
GSDLAB TECHNICAL REPORT

Why CART Works for Variability-Aware
Performance Prediction? An Empirical Study on

Performance Distributions

Jianmei Guo, Krzysztof Czarnecki, Sven Apel,
Norbert Siegmund, Andrzej Wąsowski

GSDLAB–TR–2013–04–02 April 2013

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemi-
nation of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

Why CART Works for Variability-Aware
Performance Prediction? An Empirical Study on

Performance Distributions
Jianmei Guo∗, Krzysztof Czarnecki∗, Sven Apel†, Norbert Siegmund‡, and Andrzej Wąsowski§

∗University of Waterloo, Canada
†University of Passau, Germany

‡University of Magdeburg, Germany
§IT University of Copenhagen, Denmark

Abstract—This report presents follow-up work for our previous
technical report “Variability-Aware Performance Modeling: A
Statistical Learning Approach" (GSDLAB-TR-2012-08-18). We
try to give evidence why our approach, based on a statistical-
learning technique called Classification And Regression Trees
(CART), works for variability-aware performance prediction. To
this end, we conduct a comparative analysis of performance
distributions on the evaluated case studies and empirically
explore why our approach works with small random samples.

I. INTRODUCTION

In our previous technical report [2], we proposed an incre-
mental and variability-aware approach to performance predic-
tion for configurable software systems. We use a statistical
learning technique called Classification And Regression Trees
(CART) to build the correlation between feature selections and
performance, to be used for performance prediction. Empirical
results on six real-world case studies show that our approach
achieves an average of 93.8% prediction accuracy based on
small random samples. However, we still want to give evidence
why our approach works for variability-aware performance
prediction, especially with small random samples.

CART and its variants (e.g., Random Forests and Boosting)
have been widely used in statistics and data mining, because
CART’s algorithm is quick and reliable, and its tree structure
can provide insight into the relevant input variables for pre-
diction [1], [3]. Some studies have demonstrated the effects
of CART on performance prediction for different case studies
[5], [6], but they did not explicitly evidence why CART does
or does not work.

A general explanation from the statistical-learning theory
is that a regression model works well when the problem it
addresses or the data it evaluates does fit the regressive pattern
it builds [1]. CART builds a tree-like regression model M
that recursively partitions a sample S and makes the total
prediction errors in each partition minimal (refer to [2] for
more details); this way, the regression model always fits the
sample well. Furthermore, if the sample can represent the
whole population WP or reflect the important characteristics
of the whole population, then the prediction model built on the

sample also fits the whole population well and makes accurate
predictions. This can be formalized as follows:

M ` S ∧ S ∼WP ⇒ M `WP (1)

Since our prediction targets numeric performance values,
the performance distribution is an important characteristic for
performance prediction. Hence, we conduct a comparative
analysis of performance distributions on six real-world case
studies and empirically explore why our approach works
with small random samples. Here, a performance distribution
denotes the frequency distribution of all performance values in
a sample or in the whole population. A key finding is that our
approach based on CART works well when the sample it uses
has a similar performance distribution as the whole population

In the remaining of this report, we first describe the
subject systems used in our case studies. Then, we analyze
and compare performance distributions for each system. All
experimental data are available on the project’s web site:
http://cpm.googlecode.com.

II. SUBJECT SYSTEMS

We performed the case studies on a publicly-available
dataset, deployed with the SPLConqueror tool.1 The dataset
covers a reasonable spectrum of practical application scenar-
ios. As shown in Table I, there are six existing real-world cus-
tomizable systems with different characteristics: different sizes
(45 thousand to 300 thousand lines of code, 192 to millions of
configurations), different implementation languages (C, C++,
and Java), and different configuration mechanisms (conditional
compilation, configuration files, and command-line options).
Moreover, the dataset contains the whole population of each
system, i.e., all configurations of each system and their per-
formance measurements (The exception is SQLite, for which
the original developers measured 4, 553 configurations for
prediction modeling and 100 additional random configurations
for prediction evaluation [4]). For each system, the perfor-
mance has been measured using a standard benchmark either
delivered by its vendor (e.g., Oracle’s standard benchmark for

1The dataset is available from here: http://fosd.de/SPLConqueror.

TABLE I
OVERVIEW OF THE SIX SUBJECT SYSTEMS. LANG.—LANGUAGE;

LOC—LINES OF CODE; |X|—NUMBER OF ALL CONFIGURATIONS;
N—NUMBER OF ALL FEATURES; M—NUMBER OF CONFIGURATIONS
REQUIRED BY THE PAIR-WISE HEURISTIC USED IN SPLCONQUEROR.

System Domain Lang. LOC |X| N M
1 Apache Web Server C 230,277 192 9 29
2 LLVM Compiler C++ 47,549 1,024 11 62
3 x264 Encoder C 45,743 1,152 16 81
4 Berkeley DB Database C 219,811 2,560 18 139
5 Berkeley DB Database Java 42,596 400 26 48
6 SQLite Database C 312,625 3,932,160 39 566

Berkeley DB) or used widely in its application domain (e.g.,
AUTOBENCH and HTTPERF for Apache Web Server).

To better understand each subject system, we present the
feature model of each system and analyze it as follows.

Figure 1 shows the feature model of the Apache Web server
(called Apache, for short). Apache has nine features other than
the root feature, which is used to denote the system itself. It
contains one mandatory feature, eight optional features, and
one cross-tree constraints.

Figure 2 shows the feature model of the LLVM compiler
infrastructure (called LLVM, for short). LLVM has 11 features
other than the root feature. It contains one mandatory feature,
10 optional features, and no cross-tree constraints.

Figure 3 shows the feature model of the x264 video stream
encoder (called x264, for short). x264 has 16 features other
than the root feature. It contains three mandatory feature, seven
optional features, two alternative groups, and no cross-tree
constraints.

Figure 4 shows the feature model of the Berkeley database’s
C version (called Berkeley DB C, for short). Berkeley DB C
has 18 features other than the root feature. It contains two
mandatory features, seven optional features, two alternative
groups, and no cross-tree constraints.

Figure 5 shows the feature model of the Berkeley database’s
Java version (called Berkeley DB Java, for short). Berkeley DB
Java has 26 features other than the root feature. It contains
13 mandatory feature, five optional features, four alternative
groups, and one cross-tree constraints.

Figure 6 shows the feature model of the SQLite database
(called SQLite, for short). SQLite has 39 features other than
the root feature. It contains nine mandatory feature, 15 optional
features, five alternative groups, and no cross-tree constraints.

III. COMPARATIVE ANALYSIS OF PERFORMANCE
DISTRIBUTIONS

In this section, we analyze and compare the performance
distributions between a random sample S and the whole
population WH on our evaluated case studies. The hypothesis
is that our CART-based approach works well with a small
random sample when the sample has a similar performance
distribution as the whole population.

For each subject system in our case studies, we first
visualize and analyze the performance distribution of the
whole population. The exception is SQLite, for which the

original developers cannot measure the whole population in
reasonable time. So, we use all 4, 553 measured configurations
to represent the whole population of SQLite, but we are aware
of that it is a threat to validity.

Then, we collected all random samples generated in the
previous experiment on the prediction fault rate [2]. We
visualize the average performance distribution for each sample
size of N , 2N , 3N , or M to mitigate the influence of a specific
performance distribution of a certain random sample.

Furthermore, we compare the similarity between the per-
formance distribution of a random sample (size N , 2N , 3N ,
or M) and that of the whole population. We analyze the
similarity to the corresponding fault rate observed in the
previous experiment [2].

We use a histogram to visualize a performance distribution.
A histogram provides a quick and intuitive visualization of
the distribution of the data [7]; it consists of two parts: the
vertical bars, each of which displays the frequency of each
value range; and the density estimate curve, which shows a
more accurate display of the distribution of the data.

Figure 7 shows the Apache performance distributions. The
performance distribution of the whole population is roughly a
mixture distribution with two peaks. Compared to the whole
population, we can see that the N sample has the least
similarity, and it produces a prediction fault rate of 26.9%.
The 2N sample already has a similar performance distribution
as the whole population, and the prediction fault rate reduces
dramatically to 11.6%. The 3N and M samples are more
similar to the whole population than the 2N sample, and their
prediction fault rates reach 8.4% and 9.7%. In this case, the
3N sample has a lower fault rate than the M sample, and
its performance distribution is also more similar to the whole
population. It is because 3N = 27 is very close to M = 29
in this case as well as the fluctuations caused by the random
generation of samples.

In most cases, a larger random sample is more similar to the
whole population, if such a sample is not skewed to some un-
desirable characteristics (e.g., always missing some features).2

To reduce the fluctuations of the prediction fault rate caused
by random generation, we performed five repetitions for each
system and each sample size. That is, for each subject system,
we repeated five times generating a random sample of a certain
size and subsequently measured the prediction fault rate after
applying our approach to the sample. We took only the average
of these measurements for analysis. However, the fluctuations
may still exist in our experimental results, which is a threat
to validity.

Figure 8 shows the LLVM performance distributions. The
performance distribution of the whole population is roughly
a single distribution. The N sample captures the correct peak
and the rough trend of the performance distribution, and it
produces a quite low fault rate of 5.7%. The 2N , 3N , and
M samples identify two trivial subpeaks gradually, and they

2An exploratory experiment on missing features and skewed configurations
can be found in our technical report: http://gsd.uwaterloo.ca/node/484.

achieve a robust decreasing trend of the fault rate from 4.5%,
4.0%, to 3.3%.

Figure 9 shows the x264 performance distributions. The
performance distribution of the whole population is roughly a
mixture distribution with two peaks. The N sample identifies
the two peaks, but misses the correct locations of the two
peaks; and it produces a fault rate of 15.1%. Next, the
2N , 3N , and M samples gradually move and form the two
peaks approximately to the precise locations, as shown in the
performance distribution of the whole population. With such
a gradual process that makes the more similar performance
distribution as the whole population, the prediction fault rate
shows a robust decreasing trend from 15.1% to 8.5%, 7.2%,
and 6.4% when the sample size increases from N to 2N , 3N
to M.

Figure 10 shows the Berkeley DB C performance distribu-
tions. The performance distribution of the whole population is
roughly a mixture distribution with four peaks. The N sample
roughly identifies three peaks, and it produces a quite high
fault rate of 112.4%. The 2N and 3N samples further move
the three peaks gradually to the precise locations, but they
both miss the fourth peak, and their fault rates still remain at
98.3% and 46.8%. Only when the M sample identifies the
fourth peak, which is next to the leftmost peak, the fault rate
reduces sharply to 7.8%.

Furthermore, from this case, we can see that the intuitive
comparison of the shape and trend of performance distri-
butions is not sufficient. For Berkeley DB C, the whole
population has 2, 242 distinct performance values and these
values spread over a large value range. That demands many
measurement points to guarantee reasonable prediction accura-
cy. Hence, it is necessary to consider more influencing factors
for the similarity between a random sample and the whole
population and further quantify the similarity, which will be
explored in future work.

Figure 11 shows the Berkeley DB Java performance distri-
butions. The performance distribution of the whole population
is roughly a mixture distribution with four peaks. Despite
this, the whole population of Berkeley DB Java has only
171 distinct performance values. The N sample identifies all
four peaks, and it already produces a fault rate of 3.2%.
Subsequently, the fault rates of the 2N , 3N , and M samples
fluctuate smoothly from 2.2%, 2.6%, to 2.7%.

Figure 12 shows the SQLite performance distributions. We
use all 4, 553 measured configurations to represent the whole
population of SQLite. The performance distribution of the
whole population is roughly a single distribution. The N
sample already has a similar performance distribution as the
whole population, and its fault rate reaches 8.0%. Then, the
2N , 3N , and M samples gradually refine the performance
distribution and produce the fault rate from 8.1%, 7.6%, to
7.2%.

IV. CONCLUSION

The comparative analysis of performance distributions be-
tween random samples and the whole populations reveals

that our approach works well with a small random sample
when the sample has a similar performance distribution as the
whole population. In fact, we found an explicit evidence that
a sample does reflect some important characteristics of the
whole population when we can produce accurate predictions
based on it. However, we are aware of that the performance
distribution is just one of the important characteristics for
performance prediction. These characteristics may involve,
for example, the number and dispersion of distinct values
as well as the feature coverage. A quantitative study on the
similarity between a random sample and the whole population,
involving more characteristics for performance prediction, will
be explored in future work.

Figure 1. The feature model of Apache

Figure 2. The feature model of LLVM

Figure 3. The feature model of x264

Figure 4. The feature model of Berkeley DB C

Figure 5. The feature model of Berkeley DB Java

Fi
gu

re
6.

T
he

fe
at

ur
e

m
od

el
of

SQ
L

ite

(a) |S| = N

(b) |S| = 2N

(c) |S| = 3N

(d) |S| = M

(e) WH

Figure 7. Histograms of the performance distributions of the random samples
of four sizes (N ∼ M) and of the whole population of Apache. (X-axis:
Performance (seconds); Y-axis: Relative Frequency.)

(a) |S| = N

(b) |S| = 2N

(c) |S| = 3N

(d) |S| = M

(e) WH

Figure 8. Histograms of the performance distributions of the random samples
of four sizes (N ∼ M) and of the whole population of LLVM. (X-axis:
Performance (seconds); Y-axis: Relative Frequency.)

(a) |S| = N

(b) |S| = 2N

(c) |S| = 3N

(d) |S| = M

(e) WH

Figure 9. Histograms of the performance distributions of the random samples
of four sizes (N ∼ M) and of the whole population of x264. (X-axis:
Performance (seconds); Y-axis: Relative Frequency.)

(a) |S| = N

(b) |S| = 2N

(c) |S| = 3N

(d) |S| = M

(e) WH

Figure 10. Histograms of the performance distributions of the random
samples of four sizes (N ∼ M) and of the whole population of Berkeley
DB C. (X-axis: Performance (seconds); Y-axis: Relative Frequency.)

(a) |S| = N

(b) |S| = 2N

(c) |S| = 3N

(d) |S| = M

(e) WH

Figure 11. Histograms of the performance distributions of the random
samples of four sizes (N ∼ M) and of the whole population of Berkeley
DB Java. (X-axis: Performance (seconds); Y-axis: Relative Frequency.)

(a) |S| = N

(b) |S| = 2N

(c) |S| = 3N

(d) |S| = M

(e) WH

Figure 12. Histograms of the performance distributions of the random
samples of four sizes (N ∼ M) and of the whole population of SQLite.
(X-axis: Performance (seconds); Y-axis: Relative Frequency.)

REFERENCES

[1] R. A. Berk, Statistical Learning from a Regression Perspective. New
York, NY, USA: Springer, 2008.

[2] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wa̧sowski,
“Variability-aware performance modeling: A statistical learning ap-
proach,” Generative Software Development Laboratory, University of
Waterloo, Tech. Rep. GSDLAB-TR-2012-08-18, 2012.

[3] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. New York,
NY, USA: Springer, 2009.

[4] N. Siegmund, S. S. Kolesnikov, C. Kastner, S. Apel, D. S. Batory,
M. Rosenmuller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in ICSE. Zürich, Switzerland: IEEE, 2012,
pp. 167–177.

[5] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel, “Practical perfor-
mance models for complex, popular applications,” in SIGMETRICS. New
York, NY, USA: ACM, 2010, pp. 1–12.

[6] D. Westermann, J. Happe, R. Krebs, and R. Farahbod, “Automated
Inference of Goal-Oriented Performance Prediction Functions,” in ASE.
Essen, Germany: ACM, 2012, pp. 190–199.

[7] G. Williams, Data Mining with Rattle and R: The Art of Excavating Data
for Knowledge Discovery. New York, NY, USA: Springer, 2011.

