
A Compiler for HDCChristoph Herrmann, Christian Lengauer,Robert G�unz, Jan Laitenberger and Christian ShallerFakult�at f�ur Mathematik und Informatik,Universit�at Passau, Germanyfherrmann,lengauerg�fmi.uni-passau.dehttp://www.fmi.uni-passau.de/~lengauer/May 1999AbstratWe present a ompiler for the funtional languageHDC, whih aims at the generationof eÆient ode from high-level programs. HDC, whih is syntatially a subset ofthe widely used language Haskell, failitates the lean integration of skeletons with aprede�ned eÆient parallel implementation into a funtional program. Skeletons arehigher-order funtions whih represent program shemata that an be speialized byproviding ustomizing funtions as parameters. The only restrition on ustomizingfuntions is their type. Skeletons an be omposed of skeletons again. With HDC, wefous on the divide-and-onquer paradigm, whih has a high potential for an eÆientparallelization.We desribe the most important phases of the ompiler: desugaring, eliminationof higher-order funtions, generation of an optimized direted ayli graph and odegeneration, with a fous on the integration of skeletons. The e�et of the transfor-mations on the target ode is demonstrated on the examples of polynomial produtand frequent set.

i

Contents1 Introdution 12 The Language HDC 32.1 Program struture . 32.2 Types . 32.2.1 Type expressions . 32.2.2 Type lasses . 42.2.3 Type onstraints . 42.2.4 User-de�ned types . 42.3 Funtion de�nitions . 52.4 Expressions . 52.4.1 Variables . 52.4.2 Constants . 52.4.3 Funtion appliation . 62.4.4 In�x binary operations . 62.4.5 Lambda abstrations . 62.4.6 Conditional . 72.4.7 Tuples . 72.4.8 Lists . 72.4.9 List onstrutor (:) . 72.4.10 Patterns . 82.4.11 let expressions . 82.4.12 ase expressions . 82.4.13 Arithmeti sequenes . 92.4.14 List omprehensions . 93 Skeletons 103.1 Skeletons for ommonly used funtions . 113.1.1 map . 113.1.2 red . 113.1.3 san . 113.1.4 filter . 113.2 DC skeletons . 123.2.1 d0 . 123.2.2 d4io . 123.3 Skeletons for improved eÆieny . 143.3.1 while . 143.3.2 sinGen . 143.4 Evaluation ontrol . 143.4.1 strit . 143.5 Input/Output . 14ii

3.5.1 put . 153.5.2 get . 154 The Struture of the Compiler 154.1 Sanner and parser . 154.2 Desugaring . 164.3 List omprehension simpli�ation . 164.4 Lambda lifting, let elimination . 184.5 Type heking . 184.6 Monomorphization . 184.7 Elimination of funtional arguments . 194.7.1 Priniples . 194.7.2 Rules . 214.7.3 Example . 214.7.4 Comments . 234.8 Elimination of mutual reursion . 244.8.1 Elimination by inlining . 244.8.2 Elimination by emulation . 244.9 ase elimination . 254.10 Generation of intermediate DAG ode . 254.11 Tuple elimination . 264.12 Optimization yle . 264.12.1 Inline expansion . 274.12.2 Rule-based DAG optimizations . 284.12.3 Size inferene . 284.13 Abstrat ode generation . 304.14 Spae-time mapping . 334.15 Code generation . 344.15.1 DAG ompilation . 344.15.2 Skeleton generation . 344.15.3 Run-time library . 355 The Parallel Run-Time Environment 355.1 The model of parallel exeution in HDC 355.2 Organization . 365.3 Interation with skeleton implementations 366 Examples 376.1 Karatsuba's polynomial produt . 376.2 Frequent set . 39
iii

7 Experimental Results 427.1 The e�et of optimizations . 437.2 Sequential exeution times . 447.3 Potential for Parallelism . 448 Using the HDC Compiler and Interpreter 458.1 Menu struture . 458.1.1 Initial menu . 468.1.2 Higher-order elimination menu . 468.1.3 Optimization menu . 478.1.4 Settings menu . 488.2 Interpreter . 498.3 Diretory struture . 498.4 The prelude parts . 509 Related Work 5010 State of the Implementation 51A Prelude.hd 52B Karatsuba in Haskell 57Aknowledgements 58Referenes 58

iv

1 IntrodutionMassive parallelization is an important issue when dealing with omputation-intensiveproblems like weather foreasting, image and signal proessing, system simulation or solvinglarge systems of linear equations or inequations. The manual development of a parallelprogram for a spei� problem may lead to eÆient ode but is time-onsuming and error-prone, and programs developed this way are usually diÆult to reuse for similar problems.We propose a di�erent approah in whih the program does not ontain expliit parallelinstrutions. Instead we provide a lass of skeletons, i.e., program shemata, whih wean speialize by ustomizing funtions supplied as parameters, and for whih we provideeÆient parallel implementations. We onentrate on divide-and-onquer (DC) skeletons.DC redues the problem size quikly, indues a natural partitioning and ontains fewdependenes whih ould limit parallelism.We speify DC skeletons in a funtional language, although our target language forthe parallel implementations is imperative (urrently C+MPI). This gives us the bene�tsof abstration, whih unburdens the programmer from the issues of parallelism. Also, itallows for equational reasoning, whih helps the implementer in the derivation of a orretand eÆient implementation. The name of our language is HDC (for Higher-order Divide-and-Conquer), see (HDC website, 1999). Its syntax is like that of Haskell (Bird, 1998),sine Haskell possesses many of the properties we need, espeially:Strong typing. Haskell's type system provides muh more support for the safe use ofskeletons than the target language C.Higher-orderness. Higher-order funtions provide a powerful, general basis for the spe-i�ation of skeletons. Note that ustomizing funtions an again be skeletons.Referential transpareny. The absene of side e�ets permits equational reasoning,whih we employ to transform skeletons.Conise list syntax. Haskell has list omprehensions, whih are syntati sugar to spe-ify lists in a losed form. The index-based list onstrution helps us in making thetransformation from reursive Haskell skeletons to loop skeletons in C (Herrmann andLengauer, 1997). Also, for regular sequenes of integers, the HDC ompiler retainsthe orresponding list omprehension with a single generator as a skeleton, namedsinGen, in the implementation.An added bene�t is the availability of Haskell tools for the development of example pro-grams and the possibility of a omparison of the HDC target ode with that of Haskellompilers like the Glasgow Haskell Compiler GHC (Peyton Jones, 1996).The semantis of HDC di�ers in one important point from that of Haskell: Haskellis lazy, while HDC is strit. The reason is that we use the parallelization tehnique ofspae-time mapping (Herrmann and Lengauer, 1996), whih is based on a strit semantis.However, to inrease eÆieny, our ompiler may hoose a non-strit semantis in ertainappropriate plaes { e.g., for the branhes of a onditional, but also in some other plaes.1

So, there is no guarantee that all arguments of a funtion are evaluated before the all.Skeleton implementations are hand-tailored by the skeleton implementer and, thus, areexluded from these (and any other) ompiler optimizations.The semanti di�erene between stritness and laziness only shows up in the terminationbehavior. Thus, terminating HDC programs deliver the same result as if evaluated underHaskell. Sine we only deal with terminating programs, our HDC programs an be eitherompiled with our HDC ompiler, or alternatively with GHC.Together with the ompiler, we also provide an interpreter whih is able to analyzethe intermediate ode produed by ertain phases of the ompilation and report ertainproperties of the program to the user, like the free shedule (the number of steps if eahoperation is performed as soon as the data dependenes permit), the average degree ofparallelism (the number of parallel proessors required by the free shedule), et. Compilerand interpreter are either ontrolled interatively using the menu desribed in Set. 8.1, orby running a Haskell sript whih must be ompiled together with the rest of the system.Unlike GHC, our ompiler does not implement higher-orderness via graph redution.Instead, eah higher-order funtion is replaed by the olletion of its �rst-order speial-izations. Funtional arguments are enoded by algebrai data types whih ontain thefuntion identi�er and the environment of the funtion passed, using a modi�ation of thedefuntionalization method presented by Bell et al. (1997).One might ask why we did not hoose the obvious route of extending the Haskell syntaxwith annotations for skeleton alls and making use of one of the existing, powerful Haskellompilers. Then, the skeleton implementations (also, e.g., in C+MPI) would take Haskelllosures as arguments and pass them to a new Haskell run-time environment. We deidedagainst this for the following reasons:� List operations in HDC are subjet to parallelization, but a Haskell ompiler on-struts lists sequentially using the list onstrutor (:). Providing a new abstrat datatype, whih represents parallel lists, would lutter up the syntax. Also, our skeletonswould have to be expressed in terms of the new data type.� As far as we know, there exists, at present, no interfae for passing Haskell losuresbetween heaps on di�erent proessors of a distributed-memory mahine. The solutionof Glasgow Parallel Haskell (Trinder et al., 1998) to provide a global heap ontraditsour priniple of ommuniation-losed bloks (see Set. 5.1).� Our target language, C+MPI, is implemented on a wider range of systems than thespeial libraries whih the Haskell ompilers require.We use the following font onventions:� Syntati level: We use typewriter font, e.g., for the name Bool, the onstrutorFalse or the number onstant 12.� Semanti level: Objets at this level, like the type Bool or the type onstant False,are slanted. Unless otherwise spei�ed, the semantis of a syntati onstant is2

de�ned by default by keeping the name and hanging the font, and vie versa. Typearrows are written!. Lambda abstrations are written �x :v . Objets at the semantilevel whih an be identi�ed with their ounterparts at the meta level, like numbers,mathematial operators and parentheses, are not slanted.� Meta level: Like this text, elements of the language of our desription are writtenin roman font and are underlined if they belong to an algorithmi or logi language,like for eah or i�. Syntati equality is denoted by �, semanti equality is by =.Meta variables whih represent types on both the syntati and the semanti levelare written in Greek letters, like �. They are di�erent from so-alled type variables,whih are elements of the other levels. Variables representing in�x operators arewritten with symbols, like �. All other variables, like x , are written in Latin letterswith itali font.2 The Language HDCAlthough HDC is almost a restrition of Haskell, there are some language onstruts whihare treated di�erently in the implementation.2.1 Program strutureA program onsists of a set of data type de�nitions (Set. 2.2.4) and a set of funtionde�nitions (Set. 2.3). The main funtion, whih desribes the entire input/output behaviorof the program, must be named parmain.2.2 TypesLike ML (Paulson, 1996) and Haskell (Bird, 1998), HDC has the Hindley-Milner typesystem (Damas and Milner, 1982). Type variables are universally quanti�ed, i.e., a poly-morphi parameter annot be instantiated with two di�erent types.2.2.1 Type expressionsThe language of type expressions is de�ned indutively by the following ases, assuming�i are already in the language:� Unit (the type whih ontains only one element: Unit)� Bool (the truth values False and True)� Int (restrited integers �2�31 to +231�1)� Double (64-bit oating-point values) 3

� �0 -> �1 (funtions with domain type �0 and odomain type �1);-> assoiates to the right; parentheses (and) an be used to group funtion types� [�0℄ (lists with elements of type �0)� (�0,:::,�n�1) (n-tuples, n > 1)� IO �0 (input/output ations whih deliver an element of type �0)� tname �0:::�n�1 (algebrai data types with n type arguments; see Set. 2.2.4)2.2.2 Type lassesIn order to avoid dupliation of the soure ode due to overloading, HDC ontains twotype lasses. The type lass Num ontains the types Double and Int and is used in thede�nition of numerial funtions. The other type lass, Ord, ontains Double, Int andBool and is used for omparison. Type variables in a type expression an be restrited toa type lass by replaing the type expression � with 0 => � or with (0,:::,n�1) => �,where the i are Num � or Ord �, where � is a type variable ourring in �.2.2.3 Type onstraintsThe type of an expression is derived by suessively mathing two types against eah otherin a system of type equations. How this mathing has to work is de�ned by type derivationrules or onstraints for eah language onstrut. Take the in�x operator ==, whih omparestwo expressions for equality. If in the type inferene the expression a == b is enounteredand � is the type of expression a and � the type of expression b, the onstraint f� = �g isadded with onsequenes for the types i in the subexpressions of a and b and at all otherplaes where the i are used.2.2.4 User-de�ned typesThe user an de�ne additional, so-alled algebrai data types aording to the followingsyntax:data tname �0:::�n = C0 �(0;0):::�(0;l(0)) | ::: | Cm �(m;0):::�(m;l(m))tname is the name of the type onstrutor that is being de�ned. It is parametrized with thetypes �0,...,�n . An element of the de�ned type an be of any of the following alternatives,separated by |. The atual alternative is determined by the onstrutor, whih is one ofC0,...,Cm . Eah onstrutor Ci is followed by a sequene of elements, whih must be of thetypes �(i;0),...,�(i;l(i)). A onstrutor an be viewed as a funtion whih takes the elementsof the respetive types and delivers an element of the algebrai data type.Algebrai data types provide exibility for irregular data strutures like trees. Take thefollowing example of a binary tree de�ned on elements of type a:4

data Tree a = Leaf a | InnerNode (Tree a) (Tree a)This de�nition has the onstrutors Leaf, whih indiates a leaf node of the tree, andInnerNode, whih stands for a tree omposed of two subtrees.2.3 Funtion de�nitionsA funtion named, say, f is de�ned by its type, say, � and a de�ning equation. The typede�nition is given byf :: �and the de�ning equation is given in terms of an expression e ontaining the free variablesx0 ... xn :f x0:::xn = eThis de�nition is syntati sugar for the following de�ning equation, whih makes use of alambda abstration (Set. 2.4.5):f = \x0 -> (\x1 -> :::(\xn -> e):::)If eah xi is of type �i , then the type of f an be de�ned by:f :: �0 -> (�1 -> :::(�n -> �):::)In both the lambda and the type expression the parentheses an be omitted.Funtions an be de�ned reursively, also indiretly (or mutually) reursively, e.g.,funtion f depends on g and g depends on f . However, for better eÆieny, reursivede�nitions should be avoided, prede�ned ombinators should be used instead.2.4 Expressions2.4.1 VariablesA variable is a name beginning with a lowerase letter and ontaining only letters anddigits. Internal names (also in the prelude) an also ontain undersores. Eah variable isassoiated with a stati type, possibly polymorphi or restrited to a type lass. HDC islexially soped, i.e., a free variable is bound to the innermost of all surrounding de�nitionsof this variable in the program text.2.4.2 ConstantsPrede�ned onstants are Unit, False, True, [℄, integer and oating point (double) on-stants (Fig. 1). Constants an be de�ned by the user in a value de�nition (funtion de�-nition without arguments) or as onstrutors of an algebrai data type, e.g.:data Color = Yellow | Green | Blue 5

Type(s) ExamplesUnit UnitBool False, TrueInt, Double (Num) 0, -5, 32Double 2.3[�℄ [℄Table 1: HDC onstants2.4.3 Funtion appliationFuntion appliation is denoted by juxtaposition, e.g., an appliation of funtion f to anargument x is written f x . Formally, there are only funtions with a single argument.A funtion with multiple arguments is represented as a funtion whih takes the �rstargument and returns a funtion whih is applied to the remaining arguments. This isknown as urrying. If not all arguments are given, we speak of a partial appliation.Funtion appliation assoiates to the left and binds more tightly than any other binaryoperation. Funtion appliation adds the following onstraints to the set of types:ff :: �! �, x :: �, f x :: �g.2.4.4 In�x binary operationsAn in�x operator, say �, is syntati sugar for a funtion named (�) taking two arguments.HDC borrows the setioning mehanism from Haskell, in whih (x�) is (�) with a �xed�rst argument x , (�x) is (�) with a �xed seond argument x and (x � y) is (�) with botharguments �xed. Any funtion f taking two urried arguments an be used as a binaryin�x operator by writing `f `. For the atual operators, have a look at the prelude inAppendix A.2.4.5 Lambda abstrationsA lambda abstration \x -> e de�nes a funtion whih takes a value x and delivers thevalue of the expression e in whih eah ourrene of the free variable x has been replaedby the argument of the funtion:(\x -> e) y = e[x := y ℄e[x := y ℄ denotes the substitution of every free ourrene of x in e by y .Type onstraint: f x :: �, e :: �, (\x -> e) :: �!� g.Curried funtion de�nitions an be abbreviated by writing all arguments suessively,i.e., instead of \x0 -> (\x1 -> :::(\xn�1 -> e):::) one an write \x0 x1:::xn�1 -> e. Also,strutured arguments, so-alled patterns (Set. 2.4.10), like tuples or lists an be used. Seethe following examples: 6

\x -> x+1\x y -> x+y instead of \x -> \y -> x+y\(x,y) -> x+y instead of \z -> fst z + snd z\[x,y℄ -> x+y instead of \z -> z!!0 + z!!1The �rst de�nition desribes a funtion whih returns its argument inremented. Theseond takes a value x and delivers a funtion whih takes a value y and returns the sumof x and y. The other two examples take a pair resp. a list and deliver the sum of bothomponents.2.4.6 ConditionalThe syntax of a onditional isif ond then t else eThis expression is strit in ond , but not strit in t and e. If ond evaluates to True, tis evaluated and returned as the value of the onditional. Otherwise, e is evaluated andreturned.Type onstraint: f ond :: Bool, t :: �, e :: �, (if ond then t else e) :: � g.Example: (fatorial funtion)fa n = if n==0 then 1 else n * fa (n-1)2.4.7 TuplesA tuple is an ordered, �xed-size olletion of omponents x0...xn�1, denoted by (x0,...,xn�1),where n > 1. If n = 2, we speak of a pair. The omponents need not be of the same type.The elements of a tuple an be seleted by pattern mathing (Set. 2.4.10).2.4.8 ListsA list is an ordered, arbitrary-size olletion of omponents of the same type. A list oflength n an be given expliitly by [x0,...,xn�1℄.2.4.9 List onstrutor (:)The onstrutor (:) takes an element x0 of type � and a list [x1,...,xn�1℄ of type [�℄ anddelivers the list [x0,...,xn�1℄ of type [�℄. Contrary to Haskell, in HDC, applying a single: or tail is expensive, i.e., linear in the length of the list (in Haskell it is onstant). Theadvantage of HDC is that the linear hain of dependenes present in Haskell lists does notexist in HDC lists. This allows for a onstant-time element aess via the HDC versionof the index funtion (!!). The philosophy followed here is to exploit the DC paradigmand, thus, the assumption is that a list is onstruted by appending two (or more) lists ofroughly the same length. Alternatively, one an use list omprehensions (Set. 2.4.14) toompute all elements of a list simultaneously.7

2.4.10 PatternsPatterns are expressions whih onsist only of onstrutors (inluding the tuple and list on-strutor), onstants and disjoint names. A pattern an our as an argument in a funtionde�nition or lambda abstration, or on the left-hand side of a ase branh (Set. 2.4.12) orlet expression (Set. 2.4.11). In this ase, the pattern of the formal parameter is mathedagainst the value passed as atual parameter. A math of a name always sueeds, with theonsequene that the variable assoiated with this name is bound to the value. A mathof a omposite expression sueeds if the onstrutors are idential and the mathes of allorresponding omponents sueed. Then, the environment is onstruted by aumulat-ing the bindings of all omponent mathes. In the ase of lists and tuples, both sides musthave the same number of omponents, beause the onstrutors of tuples of di�erent sizesare distint and list strutures are desugared into a sequene of the binary : onstrutor.If a pattern math fails, the next alternative in a list of de�ning equations or ase branhesis tried. If no alternative remains, a run-time error ours.2.4.11 let expressionslet expressions are used for de�ning a loal environment of values and funtions, whihan be (mutually) reursive. The form of a let expression is:let f eq0 ; ... ; eqn g in ewhere e is the expression whih forms the value returned and the eqi are equations of theform pati = ei , where pati is a pattern and ei an expression. If a pattern is an appliation of avariable (pati � fi x0 ... xm(i)) the equation de�nes a loal funtion with funtion symbol fi .let expressions are desugared by a proess alled lambda-lifting (Johnsson, 1985; PeytonJones, 1987). If it should turn out in the long run that the program optimizations at laterphases annot identify the ommon subexpressions originating from the elimination of letexpressions, other transformations will have to be onsidered.A simpli�ed layout style of Haskell an be used here as well as for the branhes of aseexpressions: braes and semiolons an be omitted if all eqi have the same indentation,whih is larger than the indentation of the let.2.4.12 ase expressionsA ase expression de�nes a value by ase distintion. The form of a ase expression is:ase sel of f branh0 ; ... ; branhn gwhere branhi � pati -> expi . sel de�nes the value used for the ase analysis. Eah pati is apattern to be mathed with the value of sel , expi delivers the result of the ase expressionif the ith branh is the �rst whose pattern pati mathes (Set. 2.4.10). As an example,here is a funtion whih sums up the numbers at all leaves of an instane of the binarytree de�ned in Set. 2.2.4. 8

sumup :: Num a => Tree a -> asumup tree = ase tree ofLeaf x -> xInnerNode leftSub rightSub -> sumup leftSub + sumup rightSubAs in let expressions, the pattern on the left side de�nes bindings for variables (here: xresp. leftSub and rightSub) whih an be used on the right side. The layout style, whihlets us de�ne this expression without the use of braes and semiolons, requires that Leafand InnerNode have the same indentation whih is larger than the indentation of ase.2.4.13 Arithmeti sequenesThe arithmeti sequene, denoted [a..b℄, produes a list of integers ranging from a to b.Example: [1..6℄ = [1,2,3,4,5,6℄2.4.14 List omprehensionsA list omprehension is a onvenient Haskell onstrut for de�ning lists. The syntax of thelist omprehension is:[e | q0,:::,qn�1 ℄q0; :::; qn�1 is a sequene of quali�ers whih produe a list el of environments, whih hasthe same length as the result of the list omprehension. The ith element of the result isobtained by evaluating expression e in the ith element of the environment list. The listof quali�ers is traversed from left to right. The initial el has length 1 and ontains nobindings. A quali�er an be either a generator or a guard.� A generator (i <- xs) re�nes the el as follows. Eah element, say, env of el is takenas an environment for evaluating xs to a list of length l . env is removed from el andreplaed by l new entries, one for eah element of xs. The j th new entry ontainsthe old environment env plus a binding for i to the j th element of xs. i must be avariable.� A guard is an expression of type Bool whih, if evaluated to True, keeps el unhangedand otherwise deletes the urrent element from el .A formal semantis of list omprehensions is de�ned in Set. 4.3.List omprehensions orrespond to loop nests in imperative languages. The ith quali�eris loated at the ith level of nesting. A generator orresponds to a loop and a �lter toa ondition whih governs the exeution of the enlosed nest. This orrespondene isexploited in the implementation of skeletons.Examples:[i+1 | i<-[0,1,2℄ ℄ = [1,2,3℄[(i,j) | i<-[0,1,2℄, j<-[0..i℄ ℄ = [(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)℄[i | i<-[0,1,2℄, even i ℄ = [0,2℄9

3 SkeletonsA skeleton is a prede�ned program shema. (The imperative world would all it a \tem-plate".) If it orresponds to a partiular lass of algorithms, like DC, it is alled analgorithmi skeleton. If it orresponds to a lass of mahine operations, it is alled anarhitetural skeleton. An example is the broadast operation, whih sends a message fromone proessor to all other proessors. Arhitetural skeletons are only of interest in the odegeneration for a partiular target mahine or message-passing library. In the following, wesay just skeleton when we mean an algorithmi skeleton.Skeletons have been used widely for parallel programming (Cole, 1989; Darlington et al.,1993; Busvine, 1993; Bratvold, 1994; Darlington et al., 1995; Bai et al., 1995; Botorog andKuhen, 1996; Gorlath, 1996; Ciarpaglini et al., 1997; Gorlath and Pelagatti, 1999). HDClends speial support to programming with skeletons. The DC strategy an be expressedformally as a skeleton whih is instantiated with problem-spei�, ustomizing funtions.E.g., the mergesort algorithm requires a ustomizing funtion whih merges two orderedlists. For a sound treatment of skeletons, HDC provides higher-order funtions. Thus, onean de�ne a skeleton as a (reursive) funtion and replae it later by a prede�ned eÆientparallel implementation.Though a single DC skeleton would be suÆient for a de�nition of the paradigm itself,as is d0 de�ned in Set. 3.2.1, it would not adequately reet the variety in the struture ofdi�erent DC algorithms. As a onsequene, the use of the skeleton d0 for all DC problemswould lead in many ases to bad performane of the implementation.In order to exploit the spei� struture of a DC algorithm, the DC paradigm an bere�ned into di�erent speialized forms (di�erent skeletons) with varying patterns of datadependene and data distribution (Herrmann and Lengauer, 1999).Our speial interest lies in sophistiated DC skeletons; a hierarhy of �ve suh skeletons,whih we all d0 to d4, is desribed in Herrmann and Lengauer (1997). In the presentreport, d4io (Set. 3.2.2), an improved form of d4, appears in our polynomial produtexample. The frequent set example is too ompliated to �t a single skeleton. It requiresmany appliations of simpler skeletons, whih appear in this report. Some of them, likemap or filter, ould, in priniple, be expressed by DC.The approah of the HDC ompiler is to replae expensive patterns of omputation byeÆient prede�ned implementations. The mehanism for implementing a skeleton shouldbe as easy as possible, beause the need for further skeleton implementations may arise.To implement a new skeleton, the prelude has to be extended by its type de�nition, andthe Haskell soure �le Skeletons.hs has to be extended with a funtion whih generatesthe skeleton implementation. The name of an interfae for the skeleton is pre�xed withskel , in order to reognize it as suh and protet it against elimination and optimizationby the ompiler. However, these pre�xed funtions should not be used outside the prelude,beause their type an di�er from the Haskell type or hange in future versions. Theorresponding funtions to be used in appliation programs usually have the same name,but without the pre�x.The following subsetions list the skeletons whih are implemented at present. For10

eah skeleton we provide the signature, an algorithmi de�nition in HDC and an exampleappliation.3.1 Skeletons for ommonly used funtions3.1.1 mapApplies a funtion to all elements of a list.map :: (a->b) -> [a℄ -> [b℄map f [℄ = [℄map f (x:xs) = f x : map f xsmap (+1) [0,1,2℄ = [1,2,3℄3.1.2 redUses an assoiative funtion f to redue a list of values to a single value.red :: (a->a->a) -> a -> [a℄ -> ared f n [℄ = nred f n (x:xs) = f x (red f n xs)red (+) 0 [1,2,3℄ = 63.1.3 sanApplies red to all pre�xes of the given list.san :: (a->a->a) -> a -> [a℄ -> [a℄san f n xs = map (\i -> red f n (take i xs)) [0..length xs℄san (+) 0 [1,2,3℄ = [0,1,3,6℄3.1.4 filterFilters all elements that ful�ll a prediate.filter :: (a->Bool) -> [a℄ -> [a℄filter p [℄ = [℄filter p (x:xs) = let rest = filter p xsin if p x then x : restelse restfilter (>2) [0,5,3,1,5℄ = [5,3,5℄ 11

3.2 DC skeletons3.2.1 d0DC in its general form.d0 :: (a->Bool) -> (a->b) -> (a->[a℄) -> (a->[b℄->b) -> a -> bd0 p b d x = if p xthen b xelse x (map (d0 p b d) (d x))If the prediate funtion p determines that the problem x an be trivially solved, thebasi funtion b is applied. Otherwise the problem is divided by d, produing a list ofsubproblems. The algorithm is mapped reursively onto the subproblems. At last, theombine funtion uses the input data x and the solutions of the subproblems to omputethe solution of the original problem.A funtional version of the quiksort algorithm an be expressed in terms of d0:quiksort :: Ord a => [a℄ -> [a℄quiksort xs= let d (p:ps) = [filter (<p) ps, filter (>p) ps℄ (p:ps) [le,gr℄ = le ++ p : (filter (==p) ps ++ gr)in d0 ((<2).length) id d xsp is the name of the pivot. d generates two subproblems of the elements that are less resp.greater than the pivot. le resp. gr are the solutions of these subproblems. ombinesthem and inserts the elements whih equal the pivot in the middle.3.2.2 d4ioA speial kind of DC whih requires elementwise divide and ombine operations on sub-bloks of data.d4io :: Int->Int->Int->(a->b)->([a℄->[a℄)->([b℄->[b℄)->Int->[a℄->[b℄The de�nition of d4io is more involved than the others, and we an only sketh it here:d4io probdegree indegree outdegree basi divide ombine levels xs = ...The parameters of d4io have the following meaning:� probdegree::Int: the degree of problem division, i.e., the number of subproblemswhih are generated for eah problem not trivially solved; this degree is �xed in d4ioin ontrast to d0.� indegree::Int: the degree of division of input data; it tells in how many bloks theinput data is to be divided. 12

problem probdegree indegree outdegreeFFT, bitoni merge 2 2 2polynomial produt 4 (3) 2 2matrix produt 8 (7) 4 4Table 2: example DC division degrees� outdegree::Int: the degree of omposition of output data; it tells of how manybloks the output data is to be omposed.� basi::(a->b): the funtion to be applied in the trivial ase.� divide::([a℄->[a℄): the funtion divide takes a list of length indegree as inputand delivers a list of length probdegree as output; it desribes how the element-wise operation omputes for eah partiular subproblem the element i using the ithelement from eah input blok.� ombine::([b℄->[b℄): the funtion ombine takes a list of length probdegree asinput and delivers a list of length outdegree as output; it desribes how the element-wise operation omputes for eah partiular output blok the element i using the ithelement from eah subproblem solution.� levels::Int: the number of reursive levels in whih the DC tree unfolds, in ontrastto d0 there exists no prediate for determining the trivial ase; the DC tree isbalaned and the number of levels an be omputed easily from the problem size.� xs::[a℄: the input data; it is a list on whih the division into bloks apply; likewisethe output data is also of list type (::[b℄).d4io works well for vetor and matrix algorithms like FFT, bitoni merge, polynomialprodut and matrix produt (Herrmann and Lengauer, 1997). The Karatsuba polynomialprodut is disussed in detail in Set. 6.1.indegree and outdegree depend muh on the data representation, e.g., for vetorsthey have the value 2 (left and right part), for matries they have the value 4 (upper leftpart, upper right part, lower left part and lower right part), see Tab. 2.The parenthesized values are for the optimized version of the respetive algorithm, e.g.,for Karatsuba's polynomial produt and Strassen's matrix produt.
13

3.3 Skeletons for improved eÆieny3.3.1 whileTakes a prediate p, a funtion f and a value x and iterates f, starting from x, as long asthe prediate on the input for f is True. The while skeleton is intended to be used insteadof tail reursion in order to avoid the reursion stak.while :: (a->Bool) -> (a->a) -> a -> awhile p f x = if p xthen while p f (f x)else xwhile (\(i,s) -> i<3) (\(i,s) -> (i+1,s+i*i)) (0,0) = (3,5)3.3.2 sinGenTakes a funtion f and a value n and generates a list of length n whose value at positioni is omputed by applying f to i. The aim of sinGen is to have a short representationfor large, regular index sets, e.g., the odd numbers from 1 to 1000001. To make this work,sinGen has to be fused in program optimization (see Set. 4.12.2).sinGen :: (Int->a) -> Int -> [a℄sinGen f n = map f [0..n-1℄sinGen (\i -> i*i) 4 = [0,1,4,9℄3.4 Evaluation ontrol3.4.1 stritTakes a funtion f and an argument x and it guarantees to evaluate x before alling f.Program optimizations will not touh the appliation of f to x. This skeleton is neessaryto protet the IO monad against elimination via inlining, due to a lak of data dependenes.strit :: (a->b) -> a -> bstrit f x = f xstrit (+1) 1 = 23.5 Input/OutputFor the input and output funtion, we annot provide a purely funtional de�nition. Thereason is their interation with the input and output streams, whih are hidden in the IOmonad. The C implementations of the skeletons are far too long to be given here { theyhave to deal with nested lists and tuples. 14

3.5.1 putTakes a value and delivers an I/O ation whih returns Unit. In the I/O ation, the valueis appended to the standard HDC output hannel. Printable values are of type Int, Doubleand also tuples and lists omposed of printable values.put :: a -> IO Unit3.5.2 getPerforms an I/O ation in whih a value of type a is read from the standard HDC inputhannel. The set of readable values is the same as the set of printable values (see put).get :: IO a4 The Struture of the CompilerThe HDC ompiler translates a subset of Haskell into an imperative language { at present,C with MPI alls. The main di�erene to Haskell is that HDC is strit, in order tofailitate a ompile-time parallelization. Two implementational di�erenes to a typialHaskell ompiler are that (1) higher-order funtions without a skeleton implementationare eliminated and (2) list omprehensions are simpli�ed to a ombination of (parallel)skeletons. The reason is that higher-order funtions ompliate but list omprehensionssimplify a stati spae-time mapping.The ompiler is based on the priniple of ompilation by transformation, whih hasalready been used suessfully in GHC, and onsists of a number of phases desribed inSet. 4.1 to 4.15. An interpreter, whih an be used to analyze the program with respetto orretness, performane and ode struture after individual ompilation phases, ispresented briey in Set. 8.2.4.1 Sanner and parserThe soure text is translated into a set of syntax trees, one for eah funtion in the program.Eah syntax tree is represented as an algebrai data type in Haskell. First, the soure odeis transformed by the sanner into a token stream. This ommon tehnique in ompileronstrution (Aho et al., 1986) simpli�es the generation of a grammar for HDC. For aneÆient parser generation, we use the parser generator happy, the funtional equivalentof ya. The parser reated by happy generates a syntax tree whih is represented by analgebrai data type in Haskell.The layout style of Haskell is supported, i.e., indentation an be used instead of braesand semiolons to group together items at the same level of partiular syntati strutures.The user an delare new operators just as, e.g., the operator (->>) is delared in theprogram for the Karatsuba example on page 38, and state their preedene and assoiativity(see the seond line of the karatsuba program). This information is exploited by the parser.15

ase exp ofLeft (Right x) -> exp1_ -> exp2 != ase exp ofLeft y -> ase y ofRight x -> exp1dummy1 -> exp2dummy0 -> exp2Figure 1: Example transformation of nested patterns4.2 DesugaringIn this phase, omplex syntati strutures are translated to ompositions of simpler stru-tures. Nested patterns are eliminated, in order to simplify the ode struture for thefollowing phases. After the transformation, the pattern is either a simple variable or aonstrutor followed by n variables, where n is the arity of the onstrutor given by thede�nition, e.g., via data. Fig. 1 ontains a simple transformation. An equational transfor-mation of a into b is denoted by a != b.Pattern bindings like let Left (Right x) = exp reeive a similar treatment. In thisase x is bound to:ase exp ofLeft y -> ase y ofRight z -> zdummy1 -> error "mismath"dummy0 -> error "mismath"Sometimes the attening of a pattern an lead to asades of ase expressions, whih blowup the size of the right-hand side of a pattern de�nition. This ours when a patterninludes a onstrutor with several arguments and many of these arguments represent asubpattern whih must also be attened. But, in most ases, the growth of the aseexpression is not dramati and does not a�et the performane of the remaining ompilerphases.4.3 List omprehension simpli�ationGHC resolves omprehensions ompletely, up to the onstrution by the empty list ([℄)and ons (:), usually by traversing the list of quali�ers from left to right (Peyton Jones,1987; Haskell 98{Report, 1999). Our goal is to base list omprehensions on (parallel)skeletons. As presented here, our rewrite rules in Fig. 2 speify the traversal of the list ofquali�ers in the opposite order: from right to left. This has two advantages: (1) nestedmaps are not intertwined with nested onats, whih preserves strutural information; (2)an eÆient filter skeleton is used instead of generating lots of empty lists in ases inwhih guards fail. The disadvantage is that the rules will beome far more ompliated ifextended to the full apability of Haskell. 16

lEmpty [e | ℄!= [e ℄lSinGuard [e | g ℄fg is a guardg != if g then [e ℄ else [℄lOptGuardfgi are guards; [e | q0,:::,qn,x <- xs,g0,:::,gk,:::,gm ℄x =2 freevars(gk)g != [e | q0,:::,qn,gk,x <- xs,g0,:::,gk�1,gk+1,:::,gm ℄lXGen [e | q0,:::,qn,x <- xs ℄!= onat [map (\x -> e) xs | q0,:::,qn ℄lGenGuard [e | q0,:::,qn,x <- xs,g ℄fg is a guardg != onat [map (\x -> e) (filter (\x -> g) xs) | q0,:::,qn ℄lTwoGuards [e | q0,:::,qn,g0,g1 ℄fg0; g1 are guardsg != [e | q0,:::,qn, if g0 then g1 else False ℄Figure 2: Simpli�ation of list omprehensionsThe rewrite rules shown in Fig. 2 over all possible list omprehension formats in ourrestrited language. They replae a list omprehension by appliations of the skeletonsonat, map and filter whih are supposed to have eÆient implementations. The rulesare applied until no further appliation is possible. If there is a hoie between severalrules, the one highest up in Fig. 2 is most eÆient. Rule lEmpty deals with the asethat the sequene of quali�ers has beome empty by the other transformations.Rule lSinGuard simpli�es a quali�er list onsisting of a single guard. Depending onthe value of the guard, the result is a list of either length 1 or length 0.Rule lOptGuard shifts a guard as far as possible to the left, in order to avoid multipleevaluations.Rule lXGen deals with the ase that the last quali�er is a generator. The otherquali�ers de�ne a list of environments. In the omprehension before simpli�ation, the lastquali�er re�nes eah element of this list by a set of new bindings for the last generatorvariable x . After the transformation, this re�nement is shifted to the expression on the leftside of the omprehension, whih has been replaed by a list, one element for eah instaneof the last generator in the urrent environment, as de�ned by the other quali�ers. We reusethe name x of the generator variable for the lambda expression to preserve the bindings inthe transformation. Note that the left side is in the sope of the environment de�ned bythe quali�ers on the right side. Therefore, all free variables of xs are bound to the same17

values as before.If a guard appears behind a generator, rule lGenGuard helps to fuse the two. Itis similar to rule lXGen, exept that the new bindings for the last generator variable,whih lead to a failure of the last guard, are eliminated from the list via the filter skeletonbefore. The previous appliation of rule lOptGuard assures that the guard really refersto the variable bound by the generator.If two guards appear next to eah other, they an be simpli�ed to a single guardaording to rule lTwoGuards.4.4 Lambda lifting, let eliminationLambda abstrations and let expressions are eliminated by introduing auxiliary funtions(Johnsson, 1985). As mentioned in Set. 2.4.11, other elimination methods should also beonsidered for better eÆieny.4.5 Type hekingThe type heker is based on uni�ation using the rules by Martelli and Montanari (1982).A simple type lass system is implemented by assigning a type variable a set of possibletypes. The uni�ation of two type variables then involves omputing the intersetion ofboth sets.4.6 MonomorphizationIn this phase, all type variables are eliminated and replaed by the types atually needed.This requires the dupliation of eah funtion for all onrete types whih our in theontext. To ensure that all type variables are eliminated, monomorphization is startedfrom the IO Unit type of the parmain funtion and propagated along the all struture,using the bindings that are imposed by the type onstraints of the language onstruts.If a polymorphi funtion is alled, a opy of it with monomorphi type is added to theode and the all is redireted to this opy. Arguments like y in fst (x,y) = x keep anuninstantiated type, whih is implemented by a void argument in C, if not even eliminatedby inline expansion (Set. 4.12.1).Monomorphization is needed beause our aim is not to translate to a high-level targetlanguage but to stay lose to the mahine representation of data and instrutions.Example:Consider the following program as subjet of monomorphization:parmain :: IO Unitparmain = get >>= \xs ->put (map id (xs::[Int℄)) 18

map :: (a->b) -> [a℄ -> [b℄map f xs = skel_map f xsid :: a -> aid x = xMonomorphization delivers the following result:parmain :: IO Unitparmain = get >>= \xs ->put (map_T1 id_T2 (xs::[Int℄))map_T1 :: (Int->Int) -> [Int℄ -> [Int℄map_T1 f xs = skel_map f xsid_T2 :: Int -> Intid_T2 x = x4.7 Elimination of funtional argumentsHOE takes a program whih must be well-typed aording to the Hindley-Milner rules.Also, the program must be losed, i.e., all funtions ited in the program must be availableto the HOE proedure for a global analysis and transformation. The result of the HOE isan equivalent �rst-order funtional program, whih is also well-typed.4.7.1 PriniplesThe HOE algorithm we found (Bell et al., 1997) uses a set of seven rewrite rules for thetransformation. The idea is to replae the partial appliations of a funtion by a kind oflosure. A losure ontains a funtion identi�er and the values of the free variables in thepartial appliation.The replaement of funtional arguments by losures proeeds as follows:� A variable of a funtion type is left unhanged beause it represents already a losure.� A partial appliation of a funtion (see Set. 2.4.3) is replaed by an instane of analgebrai data type in whih the funtion identi�er is represented by a onstrutor.The arguments of the onstrutor arry the values of the free variables in the partialappliation. These values are taken from the ontext of the all.� All loations at whih a funtional variable is applied are replaed by a all of an applyfuntion onstruted for the respetive funtion type. The �rst argument of the applyfuntion is the losure, the following arguments are the arguments of the enodedfuntion. The apply funtion applies the original funtion, with the respetive partial19

etaExpand :: Funtion ! FuntionetaExpand f= if f returns a funtion as resultthen add new variables as needed to felse fFigure 3: Algorithm etaExpandenode :: Expression ! State Expressionenode expr�(f e1...ei ...en)= if f is funtion or onstrutor^ expr is not a funtion^ ei :: � is a funtional argumentthen do let expr 0 = (f e1...(C ei v1...vm)...en)data = (data Data � = C ei �1...�m)apply = (apply � :: Data �! �apply � x1...xj= ase ofC ei v1...vm -> ei x1...xj)add data and apply to urrent program state Statereturn expr 0else return exprwhere v1::�1,...,vm ::�m are the free variables in eix1,...,xj are additional arguments for eta-expanded eiFigure 4: Algorithm enodeapplVar :: Expression ! ExpressionapplVar expr�(f e1...en)= if f ::� is a variable ^ expr is not a funtionthen apply � f e1...enelse exprFigure 5: Algorithm applVar20

appliation derived by the onstrutor, to the argument expression in the ontext ofthe all whih an use values of the losure, also enoded funtions.4.7.2 RulesSome of the seven rules, whih the original HOE algorithm (Bell et al., 1997) is basedon, deal with restriting polymorphism and beome obsolete in our monomorphi setting.The diploma thesis of one of the authors of this report (Shaller, 1998), desribes an HOEalgorithm tailored for HDC, whih uses the following set of four rules:1. EtaExpand (Fig. 3). This rule expands funtion de�nitions, whih return funtionsas result, with as many additional formal arguments as the funtion returned expets.If the result was polymorphi before monomorphization, the number of additionalarguments may depend on the all. Then, appliations of the expanded funtioninlude the appliation of the funtion returned and deliver a non-funtion result.2. Enode (Fig. 4). This rule enodes a funtional argument using a onstrutor andintrodues an apply funtion as desribed above. The rule is given in a state-monadistyle, taking an expression as argument and returning an expression, while havingaess to the urrent program state. Depending on the type of the funtional argu-ment, the generated onstrutor is added to a data type, alled Data, parametrizedwith an identi�ation of the type of the argument. This is neessary for the orretgeneration of skeleton instanes in a later phase of the ompiler.3. ApplVar (Fig. 5). If, in a funtion appliation, the funtion is represented by avariable whih is marked to arry a losure value, a temporary type inonsistenyours during the transformation beause a losure annot be applied. This rulewraps the losure in a all to an additional apply funtion whih takes the losure asan argument.4. RemoveHOTypes (Fig. 6). To lean things up, all funtion types appearing indata type de�nitions are replaed by the algebrai data type alled Data, whih isparametrized with an identi�er of the enoded type and enompasses all losures.The algorithm starts with a phase of appliations of rule 1, followed by a phase in whihrules 2 and 3 are applied repeatedly in any order, and terminates with a phase of applia-tions of rule 4. All phases perform rule appliations as long as possible.4.7.3 ExampleLet us study a small example for illustration. Assume the following de�nition of funtionmap, whih applies a funtion f elementwise to a list:map :: (a->b) -> [a℄ -> [b℄map f [℄ = [℄map f (x:xs) = f x : map f xs 21

removeHOTypes :: Type ! TyperemoveHOTypes t= ase t of��(!) -> Data �D t1 : : : tn | D algebrai data type-> D (removeHOTypes t1 : : : removeHOTypes tn)-> tFigure 6: Algorithm removeHOTypesNow, assume that map is used with two di�erent funtions in the �rst argument:map in xs where in :: Int -> Intmap (add (5*i)) xs where add :: Int -> Int -> IntThe di�erene in the signatures of the two argument funtions is important here.The �rst of our for rules, EtaExpand, does not take hold beause the result of mapapplied to two arguments is not a funtion. To spare the reader the onfusion of typeinonsistenies, we apply rule RemoveHOTypes not at the end but simultaneously withrule Enode.To enode the arguments in and add, the data type T 1 and an apply funtion for it(rule Enode) are reated:data T_1 = C_in | C_add5times Intapply_T_1 :: T_1 -> Int -> Intapply_T_1 ode x = ase ode ofC_in -> in xC_add5times i -> add (5*i) xWe have hosen intuitive names for the generated onstrutors. The HOE proedure gen-erates syntheti names, of ourse.Note that the onstrutor C add5times has an argument i. This is beause i appearsas a free variable in add (5*i). The sope of a free variable in a all is the sope of thealler and, therefore, the value of the free variable must be passed.Next, the appliations above have to be replaed:map_T_1 C_in xsmap_T_1 (C_add5times i) xsThe all of the �rst argument of map in the body of map must be replaed by an applyfuntion (rule ApplVar). Thus, map is transformed as follows:22

map_T_1 :: T_1 -> [Int℄ -> [Int℄map_T_1 fode [℄ = [℄map_T_1 fode (x:xs) = apply_T_1 fode x : map_T_1 fode xsNow, assume the following third appliation of map:map i2b xs where i2b :: Int -> BoolThe previous apply funtion annot be used beause it does not math the type of i2b.We reate the following additional data type T 2 and an apply funtion for it (rules Re-moveHOTypes and Enode):data T_2 = C_i2bapply_T_2 :: T_2 -> Int -> Boolapply_T_2 ode x = ase ode ofC_i2b -> i2b xThen, the speialized version of map has to be used and apply funtions have to be inserted(rule ApplVar):map_T_2 :: T_2 -> [Int℄ -> [Bool℄map_T_2 fode [℄ = [℄map_T_2 fode (x:xs) = apply_T_2 fode x : map_T_2 fode xsFinally, the appliation is replaed by:map_T_2 C_i2b xs4.7.4 CommentsNote that, after the HOE, all funtion appliations are saturated with arguments, suh thatthe result is not a funtion. Also, no argument to a funtion is a funtion. In priniple, oneould now replae all urried de�nitions and appliations by tuple representations. This isnot done in the HDC ompiler for two main reasons:1. The tuples, whih are objets of the HDC language, are, in turn, expressed in termsof pattern mathing ase expressions, whih require urried funtions on the righthand side again.2. The interpreter an remain simpler if it only has to deal with urried funtions.We adopt the following onvention: after the HOE, any appliation of an HDC funtionhas to supply all urried arguments. This shema an be regarded as �rst-order and isisomorphi to a shema of tupled arguments.23

fi :: t(i;1) -> t(i;2) -> : : : -> t(i;m(i)) -> t(i;0)fi arg(i;1) arg(i;2) : : : arg(i;m(i)) = bodyian be emulated by a new funtionf 0 :: Data -> Dataf 0 arg= ase arg ofC1 arg(1;1) : : : arg(1;m(1)) -> CRt(1;0) body1...Cn arg(n;1) : : : arg(n;m(n)) -> CRt(n;0) bodynFigure 7: Elimination of mutual reursion by emulation4.8 Elimination of mutual reursionThe HDC ompiler implements two methods for the removal of mutual reursion in pro-grams: elimination by inlining and elimination by emulation. Mutual reursion is identi�edby alulating the strongly onneted omponents (SCCs) in the graph of funtional de-pendenes. Sine there is no mutual reursion between SCCs, the methods an be appliedto eah SCC independently.4.8.1 Elimination by inliningThis method an only be used for an SCC whih ontains a node f whose removal fromthe SCC would make the residual graph s ayli. The set of funtions whih s representsis, therefore, free of mutual reursion. Thus, it is possible to inline all alls of funtionsin s in the body of f , until the only reursive alls left are diretly reursive (Kaser et al.,1993).4.8.2 Elimination by emulationIf all mutual reursion in a program is to be removed, an alternative approah has to betaken for SCCs in whih mutual reursion annot be eliminated by inlining. It is alwayspossible to transform an SCC to a supernode. The funtion assoiated with a supernodeemulates the work of all funtions of the SCC by enoding the atual parameters anddeoding the formal parameters. Let fi , 1� i�n, be the funtions of an SCC and m(i) thenumber of arguments of funtion fi . Funtion f 0, whih emulates the fi , is given in Fig. 7.To avoid type onits, it is neessary to reate, for eah funtion fi of the SCC, aonstrutor Ci to enode the arguments and a onstrutor CRt(i;0) for the result. Theonstrutor name is used to selet the body of funtion fi . Finally, alls to the funtions fihave to be adapted to �t f 0.Whenever possible, elimination by inlining should take preedene over elimination24

by emulation. Inlining does not spoil the struture of the program and the resultingintermediate ode an usually be optimized more e�etively.Both methods are expensive if the program ontains yles of mutual reursion withmore than three to four funtions. Unfortunately, yles may be introdued by the transfor-mations of earlier ompilation phases. If programs are getting too big, due to the removalof mutual reursion, the elimination proess an be turned o� by setting a ompiler swith.The default is to apply elimination by inlining, where possible, and then use the alternativemethod for the remaining mutual reursions. The HDC programmer should prefer the useof skeletons to user-de�ned reursive funtions in order to keep the amount of reursionlow.4.9 ase eliminationPattern mathing is not available in lower-level programming languages, suh as C or As-sembler, whih are suitable for the target ode of HDC. Providing a run-time system forpattern mathing would ause too muh overhead. Therefore, we eliminate ase expres-sions. We replae a ase expression by nested if expressions. The branhes of the ifexpressions ontain the former right-hand sides of the ase branhes.The variables introdued by patterns are replaed by a speial expression, ENth, whihis used to aess a spei� parameter of a onstrutor. ENth i (C x1 : : : xn) returns xi ,1� i �n. ENth 0, applied to a onstrutor, returns the onstrutor index in the funtiondelarations. Note that ENth annot have a valid Hindley-Milner type and, therefore,annot be an HDC funtion! It is only used internally as a representation for an in�niteset of type-orret funtions. A former ase branh is seleted by an if expression, if theindex of the onstrutor used in the pattern and the onstrutor index of the seletor sel(Set. 2.4.12) are the same.ase expressions whih have only one branh reeive a speial treatment: no if ex-pression is needed, assuming that the branh will always math.4.10 Generation of intermediate DAG odeThe syntax tree of eah funtion is transformed to a direted ayli graph (DAG) toenable sharing of ommon subexpressions. A DAG ontains a set of expressions withassoiated numbers, ordered by their dependenes. Subexpressions are referened by theorresponding numbers. Fig. 8 shows an example DAG. The diretion of the referenes isinverse to that of the data ow, whih is depited by the arrows in the �gure.The transformation of a syntax tree into a DAG is by a standard tehnique alled thevalue number method (Aho et al., 1986). The nodes are enumerated suh that the soure ofeah data dependene has a smaller number than the target. The transformation proeedsby a bottom-up traversal of the syntax tree. The subjet of the transformation of eahnode is an expression, in whih subexpressions have already been onverted to numbersby reursive appliation of the algorithm. It returns a number for the node as follows: ifthere is already an expression in the DAG that mathes the input, then the number of the25

sqrplus :: [Int℄ -> Intsqrplus xs = (xs!!0)*(xs!!0) + (xs!!1)*(xs!!1)0: xs :: [Int℄1: 0 :: Int2: (!!) "0 "1 :: Int3: (*) "2 "2 :: Int4: 1 :: Int5: (!!) "0 "4 :: Int6: (*) "5 "5 :: Int7: (+) "3 "6 :: Int
0 1

!!2:

*3:

!!

xs0:

+7:

5:

*6:

Figure 8: Example funtion de�nition with its DAGexisting expression is returned; otherwise, a new node for the expression is reated and itsnumber is returned.Optimizing transformations (as desribed below) are performed at this intermediateode level.4.11 Tuple eliminationTuples are replaed by algebrai data types, one for eah ourring tuple type. Eah tupleis tagged with the appropriate onstrutor for its partiular type. This simpli�es the run-time system and, at the same time, provides fast aess to information about the types andsizes of the omponents of the tuple by looking them up in a table, whih is aumulatedin �le funtable.. As a onsequene, the memory management funtions need not bespeialized for eah partiular type.4.12 Optimization yleCode optimization is done in a yle. Eah iteration performs three steps in sequene:inlining of funtions alls, rule-based DAG optimizations and size inferene.The proess of replaing the all of a funtion by its body, after substituting the atualfor the formal parameters, is alled inlining. We use inlining to enable further optimizationson DAGs, e.g., deletion of dead ode and sharing of ommon subexpressions. Inlining isperformed on DAGs in whih ommon subexpressions appear only one. Due to the sharingof ommon subexpressions, there is no risk of dupliating work.Inlining triggers ommon subexpression elimination for two reasons. First, it aggregatesommon subexpressions whih have been spread aross the program { maybe due to trans-formations made before, maybe due to the program itself. Seond, it speializes variablesby replaing the formal parameters of the funtion inlined by the atual parameters. Thispermits partial evaluation and heking for value equality rather than name equality when26

identifying ommon subexpressions. Value equality is a oarser equivalene relation, i.e.,it indues more ommonality.The information gathered in the size inferene is useful for the inlining heuristis of thefollowing iteration of the optimization yle and for the spae-time mapping. Size inferenehas to be reapplied in eah iteration beause of the hanges in the program due to inlining.During eah iteration, every DAG needed is proessed as follows.4.12.1 Inline expansionThe inline expansion transforms a soure DAG into a orresponding target DAG withpossibly inlined alls. First, the nodes of the soure DAG are opied suessively. If a noderepresenting a funtion all is reahed, a heuristi deision, based on the expeted amountof ode inrease, is made as to whether to inline this all or just opy the all node. In thease of inlining, the opying proess swithes its soure temporarily from the aller to theallee. All nodes of the DAG of the allee will be opied. There is no reursive inlining ofalls. Copied alls may be inlined in the next pass. Every time the inline expansion of aDAG for some funtion is ompleted, the body in the funtion de�nition is hanged to thetarget DAG.After inlining in the urrent pass is �nished, the DAGs are simpli�ed. Unused funtionarguments, exept from apply funtions whih are alled from skeletons, are deleted anddead ode is removed. If it was possible to inline at least one all in the urrent pass anda spei�ed maximum number of passes is not yet reahed, inlining is repeated in the nextpass. We hose two major strategies for inlining: urrent version inlining and originalversion inlining.� Current version inliningThe most reent DAG for the alled funtion is inlined. This method requires fewerinlining operations, sine DAGs with already inlined alls are used for inlining again.One drawbak is that the funtions are growing very fast and, therefore, the inliningproess may be suppressed after only a few steps.� Original version inliningThe original de�nition of the funtion is inlined. This inurs a linear ode growthwhen inlining reursive funtions. Original version inlining o�ers more possibilitiesfor optimization and, therefore, may lead to better results (Kaser et al., 1992).Kaser et al. (1992) also ompare stati and pro�le-based approahes. At present, we donot aumulate or exploit pro�ling information.Common subexpressions are eliminated during the onversion of the syntax tree intoa DAG, whih has already been desribed in Set. 4.10. However, new ommon subex-pressions may appear during the inlining of a all. Sine new nodes introdued by theinlining proess are always reated with the same funtion as used for DAG onstrution,no unshared ommon subexpressions will be reated.27

intr-sinGen map f xsfxs :: [Int℄; xs regular; fresh ig != sinGen (\i -> f (xs!!i)) (length xs)elim-sinGen (sinGen f n) !! i!= f iFigure 9: Optimization rules for sinGen4.12.2 Rule-based DAG optimizationsIn this step, various algebrai optimizations an be applied. In the interest of brevity, letus fous here on optimizations in the ontext of spae-time mapping (Set. 4.14).In numerial algorithms, in a all map f xs, the list xs is often of type [Int℄ whihde�nes a set of indies. In the simplest ase, it is an arithmeti sequene ([a..b℄) orobtained from index set transforming funtions. Sine enumerations of index sets are, ingeneral, too ineÆient, we represent them by funtions (this requires a ertain regularity).We an generate an index set from its desribing funtion by a skeleton named sinGen,see Set. 3.3.2. It takes a funtion f , whih desribes an index set, and an integer n anddelivers a list of length n, in whih the ith element is de�ned by applying f to i . Fig. 9ontains two optimization rules: one whih introdues and one whih eliminates sinGen.Note that there is some potential for fusion (similar to map fusion), e.g.:map f (sinGen g n)fintr-sinGen; fresh ig != sinGen (\i -> f (sinGen g n !! i)) nfelim-sinGeng != sinGen (\i -> f (g i)) nThese optimizations have the problem that higher-order arguments are reintrodued (e.g.,for the lambda expressions introdued above). Of ourse, one ould apply suh optimiza-tions before HOE but, at this point, they would miss the appliations that are enabled bythe inlining speializations oming later.4.12.3 Size infereneThe size inferene algorithm derives symboli information about the result returned by afuntion from the values of strutural variables whih represent the symboli informationof its arguments. The goal is to improve the deisions made during eah iteration of theoptimization yle and to determine automatially a spae-time mapping at ompile time,if possible.We are interested in the following symboli information about an HDC funtion:1. the size of the result { in the ase of nested lists a omprehensive desription of alllevels (Herrmann and Lengauer, 1998),28

2. the number of operations,3. the length of the longest path in the DAG, if all alls are expanded,4. the number of steps for a given number of proessors, if the ommuniation ost isdisregarded { this an be estimated from the number of operations and the pathlength, using Brent's theorem (Quinn, 1994).The size inferene omputes an abstrat version of the HDC funtion, whih takes thesame number of arguments and has the same struture as the original funtion, but theoperations it performs are abstrat ounterparts of the original operations. E.g., an abstratsize operation for the append operator of plain lists is, simply put, "addition", beausethe size of the result is the sum of the sizes of both operands. The abstrat version of afuntion appliation is the appliation of an abstrat funtion to an abstrat size.The sizes are represented in symboli form, as objets of an algebrai data type Size,ontaining, e.g., the following onstrutors:� Con :: Int -> Size de�nes a onstant size.� Var :: String -> Size de�nes a free variable.� Add :: Size -> Size -> Size adds two sizes.If, e.g., Con 2 is the size of the list [3,4℄ and Var "x" is the size of a list x, then the sizeof the list [3,4℄ ++ x is Add (Con 2) (Var "x").Abstrat funtions take variables representing symboli expressions. E.g., the on-strutor Add above is an abstrat funtion. Abstrat funtions an be omposed of otherabstrat funtions. E.g., the number of operations needed for a list append depends onthe length of both argument lists. (That is the HDC append; for the usual sequentialappend, the length of the seond list is immaterial.) From this point of view, underlyingmemory optimization tehniques like sharing in DAGs, whih are not visible at the level ofintermediate ode, are not onsidered. The strutures are treated as if they were attenedand the abstrat values obtained are upper bounds and not exat.The abstrat funtions are expressed in terms of the abstrat values of their arguments,in order to make size inferene a loal omputation, independent of its ontext, and allowfor a largely polymorphi implementation of the skeletons. If the amount of spae in termsof memory ells or the amount of time in terms of lok yles is of interest, the abstratfuntion must be supplied with aording ontext information.Beause of the omplexity of the symboli expressions involved, we believe that the sizeinferene of reursive funtions is beyond the apability of present-day mathematial tools.It is assumed that all reursion is aptured in skeletons whih are supplied with thefour types of size information stated above.Size inferene is appliable only if the struture analyzed does not depend on run-timedata, e.g., if the length of lists does not depend on input values.We see a use for a omplete size inferene mainly in funtional programs whih representa stati system, e.g., a hardware desription.29

4.13 Abstrat ode generationThe de�ning expression of an intermediate funtion is mapped to a DAG in order tofailitate the sharing of ommon subexpressions. As desribed in Set. 4.10, eah DAGis represented by a table: eah node of the DAG orresponds to a table entry, and eahdireted edge of the DAG is represented at the entry of the soure of the edge (the targetof the data dependene) by the table index of the target node of the edge (the soure ofthe data dependene).The phase of abstrat ode generation swithes the interpretation of a DAG: before,it is interpreted with a denotational semantis, afterwards with an operational semantis.The struture of the DAG also hanges slightly: one type of node is eliminated and threeother types are introdued.Let us reet on the denotational interpretation. Here, a DAG is interpreted by startingevaluation of a distinguished node, the root. The result of the root node is onsidered theresult of the funtion represented by the DAG. If the evaluation of a node requires theresult of another node, this node is visited and evaluated. There is a speial kind of nodefor aessing formal arguments. if nodes require a speial treatment: the value of theondition has to be tested, and then only one of both branhes is evaluated.In the operational interpretation, the evaluation proeeds by traversing the table entriesin sequene. If the result of another node is required, it has already been omputed andan be looked up in a previous table entry. The root node is the last entry in the tableand ontains the result of the funtion. The problem with the if nodes is that when theyare reahed (if ever!) both branhes already have been evaluated, also the wrong branh.Therefore, a mehanism is implemented to skip nodes belonging to the wrong branh. If aDAG does not ontain if expressions, it is used as abstrat ode without modi�ation.To aomplish the skipping of nodes, if nodes are eliminated and the following ontrolnodes are introdued:1. BranhFalse ond i tests the boolean value at node ond and ontinues the exeutionof the DAG from node i if the ondition test yields False. Otherwise it has no e�et.2. Jump i ontinues the exeution from node i .3. Seletion ond a b tests the boolean value at node ond and returns the value ofnode a if the test yields True and the value of b otherwise.The abstrat ode for an if expression has the struture shown in Fig. 10. The pointerto the ondition refers to a node above. The forward referenes of BranhFalse and Jumpare �lled with table indies, one they are known, i.e., when the reursive generation ofabstrat ode for nested branhes has �nished. Jumps are introdued to skip over ode inbranhes whih are not reahed due to the invalidity of their ondition.For reasons of soundness and eÆieny, the onversion of a DAG to abstrat odeinvolves the dupliation of some expressions that are shared in the intermediate DAG ode{ more preisely, of ommon expressions that are loated in a set of nested if expressions30

then/else branch

abstract code before conditional expression

Jump <end_if>

abstract code for

abstract code for

selection of result of

else branch

 branchthen

BranchFalse <condition> <elsebranch>

Figure 10: Abstrat ode struture for an if expressionin several, but not in all branhes. These expressions are evaluated at most one andshould not be shared.The struture of nested if expressions an be maintained by an auxiliary tree T ,whose nodes represent regions of the DAG. The root of T represents the entire DAG. Eahourrene of a onditional in the region, whih a node represents, leads to two subtrees,one for the then branh and one for the else branh. All other nodes in the region (whihdo not belong to an if expression) are represented by a list of single pointers. Eah nodein T has an assoiated list with the pointers belonging to its subtree. Pointers to formalparameters are plaed at the top level, so that they an be shared in all branhes.This arrangement has a high potential for dupliate pointers. To redue dupliation,the lists in eah node are optimized by applying the following rules:1. Horizontal ommon expression elimination. Pointers to expressions ommonto both branhes of an if expression are moved up one level to the enlosing branh:ommon = pointers then branh \ pointers else branhpointers then branh 0 = pointers then branh n ommonpointers else branh 0 = pointers else branh n ommonpointers enlosing branh 0 = pointers enlosing branh [ommonThis transformation is performed bottom-up, starting with the innermost if expres-sions. Therefore, a ommon pointer an be moved up further if the branh opposedto the enlosing branh ontains the same pointer.
31

2. Vertial ommon expression elimination. Pointers to expressions already in thesope of an enlosing branh are removed in eah list:pointers 0 = pointers n already de�ned pointersalready de�ned pointers is omputed from the lists of all nodes on the path from theroot to the urrent node in the tree of if expressions.3. Sorting. For eah node, the pointers (exept pointers to if expressions) are sortedby their dependenes. In the sorted list, the pointers to if expressions are plaed atthe earliest point at whih all required pointers have been de�ned.
 p

 d q e f g h ra b c
C

A

B

D E F G

H I

 j s k

n o

a

c m n

f g i a

Figure 11: Example tree of if expressionsThe rules are applied in the order stated beause horizontal elimination possibly en-ables additional vertial elimination, but not vie versa. We sort at the end, sine theother optimizations may hange the lists and ould violate the ordering. Note that theoptimizations do not analyze if onditions.
32

Example:Fig. 11 shows a tree of if expressions. The nodes A,:::,I ontain lists of pointers to expres-sions used in the parts of the orresponding DAG, named with lowerase letters. p,:::,s arepointers to if expressions. The horizontal ommon subexpression elimination will move nfrom nodes H and I to node E. a will be moved from F and G to C. a is now ommonto both branhes of A, thus it will be moved from B and C to A. The vertial ommonsubexpression elimination will remove f and g from node D. In the abstrat ode of D, thepointers f and g from C are used to evaluate the expressions. To failitate this, the sortmust plae f and g before q in the list of C. In order to reuse the pointer of , it wouldhave to be de�ned in node A. Without analyzing the onditions, it is not lear whetherthe evaluation of the orresponding expression is neessary. Thus, the expression will bedupliated in the abstrat ode, i.e., ontained in B and H.Using the information of the lists (whih expressions must be de�ned in what branh)and the DAG ode (list ontaining the expressions), the abstrat ode an be generatedreursively for all nested if expressions.4.14 Spae-time mappingA spae-time mapping is a one-to-one mapping from a domain of omputation points tothe artesian produt of disrete spae and time. The spae part is known as alloation,the time part as shedule. The tehnique of spae-time mapping has a long tradition inloop parallelization (Lengauer, 1993). Some of the ideas an be adapted to while loops(Griebl and Lengauer, 1994; Collard, 1995) and even to non-linear reursion (Herrmannand Lengauer, 1996). However, the struture of dependenes we are enountering makesinteger linear optimization, whih is the entral searh method for a spae-time mappingin loop parallelization and whih has the nie property of yielding the best solution in theonsidered searh spae, unsuitable for general HDC programs.Spae-time mapping is most e�etive when applied in the individual derivation of par-allel skeleton implementations. This approah is desribed in detail in Herrmann andLengauer (1996). If the dependene struture of the skeleton is suÆiently regular {as,e.g., for some kinds of DC{ the points of omputation an be laid out in time and spaeat ompile time. The size of the omputation spae will depend on the problem size andthe number of proessors, but its shape will not (Herrmann and Lengauer, 1996).The user is well advised to onstrut his/her program by omposition of appropriateskeletons, whih have been spae-time mapped eÆiently. Note that the generation of eahskeleton is done by a Haskell funtion whih is to be delivered by the skeleton implementer.It is up to this Haskell funtion, to use the results of the size inferene provided or even toall external tools. The task of the HDC ompiler is, at a minimum, to transmit symbolispae-time mapping information via the all struture of the program to the points whereit is needed, by making use of the abstrat funtions delivered by the skeleton implementer.The nodes of eah DAG are sheduled sequentially by the ompiler, no parallelization isdone in this phase. 33

4.15 Code generationThe ode generation phase �rst produes C ode, whih is then ompiled with a standardC ompiler and linked together with the funtions of our run-time library, whih are alsowritten in C. The C ode is generated in two phases. First, the abstrat ode of theuser program is translated; see Set. 4.15.1. Seond, an appropriate implementation isgenerated for eah skeleton instane used in the program; see Set. 4.15.2.4.15.1 DAG ompilationFor eah DAG of the abstrat ode, a C funtion is generated and appended to �le ode..Eah node in the DAG is treated seperately. Eah onstrutor used is inserted into a table,in �le funtable., to provide the run-time environment with the neessary informationabout types and sizes of the omponents of the objet it onstruts. For eah all of askeleton, the name of the skeleton together with the atual types of the arguments arestored.4.15.2 Skeleton generationAfter all DAGs have been proessed, the instantiations of the skeletons are generated andstored in �le skel..HDC o�ers a speial, very exible mehanism for the integration of ustom-implementedskeletons. For eah skeleton, the implementer delivers a Haskell funtion, say, �, whih isalled by the ode generator of the HDC ompiler and whih produes the atual instaneof the skeleton. In the simplest ase, the body of funtion � will be just a Haskell stringof C target ode, but � an also presribe deisions based on type and size informationprovided by the ompiler.Remember that the C ode generated must be monomorphi; this applies also to theimplementation of a skeleton. Thus, the programmer of � has to onsider at least theroot symbol of the type tree of eah argument, i.e., the implementation must di�er, e.g.,between lists and integers, but not neessarily between lists of Int and lists of lists of Intsine, in the latter ase, the root of the type tree is in both ases the list type onstrutor.To illustrate what a generi skeleton implementation may look like, let us disuss anabstrat version of the implementation of the map skeleton in a parallel model, in whih alldata is passed along with the ontrol. The map skeleton takes a funtion (really a losure,i.e, the ode of a funtion together with an environment) and a list and applies the funtionelementwise to the list.For simpliity, we assume a spae-time mapping whih allots roughly the same numberof list elements to eah proessor. This mapping is eÆient if the amount of work is nearlyequal for eah element of the list.One might onsider the use of olletive MPI operations (Paheo, 1997) like broadast(to distribute the funtion losure), satter (to distribute the list among the proessors)and gather (to ollet the results from the proessors). This would work for lists of Int,Bool or Double but would require speial skeleton implementations for these types. In34

general, gather and satter annot be used, sine they assume that lists are plain anddo not ontain referenes to a heap. E.g., if the elements are funtions, the list ontainsjust pointers to a shared heap. As a onsequene, we have to ustom-implement olletiveoperations for HDC, using the MPI primitives send and reeive. Here, again, DC provesto be a useful tehnique.4.15.3 Run-time libraryThe run-time library, whih is omparatively small, ontains the implementation of allfuntions whih do not depend on the user program { espeially, prede�ned funtionswhih annot be oded with a few C statements (those are inserted diretly in the ode),whih perform memory management, and whih pak and unpak data strutures.5 The Parallel Run-Time Environment5.1 The model of parallel exeution in HDCOur aim has been to provide a platform whih does not limit the design hoies onerningparallelism. Still, we are staying away from unstrutured fork-join parallelism (Almasiand Gottlieb, 1989) and, where possible, make use of the DC paradigm. In the interest ofgenerality and salability, our exeution model is SPMD.The ontrol struture is organized as follows. At the beginning, all proessors forma single blok. In a parallel omputation, this blok {let us alled it the superblok{ isdivided into a number of subbloks and the master of the superblok sends a task to themasters of the subbloks. When the task a subblok is assigned to is terminating, its mastersends an aording signal to the master of the superblok. No tasks are initiated and noompletion messages are sent aross a superblok's border. We all this the priniple ofommuniation-losed bloks, in analogy to the priniple of ommuniation-losed layers(Elrad and Franez, 1982).Another important issue is the data layout, i.e., the way in whih the data is distributedamong the proessors. We distinguish three styles of data layout. The �rst applies toatomi data and to tuples. Only lists and algebrai data types, whih an beome large,are subjet to the other distributions.� Centralized data layout: All input data of a task is passed along with the signalof initiation of the task and all output data is passed bak with the report on thetask's ompletion. Obviously, this is a good hoie if the amount of data is small,although it might inur some unneessary ommuniation. For large data, a en-tralized data layout will lead to unaeptable overhead, due to data transmission, oreven to memory overow.In the remaining two layout styles, instead of passing the data with the ontrol, onlyinformation about the loation of the data is passed.35

� Hierarhial data layout: The input and output data of eah blok is distributedamong the proessors assigned to the blok, as presribed by the spae-time mapping.The default spae-time mapping is that the data is distributed in balane aross allavailable proessors. This layout is espeially onvenient for DC algorithms on largedata whih does not �t onto a single proessor, but only if the data size dereaseswith the division of the problem, as in the d4io skeleton.� Globally distributed data layout: The input data is distributed aording to aspae-time mapping. Eah intermediate and result value is loated on the proessorthat produes it. This is known as the owner-omputes rule (Wolfe, 1995). To getdata from another proessor, a remote memory aess (RMA) has to be performed.RMA involves a ommuniation { however, it is not expliit and, thus, does notviolate the priniple of ommuniation-losed bloks.5.2 OrganizationThe available implementations of a skeleton determine the set of possible spae-time map-pings whih an be hosen in a parallel exeution. Thus, it is important to realize thatskeleton implementations are generated in dependene of the ontext in whih they arealled, exploiting type and possibly also symboli size information (see Set. 4.15).The �rst argument of eah skeleton implementation, like the �rst argument of the otherfuntions generated, ontains a pointer to system information, omprising a desription ofthe master and the urrent part of the topology the proessor belongs to.The user has the option to provide all funtions with an additional expliit parameter,whih ontains a mapping strategy introdued in the soure ode. Skeleton implementa-tions an use this strategy in the spae-time mapping.5.3 Interation with skeleton implementationsIf the omputation is divided into subomputations aording to the DC paradigm, theblok of proessors is divided into subbloks. Eah proessor belongs to exatly one sub-blok. Eah subproblem is solved on its own subblok. At the beginning, the blok hasone master proessor, the other proessors are slaves. The division of a blok involves thereation of new masters by the old master, one for eah subblok.Let us now revisit the implementation of the map skeleton from Set. 4.15.2. If the listdoes not ontain at least two elements or the blok has only one proessor, map must beomputed sequentially. (map may be omputed sequentially if parallelization does not payo� aording to a strategy hosen by the skeleton implementer.) Otherwise the blok isdivided into two subbloks; let us all them the left subblok and the right subblok. Theleft subblok omputes map on the left part, and the right subblok on the right part. Theproessor responsible for the whole blok before, say, L retains the responsibility for theleft subblok and sends the paked funtion losure and the right part of the list to anotherdistinguished proessor, say, R responsible for the right subblok. Computation proeeds36

reursively until the left and right subblok are united again and R gives bak ontrol forits part to L.Now, let us have a loser look at the all mehanism. Proessor L is the one on whih themap skeleton is alled. Thus, it reeives all formal arguments via a funtion all. ProessorR is ativated by L with an index of the atual skeleton instane. R uses this index toall a slave skeleton. This skeleton does not reeive the appliation data via a funtionall, beause this data is not yet available on R. Instead, the following interation takesplae: L sends the data to R, both L and R all the master skeleton with their partiularsubproblem, R returns into the slave skeleton and sends its result bak to L. Note that �of Set. 4.15.2 has to generate two skeleton instanes here: the one for the master and theone for the slave!6 Examples6.1 Karatsuba's polynomial produtThis subsetion ontains material, whih we have published before with respet to a slightlymodi�ed DC skeleton (Herrmann and Lengauer, 1996).In 1962, Karatsuba published a DC algorithm for the multipliation of large integersof bitsize N with ost O(N log2 3) (log2 3 � 1:58) based on ternary DC (Aho et al., 1974).A trivial algorithm has omplexity O(N 2). As an example of ternary DC, we hoose thepolynomial produt, whih is the part of Karatsuba's algorithm that is responsible for itsomplexity.Here, we onentrate on the produt of two polynomials whih are represented bypowerlists (Misra, 1994) of their oeÆients in order. The length of both lists is thesmallest power of 2, whih is greater than the maximum of both degrees. We onsider +,� and � operations on polynomials; when applying them to integers, we pretend to dealwith the respetive onstant polynomial. If a, b, and d are polynomials in the variableX of degree at most N <2n�1, then (a �X N + b) � (�X N + d) = h �X 2�N +m �X N + l ,where h = a � (h is for \high"), l = b � d (l is for \low") and m = (a � d + b �) (mis for \middle"). The ordinary polynomial produt uses two polynomial subproduts toompute m, leading to quadrati ost, whereas the Karatsuba algorithm uses the equalitym = (a + b)�(+ d)� h � l to ompute only a single additional polynomial subprodut.Polynomial addition and subtration does not inuene the asymptoti ost beause it anbe done in parallel in onstant time and in sequene in linear time.Due to the data type and data dependene restritions imposed by our skeleton,the input vetor of the skeleton is the zip of two oeÆient vetors (zip [a0,...,a2�N�1℄[b0,...,b2�N�1℄ = [(a0; b0),...,(a2�N�1; b2�N�1)℄) and the result is the zip of the higher andlower part of the resulting oeÆient vetor, as an be seen in the de�nition of karatsuba,whih multiplies two polynomials represented by equal-size powerlists:
37

import HDCPreludeinfixl 2 ->>-- polynomial produt-- the length must be a power of 2-- using Karatsuba's algorithmkaratsuba :: [Int℄ -> [Int℄ -> [Int℄karatsuba a b =let basi (x,y) = (0,x*y)divide [(xh,yh),(xl,yl)℄= [(xh,yh),(xl,yl),(xh+xl,yh+yl)℄ombine [(hh,hl),(lh,ll),(mh,ml)℄= [(hh,lh+ml-hl-ll),(hl+mh-hh-lh,ll)℄in ilog2 (length a) ->> \n ->zip a b ->> \x ->d4io 3 2 2 basi divide ombine n x ->> \z ->map fst z ++ map snd z(->>) :: a -> (a -> b) -> bx ->> f = f xilog2 :: Int -> Int -- eil of real log2ilog2 n = if n<=1 then 0else 1 + ilog2 ((n+1)`div`2)parmain :: IO Unitparmain = get >>= \a ->get >>= \b ->put ((karatsuba a b) :: [Int℄)The operator ->> fores a sequening of omputation steps. We use it to avoid multipleevaluations.The �rst three arguments of d4io are the degrees of the problem division, the in-put data division and the output data omposition. Of the onstituting funtions, basimultiplies two onstant polynomials. Funtion divide divides a problem into three sub-problems: the �rst is working on the high parts, the seond on the low parts and the thirdon the sum of the high and the low parts, orresponding to (a + b) and (+ d) of the for-mula for m. The funtion ombine ombines the results (hh,hl) (the high parts), (lh,ll)(the low parts) and (mh,ml) (the middle parts). The high positions mh of the middle partsoverlap with the low positions hl of the high parts, and the low positions ml of the middleparts with the high positions lh of the low parts. Results of overlapping positions have tobe summed. Further, the results of the high and low part have to be subtrated from the38

left (high) right (low) left+right (middle)
[(0,1),(1,1),(1,1),(1,1)]

[0,0,1,2,3,3,2,1]
[(0,3),(0,3),(1,2),(2,1)]

[0,1] x [1,1]
[(0,1),(1,1)]

[0,1,1,1] x [1,1,1,1]

[(0,1)] [(1,1)] [(1,2)]

[0,0]
[(0,0)]

[0,1]
[(0,1)]

[0,2]
[(0,2)]

[0,0,1,1]
[(0,1),(0,1)]

[(1,1)] [(1,1)] [(2,2)]

[1,1] x [1,1]
[(1,1),(1,1)]

[0,1]
[(0,1)]

[0,1]
[(0,1)]

[0,4]
[(0,4)]

[0,1,2,1]
[(0,2),(1,1)]

[1,2] x [2,2]
[(1,2),(2,2)]

[(1,2)] [(2,2)] [(3,4)]

[0,2]
[(0,2)]

[0,4]
[(0,4)]

[0,12]
[(0,12)]

[0,2,6,4]
[(0,6),(2,4)]

[0] x [1] [1] x [1] [1] x [2] [1] x [1] [1] x [1] [2] x [2] [1] x [2] [2] x [2] [3] x [4]

Figure 12: Call graph for a all of karatsubaresult of the middle part. As an example, Fig. 12 depits the all graph for multipliationof the polynomials (X 2+X +1) and (X 3+X 2+X +1) whose result is the polynomial(X 5+2 �X 4+3 �X 3+3 �X 2+2 �X +1). In eah node, we give on top the polynomialsas lists of their oeÆients and below the representation as required by the skeleton.6.2 Frequent setThe frequent set problem (Toivonen, 1996) belongs to the appliation area of data mining.Consider the following appliation example in a supermarket. Sets of artiles, whih areoften purhased together, should be shelved lose to eah other. These sets should beobtained from statistis data ompiled at the point of sale. Let M be the set of all artiles,for simpliity enumerated from 0 to m. Let the database be a bag of subsets of M ; eahelement of the bag ontains a set of artiles of a single bill. The number of ourrenes ofa single artile is of no interest, but the number of ourrenes of eah subset of M is. Thetask is to report all subsets of M whih are frequent, i.e., appear in (are a subset of) morethan a ertain fration of all bag elements, alled the threshold.We present a straight-forward algorithm for the frequent set problem in HDC, derivedfrom Alg. 3.7 of Toivonen (1996).A more sophistiated and eÆient algorithm was derived by Hu (1999). We assumethat subsets of integers are represented in a list in inreasing order. The input onsists ofthe threshold and the list of bills. The output is the list of frequent sets.Our example ontains the following funtions:39

� ompareSet ompares two sets with respet to a partiular ordering on the subsetsof integers (�rst by length, then by lexiographi order (Aho et al., 1974)). We usethe while skeleton to terminate the omparison as soon as the result is known.� isElem heks whether an element is in the set.� isSubSet heks for the subset property.� insertSet adds a new element to an ordered set.� remDupliates removes dupliates.� ountSubsets ounts the number of ourrenes as a subset in the bag.� fraOK heks whether the fration of bag elements the set appears in as a subsetexeeds the given threshold value.� freqSets onstruts all frequent sets.� datamineSet onstruts all frequent sets of ardinality i , ordered by inreasing i .� datamine is the entire algorithm without input/output ations.import HDCPreludeompareSet :: Ord a => [a℄ -> [a℄ -> Int-- ompares two sets with respet to first the size, then the-- lexiographi ordering, delivers -1 if xs<ys, 0 if xs=ys, 1 if xs>ys-- the lists representing the (unordered) sets must be sortedompareSet xs ys= if length xs == length ysthen let firstdiff =skel_while (\i -> if (i<length xs) then (xs!!i==ys!!i)else False) (+1) 0in if firstdiff == length xsthen 0else if xs!!firstdiff > ys!!firstdiff then 1 else (-1)else if length xs > length ys then 1 else (-1)isElem :: Ord a => a -> [a℄ -> Bool-- heks if e is element of the set sisElem e s = any (==e) sisSubSet :: Ord a => [a℄ -> [a℄ -> Bool-- heks if sub is a subset of superisSubSet sub super = all (\s -> isElem s super) sub40

insertSet :: Ord a => a -> [a℄ -> [a℄-- adds x to the set xsinsertSet x xs = filter (<x) xs ++ (x : filter (>x) xs)remDupliates :: Ord a => [[a℄℄ -> [[a℄℄-- removes all dupliates in a set of setsremDupliates= let pivot xs = xs!!(length xs `div` 2)p xs = length xs < 2b xs = xsd xs = let less= filter (\x -> ompareSet x (pivot xs) == (-1)) xsgreater= filter (\x -> ompareSet x (pivot xs) == 1) xsin [less,greater℄ xs [as,bs℄ = as ++ (pivot xs : bs)in d0 p b d ountSubsets :: [Int℄ -> [[Int℄℄ -> Int-- ounts the number of elements in bs whih b is a subset ofountSubsets b bs = length (filter (isSubSet b) bs)fraOK :: [[Int℄℄ -> Double -> [Int℄ -> Bool-- given a bag of sets bs, a fration f and a set b-- tells if b ours as a subset in more than the fration f of-- all elements of bsfraOK bs f b = (fromInt (ountSubsets b bs) / fromInt (length bs)) > ffreqSets :: [[Int℄℄ -> Double -> [Int℄ ->([[Int℄℄,[[Int℄℄) -> Int -> ([[Int℄℄,[[Int℄℄)-- given-- bbag: the bag of sets-- fra: the fration of ourrenes-- sngl: all singleton frequent sets-- (f,filast): the urrent/previous olletion of frequent sets-- i: the urrent levelfreqSets bbag fra sngl (f,filast) i= (\fi -> (f++fi,fi))(filter (fraOK bbag fra)(remDupliates(filter (\xs -> length xs == i)[insertSet s1 s2 | s1 <- sngl, s2 <- filast℄)))41

datamineSet :: Int -> Int -> [[Int℄℄ -> Double -> [[Int℄℄-- data mining on the Set representation to enable-- effiient parallel subset testingdatamineSet m u bbag fra= (\siOK ->fst (foldl (freqSets bbag fra (map (!!0) siOK))(siOK,siOK) [2..u℄))(map (\x->[x℄) (filter (\x -> fraOK bbag fra [x℄) [0..m℄))-- list of single items that satisfy fration onditiondatamine :: [[Int℄℄ -> Double -> [[Int℄℄-- the entire datamining algorithmdatamine bag fra =let maxi = red max 0 (onat bag)ubnd = red max 0 (map length bag)in datamineSet maxi ubnd bag fraparmain :: IO Unitparmain = get >>= \threshold ->get >>= \bag ->put (datamine bag threshold)7 Experimental ResultsWe have tested both examples with and without optimizations. In the tables in this setion,the entry \no opt." refers to the following menu setting for the optimization phase of ourompiler (Set. 8.1.4).Mutual Reursion Elim.: NONEOptimize By Inlining: FalseFor the entry \opt.", the menu settings were:Mutual Reursion Elim.: ALL, by inlining if possibleOptimize By Inlining: TrueA -> Algorithm: urrent version inliningB -> Number of Loops: 4C -> Max. Rel. Funsize: 4 * original sizeD -> Max. Abs. Funsize: 200 nodesE -> Inline Order: InlOrderCallGraph
42

7.1 The e�et of optimizationsIn Tab. 3, we have reorded some stati harateristis of the ode (line by line, as theompilation proeeds) and the e�et of optimization.The soure programs ontain global funtions, whih are visible in the entire program,and loal funtions (also onstants), whih are de�ned using let (line 1). We do not ountlambda abstrations, partial appliations, et.Funtions of the prelude are not ounted as part of the soure ode, but are ountedas funtions before HOE (line 4) and onwards.The HOE phase has two di�erent opposing e�ets: (1) funtions whih are not used aredeleted and (2) polymorphi funtions whih are used in di�erent ontexts are dupliated,and apply funtions are introdued to deode funtional arguments. Line 5 lists the totalnumber of nodes in all syntax trees. DAG generation leads to a redution of this number(line 7). This is due to ommon subexpression elimination, whih is always done, even ifno inlining is performed. The number of funtions in the upper part of the table inludethe interfae de�nitions of the skeletons used (lines 3 and 4) whih are skipped in the setof DAGs (line 6).number of Karatsuba frequent set1. soure funtions 4 global, 3 loal 11 global, 10 loal2. soure lines 30 863. funtions before HOE 75 1044. funtions after HOE 37 1035. tree nodes 416 968number of no opt. opt. no opt. opt.6. DAG funtions 31 11 86 257. total DAG nodes 202 269 492 4558. total absode nodes 212 343 534 5639. lines ode. 565 476 1492 85010. lines ode.s 1313 1148 2972 270911. lines skel. 121 27212. lines skel.s 695 1151Table 3: E�et of optimizationsInlining also has two di�erent e�ets. On the one hand, nodes are dupliated if inlinedinto more than one funtion. On the other hand, the funtion inlined may be deleted andoptimizations apply, whih have been enabled by the inlining. Line 8 shows the number ofnodes after generation of abstrat ode, whih has grown by the number of ontrol nodesthat have been inserted to make onditionals non-strit.The ode generated from the DAGs is in �le ode.; ode.s is the assembler �legenerated with the C ompiler. The skeleton implementations are generated independently43

HDC ompilerproblem size no opt. opt. GHCKaratsuba 512� 512 1.9 1.9 1.61024� 1024 5.9 5.9 4.8frequent set 0:05=100 8.4 6.6 3.00:05=200 15.6 12.0 4.50:02=100 34.9 27.2 14.80:02=200 63.2 50.0 20.8Table 4: Sequential exeution timesfrom the DAGs. Therefore, optimization has in general no e�et on them { exept for asesin whih optimizations eliminate a all to a skeleton.7.2 Sequential exeution timesWe measured the exeution time of the examples Karatsuba and frequent set and omparedthem with GHC (V. 4.01), a ompiler produing very fast lazy ode. We ompiled all ourC soures with theGNU C ompiler (V. 2.7.2.3) and optimization level {O3 (without/withoptimization refers only to the HDC ompiler), GHC was used with option {O.We gave GHC a straight-forward program for the Karatsuba algorithm, whih is notbased on the speial skeleton d4io. It an be found in Appendix B. In the frequentset program, only the input/output funtions were adapted to Haskell, and the skeletonsd0 and while were supplied with their reursive de�nitions whih do not ause as muhoverhead as the reursive de�nition of d4io.The size in the Karatsuba example indiates the length of both polynomials. For thefrequent set example, we state the threshold value and the number of elements in the bag(the times still depend on the partiular sample hosen).All times in Tab. 4 are given in seonds of pure proess time on a SUN workstation"Sun UltraSPARC" 167 MHz CPU with 256MB of memory.We expet that these numbers an still be improved. E.g., urrently, we have nodestrutive update mehanism for lists. Thus, eah modi�ation results in a opy of theentire list.The elimination of higher-order funtions auses an overhead due to deoding, whih isespeially notable if many higher-order funtions are involved, as, e.g., in the frequent setexample. Inlining an do a good job here, but some overhead will remain.7.3 Potential for ParallelismThe parallel skeleton implementations and the run-time system have yet to be developedto a point where speedup experiments are possible. Thus, we an only provide an idea ofthe potential for parallelism with data extrated by our ompiler and interpreter.44

input no. of operations no. of par. steps average par.samp/th. no opt. opt. ratio no opt. opt. ratio no opt. opt. ratioA/0.5 12075 8782 0.73 355 224 0.63 34.0 39.2 1.15B/0.5 55935 39559 0.71 893 586 0.66 62.6 67.5 1.08B/0.2 360963 252887 0.70 1854 1239 0.67 194.7 204.1 1.05Table 5: Run-time harateristis of the frequent set exampleThe Karatsuba example is expressed with a skeleton whose parallelism is ompletelystati, exept for some parameters, e.g., the problem size. Thus, the potential for paral-lelism an be analyzed by hand, e.g., the maximum degree of parallelism for a polynomialprodut of size 2n � 2n equals the number of base ases, whih is 3n .The frequent set example is muh more dynami: optimizations an a�et the strutureof the entire implementation. Therefore, it pays to analyze the properties of the programafter di�erent phases of the ompilation with theHDC interpreter. Tab. 5 shows the resultsof an interpretation of the abstrat ode with two di�erent samplesA =[[1,2,4,7℄,[5,6,7,8,9℄,[1,2,3,7℄,[1,3,5,8,9℄℄ and B = A++[[1,2,3,4,5℄℄ombined with thresholds of 0.5 and 0.2. The improvements after optimization demonstratethe important role inlining plays after the HOE.The large amount of work is due partly to the nature of the problem and partly to thelak of sophistiation of the soure program. Regardless of that, note that the optimiza-tions redue the number of operations by up to 30% and that there is a high potential ofparallelism.8 Using the HDC Compiler and Interpreter8.1 Menu strutureThe menu struture reets the state the HDC system is in and therefore the atual menuhanges after ertain phases of the ompilation. Note that the reason for restritionsonerning the hange from one menu to the other is the memory optimization. Data ofprevious ompiler phases whih is not neessary for proeeding is deleted. An exeptionis the optimization menu beause a reload for trying optimization with new parameterswould be unaeptable.Options are hosen by typing the harater printed ahead. In the following enumeration,we pre�x the harater with *, if the availability of the option depends on the (sub)stateof the system.
45

8.1.1 Initial menuThe initial menu appears after starting the system. The following hoies an be made:T Test. The purpose is to hek if the ompilation works on example .hd programswith example inputs and produes the orret results. The names of the examples tobe tested are listed in test/testfiles, the input/output pairs for an example, sayexample.hd is ontained in test/example.test.L Load File. The pathname of an example program to be ompiled is asked for,starting from the diretory in whih the HDC system was started. If the name ispre�xed with =, it starts with the diretory examples.I Interpreter. The interpreter takes input data interatively from the user and eval-uates the program with it. The purpose of the interpreter is to examine dynamiproperties of the ode at a ertain phase of the ompilation, i.e., ollet statistialdata for a partiular input pattern, e.g., the number of redutions. This gives us anestimate of the overhead introdued by ertain phases of the ompiler.C Code Generation. Performs all ompilation steps up to the �nal ode without anyinteration.H HO Elimination. The phases of monomorphization and higher-order elimination areperformed. Beause the internal representation of the program hanged, a higher-order elimination menu appears (Set. 8.1.2).S Settings. Enters the settings menu (Set. 8.1.4).R Restart. Provides the same state as after starting the system, also reloads theprelude �les.Q Quit. Leaves the system.8.1.2 Higher-order elimination menuThis menu an be entered only diretly after a higher-order elimination has been done.No optimization has been done yet. There are the following hoies. To proeed in theompilation proess, the option O (Optimization) has to be hosen.I Interpreter. As in the initial menu.O Optimization. Performs the optimization phase using the settings that an behanged in the settings menu. After this phase, the program is present in two repre-sentations: in the syntax tree form with some transformations (elimination of mutualreursion and ase elimination) and in the DAG form derived from it whih ontainsthe most optimizations. After this phase, the optimization menu (Set. 8.1.3) isentered. 46

S Settings.R Restart.Q Quit.8.1.3 Optimization menuThe purpose is to make experiments with di�erent optimization strategies without passingthe time onsuming higher-order elimination phase again and again. There are the followingpossibilities:I Interpreter. As in the initial menu, it is the last syntax tree produed that isinterpreted.D DAG Interpreter. This interpreter works on the DAGs after the optimization phase.The e�et of di�erent inlining strategies an be observed on examples by reording thefree shedule and degree of parallelism with respet to a limited number of proessors.N New Optimization. A new optimization is made based on the �rst DAG versiongenerated.P Profiling Series. To examine the behavior of many optimization strategies with-out a huge amount of tedious user interation, this hoie an be made. User-de�nableHaskell funtions linked together with the HDC system are alled, whih ontrol thepro�ling, deal with errors that may our and summarize and format the result, e.g.,as a LATEX table.C Code Generation. Calls the ode generation on the optimizations yet made andwith the target arhiteture spei�ed in the settings.*E Exeute. This option an only be hosen after ode has been generated. If seleted,the user is asked for the input data, it is written into the input �le, the ompiledode is applied to this �le, and after exeution the output �le is displayed on thesreen. This is of ourse muh faster than with interpretation.S Settings.R Restart.Q Quit.
47

8.1.4 Settings menuSeleting an option an either ause a step in a yli shift of alternatives or a promptfor input of some number or name. In the ase of a yli shift, the urrent seletion isdisplayed.P Print Style. Selets the format in whih funtions of the program are displayed,e.g., only by type.G Generate Code for. The target arhiteture resp. the exeution model are to bede�ned here.I Interpreter Statistis. A swith for the olletion of additional informationabout the omputation, e.g., the free shedule, number of redutions, degree of par-allelism, et. This an ause the interpretation to take very long.T Trae DAG Interpreter. Selets the trae mode of the DAG interpreter.N Number of Proessors. De�nes the number of proessors whih are used for om-puting shedule information in the interpreters.*M Mutual Reursion Elimination. Toggles between di�erent strategies of mutualreursion, whih enable resp. give priority to elimination by inlining (Set. 4.8.1) andelimination by emulation (Set. 4.8.2). After the �rst DAG generation, this optiondisappears beause the syntax trees have been deleted.O Optimize by Inlining. Toggles the inlining mode. If inlining is swithed on, thepoints (A) to (E) appear by whih details of the inlining strategy an be de�ned.*A A -> Algorithm. Toggles between urrent version inlining and original version in-lining.*B B -> Number of Loops. Asks for the maximum number of iterations of the opti-mization yle.*C C -> Max. Rel. Funsize. Asks for the maximum fator by whih a funtion isallowed to inrease in the number of nodes. If this limit is reahed, the version of thefuntion before starting the urrent inlining proess is restored. The same holds forD.*D D -> Max. Abs. Funsize. Asks for the maximum number of nodes whih a funtionis allowed to reah due to inlining.*E E -> Inline Order. Toggles between di�erent orders of funtions in an inliningphase.V Verbose Mode. Set if detailed information during the optimization should be dis-played. 48

1 Print Funtions. Prints the funtions of the syntax tree on sreen or into a �le.*2 Print DAGs. Prints the DAGs after the optimization.*3 Print DAGs (before optimizing dags). Prints the DAGs before optimization.S Save Options. The urrents settings are saved for the next session.L Load Options. Saved settings an be loaded.Q Quit Settings. Quit the settings menu and returns to the menu from whih it wasalled.8.2 InterpreterThe purpose of the interpreter is to ollet statistial data of the program representation ata ertain phase of the ompilation with respet to partiular input data. The interpretationis very slow and if only the output data is of interest, the user is advised better to generatesequential ode and to exeute it interatively.There are two versions of the interpreter: one whih works on the syntax tree (simplyalled interpreter), the other operates on the DAG struture (alled DAG interpreter).8.3 Diretory strutureTo work with theHDC ompiler, the user has to set the shell environment variable HDC ROOTwhih de�nes the path of the working diretory. This diretory has the following subdire-tories:� do. Contains all doumentation, e.g., this report.� examples. Contains a set of soure programs. Eah HDC program has the �leextension .hd. There are also Haskell programs with �le extension .hs, whih servefor debugging and omparison purpose and di�er only slightly from the .HDC programwith the same name.� experiment: Target programs of the HDC ompiler are written into this diretory.Also, input and output �les of the target program are loated here.� imports: Contains the prelude �les, see Set. 8.4.� lib: Contains the run-time libraries to be linked with the output of the HDC om-pilation.� profile: This diretory ontains variants of the Haskell �le Experiment.hs, whihbelong to the ompiler. This �le ontains funtions whih ontrol a partiular exper-iment series and produe, e.g., LATEX output of the results.49

� sr: This is the soure diretory. All its �les are either neessary to build the HDCompiler (.ly, .hs, .lhs) or to generate the run-time library (.h, .). Also, themakefile is loated here.� test: Used for verifying the urrent release of theHDC ompiler. The �le testfilesontains a olletion of those examples, for whih the HDC ompiler should workorretly before a new version is ommitted. The �les with extension .test ontainpairs of input and output data against whih the ompiled program is to be heked.8.4 The prelude partsThe prelude is divided into four parts, whih an be found in diretory $HDC ROOT/imports.Prelude.hd, HDCPrelude.hd and SkelPrelude.hd are loaded by the HDC ompilerinitially. HDCPrelude.hs is needed if HDC programs are to be used as Haskell programs.The de�nitions ontained in these �les form part of the HDC language and, thus, shouldnot be hanged by the user. They an be extended by additional de�nitions if new skeletonsare to be added.1. Prelude.hd ontains some prede�ned Haskell funtions whih an also be used inHDC. This part of the prelude is listed in Appendix A.2. HDCPrelude.hd ontains additional Haskell funtions, whih are of speial interestto us. In partiular, skeletons like d4io are de�ned here. This prelude part is notlisted beause the type de�nition and explanation of the skeletons have already beenpresented in Set. 3.3. SkelPrelude.hd ontains interfae (type) de�nitions of skeletons. The name of askeleton must have the pre�x skel .4. HDCPrelude.hs ontains the Haskell de�nitions of the additional funtions (inHDCPrelude.hd).9 Related WorkThere have been many approahes to skeletal and funtional programming. We onentratehere on those whih have been most suessful and/or have had signi�ant inuene onour work.Two funtional languages have been designed expliitly with parallelism in mind; bothmake use of parallel vetor operations. The fous of the language Sisal (Skedzielewski,1991) is on numerial omputations, using loops on arrays. For some programs, its per-formane is superior to FORTRAN. Sisal is ompiled to a data ow graph language. Theidea of our intermediate DAG language stems from Sisal. In ontrast to Sisal, the fous ofthe language Nesl (Blelloh, 1992) is on reursive programs using nested sequenes. Nesl50

is ompiled to an intermediate language, whih uses parallel vetor operations. Both Sisaland Nesl do not use skeletons and do not permit higher-order funtions.The language GpH (Trinder et al., 1998) is an extension of Haskell with a new primitivepar, to be used together with the Haskell primitive seq to presribe where values aresupposed to be omputed in sequene or in parallel. However, in ontrast to HDC, asidefrom a restrition of the evaluation order via seq, no shedule and alloation an be de�nedin GpH. Instead, parallel proesses are distributed dynamially. GpH puts no restritionon the use of higher-order funtions in Haskell. The user an de�ne new skeletons, usingevaluation strategies spei�ed with seq and par.There is another di�erene to HDC: in order to preserve laziness, the input data fora proess is only sent partially { if evaluation proeeds, further data must be requested.However, due to its treatment of higher-order funtions, GpH is the language whih is mostsimilar to HDC.The idea to use a skeleton for DC was introdued by Cole (1989). The group of Dar-lington at Imperial College has published a olletion of funtional skeletons for parallelprogramming (Darlington et al., 1993).P3L (Bai et al., 1995) is an imperative language, whih uses skeletons at the top levelbut does not support funtions as run-time parameters of the skeleton. David Busvine andTore Bratvold presented in their Ph.D. theses (Busvine, 1993; Bratvold, 1994) extensionsof ML with skeletons, but their use of higher-order funtions is very restrited.The language Eden (Breitinger et al., 1997; Gal�an et al., 1996) failitates the de�nitionof skeletons on top of Conurrent Haskell. Eden imposes no restrition on higher-orderfuntions. Eden di�ers from HDC in that skeletons have more restrited signatures and,therefore, annot be used as generally; skeleton instanes have to be wired together usinghannels.10 State of the ImplementationAt present, all ompiler phases other than the optional phase of size inferene are imple-mented. One ritial hallenge for the language HDC is e�etive load balaning. We planto exploit the information supplied by the size inferene in this regard.The parallel implementations of all skeletons other than map have yet to be oded.Therefore, we have to defer the presentation of speedup results. Initially, we shall provideimplementations in the model of entralized input/output.Previous experimental work has demonstrated the potential for good speedups usingDC skeletons (Musiol, 1996).
51

A Prelude.hd-- Prelude.hd-- This file ontains predefined HDC types and funtions that are-- already predefined in Haskell. "primitive" delarations indiate-- that the funtion has a builtin implementation-- ***********************-- ** basi funtions **-- ***********************-- undefined onstantprimitive undefined :: a-- onstant funtiononst :: a -> b -> aonst x = -- identity funtionid :: a -> aid x = x-- funtion omposition(.) :: (b->) -> (a->b) -> (a->)f . g = \x -> f (g x)-- strit funtion: always evaluates x to normal form and then-- applies f to the result. The normal form of a partially applied-- funtion is its losure represented as algebrai data typestrit :: (a->b) -> a -> bstrit f x = skel_strit f x-- **********************-- ** input and output **-- **********************-- the data type of IO ationsdata IO a = IO a-- onstruts an empty IO ation whih returns xreturn :: a -> (IO a)return x = IO x 52

-- ombines an IO ation whih returns x and an-- IO ation f whih takes x as an argument to-- a larger IO ation(>>=) :: IO a -> (a -> IO b) -> IO b(>>=) (IO x) f = skel_strit f x-- ***************-- ** boolean **-- ***************-- built-in onstants:-- False :: Bool-- True :: Bool-- logial negationprimitive not :: Bool -> Bool-- logial and and or, strit in the-- seond argument if (&&) resp. (||)-- not inlined, be areful!(&&), (||) :: Bool -> Bool -> Boola && b = if a then b else Falsea || b = if a then True else b-- *******************************-- ** omparison and ordering **-- *******************************-- less, less_or_equal, greater, greater_or_equal, unequal, equalprimitive (<), (<=), (>), (>=), (/=), (==) :: Ord a => a -> a -> Bool-- minimum and maximumprimitive min, max :: Ord a => a -> a -> a-- **************************-- ** general arithmeti **-- **************************-- unary negation:-- - :: Num a => a -> a 53

-- addition, subtration, multipliationprimitive (+), (-), (*) :: Num a => a -> a -> a-- sum, produtsum, produt :: Num a => [a℄ -> asum xs = skel_red (+) 0 xsprodut xs = skel_red (*) 1 xs-- power to an integer numberprimitive (^) :: Num a => a -> Int -> a-- ******************************-- ** arithmeti onversions **-- ******************************-- onversion from Int to Doubleprimitive fromInt :: Int -> Double-- onversion from Double to Intprimitive floor :: Double -> Intprimitive eiling :: Double -> Int-- **************************-- ** integer arithmeti **-- **************************-- integer division and remainderprimitive div, mod :: Int -> Int -> Int-- *********************************-- ** floating point arithmeti **-- *********************************-- floating point divisionprimitive (/) :: Double -> Double -> Double-- square rootprimitive sqrt :: Double -> Double-- exponential and logarithm to base eprimitive exp, log :: Double -> Double54

-- trigonometrisprimitive pi :: Doubleprimitive sin, os, atan :: Double -> Double-- ***********************-- ** tuple seletion **-- ***********************-- first element of a pairfst :: (a,b) -> afst (x,_) = x-- seond element of a pairsnd :: (a,b) -> bsnd (_,y) = y-- **********************-- ** list operators **-- **********************-- built-in onstrutors-- empty list: [℄ :: [a℄-- list ons: (:) :: a -> [a℄ -> [a℄-- length of a listprimitive length :: [a℄ -> Int-- test whether list is emptyprimitive null :: [a℄ -> Bool-- append two listsprimitive (++) :: [a℄ -> [a℄ -> [a℄-- append all sublists to a single listonat :: [[a℄℄ -> [a℄onat xs = skel_red (++) [℄ xs-- filter all elements out of a list fulfilling a prediatefilter :: (a->Bool) -> [a℄ -> [a℄filter p xs = skel_filter p xs-- list indexingprimitive (!!) :: [a℄ -> Int -> a 55

-- generate list of integer sequene with given boundsprimitive enumFromTo :: Int -> Int -> [Int℄-- take/drop the first _ elements of a listprimitive take, drop :: Int -> [a℄ -> [a℄-- the first element of a listhead :: [a℄ -> ahead xs = xs!!0-- the list without the first elementtail :: [a℄ -> [a℄tail xs = drop 1 xs-- apply a funtion to all elements of a listmap :: (a->b)->[a℄->[b℄map f xs = skel_map f xs-- onstrut a list of pairs from two listszip :: [a℄ -> [b℄ -> [(a,b)℄zip xs ys = sinGen (\i -> (xs!!i,ys!!i)) (min (length xs) (length ys))-- apply a funtion to all pairs of elements of two listszipWith :: (a->b->) -> [a℄ -> [b℄ -> [℄zipWith f xs ys = sinGen (\i -> f (xs!!i) (ys!!i))(min (length xs) (length ys))-- hek whether a prediate holds for all/any element of a listall, any :: (a -> Bool) -> [a℄ -> Boolall p xs = (skel_while (\i -> if i<length xs then p (xs!!i) else False)(+1) 0) ==length xsany p xs = not (all (not . p) xs)-- redues the elements of a list given a binary operator and a neutral-- element from the left resp. rightfoldl :: (a->b->a) -> a -> [b℄ -> afoldl f e xs = snd (skel_while (\(i,_) -> i<length xs)(\(i,x)-> (i+1, f x (xs!!i))) (0,e))foldr :: (a->b->b) -> b -> [a℄ -> bfoldr f e xs = snd (skel_while (\(i,_) -> i>=0)(\(i,x) -> (i-1, f (xs!!i) x)) (length xs -1,e))56

B Karatsuba in Haskellleft xs = take (length xs `div` 2) xsright xs = drop (length xs `div` 2) xskaratsuba :: [Int℄ -> [Int℄ -> [Int℄karatsuba xs ys =if length xs == 1then [0,(xs!!0)*(ys!!0)℄else let xhs = left xsxls = right xsyhs = left ysyls = right yshs = karatsuba xhs yhsls = karatsuba xls ylsms = karatsuba (zipWith (+) xhs xls) (zipWith (+) yhs yls)mhls= zipWith3 (\m h l -> m-h-l) ms hs lsq0 = left hsq1 = zipWith (+) (right hs) (left mhls)q2 = zipWith (+) (right mhls) (left ls)q3 = right lsin q0 ++ q1 ++ q2 ++ q3main :: IO ()main = dos <- readFile "input"let (a,rest):_ = reads s :: [([Int℄,String)℄(b,_):_ = reads rest :: [([Int℄,String)℄ = karatsuba a bwriteFile "output" (show)return ()

57

AknowledgementsThis work has been funded by the DFG under projet ReuR2 and by the DAAD underexhange projets with Britain and Sweden. We thank the Paderborn Center for ParallelComputing for aess to their Parsyte GCel-1024.Thanks to John O'Donnell for many fruitful disussions, in whih he onvined usto base our transformational approah for DC on equational reasoning in Haskell. KevinHammond pointed out the problem of a possible loss of sharing due to ommuniation. Theidea of skeleton sinGen stems from the work by Bj�orn Lisper (1996). We were made awareof the frequent set problem by David Skilliorn, who posed it as a benhmark problem fora reent Dagstuhl seminar on high-level parallel programming (no. 99171).Thanks also to Holger Bishof, Peter Faber, Martin Grajar and Henry Kehbel for theirexpert help onerning C, MPI and operating system issues.The Data Display Debugger, developed by Zeller and L�utkehaus (1996), saved us muhtime in analyzing the automatially generated C ode.ReferenesAlfred V. Aho, John E. Hoproft, and Je�rey D. Ullman. The Design and Analysis ofComputer Algorithms. Series in Computer Siene and Information Proessing. Addison-Wesley, 1974.Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers { Priniples, Tehniques,and Tools. Addison-Wesley, 1986.George S. Almasi and Allan Gottlieb. Highly Parallel Computing. Series in ComputerSiene and Engineering. Benjamin/Cummings, 1989.Bruno Bai, Maro Danelutto, Salvatore Orlando, Susanna Pelagatti, and Maro Van-neshi. P3L: A strutured high level programming language and its strutured support.Conurreny: Pratie and Experiene, 7(3):225{255, 1995.Je�rey M. Bell, Fran�oise Bellegarde, and James Hook. Type-driven defuntionalization.ACM SIGPLAN Noties, 32(8):25{37, 1997. Pro. ACM SIGPLAN Int. Conf. on Fun-tional Programming (ICFP'97).Rihard Bird. Introdution to Funtional Programming using Haskell. Series in ComputerSiene. Prentie Hall Europe, 2nd edition, 1998.Guy Blelloh. NESL: A nested data-parallel language. Tehnial Report CMU-CS-93-129,Department of Computer Siene, Carnegie-Mellon University, 1992.George H. Botorog and Herbert Kuhen. EÆient parallel programming with algorithmiskeletons. In Lu Boug�e, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors,Euro-Par'96, Vol. I, LNCS 1123, pages 718{731. Springer-Verlag, 1996.58

Tore A. Bratvold. Skeleton-Based Parallelisation of Funtional Programs. PhD thesis,Department of Computing and Eletrial Engineering, Heriot-Watt University, 1994.Silvia Breitinger, Ulrike Klusik, and Rita Loogen. An Implementation of Eden on top ofConurrent Haskell. In Werner Kluge, editor, Implementation of Funtional Languages(IFL'96), LNCS 1268, pages 142{161. Springer-Verlag, 1997.David J. Busvine. Deteting Parallel Strutures in Funtional Programs. PhD thesis,Department of Computing and Eletrial Engineering, Heriot-Watt University, 1993.Silvia Ciarpaglini, Maro Danelutto, Laura Folhi, Carlo Manoni, and Susanna Pelagatti.ANACLETO: A template-based p3l ompiler. In Pro. 7th Parallel Computing Workshop(PCW'97), pages P2{F{1{7. Australian National University, 1997.Murray I. Cole. Algorithmi Skeletons: Strutured Management of Parallel Computation.Researh Monographs in Parallel and Distributed Computing. Pitman, 1989.Jean-Fran�ois Collard. Automati parallelization of while-loops using speulative exeu-tion. Int. J. Parallel Programming, 23(2):191{219, 1995.Luis Damas and Robin Milner. Prinipal type shemes for funtional programs. In Pro.9th ACM Symp. on Priniples of Programming Languages (POPL'82), pages 207{212.ACM Press, 1982.John Darlington, Anthony Field, Peter Harrison, Paul Kelly, David Sharp, Qian Wu,and Ronald L. While. Parallel programming using skeleton funtions. In Arndt Bode,Mike Reeve, and Gottfried Wolf, editors, Parallel Arhitetures and Languages Europe(PARLE '93), LNCS 694, pages 146{160. Springer-Verlag, 1993.John Darlington, Yi-ke Guo, Hing Wing To, and Jin Yang. Skeletons for strutured parallelomposition. In Pro. 15th ACM SIGPLAN Symposium on Priniples and Pratie ofParallel Programming (PPoPP'95), pages 19{28. ACM Press, 1995.Tzilla Elrad and Nissim Franez. Deomposition of distributed programs intoommuniation-losed layers. Siene of Computer Programming, 2(2):155{173, 1982.Luis A. Gal�an, Crist�obal Pareja, and Riardo Pe~na. Funtional skeletons generate proesstopologies in Eden. In Herbert Kuhen and S. Doaitse Swierstra, editors, ProgrammingLanguages: Implementations, Logis, and Programs (PLILP'96), LNCS 1140, pages 289{303. Springer-Verlag, 1996.Sergei Gorlath. Systemati eÆient parallelization of san and other list homomorphisms.In Lu Boug�e, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-Par'96,Vol. II, LNCS 1124, pages 401{408. Springer-Verlag, 1996.
59

Sergei Gorlath and Susanna Pelagatti. A transformational framework for skeletal pro-grams: Overview and ase study. In Jos�e D. P. Rolim et al., editor, Parallel and Dis-tributed Proessing, LNCS 1586, pages 123{137. Springer-Verlag, 1999. IPPS/SPDP'99Workshops.Martin Griebl and Christian Lengauer. On the spae-time mapping of WHILE-loops.Parallel Proessing Letters, 4(3):221{232, September 1994.Haskell 98{Report. Simon L. Peyton Jones and John Hughes, editors. Haskell 98: A non-strit, purely funtional language. Tehnial report, http://haskell.org, 1999.HDC website, Lehrstuhl f�ur Programmierung, Universit�at Passau. The HDC ompilerprojet. http://www.fmi.uni-passau.de/l/hd/, 1999.Christoph A. Herrmann and Christian Lengauer. On the spae-time mapping of a lass ofdivide-and-onquer reursions. Parallel Proessing Letters, 6(4):525{537, 1996.Christoph A. Herrmann and Christian Lengauer. Parallelization of divide-and-onquer bytranslation to nested loops. Tehnial Report MIP-9705, Fakult�at f�ur Mathematik undInformatik, Universit�at Passau, Marh 1997.Christoph A. Herrmann and Christian Lengauer. Size inferene of nested lists in funtionalprograms. In Kevin Hammond, Tony Davie, and Chris Clak, editors, Pro. 10th Int.Workshop on the Implementation of Funtional Languages (IFL'98), pages 346{364.Department of Computer Siene, University College London, 1998.Christoph A. Herrmann and Christian Lengauer. Parallelization of divide-and-onquer bytranslation to nested loops. J. Funtional Programming, 1999. To appear.Zhenjiang Hu. Personal ommuniation at the Dagstuhl Seminar on High-Level ParallelProgramming, April 1999.Thomas Johnsson. Lambda lifting: Transforming programs to reursive equations. InJean-Pierre Jouannaud, editor, Pro. Conf. on Funtional Programming Languages andComputer Arhiteture (FPCA'85), LNCS 201. Springer-Verlag, 1985.Owen Kaser, C. R. Ramakrishnan, and Shaunak Pawagi. A new approah to inlining.Tehnial Report 92/06, Computer Siene Department, SUNY at Stony Brook, 1992.Owen Kaser, C. R. Ramakrishnan, and Shaunak Pawagi. On the onversion of indiret todiret reursion. ACM Letters on Programming Languages and Systems, 2(1{4):151{164,1993.Christian Lengauer. Loop parallelization in the polytope model. In Eike Best, editor,CONCUR'93, LNCS 715, pages 398{416. Springer-Verlag, 1993.60

Bj�orn Lisper. Data parallelism and funtional programming. In Guy-Ren�e Perrin andAlain Darte, editors, The Data Parallel Programming Model, LNCS 1132, pages 220{251. Springer-Verlag, 1996.Alberto Martelli and Ugo Montanari. An eÆient uni�ation algorithm. ACM Trans. onProgramming Languages and Systems, 4(2):258{282, April 1982.Jayadev Misra. Powerlist: A struture for parallel reursion. ACM Trans. on ProgrammingLanguages and Systems, 16(6):1737{1767, November 1994.Marian Musiol. Implementierung von parallelem Divide-and-Conquer auf Gittertopologien.Diplomarbeit, Fakult�at f�ur Mathematik und Informatik, Universit�at Passau, 1996.Peter S. Paheo. Parallel Programming with MPI. Morgan Kaufmann, 1997.Lawrene G. Paulson. ML for the Working Programmer. Cambridge University Press, 2edition, 1996.Simon L. Peyton Jones. The Implementation of Funtional Programming Languages. Pren-tie Hall Int., 1987.Simon L. Peyton Jones. Compiling Haskell by program transformation: A report fromthe trenhes. In Hanne Riis Nielson, editor, Programming Languages and Systems(ESOP'96), LNCS 1058, pages 18{44. Springer-Verlag, 1996.Mihael J. Quinn. Parallel Computing. MGraw-Hill, 1994.Christian Shaller. Elimination von Funktionen h�oherer Ordnung in Haskell-Programmen.Diplomarbeit, Fakult�at f�ur Mathematik und Informatik, Universit�at Passau, September1998.Stephen K. Skedzielewski. Sisal. In Boleslaw K. Szymanski, editor, Parallel FuntionalLanguages and Compilers, Frontier Series, hapter 4. ACM Press, 1991.Hannu Toivonen. Disovery of Frequent Patterns in Large Data Colletions. PhD thesis,Department of Computer Siene, University of Helsinki, 1996.Phil W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon L. Peyton Jones.Algorithm + strategy = parallelism. J. Funtional Programming, 8(1):23{80, January1998.Mihael Wolfe. High Performane Compilers for Parallel Computing. Addison-Wesley,1995.Andreas Zeller and Dorothea L�utkehaus. DDD { a free graphial front-end for UNIXdebuggers. ACM SIGPLAN Noties, 31(1):22{27, January 1996.61

