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ABSTRACT

The polyhedral model for loop parallelization has proved to be an effective tool for ad-

vanced optimization and automatic parallelization of programs in higher-level languages.
Yet, to integrate such optimizations seamlessly into production compilers, they must be

performed on the compiler’s internal, low-level, intermediate representation (IR). With

Polly, we present an infrastructure for polyhedral optimizations on such an IR. We de-
scribe the detection of program parts amenable to a polyhedral optimization (so-called

static control parts), their translation to a Z-polyhedral representation, optimizations

on this representation and the generation of optimized IR code. Furthermore, we de-
fine an interface for connecting external optimizers and present a novel way of using

the parallelism they introduce to generate SIMD and OpenMP code. To evaluate Polly,

we compile the PolyBench 2.0 benchmarks fully automatically with PLuTo as external
optimizer and parallelizer. We can report on significant speedups.

Keywords: Automatic loop optimization, LLVM, OpenMP, polyhedron model, SIMD,

tiling

1. Introduction

1.1. Motivation

Modern hardware provides many possibilities of executing a program efficiently.

Multiple cache levels help to exploit data locality, and there are various ways of

taking advantage of parallelism. Short vector instruction sets, such as provided by

Intel SSE and AVX, IBM AltiVec or ARM NEON, offer fine-grained parallelism.

Dedicated vector accelerators or GPUs supporting general-purpose computing offer

massive parallelism. On platforms such as the IBM Cell, Intel SandyBridge or AMD

Fusion similar accelerators are available, tightly integrated with general-purpose
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CPUs. Finally, an increasing number of cores exists even on ultra-mobile platforms.

The effective use of all available resources is essential for highest efficiency. Conse-

quently, well optimized programs are required.

Traditionally, such optimizations are performed by translating performance-

critical parts of a software system to a lower-level language, e.g., C or C++, and

optimizing them manually. This is a difficult task: most compilers support basic loop

transformations as well as inner and outer loop vectorization but, as soon as com-

plex transformations are necessary to ensure the required data locality or to expose

the various kinds of parallelism, little compiler support is available. The problem

is further compounded if hints for the compiler are needed, such as the annotation

of parallel loops or of code to be delegated to an accelerator. As a result, domain

experts are required for specifying such optimizations.

Even if they succeed, other problems remain. For one, such optimizations are

extremely platform-dependent and often not even portable between different micro-

architectures. Consequently, programs need to be optimized for every target archi-

tecture individually. This is a complex undertaking. Today, an application may tar-

get at the same time ARM-based smartphones, Intel Atom-based and AMD Fusion-

based netbooks as well as a large number of desktop processors, all equipped with a

variety of different graphic and vector accelerators. Furthermore, manual optimiza-

tions are often impossible from the outset. High-level language features, such as the

iterators and the FOREACH loop of C++, hinder manual loop optimizations, since

they require manual inlining. Languages such as Java, Python and JavaScript pro-

vide no support for portable low-level optimizations. Even programs compiled for

the Google Native Client [29], a framework for portable, calculation-intensive Web

applications, will face portability issues if advanced hardware features are used. In

brief, manual optimizations are complex, non-portable or even impossible.

Fortunately, powerful algorithms are available for optimizing computation-

intensive programs automatically. Wilson et al. [28] implemented an automatic

parallelization and data locality optimizations based on unimodular transforma-

tions in the SUIF compiler, Feautrier [10] developed an algorithm for calculating

a parallel execution order from scratch and Griebl et al. [12] developed LooPo,

a complete infrastructure for the comparative study of polyhedral algorithms and

concepts. Furthermore, Bondhugula et al. [6] created PLuTo, an advanced data lo-

cality optimizer that exposes thread and SIMD parallelism simultaneously. There

are also methods for offloading calculations to accelerators [2] and even techniques

for synthesizing high-performance hardware [22]. All these techniques are part of a

large set of advanced optimization algorithms based on polyhedral concepts.

However, the use of these advanced algorithms is currently limited. Most of

them are implemented in source-to-source compilers with language-specific front

ends for the extraction of relevant code regions. This often requires the source code

of these regions to be in a canonical form and to be void of pointer arithmetic

or higher-level language constructs such as C++ iterators. Furthermore, the man-

ual annotation of code that is safe to optimize is often necessary, since even tools
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limited to a restricted subset of C commonly ignore effects of implicit type casts,

integer wrapping or aliasing. Another problem is that most implementations target

C code and subsequently pass it to a compiler. This limited integration prevents

an effective use of polyhedral tools for compiler-internal optimizations. As a result,

influencing performance-related decisions of the compiler is difficult and the result-

ing target programs often suffer from poor register allocation, missed vectorization

opportunities or similar problems.

We can conclude that a large number of computation-intensive programs exist

that need to be optimized automatically to be executed efficiently on contemporary

hardware. Existing compilers have difficulties with the required complex transfor-

mations, but there is a set of advanced polyhedral techniques that are proven to

be effective. Yet, they lack integration in a production compiler and thus, have no

significant impact.

1.2. Contributions

We introduce Polly,a a tool for the automatic polyhedral optimization of the low-

level IR representation of real programs. We present the entire infrastructure of

Polly. Our treatise is based on the diploma thesis of the first author [13]; some

selected aspects have been introduced earlier [14].

Polly detects and extracts relevant code regions without any human interaction.

Since Polly works on LLVM’s intermediate representation (LLVM-IR), it is inde-

pendent of the programming language used and supports constructs such as C++

iterators, pointer arithmetic and goto-based loops transparently. It is based on an

advanced polyhedral library [27] that can model integer wrapping and that provides

a state-of-the-art dependence analysis. Due to a simple file interface, it is possible to

apply transformations manually or to use an external optimizer. We have used this

interface to integrate PLuTo, a modern data locality optimizer and parallelizer.

Polly automatically detects existing and newly exposed parallelism and can take

advantage of it through the integrated SIMD and OpenMP code generation. This

allows automatic optimizers to focus on the parallelization problem and to offload

low level SIMD and OpenMP code generation to Polly.

The remainder is organized as follows. After discussing related work in Section 2,

Section 3 presents the general architecture of Polly. Section 4 describes the detec-

tion of interesting code regions and their translation into a polyhedral description.

Section 5 addresses the analysis and transformation of this description and proposes

an exchange format for external optimizers. Section 6 describes how we regenerate

LLVM-IR and, subsequently, OpenMP and SIMD code. Section 7 reports on some

experiments and evaluation. Finally, Section 9 concludes.

aThe name “Polly” is a combination of Polyhedral and LLVM.



May 1, 2012 14:53 WSPC/INSTRUCTION FILE paper

4 Parallel Processing Letters

2. Related Work

Automatic optimization using the polyhedron model has been studied and imple-

mented in several frameworks. Most systems to date perform a source-to-source

transformation, e.g., PIPS [15], LooPo [12], PLuTo [6], PoCC,b AlphaZc and the

commercial R-Stream source-to-source compiler [17]. More recently, polyhedral

transformations have also been implemented at the level of the intermediate repre-

sentation to overcome the restiction to subsets of “real” languages (cf. Section 1).

In the Wrap-IT [11] research project (based on Open64) and the IBM XL compiler

[5], polyhedral optimizations act on the compiler’s high-level intermediate represen-

tation.

GRAPHITE [24] was among the first to demonstrate the integration of poly-

hedral tools into a production compiler. It is independent of the source language,

as it extracts polyhedral information from GIMPLE, GCC’s low-level intermediate

representation. On this polyhedral information, GRAPHITE performs a set of clas-

sical loop optimizations. Even though GRAPHITE has demonstrated the feasibility

of this approach, it still has several important shortcomings. Relevant code regions

are detected in an unstructured way, which limits the size of the code that can

be optimized. The polyhedral representation is based on rational polyhedra which

requires conservative approximations and, in addition, makes it impossible to ana-

lyze code that contains modulo arithmetic or cast expressions. Also, GRAPHITE

does not provide advanced polyhedral optimizations and has not been connected

to an external optimizer, yet. Finally, GRAPHITE requires memory accesses to be

expressed as array accesses and cannot analyze code that contains pointer accesses.

Polly offers several innovations over previous approaches. Working on a compiler

IR at a level even lower than the one used by GRAPHITE, it is able to offer solutions

for many of the open problems in GRAPHITE. It replaces ad-hoc SCoP detection

approaches with a structured approach based on control flow regions. Polyhedral

calculations are consistently performed on integer sets, instead of falling back to

rational polyhedra. An interface for external optimizers is provided and we show

that the PLuTo algorithm can be applied to a low-level IR. Polly also removes the

requirement of explicit array accesses and makes memory accesses based on pointer

arithmetic first-level constructs.

3. Polly

3.1. Architecture

Polly is a framework that uses polyhedral techniques to optimize an LLVM-IR

program for data locality and parallelism. Similarly to GRAPHITE, it takes a three-

step approach. First it detects the parts of a program that will be optimized and

translates them to a polyhedral representation, then it analyzes and optimizes the

bhttp://pocc.sf.net
chttp://www.cs.colostate.edu/AlphaZ/

http://pocc.sf.net
http://www.cs.colostate.edu/AlphaZ/
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polyhedral representation, and finally it regenerates optimized program code. The

three steps are implemented by a set of LLVM-IR passes grouped into front end,

middle part and back end. The overall architecture is depicted in Figure 1.

LLVM IR LLVM IRPolyhedral
SCoP

SCoP Detection

JSCoP | scoplib

Transformations

Manual Optimization / External Optimizers

Dependence
Analysis

SIMD

OpenMP

ImportExport

Code Generation

(PoCC/PLuTo)

Fig. 1. Architecture of Polly

In the front end, the static control parts (SCoPs) of an input program are de-

tected. SCoPs are the parts of a program that the front end analyzes and subse-

quently translates to a polyhedral representation. To keep Polly simple, we detect

only SCoPs that match a certain canonical form. Code that is not in this form is

canonicalized beforehand.

The middle part provides a polyhedral data flow analysis and is the place at

which optimizations on the polyhedral representation are performed. There are two

ways to perform optimizations. Either they are directly integrated into Polly, or

the possible export and reimport of the polyhedral representation is used to apply

manual optimizations or to connect an external optimizer. Polly includes direct

support for PoCC (with the PLuTo optimizer) as an external optimizer. For internal

optimizations, work has started to add an enhanced implementation of the PLuTo

algorithm. The experiments in Section 7.2.2 and 7.2.3 have been performed with

the well established PoCC optimizer.

In the back end, the original LLVM-IR is replaced by new code that is generated

from the, possibly transformed, polyhedral representation. During code generation,

we detect parallel loops and implement them as OpenMP parallel loops or SIMD

instructions.

3.2. How to Use Polly

There are two ways to use Polly. The first is to invoke explicitly selected analyses and

optimizations directly on an LLVM-IR file, the other is to use Polly as a compiler-

internal optimizer.
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The LLVM passes offered by Polly can be run individually. To this end, LLVM

provides the tool opt, which can run an arbitrary list of passes on an LLVM-IR

file. Thus, it is possible to use only parts of Polly, e.g., the SCoP detection or the

dependence analysis, or to schedule selected optimizations.

A more comfortable way of using Polly is as an integrated part of a compiler.

Polly can be loaded automatically with clang and gcc.d If loaded, Polly is run

automatically at -O3. It schedules a predefined sequence of Polly passes, which

applies polyhedral optimizations during normal compilation.

4. From LLVM-IR to a Polyhedral Description

LLVM-IR has been designed to perform low-level optimizations. For high-level opti-

mizations, a more abstract representation is often better suited. The scalar evolution

analysis, for example, abstracts from the instructions that calculate a certain scalar

value and derives an abstract description of the result. This has been proven to be

useful for scalar optimizations. For memory access and loop optimizations, Kelly

and Pugh [18] proposed an abstraction based on integer polyhedra that is nowadays

used in optimizers such as CHiLL [7], LooPo and PLuTo.

Polly uses polyhedral abstractions, but calculates them in an unusual way. Most

optimizers derive a polyhedral description from a high-level programming language

(cf. Section 2). In contrast, Polly analyzes a low-level intermediate representation.

This section describes our polyhedral representation. It explains which parts of

a program can be analyzed, how these parts are detected, how their polyhedral

description is derived, and which transformations are run to prepare the code for

the analysis by Polly.

4.1. What can be Translated?

Polly optimizes the static control parts (SCoPs) of a function. The control flow

and memory accesses of a SCoP are known at compile time. They can be described

in detail and allow a precise analysis. Extensions for non-static control are due to

Benabderrahmane et al. [4] and can, if required, be implemented in Polly.

SCoPs are usually defined syntactically on a high-level abstract syntax tree

(AST). A common syntactic definition is as follows. A part of a program is a SCoP

if the only control flow structures it contains are FOR loops and IF statements.

For each loop, there exists a single integer induction variable that is incremented

from a lower to an upper bound by a constant stride. Lower and upper bounds

are expressions which are affine in parameters and surrounding loop induction vari-

ables; a parameter is any integer variable that is not modified inside the SCoP. IF

conditions compare the value of two affine expressions. The only valid statements

are assignments of the result of an expression to an array element. The expression

dSee the DragonEgg project at http://dragonegg.llvm.org.

http://dragonegg.llvm.org
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itself consists of side effect-free operators or function callse with induction variables,

parameters or array elements as operands. Array subscripts are affine expressions in

induction variables and parameters. An example of a SCoP satisfying these syntactic

criteria is given in Listing 1.

for (i = 0; i <= N; i++) {

if (i <= N - 50)

S1: A[5*i] = 1;

else

S2: A[3*i] = 2;

for (j = 0; j <= N; j++)

S3: B[i][2*j] = 3;

}

Listing 1: A static control part (SCoP)

i = 0;

do {

int b = 2 * i;

int c = b * 3 + 5 * i;

A[c] = i;

i += 2;

} while (i < N);

SCoP 1

for (i = 0; i == 0 || i < N; i+=2)

A[11 * i] = i;

SCoP 1 as FOR loop

int A[1024];

int *B = A;

while (B < &A[1024]) {

*B = 1;

++B;

}

SCoP 2

int A[1024];

for (i = 0; i < 1024 ; i++)

A[i] = 1;

SCoP 2 as a FOR loop

Listing 2: Two SCoPs recognized semantically and their counterparts as FOR loops

By design, Polly does not work on the AST of a particular source language;

instead, it optimizes a low-level representation that does not contain any high-level

constructs. Hence, it must derive the high-level information. Polly recognizes a SCoP

if it can establish that the low-level program part is semantically equivalent to a

eIn LLVM IR, most operators are free of side effects. Information about the side effects of function
calls and intrinsics is obtained via annotations, such as pure, or is deduced during existing LLVM
analysis passes.
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(syntactically defined) SCoP written in a high-level language. Thus, Polly is not

restricted to specific programming language constructs. Listing 2 shows two SCoPs

that are detected by Polly. To illustrate their semantics, we also show semantically

equivalent counterparts written as FOR loops.

4.2. A SCoP Defined on LLVM-IR

In LLVM-IR, a SCoP is a subgraph of the control flow graph (CFG) that forms

a single-entry-single-exit region and that is semantically equivalent to a classical

SCoP. Verifying this is mostly straightforward. Only the derivation of affine func-

tions and the possible aliasing of memory accesses is more involved and is conse-

quently explained further.

To derive affine expressions in conditions, loop bounds and memory accesses,

we take advantage of an LLVM analysis that describes them as scalar evolution

(scev) [25]; scevs are conceptually more expressive than affine expressions. Thus,

we must verify the equivalence of a scev with an affine expression. It is given if the

scev consists only of integer constants, parameters, additions, multiplications with

constants, maximum expressions or add recurrences that have constant steps. At

present, we do not allow minimum, zero extend, sign extend or truncate expressions

even though they can be conceptually represented in the polyhedral model.

Load and store instructions are the only instructions that can access memory.

To derive an array access (with base address and subscript expression) from low-

level pointer arithmetic and dereferences we need to be able to extract the base

pointer from the scev that describes the memory location accessed. To model exact

data access functions, we need to ensure that the scev describing the address offset

is affine. If the access function is not affine, Polly can still represent the memory

access, but needs to take conservative assumptions. Distinct base addresses in a

SCoP must reference distinct memory spaces. In this context, a memory space is

the set of memory elements that can be accessed by adding an arbitrary offset

to the base address. In case this is ensured, we can model the memory accesses

as accesses to normal, non-intersecting arrays. Fortunately, LLVM provides alias

analysis technology which gives us exactly this information. If two base addresses

are recognized as must alias, they are identical and modeled as the same array. If

recognized as no alias, one of the two base addresses cannot yield an address derived

from the other and they are modeled as different arrays. If recognized as may alias,

LLVM is not certain and the SCoP is not accepted for further processing by Polly.

4.3. The Polyhedral Representation

To represent a SCoP, Polly uses a polyhedral description that is based on integer

sets and maps (unions of Z-polyhedra representing a set of points or a relation

between two sets of points) provided by the isl library [27].

A SCoP is a pair (context, [statements]) of a context and a list of statements.

The context is an integer set that describes constraints on the parameters of the
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SCoP, e.g., the fact that they are always positive or that the parameters are in cer-

tain relations. A Polly statement is a quadruple (name, domain, schedule, [accesses])

consisting of a name (e.g., S1), a domain, a schedule and a list of accesses. It rep-

resents a basic block in the SCoP and is the smallest unit that can be scheduled

independently. The domain D of the statement is a named integer set that de-

scribes the set of different loop iterations in which the statement is executed. Its

name corresponds to the name of the statement. The number of parameter dimen-

sions matches the number of parameters in the SCoP. The number of set dimensions

is equal to the number of loops that contain the statement and that are contained

in the SCoP. Each set dimension is associated with one loop induction variable, the

first dimension with the outermost loop. An iteration vector is a single element of

the domain. Together with a statement it defines a statement instance.

Context = {[N ]}

DS1 = {S1[i] : i ≥ 0 ∧ i ≤ N ∧ i ≤ N − 50}
SS1 = {S1[i]→ [0, i, 0, 0, 0]}
AS1 = {S1[i]→ A[5i]}

DS2 = {S2[i] : i ≥ 0 ∧ i ≤ N ∧ i > N − 50}
SS2 = {S2[i]→ [0, i, 1, 0, 0]}
AS2 = {S2[i]→ A[3i]}

DS3 = {S3[i, j] : i ≥ 0 ∧ i ≤ N ∧ j ≥ 0 ∧ j ≤ N}
SS3 = {S3[i, j]→ [0, i, 2, j, 0]}
AS3 = {S3[i, j]→ B[i][2j]}

Fig. 2. Polyhedral representation of the SCoP in Listing 1

The schedule S of a statement is an integer map that assigns to each iteration

vector a multi-dimensional point in time. This defines the execution order of different

statement instances in the final target code. Statement instance StmtA[i] is executed

before statement instance StmtB [i′] if SStmtA(i) is lexicographically smaller than

SStmtB (i′). It is valid to assign no execution time to an iteration vector. In this case,

the corresponding statement instance is not executed. The assignment of multiple

execution times to one iteration vector is presently not supported.

An access (kind, relation) is given by the kind of the access and the access re-

lation. There are three kinds: read, write and may-write. The access relation A is

an integer map that maps from the domain of a statement to a named, possibly

multi-dimensional memory space. The name of the memory space is used to dis-

tinguish between accesses to distinct memory spaces. The access relation can be

an affine function, but also any other relation that can be expressed with integer

maps. Hence, an access may touch either a single element or a set of memory ele-

ments. Unknown access functions are represented as may-write or read accesses to

the entire array.
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for (i = 0; i < 100; i++)

S4: K[2*i] = 3;

bb:

br label %bb1

bb1: ; Basic block of S4

%indvar = phi i64 [ 0, %bb ], [ %indvar.next, %bb1 ]

; %indvar -> {0,+,1}<%bb1>

%tmp = mul i64 %indvar, 2

%gep = getelementptr [100 x float]* @K, i64 0, i64 %tmp

; %gep -> {@K,+,(2 * sizeof(float))}<%bb1>

store float 3.000000e+00, float* %gep, align 8

%indvar.next = add i64 %indvar, 1

%exitcond = icmp eq i64 %indvar.next, 100

br i1 %exitcond, label %bb2, label %bb1

bb2:

ret void

; Loop %bb1: backedge-taken count is 99

DS4 = {S4[i] : 0 ≤ i < 100}
SS4 = {S4[i]→ [0, i, 0]}
AS4 = {S4[i]→ K[2i]}

Fig. 3. Translation from C over LLVM-IR to polyhedral shown on a simple example

Figure 2 shows the polyhedral representation of the SCoP in Figure 1. The

domain of S1 is one-dimensional, since the statement is surrounded by only one

loop. For this loop, the constraints i ≥ 0 and i ≤ N are added to the iteration

space. In addition, the constraint i ≤ N − 50 is added, since S1 is also part of a

conditional branch. The same holds for S2, but since S2 is part of the ELSE branch

of the condition, the negated constraint i > N − 50 is added to its domain. S3

is surrounded by two loops, so a two-dimensional domain is created that contains

constraints for both loops. The schedules of the statements map each statement

iteration to a five-dimensional timescale, which ensures the same execution order as

in the original code. Furthermore, with AS1, AS2 and AS3, three memory accesses

are defined. The first two represent accesses to a one-dimensional array A, the last

one an access to a two-dimensional array B.

The same information can be derived from LLVM-IR. In Figure 3, we demon-

strate the stepwise translation from C via LLVM-IR to our polyhedral represen-

tation. The C code is first lowered to LLVM-IR instructions which, among other

things, calculate loop bounds, induction variables and array access functions. For

instance, the address of the memory accessed by S4 is calculated and the result

is stored in %gep. To derive the access function from %gep, we calculate the scalar

evolution expression {@K,+, (2 ·sizeof(float))}<%bb1>, which describes the mem-
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ory address accessed. This expression is then divided into a base element K and

a single-dimensional access function 2 · i, where i is a virtual induction variable

counting the number of loop iterations. The access relation is {S4[i] → K[2i]}. To

calculate the domain of the statement, we call the scalar evolution analysis and

ask for the number of times which the loop back edge is executed. In this example,

the resulting expression is the integer constant 99. To derive the number of loop

iterations, we simply add 1. With the knowledge that canonical induction variables

always start at zero, we obtain the domain {S4[i] : 0 ≤ i < 100}.

4.4. Preparing Transformations

Polly uses preparing transformations to increase the amount of detectable code. To

keep the Polly front end simple, these transformations also convert the code to a

canonical form. Canonicalization is performed via a set of transformations already

available in LLVM and, additionally, some transformations especially developed for

Polly.

4.4.1. Canonicalization passes

The set of LLVM transformation and canonicalization passes used in Polly is derived

from the first half of the passes used in clang -O3. Among others, it contains a

basic alias analysis, memory-to-register promotion, simplification of library calls,

instruction simplification, tail call elimination, loop simplification, loop-closed SSA

form calculation and induction variable canonicalization. Furthermore, we use a

pass to transform each SCoP such that its CFG has a single entry edge and a

single exit edge. Most passes are conceptually not necessary, but they simplify the

implementation of Polly significantly.

4.4.2. Independent blocks

The independent block pass in Polly removes unnecessary dependences between ba-

sic blocks and creates basic blocks that can be scheduled freely. Furthermore, the

independent block pass promotes scalar dependences, that cannot be removed, to

accesses to single-element arrays. This ensures that the only scalar dependences

that remain are references to induction variables or parameters. In particular, all

φ-nodes, except those implementing loop induction variables, are promoted to mem-

ory operations. Since induction variables and parameters are replaced during code

generation, Polly does not need to pay special attention to scalar dependences.

Unnecessary dependences are introduced regularly due to calculations of array

indices, branch conditions or loop bounds which are often spread across several basic

blocks. To remove such dependences, we duplicate all trivial scalar operations in each

basic block. Thus, if an operation does not access memory and does not have any

side effects, its results are not transferred from another basic block but are entirely

recalculated in each basic block. Exceptions are parameters and induction variables,



May 1, 2012 14:53 WSPC/INSTRUCTION FILE paper

12 Parallel Processing Letters

which are not touched at all. The recalculation of scalar values introduces a notable

amount of redundant code. In Section 7.2, we show that the normal LLVM cleanup

passes can remove these redundant calculations entirely.

5. Polyhedral Analysis and Transformations

Polly performs its major analyses and transformations on the abstract polyhedral

representation. We explain how we calculate data dependences, how we apply poly-

hedral transformations and how external optimizers interact with Polly.

5.1. Dependence Analysis

Polly provides an advanced dependence analysis implemented on top of the isl data

flow analysis which uses techniques developed by Feautrier [9] and has also been

influenced by Pugh [20]. It can model integer wrapping due to support for modulo

constraints, it can be restricted to non-transitive dependences, and it allows access

relations (not only functions) as well as may-write accesses. We believe that the

latter two features do not exist in most existing data dependence implementations.

At present, Polly uses the dependence analysis to calculate read-after-write

(flow), write-after-write (output) and write-after-read (anti) dependences from the

polyhedral description. We pass the access relations and types, the domains and the

schedules of all statements in the SCoP to the isl data flow analysis. isl then calcu-

lates exact, non-transitive data flow dependences as well as the statement instances

that do not have any source and, consequently, depend on the state of the memory

before the execution of the SCoP.

5.2. Polyhedral Transformations

There are two major ways of optimizing SCoPs: changing the execution order of the

statement instances and changing the memory locations they access. At present,

Polly focuses on changes of the execution order. Classical loop transformations

such as interchange, tiling, fusion and fission but also advanced transformations

[6] change the execution order. Further support is planned for optimizations that

change data accesses [16, 19].

In Polly, changes to the execution order are expressed by modifying the schedules

of the statements. Access relations and iteration domains are read-only. This seems

obvious, since only the schedule defines the execution times. However, some previous

approaches [11] had difficulties to express certain transformations, e.g., tiling or

index set splitting, without changes to the domain. Such difficulties do not arise in

Polly, since the integer maps used to define the schedules are expressive enough to

describe these transformations.

The schedules can be changed in two ways: either they can be replaced by

schedules that are recalculated from scratch or they can be modified by a set of

transformations. In Polly, a transformation is an integer map that maps from the
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original to a new execution time. It is performed by applying it to the schedules of

the statements that should be transformed. Two transformations can be composed

by applying the second to the range of the first. To illustrate how transformations

are performed in Polly, we present a loop blocking transformation for the following

SCoP:

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

Stmt(i,j);

DStmt = {Stmt[i, j] : 0 ≤ i < N ∧ 0 ≤ j < M}
SStmt = {Stmt[i, j]→ Θ[i, j]}

Loop blocking is a combination of the transformations TStripMineOuter
,

TStripMineInner
and TInterchange.

TStripMineOuter
= {Θ[s0, s1]→ Θ[t, s0, s1] : t mod 4 = 0 ∧ t ≤ s0 < t+ 4}

TStripMineInner
= {Θ[s0, s1, s2]→ Θ[s0, s1, t, s2] : t mod 4 = 0 ∧ t ≤ s2 < t+ 4}

TInterchange = {Θ[s0, s1, s2, s3]→ Θ[s0, s2, s1, s3]}
TBlock = TInterchange ◦ TStripMineInner

◦ TStripMineOuter

= {Θ[s0, s1]→ Θ[t0, t1, s0, s1] : t0 mod 4 = 0 ∧ t0 ≤ s0 < t0 + 4

∧ t1 mod 4 = 0 ∧ t1 ≤ s1 < t1 + 4}
S ′Stmt = TBlock ◦ SStmt

= {Stmt[i, j]→ Θ[ti, tj , i, j] : ti mod 4 = 0 ∧ ti ≤ i < ti + 4

∧ tj mod 4 = 0 ∧ tj ≤ j < tj + 4}

Applying code generation for the statement with its domain DStmt together with

the new schedule S ′Stmt yields the following code with blocked loops:

for (ti = 0; ti < M; ti+=4)

for (tj = 0; tj < N; tj+=4)

for (i = ti; i < min(M, ti+4); i++)

for (j = tj; j < min(N, tj+4); j++)

Stmt(i,j);

5.3. External Optimizers—JSCoP

Polly can export its internal polyhedral representation and reimport an optimized

version of it. As a result, new optimizations can be tested without any knowledge

of compiler internals. It is sufficient to analyze and optimize an abstract polyhedral

description. This facility can be used to try optimizations manually, but also to

connect existing optimizers with Polly or to develop new research prototypes.

Polly supports two exchange formats. The first is the scoplib format,f as

presently used by Clan, Candl and PLuTo. The second is called JSCoP and is

fhttp://www.cse.ohio-state.edu/~pouchet/software/pocc/download/modules/scoplib-0.2.0.

tar.gz

http://www.cse.ohio-state.edu/~pouchet/software/pocc/download/modules/scoplib-0.2.0.tar.gz
http://www.cse.ohio-state.edu/~pouchet/software/pocc/download/modules/scoplib-0.2.0.tar.gz
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specific to Polly. The main reason for defining our own exchange format is that

scoplib is not expressive enough for Polly’s internal representation: it does not sup-

port generic affine relations to describe the schedules or memory accesses that touch

more than one element at a time. It also does not provide a convenient way to de-

scribe integer wrapping. In case such constructs appear in the description of a SCoP,

it is not possible to derive a valid scoplib file. JSCoP is a file format based on JSON

[8]. It contains a polyhedral description of a SCoP that follows the one used in

scoplib.

We use the scoplib interface to connect PoCC as an external optimizer with

Polly. This allows Polly to optimize the schedule of a SCoP automatically. The

experiments in Section 7.2.2 and Section 7.2.3 show the sequential and parallel

speedups gained.

6. From a Polyhedral Description to LLVM-IR

In Polly, transformations are applied to the polyhedral representation of a SCoP

without changing the LLVM-IR of the program. Only after all transformations have

been applied, LLVM-IR is regenerated and the actual program is updated. This

section describes how we derive a generic AST from the polyhedral representation,

the analysis we perform on the AST and how we use it to generate optimized LLVM-

IR code. We discuss the generation of sequential, OpenMP and SIMD parallel code.

6.1. Generating a Generic AST

The first step from the polyhedral representation of a SCoP back to an imperative

program is the construction of a generic, compiler-independent AST. The program

described by this AST enumerates all statement instances in the order defined by

the schedules. Bastoul [3] developed with CLooG a code generator that generates

such an AST efficiently. CLooG uses an enhanced version of the Quilleré algorithm

[21]. In Polly, we offload the construction of the generic AST entirely to CLooG.

6.2. Analysis of the Generic AST

Some analyses are better performed on the generic AST. The reason is that the poly-

hedral representation defines only the execution order of the statement instances,

but not the exact control flow structures to execute them. Different ASTs may be

generated for a single SCoP depending on the optimization goals chosen. Listing 3

shows two ASTs. The first has minimal code size: it does not contain duplicated

statements. The second has minimal branching: all conditions are removed from the

loop bodies. Still, both are generated from the following SCoP:

DStmt1 = {S1[i] : 0 ≤ i ≤ N} DStmt2 = {S2[i] : 0 ≤ i ≤ 10}
SStmt1 = {S1[i]→ [i, 0]} SStmt2 = {S2[i]→ [i, 1]}
AStmt1 = {S1[i]→ A[i]} AStmt2 = {S2[i]→ B[0]}



May 1, 2012 14:53 WSPC/INSTRUCTION FILE paper

Polly—Performing Polyhedral Optimizations on a Low-Level Intermediate Representation 15

// Loop L1

for (i = 0; i <= N; i++) {

A[i] = i; // S1

if (i <= 10)

B[0] += i; // S2

}

// Loop L2.1

for (i = 0; i <= min(10, N); i++) {

A[i] = i; // S1

B[0] += i; // S2

}

// Loop L2.2

for (i = 11; i <= N; i++)

A[i] = i; // S1

Listing 3: Two different ASTs generated from the same SCoP (left: minimal size,

right: minimal control)

Analyses that derive information about the generated code, but that do not

analyse the generated code itself, may be imprecise. Decisions taken during code

generation are not available to such analyses. As a result, properties must be proven

for the iteration space of the entire SCoP rather than just for the subspaces enu-

merated by individual loops. For example, loop L2.2 in Listing 3 can be executed

in parallel, but an analysis that does not take code generation into account cannot

establish this.

To perform a precise analysis, we extract the subset of the schedule space that

is enumerated by each loop. For example, for the loops in Listing 3, the following

information is extracted:

EL1
= {[i, t] : 0 ≤ i ≤ N ∧ 0 < t ≤ 1}

EL2.1 = {[i, t] : 0 ≤ i ∧ i ≤ N ∧ i ≤ 10 ∧ 0 < t ≤ 1}
EL2.2 = {[i, t] : 11 ≤ i ≤ N ∧ t = 0}

Even though this information is obtained after code generation, reparsing of the

generated code is not necessary. Instead, the polyhedral information is exported

directly from the code generator. Projects such as PoCC perform similar analyses,

but they reanalyze the generated code. In contrast, Polly stays entirely within the

polyhedral model.

6.2.1. Detection of parallel loops

Polly detects loops that can be executed in parallel as OpenMP or SIMD code.

As explained in the previous section, this analysis must be performed after code

generation.

Listing 4 shows code in which the instances of two statements are enumerated

either in a single or in two separate loop nests. Which code is generated depends

on the schedule of the statements. In the case of a single loop nest, no loop can

be executed in parallel, since the i- and j-loops carry dependences of S1 and the

k-loop carries dependences of S2. However, in the case of two separate loop nests,

each loop nest contains loops that do not carry any dependence. In the first loop
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nest, these are the i- and j-loops and, in the second, the k-loop. All loops that do

not carry any dependence can be executed in parallel.

To decide whether a certain loop, e.g., the innermost loop in the second loop nest

of the non-fused code, is parallel, we check whether it carries any dependences. In

our example, the dependences are D = {S1[i, j, k] → S1[i, j, k + 1]; S2[i, j, k] →
S2[i, j + 1, k];S2[i,−1 + N, k] → S2[1 + i, 0, k]}. D contains relations between

statement instances. We translate them to the scheduling space by applying to

their ranges and domains the statement schedules contained in S = {S1[i, j, k] →
[0, i, j, k];S2[i, j, k]→ [1, i, j, k]}. The resulting dependences are DS = S ◦D◦S−1 =

{[0, i, j, k]→ [0, i, j, k+1]; [1, i, j, k]→ [1, i, j+1, k]; [1, i,−1+N, k]→ [1, 1+i, 0, k]}.
DS is now limited to the dependences in the second loop nest by intersecting its do-

mains and ranges with the scheduling space enumerated in this loop nest. The space

enumerated is EL2
= {[1, i, j, k] : 0 ≤ i < M ∧ 0 ≤ j < N ∧ 0 ≤ k < K} such that

the remaining dependences are DL2 = {[1, i, j, k]→ [1, i, j+ 1, k]; [1, i,−1 +N, k]→
[1, 1 + i, 0, k]}. If we now calculate the dependence distances with deltas(DL2

) =

{[0, 0, 1, 0]; [0, 1, 1−N, 0]}, we can see that the second and the third dimension carry

dependences while the others do not. Since the very first dimension does not de-

pend on the induction variables, only the innermost dimension and, consequently,

the innermost loop is parallel. Had we checked the innermost dimension before code

generation, it would have carried a dependence and, consequently, parallel execution

would have been invalid.

// fused → no parallelism

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

for (k = 0; k < K; k++) {

S1: C[i][j] += k;

S2: X[k] += k;

}

// non-fused → parallelism

for (i = 0; i < M; i++) // parallel

for (j = 0; j < N; j++) // parallel

for (k = 0; k < K; k++)

S1: C[i][j] += k;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

for (k = 0; k < K; k++) // parallel

S2: X[k] += k;

Listing 4: Different loop structures can hide or expose parallelism

6.2.2. Memory access stride

Especially for SIMD code generation, it is important to understand the pattern in

which memory is accessed during the execution of a loop. Let us analyze one of these

patterns: the stride, the distance between memory accesses in two subsequently

executed statement instances. The analysis we describe is fully polyhedral and every

loop in the generated AST is analyzed individually.

To calculate the stride of a specific memory access X, the following information

is needed: the access relation AX of access X, the schedule S of the statement
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containing the memory access and the subset E of the schedule space enumerated

by the loop we analyze. We illustrate this with the following example:

for (i = 0; i <= N; i++)

for (j = 0; j <= N; j++)

S: A[j] = B[i] + C[2 * j];

AA = {S[i, j]→ A[j]}
AB = {S[i, j]→ B[i]}
AC = {S[i, j]→ C[2j]}
S = {S[i, j]→ [i, j]}
E = {[s0, s1] : 0 ≤ s0 ≤ N ∧ 0 ≤ s1 ≤ N}

First, we create a map NEXT that maps from one iteration of the loop we

consider to the iteration that follows immediately. This relation is computed from

S and E by taking the lexicographic minimum of all the iterations that follow

a given iteration. To find the distance between the array elements accessed in

two neighboring iterations, we carry this relation over to the original domain

NEXTDom = S−1 ◦ NEXT ◦ S (so it relates iterations of the original loops be-

fore scheduling) and, finally, to the array indices NEXTX = AX ◦NEXTDom ◦A−1X .

By calculating the difference between the array accesses in relation, we find the

stride of the array access w.r.t. the loop considered: StrideX = deltas(NextX).

In the example, set E contains both loops, i.e., the analysis is for the inner loop.

NEXT = {[i, j]→ [i, j + 1]}
NEXTDom = {S[i, j]→ S[i, j + 1] : 0 ≤ i ≤ N ∧ 0 ≤ j < N}

NEXTA = {A[j]→ A[j + 1] : 0 ≤ j < N}
NEXTB = {B[i]→ B[i] : 0 ≤ i ≤ N}
NEXTC = {C[2j]→ C[2j + 2] : 0 ≤ 2j ≤ N − 2}

Hence, the access distances (w.r.t. the j-loop) are 1, 0 and 2, respectively for the

three accesses.

6.3. Generation of LLVM-IR Code

Polly regenerates LLVM-IR using the generic AST as a description of the new

program structure. By default, Polly generates sequential code but, if requested, it

generates OpenMP and SIMD code to take advantage of parallelism.

6.3.1. Sequential code generation

To generate sequential code, Polly replaces abstract FOR loops with sequential

LLVM-IR loops and abstract IF statements with LLVM-IR conditional branches.

The newly generated loops introduce new induction variables. Code for abstract
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statements is generated by copying the corresponding basic block. Since we make

certain that all basic blocks are independent (Section 4.4.2), generating code for

them is simple. For each block, we generate code that calculates the values of the

old induction variables as a function of new induction variables and parameters.

Then, all instructions are copied from the old block and their operands are updated.

Operands pointing to an old induction variable are switched to their recalculated

value and operands pointing to a value calculated in the same basic block are

switched to the result of the copied instruction. The remaining operands refer to

parameters and are not changed. Branch instructions and φ-nodes are not copied.

Branch instructions are replaced by newly generated control flow. The only φ-nodes

that can exist in an independent block are loop induction variables. Since these are

explicitly code generated, the original φ-nodes can be ignored.

After code generation is finished, there is no need for independent blocks in the

CFG. Consequently, we can reintroduce scalar dependences to eliminate the redun-

dant scalar computations. We do this by running the scalar optimizations available

within LLVM. Section 7.2 shows that this removes the previously introduced over-

head reliably.

6.3.2. OpenMP code generation

Polly can take advantage of thread-level parallelism by generating code for the

GNU OpenMP run-time system. If requested, it transforms every parallel loop (see

Section 6.2.1) that is not surrounded by another parallel loop into an OpenMP

parallel loop. The generated code is run-time configurable, such that the user can

define the scheduling policy and the number of execution threads by setting special

environment variables. Aloor [1] describes in detail how Polly generates OpenMP

code.

6.3.3. Vector code generation

Polly generates vector code for trivially vectorizable loops. A loop is trivially vector-

izable if it is parallel (Section 6.2.1), has a constant, small, non-parametric number

of loop iterations and does not contain conditional control flow or any further loops.

Listing 5 shows (a) a loop, (b) a version of it that exposes a trivially vectorizable

loop, and (c) the vectorized loop.

(a) for (i = 0; i < 1024; i++)

B[i] = A[i];

(b) for (i = 0; i < 1024; i+=4)

for (ii = i; ii <= i + 3; ii++)

B[ii] = A[ii];

(c) for (i = 0; i < 1024; i+=4)

B[i][i:(i+3)] = A[i][i:(i+3)];

Listing 5: Three steps to vectorize a loop
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The vector code generation of Polly is on purpose limited to a very restricted set

of loops in order to decouple the actual vector code generation from the transforma-

tions that enable it. Preparing optimizations are required to expose trivially vector-

izable loops, which the Polly code generation detects and transforms to platform-

independent vector operations. Then, the LLVM back ends translate the platform-

independent vector instructions to efficient platform-specific operations.

When generating vector code for a loop body, Polly creates, for each original

instruction, a set of scalar instructions, one for each loop iteration. Vector code

is introduced as soon as a load instruction is reached. We generate scalar loads

for the different instances of the load instruction and, in addition, instructions that

combine these scalars to a vector. Any later instruction in the original loop that uses

the loaded scalar, or a value derived from it, is translated to a vector instruction,

such that all instances of the original instruction are executed in a single vector

operation. Starting from a load, all calculations depending on the loaded value are

performed on vector types, up to the final store operations. For the final stores, the

scalar values are again extracted from the vectors and stored separately.

a b c d g g g g q t r m

a b c d e f g h i j k l m n o p q r s t u v w

v1 v2 v3

memory

registers

(a)

A B C D Q T R M

a b c d A B C D i Q k l m M o p R T s t u v w

v1 v2

memory

registers

(b)

Fig. 4. (a) Three kinds of vector loads: (v1) stride-one load, (v2) stride-zero load, (v3) complex;

(b) Two kinds of vector stores: (v1) stride-one store and (v2) complex store

Even though we use vector instructions for the actual calculations, the memory

access itself is still performed via scalar operations. To optimize this, we calculate the

strides of the memory accesses (Section 6.2.2). There are three types of loads: stride-

one loads, stride-zero loads and complex loads. There are two types of stores: stride-

one stores and complex stores; see Figure 4. Polly optimizes all except the complex

accesses. It implements a stride-zero load by loading the scalar value once and

copying it to the individual vector elements. For stride-one vector accesses, it uses

whole vector load and store operations. Further optimizations are possible starting

from negative stride-one, which can be optimized as a vector load plus a reversal,

up to more sophisticated approaches that take more than one loop dimension into

account.

There are further requirements for high-performance vector code. To enable the

LLVM back ends to issue optimal vector instructions, the alignment of load and

store instructions must be specified. LLVM can often calculate this information

during its standard optimization passes. In case it cannot, we plan to derive this

information with Polly.
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7. Experiments

7.1. Guided Vectorization

Dense matrix multiplication (gemm) is an important computation. Optimizing it

well is crucial. We have optimized a challenging variant of gemm and found notable

improvements over current compilers. The first kernel in Listing 6 shows the 32x32

gemm kernel we optimized. In this kernel, memory accesses have unit stride in all

loops. If the kernel is vectorized along one loop, only one loop has unit stride; the

other two loops have non-unit strides. Clever use of unrolling, loop interchange and

strip mining reduces the cost of the non-unit stride accesses such that vectorization

is beneficial.

// 1. Original kernel

for (i=0; i < 32; i++)

for (j=0; j < 32; j++)

for (k=0; k < 32; k++)

C[i][j] += A[k][i] * B[j][k];

// 2. Kernel prepared for vectorization

for (k=0; k < 32; k++)

for (j=0; j < 32; j+=4)

for (i=0; i < 32; i++)

for (jj=j; jj < j + 4; j++)

C[i][jj] += A[k][i] * B[jj][k];

// 3. Vectorized kernel

for (k=0; k < 32; k++)

for (j=0; j < 32; j+=4)

for (i=0; i < 32; i++)

C[i][j:j+3] += A[k][i] * B[j:3][k];

Listing 6: Three steps to vectorize a challenging gemm kernel

Figure 5 shows the run times we measured. The baseline is LLVM 2.8 with all

optimizations enabled. Both LLVM and GCC 4.4.5 do not change the loop structure

and create no SIMD instructions. Differences exist in the scalar optimizations. Here,

LLVM is more effective such that its code runs faster. ICC 11.1 performs loop

transformations and introduces SIMD instructions. Its code is almost twice as fast

as the one generated with LLVM. Yet, it still requires a large number of scalar loads,

which suggests that further optimization is possible.

Then, Polly was used to generate optimized vector code. We tried Polly: Only

LLVM -O3 first, which runs Polly but does not apply any transformations. The

unchanged run time shows, that the indirection via Polly does not add any overhead.

Polly: +Strip mining changes the loop structure to improve data locality and to

expose a trivially vectorizable loop. Stock [23] obtained the improved structure via

iterative compilation. We derived a polyhedral schedule manually from the improved

structure and imported the schedule into Polly. The second kernel in Listing 6 shows

the new loop structure. It contains an innermost, trivially vectorizable jj-loop. In

addition, the i-loop was moved to a deeper loop level. This simple loop structure
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change increases the performance by 19%.

Polly: += Vectorization replaces the previously created trivially vectorizable loop

with SIMD instructions. Polly recognizes that the innermost loop is parallel and

performs the necessary transformations automatically. Following Section 6.3.3, Polly

generates full vector loads for the access to C, a stride-zero load for the access to A,

and scalar loads for the elements loaded from B. At this point, the Polly-optimized

code is twice as fast as the LLVM base line and the performance of ICC is reached.

The load from B in the innermost loop is still inefficient as it requires four scalar

loads to initialize the vector. However, due to our previous changes, the loads from

B are invariant in the innermost loop. Since Polly can establish that the i-loop

is executed at least once, the loads of B can be hoisted out. Polly: += Hoisting

shows that this transformation triples the performance. Now, Polly outperforms

ICC easily.

Finally, it is possible to trade code size for performance. By increasing the un-

rolling limits, the inner two loops can be fully unrolled. This leads to further in-

creases in performance. The overall speedup we achieve is 8x compared to plain

LLVM and 4x over ICC.
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Fig. 5. 32x32 single precision gemm on Intel R© CoreTM i5

We have shown that Polly can improve performance significantly in compari-

son with ICC and Clang/LLVM. All transformations were performed automatically

within Polly. The only manual component here is the externally provided schedule.

We conclude that, with Polly, data access optimizations can be applied effectively

to a low-level program by simply providing a polyhedral schedule. It is no longer

necessary to understand low-level internals, but one is free to focus on the high-level

optimization problem.
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7.2. Automatic Optimization

To understand the impact of Polly, we analyzed the run time of the PolyBench 2.0

benchmark suite,g which contains computation kernels used in linear algebra, data

mining, stencil and image processing. We conducted all experiments on the unmodi-

fiedh C source code, where Polly detects the SCoPs automatically without using any

source code annotations. All tests have been run on a 2-socket, 12-core, 24-threads

Intel R© Xeon R© X5670 system with double-precision floating-point arithmetic.

7.2.1. The identity transformation

Fig. 6. Run time of Polly-optimized code

To estimate the overhead Polly introduces, we analyze the identity transfor-

mation. The identity transformation translates from LLVM-IR to the polyhedral

representation and back to LLVM-IR, but does not apply any polyhedral trans-

formations. The results in Figure 6 show only for two benchmarks large run time

changes. The remaining 28 benchmarks show less than 2% difference. The two large

changes are a 25% slowdown on reg detect and an 18% speedup on jacobi-1d-imper.

Both are due to optimizations in LLVM, which trigger due to different code struc-

ture only on the new or the old code, but not on both. The only two performance

regressions are caused by missed optimizations within LLVM. The regeneration of

LLVM-IR by Polly does not introduce any significant overhead.

7.2.2. Sequential code

Let us investigate the effects of automatic optimizations on sequential performance

using PoCC as external optimizer. The PoCC optimizer uses the PLuTo algorithm

to maximize data locality and tileability. All benchmarks were run for both small

and large data sizes.

The results for the small data size are shown in Figure 7a. Seven benchmarks

exhibit a decrease in performance. Here, either tiling is not beneficial because of lim-

ited data reuse or the problem size is too small to benefit from tiling. The decreased

performance is expected, since Polly does not yet include a profitability heuristic

ghttp://www.cse.ohio-state.edu/~pouchet/software/polybench/
hThe type of some induction variables is changed to remove currently unsupported implicit casts.

http://www.cse.ohio-state.edu/~pouchet/software/polybench/
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(a) Sequential, small data size
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(b) Parallel with 24 threads, small data size
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(c) Parallel with 24 threads, large data size

Fig. 7. Speedup of pollycc compared to clang (both current from 25/03/2011) on Intel R© Xeon R©
X5670

for tiling. For nine of thirty benchmarks, we see large performance improvements

even on small data sizes. For larger data sizes (not shown), we obtain on average a
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2x speedup with four benchmarks showing more than a 4x speedup and two even

reaching an 8x speedup. This is promising, since we have not yet analyzed bench-

marks individually. SIMD code generation improves the run time in two cases even

further, with gemm reaching an overall speedup of 14x. Since Polly and PLuTo

do not yet specifically optimize for SIMDization, SIMDization also causes reduced

performance in several cases. This can be improved by including SIMDization in

polyhedral scheduling [26].

7.2.3. Parallel code

Let us also analyze the speedups we obtain with OpenMP parallel code. We used

PLuTo to expose parallelism and Polly to create OpenMP code that takes advantage

of the exposed parallelism.

Figure 7b shows that, for the small data size, sixteen of thirty benchmarks ben-

efit from parallel execution. Eight benchmarks reach more than a 10x speedup. For

the larger data sizes, the speedups are shown in Figure 7c. We obtain on average

a 12x speedup and there is even a case with a more than 80x speedup. With addi-

tional SIMD code generation, the gemm kernel is again the top performer with an

overall speedup of more than 100x. It can be observed that parallelism combined

with tiling and vectorization can show significant performance improvements for

a large number of benchmarks. We expect further improvements by analyzing the

benchmarks individually. Also, additional benefits through the implementation of

vectorization heuristics are expected.

8. Future work

Even though Polly implements the polyhedron model on LLVM-IR, there are several

areas where it can be enhanced. To preserve the program semantics when arithmetic

overflows in the affine expressions (before or after transformation and code gener-

ation) occur during execution, work is necessary in both Polly and LLVM itself to

improve the handling of possible integer overflows.

Several improvements can be made to increase the number of codes that can

be handled by Polly. Modeling the memory behaviour of certain function calls

and intrinsics, especially calls to memcpy, memove and memset, seems worthwhile.

Adding support for cast and modulo operations in the affine expressions is possi-

ble since isl supports modulo arithmetic. Dynamically allocated multi-dimensional

arrays are represented as one-dimensional arrays with non-affine subscripts (e.g.,

A[n · i+ j] instead of A[i][j] with n being the size of the inner dimension). To make

these codes amenable to polyhedral optimizations in Polly, a recovery of dynamic

multi-dimensional arrays will be needed. Beyond these static techniques, non-static

techniques [4] may be used to increase the amount of code further that Polly can

optimize.

At present, Polly cannot modify the structure of the basic blocks (which it

treats as the statements in the polyhedral representation). To enable optimizations
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at a finer granularity, we are working on splitting basic blocks into several state-

ments (when possible) to expose more potential for parallelism. In addition, we have

started work on allowing modifications of the data layout (i.e., the access functions).

Finally, we plan to integrate a polyhedral optimizer directly into Polly. Due to

the promising results with PLuTo, an enhanced version of the PLuTo algorithm

was added to isl. Preliminary support from within Polly exists, but testing for

robustness, stability and scalability is still required.

9. Conclusion

With Polly, we offer a polyhedral optimizer for a low-level intermediate representa-

tion. We have shown how to extract relevant program parts, how to translate them

into a polyhedral representation, how to apply optimizations and, finally, how to

generate optimized program code. The process described is not bound to a specific

high-level programming language and does not require the input code to exhibit any

syntactic format. As a result, constructs such as GOTO loops or pointer arithmetic

can be optimized.

We use a Z-polyhedral representation (based on isl integer sets) that can either

be analyzed and optimized in Polly or exported to external optimizers. With PoCC,

we have integrated an external optimizer which provides the PLuTo optimization

of data locality while, at the same time, maximizing the exposed parallelism. After

the code has been optimized, Polly detects available parallelism automatically and

generates optimized OpenMP or SIMD code. This allows optimizers to focus on the

parallelisation problem itself and to offload low-level details to Polly.

To demonstrate the effectiveness of Polly, we optimized the PolyBench 2.0 test

suite and analyzed the results. The detour via the polyhedral representation does not

introduce any overhead in the generated code. In the case that PLuTo optimizations

are used, we have observed significant speedups that reached 14x without thread-

level parallelism and more than 100x with thread-level parallelism. For larger data

sizes, we reached on average a 2x speedup without and a 12x speedup with thread-

level parallelism. The speedups show clearly that Polly can effectively apply generic,

high-level transformations directly to low-level code. This increases the abstraction

level, at which compiler optimizations can be developed, notably.

We hope that Polly will be an interesting tool for the development of new op-

timizations and for their evaluation on real applications. In addition to targeting

multicore systems, we see Polly’s potential also as an integrated optimizer that

targets heterogeneous platforms consisting of tightly integrated CPUs and acceler-

ators. For example, due to the high number of OpenCL implementations based on

LLVM (AMD, NVIDIA, Intel, Apple, . . . ), Polly and LLVM may be a convenient

platform for research on polyhedral optimization in this area.
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Griebl, Sebastian Pop, Louis-Noël Pouchet, and Sven Verdoolaege, who influenced

Polly directly and indirectly. Special thanks go to Dirk Beyer who supported the

development of the RegionInfo analysis with several university projects and, in

particular, to P. Sadayappan, who supported part of this work generously via a

research scholarship at Ohio State (NSF 0811781 and 0926688). This work was also

sponsored in part by a Google Europe Doctoral Fellowship in Efficient Computing.

References

[1] R. Aloor. A framework for automatic OpenMP code generation. Master’s thesis, IIT
Madras, 2011.

[2] M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA code gen-
eration for affine programs. In R. Gupta, editor, Compiler Construction (CC 2010),
LNCS 6011, pages 244–263. Springer-Verlag, 2010.

[3] C. Bastoul. Code generation in the polyhedral model is easier than you think. In
Proc. 13th Int. Conf. on Parallel Architectures and Compilation Techniques (PACT
2004), pages 7–16. IEEE Computer Society, 2004.

[4] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The polyhe-
dral model is more widely applicable than you think. In R. Gupta, editor, Compiler
Construction (CC 2010), LNCS 6011, pages 283–303. Springer-Verlag, 2010.

[5] U. Bondhugula, O. Gunluk, S. Dash, and L. Renganarayanan. A model for fusion
and code motion in an automatic parallelizing compiler. In Proc. 19th Int. Conf.
on Parallel Architectures and Compilation Techniques (PACT 2010), pages 343–352.
ACM, 2010.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-
matic polyhedral parallelizer and locality optimizer. In Proc. ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI 2008), pages 101–113.
ACM, 2008.

[7] C. Chen, J. Chame, and M. Hall. CHiLL: A framework for composing high-level loop
transformations. Technical Report 08-897, University of Southern California, June
2008.

[8] D. Crockford. The application/json media type for JavaScript object notation
(JSON). RFC 4627 (Informational), July 2006.

[9] P. Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel Pro-
gramming, 20(1):23–53, Feb. 1991.

[10] P. Feautrier. Automatic parallelization in the polytope model. In G.-R. Perrin and
A. Darte, editors, The Data Parallel Programming Model, LNCS 1132, pages 79–103.
Springer-Verlag, 1996.

[11] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam.
Semi-automatic composition of loop transformations for deep parallelism and memory
hierarchies. Int. J. Parallel Programming, 34(3):261–317, June 2006.

[12] M. Griebl and C. Lengauer. The loop parallelizer LooPo—Announcement. In D. Sehr,
U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compil-
ers for Parallel Computing (LCPC’96), LNCS 1239, pages 603–604. Springer-Verlag,
1997.



May 1, 2012 14:53 WSPC/INSTRUCTION FILE paper

Polly—Performing Polyhedral Optimizations on a Low-Level Intermediate Representation 27

[13] T. Grosser. Enabling polyhedral optimizations in LLVM. Master’s thesis, University
of Passau, 2011.

[14] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N. Pouchet.
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