Modernizing Plan-Composition Studies

Kathi Fisler
. WP .
kfisler@cs.wpi.edu

ABSTRACT

Plan composition is an important but under-studied topic
in programming education. Most studies were done three
decades ago, under assumptions that miss important issues
that today’s students must confront. This paper presents
rationale and details for a modernized study of plan compo-
sition that accommodates a broader range of programming
languages and problem features. Our study design has two
novelties: the problems require students to deal with data-
processing challenges (such as noisy data), and the questions
ask students to not only produce but also evaluate programs.
We present preliminary results from using our study in mul-
tiple courses from different linguistic paradigms. We discuss
several future studies that are prompted by these results.

CCS Concepts

eSocial and professional topics — Model curricula;
CS1;

Keywords: Plan composition, imperative programming,
functional programming

1. INTRODUCTION

Most non-trivial programs encompass multiple tasks that
collectively perform a computation. Computing the number
of employees with low salaries, for example, involves search-
ing a collection of employee records, determining which have
low salaries, and counting the number of identified employ-
ees. A program that performs the computation could ap-
proach this problem in several ways: it could detect low
salaries and count employees while traversing the employee
collection, it could extract low-salary employees then count
the results, it could first sort all employee salaries, and so
on. Organizing the tasks of a problem into a program is
called plan composition [9]. It is a key skill to develop in
learning to program.

Plan composition is relevant whether or not a student
plans to major in computer science or become a professional
programmer. Many students seek just enough programming
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGCSE ’16, March 02 - 05, 2016, Memphis, TN, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3685-7/16/03. .. $15.00

DOIL: http://dx.doi.org/10.1145/2839509.2844556

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

Janet Siegmund
University of Passau
siegmunj@
fim.uni-passau.de

education to solve problems in other disciplines: for exam-
ple, a biology student may wish to write scripts to process
data from a research project. Such scripts often involve in-
tegrating multiple tasks. Deferring problem decomposition
and plan composition to later CS courses is therefore not
an option: we need effective pedagogies for this material in
CS1 and non-major courses.

Existing plan-composition studies are dated by problem
tasks, rubrics that failed to consider high-level variations
in code structure, and implicit assumptions about the lan-
guages and constructs that students might use. Most studies
(1) used imperative programming (2) with few data struc-
tures on (3) problems dominated by I/O. Today’s students
often learn different languages (functional, dynamic/script-
ing, OO), libraries, and a richer set of constructs for pro-
cessing data. If teaching plan composition is important, we
need to understand the impact of different languages, con-
structs, and pedagogies on how students structure code. We
also need to modernize the study questions to encompass
both linguistic differences and current computing contexts.

This paper makes three contributions in this direction.
First (§ 2), we propose a concrete set of problems and ques-
tions that refine prior plan-composition studies. Second
(§ 3), we present data from a preliminary, multi-national,
multi-university study with these problems: three courses
used functional programming and two used imperative pro-
gramming. Third (§ 5), we identify additional study ques-
tions and design constraints that emerged from analyzing
our data. These findings sharpen the goals of future plan-
composition studies, while also suggesting an overarching
framework for designing such studies.

2. STUDYING STUDENT PLANS

Prior planning studies focused analysis on the errors stu-
dents made and the process by which students developed
code [3, 12]. Our interests go farther: we want to iden-
tify factors that influence students’ code structures, and the
ways in which curricula, pedagogy, and programming lan-
guage affect these factors. We therefore ask students to
not only produce programs but also assess solutions (opera-
tionally, to provide a partial-order preference ranking of code
we give that represents different plans). The latter helps us
identify issues that students consider when thinking about
program structure, a question with little prior research.

While prior planning studies featured simple console 1/0,
today’s students program in a data-rich world. There are
many operations—common at a high-level, different in their
details—that students may need for processing data. Plan-

ning problems should exercise these operations. Concretely,

we focus on three particular data-processing challenges: noisy
data that should be cleansed prior to computation; flattened

structured data that could be reshaped; and monolithic data

from which relevant parts must be extracted. We also include

problems over data that are already structured yet admit

multiple interleavings of tasks.

We considered candidate problems from the computing
education literature, technical papers, and course assign-
ments. By design (to reduce bias), some authors are fans
of each of functional and imperative programming. We re-
jected problems that struck any of us as “unnatural” (in our
subjective opinions) for CS1 students learning our preferred
style of programming; all authors approved of all selected
problems. Ultimately, we chose six problems that include at
least two samples of many of our data-facing criteria. We
limited ourselves to six problems of relatively modest com-
plexity because instructors would balk at adding a lengthy
assignment to already-full classes.

We now present our proposed set of problems. In our pre-
liminary study (§ 3), we gave the first three as programming
problems. The latter three were given as ranking problems,
with students provided correct, working code in the lan-
guage of the course. Other partitions would also make sense,
though we recommend putting one problem from each data-
processing criterion into each activity. Students should do
the programming problems first, to reduce bias from seeing
the solutions in the ranking problems. Due to space limits,
we present only summaries of the problem statements and
solutions. The full, exact problem statements, as well as our
coding rubric, can be found at cs.brown.edu/research/plt/
dl/sigcse2016plancomp/

Programming Problems.

Palindrome A palindrome is a string with the same let-
ters in each of forward and reverse order (ignoring capi-
talization). Design a program called isPalindrome that
consumes a string and determines whether the string with
all spaces and punctuation removed is a palindrome. Treat
all non-alphanumeric characters as punctuation.

Sum Owver Table Assume that we represent tables of num-
bers as lists of rows, where each row is itself a list of
numbers. The rows may have different lengths. Design
a program sumLargest that consumes a table of numbers
and produces the sum of the largest item from each row.
Assume that no row is empty.

Adding Machine Design a program called addingMachine
that consumes a list of numbers and produces a list of the
sums of each non-empty sublist separated by zeros. Ignore
input elements that occur after the first occurrence of two
consecutive zeros.

Ranking Problems.

For ranking, students were given multiple programs that
solved each problem (10-20 lines per solution in functional
code, a little longer in Java). Here we describe the code
structure in prose. Our solutions are described in terms of
helper functions, but the code could also be (and in Java,
was) written using loops and variables that accumulate an-
swers. The text marked with black bars (not given to stu-
dents) summarizes the design decisions within each solution.

Rainfall Design a program called rainfall that consumes

a list of real numbers representing daily rainfall readings.
The list may contain the number -999 indicating the end
of the data of interest. Produce the average of the non-
negative values in the list up to the first -999 (if it shows
up). There may be negative numbers other than -999 in
the list (representing faulty readings). Assume that there
is at least one non-negative number before -999. The so-
lution options are:

A One function (or helper function) that iteratively accu-
mulates three values: the remaining numbers, the total
so far, and the number of days so far. When the numbers
are exhausted, it returns the average using the other two
parameters.

B One function that iteratively computes the sum of rain-
falls. Another function that iteratively computes the
number of days. Each one duplicates the cleansing logic.
A main computation that uses these two functions, then
computes the average.

C One function to cleanse the data. A main function that
invokes the cleanser, then uses library or helper functions
to compute the sum of rainfalls and number of days, and
computes the average.

Solution A uses a single traversal of the data, while
the others use multiple traversals. We call solution C
“clean first” and solution B “clean multiple”.

Length of Triples Design the program maxTripleLength
that consumes a list of strings and produces the length of
the longest concatenation of three consecutive elements.
Assume the input contains at least three strings. The so-
lution options are:

A A helper function converts the flat list into a list of
triples. The main function first uses this to generate
triples of strings, then converts these to triples of num-
bers, then calls a function to find the maximum one.

B A helper function converts the flat list into a list of
triples. The main function first converts the input into a
list of numbers, then uses the helper to generate triples
of numbers, then calls a function to find the maximum.

C A helper function iteratively accumulates the list of re-
maining strings, the maximum length so far, and the two
previous lengths. It is then invoked on the appropriate
arguments.

Solutions A and B employ reshaping, and hence have
multiple traversals of data. Each solution comes with a
data structure (e.g., a class) for a single triple. Solution
C uses a single traversal.

Shopping Cart An online clothing store applies discounts
during checkout. A shopping cart is a list of the items
being purchased. Each item has a name (a string like
"shoes") and a price (a real number like 12.50). Design
a program called checkout that consumes a shopping cart
and produces the total cost of the cart after applying the
following two discounts:

1. if the cart contains at least 100 worth of shoes, take 20%
off the cost of all shoes (match only items whose exact
name is "shoes")

2. if the cart contains at least two hats, take 10 off the
total of the cart (match only items whose exact name is
"hat")

Language Country | Students | Timing
Usl-iMm Java USA 261 [70 CS1l-end
usl-Fp | Racket, OCaml USA 144 [42 CSl-end
US2-FP Racket USA 106 [0 CSl-end
FR-FP OCaml France 35 [18 FP-end
GM-IM | Java or Python | Germany | 80 [24 CS2-start

Table 1: Students column reports total students and
the number sampled when looking at code solutions.

The problem statement included specific data structures
for representing items. The solution options are:

A The set of shoe entries is extracted, and their discount
calculated. The set of hat entries is extracted, and their
discount calculated. The total cost is calculated, and the
two discounts applied.

B A helper function iteratively accumulates the cart con-
tents, the total cost so far, the shoe costs, and the hat
costs. When the cart is empty, the discounts are com-
puted and applied to the total cost.

I Solution A performs a separate traversal per discount.
Solution B traverses the data only once.

Problem Characteristics.

Rainfall and Palindrome require cleansing. Adding Ma-
chine and Length of Triples could leverage reshaping, while
Sum QOver Table has clean, already-structured data. Rainfall
and Adding Machine examine only a prefix of data. Shop-
ping Cart suggests future extensibility (for additional dis-
counts), and also illustrates the potential for separation of
concerns [6]. Each admits a variety of solution structures.

3. PRELIMINARY STUDY

As a formative exercise, we used the study described in
§ 2 to explore differences across programming languages. We
wanted both to check whether these six problems, and the
combination of programming and ranking, were useful for
eliciting cross-linguistic planning nuances, and to identify
candidate differences for further study.

We asked students to provide code for the first three prob-
lems and to preference rank (ties allowed), with justifica-
tion, solutions for the latter three problems. We gathered
data from five courses (three functional and two imperative)
across three countries. None was taught by the authors.

Table 1 summarizes the courses: names indicate the coun-
try and programming paradigm (functional vs imperative;
the latter in either an OO or scripting context). The two Usl
courses were from parallel CS1-CS2 sequences in the same
department (both lead into the major). GM-IM was a Java-
based CS2 course that students came to after CS1 in either
Python or Java. FR-FP was a first course in functional pro-
gramming for third-year engineering students. US2-FP was
a functional CS1 course that only did the ranking problems
(and hence had no sampled students).

Prior studies on Rainfall [3, 8, 9] suggest that impera-
tive solutions typically traverse the input exactly once while
functional ones often perform multiple traversals. These
trends are consistent with each paradigm’s programming
patterns. We thus analyzed traversal preferences in both the
programming and ranking problems. When sampling pro-
gramming solutions for detailed analysis within each course,

we selected an even distribution in how often students pre-
ferred single-traversal solutions in the ranking problems.

Logistics: US2-FP did the ranking problems only, in a 40
minute lab setting after 6 weeks of CS1. All other courses
gave the task as a homework assignment with multiple days
to solve it (the exact duration varied by course). In all
cases, at least a majority of students wrote predominantly
correct solutions, confirming that the problems were within
their abilities and that the assessment below is of program
structures that were not written in haste or under pressure
(e.g., in a timed exam). USsl-IM, US1-FP, and FR-FP gave
the study as a homework assignment towards the end of the
semester. GM-IM used similar conditions, but at the start of
CS2. All students worked in a programming environment.
We customized the problem wordings for each course to ac-
commodate its default data structures (lists versus arrays),
vocabulary (“program” versus “method”), and naming con-
ventions (isPalindrome versus is-palindrome). Staff from
each course reviewed the problems, both to fine-tune the
customizations and to confirm that the problems were rea-
sonable for the students. Two of the authors manually read
all the responses and coded them according to the rubric
linked in § 2.

3.1 Results: Programming Problems

We hypothesized that most imperative students would
write single for-loops that interleaved all problem tasks,
while the functional students would frequently handle some
tasks in separate functions. Each of Palindrome and Adding
Machine contradicted part of this hypothesis. Adding Ma-
chine also highlighted key nuances within single-traversal
solutions. We discuss each question in turn.

Palindrome: Our version of palindrome has three tasks:
“skipping” punctuation and whitespace, ignoring capitaliza-
tion (which we’ll call “normalizing”), and checking the core
palindrome property on the resulting characters. We clus-
tered solutions by how they interleaved the first two tasks
with the third: Mequal solutions handled both skipping and
normalization before the main reverse-equality check; Mcase
handled skipping before a main equality check that also per-
formed normalization; Mskip handled normalization before
a main equality check that also performed skipping; Mboth
handled both skipping and normalization in the main equal-
ity check with a single traversal. (None reflects missing or
unintelligible programs.)

| Mequal | Mcase | Mskip { Mboth i None

usl-tm | 81% | 7% i 3% i 0% | 9%
usl-FP | 56% § 41% i 0% i 0% i 2%
FR-FP | 83% | 0% | 6% | 11% | 0%
GM-IM | T1% f 4% F 8% f 0% | 1T%

The table shows that Mequal, which performs the equality
check in a separate traversal, was the most popular in ev-
ery course. Across all four courses, only two students (both
from FR-FP, a functional course) did single-traversal solu-
tions. What explains the lack of single-traversal solutions,
especially amongst the imperative students?

The answer is library functions for manipulating or com-
paring strings or lists (of characters). Many Java solutions
used replaceAll or toLowerCase; Racket solutions often
used a case-insensitive string-comparator. Primitives thus

have significant influence on program structure. This may
not sound surprising, but it has pedagogic consequences.
Classic plan-composition papers [9, 12] focused on the in-
tegration of new statements into existing procedures. With
primitives, the problem shifts to include decomposition of
problems around tasks covered by primitives. Problem de-
composition is a different skill than code composition.

Adding Machine: Nearly every solution, whether func-
tional or imperative, used a single traversal. Nevertheless,
there were significant differences across the paradigms, some
with pedagogic implications. Not surprisingly, functional
students used recursion, while imperative students used for-
loops. Within each pattern, solutions differed in which inter-
mediate values they accumulated in parameters or top-level
variables: the running sum of the current sublist, the output
so far, both, or neither (“neither” can occur in a recursive so-
lution that recurs on a new list with the running sublist sum
in the first position). The following table summarizes solu-
tion structures based on the accumulated values. AccBoth
plans accumulated both the sublist sum and the output so
far. AccSum accumulated only the current sublist sum. Re-
shape created lists of sublists before computing the sums.
Other solutions accumulated sublists or used nested loops
(rather than top-level variables) for the sublist sums. None
had no code relevant to the problem.

| AccBoth AccSum Reshape Other None

Us1-m 5% + 0% i 0% i 2T% i 1%
US1-FP 10% | 36% { 14% | 40% | 0%
FR-FP 2% i 17% i 6% i 33% i 11%
GM-IM 8% 1 0% i 9% i 22% | 22%

Solutions were more distributed in the functional courses.
This likely reflects flexibility from having the input list be
a parameter in recursive solutions: a solution could, for ex-
ample, store the running sum in the first position of the list.
For-loop solutions lack this flexibility. Only one imperative
student (in US1-1M) used recursion: this solution passed a
modified input list on the recursive call, but was missing
too many tasks to reflect a clear structure.

Functional and imperative solutions seem prone to differ-
ent errors:

e Several imperative students ran into trouble using the “en-
hanced” form of for (e.g., for (i : anArray) ...). In
this form, it is impossible to determine the next element,
which is essential for this problem (to check for two con-
secutive zeros). When trapped in this situation, many
students inadvertently confused array contents with in-
dices, e.g., comparing i with zero (rightly treating i as the
content) but also comparing i + 1 with zero (accidentally
treating it as an index). (We conjecture that using the
variable name i, which is usually associated with indices,
makes this problem more likely, and suggest that users
of enhanced for loops use a variable name more likely to
suggest content than an index.)

e Students who used index-based for loops avoided this prob-
lem, but fell prey to (the usual) out-of-bounds errors when
doing arithmetic on indices to detect consecutive zeros.

e Recursive solutions sit squarely between these two forms of
loops: the recursive list is an inductive structure, so even

though the program lacks index variables, it can still ac-
cess subsequent elements of the list from the current head.
Functional students who kept the running sublist sum in
the first position of the list typically produced solutions
that would fail on a non-empty sublist whose sum is zero.

e Imperative solutions that used the current sum to detect
consecutive zeros fell prey to the same problem, but imper-
ative students used a wider range of patterns for detecting
consecutive zeros in the first place.

3.2 Results: Ranking Problems

For the ranking problems, we were primarily interested
in whether the language students learned correlated with
preferences for single-traversal solutions. § 2 outlines the
structure of the solutions. We implemented each solution
using typical structures from each language (e.g., we did not
write recursive solutions in Java), but without primitives or
operators that traversed data (such as built-in iterators or
higher-order functions). We did not lead the students with
particular issues to consider, but merely asked for free-form
comments that justified their rankings.

The following table reports the percentage of all students
(not sampled) who ranked the single-traversal solution as
one of their top choices. (It is worth noting that even though
ties were permitted, they never exceeded 15% for first-place
choices, and were usually closer to 6-8%, indicating that
students really did choose to express a preference.) On
all three problems, students in the imperative courses had
strong preferences for single-traversal solutions. Curiously,
each functional course had a much stronger preference for
single traversals on one problem, with a different problem
preferred in each course. We do not yet have an explanation
for this, but suspect it says something about curricular or
pedagogic differences among the courses.

| Rainfall Length of Triples Shopping Cart

Usl-M 920% i 93% i 94%
US1-FP 1% i 34% 48%
US2-FP 33% i 33% 65%
FR-FP 60% i 86% 43%
oM-M | 88% 81% 78%

Students’ written justifications (sampled) cited issues such
as runtime efficiency, readability, space consumption, code
layout, separation of concerns, use of variables, lines of code,
clarity of computations, and support for future code mod-
ification. No issue was raised consistently either within a
course or within those who preferred a particular structure.
Not surprisingly, however, efficiency was one of the top two
cited issues (readability, in various forms, was the other).
Some students raised it as a deciding factor (in favor of a
single-traversal solution), but others cited it as a difference
between solutions that was outweighed by another concern.

Three observations around efficiency comments warrant
deeper investigation. First, in Usl-1M, students often based
decisions on efficiency, even though the professor insisted
that he not only did not teach it, he expressly told his stu-
dents to not consider it. Because most students in the class
have no prior programming experience, their concern is un-
likely to stem from their previous preparation. One possibil-
ity is that the large teaching assistant population (all under-
graduate students who previously took the same course) is
sending a different message that contradicts the professor’s.

Another is that this is an inherent concern in how students
think about computing—at least those that choose a Java-
based course. We believe this warrants further investigation
to understand the mindset of students.

Second, concern with efficiency and counting the number
of traversals is not consistent with using library functions
(such as replaceAll in Palindrome) that perform additional
data traversals. In both imperative courses, roughly half of
the students who used replaceAll also selected single loop
solutions with justifications that cited efficiency. This sug-
gests that students might have a weak cost model of library
functions. There seem to be significant open questions here
about what cost models students have, how they develop,
and what role they should or do play in planning.

Third, several imperative students (16 of 59 in Us1-1M, for
example) criticized creating intermediate data as inefficient
(each multi-traversal solution explicitly created such data).
Creating intermediate data structures is common in func-
tional programming, though less typical in imperative intro-
ductory courses. Again, however, library functions obscure
intermediate data creation. In addition, in some languages
it is syntactically much more concise to define an interme-
diate data structure than in others: creating the datatype
and constructor for a flat triple of data needs only a sin-
gle line in Racket, but at least 7 lines in Java. Built-in
iterators (such as filters in functional programming) create
intermediate data with a single operation; doing the same
task manually requires several lines of code, which can make
the program look more complicated. It is therefore unclear
whether students’ concerns about efficiency are truly about
the run-time cost or actually statements about the syntactic
appearance of code.

4. RELATED WORK

Historically, studies of program planning focused on how
students interleaved I/O (including detecting sentinels and
re-prompting on bad input) with computation. Rainfall is
the classic planning problem [9, 10], with other I/O-focused
problems proposed in other studies [11, 12]. Given that
1/0 mechanisms vary widely across models, problems with
multiple tasks that arise from the problem data should be
better suited to cross-course and cross-language studies.

In many early Rainfall studies [9, 11], students had not
learned data structures or multiple forms of iterating over
data. This vastly constrains the range of viable plans, leav-
ing little to study beyond program errors [3, 8, 9, 13]. Stu-
dents today learn a richer collection of constructs and li-
braries, thus letting us study relationships between the plans
students choose and instructors’ pedagogic decisions (which
languages to use, primitives and patterns to teach, etc.) that
influence students’ choices.

Our project studies the relationship between program-
ming languages (and their corresponding coding styles and
pedagogies) and students’ code structure. Ebrahimi [3] did
the first cross-lingual Rainfall study in 1994. He compared
rates of certain low-level errors across solutions written in
four languages. He did not analyze high-level differences in
solution structures (as we do), seemingly because the stu-
dents had learned similar programming patterns across the
languages [personal communication].

Fisler [4] studied Rainfall with functional programming
students, finding that they produced diverse solutions, of-
ten correlated with use of library functions. One goal of our

paper was to see whether those results generalized to prob-
lems other than Rainfall. This paper also adds the ranking
questions component, which was not part of Fisler’s work.

Theories of how people select plans and program struc-
ture [1, 7, 11] likely explain some of students’ planning
choices (such as which looping structures they use). These
theories do not, however, fully account for design decisions
such as whether to clean or parse data before processing
it. Those decisions reflect general design principles. Ideally,
studies should explore when and how students develop an
appreciation for such design concerns.

The program structures that we consider here, based on
cleaning and reshaping, as well as consideration of different
kinds of iteration, represent programming patterns that one
can teach explicitly. Ginat and Muller’s work on Pattern-
Oriented Instruction [5] shows that explicitly teaching pat-
terns can improve student performance in problem decom-
position and programming. Several (though not all) of the
patterns that they teach correspond to standard primitives
and higher-order operators from functional programming.
Clancy and Linn [2] summarize approaches to teaching pro-
gramming patterns, highlighting that such instruction must
be multi-faceted, relating to both problem descriptions and
a model of program execution. Their work may provide a
lens for investigating differences across our study courses.

The ranking-problems portion of our study loosely relates
to other work on code comprehension using Rainfall. An-
other part of Ebrahimi’s study compared the correctness
of students’ Rainfall solutions with their performance on a
code-comprehension task. Venables et al. [13] related stu-
dent performance on writing programs including Rainfall
with their ability to trace and explain programs with proce-
dural loops. They found that students who could not trace
accurately could not produce correct programs. Our study
did not ask students directly to comprehend code; indeed,
students could rank the problems based on surface features
without deep understanding of how the programs worked.
Nevertheless, a handful of students ruled out solutions be-
lieving them to be incorrect.

S. TOPICS FOR FUTURE STUDIES

Different programming languages embody different ways
of structuring data and computations. We would expect the
structure of students’ code to vary somewhat across pro-
gramming languages. This variance has not been studied
sufficiently, especially with respect to skills like plan com-
position. Many early studies of student programming were
done within single linguistic styles. Given the variety of
languages and styles currently used for beginning students,
the community needs a much deeper understanding of the
interplay between core skills and linguistic factors.

This paper proposes a set of problems and a general frame-
work for cross-linguistic studies of plan composition. The
framework tries to identify parameters that can yield a ro-
bust set of problems for studying plan integration. Prior to
our preliminary study, these parameters emphasized the na-
ture of the tasks within programming problems. We took a
data-processing approach, embracing challenges that many
casual programmers are expected to confront: noisy data,
flattened data, and selecting subsets of data. Our initial
study suggests two additional parameters: (1) the existence
(and student knowledge) of common library functions that
align with some problem tasks, and (2) dependencies be-

tween data elements (such as relationships between consecu-
tive elements) for some problem tasks. We posit that varying
these parameters will deepen the value of planning studies.

Deeper analysis of library functions and language con-
structs should shed light on the aspects of different languages
that matter for plan composition. For instance, Python is
taught imperatively by some and functionally by others. We
see such variation in the solutions students produce. Indeed,
this challenges whether the typical paradigm classification of
languages is even sensical.

We are also exploring students’ views on program struc-
ture by having them assess code, not only produce it. Asking
students to rank and comment on different solutions pro-
vides insight into the criteria that students are internalizing
about “good” programs. We suspect these criteria are often
not taught explicitly (as we saw with efficiency concerns).
This kind of implicit knowledge acquisition is a vital but
under-studied aspect of computing education.

Contrasting students’ preferences in ranking solutions with
the code they produced raised questions about the cost mod-
els that students have for library functions. We saw sev-
eral students embrace primitives that traverse data multiple
times when programming, only to castigate these same ap-
proaches as inefficient when ranking. Perhaps the concise-
ness of code written with primitives blinds students to their
costs. Perhaps students cite efficiency because no other cri-
terion comes to mind. A followup study should have some
ranking problem solutions use primitives while others use
equivalent computations written manually. This could help
tease apart both students’ cost models and whether, as we
conjecture, concise code is perceived as more efficient.

Our data also reveal that some students criticize interme-
diate data for efficiency reasons, while others praise “think-
ing ahead” to other potential uses of such data (such as
potentially reusing clean data from Rainfall in another, re-
lated, computation). We suspect that these reactions are
learned from the problems students have seen in class. It is
possible that simply showing imperative-programming stu-
dents solutions that create intermediate data, even without
directly discussing efficiency concerns, would alter percep-
tions that the inefficiency of such data is inherently bad.

With student populations changing, CS courses are in-
creasingly called on to prepare a broader range of students
to write not-too-complicated (but not trivial) scripts for
data processing. For these students, teaching them to ef-
fectively use primitives and to write separate functions for
separate tasks is likely less error prone than teaching them
to interleave tasks into single-traversal functions. Put dif-
ferently, our student population may call for shifting the
goal of “plan composition” studies to look at how to teach
problem decomposition as much as code composition. Classic
plan-composition studies arguably emphasized the latter, at
least as evidenced by evaluation metrics. Instead, we need
to refine the rubrics that we use in planning studies to ac-
count for each of the decompositions of tasks around func-
tions or traversals, errors within tasks, and errors in com-
posing tasks and traversals. Our work with Adding Machine
taught us that we also need to track the specific constructs
through which students implement individual traversals. We
similarly see value in tracking constructs in Python due to
the different styles engendered by explicit loops versus con-
structing loops implicitly through comprehensions.

Should we deem this shift valuable, researchers should

also query instructors about their ranking preferences and
perceived value of efficiency. We have discussed different
solutions to our study problems with multiple colleagues,
many of whom teach introductory courses. Informally, we
see faculty who work in imperative programming question
solutions that perform multiple traversals (on the grounds
of inefficiency), while faculty who program functionally raise
principles (such as “clean data first” and “separate concerns”)
behind their multi-traversal solutions. Other projects, such
as Ginat’s pattern-oriented instruction [5] explicitly pro-
mote solutions that interleave tasks for sake of efficiency.
A broader discussion among faculty as to what we will con-
sider “well composed” programs may be in order to smooth
existing differences in solutions across languages.

Finally, this study has refined our sense of what back-
ground information might help understand factors that in-
fluence planning. Our data suggest that meaningful “prior-
knowledge” surveys should explore what datatypes students
know, what iteration patterns they have learned over each,
and which libraries they have used. This is more nuanced
than “how many courses”, or “what languages have you used”,
while targeting specific prior knowledge that might affect
students’ program structures.

Acknowledgments.

We thank Joe Beck, Amy Greenwald, Alan Schmitt, Peter
Thiemann, and Andy van Dam. We appreciate Ardra Hren’s
feedback. Mike Clancy presented us the adding machine
problem. This work is partially funded by the US NSF.

6 REFERENCES

. R. Anderson, R. Farrell, and R. Sauers. Learning to
program in LISP Cogmtwe Science, 8:87-129, 1984.

[2] M. J. Clancy and M. C. Linn. Patterns and pedagogy.
SIGCSE Bulletin, 31(1):37-42, Mar. 1999.

[3] A. Ebrahimi. Novice programmer errors: language
constructs and plan composition. International Journal of
Human-Computer Studies, 41:457-480, 1994.

[4] K. Fisler. The recurring rainfall problem. In Proceedings of
ICER, 2014.

(5] O. Muller, B. Haberman, and D. Ginat. Pattern-oriented
instruction and its influence on problem decomposition and
solution construction. In Proceedings of ITiCSE, 2007.

(6] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053-1058, Dec. 1972.

[7] P. L. Pirolli. Problem Solving by Analogy and Skill
Acquisition in the Domain of Programming. PhD thesis,
Carnegie Mellon University, Department of Cognitive
Psychology, 1985.

[8] Simon. Soloway’s Rainfall problem has become harder.
Learning and Teaching in Computing and Engineering,
pages 130-135, 2013.

[9] E. Soloway. Learning to program = learning to construct
mechanisms and explanations. Communications of the
ACM, 29(9):850-858, Sept. 1986.

[10] E. Soloway, J. Bonar, and K. Ehrlich. Cognitive strategies
and looping constructs: An empirical study.
Communications of the ACM, 26(11):853-860, Nov. 1983.

[11] J. C. Spohrer. MARCEL: Simulating the Nowvice
Programmer. Intellect Books, 1992.

[12] J. C. Spohrer and E. Soloway. Simulating student
programmers. In International Joint Conference on
Artificial Intelligence, pages 543-549, 1989.

[13] A. Venables, G. Tan, and R. Lister. A closer look at
tracing, explaining and code writing skills in the novice
programmer. In Proceedings of ICER, pages 117128, 2009.

