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Abstract

We present a compiler for the functional language HDC, which aims at the generation
of efficient code from high-level programs. HDC, which is syntactically a subset of
the widely used language Haskell, facilitates the clean integration of skeletons with a
predefined efficient parallel implementation into a functional program. Skeletons are
higher-order functions which represent program schemata that can be specialized by
providing customizing functions as parameters. The only restriction on customizing
functions is their type. Skeletons can be composed of skeletons again. With HDC, we
focus on the divide-and-conquer paradigm, which has a high potential for an efficient
parallelization.

We describe the most important phases of the compiler: desugaring, elimination
of higher-order functions, generation of an optimized directed acyclic graph and code
generation, with a focus on the integration of skeletons. The effect of the transfor-
mations on the target code is demonstrated on the examples of polynomial product
and frequent set.
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1 Introduction

Massive parallelization is an important issue when dealing with computation-intensive
problems like weather forecasting, image and signal processing, system simulation or solving
large systems of linear equations or inequations. The manual development of a parallel
program for a specific problem may lead to efficient code but is time-consuming and error-
prone, and programs developed this way are usually difficult to reuse for similar problems.

We propose a different approach in which the program does not contain explicit parallel
instructions. Instead we provide a class of skeletons, i.e., program schemata, which we
can specialize by customizing functions supplied as parameters, and for which we provide
efficient parallel implementations. We concentrate on divide-and-conquer (DC) skeletons.
DC reduces the problem size quickly, induces a natural partitioning and contains few
dependences which could limit parallelism.

We specify DC skeletons in a functional language, although our target language for
the parallel implementations is imperative (currently C+MPI). This gives us the benefits
of abstraction, which unburdens the programmer from the issues of parallelism. Also, it
allows for equational reasoning, which helps the implementer in the derivation of a correct
and efficient implementation. The name of our language is HDC (for Higher-order Divide-
and-Conquer), see (HDC website, 1999). Its syntax is like that of Haskell (Bird, 1998),
since Haskell possesses many of the properties we need, especially:

Strong typing. Haskell’s type system provides much more support for the safe use of
skeletons than the target language C.

Higher-orderness. Higher-order functions provide a powerful, general basis for the spec-
ification of skeletons. Note that customizing functions can again be skeletons.

Referential transparency. The absence of side effects permits equational reasoning,
which we employ to transform skeletons.

Concise list syntax. Haskell has list comprehensions, which are syntactic sugar to spec-
ify lists in a closed form. The index-based list construction helps us in making the
transformation from recursive Haskell skeletons to loop skeletons in C (Herrmann and
Lengauer, 1997). Also, for regular sequences of integers, the HDC compiler retains
the corresponding list comprehension with a single generator as a skeleton, named
sinGen, in the implementation.

An added benefit is the availability of Haskell tools for the development of example pro-
grams and the possibility of a comparison of the HDC target code with that of Haskell
compilers like the Glasgow Haskell Compiler GHC (Peyton Jones, 1996).

The semantics of HDC differs in one important point from that of Haskell: Haskell
is lazy, while HDC is strict. The reason is that we use the parallelization technique of
space-time mapping (Herrmann and Lengauer, 1996), which is based on a strict semantics.
However, to increase efficiency, our compiler may choose a non-strict semantics in certain
appropriate places — e.g., for the branches of a conditional, but also in some other places.



So, there is no guarantee that all arguments of a function are evaluated before the call.
Skeleton implementations are hand-tailored by the skeleton implementer and, thus, are
excluded from these (and any other) compiler optimizations.

The semantic difference between strictness and laziness only shows up in the termination
behavior. Thus, terminating HDC programs deliver the same result as if evaluated under
Haskell. Since we only deal with terminating programs, our HDC programs can be either
compiled with our HDC compiler, or alternatively with GHC.

Together with the compiler, we also provide an interpreter which is able to analyze
the intermediate code produced by certain phases of the compilation and report certain
properties of the program to the user, like the free schedule (the number of steps if each
operation is performed as soon as the data dependences permit), the average degree of
parallelism (the number of parallel processors required by the free schedule), etc. Compiler
and interpreter are either controlled interactively using the menu described in Sect. 8.1, or
by running a Haskell script which must be compiled together with the rest of the system.

Unlike GHC, our compiler does not implement higher-orderness via graph reduction.
Instead, each higher-order function is replaced by the collection of its first-order special-
izations. Functional arguments are encoded by algebraic data types which contain the
function identifier and the environment of the function passed, using a modification of the
defunctionalization method presented by Bell et al. (1997).

One might ask why we did not choose the obvious route of extending the Haskell syntax
with annotations for skeleton calls and making use of one of the existing, powerful Haskell
compilers. Then, the skeleton implementations (also, e.g., in C+MPI) would take Haskell
closures as arguments and pass them to a new Haskell run-time environment. We decided
against this for the following reasons:

e List operations in HDC are subject to parallelization, but a Haskell compiler con-
structs lists sequentially using the list constructor (:). Providing a new abstract data
type, which represents parallel lists, would clutter up the syntax. Also, our skeletons
would have to be expressed in terms of the new data type.

e As far as we know, there exists, at present, no interface for passing Haskell closures
between heaps on different processors of a distributed-memory machine. The solution
of Glasgow Parallel Haskell (Trinder et al., 1998) to provide a global heap contradicts
our principle of communication-closed blocks (see Sect. 5.1).

e Our target language, C+MPI, is implemented on a wider range of systems than the
special libraries which the Haskell compilers require.

We use the following font conventions:

e Syntactic level: We use typewriter font, e.g., for the name Bool, the constructor
False or the number constant 12.

e Semantic level: Objects at this level, like the type Bool or the type constant False,
are slanted. Unless otherwise specified, the semantics of a syntactic constant is



defined by default by keeping the name and changing the font, and vice versa. Type
arrows are written —. Lambda abstractions are written Az.v. Objects at the semantic
level which can be identified with their counterparts at the meta level, like numbers,
mathematical operators and parentheses, are not slanted.

e Meta level: Like this text, elements of the language of our description are written
in roman font and are underlined if they belong to an algorithmic or logic language,
like for each or iff. Syntactic equality is denoted by =, semantic equality is by =.
Meta variables which represent types on both the syntactic and the semantic level
are written in Greek letters, like a. They are different from so-called type variables,
which are elements of the other levels. Variables representing infix operators are
written with symbols, like ¢. All other variables, like z, are written in Latin letters
with italic font.

2 The Language HDC

Although HDC is almost a restriction of Haskell, there are some language constructs which
are treated differently in the implementation.

2.1 Program structure

A program consists of a set of data type definitions (Sect. 2.2.4) and a set of function
definitions (Sect. 2.3). The main function, which describes the entire input/output behavior
of the program, must be named parmain.

2.2 Types

Like ML (Paulson, 1996) and Haskell (Bird, 1998), HDC has the Hindley-Milner type
system (Damas and Milner, 1982). Type variables are universally quantified, i.e., a poly-
morphic parameter cannot be instantiated with two different types.

2.2.1 Type expressions

The language of type expressions is defined inductively by the following cases, assuming
a; are already in the language:

e Unit (the type which contains only one element: Unit)
e Bool (the truth values False and True)
e Int (restricted integers 273 to +231—1)

e Double (64-bit floating-point values)



e oy —> oy (functions with domain type ag and codomain type «);
-> associates to the right; parentheses ( and ) can be used to group function types

e [a] (lists with elements of type «yq)
e (,...,a, 1) (n-tuples, n > 1)
e 10 aq (input/output actions which deliver an element of type «p)

e tcname oy...a,_; (algebraic data types with n type arguments; see Sect. 2.2.4)

2.2.2 Type classes

In order to avoid duplication of the source code due to overloading, HDC contains two
type classes. The type class Num contains the types Double and Int and is used in the
definition of numerical functions. The other type class, Ord, contains Double, Int and
Bool and is used for comparison. Type variables in a type expression can be restricted to
a type class by replacing the type expression o with ¢g => a or with (c¢y,...,ch_1) => a,
where the ¢; are Num $ or Ord (3, where 3 is a type variable occurring in .

2.2.3 Type constraints

The type of an expression is derived by successively matching two types against each other
in a system of type equations. How this matching has to work is defined by type derivation
rules or constraints for each language construct. Take the infix operator ==, which compares
two expressions for equality. If in the type inference the expression a == b is encountered
and « is the type of expression a and /3 the type of expression b, the constraint {a = 8} is
added with consequences for the types v, in the subexpressions of ¢ and b and at all other
places where the v, are used.

2.2.4 User-defined types

The user can define additional, so-called algebraic data types according to the following
syntax:

data tcname Qqp...0, = CO B(0,0)"'B(O,l(ﬂ)) | | Om ﬁ(m,ﬂ)"'ﬂ(m,l(m))

tename is the name of the type constructor that is being defined. It is parametrized with the
types ayg,...,ar,. An element of the defined type can be of any of the following alternatives,
separated by |. The actual alternative is determined by the constructor, which is one of
Co,...,Cn. Each constructor C; is followed by a sequence of elements, which must be of the
types B;0)-B(iy- A constructor can be viewed as a function which takes the elements
of the respective types and delivers an element of the algebraic data type.

Algebraic data types provide flexibility for irregular data structures like trees. Take the
following example of a binary tree defined on elements of type a:



data Tree a = Leaf a | InnerNode (Tree a) (Tree a)

This definition has the constructors Leaf, which indicates a leaf node of the tree, and
InnerNode, which stands for a tree composed of two subtrees.

2.3 Function definitions

A function named, say, f is defined by its type, say, a and a defining equation. The type
definition is given by

fioa

and the defining equation is given in terms of an expression e containing the free variables
Ty oo Tyt

fxy.xy, = €

This definition is syntactic sugar for the following defining equation, which makes use of a
lambda abstraction (Sect. 2.4.5):

f=\1 > O\ > Az, —> e)..)
If each z; is of type a;, then the type of f can be defined by:

f i oay > (ap => ...(a,, => ()...)

In both the lambda and the type expression the parentheses can be omitted.

Functions can be defined recursively, also indirectly (or mutually) recursively, e.g.,
function f depends on ¢ and g depends on f. However, for better efficiency, recursive
definitions should be avoided, predefined combinators should be used instead.

2.4 Expressions
2.4.1 Variables

A variable is a name beginning with a lowercase letter and containing only letters and
digits. Internal names (also in the prelude) can also contain underscores. Each variable is
associated with a static type, possibly polymorphic or restricted to a type class. HDC is
lexically scoped, i.e., a free variable is bound to the innermost of all surrounding definitions
of this variable in the program text.

2.4.2 Constants

Predefined constants are Unit, False, True, [1, integer and floating point (double) con-
stants (Fig. 1). Constants can be defined by the user in a value definition (function defi-
nition without arguments) or as constructors of an algebraic data type, e.g.:

data Color = Yellow | Green | Blue



Type(s) Examples
Unit Unit
Bool False, True
Int, Double (Num) 0, -5, 32
Double 2.3
[a] (]

Table 1: HDC constants

2.4.3 Function application

Function application is denoted by juxtaposition, e.g., an application of function f to an
argument z is written fx. Formally, there are only functions with a single argument.
A function with multiple arguments is represented as a function which takes the first
argument and returns a function which is applied to the remaining arguments. This is
known as currying. If not all arguments are given, we speak of a partial application.
Function application associates to the left and binds more tightly than any other binary
operation. Function application adds the following constraints to the set of types:

{fra—=p,z:a fz:: [}

2.4.4 Infix binary operations

An infix operator, say ¢, is syntactic sugar for a function named (¢) taking two arguments.
HDC borrows the sectioning mechanism from Haskell, in which (z¢) is (¢) with a fixed
first argument z, (oz) is (¢) with a fixed second argument z and (z ¢ y) is (¢) with both
arguments fixed. Any function f taking two curried arguments can be used as a binary
infix operator by writing ‘f¢. For the actual operators, have a look at the prelude in
Appendix A.

2.4.5 Lambda abstractions

A lambda abstraction \z -> e defines a function which takes a value z and delivers the
value of the expression e in which each occurrence of the free variable z has been replaced
by the argument of the function:

(\z -> e) y = elz:=y]

e[z := y| denotes the substitution of every free occurrence of z in e by y.
Type constraint: { z :: a, e 5, (\z ->e): a—=0 }.

Curried function definitions can be abbreviated by writing all arguments successively,
i.e., instead of \zyg => (\z; -> ...(\z,_1 -> e)...) one can write \zy z;...2,_1 => e. Also,
structured arguments, so-called patterns (Sect. 2.4.10), like tuples or lists can be used. See
the following examples:



\x —> x+1

\xy => x+y instead of \x ->\y -> x+y
\(x,y) -> x+y instead of \z -> fst z + snd z
\[x,y] -> x+y instead of \z ->z!!0 + z!!1

The first definition describes a function which returns its argument incremented. The
second takes a value x and delivers a function which takes a value y and returns the sum
of x and y. The other two examples take a pair resp. a list and deliver the sum of both
components.

2.4.6 Conditional
The syntax of a conditional is
if cond then ¢ else ¢

This expression is strict in cond, but not strict in ¢ and e. If cond evaluates to True, t
is evaluated and returned as the value of the conditional. Otherwise, e is evaluated and
returned.

Type constraint: { cond :: Bool, t :: a, e :: «a, ( if cond then t else e ) :: « }.

Example: (factorial function)

fac n = if n==0 then 1 else n * fac (n-1)

2.4.7 Tuples

A tupleis an ordered, fixed-size collection of components zg...x,,_1, denoted by (g, ..., 2Z,_1),
where n > 1. If n = 2, we speak of a pair. The components need not be of the same type.
The elements of a tuple can be selected by pattern matching (Sect. 2.4.10).

2.4.8 Lists

A list is an ordered, arbitrary-size collection of components of the same type. A list of
length n can be given explicitly by [zy,...,2, 1].

2.4.9 List constructor (:)

The constructor (:) takes an element zy of type a and a list [z;,...,2, 1] of type [a] and
delivers the list [7,...,z, 1] of type [a]. Contrary to Haskell, in HDC, applying a single
: or tail is expensive, i.e., linear in the length of the list (in Haskell it is constant). The
advantage of HDC is that the linear chain of dependences present in Haskell lists does not
exist in HDC lists. This allows for a constant-time element access via the HDC version
of the index function (!!). The philosophy followed here is to exploit the DC paradigm
and, thus, the assumption is that a list is constructed by appending two (or more) lists of
roughly the same length. Alternatively, one can use list comprehensions (Sect. 2.4.14) to
compute all elements of a list simultaneously.



2.4.10 Patterns

Patterns are expressions which consist only of constructors (including the tuple and list con-
structor), constants and disjoint names. A pattern can occur as an argument in a function
definition or lambda abstraction, or on the left-hand side of a case branch (Sect. 2.4.12) or
let expression (Sect. 2.4.11). In this case, the pattern of the formal parameter is matched
against the value passed as actual parameter. A match of a name always succeeds, with the
consequence that the variable associated with this name is bound to the value. A match
of a composite expression succeeds if the constructors are identical and the matches of all
corresponding components succeed. Then, the environment is constructed by accumulat-
ing the bindings of all component matches. In the case of lists and tuples, both sides must
have the same number of components, because the constructors of tuples of different sizes
are distinct and list structures are desugared into a sequence of the binary : constructor.
If a pattern match fails, the next alternative in a list of defining equations or case branches
is tried. If no alternative remains, a run-time error occurs.

2.4.11 let expressions

let expressions are used for defining a local environment of values and functions, which
can be (mutually) recursive. The form of a let expression is:

let {eq ;.. ;eq } in e

where e is the expression which forms the value returned and the eg; are equations of the
form pat; = e;, where pat; is a pattern and e; an expression. If a pattern is an application of a
variable (pat; = fi 7o ... Zm(;)) the equation defines a local function with function symbol f;.
let expressions are desugared by a process called lambda-lifting (Johnsson, 1985; Peyton
Jones, 1987). If it should turn out in the long run that the program optimizations at later
phases cannot identify the common subexpressions originating from the elimination of let
expressions, other transformations will have to be considered.

A simplified layout style of Haskell can be used here as well as for the branches of case
expressions: braces and semicolons can be omitted if all eg; have the same indentation,
which is larger than the indentation of the let.

2.4.12 case expressions

A case expression defines a value by case distinction. The form of a case expression is:
case sel of { branchg ; ... ; branchy, }

where branch; = pat; => exp;. sel defines the value used for the case analysis. Each pat; is a
pattern to be matched with the value of sel, exp; delivers the result of the case expression
if the ith branch is the first whose pattern pat; matches (Sect. 2.4.10). As an example,
here is a function which sums up the numbers at all leaves of an instance of the binary
tree defined in Sect. 2.2.4.



sumup :: Num a => Tree a -> a
sumup tree = case tree of
Leaf x -> x
InnerNode leftSub rightSub -> sumup leftSub + sumup rightSub

As in let expressions, the pattern on the left side defines bindings for variables (here: x
resp. leftSub and rightSub) which can be used on the right side. The layout style, which
lets us define this expression without the use of braces and semicolons, requires that Leaf
and InnerNode have the same indentation which is larger than the indentation of case.

2.4.13 Arithmetic sequences

The arithmetic sequence, denoted [a..b], produces a list of integers ranging from a to b.

Example: [1..6] = [1,2,3,4,5,6]

2.4.14 List comprehensions

A list comprehension is a convenient Haskell construct for defining lists. The syntax of the
list comprehension is:

[el g,osgno1]

do, ---, Qn_1 is a sequence of qualifiers which produce a list el of environments, which has
the same length as the result of the list comprehension. The ith element of the result is
obtained by evaluating expression e in the ith element of the environment list. The list
of qualifiers is traversed from left to right. The initial e/ has length 1 and contains no
bindings. A qualifier can be either a generator or a guard.

e A generator (i <- zs) refines the el as follows. Each element, say, env of el is taken
as an environment for evaluating zs to a list of length [. env is removed from el and
replaced by [ new entries, one for each element of zs. The jth new entry contains
the old environment env plus a binding for 4 to the jth element of zs. ¢ must be a
variable.

e A guard is an expression of type Bool which, if evaluated to True, keeps el unchanged
and otherwise deletes the current element from el.

A formal semantics of list comprehensions is defined in Sect. 4.3.

List comprehensions correspond to loop nests in imperative languages. The ith qualifier
is located at the ith level of nesting. A generator corresponds to a loop and a filter to
a condition which governs the execution of the enclosed nest. This correspondence is
exploited in the implementation of skeletons.

Examples:

[ i+l | i<-[0,1,2] ] = [1,2,3]

[ (i,j) | i<-[0,1,2], j<-[0..i] 1 = [(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)]
[ i | i<-[0,1,2], even i ] = [0,2]



3 Skeletons

A skeleton is a predefined program schema. (The imperative world would call it a “tem-
plate”.) If it corresponds to a particular class of algorithms, like DC, it is called an
algorithmic skeleton. If it corresponds to a class of machine operations, it is called an
architectural skeleton. An example is the broadcast operation, which sends a message from
one processor to all other processors. Architectural skeletons are only of interest in the code
generation for a particular target machine or message-passing library. In the following, we
say just skeleton when we mean an algorithmic skeleton.

Skeletons have been used widely for parallel programming (Cole, 1989; Darlington et al.,
1993; Busvine, 1993; Bratvold, 1994; Darlington et al., 1995; Bacci et al., 1995; Botorog and
Kuchen, 1996; Gorlatch, 1996; Ciarpaglini et al., 1997; Gorlatch and Pelagatti, 1999). HDC
lends special support to programming with skeletons. The DC strategy can be expressed
formally as a skeleton which is instantiated with problem-specific, customizing functions.
E.g., the mergesort algorithm requires a customizing function which merges two ordered
lists. For a sound treatment of skeletons, HDC provides higher-order functions. Thus, one
can define a skeleton as a (recursive) function and replace it later by a predefined efficient
parallel implementation.

Though a single DC skeleton would be sufficient for a definition of the paradigm itself,
as is dc0 defined in Sect. 3.2.1, it would not adequately reflect the variety in the structure of
different DC algorithms. As a consequence, the use of the skeleton dc0 for all DC problems
would lead in many cases to bad performance of the implementation.

In order to exploit the specific structure of a DC algorithm, the DC paradigm can be
refined into different specialized forms (different skeletons) with varying patterns of data
dependence and data distribution (Herrmann and Lengauer, 1999).

Our special interest lies in sophisticated DC skeletons; a hierarchy of five such skeletons,
which we call dcO to dc4, is described in Herrmann and Lengauer (1997). In the present
report, dc4io (Sect. 3.2.2), an improved form of dc4, appears in our polynomial product
example. The frequent set example is too complicated to fit a single skeleton. It requires
many applications of simpler skeletons, which appear in this report. Some of them, like
map or filter, could, in principle, be expressed by DC.

The approach of the HDC compiler is to replace expensive patterns of computation by
efficient predefined implementations. The mechanism for implementing a skeleton should
be as easy as possible, because the need for further skeleton implementations may arise.
To implement a new skeleton, the prelude has to be extended by its type definition, and
the Haskell source file Skeletons.hs has to be extended with a function which generates
the skeleton implementation. The name of an interface for the skeleton is prefixed with
skel_, in order to recognize it as such and protect it against elimination and optimization
by the compiler. However, these prefixed functions should not be used outside the prelude,
because their type can differ from the Haskell type or change in future versions. The
corresponding functions to be used in application programs usually have the same name,
but without the prefix.

The following subsections list the skeletons which are implemented at present. For

10



each skeleton we provide the signature, an algorithmic definition in HDC and an example
application.

3.1 Skeletons for commonly used functions
3.1.1 map

Applies a function to all elements of a list.

map :: (a->b) -> [a]l -> [b]
map f [] =[]
map f (x:xs) = f x : map f xs

map (+1) [0,1,2] = [1,2,3]

3.1.2 red

Uses an associative function f to reduce a list of values to a single value.
red :: (a->a->a) -> a -> [a] -> a

red £ n [] =n
red £ n (x:x8) f x (red £ n x8)

red (+) 0 [1,2,3] =6

3.1.3 scan

Applies red to all prefixes of the given list.

scan :: (a->a->a) -> a -> [a]l -> [a]
scan f n xs = map (\i -> red f n (take i xs)) [0..length xs]

scan (+) 0 [1,2,3] = [0,1,3,6]

3.1.4 filter

Filters all elements that fulfill a predicate.

filter :: (a->Bool) -> [a]l -> [a]
filter p [] =[]
filter p (x:xs) = let rest = filter p xs
in if p x then x : rest
else rest

filter (>2) [0,5,3,1,5] = [5,3,5]
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3.2 7DC skeletons
3.2.1 dcO

DC in its general form.

dcO :: (a->Bool) -> (a->b) -> (a->[al) -> (a->[b]->b) -> a -> b
dcO pbdcx=1if p x

then b x

else ¢ x (map (dcO p b d ¢) (d x))

If the predicate function p determines that the problem x can be trivially solved, the
basic function b is applied. Otherwise the problem is divided by d, producing a list of
subproblems. The algorithm is mapped recursively onto the subproblems. At last, the
combine function c uses the input data x and the solutions of the subproblems to compute
the solution of the original problem.

A functional version of the quicksort algorithm can be expressed in terms of dcO:

quicksort :: Ord a => [a] -> [a]
quicksort xs
= let d (p:ps) = [filter (<p) ps, filter (>p) ps]

c (p:ps) [le,gr] le ++ p : (filter (==p) ps ++ gr)
in dcO ((<2).length) id d c xs

p is the name of the pivot. d generates two subproblems of the elements that are less resp.
greater than the pivot. le resp. gr are the solutions of these subproblems. ¢ combines
them and inserts the elements which equal the pivot in the middle.

3.2.2 dcdio

A special kind of DC which requires elementwise divide and combine operations on sub-
blocks of data.

dc4io :: Int->Int->Int->(a->b)->([al->[al)->([b]l->[b]l)->Int->[al->[b]
The definition of dc4io is more involved than the others, and we can only sketch it here:
dc4io probdegree indegree outdegree basic divide combine levels xs = ..

The parameters of dc4io have the following meaning:

e probdegree: :Int: the degree of problem division, i.e., the number of subproblems
which are generated for each problem not trivially solved; this degree is fixed in dc4io
in contrast to dcO.

e indegree: :Int: the degree of division of input data; it tells in how many blocks the
input data is to be divided.
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‘ problem ‘ probdegree ‘ indegree ‘ outdegree ‘

FFT, bitonic merge 2 2 2
polynomial product 4 (3) 2 2
matrix product 8 (7) 4 4

Table 2: example DC division degrees

e outdegree::Int: the degree of composition of output data; it tells of how many
blocks the output data is to be composed.

e basic::(a->b): the function to be applied in the trivial case.

e divide:: ([al->[al): the function divide takes a list of length indegree as input
and delivers a list of length probdegree as output; it describes how the element-
wise operation computes for each particular subproblem the element ¢ using the ith
element from each input block.

e combine:: ([b]->[b]l): the function combine takes a list of length probdegree as
input and delivers a list of length outdegree as output; it describes how the element-
wise operation computes for each particular output block the element 7 using the ith
element from each subproblem solution.

e levels: :Int: the number of recursive levels in which the DC tree unfolds, in contrast
to dcO there exists no predicate for determining the trivial case; the DC tree is
balanced and the number of levels can be computed easily from the problem size.

e xs::[a]: the input data; it is a list on which the division into blocks apply; likewise
the output data is also of list type (:: [b]).

dc4io works well for vector and matrix algorithms like FFT, bitonic merge, polynomial
product and matrix product (Herrmann and Lengauer, 1997). The Karatsuba polynomial
product is discussed in detail in Sect. 6.1.

indegree and outdegree depend much on the data representation, e.g., for vectors
they have the value 2 (left and right part), for matrices they have the value 4 (upper left
part, upper right part, lower left part and lower right part), see Tab. 2.

The parenthesized values are for the optimized version of the respective algorithm, e.g.,
for Karatsuba’s polynomial product and Strassen’s matrix product.
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3.3 Skeletons for improved efficiency
3.3.1 while

Takes a predicate p, a function £ and a value x and iterates f, starting from x, as long as
the predicate on the input for f is True. The while skeleton is intended to be used instead
of tail recursion in order to avoid the recursion stack.

while :: (a->Bool) -> (a->a) -> a —> a
while p £ x = if p x
then while p f (f x)
else x

while (\(i,s) -> i<3) (\(i,s) -> (i+1,s+ixi)) (0,0) = (3,5)

3.3.2 sinGen

Takes a function f and a value n and generates a list of length n whose value at position
i is computed by applying £ to i. The aim of sinGen is to have a short representation
for large, regular index sets, e.g., the odd numbers from 1 to 1000001. To make this work,
sinGen has to be fused in program optimization (see Sect. 4.12.2).

sinGen :: (Int->a) -> Int -> [a]
sinGen f n = map f [0..n-1]

sinGen (\i -> i*i) 4 = [0,1,4,9]

3.4 Evaluation control
3.4.1 strict

Takes a function f and an argument x and it guarantees to evaluate x before calling f.
Program optimizations will not touch the application of £ to x. This skeleton is necessary
to protect the I0 monad against elimination via inlining, due to a lack of data dependences.

strict :: (a->b) -> a -> b
strict f x = f x

strict (+1) 1 =2

3.5 Input/Output

For the input and output function, we cannot provide a purely functional definition. The
reason is their interaction with the input and output streams, which are hidden in the I0
monad. The C implementations of the skeletons are far too long to be given here — they
have to deal with nested lists and tuples.
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3.5.1 put

Takes a value and delivers an I/O action which returns Unit. In the I/O action, the value
is appended to the standard HDC output channel. Printable values are of type Int, Double
and also tuples and lists composed of printable values.

put :: a -> I0 Unit

3.5.2 get

Performs an I/O action in which a value of type a is read from the standard HDC input
channel. The set of readable values is the same as the set of printable values (see put).

get :: I0 a

4 The Structure of the Compiler

The HDC compiler translates a subset of Haskell into an imperative language — at present,
C with MPI calls. The main difference to Haskell is that HDC is strict, in order to
facilitate a compile-time parallelization. Two implementational differences to a typical
Haskell compiler are that (1) higher-order functions without a skeleton implementation
are eliminated and (2) list comprehensions are simplified to a combination of (parallel)
skeletons. The reason is that higher-order functions complicate but list comprehensions
simplify a static space-time mapping.

The compiler is based on the principle of compilation by transformation, which has
already been used successfully in GHC, and consists of a number of phases described in
Sect. 4.1 to 4.15. An interpreter, which can be used to analyze the program with respect
to correctness, performance and code structure after individual compilation phases, is
presented briefly in Sect. 8.2.

4.1 Scanner and parser

The source text is translated into a set of syntax trees, one for each function in the program.
Each syntax tree is represented as an algebraic data type in Haskell. First, the source code
is transformed by the scanner into a token stream. This common technique in compiler
construction (Aho et al., 1986) simplifies the generation of a grammar for HDC. For an
efficient parser generation, we use the parser generator happy, the functional equivalent
of yacc. The parser created by happy generates a syntax tree which is represented by an
algebraic data type in Haskell.

The layout style of Haskell is supported, i.e., indentation can be used instead of braces
and semicolons to group together items at the same level of particular syntactic structures.
The user can declare new operators just as, e.g., the operator (->>) is declared in the
program for the Karatsuba example on page 38, and state their precedence and associativity
(see the second line of the karatsuba program). This information is exploited by the parser.
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case exp of
case exp of Left y -> case y of
Left (Right x) -> expl Right x -> expl
-> exp2 dummyl -> exp2
dummy0 -> exp2

[

Figure 1: Example transformation of nested patterns

4.2 Desugaring

In this phase, complex syntactic structures are translated to compositions of simpler struc-
tures. Nested patterns are eliminated, in order to simplify the code structure for the
following phases. After the transformation, the pattern is either a simple variable or a
constructor followed by n variables, where n is the arity of the constructor given by the
definition, e.g., via data. Fig. 1 contains a simple transformation. An equational transfor-
mation of @ into b is denoted by a = b.

Pattern bindings like 1let Left (Right x) = exp receive a similar treatment. In this
case x is bound to:

case exp of
Left y -> case y of
Right z -> z
dummyl -> error "mismatch"
dummyO -> error "mismatch"

Sometimes the flattening of a pattern can lead to cascades of case expressions, which blow
up the size of the right-hand side of a pattern definition. This occurs when a pattern
includes a constructor with several arguments and many of these arguments represent a
subpattern which must also be flattened. But, in most cases, the growth of the case
expression is not dramatic and does not affect the performance of the remaining compiler
phases.

4.3 List comprehension simplification

GHC resolves comprehensions completely, up to the construction by the empty list ([1)
and cons (:), usually by traversing the list of qualifiers from left to right (Peyton Jones,
1987; Haskell 98-Report, 1999). Our goal is to base list comprehensions on (parallel)
skeletons. As presented here, our rewrite rules in Fig. 2 specify the traversal of the list of
qualifiers in the opposite order: from right to left. This has two advantages: (1) nested
maps are not intertwined with nested concats, which preserves structural information; (2)
an efficient filter skeleton is used instead of generating lots of empty lists in cases in
which guards fail. The disadvantage is that the rules will become far more complicated if
extended to the full capability of Haskell.
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IcEmpty Lell

= [el
lcSinGuard Lelg]
{gisaguard} =2 if ¢ then [e] else []
lcOptGuard
{gi are guards, Lel quyeesGn,Z<=28, 005y Gsevrs Gm 1

I%fmevam(gkﬂ = [e | QO:---:Qn:gk,17<_173,90,---,gk—1:gk+1:---:gm]
lcXGen Lel qyyesQn,r<—x8 ]

= concat [map (\z ->e) zs | qo,..., qn ]

lcGenGuard Lel q,..sqn,v<-z5,91]

{gisaguard}) = concat [map (\z ->e) (filter (\z => ¢) z5) | Go,..., G ]

lcTwoGuards Cel q,es@ns90,91 1]
{90, g1 are guards} = Lel q,...,qn, if go then ¢; else False ]

Figure 2: Simplification of list comprehensions

The rewrite rules shown in Fig. 2 cover all possible list comprehension formats in our
restricted language. They replace a list comprehension by applications of the skeletons
concat, map and filter which are supposed to have efficient implementations. The rules
are applied until no further application is possible. If there is a choice between several
rules, the one highest up in Fig. 2 is most efficient. Rule lcEmpty deals with the case
that the sequence of qualifiers has become empty by the other transformations.

Rule 1eSinGuard simplifies a qualifier list consisting of a single guard. Depending on
the value of the guard, the result is a list of either length 1 or length 0.

Rule IcOptGuard shifts a guard as far as possible to the left, in order to avoid multiple
evaluations.

Rule 1cXGen deals with the case that the last qualifier is a generator. The other
qualifiers define a list of environments. In the comprehension before simplification, the last
qualifier refines each element of this list by a set of new bindings for the last generator
variable z. After the transformation, this refinement is shifted to the expression on the left
side of the comprehension, which has been replaced by a list, one element for each instance
of the last generator in the current environment, as defined by the other qualifiers. We reuse
the name z of the generator variable for the lambda expression to preserve the bindings in
the transformation. Note that the left side is in the scope of the environment defined by
the qualifiers on the right side. Therefore, all free variables of zs are bound to the same
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values as before.

If a guard appears behind a generator, rule lcGenGuard helps to fuse the two. It
is similar to rule 1cXGen, except that the new bindings for the last generator variable,
which lead to a failure of the last guard, are eliminated from the list via the filter skeleton
before. The previous application of rule lcOptGuard assures that the guard really refers
to the variable bound by the generator.

If two guards appear next to each other, they can be simplified to a single guard
according to rule lcTwoGuards.

4.4 Lambda lifting, let elimination

Lambda abstractions and let expressions are eliminated by introducing auxiliary functions
(Johnsson, 1985). As mentioned in Sect. 2.4.11, other elimination methods should also be
considered for better efficiency.

4.5 Type checking

The type checker is based on unification using the rules by Martelli and Montanari (1982).
A simple type class system is implemented by assigning a type variable a set of possible
types. The unification of two type variables then involves computing the intersection of
both sets.

4.6 Monomorphization

In this phase, all type variables are eliminated and replaced by the types actually needed.
This requires the duplication of each function for all concrete types which occur in the
context. To ensure that all type variables are eliminated, monomorphization is started
from the I0 Unit type of the parmain function and propagated along the call structure,
using the bindings that are imposed by the type constraints of the language constructs.
If a polymorphic function is called, a copy of it with monomorphic type is added to the
code and the call is redirected to this copy. Arguments like y in fst (x,y) = x keep an
uninstantiated type, which is implemented by a void argument in C, if not even eliminated
by inline expansion (Sect. 4.12.1).

Monomorphization is needed because our aim is not to translate to a high-level target
language but to stay close to the machine representation of data and instructions.

Example:

Consider the following program as subject of monomorphization:

parmain :: I0 Unit
parmain = get >>= \xs ->
put (map id (xs::[Int]))
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map :: (a->b) -> [a]l -> [b]
map f xs = skel_map f xs

id :: a -> a
id x = x

Monomorphization delivers the following result:

parmain :: I0 Unit
parmain = get >>= \xs —->
put (map_T1 id_T2 (xs::[Int]))

map_T1 :: (Int->Int) -> [Int] -> [Int]
map_T1 f xs = skel_map f xs

id_T2 :: Int -> Int
id_T2 x = x

4.7 Elimination of functional arguments

HOE takes a program which must be well-typed according to the Hindley-Milner rules.
Also, the program must be closed, i.e., all functions cited in the program must be available
to the HOE procedure for a global analysis and transformation. The result of the HOE is
an equivalent first-order functional program, which is also well-typed.

4.7.1 Principles

The HOE algorithm we found (Bell et al., 1997) uses a set of seven rewrite rules for the
transformation. The idea is to replace the partial applications of a function by a kind of
closure. A closure contains a function identifier and the values of the free variables in the
partial application.

The replacement of functional arguments by closures proceeds as follows:

e A variable of a function type is left unchanged because it represents already a closure.

e A partial application of a function (see Sect. 2.4.3) is replaced by an instance of an
algebraic data type in which the function identifier is represented by a constructor.
The arguments of the constructor carry the values of the free variables in the partial
application. These values are taken from the context of the call.

e Alllocations at which a functional variable is applied are replaced by a call of an apply
function constructed for the respective function type. The first argument of the apply
function is the closure, the following arguments are the arguments of the encoded
function. The apply function applies the original function, with the respective partial

19



etaExpand :: Function — Function
etaExpand f
= if f returns a function as result

then add new variables as needed to f
else f

Figure 3: Algorithm etaExpand

encode :: Expression — State Expression
encode exprQ(f e;...e;...ep)
= if f is function or constructor
A ezpr is not a function
A e; - ais a functional argument
then do let

expr’ = (f e1...(C_e; v1..0p)...€)
data = (data Data_a = C_¢; (;...0,,)
apply = (apply_« :: Data.a — «
apply_a ¢ ...,
= case c of
C_e; V1..0p => €; T1...7;)
add data and apply to current program state State
return ezpr’
else return expr
where v;::04,...,0::3,, are the free variables in e;
71,...,7; are additional arguments for eta-expanded e;

Figure 4: Algorithm encode

applVar :: Expression — Expression
applVar ezprQ(f e;...e;,)
= if f::«r is a variable A ezpr is not a function
then apply o f e;...eq
else expr

Figure 5: Algorithm applVar
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application derived by the constructor, to the argument expression in the context of
the call which can use values of the closure, also encoded functions.

4.7.2 Rules

Some of the seven rules, which the original HOE algorithm (Bell et al., 1997) is based
on, deal with restricting polymorphism and become obsolete in our monomorphic setting.
The diploma thesis of one of the authors of this report (Schaller, 1998), describes an HOE
algorithm tailored for HDC, which uses the following set of four rules:

1. EtaExpand (Fig. 3). This rule expands function definitions, which return functions

as result, with as many additional formal arguments as the function returned expects.
If the result was polymorphic before monomorphization, the number of additional
arguments may depend on the call. Then, applications of the expanded function
include the application of the function returned and deliver a non-function result.

. Encode (Fig. 4). This rule encodes a functional argument using a constructor and
introduces an apply function as described above. The rule is given in a state-monadic
style, taking an expression as argument and returning an expression, while having
access to the current program state. Depending on the type of the functional argu-
ment, the generated constructor is added to a data type, called Data, parametrized
with an identification of the type of the argument. This is necessary for the correct
generation of skeleton instances in a later phase of the compiler.

. ApplVar (Fig. 5). If, in a function application, the function is represented by a
variable which is marked to carry a closure value, a temporary type inconsistency
occurs during the transformation because a closure cannot be applied. This rule
wraps the closure in a call to an additional apply function which takes the closure as
an argument.

. RemoveHOTypes (Fig. 6). To clean things up, all function types appearing in
data type definitions are replaced by the algebraic data type called Data, which is
parametrized with an identifier of the encoded type and encompasses all closures.

The algorithm starts with a phase of applications of rule 1, followed by a phase in which
rules 2 and 3 are applied repeatedly in any order, and terminates with a phase of applica-
tions of rule 4. All phases perform rule applications as long as possible.

4.7.3 Example

Let us study a small example for illustration. Assume the following definition of function
map, which applies a function £ elementwise to a list:

(a->b) -> [a] -> [b]

map £ [1 = []
map f (x:xs) = f x : map f xs
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removeHOTypes :: Type — Type
removeHOTypes t
= case t of
a@(_— ) -> Data«
Dt ... t, | D algebraic data type
=> D (removeHOTypes ¢ ... removeHOTypes t,)
_ -> 1

Figure 6: Algorithm removeHOTypes

Now, assume that map is used with two different functions in the first argument:

map inc xs where inc :: Int -> Int
map (add (5%i)) xs where add :: Int -> Int -> Int

The difference in the signatures of the two argument functions is important here.

The first of our for rules, EtaExpand, does not take hold because the result of map
applied to two arguments is not a function. To spare the reader the confusion of type
inconsistencies, we apply rule RemoveHOTypes not at the end but simultaneously with
rule Encode.

To encode the arguments inc and add, the data type T_1 and an apply function for it
(rule Encode) are created:

data T_1 = C_inc | C_addbtimes Int

apply_T_1 :: T_1 -> Int -> Int

apply_T_1 code x = case code of
C_inc -> inc x
C_addbtimes i -> add (5*i) x

We have chosen intuitive names for the generated constructors. The HOE procedure gen-
erates synthetic names, of course.

Note that the constructor C_add5times has an argument i. This is because i appears
as a free variable in add (5*1i). The scope of a free variable in a call is the scope of the
caller and, therefore, the value of the free variable must be passed.

Next, the applications above have to be replaced:

map_T_1 C_inc xs
map_T_1 (C_addbtimes i) xs

The call of the first argument of map in the body of map must be replaced by an apply
function (rule ApplVar). Thus, map is transformed as follows:
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map_T_1 :: T_1 -> [Int] -> [Int]
map_T_1 fcode [] =[]
map_T_1 fcode (x:xs) = apply_T_1 fcode x : map_T_1 fcode xs

Now, assume the following third application of map:
map i2b xs where i2b :: Int -> Bool

The previous apply function cannot be used because it does not match the type of i2b.
We create the following additional data type T_2 and an apply function for it (rules Re-
moveHOTypes and Encode):

data T_2 = C_i2b

apply_T_2 :: T_2 -> Int -> Bool
apply_T_2 code x = case code of
C_i2b -> i2b x

Then, the specialized version of map has to be used and apply functions have to be inserted
(rule ApplVar):

map_T_2 :: T_2 -> [Int] -> [Bool]
map_T_2 fcode [] = [
map_T_2 fcode (x:xs) = apply_T_2 fcode x : map_T_2 fcode xs

Finally, the application is replaced by:

map_T_2 C_i2b xs

4.7.4 Comments

Note that, after the HOE, all function applications are saturated with arguments, such that
the result is not a function. Also, no argument to a function is a function. In principle, one
could now replace all curried definitions and applications by tuple representations. This is
not done in the HDC compiler for two main reasons:

1. The tuples, which are objects of the HDC language, are, in turn, expressed in terms
of pattern matching case expressions, which require curried functions on the right
hand side again.

2. The interpreter can remain simpler if it only has to deal with curried functions.

We adopt the following convention: after the HOE, any application of an HDC function
has to supply all curried arguments. This schema can be regarded as first-order and is
isomorphic to a schema of tupled arguments.
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fi . t(i,l) -> t(i’2) -> ... => t(i,m(i)) -> t(i’g)
fi arge,y 0rgei2) - - - argG,m(i)) = body;

can be emulated by a new function

f':: Data -> Data
[ arg
= case arg of
Ci arga,yy ... arga,may > CRy,0) body

Cn arg(n1) -+ ATG(nm(n)) —> CRyn0) bodyy

Figure 7: Elimination of mutual recursion by emulation

4.8 Elimination of mutual recursion

The HDC compiler implements two methods for the removal of mutual recursion in pro-
grams: elimination by inlining and elimination by emulation. Mutual recursion is identified
by calculating the strongly connected components (SCCs) in the graph of functional de-
pendences. Since there is no mutual recursion between SCCs, the methods can be applied
to each SCC independently.

4.8.1 Elimination by inlining

This method can only be used for an SCC which contains a node f whose removal from
the SCC would make the residual graph s acyclic. The set of functions which s represents
is, therefore, free of mutual recursion. Thus, it is possible to inline all calls of functions
in s in the body of f, until the only recursive calls left are directly recursive (Kaser et al.,
1993).

4.8.2 Elimination by emulation

If all mutual recursion in a program is to be removed, an alternative approach has to be
taken for SCCs in which mutual recursion cannot be eliminated by inlining. It is always
possible to transform an SCC to a supernode. The function associated with a supernode
emulates the work of all functions of the SCC by encoding the actual parameters and
decoding the formal parameters. Let f;, 1 <i<n, be the functions of an SCC and m(i) the
number of arguments of function f;. Function f’, which emulates the f;, is given in Fig. 7.

To avoid type conflicts, it is necessary to create, for each function f; of the SCC, a
constructor Cj to encode the arguments and a constructor CR,; ) for the result. The
constructor name is used to select the body of function f;. Finally, calls to the functions f;
have to be adapted to fit f’.

Whenever possible, elimination by inlining should take precedence over elimination
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by emulation. Inlining does not spoil the structure of the program and the resulting
intermediate code can usually be optimized more effectively.

Both methods are expensive if the program contains cycles of mutual recursion with
more than three to four functions. Unfortunately, cycles may be introduced by the transfor-
mations of earlier compilation phases. If programs are getting too big, due to the removal
of mutual recursion, the elimination process can be turned off by setting a compiler switch.
The default is to apply elimination by inlining, where possible, and then use the alternative
method for the remaining mutual recursions. The HDC programmer should prefer the use
of skeletons to user-defined recursive functions in order to keep the amount of recursion
low.

4.9 case elimination

Pattern matching is not available in lower-level programming languages, such as C or As-
sembler, which are suitable for the target code of HDC. Providing a run-time system for
pattern matching would cause too much overhead. Therefore, we eliminate case expres-
sions. We replace a case expression by nested if expressions. The branches of the if
expressions contain the former right-hand sides of the case branches.

The variables introduced by patterns are replaced by a special expression, ENth, which
is used to access a specific parameter of a constructor. ENth i (C’ Ty ... xn) returns z;,
1<i<mn. ENth 0, applied to a constructor, returns the constructor index in the function
declarations. Note that ENth cannot have a valid Hindley-Milner type and, therefore,
cannot be an HDC function! It is only used internally as a representation for an infinite
set of type-correct functions. A former case branch is selected by an if expression, if the
index of the constructor used in the pattern and the constructor index of the selector sel
(Sect. 2.4.12) are the same.

case expressions which have only one branch receive a special treatment: no if ex-
pression is needed, assuming that the branch will always match.

4.10 Generation of intermediate DAG code

The syntax tree of each function is transformed to a directed acyclic graph (DAG) to
enable sharing of common subexpressions. A DAG contains a set of expressions with
associated numbers, ordered by their dependences. Subexpressions are referenced by the
corresponding numbers. Fig. 8 shows an example DAG. The direction of the references is
inverse to that of the data flow, which is depicted by the arrows in the figure.

The transformation of a syntax tree into a DAG is by a standard technique called the
value number method (Aho et al., 1986). The nodes are enumerated such that the source of
each data dependence has a smaller number than the target. The transformation proceeds
by a bottom-up traversal of the syntax tree. The subject of the transformation of each
node is an expression, in which subexpressions have already been converted to numbers
by recursive application of the algorithm. It returns a number for the node as follows: if
there is already an expression in the DAG that matches the input, then the number of the
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sqrplus :: [Int] -> Int 0: Xxs
sqrplus xs = (xs!!0)*(xs!!0) + (xs!!1)*(xs!!1)
0: xs 0 [Int] 0 1
1: 0 » Int / /
2.1 10 11 :» Int 2: 11 51l
30 (%) 7?2 12  Int < > < )
4: 1 :» Int 6
5. (r1)y 10 MM :: Int I X
6: (%) 15 15 . Int \ /
7 (+) 13 16 :: Int 7+

Figure 8: Example function definition with its DAG

existing expression is returned; otherwise, a new node for the expression is created and its
number is returned.

Optimizing transformations (as described below) are performed at this intermediate
code level.

4.11 Tuple elimination

Tuples are replaced by algebraic data types, one for each occurring tuple type. Each tuple
is tagged with the appropriate constructor for its particular type. This simplifies the run-
time system and, at the same time, provides fast access to information about the types and
sizes of the components of the tuple by looking them up in a table, which is accumulated
in file funtable.c. As a consequence, the memory management functions need not be
specialized for each particular type.

4.12 Optimization cycle

Code optimization is done in a cycle. Each iteration performs three steps in sequence:
inlining of functions calls, rule-based DAG optimizations and size inference.

The process of replacing the call of a function by its body, after substituting the actual
for the formal parameters, is called inlining. We use inlining to enable further optimizations
on DAGs, e.g., deletion of dead code and sharing of common subexpressions. Inlining is
performed on DAGs in which common subexpressions appear only once. Due to the sharing
of common subexpressions, there is no risk of duplicating work.

Inlining triggers common subexpression elimination for two reasons. First, it aggregates
common subexpressions which have been spread across the program — maybe due to trans-
formations made before, maybe due to the program itself. Second, it specializes variables
by replacing the formal parameters of the function inlined by the actual parameters. This
permits partial evaluation and checking for value equality rather than name equality when

26



identifying common subexpressions. Value equality is a coarser equivalence relation, i.e.,
it induces more commonality.

The information gathered in the size inference is useful for the inlining heuristics of the
following iteration of the optimization cycle and for the space-time mapping. Size inference
has to be reapplied in each iteration because of the changes in the program due to inlining.

During each iteration, every DAG needed is processed as follows.

4.12.1 Inline expansion

The inline expansion transforms a source DAG into a corresponding target DAG with
possibly inlined calls. First, the nodes of the source DAG are copied successively. If a node
representing a function call is reached, a heuristic decision, based on the expected amount
of code increase, is made as to whether to inline this call or just copy the call node. In the
case of inlining, the copying process switches its source temporarily from the caller to the
callee. All nodes of the DAG of the callee will be copied. There is no recursive inlining of
calls. Copied calls may be inlined in the next pass. Every time the inline expansion of a
DAG for some function is completed, the body in the function definition is changed to the
target DAG.

After inlining in the current pass is finished, the DAGs are simplified. Unused function
arguments, except from apply functions which are called from skeletons, are deleted and
dead code is removed. If it was possible to inline at least one call in the current pass and
a specified maximum number of passes is not yet reached, inlining is repeated in the next
pass. We chose two major strategies for inlining: current version inlining and original
version inlining.

e Current version inlining
The most recent DAG for the called function is inlined. This method requires fewer
inlining operations, since DAGs with already inlined calls are used for inlining again.
One drawback is that the functions are growing very fast and, therefore, the inlining
process may be suppressed after only a few steps.

¢ Original version inlining
The original definition of the function is inlined. This incurs a linear code growth
when inlining recursive functions. Original version inlining offers more possibilities
for optimization and, therefore, may lead to better results (Kaser et al., 1992).

Kaser et al. (1992) also compare static and profile-based approaches. At present, we do
not accumulate or exploit profiling information.

Common subexpressions are eliminated during the conversion of the syntax tree into
a DAG, which has already been described in Sect. 4.10. However, new common subex-
pressions may appear during the inlining of a call. Since new nodes introduced by the
inlining process are always created with the same function as used for DAG construction,
no unshared common subexpressions will be created.
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intr-sinGen map f zs
{s :: [Int], zs regular, fresh i} = sinGen (\i -> f (zs!!i)) (length zs)

elim-sinGen (sinGen f n) !

fi

11

Figure 9: Optimization rules for sinGen

4.12.2 Rule-based DAG optimizations

In this step, various algebraic optimizations can be applied. In the interest of brevity, let
us focus here on optimizations in the context of space-time mapping (Sect. 4.14).

In numerical algorithms, in a call map f zs, the list zs is often of type [Int] which
defines a set of indices. In the simplest case, it is an arithmetic sequence ([a..b]) or
obtained from index set transforming functions. Since enumerations of index sets are, in
general, too inefficient, we represent them by functions (this requires a certain regularity).
We can generate an index set from its describing function by a skeleton named sinGen,
see Sect. 3.3.2. It takes a function f, which describes an index set, and an integer n and
delivers a list of length n, in which the ¢th element is defined by applying f to i. Fig. 9
contains two optimization rules: one which introduces and one which eliminates sinGen.
Note that there is some potential for fusion (similar to map fusion), e.g.:

map f (sinGen g n)
{intr-sinGen, fresh i} = sinGen (\i -> f (sinGen g n !! i)) n
{elim-sinGen} = sinGen (\i => f (g 1)) n

These optimizations have the problem that higher-order arguments are reintroduced (e.g.,
for the lambda expressions introduced above). Of course, one could apply such optimiza-
tions before HOE but, at this point, they would miss the applications that are enabled by
the inlining specializations coming later.

4.12.3 Size inference

The size inference algorithm derives symbolic information about the result returned by a
function from the values of structural variables which represent the symbolic information
of its arguments. The goal is to improve the decisions made during each iteration of the
optimization cycle and to determine automatically a space-time mapping at compile time,
if possible.

We are interested in the following symbolic information about an HDC function:

1. the size of the result — in the case of nested lists a comprehensive description of all
levels (Herrmann and Lengauer, 1998),
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2. the number of operations,
3. the length of the longest path in the DAG, if all calls are expanded,

4. the number of steps for a given number of processors, if the communication cost is
disregarded — this can be estimated from the number of operations and the path
length, using Brent’s theorem (Quinn, 1994).

The size inference computes an abstract version of the HDC function, which takes the
same number of arguments and has the same structure as the original function, but the
operations it performs are abstract counterparts of the original operations. E.g., an abstract
size operation for the append operator of plain lists is, simply put, ”addition”, because
the size of the result is the sum of the sizes of both operands. The abstract version of a
function application is the application of an abstract function to an abstract size.

The sizes are represented in symbolic form, as objects of an algebraic data type Size,
containing, e.g., the following constructors:

e Con :: Int -> Size defines a constant size.
e Var :: String -> Size defines a free variable.
e Add :: Size -> Size -> Size adds two sizes.

If, e.g., Con 2 is the size of the list [3,4] and Var "x" is the size of a list x, then the size
of the list [3,4] ++ x is Add (Con 2) (Var "x").

Abstract functions take variables representing symbolic expressions. E.g., the con-
structor Add above is an abstract function. Abstract functions can be composed of other
abstract functions. E.g., the number of operations needed for a list append depends on
the length of both argument lists. (That is the HDC append; for the usual sequential
append, the length of the second list is immaterial.) From this point of view, underlying
memory optimization techniques like sharing in DAGs, which are not visible at the level of
intermediate code, are not considered. The structures are treated as if they were flattened
and the abstract values obtained are upper bounds and not exact.

The abstract functions are expressed in terms of the abstract values of their arguments,
in order to make size inference a local computation, independent of its context, and allow
for a largely polymorphic implementation of the skeletons. If the amount of space in terms
of memory cells or the amount of time in terms of clock cycles is of interest, the abstract
function must be supplied with according context information.

Because of the complexity of the symbolic expressions involved, we believe that the size
inference of recursive functions is beyond the capability of present-day mathematical tools.

It is assumed that all recursion is captured in skeletons which are supplied with the
four types of size information stated above.

Size inference is applicable only if the structure analyzed does not depend on run-time
data, e.g., if the length of lists does not depend on input values.

We see a use for a complete size inference mainly in functional programs which represent
a static system, e.g., a hardware description.
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4.13 Abstract code generation

The defining expression of an intermediate function is mapped to a DAG in order to
facilitate the sharing of common subexpressions. As described in Sect. 4.10, each DAG
is represented by a table: each node of the DAG corresponds to a table entry, and each
directed edge of the DAG is represented at the entry of the source of the edge (the target
of the data dependence) by the table index of the target node of the edge (the source of
the data dependence).

The phase of abstract code generation switches the interpretation of a DAG: before,
it is interpreted with a denotational semantics, afterwards with an operational semantics.
The structure of the DAG also changes slightly: one type of node is eliminated and three
other types are introduced.

Let us reflect on the denotational interpretation. Here, a DAG is interpreted by starting
evaluation of a distinguished node, the root. The result of the root node is considered the
result of the function represented by the DAG. If the evaluation of a node requires the
result of another node, this node is visited and evaluated. There is a special kind of node
for accessing formal arguments. if nodes require a special treatment: the value of the
condition has to be tested, and then only one of both branches is evaluated.

In the operational interpretation, the evaluation proceeds by traversing the table entries
in sequence. If the result of another node is required, it has already been computed and
can be looked up in a previous table entry. The root node is the last entry in the table
and contains the result of the function. The problem with the if nodes is that when they
are reached (if ever!) both branches already have been evaluated, also the wrong branch.
Therefore, a mechanism is implemented to skip nodes belonging to the wrong branch. If a
DAG does not contain if expressions, it is used as abstract code without modification.

To accomplish the skipping of nodes, if nodes are eliminated and the following control
nodes are introduced:

1. BranchFalse cond i tests the boolean value at node cond and continues the execution
of the DAG from node i if the condition test yields False. Otherwise it has no effect.

2. Jump ¢ continues the execution from node 1.

3. Selection cond a b tests the boolean value at node cond and returns the value of
node a if the test yields True and the value of b otherwise.

The abstract code for an if expression has the structure shown in Fig. 10. The pointer
to the condition refers to a node above. The forward references of BranchFalse and Jump
are filled with table indices, once they are known, i.e., when the recursive generation of
abstract code for nested branches has finished. Jumps are introduced to skip over code in
branches which are not reached due to the invalidity of their condition.

For reasons of soundness and efficiency, the conversion of a DAG to abstract code
involves the duplication of some expressions that are shared in the intermediate DAG code
— more precisely, of common expressions that are located in a set of nested if expressions
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abstract code before conditional expression

BranchFalse <condition> <elsebranch>

abstract code for t hen branch

Jump <end_if>

abstract code for el se branch

selection of result of t hen/ el se branch

Figure 10: Abstract code structure for an if expression

in several, but not in all branches. These expressions are evaluated at most once and
should not be shared.

The structure of nested if expressions can be maintained by an auxiliary tree T,
whose nodes represent regions of the DAG. The root of T represents the entire DAG. Each
occurrence of a conditional in the region, which a node represents, leads to two subtrees,
one for the then branch and one for the else branch. All other nodes in the region (which
do not belong to an if expression) are represented by a list of single pointers. Each node
in T has an associated list with the pointers belonging to its subtree. Pointers to formal
parameters are placed at the top level, so that they can be shared in all branches.

This arrangement has a high potential for duplicate pointers. To reduce duplication,
the lists in each node are optimized by applying the following rules:

1. Horizontal common expression elimination. Pointers to expressions common
to both branches of an if expression are moved up one level to the enclosing branch:

common = pointers_then_branch N pointers_else_branch

pointers_then_branch' = pointers_then_branch \ common

pointers_else_branch' = pointers_else_branch \ common
pointers_enclosing_branch’ = pointers_enclosing_branch U common

This transformation is performed bottom-up, starting with the innermost if expres-
sions. Therefore, a common pointer can be moved up further if the branch opposed
to the enclosing branch contains the same pointer.
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2. Vertical common expression elimination. Pointers to expressions already in the
scope of an enclosing branch are removed in each list:

pointers' = pointers \ already_defined _pointers

already _defined_pointers is computed from the lists of all nodes on the path from the
root to the current node in the tree of if expressions.

3. Sorting. For each node, the pointers (except pointers to if expressions) are sorted
by their dependences. In the sorted list, the pointers to if expressions are placed at
the earliest point at which all required pointers have been defined.

Figure 11: Example tree of if expressions

The rules are applied in the order stated because horizontal elimination possibly en-
ables additional vertical elimination, but not vice versa. We sort at the end, since the
other optimizations may change the lists and could violate the ordering. Note that the
optimizations do not analyze if conditions.
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Example:

Fig. 11 shows a tree of if expressions. The nodes A,...,I contain lists of pointers to expres-
sions used in the parts of the corresponding DAG, named with lowercase letters. p,...,s are
pointers to if expressions. The horizontal common subexpression elimination will move n
from nodes H and I to node E. a will be moved from F and G to C. a is now common
to both branches of A, thus it will be moved from B and C to A. The vertical common
subexpression elimination will remove f and g from node D. In the abstract code of D, the
pointers f and g from C are used to evaluate the expressions. To facilitate this, the sort
must place f and g before ¢ in the list of C. In order to reuse the pointer of c, it would
have to be defined in node A. Without analyzing the conditions, it is not clear whether
the evaluation of the corresponding expression is necessary. Thus, the expression will be
duplicated in the abstract code, i.e., contained in B and H.

Using the information of the lists (which expressions must be defined in what branch)
and the DAG code (list containing the expressions), the abstract code can be generated
recursively for all nested if expressions.

4.14 Space-time mapping

A space-time mapping is a one-to-one mapping from a domain of computation points to
the cartesian product of discrete space and time. The space part is known as allocation,
the time part as schedule. The technique of space-time mapping has a long tradition in
loop parallelization (Lengauer, 1993). Some of the ideas can be adapted to while loops
(Griebl and Lengauer, 1994; Collard, 1995) and even to non-linear recursion (Herrmann
and Lengauer, 1996). However, the structure of dependences we are encountering makes
integer linear optimization, which is the central search method for a space-time mapping
in loop parallelization and which has the nice property of yielding the best solution in the
considered search space, unsuitable for general HDC programs.

Space-time mapping is most effective when applied in the individual derivation of par-
allel skeleton implementations. This approach is described in detail in Herrmann and
Lengauer (1996). If the dependence structure of the skeleton is sufficiently regular —as,
e.g., for some kinds of DC— the points of computation can be laid out in time and space
at compile time. The size of the computation space will depend on the problem size and
the number of processors, but its shape will not (Herrmann and Lengauer, 1996).

The user is well advised to construct his/her program by composition of appropriate
skeletons, which have been space-time mapped efficiently. Note that the generation of each
skeleton is done by a Haskell function which is to be delivered by the skeleton implementer.
It is up to this Haskell function, to use the results of the size inference provided or even to
call external tools. The task of the HDC compiler is, at a minimum, to transmit symbolic
space-time mapping information via the call structure of the program to the points where
it is needed, by making use of the abstract functions delivered by the skeleton implementer.
The nodes of each DAG are scheduled sequentially by the compiler, no parallelization is
done in this phase.
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4.15 Code generation

The code generation phase first produces C code, which is then compiled with a standard
C compiler and linked together with the functions of our run-time library, which are also
written in C. The C code is generated in two phases. First, the abstract code of the
user program is translated; see Sect. 4.15.1. Second, an appropriate implementation is
generated for each skeleton instance used in the program; see Sect. 4.15.2.

4.15.1 DAG compilation

For each DAG of the abstract code, a C function is generated and appended to file code.c.
Each node in the DAG is treated seperately. Each constructor used is inserted into a table,
in file funtable.c, to provide the run-time environment with the necessary information
about types and sizes of the components of the object it constructs. For each call of a
skeleton, the name of the skeleton together with the actual types of the arguments are
stored.

4.15.2 Skeleton generation

After all DAGs have been processed, the instantiations of the skeletons are generated and
stored in file skel.c.

HDC offers a special, very flexible mechanism for the integration of custom-implemented
skeletons. For each skeleton, the implementer delivers a Haskell function, say, ®, which is
called by the code generator of the HDC compiler and which produces the actual instance
of the skeleton. In the simplest case, the body of function ® will be just a Haskell string
of C target code, but ® can also prescribe decisions based on type and size information
provided by the compiler.

Remember that the C code generated must be monomorphic; this applies also to the
implementation of a skeleton. Thus, the programmer of & has to consider at least the
root symbol of the type tree of each argument, i.e., the implementation must differ, e.g.,
between lists and integers, but not necessarily between lists of Int and lists of lists of Int
since, in the latter case, the root of the type tree is in both cases the list type constructor.

To illustrate what a generic skeleton implementation may look like, let us discuss an
abstract version of the implementation of the map skeleton in a parallel model, in which all
data is passed along with the control. The map skeleton takes a function (really a closure,
i.e, the code of a function together with an environment) and a list and applies the function
elementwise to the list.

For simplicity, we assume a space-time mapping which allots roughly the same number
of list elements to each processor. This mapping is efficient if the amount of work is nearly
equal for each element of the list.

One might consider the use of collective MPI operations (Pacheco, 1997) like broadcast
(to distribute the function closure), scatter (to distribute the list among the processors)
and gather (to collect the results from the processors). This would work for lists of Int,
Bool or Double but would require special skeleton implementations for these types. In
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general, gather and scatter cannot be used, since they assume that lists are plain and
do not contain references to a heap. E.g., if the elements are functions, the list contains
just pointers to a shared heap. As a consequence, we have to custom-implement collective
operations for HDC, using the MPI primitives send and receive. Here, again, DC proves
to be a useful technique.

4.15.3 Run-time library

The run-time library, which is comparatively small, contains the implementation of all
functions which do not depend on the user program — especially, predefined functions
which cannot be coded with a few C statements (those are inserted directly in the code),
which perform memory management, and which pack and unpack data structures.

5 The Parallel Run-Time Environment

5.1 The model of parallel execution in HDC

Our aim has been to provide a platform which does not limit the design choices concerning
parallelism. Still, we are staying away from unstructured fork-join parallelism (Almasi
and Gottlieb, 1989) and, where possible, make use of the DC paradigm. In the interest of
generality and scalability, our execution model is SPMD.

The control structure is organized as follows. At the beginning, all processors form
a single block. In a parallel computation, this block —let us called it the superblock— is
divided into a number of subblocks and the master of the superblock sends a task to the
masters of the subblocks. When the task a subblock is assigned to is terminating, its master
sends an according signal to the master of the superblock. No tasks are initiated and no
completion messages are sent across a superblock’s border. We call this the principle of
communication-closed blocks, in analogy to the principle of communication-closed layers
(Elrad and Francez, 1982).

Another important issue is the data layout, i.e., the way in which the data is distributed
among the processors. We distinguish three styles of data layout. The first applies to
atomic data and to tuples. Only lists and algebraic data types, which can become large,
are subject to the other distributions.

e Centralized data layout: All input data of a task is passed along with the signal
of initiation of the task and all output data is passed back with the report on the
task’s completion. Obviously, this is a good choice if the amount of data is small,
although it might incur some unnecessary communication. For large data, a cen-
tralized data layout will lead to unacceptable overhead, due to data transmission, or
even to memory overflow.

In the remaining two layout styles, instead of passing the data with the control, only
information about the location of the data is passed.
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e Hierarchical data layout: The input and output data of each block is distributed
among the processors assigned to the block, as prescribed by the space-time mapping.
The default space-time mapping is that the data is distributed in balance across all
available processors. This layout is especially convenient for DC algorithms on large
data which does not fit onto a single processor, but only if the data size decreases
with the division of the problem, as in the dc4io skeleton.

¢ Globally distributed data layout: The input data is distributed according to a
space-time mapping. Each intermediate and result value is located on the processor
that produces it. This is known as the owner-computes rule (Wolfe, 1995). To get
data from another processor, a remote memory access (RMA) has to be performed.
RMA involves a communication — however, it is not explicit and, thus, does not
violate the principle of communication-closed blocks.

5.2 Organization

The available implementations of a skeleton determine the set of possible space-time map-
pings which can be chosen in a parallel execution. Thus, it is important to realize that
skeleton implementations are generated in dependence of the context in which they are
called, exploiting type and possibly also symbolic size information (see Sect. 4.15).

The first argument of each skeleton implementation, like the first argument of the other
functions generated, contains a pointer to system information, comprising a description of
the master and the current part of the topology the processor belongs to.

The user has the option to provide all functions with an additional explicit parameter,
which contains a mapping strategy introduced in the source code. Skeleton implementa-
tions can use this strategy in the space-time mapping.

5.3 Interaction with skeleton implementations

If the computation is divided into subcomputations according to the DC paradigm, the
block of processors is divided into subblocks. Each processor belongs to exactly one sub-
block. Each subproblem is solved on its own subblock. At the beginning, the block has
one master processor, the other processors are slaves. The division of a block involves the
creation of new masters by the old master, one for each subblock.

Let us now revisit the implementation of the map skeleton from Sect. 4.15.2. If the list
does not contain at least two elements or the block has only one processor, map must be
computed sequentially. (map may be computed sequentially if parallelization does not pay
off according to a strategy chosen by the skeleton implementer.) Otherwise the block is
divided into two subblocks; let us call them the left subblock and the right subblock. The
left subblock computes map on the left part, and the right subblock on the right part. The
processor responsible for the whole block before, say, L retains the responsibility for the
left subblock and sends the packed function closure and the right part of the list to another
distinguished processor, say, R responsible for the right subblock. Computation proceeds
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recursively until the left and right subblock are united again and R gives back control for
its part to L.

Now, let us have a closer look at the call mechanism. Processor L is the one on which the
map skeleton is called. Thus, it receives all formal arguments via a function call. Processor
R is activated by L with an index of the actual skeleton instance. R uses this index to
call a slave skeleton. This skeleton does not receive the application data via a function
call, because this data is not yet available on R. Instead, the following interaction takes
place: L sends the data to R, both L and R call the master skeleton with their particular
subproblem, R returns into the slave skeleton and sends its result back to L. Note that &
of Sect. 4.15.2 has to generate two skeleton instances here: the one for the master and the
one for the slave!

6 Examples

6.1 Karatsuba’s polynomial product

This subsection contains material, which we have published before with respect to a slightly
modified DC skeleton (Herrmann and Lengauer, 1996).

In 1962, Karatsuba published a DC algorithm for the multiplication of large integers
of bitsize N with cost O(N'#23) (log, 3 ~ 1.58) based on ternary DC (Aho et al., 1974).
A trivial algorithm has complexity O(N?). As an example of ternary DC, we choose the
polynomial product, which is the part of Karatsuba’s algorithm that is responsible for its
complexity.

Here, we concentrate on the product of two polynomials which are represented by
powerlists (Misra, 1994) of their coefficients in order. The length of both lists is the
smallest power of 2, which is greater than the maximum of both degrees. We consider +,
— and * operations on polynomials; when applying them to integers, we pretend to deal
with the respective constant polynomial. If a, b, ¢ and d are polynomials in the variable
X of degree at most N <2"71, then (ax XV +b) x (cx XV +d) = h*x X*N + mx XV 4,
where h = axc (h is for “high”), I = bxd (I is for “low”) and m = (axd+bx*c) (m
is for “middle”). The ordinary polynomial product uses two polynomial subproducts to
compute m, leading to quadratic cost, whereas the Karatsuba algorithm uses the equality
m = (a+b)x(c+d)—h—1 to compute only a single additional polynomial subproduct.
Polynomial addition and subtraction does not influence the asymptotic cost because it can
be done in parallel in constant time and in sequence in linear time.

Due to the data type and data dependence restrictions imposed by our skeleton,
the input vector of the skeleton is the zip of two coefficient vectors (zip [ag,...,a0.n 1]
[b0ye-yb2en 1] = [(a0, bo)se-ry(G2en—1, boun—1)]) and the result is the zip of the higher and
lower part of the resulting coefficient vector, as can be seen in the definition of karatsuba,
which multiplies two polynomials represented by equal-size powerlists:
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import HDCPrelude
infixl 2 ->>

-- polynomial product
-- the length must be a power of 2
-— using Karatsuba’s algorithm

karatsuba :: [Int] -> [Int] -> [Int]
karatsuba a b =
let basic (x,y) = (0,x*y)
divide [(xh,yh), (x1,yl)]
= [(xh,yh), (x1,y1), (xh+x1,yh+yl)]
combine [(hh,hl),(1h,11), (mh,ml)]
= [(hh,1lh+ml-h1-11), (hl+mh-hh-1h,11)]
in ilog2 (length a) ->> \n ->
zip a b ->> \x ->
dc4io 3 2 2 basic divide combine n x ->> \z ->
map fst z ++ map snd z

(->>) s a->(a->b) >b
x =>> f = f x

ilog2 :: Int -> Int -- ceil of real log2
ilog2 n = if n<=1 then O
else 1 + ilog2 ((n+1) ‘div‘2)

parmain :: I0 Unit
parmain = get >>= \a ->
get >>= \b ->
put ((karatsuba a b) :: [Int])

The operator ->> forces a sequencing of computation steps. We use it to avoid multiple
evaluations.

The first three arguments of dc4io are the degrees of the problem division, the in-
put data division and the output data composition. Of the constituting functions, basic
multiplies two constant polynomials. Function divide divides a problem into three sub-
problems: the first is working on the high parts, the second on the low parts and the third
on the sum of the high and the low parts, corresponding to (a + b) and (¢ + d) of the for-
mula for m. The function combine combines the results (hh,hl) (the high parts), (1h,11)
(the low parts) and (mh,ml) (the middle parts). The high positions mh of the middle parts
overlap with the low positions hl of the high parts, and the low positions m1 of the middle
parts with the high positions 1h of the low parts. Results of overlapping positions have to
be summed. Further, the results of the high and low part have to be subtracted from the
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[ [0,1,1,1Tx [1,1,1,1] j
[(0,1),(1,1),(1,1),(1,1)]

left (high) right (low) left+right (middle)
[1,2] x[2,2]
1,2),(2,2

[1,1] x [1,1]

[0,2,6,4]
[(0.6).(2,4)]

0.1, [0,1,2,1]
[(0.1),(0,1)] (L1)]

[ [0,0,1,2,33,2.1] ]
[(0,3).(0,3),(1,2),(2,1)]

Figure 12: Call graph for a call of karatsuba

result of the middle part. As an example, Fig. 12 depicts the call graph for multiplication
of the polynomials (X?+ X +1) and (X®+ X?+ X + 1) whose result is the polynomial
(X5+2x X1 4+3%xX3+3+xX2+2%X +1). In each node, we give on top the polynomials
as lists of their coefficients and below the representation as required by the skeleton.

6.2 Frequent set

The frequent set problem (Toivonen, 1996) belongs to the application area of data mining.
Consider the following application example in a supermarket. Sets of articles, which are
often purchased together, should be shelved close to each other. These sets should be
obtained from statistics data compiled at the point of sale. Let M be the set of all articles,
for simplicity enumerated from 0 to m. Let the database be a bag of subsets of M; each
element of the bag contains a set of articles of a single bill. The number of occurrences of
a single article is of no interest, but the number of occurrences of each subset of M is. The
task is to report all subsets of M which are frequent, i.e., appear in (are a subset of) more
than a certain fraction of all bag elements, called the threshold.

We present a straight-forward algorithm for the frequent set problem in HDC, derived
from Alg. 3.7 of Toivonen (1996).

A more sophisticated and efficient algorithm was derived by Hu (1999). We assume
that subsets of integers are represented in a list in increasing order. The input consists of
the threshold and the list of bills. The output is the list of frequent sets.

Our example contains the following functions:
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e compareSet compares two sets with respect to a particular ordering on the subsets
of integers (first by length, then by lexicographic order (Aho et al., 1974)). We use
the while skeleton to terminate the comparison as soon as the result is known.

e isElem checks whether an element is in the set.

e isSubSet checks for the subset property.

e insertSet adds a new element to an ordered set.

e remDuplicates removes duplicates.

e countSubsets counts the number of occurrences as a subset in the bag.

e fracOK checks whether the fraction of bag elements the set appears in as a subset
exceeds the given threshold value.

e freqgSets constructs all frequent sets.
e datamineSet constructs all frequent sets of cardinality ¢, ordered by increasing i.

e datamine is the entire algorithm without input/output actions.

import HDCPrelude

compareSet :: Ord a => [a] -> [a] -> Int
-- compares two sets with respect to first the size, then the
-- lexicographic ordering, delivers -1 if xs<ys, 0 if xs=ys, 1 if xs>ys
-- the lists representing the (unordered) sets must be sorted
compareSet xs ys
= if length xs == length ys
then let firstdiff =
skel_while (\i -> if (i<length xs) then (xs!!i==ys!!i)
else False ) (+1) 0
in if firstdiff == length xs
then 0
else if xs!!firstdiff > ys!!firstdiff then 1 else (-1)
else if length xs > length ys then 1 else (-1)

isElem :: Ord a => a -> [a] -> Bool
—— checks if e is element of the set s
isElem e s = any (==e) s

isSubSet :: 0Ord a => [a] -> [a] -> Bool

-- checks if sub is a subset of super
isSubSet sub super = all (\s -> isElem s super) sub
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insertSet :: Ord a => a -> [a] -> [a]
-- adds x to the set xs
insertSet x xs = filter (Kx) xs8 ++ (x : filter (>x) xs8)

remDuplicates :: Ord a => [[a]] -> [[al]
-— removes all duplicates in a set of sets
remDuplicates

= let pivot xs = xs!!(length xs ‘div‘ 2)

p xs = length xs < 2
b xs = xs
d xs = let less
= filter (\x -> compareSet x (pivot xs) == (-1)) xs
greater
= filter (\x -> compareSet x (pivot xs) == 1) XS

in [less,greater]
c xs [as,bs] = as ++ (pivot xs : bs)
in dcO p b dc

countSubsets :: [Int] -> [[Int]] -> Int
-—- counts the number of elements in bs which b is a subset of
countSubsets b bs = length (filter (isSubSet b) bs)

fracOK :: [[Int]] -> Double -> [Int] -> Bool

-- given a bag of sets bs, a fraction f and a set b

-- tells if b occurs as a subset in more than the fraction f of

-= all elements of bs

fracOK bs f b = ( fromInt (countSubsets b bs) / fromInt (length bs)) > f

fregSets :: [[Int]l] -> Double -> [Int] ->

([[Int]], [[Int]]) -> Int -> ([[Int]], [[Int]])
-- given
-— bbag: the bag of sets
-— frac: the fraction of occurrences
-- sngl: all singleton frequent sets
-- (f,filast): the current/previous collection of frequent sets
-— 1: the current level
freqSets bbag frac sngl (f,filast) i
= (\fi -> (f++fi,fi))

(filter (fracOK bbag frac)
(remDuplicates
(filter (\xs -> length xs == i)
[ insertSet si1 s2 | s1 <- sngl, s2 <- filast])))
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datamineSet :: Int -> Int -> [[Int]] -> Double -> [[Int]]
-- data mining on the Set representation to enable
-- efficient parallel subset testing
datamineSet m u bbag frac
= (\siOK ->
fst (foldl (freqSets bbag frac (map (!!0) siOK))
(si0K,si0K) [2..ul))
(map (\x->[x]) (filter (\x -> fracOK bbag frac [x]) [0..m]))
-- list of single items that satisfy fraction condition

datamine :: [[Int]] -> Double -> [[Int]]
-— the entire datamining algorithm
datamine bag frac =
let maxi = red max 0 (concat bag)
ubnd = red max 0 (map length bag)
in datamineSet maxi ubnd bag frac

parmain :: I0 Unit
parmain = get >>= \threshold ->
get >>= \bag ->
put (datamine bag threshold)

7 Experimental Results

We have tested both examples with and without optimizations. In the tables in this section,
the entry “no opt.” refers to the following menu setting for the optimization phase of our
compiler (Sect. 8.1.4).

Mutual Recursion Elim.: NONE
Optimize By Inlining: False

For the entry “opt.”, the menu settings were:

Mutual Recursion Elim.: ALL, by inlining if possible
Optimize By Inlining: True

A -> Algorithm: current version inlining

B —> Number of Loops: 4

C -> Max. Rel. Funsize: 4 * original size

D -> Max. Abs. Funsize: 200 nodes

E -> Inline Order: Inl0rderCallGraph
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7.1 The effect of optimizations

In Tab. 3, we have recorded some static characteristics of the code (line by line, as the
compilation proceeds) and the effect of optimization.

The source programs contain global functions, which are visible in the entire program,
and local functions (also constants), which are defined using let (line 1). We do not count
lambda abstractions, partial applications, etc.

Functions of the prelude are not counted as part of the source code, but are counted
as functions before HOE (line 4) and onwards.

The HOE phase has two different opposing effects: (1) functions which are not used are
deleted and (2) polymorphic functions which are used in different contexts are duplicated,
and apply functions are introduced to decode functional arguments. Line 5 lists the total
number of nodes in all syntax trees. DAG generation leads to a reduction of this number
(line 7). This is due to common subexpression elimination, which is always done, even if
no inlining is performed. The number of functions in the upper part of the table include
the interface definitions of the skeletons used (lines 3 and 4) which are skipped in the set
of DAGs (line 6).

number of Karatsuba frequent set
1. source functions 4 global, 3 local | 11 global, 10 local
2. source lines 30 86
3. functions before HOE 75 104
4. functions after HOE 37 103
5. tree nodes 416 968
‘ number of H no opt. opt. H no opt. opt.
6. DAG functions 31 11 86 25
7. total DAG nodes 202 269 492 455
8. total abscode nodes 212 343 534 563
9. lines code.c 565 476 1492 850
10. lines code.s 1313 1148 2972 2709
11. lines skel.c 121 272
12. lines skel.s 695 1151

Table 3: Effect of optimizations

Inlining also has two different effects. On the one hand, nodes are duplicated if inlined
into more than one function. On the other hand, the function inlined may be deleted and
optimizations apply, which have been enabled by the inlining. Line 8 shows the number of
nodes after generation of abstract code, which has grown by the number of control nodes
that have been inserted to make conditionals non-strict.

The code generated from the DAGs is in file code.c; code.s is the assembler file
generated with the C compiler. The skeleton implementations are generated independently
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HDC compiler
no opt. | opt.
Karatsuba 012 x 512 1.9 1.9 1.6
1024 x 1024 5.9 5.9 4.8

frequent set | 0.05/100 8.4 6.6 3.0
0.05/200 15.6 12.0 4.5
0.02/100 34.9 272 | 148
0.02/200 63.2 50.0 | 208

GHC

problem size

Table 4: Sequential execution times

from the DAGs. Therefore, optimization has in general no effect on them — except for cases
in which optimizations eliminate a call to a skeleton.

7.2 Sequential execution times

We measured the execution time of the examples Karatsuba and frequent set and compared
them with GHC (V.4.01), a compiler producing very fast lazy code. We compiled all our
C sources with the GNU C compiler (V.2.7.2.3) and optimization level -O3 (without/with
optimization refers only to the HDC compiler), GHC was used with option —O.

We gave GHC a straight-forward program for the Karatsuba algorithm, which is not
based on the special skeleton dc4io. It can be found in Appendix B. In the frequent
set program, only the input/output functions were adapted to Haskell, and the skeletons
dcO and while were supplied with their recursive definitions which do not cause as much
overhead as the recursive definition of dc4io.

The size in the Karatsuba example indicates the length of both polynomials. For the
frequent set example, we state the threshold value and the number of elements in the bag
(the times still depend on the particular sample chosen).

All times in Tab. 4 are given in seconds of pure process time on a SUN workstation
”Sun UltraSPARC” 167 MHz CPU with 256MB of memory.

We expect that these numbers can still be improved. E.g., currently, we have no
destructive update mechanism for lists. Thus, each modification results in a copy of the
entire list.

The elimination of higher-order functions causes an overhead due to decoding, which is
especially notable if many higher-order functions are involved, as, e.g., in the frequent set
example. Inlining can do a good job here, but some overhead will remain.

7.3 Potential for Parallelism

The parallel skeleton implementations and the run-time system have yet to be developed
to a point where speedup experiments are possible. Thus, we can only provide an idea of
the potential for parallelism with data extracted by our compiler and interpreter.
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input no. of operations no. of par. steps average par.

samp/th. || no opt. ‘ opt. ‘ ratio || no opt. ‘ opt. ‘ ratio || no opt. ‘ opt. ‘ ratio
A/0.5 12075 8782 | 0.73 355 224 | 0.63 34.0 39.2 | 1.15
B/0.5 55935 39559 | 0.71 893 586 | 0.66 62.6 67.5 | 1.08
B/0.2 360963 | 252887 | 0.70 1854 1239 | 0.67 194.7 | 204.1 | 1.05

Table 5: Run-time characteristics of the frequent set example

The Karatsuba example is expressed with a skeleton whose parallelism is completely
static, except for some parameters, e.g., the problem size. Thus, the potential for paral-
lelism can be analyzed by hand, e.g., the maximum degree of parallelism for a polynomial
product of size 2™ x 2™ equals the number of base cases, which is 3".

The frequent set example is much more dynamic: optimizations can affect the structure
of the entire implementation. Therefore, it pays to analyze the properties of the program
after different phases of the compilation with the HDC interpreter. Tab. 5 shows the results
of an interpretation of the abstract code with two different samples

A=[I[1,2,4,7],[5,6,7,8,9],[1,2,3,7]1,[1,3,5,8,9]] and B = A++[[1,2,3,4,5]]

combined with thresholds of 0.5 and 0.2. The improvements after optimization demonstrate
the important role inlining plays after the HOE.

The large amount of work is due partly to the nature of the problem and partly to the
lack of sophistication of the source program. Regardless of that, note that the optimiza-
tions reduce the number of operations by up to 30% and that there is a high potential of
parallelism.

8 Using the HDC Compiler and Interpreter

8.1 Menu structure

The menu structure reflects the state the HDC system is in and therefore the actual menu
changes after certain phases of the compilation. Note that the reason for restrictions
concerning the change from one menu to the other is the memory optimization. Data of
previous compiler phases which is not necessary for proceeding is deleted. An exception
is the optimization menu because a reload for trying optimization with new parameters
would be unacceptable.

Options are chosen by typing the character printed ahead. In the following enumeration,
we prefix the character with *, if the availability of the option depends on the (sub)state
of the system.
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8.1.1

Initial menu

The initial menu appears after starting the system. The following choices can be made:

T

Q

Test. The purpose is to check if the compilation works on example .hdc programs
with example inputs and produces the correct results. The names of the examples to
be tested are listed in test/testfiles, the input/output pairs for an example, say
example .hdc is contained in test/ezample.test.

Load File. The pathname of an example program to be compiled is asked for,
starting from the directory in which the HDC system was started. If the name is
prefixed with =, it starts with the directory examples.

Interpreter. The interpreter takes input data interactively from the user and eval-
uates the program with it. The purpose of the interpreter is to examine dynamic
properties of the code at a certain phase of the compilation, i.e., collect statistical
data for a particular input pattern, e.g., the number of reductions. This gives us an
estimate of the overhead introduced by certain phases of the compiler.

Code Generation. Performs all compilation steps up to the final code without any
interaction.

HO Elimination. The phases of monomorphization and higher-order elimination are
performed. Because the internal representation of the program changed, a higher-
order elimination menu appears (Sect. 8.1.2).

Settings. Enters the settings menu (Sect. 8.1.4).

Restart. Provides the same state as after starting the system, also reloads the
prelude files.

Quit. Leaves the system.

8.1.2 Higher-order elimination menu

This menu can be entered only directly after a higher-order elimination has been done.
No optimization has been done yet. There are the following choices. To proceed in the
compilation process, the option 0 (Optimization) has to be chosen.

I

0

Interpreter. As in the initial menu.

Optimization. Performs the optimization phase using the settings that can be
changed in the settings menu. After this phase, the program is present in two repre-
sentations: in the syntax tree form with some transformations (elimination of mutual
recursion and case elimination) and in the DAG form derived from it which contains
the most optimizations. After this phase, the optimization menu (Sect. 8.1.3) is
entered.
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S

R

Q

Settings.
Restart.

Quit.

8.1.3 Optimization menu

The purpose is to make experiments with different optimization strategies without passing
the time consuming higher-order elimination phase again and again. There are the following
possibilities:

I

*E

Interpreter. As in the initial menu, it is the last syntax tree produced that is
interpreted.

DAG Interpreter. This interpreter works on the DAGs after the optimization phase.
The effect of different inlining strategies can be observed on examples by recording the
free schedule and degree of parallelism with respect to a limited number of processors.

New Optimization. A new optimization is made based on the first DAG version
generated.

Profiling Series. To examine the behavior of many optimization strategies with-
out a huge amount of tedious user interaction, this choice can be made. User-definable
Haskell functions linked together with the HDC system are called, which control the
profiling, deal with errors that may occur and summarize and format the result, e.g.,
as a ITEX table.

Code Generation. Calls the code generation on the optimizations yet made and
with the target architecture specified in the settings.

Execute. This option can only be chosen after code has been generated. If selected,
the user is asked for the input data, it is written into the input file, the compiled
code is applied to this file, and after execution the output file is displayed on the
screen. This is of course much faster than with interpretation.

Settings.
Restart.

Quit.
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8.1.4 Settings menu

Selecting an option can either cause a step in a cyclic shift of alternatives or a prompt
for input of some number or name. In the case of a cyclic shift, the current selection is
displayed.

P

*M

*A

*B

*C

*D

*E

Print Style. Selects the format in which functions of the program are displayed,
e.g., only by type.

Generate Code for. The target architecture resp. the execution model are to be
defined here.

Interpreter Statistics. A switch for the collection of additional information
about the computation, e.g., the free schedule, number of reductions, degree of par-
allelism, etc. This can cause the interpretation to take very long.

Trace DAG Interpreter. Selects the trace mode of the DAG interpreter.

Number of Processors. Defines the number of processors which are used for com-
puting schedule information in the interpreters.

Mutual Recursion Elimination. Toggles between different strategies of mutual
recursion, which enable resp. give priority to elimination by inlining (Sect. 4.8.1) and
elimination by emulation (Sect. 4.8.2). After the first DAG generation, this option
disappears because the syntax trees have been deleted.

Optimize by Inlining. Toggles the inlining mode. If inlining is switched on, the
points (A) to (E) appear by which details of the inlining strategy can be defined.

A -> Algorithm. Toggles between current version inlining and original version in-
lining.
B -> Number of Loops. Asks for the maximum number of iterations of the opti-

mization cycle.

C -> Max. Rel. Funsize. Asks for the maximum factor by which a function is
allowed to increase in the number of nodes. If this limit is reached, the version of the
function before starting the current inlining process is restored. The same holds for
D.

D -> Max. Abs. Funsize. Asks for the maximum number of nodes which a function
is allowed to reach due to inlining.

E -> Inline Order. Toggles between different orders of functions in an inlining
phase.

Verbose Mode. Set if detailed information during the optimization should be dis-
played.
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1 Print Functions. Prints the functions of the syntax tree on screen or into a file.
*2 Print DAGs. Prints the DAGs after the optimization.
*3 Print DAGs (before optimizing dags). Prints the DAGs before optimization.
S Save Options. The currents settings are saved for the next session.
L Load Options. Saved settings can be loaded.

Q Quit Settings. Quit the settings menu and returns to the menu from which it was
called.

8.2 Interpreter

The purpose of the interpreter is to collect statistical data of the program representation at
a certain phase of the compilation with respect to particular input data. The interpretation
is very slow and if only the output data is of interest, the user is advised better to generate
sequential code and to execute it interactively.

There are two versions of the interpreter: one which works on the syntax tree (simply
called interpreter), the other operates on the DAG structure (called DAG interpreter).

8.3 Directory structure

To work with the HDC compiler, the user has to set the shell environment variable HDC_ROOT
which defines the path of the working directory. This directory has the following subdirec-
tories:

e doc. Contains all documentation, e.g., this report.

e examples. Contains a set of source programs. FEach HDC program has the file
extension .hdc. There are also Haskell programs with file extension .hs, which serve
for debugging and comparison purpose and differ only slightly from the .HDC program
with the same name.

e experiment: Target programs of the HDC compiler are written into this directory.
Also, input and output files of the target program are located here.

e imports: Contains the prelude files, see Sect. 8.4.

e lib: Contains the run-time libraries to be linked with the output of the HDC com-
pilation.

e profile: This directory contains variants of the Haskell file Experiment .hs, which
belong to the compiler. This file contains functions which control a particular exper-
iment series and produce, e.g., IXTEX output of the results.
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e src: This is the source directory. All its files are either necessary to build the HDC
compiler (.1ly, .hs, .1lhs) or to generate the run-time library (.h, .c). Also, the
makefile is located here.

e test: Used for verifying the current release of the HDC compiler. The file testfiles
contains a collection of those examples, for which the HDC compiler should work
correctly before a new version is committed. The files with extension .test contain
pairs of input and output data against which the compiled program is to be checked.

8.4 The prelude parts

The prelude is divided into four parts, which can be found in directory $HDC_RO0T/imports.
Prelude.hdc, HDCPrelude.hdc and SkelPrelude.hdc are loaded by the HDC compiler
initially. HDCPrelude.hs is needed if HDC programs are to be used as Haskell programs.
The definitions contained in these files form part of the HDC language and, thus, should
not be changed by the user. They can be extended by additional definitions if new skeletons
are to be added.

1. Prelude.hdc contains some predefined Haskell functions which can also be used in
HDC. This part of the prelude is listed in Appendix A.

2. HDCPrelude.hdc contains additional Haskell functions, which are of special interest
to us. In particular, skeletons like dc4io are defined here. This prelude part is not
listed because the type definition and explanation of the skeletons have already been
presented in Sect. 3.

3. SkelPrelude.hdc contains interface (type) definitions of skeletons. The name of a
skeleton must have the prefix skel_.

4. HDCPrelude.hs contains the Haskell definitions of the additional functions (in
HDCPrelude.hdc).

9 Related Work

There have been many approaches to skeletal and functional programming. We concentrate
here on those which have been most successful and/or have had significant influence on
our work.

Two functional languages have been designed explicitly with parallelism in mind; both
make use of parallel vector operations. The focus of the language Sisal (Skedzielewski,
1991) is on numerical computations, using loops on arrays. For some programs, its per-
formance is superior to FORTRAN. Sisal is compiled to a data flow graph language. The
idea of our intermediate DAG language stems from Sisal. In contrast to Sisal, the focus of
the language Nesl (Blelloch, 1992) is on recursive programs using nested sequences. Nesl
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is compiled to an intermediate language, which uses parallel vector operations. Both Sisal
and Nesl do not use skeletons and do not permit higher-order functions.

The language GpH (Trinder et al., 1998) is an extension of Haskell with a new primitive
par, to be used together with the Haskell primitive seq to prescribe where values are
supposed to be computed in sequence or in parallel. However, in contrast to HDC, aside
from a restriction of the evaluation order via seq, no schedule and allocation can be defined
in GpH. Instead, parallel processes are distributed dynamically. GpH puts no restriction
on the use of higher-order functions in Haskell. The user can define new skeletons, using
evaluation strategies specified with seq and par.

There is another difference to HDC: in order to preserve laziness, the input data for
a process is only sent partially — if evaluation proceeds, further data must be requested.
However, due to its treatment of higher-order functions, GpH is the language which is most
similar to HDC.

The idea to use a skeleton for DC was introduced by Cole (1989). The group of Dar-
lington at Imperial College has published a collection of functional skeletons for parallel
programming (Darlington et al., 1993).

P3L (Bacci et al., 1995) is an imperative language, which uses skeletons at the top level
but does not support functions as run-time parameters of the skeleton. David Busvine and
Tore Bratvold presented in their Ph.D. theses (Busvine, 1993; Bratvold, 1994) extensions
of MLL with skeletons, but their use of higher-order functions is very restricted.

The language Eden (Breitinger et al., 1997; Galédn et al., 1996) facilitates the definition
of skeletons on top of Concurrent Haskell. Eden imposes no restriction on higher-order
functions. Eden differs from HDC in that skeletons have more restricted signatures and,
therefore, cannot be used as generally; skeleton instances have to be wired together using
channels.

10 State of the Implementation

At present, all compiler phases other than the optional phase of size inference are imple-
mented. One critical challenge for the language HDC is effective load balancing. We plan
to exploit the information supplied by the size inference in this regard.

The parallel implementations of all skeletons other than map have yet to be coded.
Therefore, we have to defer the presentation of speedup results. Initially, we shall provide
implementations in the model of centralized input/output.

Previous experimental work has demonstrated the potential for good speedups using
DC skeletons (Musiol, 1996).
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A Prelude.hdc

- Prelude.hdc

-— This file contains predefined HDC types and functions that are
-— already predefined in Haskell. "primitive" declarations indicate
—-— that the function has a builtin implementation

== 3k3kookookook ok ok ok ok ok ok ok kK %k >k k ok k ok k ok ok

—-— xx basic functions k%
—— KKk 3k Kk K K 3k 5k K 3k 5k 5K >k 3k 5k K >k %k 5k kK Xk k

-- undefined constant
primitive undefined :: a

-- constant function
const :: a ->b > a
const ¢ x = ¢

-- identity function
id :: a > a
id x = x

-- function composition
(.) :: (b=>c) -> (a->b) -> (a->c)
f.g=\x—>f (gx)

-— strict function: always evaluates x to normal form and then

-- applies f to the result. The normal form of a partially applied
-- function is its closure represented as algebraic data type
strict :: (a->b) > a > b

strict £ x = skel_strict f x

== 3k3kookookook ok ok ok ok ok ok ok ok k kK k >k k >k k >k

-- %% input and output *x
—— kokokokokokokskokokok ok ok ok sk skskok ok ok ok

-— the data type of IO actions
data I0 a = I0 a

-- constructs an empty IO action which returns x

return :: a -> (I0 a)
return x = I0 x
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—-— combines an I0 action which returns x and an
-- I0 action f which takes x as an argument to
-- a larger I0 action

(>>=) :: I0a->(a->I0b) ->1I0D

(>>=) (I0 x) f = skel_strict f x

—— koK K koK k >k k kK >k k ok k

-— xx boolean *x
—— skokokokokokoskokok skokok okok

--— built-in constants:
-- False :: Bool
--— True :: Bool

-— logical negation
primitive not :: Bool -> Bool

-- logical and and or, strict in the
-- second argument if (&&) resp. (I[)
-— not inlined, be careful!

(&&), (l1) :: Bool -> Bool —> Bool

a && b = if a then b else False

a ||l b =41if a then True else Db

—— 3Kk Kk 3k ok >k %k 5k >k >k 3k 5k >k 3k 5k 5k >k 5k 5k >k >k 5k >k Xk %k k Xk %k k

-— %% comparison and ordering **
== skokstokok ok okok ok skokok ok skokok ok skok ok ok skokok ok ko

-- less, less_or_equal, greater, greater_or_equal, unequal, equal
primitive (<), (=), (>), (>=), (/=), (=) :: 0rd a => a -> a -> Bool

-— minimum and maximum
primitive min, max :: Ord a => a -> a -> a

—— 3Kk Kk 5k ok %k %k 3k ok >k %k 5k >k >k 5k ok >k %k 5k k kK k &

-— %% general arithmetic *x*
—— kKoK ok ok ok ok ok ok ok ok ok >k >k %k %k %k %k >k %k %k %k 5k %k %k k

-— unary negation:
- - :: Num a => a -> a
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—-- addition, subtraction, multiplication
primitive (+), (=), () :: Num a => a -> a -> a

-- sum, product

sum, product :: Num a => [a] -> a
sum xS skel_red (+) 0 xs
product xs = skel_red (%) 1 xs

-- power to an integer number
primitive (°) :: Num a => a -> Int -> a

—— 3Kk K %k 5k ok %k 3k 5k 5k >k %k 5k >k >k %k 5k >k >k 5k >k %k >k 5k 5k >k %k %k %

-— xx arithmetic conversions *x*
—— skokokokokokoskokok skokok skok ok sk ok ok sk ok ok sk ok ok s ok ok sk ok ok

-— conversgion from Int to Double
primitive fromInt :: Int -> Double

-- conversion from Double to Int
primitive floor :: Double -> Int
primitive ceiling :: Double -> Int

—— 3Kk Kk %k 5k ok %k %k 5k ok >k %k 5k >k >k 3k 5k Xk >k 5k 5k kK k ok

-— %k integer arithmetic **
—— skokokokokokskokkokokokskok ok sk ook skok ok ok ok ok

—-— integer division and remainder
primitive div, mod :: Int -> Int -> Int

== 3k3kookookook ok ok ok ok ok >k >k %k >k 5k 5k 5k k %k 5k 5k ok 5k 5k 5k 5k %k %k >k %k k %k k

-— *xx floating point arithmetic *x*
== skokokokokok sk ook ok ok ok sk ok ok ok ok sk ok sk ok ok ok sk ok ok ok ok

-— floating point division
primitive (/) :: Double -> Double -> Double

—-— square root
primitive sqrt :: Double -> Double

-- exponential and logarithm to base e
primitive exp, log :: Double -> Double
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-— trigonometrics
primitive pi :: Double
primitive sin, cos, atan :: Double -> Double

== 3k3kookokook ok ok ok ok ok ok %k %k %k >k k %k ok k ok ok ok

-— %k tuple selection *x*
— = k3kk Kk %k 3k 5k %k %k 3k 5k %k %k 5k >k >k %k 5k Xk >k k ok Xk

-- first element of a pair
fst :: (a,b) -> a
fst (x, ) = x

—-— second element of a pair
snd :: (a,b) -=> b
snd (_,y) =y

— = k3kk Kk ok ok %k %k 5k ok >k %k 5k k >k k ok k kok ok

-— *%x list operators xx
—— kokokokokokokskokokok ok ok ok sk skskok ok ok ok

-- built-in constructors
-- empty list: [1 :: [al
-— list cons: (:) :: a -> [a]l -> [a]

-- length of a list
primitive length :: [a] -> Int

-— test whether list is empty
primitive null :: [a] -> Bool

-- append two lists
primitive (++) :: [a]l -> [a] -> [a]

—-— append all sublists to a single list
concat :: [[al]l -> [a]
concat xs = skel_red (++) [] xs

-— filter all elements out of a list fulfilling a predicate
filter :: (a->Bool) -> [a] -> [al
filter p xs = skel_filter p xs

-- list indexing
primitive (!!) :: [a] -> Int -> a
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—-— generate list of integer sequence with given bounds
primitive enumFromTo :: Int -> Int -> [Int]

-- take/drop the first elements of a list

primitive take, drop :: Int -> [a] -> [a]

—-— the first element of a list
head :: [a] -> a
head xs = xs!!0

—-— the list without the first element
tail :: [a] -> [al
tail xs = drop 1 xs

-— apply a function to all elements of a list
map :: (a->b)->[a]l->[b]
map f xs = skel_map f xs

-- construct a list of pairs from two lists
zip :: [a] -> [b] -> [(a,b)]
zip xs ys = sinGen (\i -> (xs!!i,ys!!i)) (min (length xs) (length ys))

-- apply a function to all pairs of elements of two lists
zipWith :: (a->b->c) -> [al -> [b] -> [c]
zipWith f xs ys = sinGen (\i -> f (xs!!i) (ys!!i))

(min (length xs) (length ys))

-- check whether a predicate holds for all/any element of a list
all, any :: (a -> Bool) -> [a]l -> Bool

all p xs = (skel_while (\i -> if i<length xs then p (xs!!i) else False)
(+1) 0) ==length xs
any p xs = not (all (not . p) xs)

-- reduces the elements of a list given a binary operator and a neutral
-- element from the left resp. right
foldl :: (a->b->a) -> a -> [b] -> a
foldl f e xs = snd (skel_while (\(i,_) -> i<length xs)
(\(1,x)-> (i+1, f x (xs!!i))) (0,e))

foldr :: (a->b->b) -> b -> [a] -> b
foldr f e xs = snd (skel_while (\(i,_) -> i>=0)
(\(i,x) -> (i-1, f (xs!!i) x)) (length xs -1,e))

56



B Karatsuba in Haskell

take (length xs ‘div‘ 2) xs
drop (length xs ‘div‘¢ 2) xs

left xs
right xs

karatsuba :: [Int] -> [Int] -> [Int]
karatsuba xs ys =
if length xs == 1
then [0, (xs!!0)*(ys!!0)]
else let xhs = left xs
xls = right xs
yhs = left ys

yls = right ys
hs = karatsuba xhs yhs
ls = karatsuba xls yls

ms = karatsuba (zipWith (+) xhs x1s) (zipWith (+) yhs yls)
mhls= zipWith3 (\m h 1 -> m-h-1) ms hs 1s
q0 = left hs
ql = zipWith (+) (right hs) (left mhls)
g2 = zipWith (+) (right mhls) (left 1s)
g3 = right 1s
in q0 ++ ql ++ g2 ++ g3

main :: I0 Q)

main = do
s <- readFile "input"
let (a,rest):_ = reads s :: [([Int],String)]

(b,_):_ = reads rest :: [([Int],String)]
¢ = karatsuba a b

writeFile "output" (show c)

return ()
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