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tWe present a 
ompiler for the fun
tional languageHDC, whi
h aims at the generationof eÆ
ient 
ode from high-level programs. HDC, whi
h is synta
ti
ally a subset ofthe widely used language Haskell, fa
ilitates the 
lean integration of skeletons with aprede�ned eÆ
ient parallel implementation into a fun
tional program. Skeletons arehigher-order fun
tions whi
h represent program s
hemata that 
an be spe
ialized byproviding 
ustomizing fun
tions as parameters. The only restri
tion on 
ustomizingfun
tions is their type. Skeletons 
an be 
omposed of skeletons again. With HDC, wefo
us on the divide-and-
onquer paradigm, whi
h has a high potential for an eÆ
ientparallelization.We des
ribe the most important phases of the 
ompiler: desugaring, eliminationof higher-order fun
tions, generation of an optimized dire
ted a
y
li
 graph and 
odegeneration, with a fo
us on the integration of skeletons. The e�e
t of the transfor-mations on the target 
ode is demonstrated on the examples of polynomial produ
tand frequent set.
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1 Introdu
tionMassive parallelization is an important issue when dealing with 
omputation-intensiveproblems like weather fore
asting, image and signal pro
essing, system simulation or solvinglarge systems of linear equations or inequations. The manual development of a parallelprogram for a spe
i�
 problem may lead to eÆ
ient 
ode but is time-
onsuming and error-prone, and programs developed this way are usually diÆ
ult to reuse for similar problems.We propose a di�erent approa
h in whi
h the program does not 
ontain expli
it parallelinstru
tions. Instead we provide a 
lass of skeletons, i.e., program s
hemata, whi
h we
an spe
ialize by 
ustomizing fun
tions supplied as parameters, and for whi
h we provideeÆ
ient parallel implementations. We 
on
entrate on divide-and-
onquer (DC) skeletons.DC redu
es the problem size qui
kly, indu
es a natural partitioning and 
ontains fewdependen
es whi
h 
ould limit parallelism.We spe
ify DC skeletons in a fun
tional language, although our target language forthe parallel implementations is imperative (
urrently C+MPI). This gives us the bene�tsof abstra
tion, whi
h unburdens the programmer from the issues of parallelism. Also, itallows for equational reasoning, whi
h helps the implementer in the derivation of a 
orre
tand eÆ
ient implementation. The name of our language is HDC (for Higher-order Divide-and-Conquer), see (HDC website, 1999). Its syntax is like that of Haskell (Bird, 1998),sin
e Haskell possesses many of the properties we need, espe
ially:Strong typing. Haskell's type system provides mu
h more support for the safe use ofskeletons than the target language C.Higher-orderness. Higher-order fun
tions provide a powerful, general basis for the spe
-i�
ation of skeletons. Note that 
ustomizing fun
tions 
an again be skeletons.Referential transparen
y. The absen
e of side e�e
ts permits equational reasoning,whi
h we employ to transform skeletons.Con
ise list syntax. Haskell has list 
omprehensions, whi
h are synta
ti
 sugar to spe
-ify lists in a 
losed form. The index-based list 
onstru
tion helps us in making thetransformation from re
ursive Haskell skeletons to loop skeletons in C (Herrmann andLengauer, 1997). Also, for regular sequen
es of integers, the HDC 
ompiler retainsthe 
orresponding list 
omprehension with a single generator as a skeleton, namedsinGen, in the implementation.An added bene�t is the availability of Haskell tools for the development of example pro-grams and the possibility of a 
omparison of the HDC target 
ode with that of Haskell
ompilers like the Glasgow Haskell Compiler GHC (Peyton Jones, 1996).The semanti
s of HDC di�ers in one important point from that of Haskell: Haskellis lazy, while HDC is stri
t. The reason is that we use the parallelization te
hnique ofspa
e-time mapping (Herrmann and Lengauer, 1996), whi
h is based on a stri
t semanti
s.However, to in
rease eÆ
ien
y, our 
ompiler may 
hoose a non-stri
t semanti
s in 
ertainappropriate pla
es { e.g., for the bran
hes of a 
onditional, but also in some other pla
es.1



So, there is no guarantee that all arguments of a fun
tion are evaluated before the 
all.Skeleton implementations are hand-tailored by the skeleton implementer and, thus, areex
luded from these (and any other) 
ompiler optimizations.The semanti
 di�eren
e between stri
tness and laziness only shows up in the terminationbehavior. Thus, terminating HDC programs deliver the same result as if evaluated underHaskell. Sin
e we only deal with terminating programs, our HDC programs 
an be either
ompiled with our HDC 
ompiler, or alternatively with GHC.Together with the 
ompiler, we also provide an interpreter whi
h is able to analyzethe intermediate 
ode produ
ed by 
ertain phases of the 
ompilation and report 
ertainproperties of the program to the user, like the free s
hedule (the number of steps if ea
hoperation is performed as soon as the data dependen
es permit), the average degree ofparallelism (the number of parallel pro
essors required by the free s
hedule), et
. Compilerand interpreter are either 
ontrolled intera
tively using the menu des
ribed in Se
t. 8.1, orby running a Haskell s
ript whi
h must be 
ompiled together with the rest of the system.Unlike GHC, our 
ompiler does not implement higher-orderness via graph redu
tion.Instead, ea
h higher-order fun
tion is repla
ed by the 
olle
tion of its �rst-order spe
ial-izations. Fun
tional arguments are en
oded by algebrai
 data types whi
h 
ontain thefun
tion identi�er and the environment of the fun
tion passed, using a modi�
ation of thedefun
tionalization method presented by Bell et al. (1997).One might ask why we did not 
hoose the obvious route of extending the Haskell syntaxwith annotations for skeleton 
alls and making use of one of the existing, powerful Haskell
ompilers. Then, the skeleton implementations (also, e.g., in C+MPI) would take Haskell
losures as arguments and pass them to a new Haskell run-time environment. We de
idedagainst this for the following reasons:� List operations in HDC are subje
t to parallelization, but a Haskell 
ompiler 
on-stru
ts lists sequentially using the list 
onstru
tor (:). Providing a new abstra
t datatype, whi
h represents parallel lists, would 
lutter up the syntax. Also, our skeletonswould have to be expressed in terms of the new data type.� As far as we know, there exists, at present, no interfa
e for passing Haskell 
losuresbetween heaps on di�erent pro
essors of a distributed-memory ma
hine. The solutionof Glasgow Parallel Haskell (Trinder et al., 1998) to provide a global heap 
ontradi
tsour prin
iple of 
ommuni
ation-
losed blo
ks (see Se
t. 5.1).� Our target language, C+MPI, is implemented on a wider range of systems than thespe
ial libraries whi
h the Haskell 
ompilers require.We use the following font 
onventions:� Synta
ti
 level: We use typewriter font, e.g., for the name Bool, the 
onstru
torFalse or the number 
onstant 12.� Semanti
 level: Obje
ts at this level, like the type Bool or the type 
onstant False,are slanted. Unless otherwise spe
i�ed, the semanti
s of a synta
ti
 
onstant is2



de�ned by default by keeping the name and 
hanging the font, and vi
e versa. Typearrows are written!. Lambda abstra
tions are written �x :v . Obje
ts at the semanti
level whi
h 
an be identi�ed with their 
ounterparts at the meta level, like numbers,mathemati
al operators and parentheses, are not slanted.� Meta level: Like this text, elements of the language of our des
ription are writtenin roman font and are underlined if they belong to an algorithmi
 or logi
 language,like for ea
h or i�. Synta
ti
 equality is denoted by �, semanti
 equality is by =.Meta variables whi
h represent types on both the synta
ti
 and the semanti
 levelare written in Greek letters, like �. They are di�erent from so-
alled type variables,whi
h are elements of the other levels. Variables representing in�x operators arewritten with symbols, like �. All other variables, like x , are written in Latin letterswith itali
 font.2 The Language HDCAlthough HDC is almost a restri
tion of Haskell, there are some language 
onstru
ts whi
hare treated di�erently in the implementation.2.1 Program stru
tureA program 
onsists of a set of data type de�nitions (Se
t. 2.2.4) and a set of fun
tionde�nitions (Se
t. 2.3). The main fun
tion, whi
h des
ribes the entire input/output behaviorof the program, must be named parmain.2.2 TypesLike ML (Paulson, 1996) and Haskell (Bird, 1998), HDC has the Hindley-Milner typesystem (Damas and Milner, 1982). Type variables are universally quanti�ed, i.e., a poly-morphi
 parameter 
annot be instantiated with two di�erent types.2.2.1 Type expressionsThe language of type expressions is de�ned indu
tively by the following 
ases, assuming�i are already in the language:� Unit (the type whi
h 
ontains only one element: Unit)� Bool (the truth values False and True)� Int (restri
ted integers �2�31 to +231�1)� Double (64-bit 
oating-point values) 3



� �0 -> �1 (fun
tions with domain type �0 and 
odomain type �1);-> asso
iates to the right; parentheses ( and ) 
an be used to group fun
tion types� [�0℄ (lists with elements of type �0)� (�0,:::,�n�1) (n-tuples, n > 1)� IO �0 (input/output a
tions whi
h deliver an element of type �0)� t
name �0:::�n�1 (algebrai
 data types with n type arguments; see Se
t. 2.2.4)2.2.2 Type 
lassesIn order to avoid dupli
ation of the sour
e 
ode due to overloading, HDC 
ontains twotype 
lasses. The type 
lass Num 
ontains the types Double and Int and is used in thede�nition of numeri
al fun
tions. The other type 
lass, Ord, 
ontains Double, Int andBool and is used for 
omparison. Type variables in a type expression 
an be restri
ted toa type 
lass by repla
ing the type expression � with 
0 => � or with (
0,:::,
n�1) => �,where the 
i are Num � or Ord �, where � is a type variable o

urring in �.2.2.3 Type 
onstraintsThe type of an expression is derived by su

essively mat
hing two types against ea
h otherin a system of type equations. How this mat
hing has to work is de�ned by type derivationrules or 
onstraints for ea
h language 
onstru
t. Take the in�x operator ==, whi
h 
omparestwo expressions for equality. If in the type inferen
e the expression a == b is en
ounteredand � is the type of expression a and � the type of expression b, the 
onstraint f� = �g isadded with 
onsequen
es for the types 
i in the subexpressions of a and b and at all otherpla
es where the 
i are used.2.2.4 User-de�ned typesThe user 
an de�ne additional, so-
alled algebrai
 data types a

ording to the followingsyntax:data t
name �0:::�n = C0 �(0;0):::�(0;l(0)) | ::: | Cm �(m;0):::�(m;l(m))t
name is the name of the type 
onstru
tor that is being de�ned. It is parametrized with thetypes �0,...,�n . An element of the de�ned type 
an be of any of the following alternatives,separated by |. The a
tual alternative is determined by the 
onstru
tor, whi
h is one ofC0,...,Cm . Ea
h 
onstru
tor Ci is followed by a sequen
e of elements, whi
h must be of thetypes �(i;0),...,�(i;l(i)). A 
onstru
tor 
an be viewed as a fun
tion whi
h takes the elementsof the respe
tive types and delivers an element of the algebrai
 data type.Algebrai
 data types provide 
exibility for irregular data stru
tures like trees. Take thefollowing example of a binary tree de�ned on elements of type a:4



data Tree a = Leaf a | InnerNode (Tree a) (Tree a)This de�nition has the 
onstru
tors Leaf, whi
h indi
ates a leaf node of the tree, andInnerNode, whi
h stands for a tree 
omposed of two subtrees.2.3 Fun
tion de�nitionsA fun
tion named, say, f is de�ned by its type, say, � and a de�ning equation. The typede�nition is given byf :: �and the de�ning equation is given in terms of an expression e 
ontaining the free variablesx0 ... xn :f x0:::xn = eThis de�nition is synta
ti
 sugar for the following de�ning equation, whi
h makes use of alambda abstra
tion (Se
t. 2.4.5):f = \x0 -> (\x1 -> :::(\xn -> e):::)If ea
h xi is of type �i , then the type of f 
an be de�ned by:f :: �0 -> (�1 -> :::(�n -> �):::)In both the lambda and the type expression the parentheses 
an be omitted.Fun
tions 
an be de�ned re
ursively, also indire
tly (or mutually) re
ursively, e.g.,fun
tion f depends on g and g depends on f . However, for better eÆ
ien
y, re
ursivede�nitions should be avoided, prede�ned 
ombinators should be used instead.2.4 Expressions2.4.1 VariablesA variable is a name beginning with a lower
ase letter and 
ontaining only letters anddigits. Internal names (also in the prelude) 
an also 
ontain unders
ores. Ea
h variable isasso
iated with a stati
 type, possibly polymorphi
 or restri
ted to a type 
lass. HDC islexi
ally s
oped, i.e., a free variable is bound to the innermost of all surrounding de�nitionsof this variable in the program text.2.4.2 ConstantsPrede�ned 
onstants are Unit, False, True, [℄, integer and 
oating point (double) 
on-stants (Fig. 1). Constants 
an be de�ned by the user in a value de�nition (fun
tion de�-nition without arguments) or as 
onstru
tors of an algebrai
 data type, e.g.:data Color = Yellow | Green | Blue 5



Type(s) ExamplesUnit UnitBool False, TrueInt, Double (Num) 0, -5, 32Double 2.3[�℄ [℄Table 1: HDC 
onstants2.4.3 Fun
tion appli
ationFun
tion appli
ation is denoted by juxtaposition, e.g., an appli
ation of fun
tion f to anargument x is written f x . Formally, there are only fun
tions with a single argument.A fun
tion with multiple arguments is represented as a fun
tion whi
h takes the �rstargument and returns a fun
tion whi
h is applied to the remaining arguments. This isknown as 
urrying. If not all arguments are given, we speak of a partial appli
ation.Fun
tion appli
ation asso
iates to the left and binds more tightly than any other binaryoperation. Fun
tion appli
ation adds the following 
onstraints to the set of types:ff :: �! �, x :: �, f x :: �g.2.4.4 In�x binary operationsAn in�x operator, say �, is synta
ti
 sugar for a fun
tion named (�) taking two arguments.HDC borrows the se
tioning me
hanism from Haskell, in whi
h (x�) is (�) with a �xed�rst argument x , (�x) is (�) with a �xed se
ond argument x and (x � y) is (�) with botharguments �xed. Any fun
tion f taking two 
urried arguments 
an be used as a binaryin�x operator by writing `f `. For the a
tual operators, have a look at the prelude inAppendix A.2.4.5 Lambda abstra
tionsA lambda abstra
tion \x -> e de�nes a fun
tion whi
h takes a value x and delivers thevalue of the expression e in whi
h ea
h o

urren
e of the free variable x has been repla
edby the argument of the fun
tion:(\x -> e) y = e[x := y ℄e[x := y ℄ denotes the substitution of every free o

urren
e of x in e by y .Type 
onstraint: f x :: �, e :: �, (\x -> e) :: �!� g.Curried fun
tion de�nitions 
an be abbreviated by writing all arguments su

essively,i.e., instead of \x0 -> (\x1 -> :::(\xn�1 -> e):::) one 
an write \x0 x1:::xn�1 -> e. Also,stru
tured arguments, so-
alled patterns (Se
t. 2.4.10), like tuples or lists 
an be used. Seethe following examples: 6



\x -> x+1\x y -> x+y instead of \x -> \y -> x+y\(x,y) -> x+y instead of \z -> fst z + snd z\[x,y℄ -> x+y instead of \z -> z!!0 + z!!1The �rst de�nition des
ribes a fun
tion whi
h returns its argument in
remented. These
ond takes a value x and delivers a fun
tion whi
h takes a value y and returns the sumof x and y. The other two examples take a pair resp. a list and deliver the sum of both
omponents.2.4.6 ConditionalThe syntax of a 
onditional isif 
ond then t else eThis expression is stri
t in 
ond , but not stri
t in t and e. If 
ond evaluates to True, tis evaluated and returned as the value of the 
onditional. Otherwise, e is evaluated andreturned.Type 
onstraint: f 
ond :: Bool, t :: �, e :: �, ( if 
ond then t else e ) :: � g.Example: (fa
torial fun
tion)fa
 n = if n==0 then 1 else n * fa
 (n-1)2.4.7 TuplesA tuple is an ordered, �xed-size 
olle
tion of 
omponents x0...xn�1, denoted by (x0,...,xn�1),where n > 1. If n = 2, we speak of a pair. The 
omponents need not be of the same type.The elements of a tuple 
an be sele
ted by pattern mat
hing (Se
t. 2.4.10).2.4.8 ListsA list is an ordered, arbitrary-size 
olle
tion of 
omponents of the same type. A list oflength n 
an be given expli
itly by [x0,...,xn�1℄.2.4.9 List 
onstru
tor (:)The 
onstru
tor (:) takes an element x0 of type � and a list [x1,...,xn�1℄ of type [�℄ anddelivers the list [x0,...,xn�1℄ of type [�℄. Contrary to Haskell, in HDC, applying a single: or tail is expensive, i.e., linear in the length of the list (in Haskell it is 
onstant). Theadvantage of HDC is that the linear 
hain of dependen
es present in Haskell lists does notexist in HDC lists. This allows for a 
onstant-time element a

ess via the HDC versionof the index fun
tion (!!). The philosophy followed here is to exploit the DC paradigmand, thus, the assumption is that a list is 
onstru
ted by appending two (or more) lists ofroughly the same length. Alternatively, one 
an use list 
omprehensions (Se
t. 2.4.14) to
ompute all elements of a list simultaneously.7



2.4.10 PatternsPatterns are expressions whi
h 
onsist only of 
onstru
tors (in
luding the tuple and list 
on-stru
tor), 
onstants and disjoint names. A pattern 
an o

ur as an argument in a fun
tionde�nition or lambda abstra
tion, or on the left-hand side of a 
ase bran
h (Se
t. 2.4.12) orlet expression (Se
t. 2.4.11). In this 
ase, the pattern of the formal parameter is mat
hedagainst the value passed as a
tual parameter. A mat
h of a name always su

eeds, with the
onsequen
e that the variable asso
iated with this name is bound to the value. A mat
hof a 
omposite expression su

eeds if the 
onstru
tors are identi
al and the mat
hes of all
orresponding 
omponents su

eed. Then, the environment is 
onstru
ted by a

umulat-ing the bindings of all 
omponent mat
hes. In the 
ase of lists and tuples, both sides musthave the same number of 
omponents, be
ause the 
onstru
tors of tuples of di�erent sizesare distin
t and list stru
tures are desugared into a sequen
e of the binary : 
onstru
tor.If a pattern mat
h fails, the next alternative in a list of de�ning equations or 
ase bran
hesis tried. If no alternative remains, a run-time error o

urs.2.4.11 let expressionslet expressions are used for de�ning a lo
al environment of values and fun
tions, whi
h
an be (mutually) re
ursive. The form of a let expression is:let f eq0 ; ... ; eqn g in ewhere e is the expression whi
h forms the value returned and the eqi are equations of theform pati = ei , where pati is a pattern and ei an expression. If a pattern is an appli
ation of avariable (pati � fi x0 ... xm(i)) the equation de�nes a lo
al fun
tion with fun
tion symbol fi .let expressions are desugared by a pro
ess 
alled lambda-lifting (Johnsson, 1985; PeytonJones, 1987). If it should turn out in the long run that the program optimizations at laterphases 
annot identify the 
ommon subexpressions originating from the elimination of letexpressions, other transformations will have to be 
onsidered.A simpli�ed layout style of Haskell 
an be used here as well as for the bran
hes of 
aseexpressions: bra
es and semi
olons 
an be omitted if all eqi have the same indentation,whi
h is larger than the indentation of the let.2.4.12 
ase expressionsA 
ase expression de�nes a value by 
ase distin
tion. The form of a 
ase expression is:
ase sel of f bran
h0 ; ... ; bran
hn gwhere bran
hi � pati -> expi . sel de�nes the value used for the 
ase analysis. Ea
h pati is apattern to be mat
hed with the value of sel , expi delivers the result of the 
ase expressionif the ith bran
h is the �rst whose pattern pati mat
hes (Se
t. 2.4.10). As an example,here is a fun
tion whi
h sums up the numbers at all leaves of an instan
e of the binarytree de�ned in Se
t. 2.2.4. 8



sumup :: Num a => Tree a -> asumup tree = 
ase tree ofLeaf x -> xInnerNode leftSub rightSub -> sumup leftSub + sumup rightSubAs in let expressions, the pattern on the left side de�nes bindings for variables (here: xresp. leftSub and rightSub) whi
h 
an be used on the right side. The layout style, whi
hlets us de�ne this expression without the use of bra
es and semi
olons, requires that Leafand InnerNode have the same indentation whi
h is larger than the indentation of 
ase.2.4.13 Arithmeti
 sequen
esThe arithmeti
 sequen
e, denoted [a..b℄, produ
es a list of integers ranging from a to b.Example: [1..6℄ = [1,2,3,4,5,6℄2.4.14 List 
omprehensionsA list 
omprehension is a 
onvenient Haskell 
onstru
t for de�ning lists. The syntax of thelist 
omprehension is:[ e | q0,:::,qn�1 ℄q0; :::; qn�1 is a sequen
e of quali�ers whi
h produ
e a list el of environments, whi
h hasthe same length as the result of the list 
omprehension. The ith element of the result isobtained by evaluating expression e in the ith element of the environment list. The listof quali�ers is traversed from left to right. The initial el has length 1 and 
ontains nobindings. A quali�er 
an be either a generator or a guard.� A generator (i <- xs) re�nes the el as follows. Ea
h element, say, env of el is takenas an environment for evaluating xs to a list of length l . env is removed from el andrepla
ed by l new entries, one for ea
h element of xs. The j th new entry 
ontainsthe old environment env plus a binding for i to the j th element of xs. i must be avariable.� A guard is an expression of type Bool whi
h, if evaluated to True, keeps el un
hangedand otherwise deletes the 
urrent element from el .A formal semanti
s of list 
omprehensions is de�ned in Se
t. 4.3.List 
omprehensions 
orrespond to loop nests in imperative languages. The ith quali�eris lo
ated at the ith level of nesting. A generator 
orresponds to a loop and a �lter toa 
ondition whi
h governs the exe
ution of the en
losed nest. This 
orresponden
e isexploited in the implementation of skeletons.Examples:[ i+1 | i<-[0,1,2℄ ℄ = [1,2,3℄[ (i,j) | i<-[0,1,2℄, j<-[0..i℄ ℄ = [(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)℄[ i | i<-[0,1,2℄, even i ℄ = [0,2℄9



3 SkeletonsA skeleton is a prede�ned program s
hema. (The imperative world would 
all it a \tem-plate".) If it 
orresponds to a parti
ular 
lass of algorithms, like DC, it is 
alled analgorithmi
 skeleton. If it 
orresponds to a 
lass of ma
hine operations, it is 
alled anar
hite
tural skeleton. An example is the broad
ast operation, whi
h sends a message fromone pro
essor to all other pro
essors. Ar
hite
tural skeletons are only of interest in the 
odegeneration for a parti
ular target ma
hine or message-passing library. In the following, wesay just skeleton when we mean an algorithmi
 skeleton.Skeletons have been used widely for parallel programming (Cole, 1989; Darlington et al.,1993; Busvine, 1993; Bratvold, 1994; Darlington et al., 1995; Ba

i et al., 1995; Botorog andKu
hen, 1996; Gorlat
h, 1996; Ciarpaglini et al., 1997; Gorlat
h and Pelagatti, 1999). HDClends spe
ial support to programming with skeletons. The DC strategy 
an be expressedformally as a skeleton whi
h is instantiated with problem-spe
i�
, 
ustomizing fun
tions.E.g., the mergesort algorithm requires a 
ustomizing fun
tion whi
h merges two orderedlists. For a sound treatment of skeletons, HDC provides higher-order fun
tions. Thus, one
an de�ne a skeleton as a (re
ursive) fun
tion and repla
e it later by a prede�ned eÆ
ientparallel implementation.Though a single DC skeleton would be suÆ
ient for a de�nition of the paradigm itself,as is d
0 de�ned in Se
t. 3.2.1, it would not adequately re
e
t the variety in the stru
ture ofdi�erent DC algorithms. As a 
onsequen
e, the use of the skeleton d
0 for all DC problemswould lead in many 
ases to bad performan
e of the implementation.In order to exploit the spe
i�
 stru
ture of a DC algorithm, the DC paradigm 
an bere�ned into di�erent spe
ialized forms (di�erent skeletons) with varying patterns of datadependen
e and data distribution (Herrmann and Lengauer, 1999).Our spe
ial interest lies in sophisti
ated DC skeletons; a hierar
hy of �ve su
h skeletons,whi
h we 
all d
0 to d
4, is des
ribed in Herrmann and Lengauer (1997). In the presentreport, d
4io (Se
t. 3.2.2), an improved form of d
4, appears in our polynomial produ
texample. The frequent set example is too 
ompli
ated to �t a single skeleton. It requiresmany appli
ations of simpler skeletons, whi
h appear in this report. Some of them, likemap or filter, 
ould, in prin
iple, be expressed by DC.The approa
h of the HDC 
ompiler is to repla
e expensive patterns of 
omputation byeÆ
ient prede�ned implementations. The me
hanism for implementing a skeleton shouldbe as easy as possible, be
ause the need for further skeleton implementations may arise.To implement a new skeleton, the prelude has to be extended by its type de�nition, andthe Haskell sour
e �le Skeletons.hs has to be extended with a fun
tion whi
h generatesthe skeleton implementation. The name of an interfa
e for the skeleton is pre�xed withskel , in order to re
ognize it as su
h and prote
t it against elimination and optimizationby the 
ompiler. However, these pre�xed fun
tions should not be used outside the prelude,be
ause their type 
an di�er from the Haskell type or 
hange in future versions. The
orresponding fun
tions to be used in appli
ation programs usually have the same name,but without the pre�x.The following subse
tions list the skeletons whi
h are implemented at present. For10



ea
h skeleton we provide the signature, an algorithmi
 de�nition in HDC and an exampleappli
ation.3.1 Skeletons for 
ommonly used fun
tions3.1.1 mapApplies a fun
tion to all elements of a list.map :: (a->b) -> [a℄ -> [b℄map f [℄ = [℄map f (x:xs) = f x : map f xsmap (+1) [0,1,2℄ = [1,2,3℄3.1.2 redUses an asso
iative fun
tion f to redu
e a list of values to a single value.red :: (a->a->a) -> a -> [a℄ -> ared f n [℄ = nred f n (x:xs) = f x (red f n xs)red (+) 0 [1,2,3℄ = 63.1.3 s
anApplies red to all pre�xes of the given list.s
an :: (a->a->a) -> a -> [a℄ -> [a℄s
an f n xs = map (\i -> red f n (take i xs)) [0..length xs℄s
an (+) 0 [1,2,3℄ = [0,1,3,6℄3.1.4 filterFilters all elements that ful�ll a predi
ate.filter :: (a->Bool) -> [a℄ -> [a℄filter p [℄ = [℄filter p (x:xs) = let rest = filter p xsin if p x then x : restelse restfilter (>2) [0,5,3,1,5℄ = [5,3,5℄ 11



3.2 DC skeletons3.2.1 d
0DC in its general form.d
0 :: (a->Bool) -> (a->b) -> (a->[a℄) -> (a->[b℄->b) -> a -> bd
0 p b d 
 x = if p xthen b xelse 
 x (map (d
0 p b d 
) (d x))If the predi
ate fun
tion p determines that the problem x 
an be trivially solved, thebasi
 fun
tion b is applied. Otherwise the problem is divided by d, produ
ing a list ofsubproblems. The algorithm is mapped re
ursively onto the subproblems. At last, the
ombine fun
tion 
 uses the input data x and the solutions of the subproblems to 
omputethe solution of the original problem.A fun
tional version of the qui
ksort algorithm 
an be expressed in terms of d
0:qui
ksort :: Ord a => [a℄ -> [a℄qui
ksort xs= let d (p:ps) = [filter (<p) ps, filter (>p) ps℄
 (p:ps) [le,gr℄ = le ++ p : (filter (==p) ps ++ gr)in d
0 ((<2).length) id d 
 xsp is the name of the pivot. d generates two subproblems of the elements that are less resp.greater than the pivot. le resp. gr are the solutions of these subproblems. 
 
ombinesthem and inserts the elements whi
h equal the pivot in the middle.3.2.2 d
4ioA spe
ial kind of DC whi
h requires elementwise divide and 
ombine operations on sub-blo
ks of data.d
4io :: Int->Int->Int->(a->b)->([a℄->[a℄)->([b℄->[b℄)->Int->[a℄->[b℄The de�nition of d
4io is more involved than the others, and we 
an only sket
h it here:d
4io probdegree indegree outdegree basi
 divide 
ombine levels xs = ...The parameters of d
4io have the following meaning:� probdegree::Int: the degree of problem division, i.e., the number of subproblemswhi
h are generated for ea
h problem not trivially solved; this degree is �xed in d
4ioin 
ontrast to d
0.� indegree::Int: the degree of division of input data; it tells in how many blo
ks theinput data is to be divided. 12



problem probdegree indegree outdegreeFFT, bitoni
 merge 2 2 2polynomial produ
t 4 (3) 2 2matrix produ
t 8 (7) 4 4Table 2: example DC division degrees� outdegree::Int: the degree of 
omposition of output data; it tells of how manyblo
ks the output data is to be 
omposed.� basi
::(a->b): the fun
tion to be applied in the trivial 
ase.� divide::([a℄->[a℄): the fun
tion divide takes a list of length indegree as inputand delivers a list of length probdegree as output; it des
ribes how the element-wise operation 
omputes for ea
h parti
ular subproblem the element i using the ithelement from ea
h input blo
k.� 
ombine::([b℄->[b℄): the fun
tion 
ombine takes a list of length probdegree asinput and delivers a list of length outdegree as output; it des
ribes how the element-wise operation 
omputes for ea
h parti
ular output blo
k the element i using the ithelement from ea
h subproblem solution.� levels::Int: the number of re
ursive levels in whi
h the DC tree unfolds, in 
ontrastto d
0 there exists no predi
ate for determining the trivial 
ase; the DC tree isbalan
ed and the number of levels 
an be 
omputed easily from the problem size.� xs::[a℄: the input data; it is a list on whi
h the division into blo
ks apply; likewisethe output data is also of list type (::[b℄).d
4io works well for ve
tor and matrix algorithms like FFT, bitoni
 merge, polynomialprodu
t and matrix produ
t (Herrmann and Lengauer, 1997). The Karatsuba polynomialprodu
t is dis
ussed in detail in Se
t. 6.1.indegree and outdegree depend mu
h on the data representation, e.g., for ve
torsthey have the value 2 (left and right part), for matri
es they have the value 4 (upper leftpart, upper right part, lower left part and lower right part), see Tab. 2.The parenthesized values are for the optimized version of the respe
tive algorithm, e.g.,for Karatsuba's polynomial produ
t and Strassen's matrix produ
t.
13



3.3 Skeletons for improved eÆ
ien
y3.3.1 whileTakes a predi
ate p, a fun
tion f and a value x and iterates f, starting from x, as long asthe predi
ate on the input for f is True. The while skeleton is intended to be used insteadof tail re
ursion in order to avoid the re
ursion sta
k.while :: (a->Bool) -> (a->a) -> a -> awhile p f x = if p xthen while p f (f x)else xwhile (\(i,s) -> i<3) (\(i,s) -> (i+1,s+i*i)) (0,0) = (3,5)3.3.2 sinGenTakes a fun
tion f and a value n and generates a list of length n whose value at positioni is 
omputed by applying f to i. The aim of sinGen is to have a short representationfor large, regular index sets, e.g., the odd numbers from 1 to 1000001. To make this work,sinGen has to be fused in program optimization (see Se
t. 4.12.2).sinGen :: (Int->a) -> Int -> [a℄sinGen f n = map f [0..n-1℄sinGen (\i -> i*i) 4 = [0,1,4,9℄3.4 Evaluation 
ontrol3.4.1 stri
tTakes a fun
tion f and an argument x and it guarantees to evaluate x before 
alling f.Program optimizations will not tou
h the appli
ation of f to x. This skeleton is ne
essaryto prote
t the IO monad against elimination via inlining, due to a la
k of data dependen
es.stri
t :: (a->b) -> a -> bstri
t f x = f xstri
t (+1) 1 = 23.5 Input/OutputFor the input and output fun
tion, we 
annot provide a purely fun
tional de�nition. Thereason is their intera
tion with the input and output streams, whi
h are hidden in the IOmonad. The C implementations of the skeletons are far too long to be given here { theyhave to deal with nested lists and tuples. 14



3.5.1 putTakes a value and delivers an I/O a
tion whi
h returns Unit. In the I/O a
tion, the valueis appended to the standard HDC output 
hannel. Printable values are of type Int, Doubleand also tuples and lists 
omposed of printable values.put :: a -> IO Unit3.5.2 getPerforms an I/O a
tion in whi
h a value of type a is read from the standard HDC input
hannel. The set of readable values is the same as the set of printable values (see put).get :: IO a4 The Stru
ture of the CompilerThe HDC 
ompiler translates a subset of Haskell into an imperative language { at present,C with MPI 
alls. The main di�eren
e to Haskell is that HDC is stri
t, in order tofa
ilitate a 
ompile-time parallelization. Two implementational di�eren
es to a typi
alHaskell 
ompiler are that (1) higher-order fun
tions without a skeleton implementationare eliminated and (2) list 
omprehensions are simpli�ed to a 
ombination of (parallel)skeletons. The reason is that higher-order fun
tions 
ompli
ate but list 
omprehensionssimplify a stati
 spa
e-time mapping.The 
ompiler is based on the prin
iple of 
ompilation by transformation, whi
h hasalready been used su

essfully in GHC, and 
onsists of a number of phases des
ribed inSe
t. 4.1 to 4.15. An interpreter, whi
h 
an be used to analyze the program with respe
tto 
orre
tness, performan
e and 
ode stru
ture after individual 
ompilation phases, ispresented brie
y in Se
t. 8.2.4.1 S
anner and parserThe sour
e text is translated into a set of syntax trees, one for ea
h fun
tion in the program.Ea
h syntax tree is represented as an algebrai
 data type in Haskell. First, the sour
e 
odeis transformed by the s
anner into a token stream. This 
ommon te
hnique in 
ompiler
onstru
tion (Aho et al., 1986) simpli�es the generation of a grammar for HDC. For aneÆ
ient parser generation, we use the parser generator happy, the fun
tional equivalentof ya

. The parser 
reated by happy generates a syntax tree whi
h is represented by analgebrai
 data type in Haskell.The layout style of Haskell is supported, i.e., indentation 
an be used instead of bra
esand semi
olons to group together items at the same level of parti
ular synta
ti
 stru
tures.The user 
an de
lare new operators just as, e.g., the operator (->>) is de
lared in theprogram for the Karatsuba example on page 38, and state their pre
eden
e and asso
iativity(see the se
ond line of the karatsuba program). This information is exploited by the parser.15




ase exp ofLeft (Right x) -> exp1_ -> exp2 != 
ase exp ofLeft y -> 
ase y ofRight x -> exp1dummy1 -> exp2dummy0 -> exp2Figure 1: Example transformation of nested patterns4.2 DesugaringIn this phase, 
omplex synta
ti
 stru
tures are translated to 
ompositions of simpler stru
-tures. Nested patterns are eliminated, in order to simplify the 
ode stru
ture for thefollowing phases. After the transformation, the pattern is either a simple variable or a
onstru
tor followed by n variables, where n is the arity of the 
onstru
tor given by thede�nition, e.g., via data. Fig. 1 
ontains a simple transformation. An equational transfor-mation of a into b is denoted by a != b.Pattern bindings like let Left (Right x) = exp re
eive a similar treatment. In this
ase x is bound to:
ase exp ofLeft y -> 
ase y ofRight z -> zdummy1 -> error "mismat
h"dummy0 -> error "mismat
h"Sometimes the 
attening of a pattern 
an lead to 
as
ades of 
ase expressions, whi
h blowup the size of the right-hand side of a pattern de�nition. This o

urs when a patternin
ludes a 
onstru
tor with several arguments and many of these arguments represent asubpattern whi
h must also be 
attened. But, in most 
ases, the growth of the 
aseexpression is not dramati
 and does not a�e
t the performan
e of the remaining 
ompilerphases.4.3 List 
omprehension simpli�
ationGHC resolves 
omprehensions 
ompletely, up to the 
onstru
tion by the empty list ([℄)and 
ons (:), usually by traversing the list of quali�ers from left to right (Peyton Jones,1987; Haskell 98{Report, 1999). Our goal is to base list 
omprehensions on (parallel)skeletons. As presented here, our rewrite rules in Fig. 2 spe
ify the traversal of the list ofquali�ers in the opposite order: from right to left. This has two advantages: (1) nestedmaps are not intertwined with nested 
on
ats, whi
h preserves stru
tural information; (2)an eÆ
ient filter skeleton is used instead of generating lots of empty lists in 
ases inwhi
h guards fail. The disadvantage is that the rules will be
ome far more 
ompli
ated ifextended to the full 
apability of Haskell. 16



l
Empty [ e | ℄!= [ e ℄l
SinGuard [ e | g ℄fg is a guardg != if g then [ e ℄ else [℄l
OptGuardfgi are guards; [ e | q0,:::,qn,x <- xs,g0,:::,gk,:::,gm ℄x =2 freevars(gk)g != [ e | q0,:::,qn,gk,x <- xs,g0,:::,gk�1,gk+1,:::,gm ℄l
XGen [ e | q0,:::,qn,x <- xs ℄!= 
on
at [ map (\x -> e) xs | q0,:::,qn ℄l
GenGuard [ e | q0,:::,qn,x <- xs,g ℄fg is a guardg != 
on
at [ map (\x -> e) (filter (\x -> g) xs) | q0,:::,qn ℄l
TwoGuards [ e | q0,:::,qn,g0,g1 ℄fg0; g1 are guardsg != [ e | q0,:::,qn, if g0 then g1 else False ℄Figure 2: Simpli�
ation of list 
omprehensionsThe rewrite rules shown in Fig. 2 
over all possible list 
omprehension formats in ourrestri
ted language. They repla
e a list 
omprehension by appli
ations of the skeletons
on
at, map and filter whi
h are supposed to have eÆ
ient implementations. The rulesare applied until no further appli
ation is possible. If there is a 
hoi
e between severalrules, the one highest up in Fig. 2 is most eÆ
ient. Rule l
Empty deals with the 
asethat the sequen
e of quali�ers has be
ome empty by the other transformations.Rule l
SinGuard simpli�es a quali�er list 
onsisting of a single guard. Depending onthe value of the guard, the result is a list of either length 1 or length 0.Rule l
OptGuard shifts a guard as far as possible to the left, in order to avoid multipleevaluations.Rule l
XGen deals with the 
ase that the last quali�er is a generator. The otherquali�ers de�ne a list of environments. In the 
omprehension before simpli�
ation, the lastquali�er re�nes ea
h element of this list by a set of new bindings for the last generatorvariable x . After the transformation, this re�nement is shifted to the expression on the leftside of the 
omprehension, whi
h has been repla
ed by a list, one element for ea
h instan
eof the last generator in the 
urrent environment, as de�ned by the other quali�ers. We reusethe name x of the generator variable for the lambda expression to preserve the bindings inthe transformation. Note that the left side is in the s
ope of the environment de�ned bythe quali�ers on the right side. Therefore, all free variables of xs are bound to the same17



values as before.If a guard appears behind a generator, rule l
GenGuard helps to fuse the two. Itis similar to rule l
XGen, ex
ept that the new bindings for the last generator variable,whi
h lead to a failure of the last guard, are eliminated from the list via the filter skeletonbefore. The previous appli
ation of rule l
OptGuard assures that the guard really refersto the variable bound by the generator.If two guards appear next to ea
h other, they 
an be simpli�ed to a single guarda

ording to rule l
TwoGuards.4.4 Lambda lifting, let eliminationLambda abstra
tions and let expressions are eliminated by introdu
ing auxiliary fun
tions(Johnsson, 1985). As mentioned in Se
t. 2.4.11, other elimination methods should also be
onsidered for better eÆ
ien
y.4.5 Type 
he
kingThe type 
he
ker is based on uni�
ation using the rules by Martelli and Montanari (1982).A simple type 
lass system is implemented by assigning a type variable a set of possibletypes. The uni�
ation of two type variables then involves 
omputing the interse
tion ofboth sets.4.6 MonomorphizationIn this phase, all type variables are eliminated and repla
ed by the types a
tually needed.This requires the dupli
ation of ea
h fun
tion for all 
on
rete types whi
h o

ur in the
ontext. To ensure that all type variables are eliminated, monomorphization is startedfrom the IO Unit type of the parmain fun
tion and propagated along the 
all stru
ture,using the bindings that are imposed by the type 
onstraints of the language 
onstru
ts.If a polymorphi
 fun
tion is 
alled, a 
opy of it with monomorphi
 type is added to the
ode and the 
all is redire
ted to this 
opy. Arguments like y in fst (x,y) = x keep anuninstantiated type, whi
h is implemented by a void argument in C, if not even eliminatedby inline expansion (Se
t. 4.12.1).Monomorphization is needed be
ause our aim is not to translate to a high-level targetlanguage but to stay 
lose to the ma
hine representation of data and instru
tions.Example:Consider the following program as subje
t of monomorphization:parmain :: IO Unitparmain = get >>= \xs ->put (map id (xs::[Int℄)) 18



map :: (a->b) -> [a℄ -> [b℄map f xs = skel_map f xsid :: a -> aid x = xMonomorphization delivers the following result:parmain :: IO Unitparmain = get >>= \xs ->put (map_T1 id_T2 (xs::[Int℄))map_T1 :: (Int->Int) -> [Int℄ -> [Int℄map_T1 f xs = skel_map f xsid_T2 :: Int -> Intid_T2 x = x4.7 Elimination of fun
tional argumentsHOE takes a program whi
h must be well-typed a

ording to the Hindley-Milner rules.Also, the program must be 
losed, i.e., all fun
tions 
ited in the program must be availableto the HOE pro
edure for a global analysis and transformation. The result of the HOE isan equivalent �rst-order fun
tional program, whi
h is also well-typed.4.7.1 Prin
iplesThe HOE algorithm we found (Bell et al., 1997) uses a set of seven rewrite rules for thetransformation. The idea is to repla
e the partial appli
ations of a fun
tion by a kind of
losure. A 
losure 
ontains a fun
tion identi�er and the values of the free variables in thepartial appli
ation.The repla
ement of fun
tional arguments by 
losures pro
eeds as follows:� A variable of a fun
tion type is left un
hanged be
ause it represents already a 
losure.� A partial appli
ation of a fun
tion (see Se
t. 2.4.3) is repla
ed by an instan
e of analgebrai
 data type in whi
h the fun
tion identi�er is represented by a 
onstru
tor.The arguments of the 
onstru
tor 
arry the values of the free variables in the partialappli
ation. These values are taken from the 
ontext of the 
all.� All lo
ations at whi
h a fun
tional variable is applied are repla
ed by a 
all of an applyfun
tion 
onstru
ted for the respe
tive fun
tion type. The �rst argument of the applyfun
tion is the 
losure, the following arguments are the arguments of the en
odedfun
tion. The apply fun
tion applies the original fun
tion, with the respe
tive partial19



etaExpand :: Fun
tion ! Fun
tionetaExpand f= if f returns a fun
tion as resultthen add new variables as needed to felse fFigure 3: Algorithm etaExpanden
ode :: Expression ! State Expressionen
ode expr�(f e1...ei ...en)= if f is fun
tion or 
onstru
tor^ expr is not a fun
tion^ ei :: � is a fun
tional argumentthen do let expr 0 = (f e1...(C ei v1...vm)...en)data = (data Data � = C ei �1...�m)apply = (apply � :: Data �! �apply � 
 x1...xj= 
ase 
 ofC ei v1...vm -> ei x1...xj )add data and apply to 
urrent program state Statereturn expr 0else return exprwhere v1::�1,...,vm ::�m are the free variables in eix1,...,xj are additional arguments for eta-expanded eiFigure 4: Algorithm en
odeapplVar :: Expression ! ExpressionapplVar expr�(f e1...en)= if f ::� is a variable ^ expr is not a fun
tionthen apply � f e1...enelse exprFigure 5: Algorithm applVar20



appli
ation derived by the 
onstru
tor, to the argument expression in the 
ontext ofthe 
all whi
h 
an use values of the 
losure, also en
oded fun
tions.4.7.2 RulesSome of the seven rules, whi
h the original HOE algorithm (Bell et al., 1997) is basedon, deal with restri
ting polymorphism and be
ome obsolete in our monomorphi
 setting.The diploma thesis of one of the authors of this report (S
haller, 1998), des
ribes an HOEalgorithm tailored for HDC, whi
h uses the following set of four rules:1. EtaExpand (Fig. 3). This rule expands fun
tion de�nitions, whi
h return fun
tionsas result, with as many additional formal arguments as the fun
tion returned expe
ts.If the result was polymorphi
 before monomorphization, the number of additionalarguments may depend on the 
all. Then, appli
ations of the expanded fun
tionin
lude the appli
ation of the fun
tion returned and deliver a non-fun
tion result.2. En
ode (Fig. 4). This rule en
odes a fun
tional argument using a 
onstru
tor andintrodu
es an apply fun
tion as des
ribed above. The rule is given in a state-monadi
style, taking an expression as argument and returning an expression, while havinga

ess to the 
urrent program state. Depending on the type of the fun
tional argu-ment, the generated 
onstru
tor is added to a data type, 
alled Data, parametrizedwith an identi�
ation of the type of the argument. This is ne
essary for the 
orre
tgeneration of skeleton instan
es in a later phase of the 
ompiler.3. ApplVar (Fig. 5). If, in a fun
tion appli
ation, the fun
tion is represented by avariable whi
h is marked to 
arry a 
losure value, a temporary type in
onsisten
yo

urs during the transformation be
ause a 
losure 
annot be applied. This rulewraps the 
losure in a 
all to an additional apply fun
tion whi
h takes the 
losure asan argument.4. RemoveHOTypes (Fig. 6). To 
lean things up, all fun
tion types appearing indata type de�nitions are repla
ed by the algebrai
 data type 
alled Data, whi
h isparametrized with an identi�er of the en
oded type and en
ompasses all 
losures.The algorithm starts with a phase of appli
ations of rule 1, followed by a phase in whi
hrules 2 and 3 are applied repeatedly in any order, and terminates with a phase of appli
a-tions of rule 4. All phases perform rule appli
ations as long as possible.4.7.3 ExampleLet us study a small example for illustration. Assume the following de�nition of fun
tionmap, whi
h applies a fun
tion f elementwise to a list:map :: (a->b) -> [a℄ -> [b℄map f [℄ = [℄map f (x:xs) = f x : map f xs 21



removeHOTypes :: Type ! TyperemoveHOTypes t= 
ase t of��( ! ) -> Data �D t1 : : : tn | D algebrai
 data type-> D (removeHOTypes t1 : : : removeHOTypes tn)-> tFigure 6: Algorithm removeHOTypesNow, assume that map is used with two di�erent fun
tions in the �rst argument:map in
 xs where in
 :: Int -> Intmap (add (5*i)) xs where add :: Int -> Int -> IntThe di�eren
e in the signatures of the two argument fun
tions is important here.The �rst of our for rules, EtaExpand, does not take hold be
ause the result of mapapplied to two arguments is not a fun
tion. To spare the reader the 
onfusion of typein
onsisten
ies, we apply rule RemoveHOTypes not at the end but simultaneously withrule En
ode.To en
ode the arguments in
 and add, the data type T 1 and an apply fun
tion for it(rule En
ode) are 
reated:data T_1 = C_in
 | C_add5times Intapply_T_1 :: T_1 -> Int -> Intapply_T_1 
ode x = 
ase 
ode ofC_in
 -> in
 xC_add5times i -> add (5*i) xWe have 
hosen intuitive names for the generated 
onstru
tors. The HOE pro
edure gen-erates syntheti
 names, of 
ourse.Note that the 
onstru
tor C add5times has an argument i. This is be
ause i appearsas a free variable in add (5*i). The s
ope of a free variable in a 
all is the s
ope of the
aller and, therefore, the value of the free variable must be passed.Next, the appli
ations above have to be repla
ed:map_T_1 C_in
 xsmap_T_1 (C_add5times i) xsThe 
all of the �rst argument of map in the body of map must be repla
ed by an applyfun
tion (rule ApplVar). Thus, map is transformed as follows:22



map_T_1 :: T_1 -> [Int℄ -> [Int℄map_T_1 f
ode [℄ = [℄map_T_1 f
ode (x:xs) = apply_T_1 f
ode x : map_T_1 f
ode xsNow, assume the following third appli
ation of map:map i2b xs where i2b :: Int -> BoolThe previous apply fun
tion 
annot be used be
ause it does not mat
h the type of i2b.We 
reate the following additional data type T 2 and an apply fun
tion for it (rules Re-moveHOTypes and En
ode):data T_2 = C_i2bapply_T_2 :: T_2 -> Int -> Boolapply_T_2 
ode x = 
ase 
ode ofC_i2b -> i2b xThen, the spe
ialized version of map has to be used and apply fun
tions have to be inserted(rule ApplVar):map_T_2 :: T_2 -> [Int℄ -> [Bool℄map_T_2 f
ode [℄ = [℄map_T_2 f
ode (x:xs) = apply_T_2 f
ode x : map_T_2 f
ode xsFinally, the appli
ation is repla
ed by:map_T_2 C_i2b xs4.7.4 CommentsNote that, after the HOE, all fun
tion appli
ations are saturated with arguments, su
h thatthe result is not a fun
tion. Also, no argument to a fun
tion is a fun
tion. In prin
iple, one
ould now repla
e all 
urried de�nitions and appli
ations by tuple representations. This isnot done in the HDC 
ompiler for two main reasons:1. The tuples, whi
h are obje
ts of the HDC language, are, in turn, expressed in termsof pattern mat
hing 
ase expressions, whi
h require 
urried fun
tions on the righthand side again.2. The interpreter 
an remain simpler if it only has to deal with 
urried fun
tions.We adopt the following 
onvention: after the HOE, any appli
ation of an HDC fun
tionhas to supply all 
urried arguments. This s
hema 
an be regarded as �rst-order and isisomorphi
 to a s
hema of tupled arguments.23



fi :: t(i;1) -> t(i;2) -> : : : -> t(i;m(i)) -> t(i;0)fi arg(i;1) arg(i;2) : : : arg(i;m(i)) = bodyi
an be emulated by a new fun
tionf 0 :: Data -> Dataf 0 arg= 
ase arg ofC1 arg(1;1) : : : arg(1;m(1)) -> CRt(1;0) body1...Cn arg(n;1) : : : arg(n;m(n)) -> CRt(n;0) bodynFigure 7: Elimination of mutual re
ursion by emulation4.8 Elimination of mutual re
ursionThe HDC 
ompiler implements two methods for the removal of mutual re
ursion in pro-grams: elimination by inlining and elimination by emulation. Mutual re
ursion is identi�edby 
al
ulating the strongly 
onne
ted 
omponents (SCCs) in the graph of fun
tional de-penden
es. Sin
e there is no mutual re
ursion between SCCs, the methods 
an be appliedto ea
h SCC independently.4.8.1 Elimination by inliningThis method 
an only be used for an SCC whi
h 
ontains a node f whose removal fromthe SCC would make the residual graph s a
y
li
. The set of fun
tions whi
h s representsis, therefore, free of mutual re
ursion. Thus, it is possible to inline all 
alls of fun
tionsin s in the body of f , until the only re
ursive 
alls left are dire
tly re
ursive (Kaser et al.,1993).4.8.2 Elimination by emulationIf all mutual re
ursion in a program is to be removed, an alternative approa
h has to betaken for SCCs in whi
h mutual re
ursion 
annot be eliminated by inlining. It is alwayspossible to transform an SCC to a supernode. The fun
tion asso
iated with a supernodeemulates the work of all fun
tions of the SCC by en
oding the a
tual parameters andde
oding the formal parameters. Let fi , 1� i�n, be the fun
tions of an SCC and m(i) thenumber of arguments of fun
tion fi . Fun
tion f 0, whi
h emulates the fi , is given in Fig. 7.To avoid type 
on
i
ts, it is ne
essary to 
reate, for ea
h fun
tion fi of the SCC, a
onstru
tor Ci to en
ode the arguments and a 
onstru
tor CRt(i;0) for the result. The
onstru
tor name is used to sele
t the body of fun
tion fi . Finally, 
alls to the fun
tions fihave to be adapted to �t f 0.Whenever possible, elimination by inlining should take pre
eden
e over elimination24



by emulation. Inlining does not spoil the stru
ture of the program and the resultingintermediate 
ode 
an usually be optimized more e�e
tively.Both methods are expensive if the program 
ontains 
y
les of mutual re
ursion withmore than three to four fun
tions. Unfortunately, 
y
les may be introdu
ed by the transfor-mations of earlier 
ompilation phases. If programs are getting too big, due to the removalof mutual re
ursion, the elimination pro
ess 
an be turned o� by setting a 
ompiler swit
h.The default is to apply elimination by inlining, where possible, and then use the alternativemethod for the remaining mutual re
ursions. The HDC programmer should prefer the useof skeletons to user-de�ned re
ursive fun
tions in order to keep the amount of re
ursionlow.4.9 
ase eliminationPattern mat
hing is not available in lower-level programming languages, su
h as C or As-sembler, whi
h are suitable for the target 
ode of HDC. Providing a run-time system forpattern mat
hing would 
ause too mu
h overhead. Therefore, we eliminate 
ase expres-sions. We repla
e a 
ase expression by nested if expressions. The bran
hes of the ifexpressions 
ontain the former right-hand sides of the 
ase bran
hes.The variables introdu
ed by patterns are repla
ed by a spe
ial expression, ENth, whi
his used to a

ess a spe
i�
 parameter of a 
onstru
tor. ENth i (C x1 : : : xn) returns xi ,1� i �n. ENth 0, applied to a 
onstru
tor, returns the 
onstru
tor index in the fun
tionde
larations. Note that ENth 
annot have a valid Hindley-Milner type and, therefore,
annot be an HDC fun
tion! It is only used internally as a representation for an in�niteset of type-
orre
t fun
tions. A former 
ase bran
h is sele
ted by an if expression, if theindex of the 
onstru
tor used in the pattern and the 
onstru
tor index of the sele
tor sel(Se
t. 2.4.12) are the same.
ase expressions whi
h have only one bran
h re
eive a spe
ial treatment: no if ex-pression is needed, assuming that the bran
h will always mat
h.4.10 Generation of intermediate DAG 
odeThe syntax tree of ea
h fun
tion is transformed to a dire
ted a
y
li
 graph (DAG) toenable sharing of 
ommon subexpressions. A DAG 
ontains a set of expressions withasso
iated numbers, ordered by their dependen
es. Subexpressions are referen
ed by the
orresponding numbers. Fig. 8 shows an example DAG. The dire
tion of the referen
es isinverse to that of the data 
ow, whi
h is depi
ted by the arrows in the �gure.The transformation of a syntax tree into a DAG is by a standard te
hnique 
alled thevalue number method (Aho et al., 1986). The nodes are enumerated su
h that the sour
e ofea
h data dependen
e has a smaller number than the target. The transformation pro
eedsby a bottom-up traversal of the syntax tree. The subje
t of the transformation of ea
hnode is an expression, in whi
h subexpressions have already been 
onverted to numbersby re
ursive appli
ation of the algorithm. It returns a number for the node as follows: ifthere is already an expression in the DAG that mat
hes the input, then the number of the25



sqrplus :: [Int℄ -> Intsqrplus xs = (xs!!0)*(xs!!0) + (xs!!1)*(xs!!1)0: xs :: [Int℄1: 0 :: Int2: (!!) "0 "1 :: Int3: (*) "2 "2 :: Int4: 1 :: Int5: (!!) "0 "4 :: Int6: (*) "5 "5 :: Int7: (+) "3 "6 :: Int
0 1

!!2:

*3:

!!

xs0:

+7:

5:

*6:

Figure 8: Example fun
tion de�nition with its DAGexisting expression is returned; otherwise, a new node for the expression is 
reated and itsnumber is returned.Optimizing transformations (as des
ribed below) are performed at this intermediate
ode level.4.11 Tuple eliminationTuples are repla
ed by algebrai
 data types, one for ea
h o

urring tuple type. Ea
h tupleis tagged with the appropriate 
onstru
tor for its parti
ular type. This simpli�es the run-time system and, at the same time, provides fast a

ess to information about the types andsizes of the 
omponents of the tuple by looking them up in a table, whi
h is a

umulatedin �le funtable.
. As a 
onsequen
e, the memory management fun
tions need not bespe
ialized for ea
h parti
ular type.4.12 Optimization 
y
leCode optimization is done in a 
y
le. Ea
h iteration performs three steps in sequen
e:inlining of fun
tions 
alls, rule-based DAG optimizations and size inferen
e.The pro
ess of repla
ing the 
all of a fun
tion by its body, after substituting the a
tualfor the formal parameters, is 
alled inlining. We use inlining to enable further optimizationson DAGs, e.g., deletion of dead 
ode and sharing of 
ommon subexpressions. Inlining isperformed on DAGs in whi
h 
ommon subexpressions appear only on
e. Due to the sharingof 
ommon subexpressions, there is no risk of dupli
ating work.Inlining triggers 
ommon subexpression elimination for two reasons. First, it aggregates
ommon subexpressions whi
h have been spread a
ross the program { maybe due to trans-formations made before, maybe due to the program itself. Se
ond, it spe
ializes variablesby repla
ing the formal parameters of the fun
tion inlined by the a
tual parameters. Thispermits partial evaluation and 
he
king for value equality rather than name equality when26



identifying 
ommon subexpressions. Value equality is a 
oarser equivalen
e relation, i.e.,it indu
es more 
ommonality.The information gathered in the size inferen
e is useful for the inlining heuristi
s of thefollowing iteration of the optimization 
y
le and for the spa
e-time mapping. Size inferen
ehas to be reapplied in ea
h iteration be
ause of the 
hanges in the program due to inlining.During ea
h iteration, every DAG needed is pro
essed as follows.4.12.1 Inline expansionThe inline expansion transforms a sour
e DAG into a 
orresponding target DAG withpossibly inlined 
alls. First, the nodes of the sour
e DAG are 
opied su

essively. If a noderepresenting a fun
tion 
all is rea
hed, a heuristi
 de
ision, based on the expe
ted amountof 
ode in
rease, is made as to whether to inline this 
all or just 
opy the 
all node. In the
ase of inlining, the 
opying pro
ess swit
hes its sour
e temporarily from the 
aller to the
allee. All nodes of the DAG of the 
allee will be 
opied. There is no re
ursive inlining of
alls. Copied 
alls may be inlined in the next pass. Every time the inline expansion of aDAG for some fun
tion is 
ompleted, the body in the fun
tion de�nition is 
hanged to thetarget DAG.After inlining in the 
urrent pass is �nished, the DAGs are simpli�ed. Unused fun
tionarguments, ex
ept from apply fun
tions whi
h are 
alled from skeletons, are deleted anddead 
ode is removed. If it was possible to inline at least one 
all in the 
urrent pass anda spe
i�ed maximum number of passes is not yet rea
hed, inlining is repeated in the nextpass. We 
hose two major strategies for inlining: 
urrent version inlining and originalversion inlining.� Current version inliningThe most re
ent DAG for the 
alled fun
tion is inlined. This method requires fewerinlining operations, sin
e DAGs with already inlined 
alls are used for inlining again.One drawba
k is that the fun
tions are growing very fast and, therefore, the inliningpro
ess may be suppressed after only a few steps.� Original version inliningThe original de�nition of the fun
tion is inlined. This in
urs a linear 
ode growthwhen inlining re
ursive fun
tions. Original version inlining o�ers more possibilitiesfor optimization and, therefore, may lead to better results (Kaser et al., 1992).Kaser et al. (1992) also 
ompare stati
 and pro�le-based approa
hes. At present, we donot a

umulate or exploit pro�ling information.Common subexpressions are eliminated during the 
onversion of the syntax tree intoa DAG, whi
h has already been des
ribed in Se
t. 4.10. However, new 
ommon subex-pressions may appear during the inlining of a 
all. Sin
e new nodes introdu
ed by theinlining pro
ess are always 
reated with the same fun
tion as used for DAG 
onstru
tion,no unshared 
ommon subexpressions will be 
reated.27



intr-sinGen map f xsfxs :: [Int℄; xs regular; fresh ig != sinGen (\i -> f (xs!!i)) (length xs)elim-sinGen (sinGen f n) !! i!= f iFigure 9: Optimization rules for sinGen4.12.2 Rule-based DAG optimizationsIn this step, various algebrai
 optimizations 
an be applied. In the interest of brevity, letus fo
us here on optimizations in the 
ontext of spa
e-time mapping (Se
t. 4.14).In numeri
al algorithms, in a 
all map f xs, the list xs is often of type [Int℄ whi
hde�nes a set of indi
es. In the simplest 
ase, it is an arithmeti
 sequen
e ([a..b℄) orobtained from index set transforming fun
tions. Sin
e enumerations of index sets are, ingeneral, too ineÆ
ient, we represent them by fun
tions (this requires a 
ertain regularity).We 
an generate an index set from its des
ribing fun
tion by a skeleton named sinGen,see Se
t. 3.3.2. It takes a fun
tion f , whi
h des
ribes an index set, and an integer n anddelivers a list of length n, in whi
h the ith element is de�ned by applying f to i . Fig. 9
ontains two optimization rules: one whi
h introdu
es and one whi
h eliminates sinGen.Note that there is some potential for fusion (similar to map fusion), e.g.:map f (sinGen g n)fintr-sinGen; fresh ig != sinGen (\i -> f (sinGen g n !! i)) nfelim-sinGeng != sinGen (\i -> f (g i)) nThese optimizations have the problem that higher-order arguments are reintrodu
ed (e.g.,for the lambda expressions introdu
ed above). Of 
ourse, one 
ould apply su
h optimiza-tions before HOE but, at this point, they would miss the appli
ations that are enabled bythe inlining spe
ializations 
oming later.4.12.3 Size inferen
eThe size inferen
e algorithm derives symboli
 information about the result returned by afun
tion from the values of stru
tural variables whi
h represent the symboli
 informationof its arguments. The goal is to improve the de
isions made during ea
h iteration of theoptimization 
y
le and to determine automati
ally a spa
e-time mapping at 
ompile time,if possible.We are interested in the following symboli
 information about an HDC fun
tion:1. the size of the result { in the 
ase of nested lists a 
omprehensive des
ription of alllevels (Herrmann and Lengauer, 1998),28



2. the number of operations,3. the length of the longest path in the DAG, if all 
alls are expanded,4. the number of steps for a given number of pro
essors, if the 
ommuni
ation 
ost isdisregarded { this 
an be estimated from the number of operations and the pathlength, using Brent's theorem (Quinn, 1994).The size inferen
e 
omputes an abstra
t version of the HDC fun
tion, whi
h takes thesame number of arguments and has the same stru
ture as the original fun
tion, but theoperations it performs are abstra
t 
ounterparts of the original operations. E.g., an abstra
tsize operation for the append operator of plain lists is, simply put, "addition", be
ausethe size of the result is the sum of the sizes of both operands. The abstra
t version of afun
tion appli
ation is the appli
ation of an abstra
t fun
tion to an abstra
t size.The sizes are represented in symboli
 form, as obje
ts of an algebrai
 data type Size,
ontaining, e.g., the following 
onstru
tors:� Con :: Int -> Size de�nes a 
onstant size.� Var :: String -> Size de�nes a free variable.� Add :: Size -> Size -> Size adds two sizes.If, e.g., Con 2 is the size of the list [3,4℄ and Var "x" is the size of a list x, then the sizeof the list [3,4℄ ++ x is Add (Con 2) (Var "x").Abstra
t fun
tions take variables representing symboli
 expressions. E.g., the 
on-stru
tor Add above is an abstra
t fun
tion. Abstra
t fun
tions 
an be 
omposed of otherabstra
t fun
tions. E.g., the number of operations needed for a list append depends onthe length of both argument lists. (That is the HDC append; for the usual sequentialappend, the length of the se
ond list is immaterial.) From this point of view, underlyingmemory optimization te
hniques like sharing in DAGs, whi
h are not visible at the level ofintermediate 
ode, are not 
onsidered. The stru
tures are treated as if they were 
attenedand the abstra
t values obtained are upper bounds and not exa
t.The abstra
t fun
tions are expressed in terms of the abstra
t values of their arguments,in order to make size inferen
e a lo
al 
omputation, independent of its 
ontext, and allowfor a largely polymorphi
 implementation of the skeletons. If the amount of spa
e in termsof memory 
ells or the amount of time in terms of 
lo
k 
y
les is of interest, the abstra
tfun
tion must be supplied with a

ording 
ontext information.Be
ause of the 
omplexity of the symboli
 expressions involved, we believe that the sizeinferen
e of re
ursive fun
tions is beyond the 
apability of present-day mathemati
al tools.It is assumed that all re
ursion is 
aptured in skeletons whi
h are supplied with thefour types of size information stated above.Size inferen
e is appli
able only if the stru
ture analyzed does not depend on run-timedata, e.g., if the length of lists does not depend on input values.We see a use for a 
omplete size inferen
e mainly in fun
tional programs whi
h representa stati
 system, e.g., a hardware des
ription.29



4.13 Abstra
t 
ode generationThe de�ning expression of an intermediate fun
tion is mapped to a DAG in order tofa
ilitate the sharing of 
ommon subexpressions. As des
ribed in Se
t. 4.10, ea
h DAGis represented by a table: ea
h node of the DAG 
orresponds to a table entry, and ea
hdire
ted edge of the DAG is represented at the entry of the sour
e of the edge (the targetof the data dependen
e) by the table index of the target node of the edge (the sour
e ofthe data dependen
e).The phase of abstra
t 
ode generation swit
hes the interpretation of a DAG: before,it is interpreted with a denotational semanti
s, afterwards with an operational semanti
s.The stru
ture of the DAG also 
hanges slightly: one type of node is eliminated and threeother types are introdu
ed.Let us re
e
t on the denotational interpretation. Here, a DAG is interpreted by startingevaluation of a distinguished node, the root. The result of the root node is 
onsidered theresult of the fun
tion represented by the DAG. If the evaluation of a node requires theresult of another node, this node is visited and evaluated. There is a spe
ial kind of nodefor a

essing formal arguments. if nodes require a spe
ial treatment: the value of the
ondition has to be tested, and then only one of both bran
hes is evaluated.In the operational interpretation, the evaluation pro
eeds by traversing the table entriesin sequen
e. If the result of another node is required, it has already been 
omputed and
an be looked up in a previous table entry. The root node is the last entry in the tableand 
ontains the result of the fun
tion. The problem with the if nodes is that when theyare rea
hed (if ever!) both bran
hes already have been evaluated, also the wrong bran
h.Therefore, a me
hanism is implemented to skip nodes belonging to the wrong bran
h. If aDAG does not 
ontain if expressions, it is used as abstra
t 
ode without modi�
ation.To a

omplish the skipping of nodes, if nodes are eliminated and the following 
ontrolnodes are introdu
ed:1. Bran
hFalse 
ond i tests the boolean value at node 
ond and 
ontinues the exe
utionof the DAG from node i if the 
ondition test yields False. Otherwise it has no e�e
t.2. Jump i 
ontinues the exe
ution from node i .3. Sele
tion 
ond a b tests the boolean value at node 
ond and returns the value ofnode a if the test yields True and the value of b otherwise.The abstra
t 
ode for an if expression has the stru
ture shown in Fig. 10. The pointerto the 
ondition refers to a node above. The forward referen
es of Bran
hFalse and Jumpare �lled with table indi
es, on
e they are known, i.e., when the re
ursive generation ofabstra
t 
ode for nested bran
hes has �nished. Jumps are introdu
ed to skip over 
ode inbran
hes whi
h are not rea
hed due to the invalidity of their 
ondition.For reasons of soundness and eÆ
ien
y, the 
onversion of a DAG to abstra
t 
odeinvolves the dupli
ation of some expressions that are shared in the intermediate DAG 
ode{ more pre
isely, of 
ommon expressions that are lo
ated in a set of nested if expressions30



then/else branch

abstract code before conditional expression

Jump  <end_if>

abstract code for 
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selection of result of  

else branch

        branchthen

BranchFalse  <condition>  <elsebranch>

Figure 10: Abstra
t 
ode stru
ture for an if expressionin several, but not in all bran
hes. These expressions are evaluated at most on
e andshould not be shared.The stru
ture of nested if expressions 
an be maintained by an auxiliary tree T ,whose nodes represent regions of the DAG. The root of T represents the entire DAG. Ea
ho

urren
e of a 
onditional in the region, whi
h a node represents, leads to two subtrees,one for the then bran
h and one for the else bran
h. All other nodes in the region (whi
hdo not belong to an if expression) are represented by a list of single pointers. Ea
h nodein T has an asso
iated list with the pointers belonging to its subtree. Pointers to formalparameters are pla
ed at the top level, so that they 
an be shared in all bran
hes.This arrangement has a high potential for dupli
ate pointers. To redu
e dupli
ation,the lists in ea
h node are optimized by applying the following rules:1. Horizontal 
ommon expression elimination. Pointers to expressions 
ommonto both bran
hes of an if expression are moved up one level to the en
losing bran
h:
ommon = pointers then bran
h \ pointers else bran
hpointers then bran
h 0 = pointers then bran
h n 
ommonpointers else bran
h 0 = pointers else bran
h n 
ommonpointers en
losing bran
h 0 = pointers en
losing bran
h [ 
ommonThis transformation is performed bottom-up, starting with the innermost if expres-sions. Therefore, a 
ommon pointer 
an be moved up further if the bran
h opposedto the en
losing bran
h 
ontains the same pointer.
31



2. Verti
al 
ommon expression elimination. Pointers to expressions already in thes
ope of an en
losing bran
h are removed in ea
h list:pointers 0 = pointers n already de�ned pointersalready de�ned pointers is 
omputed from the lists of all nodes on the path from theroot to the 
urrent node in the tree of if expressions.3. Sorting. For ea
h node, the pointers (ex
ept pointers to if expressions) are sortedby their dependen
es. In the sorted list, the pointers to if expressions are pla
ed atthe earliest point at whi
h all required pointers have been de�ned.
    p

 d  q  e  f  g  h        ra  b  c
C

A

B

D E F G

H I

  j  s  k  

n  o

a

c  m  n

f  g  i a

Figure 11: Example tree of if expressionsThe rules are applied in the order stated be
ause horizontal elimination possibly en-ables additional verti
al elimination, but not vi
e versa. We sort at the end, sin
e theother optimizations may 
hange the lists and 
ould violate the ordering. Note that theoptimizations do not analyze if 
onditions.
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Example:Fig. 11 shows a tree of if expressions. The nodes A,:::,I 
ontain lists of pointers to expres-sions used in the parts of the 
orresponding DAG, named with lower
ase letters. p,:::,s arepointers to if expressions. The horizontal 
ommon subexpression elimination will move nfrom nodes H and I to node E. a will be moved from F and G to C. a is now 
ommonto both bran
hes of A, thus it will be moved from B and C to A. The verti
al 
ommonsubexpression elimination will remove f and g from node D. In the abstra
t 
ode of D, thepointers f and g from C are used to evaluate the expressions. To fa
ilitate this, the sortmust pla
e f and g before q in the list of C. In order to reuse the pointer of 
, it wouldhave to be de�ned in node A. Without analyzing the 
onditions, it is not 
lear whetherthe evaluation of the 
orresponding expression is ne
essary. Thus, the expression will bedupli
ated in the abstra
t 
ode, i.e., 
ontained in B and H.Using the information of the lists (whi
h expressions must be de�ned in what bran
h)and the DAG 
ode (list 
ontaining the expressions), the abstra
t 
ode 
an be generatedre
ursively for all nested if expressions.4.14 Spa
e-time mappingA spa
e-time mapping is a one-to-one mapping from a domain of 
omputation points tothe 
artesian produ
t of dis
rete spa
e and time. The spa
e part is known as allo
ation,the time part as s
hedule. The te
hnique of spa
e-time mapping has a long tradition inloop parallelization (Lengauer, 1993). Some of the ideas 
an be adapted to while loops(Griebl and Lengauer, 1994; Collard, 1995) and even to non-linear re
ursion (Herrmannand Lengauer, 1996). However, the stru
ture of dependen
es we are en
ountering makesinteger linear optimization, whi
h is the 
entral sear
h method for a spa
e-time mappingin loop parallelization and whi
h has the ni
e property of yielding the best solution in the
onsidered sear
h spa
e, unsuitable for general HDC programs.Spa
e-time mapping is most e�e
tive when applied in the individual derivation of par-allel skeleton implementations. This approa
h is des
ribed in detail in Herrmann andLengauer (1996). If the dependen
e stru
ture of the skeleton is suÆ
iently regular {as,e.g., for some kinds of DC{ the points of 
omputation 
an be laid out in time and spa
eat 
ompile time. The size of the 
omputation spa
e will depend on the problem size andthe number of pro
essors, but its shape will not (Herrmann and Lengauer, 1996).The user is well advised to 
onstru
t his/her program by 
omposition of appropriateskeletons, whi
h have been spa
e-time mapped eÆ
iently. Note that the generation of ea
hskeleton is done by a Haskell fun
tion whi
h is to be delivered by the skeleton implementer.It is up to this Haskell fun
tion, to use the results of the size inferen
e provided or even to
all external tools. The task of the HDC 
ompiler is, at a minimum, to transmit symboli
spa
e-time mapping information via the 
all stru
ture of the program to the points whereit is needed, by making use of the abstra
t fun
tions delivered by the skeleton implementer.The nodes of ea
h DAG are s
heduled sequentially by the 
ompiler, no parallelization isdone in this phase. 33



4.15 Code generationThe 
ode generation phase �rst produ
es C 
ode, whi
h is then 
ompiled with a standardC 
ompiler and linked together with the fun
tions of our run-time library, whi
h are alsowritten in C. The C 
ode is generated in two phases. First, the abstra
t 
ode of theuser program is translated; see Se
t. 4.15.1. Se
ond, an appropriate implementation isgenerated for ea
h skeleton instan
e used in the program; see Se
t. 4.15.2.4.15.1 DAG 
ompilationFor ea
h DAG of the abstra
t 
ode, a C fun
tion is generated and appended to �le 
ode.
.Ea
h node in the DAG is treated seperately. Ea
h 
onstru
tor used is inserted into a table,in �le funtable.
, to provide the run-time environment with the ne
essary informationabout types and sizes of the 
omponents of the obje
t it 
onstru
ts. For ea
h 
all of askeleton, the name of the skeleton together with the a
tual types of the arguments arestored.4.15.2 Skeleton generationAfter all DAGs have been pro
essed, the instantiations of the skeletons are generated andstored in �le skel.
.HDC o�ers a spe
ial, very 
exible me
hanism for the integration of 
ustom-implementedskeletons. For ea
h skeleton, the implementer delivers a Haskell fun
tion, say, �, whi
h is
alled by the 
ode generator of the HDC 
ompiler and whi
h produ
es the a
tual instan
eof the skeleton. In the simplest 
ase, the body of fun
tion � will be just a Haskell stringof C target 
ode, but � 
an also pres
ribe de
isions based on type and size informationprovided by the 
ompiler.Remember that the C 
ode generated must be monomorphi
; this applies also to theimplementation of a skeleton. Thus, the programmer of � has to 
onsider at least theroot symbol of the type tree of ea
h argument, i.e., the implementation must di�er, e.g.,between lists and integers, but not ne
essarily between lists of Int and lists of lists of Intsin
e, in the latter 
ase, the root of the type tree is in both 
ases the list type 
onstru
tor.To illustrate what a generi
 skeleton implementation may look like, let us dis
uss anabstra
t version of the implementation of the map skeleton in a parallel model, in whi
h alldata is passed along with the 
ontrol. The map skeleton takes a fun
tion (really a 
losure,i.e, the 
ode of a fun
tion together with an environment) and a list and applies the fun
tionelementwise to the list.For simpli
ity, we assume a spa
e-time mapping whi
h allots roughly the same numberof list elements to ea
h pro
essor. This mapping is eÆ
ient if the amount of work is nearlyequal for ea
h element of the list.One might 
onsider the use of 
olle
tive MPI operations (Pa
he
o, 1997) like broad
ast(to distribute the fun
tion 
losure), s
atter (to distribute the list among the pro
essors)and gather (to 
olle
t the results from the pro
essors). This would work for lists of Int,Bool or Double but would require spe
ial skeleton implementations for these types. In34



general, gather and s
atter 
annot be used, sin
e they assume that lists are plain anddo not 
ontain referen
es to a heap. E.g., if the elements are fun
tions, the list 
ontainsjust pointers to a shared heap. As a 
onsequen
e, we have to 
ustom-implement 
olle
tiveoperations for HDC, using the MPI primitives send and re
eive. Here, again, DC provesto be a useful te
hnique.4.15.3 Run-time libraryThe run-time library, whi
h is 
omparatively small, 
ontains the implementation of allfun
tions whi
h do not depend on the user program { espe
ially, prede�ned fun
tionswhi
h 
annot be 
oded with a few C statements (those are inserted dire
tly in the 
ode),whi
h perform memory management, and whi
h pa
k and unpa
k data stru
tures.5 The Parallel Run-Time Environment5.1 The model of parallel exe
ution in HDCOur aim has been to provide a platform whi
h does not limit the design 
hoi
es 
on
erningparallelism. Still, we are staying away from unstru
tured fork-join parallelism (Almasiand Gottlieb, 1989) and, where possible, make use of the DC paradigm. In the interest ofgenerality and s
alability, our exe
ution model is SPMD.The 
ontrol stru
ture is organized as follows. At the beginning, all pro
essors forma single blo
k. In a parallel 
omputation, this blo
k {let us 
alled it the superblo
k{ isdivided into a number of subblo
ks and the master of the superblo
k sends a task to themasters of the subblo
ks. When the task a subblo
k is assigned to is terminating, its mastersends an a

ording signal to the master of the superblo
k. No tasks are initiated and no
ompletion messages are sent a
ross a superblo
k's border. We 
all this the prin
iple of
ommuni
ation-
losed blo
ks, in analogy to the prin
iple of 
ommuni
ation-
losed layers(Elrad and Fran
ez, 1982).Another important issue is the data layout, i.e., the way in whi
h the data is distributedamong the pro
essors. We distinguish three styles of data layout. The �rst applies toatomi
 data and to tuples. Only lists and algebrai
 data types, whi
h 
an be
ome large,are subje
t to the other distributions.� Centralized data layout: All input data of a task is passed along with the signalof initiation of the task and all output data is passed ba
k with the report on thetask's 
ompletion. Obviously, this is a good 
hoi
e if the amount of data is small,although it might in
ur some unne
essary 
ommuni
ation. For large data, a 
en-tralized data layout will lead to una

eptable overhead, due to data transmission, oreven to memory over
ow.In the remaining two layout styles, instead of passing the data with the 
ontrol, onlyinformation about the lo
ation of the data is passed.35



� Hierar
hi
al data layout: The input and output data of ea
h blo
k is distributedamong the pro
essors assigned to the blo
k, as pres
ribed by the spa
e-time mapping.The default spa
e-time mapping is that the data is distributed in balan
e a
ross allavailable pro
essors. This layout is espe
ially 
onvenient for DC algorithms on largedata whi
h does not �t onto a single pro
essor, but only if the data size de
reaseswith the division of the problem, as in the d
4io skeleton.� Globally distributed data layout: The input data is distributed a

ording to aspa
e-time mapping. Ea
h intermediate and result value is lo
ated on the pro
essorthat produ
es it. This is known as the owner-
omputes rule (Wolfe, 1995). To getdata from another pro
essor, a remote memory a

ess (RMA) has to be performed.RMA involves a 
ommuni
ation { however, it is not expli
it and, thus, does notviolate the prin
iple of 
ommuni
ation-
losed blo
ks.5.2 OrganizationThe available implementations of a skeleton determine the set of possible spa
e-time map-pings whi
h 
an be 
hosen in a parallel exe
ution. Thus, it is important to realize thatskeleton implementations are generated in dependen
e of the 
ontext in whi
h they are
alled, exploiting type and possibly also symboli
 size information (see Se
t. 4.15).The �rst argument of ea
h skeleton implementation, like the �rst argument of the otherfun
tions generated, 
ontains a pointer to system information, 
omprising a des
ription ofthe master and the 
urrent part of the topology the pro
essor belongs to.The user has the option to provide all fun
tions with an additional expli
it parameter,whi
h 
ontains a mapping strategy introdu
ed in the sour
e 
ode. Skeleton implementa-tions 
an use this strategy in the spa
e-time mapping.5.3 Intera
tion with skeleton implementationsIf the 
omputation is divided into sub
omputations a

ording to the DC paradigm, theblo
k of pro
essors is divided into subblo
ks. Ea
h pro
essor belongs to exa
tly one sub-blo
k. Ea
h subproblem is solved on its own subblo
k. At the beginning, the blo
k hasone master pro
essor, the other pro
essors are slaves. The division of a blo
k involves the
reation of new masters by the old master, one for ea
h subblo
k.Let us now revisit the implementation of the map skeleton from Se
t. 4.15.2. If the listdoes not 
ontain at least two elements or the blo
k has only one pro
essor, map must be
omputed sequentially. (map may be 
omputed sequentially if parallelization does not payo� a

ording to a strategy 
hosen by the skeleton implementer.) Otherwise the blo
k isdivided into two subblo
ks; let us 
all them the left subblo
k and the right subblo
k. Theleft subblo
k 
omputes map on the left part, and the right subblo
k on the right part. Thepro
essor responsible for the whole blo
k before, say, L retains the responsibility for theleft subblo
k and sends the pa
ked fun
tion 
losure and the right part of the list to anotherdistinguished pro
essor, say, R responsible for the right subblo
k. Computation pro
eeds36



re
ursively until the left and right subblo
k are united again and R gives ba
k 
ontrol forits part to L.Now, let us have a 
loser look at the 
all me
hanism. Pro
essor L is the one on whi
h themap skeleton is 
alled. Thus, it re
eives all formal arguments via a fun
tion 
all. Pro
essorR is a
tivated by L with an index of the a
tual skeleton instan
e. R uses this index to
all a slave skeleton. This skeleton does not re
eive the appli
ation data via a fun
tion
all, be
ause this data is not yet available on R. Instead, the following intera
tion takespla
e: L sends the data to R, both L and R 
all the master skeleton with their parti
ularsubproblem, R returns into the slave skeleton and sends its result ba
k to L. Note that �of Se
t. 4.15.2 has to generate two skeleton instan
es here: the one for the master and theone for the slave!6 Examples6.1 Karatsuba's polynomial produ
tThis subse
tion 
ontains material, whi
h we have published before with respe
t to a slightlymodi�ed DC skeleton (Herrmann and Lengauer, 1996).In 1962, Karatsuba published a DC algorithm for the multipli
ation of large integersof bitsize N with 
ost O(N log2 3) (log2 3 � 1:58) based on ternary DC (Aho et al., 1974).A trivial algorithm has 
omplexity O(N 2). As an example of ternary DC, we 
hoose thepolynomial produ
t, whi
h is the part of Karatsuba's algorithm that is responsible for its
omplexity.Here, we 
on
entrate on the produ
t of two polynomials whi
h are represented bypowerlists (Misra, 1994) of their 
oeÆ
ients in order. The length of both lists is thesmallest power of 2, whi
h is greater than the maximum of both degrees. We 
onsider +,� and � operations on polynomials; when applying them to integers, we pretend to dealwith the respe
tive 
onstant polynomial. If a, b, 
 and d are polynomials in the variableX of degree at most N <2n�1, then (a �X N + b) � (
 �X N + d) = h �X 2�N +m �X N + l ,where h = a � 
 (h is for \high"), l = b � d (l is for \low") and m = (a � d + b � 
) (mis for \middle"). The ordinary polynomial produ
t uses two polynomial subprodu
ts to
ompute m, leading to quadrati
 
ost, whereas the Karatsuba algorithm uses the equalitym = (a + b)�(
+ d)� h � l to 
ompute only a single additional polynomial subprodu
t.Polynomial addition and subtra
tion does not in
uen
e the asymptoti
 
ost be
ause it 
anbe done in parallel in 
onstant time and in sequen
e in linear time.Due to the data type and data dependen
e restri
tions imposed by our skeleton,the input ve
tor of the skeleton is the zip of two 
oeÆ
ient ve
tors (zip [a0,...,a2�N�1℄[b0,...,b2�N�1℄ = [(a0; b0),...,(a2�N�1; b2�N�1)℄) and the result is the zip of the higher andlower part of the resulting 
oeÆ
ient ve
tor, as 
an be seen in the de�nition of karatsuba,whi
h multiplies two polynomials represented by equal-size powerlists:
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import HDCPreludeinfixl 2 ->>-- polynomial produ
t-- the length must be a power of 2-- using Karatsuba's algorithmkaratsuba :: [Int℄ -> [Int℄ -> [Int℄karatsuba a b =let basi
 (x,y) = (0,x*y)divide [(xh,yh),(xl,yl)℄= [(xh,yh),(xl,yl),(xh+xl,yh+yl)℄
ombine [(hh,hl),(lh,ll),(mh,ml)℄= [(hh,lh+ml-hl-ll),(hl+mh-hh-lh,ll)℄in ilog2 (length a) ->> \n ->zip a b ->> \x ->d
4io 3 2 2 basi
 divide 
ombine n x ->> \z ->map fst z ++ map snd z(->>) :: a -> (a -> b) -> bx ->> f = f xilog2 :: Int -> Int -- 
eil of real log2ilog2 n = if n<=1 then 0else 1 + ilog2 ((n+1)`div`2)parmain :: IO Unitparmain = get >>= \a ->get >>= \b ->put ((karatsuba a b) :: [Int℄)The operator ->> for
es a sequen
ing of 
omputation steps. We use it to avoid multipleevaluations.The �rst three arguments of d
4io are the degrees of the problem division, the in-put data division and the output data 
omposition. Of the 
onstituting fun
tions, basi
multiplies two 
onstant polynomials. Fun
tion divide divides a problem into three sub-problems: the �rst is working on the high parts, the se
ond on the low parts and the thirdon the sum of the high and the low parts, 
orresponding to (a + b) and (
+ d) of the for-mula for m. The fun
tion 
ombine 
ombines the results (hh,hl ) (the high parts), (lh,ll )(the low parts) and (mh,ml ) (the middle parts). The high positions mh of the middle partsoverlap with the low positions hl of the high parts, and the low positions ml of the middleparts with the high positions lh of the low parts. Results of overlapping positions have tobe summed. Further, the results of the high and low part have to be subtra
ted from the38



left (high) right (low) left+right (middle)
[(0,1),(1,1),(1,1),(1,1)]

[0,0,1,2,3,3,2,1]
[(0,3),(0,3),(1,2),(2,1)]

[0,1] x [1,1]
[(0,1),(1,1)]

[0,1,1,1] x [1,1,1,1]

[(0,1)] [(1,1)] [(1,2)]

[0,0]
[(0,0)]

[0,1]
[(0,1)]

[0,2]
[(0,2)]

[0,0,1,1]
[(0,1),(0,1)]

[(1,1)] [(1,1)] [(2,2)]

[1,1] x [1,1]
[(1,1),(1,1)]

[0,1]
[(0,1)]

[0,1]
[(0,1)]

[0,4]
[(0,4)]

[0,1,2,1]
[(0,2),(1,1)]

[1,2] x [2,2]
[(1,2),(2,2)]

[(1,2)] [(2,2)] [(3,4)]

[0,2]
[(0,2)]

[0,4]
[(0,4)]

[0,12]
[(0,12)]

[0,2,6,4]
[(0,6),(2,4)]

[0] x [1] [1] x [1] [1] x [2] [1] x [1] [1] x [1] [2] x [2] [1] x [2] [2] x [2] [3] x [4]

Figure 12: Call graph for a 
all of karatsubaresult of the middle part. As an example, Fig. 12 depi
ts the 
all graph for multipli
ationof the polynomials (X 2+X +1) and (X 3+X 2+X +1) whose result is the polynomial(X 5+2 �X 4+3 �X 3+3 �X 2+2 �X +1). In ea
h node, we give on top the polynomialsas lists of their 
oeÆ
ients and below the representation as required by the skeleton.6.2 Frequent setThe frequent set problem (Toivonen, 1996) belongs to the appli
ation area of data mining.Consider the following appli
ation example in a supermarket. Sets of arti
les, whi
h areoften pur
hased together, should be shelved 
lose to ea
h other. These sets should beobtained from statisti
s data 
ompiled at the point of sale. Let M be the set of all arti
les,for simpli
ity enumerated from 0 to m. Let the database be a bag of subsets of M ; ea
helement of the bag 
ontains a set of arti
les of a single bill. The number of o

urren
es ofa single arti
le is of no interest, but the number of o

urren
es of ea
h subset of M is. Thetask is to report all subsets of M whi
h are frequent, i.e., appear in (are a subset of) morethan a 
ertain fra
tion of all bag elements, 
alled the threshold.We present a straight-forward algorithm for the frequent set problem in HDC, derivedfrom Alg. 3.7 of Toivonen (1996).A more sophisti
ated and eÆ
ient algorithm was derived by Hu (1999). We assumethat subsets of integers are represented in a list in in
reasing order. The input 
onsists ofthe threshold and the list of bills. The output is the list of frequent sets.Our example 
ontains the following fun
tions:39



� 
ompareSet 
ompares two sets with respe
t to a parti
ular ordering on the subsetsof integers (�rst by length, then by lexi
ographi
 order (Aho et al., 1974)). We usethe while skeleton to terminate the 
omparison as soon as the result is known.� isElem 
he
ks whether an element is in the set.� isSubSet 
he
ks for the subset property.� insertSet adds a new element to an ordered set.� remDupli
ates removes dupli
ates.� 
ountSubsets 
ounts the number of o

urren
es as a subset in the bag.� fra
OK 
he
ks whether the fra
tion of bag elements the set appears in as a subsetex
eeds the given threshold value.� freqSets 
onstru
ts all frequent sets.� datamineSet 
onstru
ts all frequent sets of 
ardinality i , ordered by in
reasing i .� datamine is the entire algorithm without input/output a
tions.import HDCPrelude
ompareSet :: Ord a => [a℄ -> [a℄ -> Int-- 
ompares two sets with respe
t to first the size, then the-- lexi
ographi
 ordering, delivers -1 if xs<ys, 0 if xs=ys, 1 if xs>ys-- the lists representing the (unordered) sets must be sorted
ompareSet xs ys= if length xs == length ysthen let firstdiff =skel_while (\i -> if (i<length xs) then (xs!!i==ys!!i)else False ) (+1) 0in if firstdiff == length xsthen 0else if xs!!firstdiff > ys!!firstdiff then 1 else (-1)else if length xs > length ys then 1 else (-1)isElem :: Ord a => a -> [a℄ -> Bool-- 
he
ks if e is element of the set sisElem e s = any (==e) sisSubSet :: Ord a => [a℄ -> [a℄ -> Bool-- 
he
ks if sub is a subset of superisSubSet sub super = all (\s -> isElem s super) sub40



insertSet :: Ord a => a -> [a℄ -> [a℄-- adds x to the set xsinsertSet x xs = filter (<x) xs ++ (x : filter (>x) xs)remDupli
ates :: Ord a => [[a℄℄ -> [[a℄℄-- removes all dupli
ates in a set of setsremDupli
ates= let pivot xs = xs!!(length xs `div` 2)p xs = length xs < 2b xs = xsd xs = let less= filter (\x -> 
ompareSet x (pivot xs) == (-1)) xsgreater= filter (\x -> 
ompareSet x (pivot xs) == 1) xsin [less,greater℄
 xs [as,bs℄ = as ++ (pivot xs : bs)in d
0 p b d 

ountSubsets :: [Int℄ -> [[Int℄℄ -> Int-- 
ounts the number of elements in bs whi
h b is a subset of
ountSubsets b bs = length (filter (isSubSet b) bs)fra
OK :: [[Int℄℄ -> Double -> [Int℄ -> Bool-- given a bag of sets bs, a fra
tion f and a set b-- tells if b o

urs as a subset in more than the fra
tion f of-- all elements of bsfra
OK bs f b = ( fromInt (
ountSubsets b bs) / fromInt (length bs)) > ffreqSets :: [[Int℄℄ -> Double -> [Int℄ ->([[Int℄℄,[[Int℄℄) -> Int -> ([[Int℄℄,[[Int℄℄)-- given-- bbag: the bag of sets-- fra
: the fra
tion of o

urren
es-- sngl: all singleton frequent sets-- (f,filast): the 
urrent/previous 
olle
tion of frequent sets-- i: the 
urrent levelfreqSets bbag fra
 sngl (f,filast) i= (\fi -> (f++fi,fi))(filter (fra
OK bbag fra
)(remDupli
ates(filter (\xs -> length xs == i)[ insertSet s1 s2 | s1 <- sngl, s2 <- filast℄)))41



datamineSet :: Int -> Int -> [[Int℄℄ -> Double -> [[Int℄℄-- data mining on the Set representation to enable-- effi
ient parallel subset testingdatamineSet m u bbag fra
= (\siOK ->fst (foldl (freqSets bbag fra
 (map (!!0) siOK))(siOK,siOK) [2..u℄))(map (\x->[x℄) (filter (\x -> fra
OK bbag fra
 [x℄) [0..m℄))-- list of single items that satisfy fra
tion 
onditiondatamine :: [[Int℄℄ -> Double -> [[Int℄℄-- the entire datamining algorithmdatamine bag fra
 =let maxi = red max 0 (
on
at bag)ubnd = red max 0 (map length bag)in datamineSet maxi ubnd bag fra
parmain :: IO Unitparmain = get >>= \threshold ->get >>= \bag ->put (datamine bag threshold)7 Experimental ResultsWe have tested both examples with and without optimizations. In the tables in this se
tion,the entry \no opt." refers to the following menu setting for the optimization phase of our
ompiler (Se
t. 8.1.4).Mutual Re
ursion Elim.: NONEOptimize By Inlining: FalseFor the entry \opt.", the menu settings were:Mutual Re
ursion Elim.: ALL, by inlining if possibleOptimize By Inlining: TrueA -> Algorithm: 
urrent version inliningB -> Number of Loops: 4C -> Max. Rel. Funsize: 4 * original sizeD -> Max. Abs. Funsize: 200 nodesE -> Inline Order: InlOrderCallGraph
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7.1 The e�e
t of optimizationsIn Tab. 3, we have re
orded some stati
 
hara
teristi
s of the 
ode (line by line, as the
ompilation pro
eeds) and the e�e
t of optimization.The sour
e programs 
ontain global fun
tions, whi
h are visible in the entire program,and lo
al fun
tions (also 
onstants), whi
h are de�ned using let (line 1). We do not 
ountlambda abstra
tions, partial appli
ations, et
.Fun
tions of the prelude are not 
ounted as part of the sour
e 
ode, but are 
ountedas fun
tions before HOE (line 4) and onwards.The HOE phase has two di�erent opposing e�e
ts: (1) fun
tions whi
h are not used aredeleted and (2) polymorphi
 fun
tions whi
h are used in di�erent 
ontexts are dupli
ated,and apply fun
tions are introdu
ed to de
ode fun
tional arguments. Line 5 lists the totalnumber of nodes in all syntax trees. DAG generation leads to a redu
tion of this number(line 7). This is due to 
ommon subexpression elimination, whi
h is always done, even ifno inlining is performed. The number of fun
tions in the upper part of the table in
ludethe interfa
e de�nitions of the skeletons used (lines 3 and 4) whi
h are skipped in the setof DAGs (line 6).number of Karatsuba frequent set1. sour
e fun
tions 4 global, 3 lo
al 11 global, 10 lo
al2. sour
e lines 30 863. fun
tions before HOE 75 1044. fun
tions after HOE 37 1035. tree nodes 416 968number of no opt. opt. no opt. opt.6. DAG fun
tions 31 11 86 257. total DAG nodes 202 269 492 4558. total abs
ode nodes 212 343 534 5639. lines 
ode.
 565 476 1492 85010. lines 
ode.s 1313 1148 2972 270911. lines skel.
 121 27212. lines skel.s 695 1151Table 3: E�e
t of optimizationsInlining also has two di�erent e�e
ts. On the one hand, nodes are dupli
ated if inlinedinto more than one fun
tion. On the other hand, the fun
tion inlined may be deleted andoptimizations apply, whi
h have been enabled by the inlining. Line 8 shows the number ofnodes after generation of abstra
t 
ode, whi
h has grown by the number of 
ontrol nodesthat have been inserted to make 
onditionals non-stri
t.The 
ode generated from the DAGs is in �le 
ode.
; 
ode.s is the assembler �legenerated with the C 
ompiler. The skeleton implementations are generated independently43



HDC 
ompilerproblem size no opt. opt. GHCKaratsuba 512� 512 1.9 1.9 1.61024� 1024 5.9 5.9 4.8frequent set 0:05=100 8.4 6.6 3.00:05=200 15.6 12.0 4.50:02=100 34.9 27.2 14.80:02=200 63.2 50.0 20.8Table 4: Sequential exe
ution timesfrom the DAGs. Therefore, optimization has in general no e�e
t on them { ex
ept for 
asesin whi
h optimizations eliminate a 
all to a skeleton.7.2 Sequential exe
ution timesWe measured the exe
ution time of the examples Karatsuba and frequent set and 
omparedthem with GHC (V. 4.01), a 
ompiler produ
ing very fast lazy 
ode. We 
ompiled all ourC sour
es with theGNU C 
ompiler (V. 2.7.2.3) and optimization level {O3 (without/withoptimization refers only to the HDC 
ompiler), GHC was used with option {O.We gave GHC a straight-forward program for the Karatsuba algorithm, whi
h is notbased on the spe
ial skeleton d
4io. It 
an be found in Appendix B. In the frequentset program, only the input/output fun
tions were adapted to Haskell, and the skeletonsd
0 and while were supplied with their re
ursive de�nitions whi
h do not 
ause as mu
hoverhead as the re
ursive de�nition of d
4io.The size in the Karatsuba example indi
ates the length of both polynomials. For thefrequent set example, we state the threshold value and the number of elements in the bag(the times still depend on the parti
ular sample 
hosen).All times in Tab. 4 are given in se
onds of pure pro
ess time on a SUN workstation"Sun UltraSPARC" 167 MHz CPU with 256MB of memory.We expe
t that these numbers 
an still be improved. E.g., 
urrently, we have nodestru
tive update me
hanism for lists. Thus, ea
h modi�
ation results in a 
opy of theentire list.The elimination of higher-order fun
tions 
auses an overhead due to de
oding, whi
h isespe
ially notable if many higher-order fun
tions are involved, as, e.g., in the frequent setexample. Inlining 
an do a good job here, but some overhead will remain.7.3 Potential for ParallelismThe parallel skeleton implementations and the run-time system have yet to be developedto a point where speedup experiments are possible. Thus, we 
an only provide an idea ofthe potential for parallelism with data extra
ted by our 
ompiler and interpreter.44



input no. of operations no. of par. steps average par.samp/th. no opt. opt. ratio no opt. opt. ratio no opt. opt. ratioA/0.5 12075 8782 0.73 355 224 0.63 34.0 39.2 1.15B/0.5 55935 39559 0.71 893 586 0.66 62.6 67.5 1.08B/0.2 360963 252887 0.70 1854 1239 0.67 194.7 204.1 1.05Table 5: Run-time 
hara
teristi
s of the frequent set exampleThe Karatsuba example is expressed with a skeleton whose parallelism is 
ompletelystati
, ex
ept for some parameters, e.g., the problem size. Thus, the potential for paral-lelism 
an be analyzed by hand, e.g., the maximum degree of parallelism for a polynomialprodu
t of size 2n � 2n equals the number of base 
ases, whi
h is 3n .The frequent set example is mu
h more dynami
: optimizations 
an a�e
t the stru
tureof the entire implementation. Therefore, it pays to analyze the properties of the programafter di�erent phases of the 
ompilation with theHDC interpreter. Tab. 5 shows the resultsof an interpretation of the abstra
t 
ode with two di�erent samplesA =[[1,2,4,7℄,[5,6,7,8,9℄,[1,2,3,7℄,[1,3,5,8,9℄℄ and B = A++[[1,2,3,4,5℄℄
ombined with thresholds of 0.5 and 0.2. The improvements after optimization demonstratethe important role inlining plays after the HOE.The large amount of work is due partly to the nature of the problem and partly to thela
k of sophisti
ation of the sour
e program. Regardless of that, note that the optimiza-tions redu
e the number of operations by up to 30% and that there is a high potential ofparallelism.8 Using the HDC Compiler and Interpreter8.1 Menu stru
tureThe menu stru
ture re
e
ts the state the HDC system is in and therefore the a
tual menu
hanges after 
ertain phases of the 
ompilation. Note that the reason for restri
tions
on
erning the 
hange from one menu to the other is the memory optimization. Data ofprevious 
ompiler phases whi
h is not ne
essary for pro
eeding is deleted. An ex
eptionis the optimization menu be
ause a reload for trying optimization with new parameterswould be una

eptable.Options are 
hosen by typing the 
hara
ter printed ahead. In the following enumeration,we pre�x the 
hara
ter with *, if the availability of the option depends on the (sub)stateof the system.
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8.1.1 Initial menuThe initial menu appears after starting the system. The following 
hoi
es 
an be made:T Test. The purpose is to 
he
k if the 
ompilation works on example .hd
 programswith example inputs and produ
es the 
orre
t results. The names of the examples tobe tested are listed in test/testfiles, the input/output pairs for an example, sayexample.hd
 is 
ontained in test/example.test.L Load File. The pathname of an example program to be 
ompiled is asked for,starting from the dire
tory in whi
h the HDC system was started. If the name ispre�xed with =, it starts with the dire
tory examples.I Interpreter. The interpreter takes input data intera
tively from the user and eval-uates the program with it. The purpose of the interpreter is to examine dynami
properties of the 
ode at a 
ertain phase of the 
ompilation, i.e., 
olle
t statisti
aldata for a parti
ular input pattern, e.g., the number of redu
tions. This gives us anestimate of the overhead introdu
ed by 
ertain phases of the 
ompiler.C Code Generation. Performs all 
ompilation steps up to the �nal 
ode without anyintera
tion.H HO Elimination. The phases of monomorphization and higher-order elimination areperformed. Be
ause the internal representation of the program 
hanged, a higher-order elimination menu appears (Se
t. 8.1.2).S Settings. Enters the settings menu (Se
t. 8.1.4).R Restart. Provides the same state as after starting the system, also reloads theprelude �les.Q Quit. Leaves the system.8.1.2 Higher-order elimination menuThis menu 
an be entered only dire
tly after a higher-order elimination has been done.No optimization has been done yet. There are the following 
hoi
es. To pro
eed in the
ompilation pro
ess, the option O (Optimization) has to be 
hosen.I Interpreter. As in the initial menu.O Optimization. Performs the optimization phase using the settings that 
an be
hanged in the settings menu. After this phase, the program is present in two repre-sentations: in the syntax tree form with some transformations (elimination of mutualre
ursion and 
ase elimination) and in the DAG form derived from it whi
h 
ontainsthe most optimizations. After this phase, the optimization menu (Se
t. 8.1.3) isentered. 46



S Settings.R Restart.Q Quit.8.1.3 Optimization menuThe purpose is to make experiments with di�erent optimization strategies without passingthe time 
onsuming higher-order elimination phase again and again. There are the followingpossibilities:I Interpreter. As in the initial menu, it is the last syntax tree produ
ed that isinterpreted.D DAG Interpreter. This interpreter works on the DAGs after the optimization phase.The e�e
t of di�erent inlining strategies 
an be observed on examples by re
ording thefree s
hedule and degree of parallelism with respe
t to a limited number of pro
essors.N New Optimization. A new optimization is made based on the �rst DAG versiongenerated.P Profiling Series. To examine the behavior of many optimization strategies with-out a huge amount of tedious user intera
tion, this 
hoi
e 
an be made. User-de�nableHaskell fun
tions linked together with the HDC system are 
alled, whi
h 
ontrol thepro�ling, deal with errors that may o

ur and summarize and format the result, e.g.,as a LATEX table.C Code Generation. Calls the 
ode generation on the optimizations yet made andwith the target ar
hite
ture spe
i�ed in the settings.*E Exe
ute. This option 
an only be 
hosen after 
ode has been generated. If sele
ted,the user is asked for the input data, it is written into the input �le, the 
ompiled
ode is applied to this �le, and after exe
ution the output �le is displayed on thes
reen. This is of 
ourse mu
h faster than with interpretation.S Settings.R Restart.Q Quit.
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8.1.4 Settings menuSele
ting an option 
an either 
ause a step in a 
y
li
 shift of alternatives or a promptfor input of some number or name. In the 
ase of a 
y
li
 shift, the 
urrent sele
tion isdisplayed.P Print Style. Sele
ts the format in whi
h fun
tions of the program are displayed,e.g., only by type.G Generate Code for. The target ar
hite
ture resp. the exe
ution model are to bede�ned here.I Interpreter Statisti
s. A swit
h for the 
olle
tion of additional informationabout the 
omputation, e.g., the free s
hedule, number of redu
tions, degree of par-allelism, et
. This 
an 
ause the interpretation to take very long.T Tra
e DAG Interpreter. Sele
ts the tra
e mode of the DAG interpreter.N Number of Pro
essors. De�nes the number of pro
essors whi
h are used for 
om-puting s
hedule information in the interpreters.*M Mutual Re
ursion Elimination. Toggles between di�erent strategies of mutualre
ursion, whi
h enable resp. give priority to elimination by inlining (Se
t. 4.8.1) andelimination by emulation (Se
t. 4.8.2). After the �rst DAG generation, this optiondisappears be
ause the syntax trees have been deleted.O Optimize by Inlining. Toggles the inlining mode. If inlining is swit
hed on, thepoints (A) to (E) appear by whi
h details of the inlining strategy 
an be de�ned.*A A -> Algorithm. Toggles between 
urrent version inlining and original version in-lining.*B B -> Number of Loops. Asks for the maximum number of iterations of the opti-mization 
y
le.*C C -> Max. Rel. Funsize. Asks for the maximum fa
tor by whi
h a fun
tion isallowed to in
rease in the number of nodes. If this limit is rea
hed, the version of thefun
tion before starting the 
urrent inlining pro
ess is restored. The same holds forD.*D D -> Max. Abs. Funsize. Asks for the maximum number of nodes whi
h a fun
tionis allowed to rea
h due to inlining.*E E -> Inline Order. Toggles between di�erent orders of fun
tions in an inliningphase.V Verbose Mode. Set if detailed information during the optimization should be dis-played. 48



1 Print Fun
tions. Prints the fun
tions of the syntax tree on s
reen or into a �le.*2 Print DAGs. Prints the DAGs after the optimization.*3 Print DAGs (before optimizing dags). Prints the DAGs before optimization.S Save Options. The 
urrents settings are saved for the next session.L Load Options. Saved settings 
an be loaded.Q Quit Settings. Quit the settings menu and returns to the menu from whi
h it was
alled.8.2 InterpreterThe purpose of the interpreter is to 
olle
t statisti
al data of the program representation ata 
ertain phase of the 
ompilation with respe
t to parti
ular input data. The interpretationis very slow and if only the output data is of interest, the user is advised better to generatesequential 
ode and to exe
ute it intera
tively.There are two versions of the interpreter: one whi
h works on the syntax tree (simply
alled interpreter), the other operates on the DAG stru
ture (
alled DAG interpreter).8.3 Dire
tory stru
tureTo work with theHDC 
ompiler, the user has to set the shell environment variable HDC ROOTwhi
h de�nes the path of the working dire
tory. This dire
tory has the following subdire
-tories:� do
. Contains all do
umentation, e.g., this report.� examples. Contains a set of sour
e programs. Ea
h HDC program has the �leextension .hd
. There are also Haskell programs with �le extension .hs, whi
h servefor debugging and 
omparison purpose and di�er only slightly from the .HDC programwith the same name.� experiment: Target programs of the HDC 
ompiler are written into this dire
tory.Also, input and output �les of the target program are lo
ated here.� imports: Contains the prelude �les, see Se
t. 8.4.� lib: Contains the run-time libraries to be linked with the output of the HDC 
om-pilation.� profile: This dire
tory 
ontains variants of the Haskell �le Experiment.hs, whi
hbelong to the 
ompiler. This �le 
ontains fun
tions whi
h 
ontrol a parti
ular exper-iment series and produ
e, e.g., LATEX output of the results.49



� sr
: This is the sour
e dire
tory. All its �les are either ne
essary to build the HDC
ompiler (.ly, .hs, .lhs) or to generate the run-time library (.h, .
). Also, themakefile is lo
ated here.� test: Used for verifying the 
urrent release of theHDC 
ompiler. The �le testfiles
ontains a 
olle
tion of those examples, for whi
h the HDC 
ompiler should work
orre
tly before a new version is 
ommitted. The �les with extension .test 
ontainpairs of input and output data against whi
h the 
ompiled program is to be 
he
ked.8.4 The prelude partsThe prelude is divided into four parts, whi
h 
an be found in dire
tory $HDC ROOT/imports.Prelude.hd
, HDCPrelude.hd
 and SkelPrelude.hd
 are loaded by the HDC 
ompilerinitially. HDCPrelude.hs is needed if HDC programs are to be used as Haskell programs.The de�nitions 
ontained in these �les form part of the HDC language and, thus, shouldnot be 
hanged by the user. They 
an be extended by additional de�nitions if new skeletonsare to be added.1. Prelude.hd
 
ontains some prede�ned Haskell fun
tions whi
h 
an also be used inHDC. This part of the prelude is listed in Appendix A.2. HDCPrelude.hd
 
ontains additional Haskell fun
tions, whi
h are of spe
ial interestto us. In parti
ular, skeletons like d
4io are de�ned here. This prelude part is notlisted be
ause the type de�nition and explanation of the skeletons have already beenpresented in Se
t. 3.3. SkelPrelude.hd
 
ontains interfa
e (type) de�nitions of skeletons. The name of askeleton must have the pre�x skel .4. HDCPrelude.hs 
ontains the Haskell de�nitions of the additional fun
tions (inHDCPrelude.hd
).9 Related WorkThere have been many approa
hes to skeletal and fun
tional programming. We 
on
entratehere on those whi
h have been most su

essful and/or have had signi�
ant in
uen
e onour work.Two fun
tional languages have been designed expli
itly with parallelism in mind; bothmake use of parallel ve
tor operations. The fo
us of the language Sisal (Skedzielewski,1991) is on numeri
al 
omputations, using loops on arrays. For some programs, its per-forman
e is superior to FORTRAN. Sisal is 
ompiled to a data 
ow graph language. Theidea of our intermediate DAG language stems from Sisal. In 
ontrast to Sisal, the fo
us ofthe language Nesl (Blello
h, 1992) is on re
ursive programs using nested sequen
es. Nesl50



is 
ompiled to an intermediate language, whi
h uses parallel ve
tor operations. Both Sisaland Nesl do not use skeletons and do not permit higher-order fun
tions.The language GpH (Trinder et al., 1998) is an extension of Haskell with a new primitivepar, to be used together with the Haskell primitive seq to pres
ribe where values aresupposed to be 
omputed in sequen
e or in parallel. However, in 
ontrast to HDC, asidefrom a restri
tion of the evaluation order via seq, no s
hedule and allo
ation 
an be de�nedin GpH. Instead, parallel pro
esses are distributed dynami
ally. GpH puts no restri
tionon the use of higher-order fun
tions in Haskell. The user 
an de�ne new skeletons, usingevaluation strategies spe
i�ed with seq and par.There is another di�eren
e to HDC: in order to preserve laziness, the input data fora pro
ess is only sent partially { if evaluation pro
eeds, further data must be requested.However, due to its treatment of higher-order fun
tions, GpH is the language whi
h is mostsimilar to HDC.The idea to use a skeleton for DC was introdu
ed by Cole (1989). The group of Dar-lington at Imperial College has published a 
olle
tion of fun
tional skeletons for parallelprogramming (Darlington et al., 1993).P3L (Ba

i et al., 1995) is an imperative language, whi
h uses skeletons at the top levelbut does not support fun
tions as run-time parameters of the skeleton. David Busvine andTore Bratvold presented in their Ph.D. theses (Busvine, 1993; Bratvold, 1994) extensionsof ML with skeletons, but their use of higher-order fun
tions is very restri
ted.The language Eden (Breitinger et al., 1997; Gal�an et al., 1996) fa
ilitates the de�nitionof skeletons on top of Con
urrent Haskell. Eden imposes no restri
tion on higher-orderfun
tions. Eden di�ers from HDC in that skeletons have more restri
ted signatures and,therefore, 
annot be used as generally; skeleton instan
es have to be wired together using
hannels.10 State of the ImplementationAt present, all 
ompiler phases other than the optional phase of size inferen
e are imple-mented. One 
riti
al 
hallenge for the language HDC is e�e
tive load balan
ing. We planto exploit the information supplied by the size inferen
e in this regard.The parallel implementations of all skeletons other than map have yet to be 
oded.Therefore, we have to defer the presentation of speedup results. Initially, we shall provideimplementations in the model of 
entralized input/output.Previous experimental work has demonstrated the potential for good speedups usingDC skeletons (Musiol, 1996).
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A Prelude.hd
-- Prelude.hd
-- This file 
ontains predefined HDC types and fun
tions that are-- already predefined in Haskell. "primitive" de
larations indi
ate-- that the fun
tion has a builtin implementation-- ***********************-- ** basi
 fun
tions **-- ***********************-- undefined 
onstantprimitive undefined :: a-- 
onstant fun
tion
onst :: a -> b -> a
onst 
 x = 
-- identity fun
tionid :: a -> aid x = x-- fun
tion 
omposition(.) :: (b->
) -> (a->b) -> (a->
)f . g = \x -> f (g x)-- stri
t fun
tion: always evaluates x to normal form and then-- applies f to the result. The normal form of a partially applied-- fun
tion is its 
losure represented as algebrai
 data typestri
t :: (a->b) -> a -> bstri
t f x = skel_stri
t f x-- **********************-- ** input and output **-- **********************-- the data type of IO a
tionsdata IO a = IO a-- 
onstru
ts an empty IO a
tion whi
h returns xreturn :: a -> (IO a)return x = IO x 52



-- 
ombines an IO a
tion whi
h returns x and an-- IO a
tion f whi
h takes x as an argument to-- a larger IO a
tion(>>=) :: IO a -> (a -> IO b) -> IO b(>>=) (IO x) f = skel_stri
t f x-- ***************-- ** boolean **-- ***************-- built-in 
onstants:-- False :: Bool-- True :: Bool-- logi
al negationprimitive not :: Bool -> Bool-- logi
al and and or, stri
t in the-- se
ond argument if (&&) resp. (||)-- not inlined, be 
areful!(&&), (||) :: Bool -> Bool -> Boola && b = if a then b else Falsea || b = if a then True else b-- *******************************-- ** 
omparison and ordering **-- *******************************-- less, less_or_equal, greater, greater_or_equal, unequal, equalprimitive (<), (<=), (>), (>=), (/=), (==) :: Ord a => a -> a -> Bool-- minimum and maximumprimitive min, max :: Ord a => a -> a -> a-- **************************-- ** general arithmeti
 **-- **************************-- unary negation:-- - :: Num a => a -> a 53



-- addition, subtra
tion, multipli
ationprimitive (+), (-), (*) :: Num a => a -> a -> a-- sum, produ
tsum, produ
t :: Num a => [a℄ -> asum xs = skel_red (+) 0 xsprodu
t xs = skel_red (*) 1 xs-- power to an integer numberprimitive (^) :: Num a => a -> Int -> a-- ******************************-- ** arithmeti
 
onversions **-- ******************************-- 
onversion from Int to Doubleprimitive fromInt :: Int -> Double-- 
onversion from Double to Intprimitive floor :: Double -> Intprimitive 
eiling :: Double -> Int-- **************************-- ** integer arithmeti
 **-- **************************-- integer division and remainderprimitive div, mod :: Int -> Int -> Int-- *********************************-- ** floating point arithmeti
 **-- *********************************-- floating point divisionprimitive (/) :: Double -> Double -> Double-- square rootprimitive sqrt :: Double -> Double-- exponential and logarithm to base eprimitive exp, log :: Double -> Double54



-- trigonometri
sprimitive pi :: Doubleprimitive sin, 
os, atan :: Double -> Double-- ***********************-- ** tuple sele
tion **-- ***********************-- first element of a pairfst :: (a,b) -> afst (x,_) = x-- se
ond element of a pairsnd :: (a,b) -> bsnd (_,y) = y-- **********************-- ** list operators **-- **********************-- built-in 
onstru
tors-- empty list: [℄ :: [a℄-- list 
ons: (:) :: a -> [a℄ -> [a℄-- length of a listprimitive length :: [a℄ -> Int-- test whether list is emptyprimitive null :: [a℄ -> Bool-- append two listsprimitive (++) :: [a℄ -> [a℄ -> [a℄-- append all sublists to a single list
on
at :: [[a℄℄ -> [a℄
on
at xs = skel_red (++) [℄ xs-- filter all elements out of a list fulfilling a predi
atefilter :: (a->Bool) -> [a℄ -> [a℄filter p xs = skel_filter p xs-- list indexingprimitive (!!) :: [a℄ -> Int -> a 55



-- generate list of integer sequen
e with given boundsprimitive enumFromTo :: Int -> Int -> [Int℄-- take/drop the first _ elements of a listprimitive take, drop :: Int -> [a℄ -> [a℄-- the first element of a listhead :: [a℄ -> ahead xs = xs!!0-- the list without the first elementtail :: [a℄ -> [a℄tail xs = drop 1 xs-- apply a fun
tion to all elements of a listmap :: (a->b)->[a℄->[b℄map f xs = skel_map f xs-- 
onstru
t a list of pairs from two listszip :: [a℄ -> [b℄ -> [(a,b)℄zip xs ys = sinGen (\i -> (xs!!i,ys!!i)) (min (length xs) (length ys))-- apply a fun
tion to all pairs of elements of two listszipWith :: (a->b->
) -> [a℄ -> [b℄ -> [
℄zipWith f xs ys = sinGen (\i -> f (xs!!i) (ys!!i))(min (length xs) (length ys))-- 
he
k whether a predi
ate holds for all/any element of a listall, any :: (a -> Bool) -> [a℄ -> Boolall p xs = (skel_while (\i -> if i<length xs then p (xs!!i) else False)(+1) 0) ==length xsany p xs = not (all (not . p) xs)-- redu
es the elements of a list given a binary operator and a neutral-- element from the left resp. rightfoldl :: (a->b->a) -> a -> [b℄ -> afoldl f e xs = snd (skel_while (\(i,_) -> i<length xs)(\(i,x)-> (i+1, f x (xs!!i))) (0,e))foldr :: (a->b->b) -> b -> [a℄ -> bfoldr f e xs = snd (skel_while (\(i,_) -> i>=0)(\(i,x) -> (i-1, f (xs!!i) x)) (length xs -1,e))56



B Karatsuba in Haskellleft xs = take (length xs `div` 2) xsright xs = drop (length xs `div` 2) xskaratsuba :: [Int℄ -> [Int℄ -> [Int℄karatsuba xs ys =if length xs == 1then [0,(xs!!0)*(ys!!0)℄else let xhs = left xsxls = right xsyhs = left ysyls = right yshs = karatsuba xhs yhsls = karatsuba xls ylsms = karatsuba (zipWith (+) xhs xls) (zipWith (+) yhs yls)mhls= zipWith3 (\m h l -> m-h-l) ms hs lsq0 = left hsq1 = zipWith (+) (right hs) (left mhls)q2 = zipWith (+) (right mhls) (left ls)q3 = right lsin q0 ++ q1 ++ q2 ++ q3main :: IO ()main = dos <- readFile "input"let (a,rest):_ = reads s :: [([Int℄,String)℄(b,_):_ = reads rest :: [([Int℄,String)℄
 = karatsuba a bwriteFile "output" (show 
)return ()
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