUT) which also make use of customized class loaders.

Flexibility. Customized class loaders serve the flexibility required to largely
update running programs, i.e., they allow to update virtually all parts of a
running program in an unanticipated way while preserving the program state.
This is true for Javeleon [15] and also for Dynamic Update Transactions (DUT)
[47]. In case of the OSGi Service Platform [1] the state of a bundle is lost when
it is refreshed, though.

Platform Independency. Because customization of class loaders is a stan-
dard feature in Java, it can be applied to all standard Java runtime environments.
Javeleon additionally requires NetBeans components for execution.

Performance. One issue with customized class loaders is that they reduce
the application performance when applied to JVMs older than version 1.6. This
is, because old and updated program parts are loaded by different class loaders
which requires poor performing reflection-based version-barrier crossings. Caz-
zola [5] found out that even simple reflective method invocations (as required
for crossing the version barrier) slow down method invocations with a factor of
up to 6.5 compared to direct method invocations. More complex version-barrier
crossings might cause even higher performance penalties. However, with Java
1.6 this situation relaxed because the related JVM is able to optimize reflective
calls.

Program Architecture. Generally, the application of customized class
loaders largely affects the application architecture. More precisely, customized
class loaders dictate how an application must be designed and thus disallow alter-
native (tailor-made) designs. DUT requires methods that maintain the updates
to be present in each class. Javeleon, FastSwap as well as the OSGi Service
Platform require the applications to run on top of their infrastructure to be
refactored into components (if not already done). This does not only alter the
application architecture, it might be also inefficient because even small changes
require to replace whole components.

6.3 Wrappers

Another frequently used approach to provide Java with enhanced runtime up-
date capabilities are wrappers (also known as decorators [12]). Wrappers aim at
wrapping old program parts in order to update them [33][32][42].

29

To apply the updates introduced by a wrapper, all clients (callers) of the
changed program parts must be updated, too. That is, all references to the orig-
inal callee must be redirected to the corresponding wrapper instance that wraps
the callee. To update the caller side, Gamma et al. [12] suggest that wrapper and
wrappee extend the same superclass or (even more flexible) implement the same
interface. The application of the wrapping can be either statically predefined be-
fore program start or triggered at runtime using method body redefinitions based
on Java HotSwap (as we did it in [33]). However, the big conceptual drawback
compared to JavAdaptor, JVM patches, and customized class loaders is that
wrappers never really update (reload) classes but put them in a new context
from which several limitations (particularly regarding our criteria) arise.

Flexibility. Wrappers do not provide the same flexibility as JavAdaptor,
customized JVMs and customized class loaders do. Lasagne [42] and JAC [32]
only allow anticipated runtime program updates, because the wrappings must
be predefined before application start. Nevertheless, wrappers can be also used
in an unanticipated way, as we demonstrated in prior work[33]. The big issue is
that conceptually wrappers cannot remove fields or methods defined in classes
they wrap.

Platform Independency. The wrapper approach is a well-known design
pattern [12], which is fully implemented at application level and thus does not
require specific platforms to act. However, to enlarge its flexibility it must be
combined with techniques which allow to (re-)define wrappings at runtime.

Performance. There is one point with wrappers that cause significant per-
formance penalties: indirections due to object wrappings. In [14], we measured
the performance penalties caused by long wrapping chains, which raise by up to
50% compared to the same program without wrappers.

Program Architecture. The principle drawback of wrappers is that an ap-
plication must be completely refactored in order to prepare it for wrapper based
dynamic software updates. If the developer aims at avoiding poor performing
reflective field accesses, she has to allow read and write access to all fields of the
old program part namely the object to be wrapped. Furthermore, all classes have
to be forced to implement unique interfaces. In addition, all fields have to be of
the type of the interface their classes implement. That is, similar to customized
class loaders, the wrapper approach dictates the design of an application and,
thus, restricts user-defined application designs. In addition, the forced design has
serious drawbacks because it violates encapsulation and causes the self-problem
[24]. Another problem with the design of several wrapper approaches is decreased
reliability due to frequent type casts.

6.4 JavAdaptor

So far, all considered approaches have their strengths and weaknesses regarding
the given criteria, i.e., no approach fulfills them all. But, as we described above,
their is a need for approaches that cover all criteria. In the following we com-
pare JavAdaptor with the previously described approaches and discuss whether

30

DSU Approach Flexibility Platform Independency Performance Appl. Architecture

JavAdaptor � � � �
J
V

M

Jvolve � � � �
HotSpot � � � �
JDrums � � � �
DVM � � � �

C
C

L

Javeleon � � �� �
DUT � � �� �
FastSwap �� � �� �
OSGi � � �� �

W
r
a
p
p
e
r [33] �� � � �

JAC � � � �
Lasagne � � � �

Table 5. Overview comparison.

JavAdaptor fulfills all criteria or not. An overview of the comparison results can
be found in Table 5.

Flexibility. As demonstrated in Section 5, the flexibility of our runtime
update approach JavAdaptor is as good as the flexibility that could be achieved
by patched JVMs and customized class loaders. More precisely, it is on a par
with Jvolve, JDrums, DVM, the HotSpot VM patch of Dmitriev and Würthinger
[9][46], Javeleon, and DUT.

Platform Independency.When it comes to platform independence, JavAd-
aptor clearly outperforms many competitors. Without any JVM patches it runs
on top of all standard JVMs that provide Java HotSwap, which amongst others
is a standard feature in the HotSpot VM, the JRockit VM, and IBM’s JVM.
Furthermore, it does not require any library or framework to act.

Performance. Another strength of JavAdaptor is its performance. As our
benchmark results in Section 2 show, container based updates come along with-
out performance penalties and proxy based updates only cause slight perfor-
mance drops. JavAdaptor neither requires performance-dropping JVM patches
nor reflection-based version-barrier crossings (which may be slow particularly
on older JVMs) caused by customized class loaders. It also does not depend
on a component framework, such as Javeleon, FastSwap or OSGi, whose execu-
tion causes additional performance overhead. Furthermore, JavAdaptor causes
no wrapping chains and thus comes without the related performance issues.

Application Architecture. Unlike customized JVMs, JavAdaptor requires
to add a container field to each class. However, the container field is transparent
to the user and can be easily integrated with the application to be updated
without any changes to the architecture. By contrast, customized class loaders
particularly in conjunction with component frameworks dictate the application
design and, thus, render alternative (tailor-made) application designs impossible.

31

This is also true for wrappers where the forced application design additionally
causes serious drawbacks.

7 Open Issues

In Section 4 we described the basic concepts of our DSU approach and evaluated
its practicability under real world conditions in Section 5. Even if the results of
our evaluation confirm the practicability and potential of JavAdaptor, there is
still space for improvements. In this section we summarize work in progress to
improve JavAdaptor.

Target JVM

Bytecode

23 TempDisplay {

24 TempSensor ts;

25 isDisplayOn;

26 IContainer cont;

27 ...

28
29 displayTemp() {

30 (isDisplayOn ==) {

31 cont.update.currentTemp();

32 ...

33 }

34 }

35 }

1 TempDisplay {

2 TempSensor ts;

3 isDisplayOn;

4 IContainer cont;

5 ...

6
7 displayTemp() {

8 (isDisplayOn ==) {

9 ts.currentTemp();

10 ...

11 }

12 }

13 }

Stack

36 ...

37
38 displayTemp() {

39 (isDisplayOn ==) {

40 ts.currentTemp();

41 ...

42 }

43 }

44 ...

14 ...

15
16 displayTemp() {

17 (isDisplayOn ==) {

18 ts.currentTemp();

19 ...

20 }

21 }

22 ...

DSU

DSU

Fig. 10. Active method problem.

Active methods. An issue the JavAdaptor implementation described in
this paper not yet addresses is the handling of methods active on the stack
scheduled for an update. Figure 10 illustrates the problem of updating active
methods. Supposed we update our small weather station program (i.e., reload
callee class TempSensor and update caller class TempDisplay) at a point in time
where method displayTemp of class TempDisplay is active on the stack, method
displayTemp will continue to execute the old code. Thus, it will still call the

32

outdated TempSensor and its instances (such as depicted down to the right of
Figure 10) until it is popped from the stack.11 The problem is, that after the
state mapping between the outdated and updated instances of class TempSensor,
method displayTemp may continue to alter the state of an outdated instance of
type TempSensor and not of the corresponding up-to-date instance which results
in state losses on the updated callee side.

One solution for this problem would be to postpone the update until no
method to be updated is active on the stack. However, particularly when it
comes to updates of long running methods, this condition may be never fulfilled
or it takes a long time until it comes true. In order to apply updates immediately,
even in the presence of active methods, we have to find another strategy. Fowler
argues in [10] that, compared to direct field accesses, getter and setter methods
allow us to flexibly manage field accesses. Figure 11 shows how getter and setter
methods can be used to face the active method problem described above. The
getters and setters act as indirection layers between caller and field. If we now
apply the update, we can redefine the getter (see Lines 48 – 51) and setter
(Lines 53 – 55) methods in such a way that they redirect field accesses from
within active methods to the corresponding up-to-date instances of the reloaded
class (here of class TempSensor v2 stored in the container.

In order to be able to update every class and to handle related active methods,
those getter and setter methods have to be created for all class and instance fields
of all classes including the system classes of Java. However, before we started
to experiment with this solution we thought that the system wide usage of get-
ter and setter methods would probably cause significant performance penalties
which of course would be at odds with our claims. But, contrary to expectations,
first benchmark results show that this is virtually not the case because of the
excellent optimization capabilities of the JVM and its just-in-time compiler. In
addition, other DSU approaches such as Kim’s proxy based DSU approach [21]
and Javeleon [15], which use system wide getter and setter methods for similar
purposes as we intend to do, show that those kinds of indirections must not
cause significant performance drops.

Reflection support. However, we not only focus on support for dynamic
software updates in the presence of active methods. Additionally, we are work-
ing on solutions to overcome several problems the different versions of a class
present in the JVM may cause. The main issue to overcome is the limited sup-
port of our current JavAdaptor implementation for reflective calls of reloaded
(updated) classes. Under certain conditions those calls may address old versions
of a reloaded class and not the latest class version, which may result in wrong
program behavior. This would be for instance the case when the class object of
the class to be reloaded was cached before the update. Each reflective call based
on this cached class object would access the old class version. Currently, we are
figuring out the applicability of two different approaches to solve this issue. One

11 We could of course pop those methods from the stack by hand, which is supported
by the JVM. But, the JVM would not allow us to push the updated method back
on the stack.

33

Target JVM

Bytecode

33 TempDisplay {

34 TempSensor ts;

35 isDisplayOn;

36 IContainer cont;

37 ...

38
39 displayTemp() {

40 (isDisplayOn ==) {

41 getCont().getTempSensor()

42 .currentTemp();

43 ...

44 }

45 }

46
47
48 TempSensor getTempSensor() {

49 /* handle access to container

50 and return result */

51 }

52
53 setTempSensor(TempSensor ts) {

54 /* handle access to container */

55 }

56 ...

57 }

1 TempDisplay {

2 TempSensor ts;

3 isDisplayOn;

4 IContainer cont;

5 ...

6
7 displayTemp() {

8 (isDisplayOn ==) {

9 getTempSensor().currentTemp();

10 ...

11 }

12 }

13
14
15 TempSensor getTempSensor() {

16 ts;

17 }

18
19 setTempSensor(TempSensor ts) {

20 .ts = ts;

21 }

22 ...

23 }

DSU

Stack

58 ...

59
60 displayTemp() {

61 (isDisplayOn ==) {

62 getTempSensor().currentTemp();

63 ...

64 }

65 }

66 ...

24 ...

25
26 displayTemp() {

27 (isDisplayOn ==) {

28 getTempSensor().currentTemp();

29 ...

30 }

31 }

32 ...

DSU

Indirection

Fig. 11. Active method handling.

solution for this problem is to detect all existing reflective objects that refer to
the old class and replace them with corresponding objects referring the latest
class version. Another strategy would again deploy getter and setter methods to
ensure that each reflective call will be redirected to the latest class version.

Update speed. In Section 5.3 we evaluated to what degree JavAdaptor
cuts down the times of service unavailability of our example program HSQLDB
compared to updates through program restarts. We found that JavAdaptor out-
performs the restart strategy (based on program reinitialization through Pole-
Position) in terms of service availability. Nevertheless, we also observed that
method getReferringObjects (to identify all callers of the objects to be up-
dated) may inadequately increase the time required to update a program under
certain conditions. One solution for this problem might be to not pause the

34

application and update the caller site while the program still provides its ser-
vices. However, this may lead to wrong program behavior because objects of
an old class created after the execution of method getReferringObjects may
be not updated or objects to be updated may be garbage collected meanwhile.
Due to the fact that wrong program behavior would challenge the benefits of
dynamic software updates, we have to look for another solution. Once again,
getter and setter methods can help us out. Using Java HotSwap we could re-
define them in such way that they do not only redirect field accesses but also
update the related objects on demand. This solution not only renders the us-
age of method getReferringObjects unnecessary but avoids time periods of
unavailability during the update at all.

Consistency. However, so far we discussed solutions for issues already solved
by other DSU approaches such as Kim’s proxy based DSU approach [21] and
Javeleon [15]. What remains an open question to the research community is,
how to fully ensure program consistency beyond dynamic updates. Gupta et al.
state in [16] that the consistency problem is undecidable. Nevertheless, a lot of
related work exists facing the problem (see [44][22][37][18][28][2][20][26]). But, to
our best knowledge, all approaches either provide approximated solutions only
or are not applicable in real world scenarios (e.g., due to the lack of tool support,
etc.). Thus, our big goal with JavAdaptor is to ensure consistency while bridging
the gap between theory and practice.

All in all, we are optimistic to solve the issues with active methods, reflective
calls, and the update speed, soon. Furthermore, preliminary results of experi-
ments with prototypes suggest that the issues can be solved without compro-
mising the contributions of JavAdaptor claimed in this paper, i.e., its flexibility,
performance, architecture independence, and platform independence. Another
fact that makes us confident to fit JavAdaptor with high quality solutions for
the mentioned issues is that we can (to some extent) build on solutions of related
DSU approaches (such as presented in [21] and [15]) facing similar problems.
However, what is still missing and what we intend to provide with JavAdaptor
in the long run is a DSU approach which on the one side is useful in practice
and on the other side ensures program consistency.

8 Conclusion

Dynamic software updates are a often requested approach to update applications
while improving the user experience and prevent down times. Furthermore, DSU
supports the software developers because they do not need to restart their ap-
plications to test the changed program parts.

However, different from dynamic languages, native DSU support for Java is
severely limited. Thus, approaches are needed that overcome Java’s limitations
regarding dynamic software updates. In Section 1 and 6, we argue that a DSU
approach should provide flexible runtime program updates without serious per-
formance drops. Additionally, it should be platform independent and should not
dictate the program architecture. With JavAdaptor, we overcome Java’s limited

35

runtime update support and add the runtime update capabilities known from
dynamic languages to Java. Furthermore, JavAdaptor is (to our best knowl-
edge) the first approach that fulfills all proposed quality criteria: it is flexible,
runs on every major (unmodified) JVM, performs well, and does not dictate the
architecture of the program. Conceptually, it combines schema changing class
replacements with class renaming and caller updates based on Java HotSwap
with the help of containers and proxies.

With a case study, we have demonstrated that JavAdaptor fits runtime up-
dates of real world applications executed under real world conditions. Never-
theless, there is still space for improvements. Currently we are working on the
integration of the improvements to JavAdaptor described in Section 7, which
tackle some issues of the current JavAdaptor implementation. However, in the
long run, we will focus on the development of solutions to be integrated into
JavAdaptor that fully ensure the program consistency in the presence of runtime
updates, which is still not possible with any existing DSU approach applicable
in practice.

9 Acknowledgements

We would like to thank Shigeru Chiba for providing the invaluable bytecode
modification tool Javassist. Furthermore, we thank Janet Feigenspan for calcu-
lating the statistical significance of our benchmark results. Mario Pukall’s work
is part of the RAMSES project12 which is funded by DFG (Project SA 465/31-
2). Kästner’s work is supported in part by the European Union (ERC grant
ScalPL #203099).

References

1. The OSGi Alliance. OSGi Service Platform Core Specification, 2009. http://www.
osgi.org/Download/File?url=/download/r4v42/r4.core.pdf.

2. Rida A. Bazzi, Kristis Makris, Peyman Nayeri, and Jun Shen. Dynamic Software
Updates: the State Mapping Problem. In HotSWUp ’09: Proceedings of the Second
International Workshop on Hot Topics in Software Upgrades, pages 1–2, New York,
NY, USA, 2009. ACM.

3. J. Bonér. What are the key issues for commercial AOP use: how does AspectWerkz
address them? In Proceedings of the International Conference on Aspect-Oriented
Software Development, pages 1–2, 2004.

4. G. Bracha. Objects as Software Services, 2005. Invited talk at the International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions.

5. Walter Cazzola. SmartReflection: Efficient Introspection in Java. Journal of Object
Technology, 3(11):117–132, 2004.

6. S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient Java Bytecode
Translators. In Proceedings of the International Conference on Generative Pro-
gramming and Component Engineering, pages 364 – 376, 2003.

12 http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/ramses/index.htm

36

7. Shigeru Chiba. Load-Time Structural Reflection in Java. In Proceedings of the
European Conference on Object-Oriented Programming, pages 313–336, 2000.

8. Markus Dahm. Byte Code Engineering. In Java-Informations-Tage, pages 1 – 11.
Springer-Verlag, 1999.

9. M. Dmitriev. Safe Class and Data Evolution in Large and Long-Lived Java Appli-
cations. PhD thesis, University of Glasgow, 2001.

10. Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 2006.

11. B. Fulgham and I. Gouy. The Computer Language Benchmarks Game, 2010.
http://shootout.alioth.debian.org/.

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
reusable object-oriented Software. Addison-Wesley, 1995.

13. J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification,
The (3rd Edition). Addison-Wesley Professional, 2005.

14. Sebastian Götz and Mario Pukall. On Performance of Delegation in Java. In
Proceedings of the International Workshop on Hot Topics in Software Upgrades,
pages 1–6, 2009.

15. Allan R. Gregersen and Bo N. Jørgensen. Dynamic Update of Java applications -
Balancing Change Flexibility vs Programming Transparency. Journal of Software
Maintenance and Evolution: Research and Practice, 21(2):81–112, 2009.

16. Deepak Gupta, Pankaj Jalote, and Gautam Barua. A Formal Framework for On-
line Software Version Change. IEEE Trans. Softw. Eng., 22:120–131, 1996.

17. Michael Haupt. Virtual Machine Support for Aspect-Oriented Programming Lan-
guages. PhD thesis, Software Technology Group, Darmstadt University of Tech-
nology, 2006.

18. Michael Hicks and Scott Nettles. Dynamic software updating. ACM Trans. Pro-
gram. Lang. Syst., 27(6):1049–1096, 2005.

19. J. Kabanov. JRebel Tool Demo. In Proceedings of the Workshop on Bytecode
Semantics, pages 1–6, 2010.

20. Feras Karablieh and Rida A. Bazzi. Heterogeneous Checkpointing for Multi-
threaded Applications. In Proceedings of the 21st IEEE Symposium on Reliable
Distributed Systems, pages 140–149. IEEE Computer Society, 2002.

21. Dong Kwan Kim. Applying Dynamic Software Updates to Computationally-
Intensive Applications. PhD thesis, Virginia Polytechnic Institute and State Uni-
versity, 2009.

22. J. Kramer and J. Magee. The evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, 16(11):1293 –1306,
1990.

23. S. Liang and G. Bracha. Dynamic Class Loading in the Java Virtual Machine.
In Proceedings of the Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 36 – 44, 1998.

24. H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in
Object-Oriented Systems. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 214–223, 1986.

25. T. Lindholm and F. Yellin. The Java Virtual Machine Specification – Second
Edition. Prentice Hall, 1999.

26. Kristis Makris. Whole-Program Dynamic Software Updating. PhD thesis, Arizona
State University, 2009.

27. Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and J. Fritz Barnes. Run-
time Support for type-safe dynamic Java Classes. In Proceedings of the European
Conference on Object-Oriented Programming, pages 337 – 361, 2000.

37

28. Yogesh Murarka, Umesh Bellur, and Rushikesh K. Joshi. Safety Analysis for Dy-
namic Update of Object Oriented Programs. In APSEC ’06: Proceedings of the
XIII Asia Pacific Software Engineering Conference, pages 225–232, Washington,
DC, USA, 2006. IEEE Computer Society.

29. A. Nicoara, G. Alonso, and T. Roscoe. Controlled, Systematic, and Efficient Code
Replacement for Running Java Programs. In Proceedings of the EuroSys Confer-
ence, pages 233–246, 2008.

30. Oracle. BEAWebLogic Server Using FastSwap to Minimize Redeployment. Techni-
cal report, 2006. http://download.oracle.com/docs/cd/E13222_01/wls/essex/
TechPreview/pdf/FastSwap.pdf.

31. A. Orso, A. Rao, and M. Harrold. A Technique for Dynamic Updating of Java
Software. In Proceedings of the International Conference on Software Maintenance,
pages 649–658, 2002.

32. Renaud Pawlak, Laurence Duchien, Gerard Florin, and Lionel Seinturier. Dynamic
Wrappers: Handling the Composition Issue with JAC. In Proceedings of the Con-
ference on Technology of Object-Oriented Languages and Systems, pages 56–65,
2001.

33. M. Pukall, C. Kästner, and G. Saake. Towards Unanticipated Runtime Adaptation
of Java Applications. In Proceedings of the Asia-Pacific Software Engineering
Conference, pages 85–92, 2008.

34. Mario Pukall, Alexander Grebhahn, Reimar Schröter, Christian Kästner, Walter
Cazzola, and Sebastian Götz. JavAdaptor: Unrestricted Dynamic Software Up-
dates for Java. In Proceedings of the 33rd International Conference on Software
Engineering, pages 1 – 3, 2011. to appear.

35. Tobias Ritzau and Jesper Andersson. Dynamic deployment of java applications.
In Java for Embedded Systems Workshop, pages 1–9, 2000.

36. Y. Sato, S. Chiba, and M. Tatsubori. A Selective, Just-in-Time Aspect Weaver.
In Proceedings of the International Conference on Generative Programming and
Component Engineering, pages 189 – 208, 2003.

37. Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian Neamtiu.
Mutatis Mutandis: Safe and Flexible Dynamic Software Updating. In Proceedings
of the ACM Conference on Principles of Programming Languages (POPL), pages
183–194, January 2005.

38. Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic Software
Updates: A VM-Centric Approach. In Proceedings of the Conference on Program-
ming Language Design and Implementation, pages 1–12, June 2009.

39. Sun Microsystems. Java Virtual Machine Tool Interface Version 1.1. Technical re-
port, 2006. http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html.

40. Sun Microsystems. Java Platform Debugger Architecture. Technical report, 2010.
http://java.sun.com/javase/6/docs/technotes/guides/jpda/index.html.

41. Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behav-
ioral reflection: spatial and temporal selection of reification. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), pages 27–46, 2003.

42. E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. Nørregaard Jørgensen.
Dynamic and Selective Combination of Extensions in Component-Based Applica-
tions. In Proceedings of the International Conference on Software Engineering,
pages 233–242, 2001.

43. W. Vanderperren and D. Suvee. Optimizing JAsCo dynamic AOP through
HotSwap and Jutta. In Proceedings of the AOSD Workshop on Dynamic Aspects,
pages 120–134, 2004.

38

44. Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt. Tranquility: A Low
Disruptive Alternative to Quiescence for Ensuring Safe Dynamic Updates. IEEE
Transactions on Software Engineering, 33(12):856 –868, 2007.

45. B. Venners. Inside the Java 2 Virtual Machine. Computing McGraw-Hill., 2000.
46. T. Würthinger, W. Binder, Danilo Ansaloni, P. Moret, and H. Mössenböck. Improv-

ing Aspect-Oriented Programming with Dynamic Code Evolution in an Enhanced
Java Virtual Machine. In Proceedings of the Workshop on Reflection, AOP and
Meta-Data for Software Evolution, pages 25–29, 2010.

47. Shi Zhang and LinPeng Huang. Type-Safe Dynamic Update Transaction. In
Proceedings of the Computer Software and Applications Conference, pages 335–
340, 2007.

39

