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ABSTRACT
A standard technique to numerically solve elliptic partial dif-
ferential equations on structured grids is to discretize them
via finite differences and then to apply an efficient geomet-
ric multi-grid solver. Unfortunately, finding the optimal
choice of multi-grid components and parameters is challeng-
ing and platform dependent, especially, in cases where do-
main knowledge is incomplete. Auto-tuning is a viable alter-
native, but faces the problem of large configuration spaces
and feature interactions. To improve the state of the art, we
explore whether recent work on configuration optimization
in product lines can be applied to the stencil-code domain.
In particular, we extend and use the domain-independent
tool SPL Conqueror in a series of experiments to predict the
performance-optimal configurations of two geometric multi-
grid codes: a program using the HIPAcc framework and an
evaluation prototype called HSMGP. For HIPAcc, we can
predict the performance of all configurations with an ac-
curacy of 98 %, on average, when measuring 57.5 % of the
configurations, and we are able to predict a configuration
that is close to the optimal one after measuring only less
than 4 % of all configurations. For HSMGP, we can predict
the performance with an accuracy of 88 % when measuring
11 % of all configurations.

Keywords
Stencil computations, parameter optimization, auto-tuning,
product lines, SPL Conqueror

1. INTRODUCTION
In many areas of computation, large linear or nonlinear

systems have to be solved. Geometric multi-grid is one
method to solve such systems that have a certain structure,
e. g., that arise from the discretization of partial differential
equations (PDEs) on structured grids and lead to sparse
and symmetric positive definite system matrices. For good
introductions and a comprehensive overview on multi-grid
methods, we refer to [6, 20]. Algorithmically, most of the
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multi-grid components are functions that sweep over a com-
putational grid and perform nearest neighbor computations.
Mathematically, these computations are linear-algebra oper-
ations, such as matrix-vector products. Since the matrices
are sparse and contain often similar entries in each row, they
can be described by a stencil, where one stencils represents
one row in the matrix.

A multi-grid algorithm consists of several components and
traverses a hierarchy of grids several times until the linear
system is solved up to a certain accuracy. As already men-
tioned, the components and also the parameters, such as
how many times a certain component is applied on each
level, are highly problem and platform dependent. That
is, depending on the hardware and the application scenario,
some settings perform faster than others. This gives rise to
a considerable number of configuration options to customize
multi-grid algorithms.

Selecting configuration options (i. e., specifying a config-
uration), to maximize performance is an essential activity
in exascale computing [7]. If we use a non-optimal config-
uration, we may not exploit the full computational power,
leading to increased cost and time. However, identifying the
performance-optimal configuration is a complex task. Mea-
suring performance of all configurations to determine the
fastest one does not scale, because the number of configu-
rations may grow exponentially with the number of config-
urations options. Alternatively, we can use domain knowl-
edge to identify the fastest configuration. However, domain
knowledge may not always be available, and domain experts
are rare and expensive.

In product-line engineering, different approaches have been
developed to tackle the problem of finding optimal configu-
rations [9, 16, 17]. The idea is to measure some configura-
tions of a program and predict the performance of all other
configurations (e. g., by using machine-learning techniques).

Our goal is to find out whether existing product-line tech-
niques can be applied for automatic stencil-code optimiza-
tion. In particular, we use the tool SPL Conqueror by Sieg-
mund et al. [17] to determine the performance influence of
configuration options of stencil code implementations. The
general idea is to determine the performance influence of
individual configuration options first, and to consider inter-
actions between them subsequently. To this end, we use a
heuristic with which we learn the performance contribution
of numerical parameters with the help of functions learning.

Overall, we make the following contribution: We demon-
strate that SPL Conqueror can be applied to the stencil do-
main to identify an optimal configuration after performing



a small number of measurements. After performing more
measurements, we can predict the performance of all config-
urations with an accuracy of about 88 % in average.

We demonstrate applicability of our approach with two
case studies from the stencil domain. One of the systems
investigated is a geometric multi-grid implementation using
HIPAcc [14], a framework for generating GPU code. The
other system is a prototype of a highly scalable geometric
multi-grid solver, developed for testing various algorithms
and data structures on high-performance computing sys-
tems.

Our experiments show that there are a huge number of
interactions between configuration options having consider-
able influence on performance. However, we can predict a
configuration with a good performance even with a small
number of measurements.

2. PRELIMINARIES
In this section, we present preliminaries of our approach

of finding performance-optimal stencil-code configurations.
Since our approach stems from the product-line domain, we
introduce respective terminology and provide background
information on how to model variability.

2.1 Feature Models
Customization options of variable software systems are

often called features [11]. Since features may depend on
or exclude each other, we use feature models to describe
a set of valid combinations [2]. In detail, a feature model
describes relationships among the features of a configurable
system. As examples, we present the feature models of our
two subject systems in Figure 1 and Figure 2.

A feature can either be mandatory (i. e., required in all
configurations where its parent feature is selected), optional,
or be part of an Or-group or an Xor-group. If the parent
feature of a group is selected, exactly one option of an Xor-
group and at least one feature of an Or-group has to be
selected. Furthermore, we can define arbitrary propositional
formulas to further constrain the variability. For example,
one feature may imply or exclude another one.

Extended Feature Models. Standard feature models can
express only the presence or absence of features in a config-
uration; we refer to these feature as Boolean features. Un-
fortunately, this is insufficient when modeling variability of
arbitrary options exposed by stencil code. To overcome this
limitation, extended or attributed feature models have been
proposed [3, 4]. These models are extended with possible
non-Boolean attributes (Parameters), describing properties
or special characteristics. To model stencil-code parameters,
we use a notation in which attributes have a domain type
(i. e., the definition range of the parameter) and a default
value. An example of a feature attribute is Padding (see
Figure 1a). The type of this parameter is “Integer, between
0 and 512” with a step size of 32, and a default value of 0.

2.2 Predicting Performance of Customizable
Programs

To predict the performance of configurations of a cus-
tomizable program, Siegmund et al. propose the SPL Con-
queror approach that quantifies the influence of individual
features on performance [17, 18]. To this end, they propose

several heuristics that assess the individual performance con-
tributions to predict the total performance of a given con-
figuration.

Heuristics. The first heuristic, feature-wise (FW), measures
the performance influence of each individual feature. For
each feature, two configurations – one with and one with-
out the regarded feature – are measured. The performance
difference is interpreted as the performance contribution of
the feature in question. With this heuristic, the number of
required measurements grows linearly with the number of
configuration options. As a consequence, this heuristic can
also be applied to huge configuration spaces. A drawback,
however, is that the FW-based prediction does not always
correspond to the actual performance, because features may
influence each other. This impact on performance is called
feature interaction [17]. For example, effects from changing
the used Texture Memory can vary based on the current API
(see Figure 1). There can be even interactions between more
than two features. To account for these different orders of
interactions (i. e., the number of interacting features), Sieg-
mund et al. propose three further heuristics [17].

The first heuristic considers interactions between all pairs
of features (i. e., order of one), called pair-wise heuristic
(PW). To measure interactions of a higher order, the higher-
order heuristic (HO) is used. Lastly, in some customizable
programs there are features interacting with many other.
To consider the contribution of such hot-spot features, we
can apply the hot-spot heuristic (HS). The three heuristics
considering interactions build on each other and on the FW
heuristic. As a consequence, the HS heuristic uses all mea-
surements performed by the FW, PW and HO heuristic.

The heuristics of Siegmund et al. can predict performance
contributions of Boolean features only. As a consequence, it
is not possible to incorporate parameters. To overcome this
limitation, we use a function-learning heuristic (FL). The
basic idea is to learn performance-contribution functions for
each parameter (non-Boolean attribute). Since each param-
eter can have a performance influence on different features,
we learn multiple functions per parameter. The polynomial
of the performance function has to be given by a domain
expert or learned by a machine-learning approach. Conse-
quently, a feature model with n features and m parame-
ters requires n · m functions. To learn these performance-
contribution functions, we sample the type of the parameter
(i. e., we select values from the domain) and measure perfor-
mance of the corresponding configurations. Using a least-
squares approach, we determine the contribution of the pa-
rameter. When sampling a single parameter, we keep the
remaining parameters constant and use their default values.

3. VARIABILITY IN THE MULTI-GRID DO-
MAIN

In general, a (standard) multi-grid cycle can be defined as
follows: The algorithm starts at the finest level. Firstly,
high-frequency errors are smoothed with a fixed number
of pre-smoothing steps. Afterwards, to get rid of the low-
frequency errors, the residual is calculated, restricted to the
next coarser level, and then solved for recursively. Next,
the solution from this process is propagated onto the cur-
rent level and used to correct the solution. Lastly, the er-
ror is smoothed again by applying a fixed number of post-



smoothing steps.
Obviously, the recursion has to be stopped at some point,

at the latest when there is only one unknown left. In this
case, direct and exact solving is possible and feasible. In the
context of large-scale applications, however, this is not prac-
ticable and thus the cycle is stopped before, usually when
only a few unknowns are left on each compute unit, and a
specialized coarse grid solver is employed. This solver is usu-
ally chosen according to the requirements arising from the
domain structure, the problem description, and performance
considerations.

In multi-grid computations, different types of variabilities
arise, which can be grouped according to six criteria.

1. A suitable hardware platform and concomitant exter-
nal software components should be chosen. Here, hard-
ware choices include the number of compute units and
their type (i. e., CPUs, GPUs, other accelerators or
even a combination of them). Concerning software,
different compilers and abstraction layers for hardware
access, parallelization, and inter-process communica-
tion are possible. They include, CUDA, OpenCL,
OpenMP, as well as a number of MPI implementations.

2. The algorithmic and numeric components can be a-
dapted. To this end, the cycle type, basically, a de-
scription of how and when the recursion is performed,
can be chosen. The most prominent choices are V-
cycle and W-cycle. Furthermore, different components
of the multi-grid cycle can be exchanged, usually only
targeting the smoother and the coarse grid solver. Yet,
in general, altering the restriction and propagation op-
erators is possible as well.

3. Different parameters can be tuned, where these are
usually described through numerical values. Examples
are the number of pre- or post-smoothing steps and the
smoothing parameter ω. Usually, these parameters are
limited in the range of values they can take, and further
constraints, such as a restriction to integer values, may
apply.

4. Optional optimizations can be added on demand. These
include basic optimization strategies, such as padding,
vectorization, (software) prefetching, tiling, and many
more. As a detailed overview of possible techniques
is beyond the scope of this work, please be referred
to [10, 12] for further reading.

5. There is also variability in the problem to be solved.
This, however, is usually not controllable from the op-
timization process, as it is fixed by the applications.
Nevertheless, impacts on the (performance) character-
istics of the components can be quite prominent and
highly diverse. The choices of the PDE to be solved
and the applied boundary conditions fall into this cate-
gory, both of which mostly influence the computational
complexity. Additionally, different geometric proper-
ties (i. e., a uniform domain in contrast to a general
block-structured domain) are common and influence
mostly the communication behavior.

6. Lastly, there are various other changes that could be
of interest including different discretization schemes
(e. g., finite elements instead of the presented finite dif-
ferences).

Although the range of adjustments is quite broad, their
impacts can basically be divided into two groups, namely
convergence and performance impacts. Roughly said, con-

vergence describes how many iterations are required to a-
chieve a satisfyingly accurate solution to the given prob-
lem, and performance describes how much time one iteration
takes. In our context, most high-level decisions influence
both, however often in opposing matter (i. e., the number
of iterations decreases while the time per iteration increases
or vice versa). In contrast, low-level optimizations typically
only influence performance behavior, since the algorithmic
layout, and thus convergence, remain unchanged.

4. EXPERIMENTS
The goal of our experiments is to evaluate whether the

SPL Conqueror approach is feasible for predicting perfor-
mance of multi-grid solver configurations. To this end, we
define the following research question:
• Q1: What is the prediction accuracy and measurement

effort of the heuristics (FW, PW, HO, HS, FL)?
• Q2: What is the performance difference between the

optimal configuration and the configuration predicted
to perform best.

4.1 Experimental Setup and Procedure
To answer the research questions, we selected two multi-

grid solver implementations for different application domains,
which will be described in the following sections. Although
different evaluation criteria are of interest, we decided for
the time to compute the solution. Note that this does not
include the time required for compilation, which can easily
be in the ranges of minutes for a single configuration and
thus may need more time than the computation itself.

Each experiment consists of two phases. In the first phase,
we measure a subset of configurations of the subject systems
and determine the contribution of features, feature interac-
tions, and parameters; the measured configurations are se-
lected by the heuristic applied (FW, PW, HO, HS, FL). In
the second phase, the performance of all possible configu-
rations is predicted, based on the contributions measured
before. To determine the prediction accuracy, we measured
all configurations of the current system, an approach we call
Brute Force (BF), as a reference. Then, the average error
rate µ of each prediction can be calculated for each heuristic,
as follows:

µ =
1

n

∑
0≤i<n

|ti,measured − ti,predicted |
ti,measured

,

where n is the number of configurations of the subject sys-
tem.

Additionally, we determine the performance difference be-
tween the performance-optimal configuration and the con-
figuration predicted to perform best.

4.2 HIPAcc

HIPAcc – the Heterogeneous Image Processing Accelera-
tion Framework1 – generates efficient low-level code from
a high-level abstract domain-specific language (DSL) [14].
Coming from the domain of medical image processing, HIPAcc

supports several boundary conditions, such as mirroring and
clamping. Image filters are described as kernels applied
to the target image in a stencil notation and may have
read access to multiple source images. Automatic paral-
lelization and generation of CUDA, OpenCL, or Android

1http://hipacc-lang.org
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Figure 1: Feature model for HIPAcc experiments, as initially (a) modeled and as modeled (b) with Xor-groups
for Padding and Pixels per Thread.

FilterScript/RenderScript code is performed by a source-
to-source-compiler based on Clang. During compilation,
HIPAcc optimizes the computational kernels by exploiting
domain and hardware knowledge.

The geometric multi-grid code that we use in our experi-
ments solves a finite difference discretization of the Poisson
equation. As HIPAcc is a framework for image processing,
only a regular, rectangular grid can be employed. The test
case uses the Jacobi method for pre- and post-smoothing
steps and the standard restriction and prolongation opera-
tors. It uses a fixed number of V-cycles and smoothing steps,
independent of problem size or convergence rates. For coarse
grid solving, the smoother is applied again with a sufficient
number of iterations. While there is no variability in the
program itself, we consider various optimization switches of
HIPAcc. HIPAcc has a built-in list of supported hardware
platforms, allowing the target architecture to be selected via
a switch at compile time. This switch, however, is only used
for the built-in auto-tuning process and to prevent the gener-
ation of code unsuitable for the targeted device. Therefore,
it has not been varied in our experiments. Since the API
used for interaction with the device has to be specified, it
was modeled as a Xor-group. Valid options for the targeted
hardware platform are CUDA and OpenCL. Another Xor-
group is the memory layout to be used, determined via the
parameter Texture Memory. Additionally, Local Memory
is an optional feature toggling the use of another memory
type. The integer value Padding, modeled as a parameter,
may be specified to optimize memory layout. For techni-
cal reasons, this parameter can only be increased in steps
of 32. Furthermore, the integer value Pixels per Thread, de-
noting how many pixels are calculated per thread, may be
varied. We illustrate this variability with the model in Fig-
ure 1a. Please note that this feature model is not complete
and only resembles the parameters varied for this paper. A
more complete description of the HIPAcc parameter space
can be found in [15].

Although this model can be used as base for the FL heuris-
tic presented in Section 2.2, the model has to be adjusted
for the other heuristics (FW, PW, HO, HS), as they can

only hardly handle non-Boolean parameters. To circumvent
this problem, we create an Xor-group for each of these pa-
rameters and introduce a feature for every possible value,
resulting in an adapted model, as depicted in Figure 1b.

All measurements of the HIPAcc system are performed on
an nVidia K20 card.

4.3 Highly Scalable MG Prototype (HSMGP)
HSMGP is a prototype code for benchmarking HHG (Hi-

erarchical Hybrid Grids) [5, 8] data structures, algorithms,
and concepts [13]. It was designed to run on large scale
systems such as JuQueen, a Blue Gene/Q system, located
at the Jülich Supercomputing Centre, Germany. In its cur-
rent form, it solves a finite differences discretization of Pois-
son’s equation on a general block-structured domain. Con-
cerning variability, the solver provides different smoothers,
where the most relevant ones to us are Jacobi (Jac), Gauss-
Seidel (GS), Red-Black Gauss-Seidel (RBGS), and a Block-
Smoother (BS). For two of the smoothers, GS and RBGS,
additional communication (AC) steps can be performed with-
in the smoother iterations, resulting in a performance over-
head but, in turn, also in a possibly improved convergence.
Since we want to avoid modeling this as optional feature, we
decided for introducing additional modified versions of the
original components. Consequently, two new smoothers, GS
with additional communication (GSAC) and RBGS with ad-
ditional communication (RBGSAC), are added.

The second customizable algorithmic component is the
coarse grid solver. Here, a parallel Conjugate Gradient (CG)
and an implementation of an Algebraic Multi-Grid (AMG)
provided by the software package HYPRE 2 are available. If
AMG is used, HSMGP can perform a redistribution of the
coarse grid data onto a smaller number of compute nodes,
before starting the solver. Again, we follow the idea pre-
sented before and end up with three choices, an in-place CG
(IP CG), an in-place AMG (IP AMG), and an AMG with
data reduction (RED AMG). As using multiple smoother
types or coarse grid solvers is something usually not oc-
curing in our context, we model these choices as two Xor-

2http://www.llnl.gov/CASC/hypre/
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Figure 2: Feature model for HSMGP, as (a) initially modeled and as (b) modeled with Xor-groups for the
number of pre- and post-smoothing steps.

groups.
Furthermore, various parameters can be tuned. In our ex-

periments, we chose the number of pre- and post-smoothing
steps, both of which we limit to integer values between 0 and
6, the default value is set to 3. Additionally, we introduce a
constraint that the sum of the two parameters can not be 0,
since this would disable smoothing and thus prevent solving.
Overall, we end up with the model given in Figure 2a.

For the same reasons given previously, we create an Xor-
group for each of the parameters and introduce a feature
for every possible value. This results in the feature model
depicted in Figure 2b.

Since, the configuration space is quite small, compared to
a full model of HSMGP, we are able to measure all config-
urations (BF), which is necessary to determine accuracy of
the SPL Conqueror approach.

For performing our measurements, we chose the JuQueen
system at the Jülich Supercomputing Centre, Germany. Al-
though the application scales up to the whole machine (458752
cores) [13], we decided to use only a smaller test case to en-
sure reproducibility and cost effectiveness. Thus, we setup
HSMGP to run with 16384 threads on 4096 cores, solving
for roughly 4 · 109 unknowns.

5. RESULTS
The Measurement results for the two subject systems are

given in Table 1, we describe them in detail in the remaining
section.

5.1 HIPAcc

With respect to the results from our BF measurements,
the performance-optimal configuration of HIPAcc use OpenCL,
a Padding of 256, 4 Pixels per Thread with Local Memory
and Texture Memory options disabled. The time-to-solution
of the configuration is 21.25 ms.

With the FW heuristic, we can predict performance for all
configurations of HIPAcc with a average error rate of 8.6 %
(see Table 1). To achieve this prediction accuracy we per-
form 26 measurements (3.7 % of all configurations). The ab-
solute time-to-solution difference between the performance-
optimal configuration and the configuration predicted to

perform best is 0.45 ms, resulting in an error of 2.1 %.
Using the PW heuristic the average error rate decreases

to 5.7 % and requires 126 additional measurements, result-
ing in 152 measurements in total. The absolute performance
difference between the optimal configuration and the config-
uration predicted to perform best decreases to 0.03 ms (0.1 %
of the time needed to perform the optimal configuration).

The average error rate decreases to 1.5 % if we apply the
HO heuristic. For this heuristic, we need to perform 277
measurements. The performance difference between the op-
timal configuration and the configuration predicted to per-
form best is the same as for PW.

If we consider hot-spot features by applying the HS heuris-
tic, we have to perform 407 measurements and reach an av-
erage error rate of 1.2 %. We found that the different Texture
Memory features, the API features, Local Memory, and dif-
ferent Pixels per Thread are hot-spot features. The absolute
performance difference between the configuration predicted
to perform best and the performance-optimal configuration
is only 0.03 ms.

For the FL heuristic, we perform only 52 measurements.
The average error rate of this heuristic is about 9.9 %. The
absolute difference between the optimal configuration and
the configuration predicted to be optimal is 0.02 ms. This is
less than 0.1 % of the time to perform the optimal configu-
ration.

5.2 HSMGP
The performance-optimal configuration of HSMGP uses

the IP AMG coarse grid solver, the GS smoother, one pre-
and five post-smoothing steps with a time-to-solution of
1137.41 ms.

The average error rate of predictions of the FW heuristic
is 51.9 % with measuring 22 configurations. The difference
between the configuration predicted to perform best and the
optimal configuration is 93.8 ms (8.3 % of the time to per-
form the optimal configuration).

With the PW heuristic, the average error rate decreases
to 12.2 %, but requires to measure 192 configurations, 22 %
of all valid configurations. The run-time difference between
the optimal configuration and the configuration predicted to
be optimal is 184 ms.



Program Heuristic # M Time [ms] Faultrate distribution µ ± σ ∆ [ms] δ [%]

HIPAcc FW 26 698.30
●●●● ●●● ●●●●● ●● ●● ●●●●●●●●●●●●● ●●●● ● ● ● ●●●● ●●● ●●●●● ●● ●● ●●●●●●●●●●●●● ●●●● ● ● ●

8.6 ± 10.2 0.45 2.1

PW 152 4 155.11
● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●●● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●●● ●

5.7 ± 9.9 0.03 0.1

HO 277 9 384.90
●●●●●●● ● ●● ●●●● ●●●●● ●●●●●●●●●● ●● ●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●● ●●●● ●●●●●●●●● ●●● ●●● ●● ● ●●●●●●●● ● ●● ●●●● ●●●●● ●●●●●●●●●● ●● ●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●● ●●●● ●●●●●●●●● ●●● ●●● ●● ● ●

1.5 ± 3.7 0.03 0.1

HS 407 15 491.94
●●●●●●●● ● ●●● ●●●●●● ●●●●● ●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●● ● ●●● ●●●●●● ●●●●● ●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●● ●●●●●● ●●●●●●● ●
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HSMGP FW 22 51 773.21 51.9 ± 59.3 93.81 8.3

PW 192 518 721.48
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Table 1: Experimental results for the two subject systems; FW: feature-wise, PW: pair-wise, HO: higher-
order, HS: hot-spot, FL: function learning, BF: brute force, # M: number of measurements required for
the heuristic, Time: runtime for all measurements neglecting compilation times, µ: average error rate, σ:
standard deviation, ∆: absolute difference between the measured performance of the optimal configuration
and the measured performance of the configuration predicted to perform best, δ: percentage share of ∆ on
measured performance of the optimal configuration.

For the HO heuristic, the number of required measure-
ments increases to 636, which is 73 % of all valid configu-
rations. With this heuristic, the average error rate drops
to 8.5 %. Although the average error rate decreases, a non-
performance-optimal configuration is predicted to perform
best. The absolute difference between this configuration and
the optimal configuration is 2474.1 ms (about 217.5 % of the
time to perform the optimal configuration).

When applying the HS heuristic, we detect that all avail-
able coarse grid solvers are hot-spot features. When measur-
ing the interactions of all hot-spot features, we reach an error
rate of 0.2 %, but we have to measure all configurations for
that. The performance difference between the optimal con-
figuration and the configuration predicted to perform best
is about 5.1 ms (0.4 % of performance of the optimal config-
uration).

For the FL heuristic, we observe an average error rate of
11.2 %. We have to measure 88 configurations, represent-
ing only 10.2 % of all configurations. With the performance
predictions of this heuristic, we predict a configuration to
be optimal that has a performance difference of 695.3 ms to
the optimal configuration.

6. DISCUSSION
Next, we discuss results for the two subject systems with

respect to the research questions Q1 and Q2.

6.1 HIPAcc

Using the FW heuristic, we have to measure only 26 of
696 configurations. With this small set, we are able to pre-
dict the performance of a configuration with an accuracy of
about 91 % on average. We are also able to predict a con-

figuration to be performance optimal that is only slightly
worse than the optimal configuration. But the average error
rate suggests the existence of feature interactions. When
applying the PW heuristic and considering first-order in-
teractions, we identified several feature interactions, while
performing 126 additional measurements. With these mea-
surements, the average error rate decreases to 5.7 %. Ad-
ditionally, the absolute performance difference between the
configuration predicted to be optimal and the performance-
optimal configuration is less than 1 % of performance of the
optimal configuration. With the HO heuristic, the average
error rate decreases to 1.5 % in average. However, the dif-
ference between the optimal configuration and the configu-
ration predicted to perform best remains constant.

When additionally considering hot-spot features by us-
ing the HS heuristic, we are able to cover all existing in-
teractions. However, the performance-optimal configuration
was not predicted to perform best. Yet, the absolute per-
formance difference between the optimal configuration and
the configuration predicted to perform best is only 0.02 ms
and thus negligible because it is less than 1 % of the perfor-
mance. Although, we identify more hot-spot interactions
than second-order iteration the accuracy improvement is
minimal when applying the HS heuristic in contrast to HO
heuristic. As a consequence, we state that there are many
hot-spot interaction having only a small impact on perfor-
mance.

Although the FL heuristic performs more measurements
than FW heuristic, and also considers interactions between
features and parameters, it has the worst prediction accu-
racy for HIPAcc. This is because interactions between two



or more features and between two or more parameters are
not considered.

Overall, the FW heuristic is able to give an impression
over the general performance distribution of the configura-
tions. Moreover, an almost optimal configuration was pre-
dict to perform best. On the top, even when considering
all interactions, we can not identify the optimal configura-
tion but only a configuration that is almost optimal. Addi-
tionally, it is possible to predict performance of a random
selected configuration with a high accuracy when applying
the HO heuristic.

6.2 HSMGP
When considering contributions of individual features only,

we have to measure 22 of 864 configurations. The average
prediction error is about 51.9 %. As a consequence, there are
many feature interactions having an impact on performance.
However, the performance loss when using the configuration
predicted to perform best is with 8.3 % relatively small.

When using the PW heuristic on HSMGP, 170 additional
measurements are needed, compared to the simpler FW
heuristic, and the error rate drops substantially, so we con-
clude that the vast majority of interactions are pair-wise
interactions. Measuring 22 % of all configurations of the
system to reach an accuracy of 88 %, on average, may be
sufficient for some application scenarios. Yet, the accuracy
for predicting the optimal configuration decreases.

With the HO heuristic, we considered also interactions
between three features, which however required to measure
73.6 % of all configurations. The small improvement of 4 %
compared to the PW heuristic does not justify this large
number of additional measurements. Worse, a configuration
with a bad performance is predicted to perform best. In
examining the predictions of all configurations, we find that
the configuration predicted to perform second optimal has
only an performance penalty of 2.5 % compared to the real
optimal configuration.

Similar to the results of HIPAcc, the HS heuristic reaches
the best overall prediction accuracy, but for this system, we
need to measure all configurations. This strongly indicates
that all features interact with each other. In general, this is
the worst case for this heuristic. However, even with measur-
ing all configuration the performance-optimal configuration
was not predicted to perform best. This is because we use
the measured feature contributions to predict performance
of a configuration and do not simply return the measured
value if the configuration was already measured by the ap-
proach.

The FL heuristic requires only 88 measurements (10.2 % of
all configurations) to reach a prediction accuracy of 88.8 %,
on average. Thus, it produces more accurate predictions
with less measurements than the PW heuristic (which was
not the case for HIPAcc). However, the performance differ-
ence between the optimal configuration and the configura-
tion predicted to perform best is much larger.

As a result, because of the high number of interactions in
this system, using the HO and HS heuristics is not beneficial.
Again, the FW heuristic performs best to predict the per-
formance optimal configuration when considering the num-
ber of performed measurements. However, the PW and FL
heuristic can be used to minimize the configuration space.

6.3 Threats to Validity
Internal Validity. Performance measurements are often bi-
ased by environmental factors or concurrent system load.
Since we use measurements for training and evaluating the
predictions’ accuracies, these factors threaten internal va-
lidity. To reduce this threat, we repeated each measure-
ment multiple times and computed the average (arithmetic
mean), which we then use for our evaluation. Although this
approach increases the time needed to perform a prediction,
it minimizes the measurement noise.

External Validity. As we performed experiments with only
two configurable stencil codes, we cannot safely transfer the
results to all other stencil programs. However, we exam-
ine two systems from different domains that increases ex-
ternal validity slightly. Moreover, we repeated our experi-
ments on JuQueen using a larger test case (16384 instead
of 4096 cores), and observed almost identical performance-
prediction accuracies.

However, our experiments are just a proof of concept, test-
ing whether applying existing approaches to performance-
optimal configuration is feasible in the stencil domain. We
are aware, that further experiments and a more refined ap-
proach are needed to draw more robust conclusions.

7. RELATED WORK
Optimization and auto-tuning of configurable programs is

a widely researched area. There is a number of approaches
for performing configuration optimization without relying
on domain knowledge. These approaches can be divided in
white-box and black-box approaches.

Siegmund et al. propose an white-box approach [19], ex-
tending the approach we use for our experiments. They
create a simulator of the configurable program [1] to predict
the performance contributions of the configuration param-
eters. Since the simulator contains all variability and all
executable code, they are able to predict contributions of
multiple parameters within one run.

Gou et al. propose an black-box approach [9] similar to
the one of Siegmund et al. They use statistical learning to
predicting performance of program configurations. However,
in contrast to Siegmund’s approach, in which configurations
are selected based on heuristics, they perform a random se-
lection of configurations. After measuring an initial set of
configurations, they determine which features are responsi-
ble for the largest performance deviation. Then, they divide
the set of configurations according to the selection of these
performance-critical features. When predicting a configu-
ration, they follow the path according to the selected fea-
tures. Eventually, they use the measured performance of a
configuration that has a similar feature selection than the
configuration to be predicted. However, this approach is
not applicable to non-Boolean parameter values and, since
it does not determine feature interactions, it is unclear how
this approach handles the huge number of interactions that
exist in stencil codes, as in our subject systems.

Datta performed auto-tuning of stencil-code computations
for several multicore systems such as IBM Blue Gene/P [7].
With the help of the roofline model [21], Datta predicts per-
formance bounds of stencil codes and the related quality of
the optimizations. The optimization consists of two steps:
First, he performs an optimization of the parameter ranges



to minimize the configuration space. Second, he performs an
iterative greedy search. As a consequence, he optimizes one
parameter while the values of other parameters are fixed.
The order of parameters are given as domain knowledge.

However, since it is necessary rewriting the code of the
target program for some parameters, they need to re-adjust
some already optimized parameters. Moreover, he does not
consider the number of measurements required for an opti-
mization.

8. CONCLUSION
Stencil codes expose a number of customization options

to tune their performance. Without any domain knowledge,
it is hard to determine which configuration (i. e., selection
of customization options) leads to the best performance. To
tackle this problem, we transfer an approach from product-
line engineering by Siegmund et al. [17], which predicts per-
formance of software configurations, to the stencil code do-
main. In a series of experiments, we demonstrated that the
approach of Siegmund et al. can be used to predict per-
formance of configurations of stencil codes. For the HIPAcc

system, we can predict the performance of all valid configu-
rations with an accuracy of 98 %, on average, when measur-
ing 277 out of 696 configurations. For the HSMGP system,
we can predict the performance of all configurations with an
accuracy of 88.8 %, when measuring 88 out of 864 configu-
rations. However, our predictions for the optimal configura-
tion have an inaccuracy of, at least, 8.3 %. Yet, it is possible
to use our predictions to minimize the configuration space
without losing configurations with a good performance.

As future work, we will examine the prediction accuracy
of SPL Conqueror for larger configuration spaces. Moreover,
we will extend the approach with heuristics considering fea-
ture interactions and parameter interactions.
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[8] B. Gmeiner, H. Köstler, M. Stürmer, and U. Rüde.
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