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Abstract

In his third volume, Knuth presents Batcher’s bitonic sort as a sorting network. With concurrency, this
“sorting network can be executed in logarithmic time. Knuth suggests a formal argument for the correct-

ness of the bitonic sorting algorithm (as an exercise), but addresses the question of concurrency only infor-
mally.

We develop a program for the bitonic sort by

1) deriving a stepwise refinement from Knuth’s informal description of the algorithm
g P g ;

(2) deriving from the refinement a sequential execution or "trace" of order O(n log n) in the
length n of the sequence to be sorted, and

(8) transforming the sequential trace into a parallel trace of order O(log n) while preserving its
correctness.

We shall be informal in Steps 1 and 2 - although these steps can be formalized. But we will provide a
formal treatment of Step 3 and report on the certification of this treatment in a mechanized logic.

This work is a contribution to

(a) the optimization of programs (via concurrency) through transformation, and

(b) the mechanized treatment of formal program derivations.






1. Introduction

A sequence a = (ao,a.l, - ,an) is in bitonic order if a 2. . 2a,<...<a for some i such that

0<i<n. The bitonic sorting algorithm sorts a sequence (ao, I a.n) that is already in bitonic order

into ascending order by sorting the subsequences (ao,az, ...)and (a,,a,, ...) independently and then
comparing and, if necessary, interchanging (ao,al), (32'3‘3)" ... Since the subsequences of a bitonic

sequence are also bitonic, (a,,2,,...) and (a;.a,,...) can be sorted by the same algorithm, until all

subsequences have length 1.

Knuth [4] presents the bitonic sort as a sorting network. A node in a sorting network is a comparator
module which takes two (not necessarily adjacent) sequence elements as inputs, compares them and, if
necessary, interchanges them into ascending order. The bitonic sort can sort a bitonically ordered se-

quence of length n in O(log n) time, if comparator modules may be applied concurrently.

The significance of the bitonic sorting algorithm lies in the fact that we can derive from it a network

that sorts arbitrary (not bitonic) sequences.! We have to make the following additional requirements:
(1) the length of the sequence is a power of 2, and
(2) two versions of the comparator module are available, one that swaps into ascending order and
one that swaps into descending order.
Then, a sorting network based on the bitonic sort exists that sorts sequence a in O(log2 n) time if com-
parator modules may be applied concurrently. Each node of the network appropriately represents one or

the other type of comparator module. In the following, we shall only deal with the original bitonic sort.

The extension to general sequences does not add any new issue in our program development.

Knuth suggests the zero-one principle to prove the correctness of the bitonic sort,2 but does not deal
formally with concurrency. We apply a programming methodology which can deal formally with concur-
rency [5]. In this methodology, the derivation of concurrency proceeds by a successive compression of the

program’s executions based on the declaration of certain useful program properties. We call program

executions traces.

We are interested in the mechanical certification of trace transformations. As does the bitonic sort,
most interesting programs contain recursions or loops. The most effective and practical transformations of
their traces will also be recursive, and their proofs of correctness will require induction. We are therefore
interested in the mechanical treatment of recursion and induction. We use a powerful induction prover

[2] that is based on a mechanized functional logic particularly suitable for program verification [1]. The

Lgee Exercise 13 of [4].

2See Exercise 10 of [4].



prover is designed to prove theorems about recursive functions but is not an expert on sorting networks
and their trace transformations. We must "teach" it the theory of trace transformations before it is able

to certify the transformation of the bitonic sort.

The following section describes the bitonic sort and explains its trace transformation informally.
Sect. 3 presents our implementation of the trace transformation theory of sorting networks in the
mechanized logic and the proof of the trace transformation theorem of the bitonic sort on the mechanical
prover. In the concluding section, we evaluate the approach of the mechanized certification of semantic

properties. The proof session in which our theorem of the bitonic sort was certified is presented in an

appendix.

2. The Bitonic Sort

We refine the bitonic sort in a special-purpose language: the language of sorting networks. A refine-
ment consists of a name (with an optional list of formal parameters) separated by a colon from a body.

There are three choices of refinement body:

(1) The null statement skip does nothing.

(2) The comparator module cs(i,j) accesses a sequence a of numbers. It compares elements a,
and a i and, if necessary, interchanges them into order.

(3) The composition S1;S2 of refinements S1 and S2 applies S2 to the results of S1. Each of S1
and S2 can be a refinement call {i.e., a reflinement name, maybe, with an actual parameter
list), a comparator module, or the null statement. Sequences of compositions S1;S2;...;Sn
are also permitted. Refinement calls may be recursive.

Composition may be implemented by execution in order but need not be in all cases. For instance, in a
programming language with assignment statements, the two assignments X:=x+a; X:=x+b could also be
executed in reverse order, and the two assignments x:=3; y:=5 could also be executed in parallel. We
prefer to think of a refinement as a mathematically defined object that does not address questions of
execution. We shall deal with the execution of refinements later on, after we have introduced the refine-
ment for the bitonic sort. Even though the refinement for the bitonic sort can be derived according to

rigorous mathematical rules, we shall here simply state it informally.

Qur refinement of the bitonic sort is:

bitonic-sort(n): sort(0,1,n+1)
sort(base,step,0): skip
sort(base,step,1): skip

{leng>1} sort(base,step,leng): sort(base,step*2, [leng/2]) ;

sort(base+step,step*2,|leng/2|) ;
segment (base,step,|leng/2))



segment(base,step,0): skip
{leng>0} segment (base,step,leng): cs(base,base+step) ;

segment (base+step*2,step,leng-1)
Refinement sort performs the bitonic sort as described in Sect. 1. Refinement segment performs the
step of comparisons and interchanges by applying the appropriate comparator modules. Both refinements
are qualified by three parameters, base, step, and leng, that identify a subsequence of a: base is the

index of the first element, step is the difference of the indices of any two adjacent elements, and leng is

the number of elements in the subsequence.

We can easily obtain a sequential execution of refinement bitonic-sort(n) by replacing all occur-
rences of the composition operator ’;’ by the sequential execution operator »’. For instance, for an 8-
element sequence (n=7), we obtain the following sequential trace:

tau(7) = cs(0,4)»cs(2,6)»cs(0,2)+cs(4,6)

»cs(1,5)»cs(3,7)»cs(1,38)+cs(5,7)
+¢8(0,1)»cs8(2,38)»cs(4,5)+cs(6,7)

This execution is best explained by representing the problem of bitonic sorting as a tree.

Let us construct a binary tree of bitonic sequences whose root is the entire sequence a, and whose left
and right subtrees are recursively constructed by splitting the root into subsequences as prescribed by the

bitonic sorting algorithm. We call this tree the sequence tree of a. The sequence tree of an S-element

sequence 1s:

(a,.a,,a

0%1+84,2

a,,3.,3 ,37)

2778’ 5’76

(a5.3,.2,.25)  (a,.25.25,2,)
/ \ / \
(a5.2,) (25,39 (a;.3;) (ag.a;)
/ N\ / N\ / N\ / \
(a5) (a,) (a,) (ag) (2)) (a) (a,) (a,)

At each node (ai )3 L8, L8, .), the bitonic sorting algorithm requires an application of com-
1 T2 '3 a4

parator modules cs(i,,1,) ;es(ig,1,); ..., which we call a segment. The following segment tree cor-

responds to the previous sequence tree:

cs(0,1);¢cs(2,3);¢s(4,5);¢cs8(8,7)

/ \
¢s(0,2) ;cs(4,8) cs(1,3);¢cs8(5,7)
/ \ / \
cs(0,4) cs(2,8) cs(1,5) cs(3,7)

Segments of leaves in the sequence tree are null and are not represented in the segment tree.

We can now view the sequential trace tau(7) of the bitonic sort as the post-order traversal of seg-
ments in the segment tree. tau(7) has length 12. In general, tau(2¥—1) has length 25" 'k. The refine-

ment works for all bitonic sequences, but we choose to consider only sequences whose length n+1 is a



power k of 2. Such sequences yield complete sequence and segment trees. Also, for such sequences, the
bitonic sort can be extended to a network which does not require the bitonic order of its input, as men-

tioned in Sect. 1. With n=2¥-1, trace tau(n) has a length of order O(n log n).

To speed up the execution of refinement bitonic-sort(n), we have to declare some program
properties that permit us to relax the sequencing prescribed by trace tau. The crucial property for the
compression of traces by concurrency is ¢ndependence. For instance, program components that do not
share any variables are independent. We can declare the independence of two program components S1
and 82 by writing S1182. If 81 and S2 are independent, their composition S1;S2 may be implemented
by execution in parallel. We write this as <S1 S2> and call it a parallel command.® Of course, execution
of independent S1 and S2 in sequence is also permitted, in fact, in either order: $1-82 or 82+S1. Com-
muting the execution order of independent program parts in a trace may lead to a higher degree of con-

currency than immediately merging them into a parallel command. See [5, 6] for more about indepen-

dence.

Two comparator modules cs(i ,1,) and cs(j,,]j,) are disjoint if they do not overlap, i.e., if

il¢j1, il¢j o 12¢j1, and 12¢j o- Since disjoint comparator modules do not share any variables, they

may be declared independent:

1,73, A 170, A L75, A L), = ces(y,i)lles(3,.],)

On the basis of this independence declaration, we may transform trace tau to obtain concurrency.
Observe that any two distinct segments X and y in the segment tree which are not in an
ascendant/descendant relationship have no common elements. Such x and y are independent, and we can
commute them or make them parallel. For instance, we can commute all segments that are on the same
level in the tree (i.e., that have the same distance from the root) into adjacency:

tau’ (7) = ¢s(0,4)»cs(2,8)»cs(1,5)»cs(3,7)
+cs(0,2)»cs(4,6)»cs(1,3)»cs(5,7)
+cs(0,1)»cs(2,3)»cs(4,8)»cs(6,7)

Then we can merge each level into one parallel command:

tau~(7) = <cs(0,4) ¢s(2,6) cs(1,5) cs(3,7)>
+<cs(0,2) cs(4,6) cs(1,3) cs(5,7)>
+<ecs(0,1) ¢s(2,3) cs(4,5) cs(8,7)>
The parallel trace tau™(7) is of length 3, with a concurrency degree of 4. In general, tau™ (25—1) is of

length k, with a concurrency degree of 25”1, With n=2¥-1, trace tau™(n) has a length of order Of(log n)

and a concurrency degree of order O(n).

3We abbreviate <S1 <82 <... 8Sn>>>to <81 82 ... Sn>.



3. The Automated Proof of Trace Transformations

We have implemented our theory of trace transformations in Boyer & Moore’s mechanized logic [1].
Boyer & Moore express terms of first-order predicate logic in a LISP-like functional form.? Predicates are
functions with a boolean range. Functions can be declared (submitted without a function body) or
defined (submitted with a function body), and facts can be asserted (submitted as an aziom) or proved
(submitted as a lemma). There are no quantifiers. A variable that appears free in a term is taken as

universally quantified. For example, the term

(NUMBERP X) = X < X+1

expresses the fact that any number is smaller than the same number incremented by 1. NUMBERP recog-
nizes numbers. Two basic types of inductively constructed objects in the logic are relevant to our applica-
tion: the natural number and the ordered pair. They closely resemble the number and ordered pair of
LISP. The ordered pair (CONS t1 t2) of the two terms t1 and t2 may be abbreviated (t1 . ©2) and
lists can be formed by nesting ordered pairs, as in LISP. E.g., list (t1 t2 ... tn) of the . terms
ti,..,tnisreally (t1 . (£2 . (.. (tn . NIL)))). Other object types may be added by the user.
For instance, we add the object type (PAIR i, iz) or, abbreviated, (i1 : 12) which is a second kind of

ordered pair - its components must be numbers. We use this object type to represent comparator modules.

The theorem proving program employs a number of heuristics in the attempt to establish the v alidity
of a conjecture. Simplification (i.e., rewriting into a simpler or “normal® form) and induction are the
heuristics used most in the proof of the transformation of the bitonic sort. There are several ways to
make use of a previously established lemma in subsequent proofs. Our proof employs previously proved
lemmas as rewrite rules. Appropriately chosen lemmas, provided as rewrite rules, will steer the prover
into the intended direction of the proof. If all other heuristics fail, the prover appeals to inductiora. The

induction scheme is derived from an analysis of the recursive function definitions and the inductively con-

structed types involved in the conjecture.

This section sketches the implementation of the semantic theory that is necessary to prove the
semantic equivalence of trace tau and trace tau™ of the previous section. App. A contains proof outlines
of the central theorems. The complete history of the proof is documented in App. B. We suggest that

readers without experience in Boyer & Moore’s logic consult [1] before studying the appendices.

4For clarity, we shall here, unlike LISP and Boyer & Moore, keep some basic logic and arithmetie operations in infix nota.tion.



3.1. Trace Semantics

Our goal is to prove the semantic equivalence of traces tau(n) and tau~(n). We represent a trace
by a multi-level list. Alternate levels indicate sequential execution and parallel execution, in turn. For
instance, if the top level of the list indicates sequential execution, then the second level indicates parallel
execution, the third level indicates again sequential execution, etc. In the realm of sorting networks, we
can represent traces as multi-level lists of pairs of numbers, where the top level represents sequential ex-

ecution. For example, the sequential trace

tau(7) = cs(0,4)-+cs(2,6)+cs(0,2)+cs(4,86)
+cs(1,5)»cs(3,7)+cs(1,3)»cs(5,7)
+c5(0,1)=»cs(2,3)+cs(4,5)»cs(6,7)

is represented as

(TAU 7) = "( (0:4) (2:8) (0:2) (4:8)
(1:5) (3:7) (1:3) (5:7)
(0:1) (2:3) (4:5) (B6:7) )

and the parallel trace

tau~(7) = <cs(0,4) cs(2,8) es(1,5) cs(3,7)>
+<cs(0,2) cs(4,8) cs(1,3) cs(5,7)>
+<cs(0,1) ¢s(2,3) cs(4,5) cs(6,7)>

is represented as

(TAU™ 7) = *( ((0:4) (2:8) (1:5) (3:7))
((0:2) (4:8) (1:3) (B:7)
((0:1) (2:3) (4:8) (6:7)) )

where (i . 12) denotes our new object type that represents a comparator module cs (i 1 12).

We give traces weakest precondition semantics [7]. The weakest precondition of a fixed program S is
a function wps(R) that takes a postcondition R and maps it on the weakest possible constraints under
which program S terminates and establishes R [3]. To give a programming language weakest precon-
dition semantics, one must provide weakest preconditions for the smallest possible programs in the lan-
guage and for combining smaller into bigger programs. The smallest possible sorting networks are the
null statement and the comparator module. We need not implement the weakest precondition of null,
because traces do not contain nulls (null has the empty trace). We declare the weakest precondition
Wpcs(il,iz) (R) of comparator module cs(i,,1,) as a function
Declaration

(€S I R)

where I denotes a pair, (11 :12), and R denotes a postcondition. Since we are only interested in the
equality of weakest preconditions and not in their actual values, we need only declare, not define function
CS. We need to know very little about the weakest precondition of the comparator module for the pur-

pose of trace transformations and choose to add this information as axioms rather than inferring it from



a full-fledged definition of function CS. We add two axioms. One restricts the domain of comparator

modules to pairs of numbers:
Axiom CS-TAKES-PAIRS:

(NOT (PAIRP I)) = ((CSIR) = F)

Axiom CS-TAKES-PAIRS states that the precondition of CS for any non-pair and postcondition is false,s
i.e., that such a CS is not permitted. PAIRP recognizes pairs. The other axiom expresses the "rule of the
excluded miracle” (Dijkstra’s first healthiness criterion [3]) for comparator modules:
Axiom CS—IS-NOT-MIRACLE:

(CS1F) =F

Axiom CS-IS-NOT-MIRACLE states that the precondition of any CS with false postcondition is false, i.e.,

a comparator module cannot establish "false".

Our way of combining smaller into bigger traces is by composition (i.e., execution in sequence or in
parallel). To determine the weakest precondition of some trace L that is composed of comparator
modules CS for postcondition R, we define a function M-CS. As for subsequent defined functions that we
introduce, we shall first present the definition of M~CS and then explain its function body:

Definition

(M-CS FLAG L R)

(IF (NOT (LISTP L))
(IF L=NIL
R
(CS L R))
(IF FLAG='PAR
(IF (ARE-IND-CS (ALL-ATOMS (CAR L))
(ALL-ATOMS (CDR L)))

(M—CS °SEQ (CAR L) (M-CS °PAR (CDR L) R))
F)

(M-CS °PAR (CAR L) (M-CS °SEQ (CDR L) R)))))
M-CS composes calls to CS as prescribed by trace L. Beside L and R, M-CS takes a FLAG that signals

whether the trace is to be executed in sequence (FLAG="SEQ) or in parallel (FLAG="PAR). In accordance

with our trace representation, FLAG="SEQ in top-level calls and FLAG alternates with every recursive call.

When FLAG="PAR, the trace represents a parallel command and its elements must be checked for
independence. Like weakest preconditions, independence properties must be provided for the smallest
program parts that are affected by a trace transformation and for combinations of these program parts.
The smallest program parts affected by trace transformations of sorting networks are comparator

modules. Just as we do not provide the complete weakest precondition semantics of comparator modaules,

5In Boyer & Moore’s logic, F stands for *false® and T stands for "true®.



we do not provide a complete characterization of the independence of comparator modules but express it,

again, by a declared function
Declaration

(IND~CS I J)

where I and J are pairs which represent comparator modules. As we did with CS, we characterize IND-CS

by axiom. For instance, we establish that IND-CS is a predicate:

Axiom IND-CS-IS-PREDICATE:
(OR (TRUEP (IND-CS I J)) (FALSEP (IND-CS I J)))

In the following section on trace transformations, we shall discuss what other properties of function
IND~CS we need to know.

We may now determine the independence of traces of comparator modules with defined functions

that employ IND—CS appropriately. We define three functions.

IS~-IND~CS establishes the mutual independence of one comparator module T with a trace L. of com-

parator modules:
Definition

(IS-IND-CS I L)

(IF (NOT (LISTP L))
(IF L=NIL
T
(IND-CS I L))
(AND (IND-CS I {(CAR L))
(IS-IND-CS I (CDR L))))

ARE-IND-CS establishes the mutual independence of all comparator modules in a trace L1 with all

comparator modules in a trace L2:
Definition

(ARE-IND-CS L1 L2)

(IF (NOT (LISTP L1))
(IF L=NIL
T
(IS-IND-CS L1 L2))
(AND (IS-IND-CS (CAR L1) L2)
(ARE-IND-CS (CDR L1) L2))))

If the two members of a parallel command pass test ARE~-IND~CS, function M—CS gives their parallel ex-

ecution the semantics of their sequential execution.

A third function, TOTALLY-IND-CS, determines the independence of all comparator modules of a
trace L:



Definition

(TOTALLY-IND-CS)

(1F (NOoT (LISTP L))
T
(AND (IS—-IND-CS (CAR L) (CDR L))
(TOTALLY-IND-CS (CDR L)))))

If trace L passes test TOTALLY-IND-CS, the execution of all members of L. has identical semantics in

parallel as in sequence.

Note that IS-IND-CS, ARE-IND-CS, and TOTALLY-IND-CS are only interested in the comparator
modules of traces, not in the traces’ structure. Therefore, these functions expect traces in a "flattened"
form, i.e., as single-level lists with all comparator modules in the trace enumerated from left to right.
The flattening is performed by function ALL~ATOMS:

Definition

(ALL-ATOMS L)

(IF (NOT (LISTP L))
(IF L=NIL
NIL
(LIST L))
(APPEND (ALL-ATOMS (CAR L)) (ALL-ATOMS (CDR L))))

APPEND appends two lists. It differs from the regular LISP (and Boyer & Moore)} append function which
only works for proper lists, i.e., lists that end with NIL. Our APPEND works for all lists.

This concludes our implementation of the trace semantics. The semantic equivalence of tau™ and

tau can now be formally expressed by the following equality:

(M-Cs °SEQ (TAU™ N) R) = (M-CS *SEQ (TAU N) R)
In later proof outlines, we shall denote semantic equivalence by a special symbol: '=’. For example, we
would write the previous formula as:

(TAU™ N) = (TAU N)

3.2. Trace Transformation

We are now at the point where we can begin formulating the transformation of tau into tau™ in
Boyer & Moore’s logic. Remember that the transformation rests on our independence declaration of com-
parator modules in Sect. 2. We exploit this declaration in two steps: one of commutations and a second of
parallel merges. The step of merges is based on the following theorem:

Lemma M-CS-TOTALLY-IND:

(TOTALLY-IND-CS (ALL-ATOMS L))
= ( (M-CS "PAR L R) = (M-CS *SEQ L R) )
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It is proved by an induction scheme that mirrors the recursive definition of function M-CS. More general
theorems that correspond to transformation rules (G3i) and (G3ii) in our original formalism (Sect. 5.2 of

[7]) are also part of the implemented theory, but we do not use them in the transformation of the bitonic

sort.

To express commutations, we must be more specific about the meaning of "independence”. The dec-
laration of IND-CS does not provide any clues. Just as about declared function CS, we need not know
much about IND-CS for the purpose of trace transformations. For one, we must be able to conclude that
independent comparator modules may be commuted:

Axiom IND-CS-IMPLIES~COMMUTATIVITY:

(IND-CS I J) = ((CSJ (CSTIR)) =(S I (S JIR))
If we instantiate both FLAG1 and FLAG2 to *SEQ, the following theorem enables commutations:
Lemma ARE-IND-CS-IMPLIES-COMMUTATIVITY:

(ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))
= ( (M-CS FLAGL L1 (M-CS FLAG2 L2 R))
= (M-CS FLAG2 L2 (M-CS FLAG1 L1 R)) )

Its proof is, again, based on an induction suggested by the definition of M—CS.

Just as we cannot compute weakest preconditions of comparator modules with declared function CS,
we cannot determine their independence with declared function IND-CS. However, while we are not inter-
ested in the actual weakest preconditions of comparator modules, we do need to know about the cir-
cumstances of their independence. We established in Sect. 2 that two comparator modules are independ-
ent if they do not access common sequence elements, i.e., if they do not overlap. Our final axiom about
IND-CS expresses this fact:

Axiom NO-OVERLAP-IND-CS:

(NO-OVERLAP I J) = (IND-CS I J)
Function NO-OVERLAP identifies non-overlap:
Definition

(NO-OVERLAP I )

(AND (PAIRP 1)
(PAIRP J)
(FIRST I)#Z(FIRST J)
(FIRST I)#(SECOND J)
(SECOND I)#(FIRST J)
(SECOND I)#(SECOND I))

FIRST and SECOND access a pair’s components: (FIRST (il:iz))Zi1 and (SECOND (11:12))212.
Additional defined functions HAS-NO-OVERLAP, HAVE-NO-OVERLAP, and TOTALLY-NO~-OVERLAP are ex-
actly identical to IS-IND~CS, ARE-IND-CS, and TOTALLY-IND-CS, respectively, with calls to



11

NO-OVERLAP in place of calls to IND-CS. Theorems stating that each of the three overlap functions

implies its respective independence counterpart can be proved from axiom NO-OVERLAP-IND-CS.

This concludes the implementation of our basic theory: the part that applies to all transformations of
sorting networks. One might call this our metatheory of sorting networks, since it deals with properties of
the programming language per se, not with properties of one specific sorting network. The next section

describes our application in that theory: the transformation of the bitonic sort.

8.8. Transformation of the Bitonic Sort

Sect. 3.1 introduces informally the representation of traces in Boyer & Moore’s logic. We shall now
formally define the traces relevant to the transformation of the bitonic sort. To derive the parallel trace
tau” from the sequential trace tau, we formulated an intermediate trace tau’. Trace tau’ is derived
from tau by a step of commutations, and tau™ is derived from tau’ by a step of parallel merges. We

shall describe the implementation of tau first, then of tau™, and then of tau’.

Trace tau is defined by the following three functions:
Definition

(TAU N)

(SORT 0 1 N+1)
Definition

(SORT BASE STEP LENG)

(IF (DR LENG=0 LENG=1)
NIL
(APPEND (SORT BASE STEP+STEP LENG/2)
(APPEND (SORT BASE+STEP STEP+STEP LENG/2)
(SEGMENT BASE STEP LENG/2))))

Definition

(SEGMENT BASE STEP LENG)

(IF LENG=0
NIL
(CONS (PAIR BASE BASE+STEP)
(SEGMENT BASE+STEP+STEP STEP LENG-1)))
Functions TAU, SORT, and SEGMENT correspond exactly to refinements bitonic-sort, sort, and
segment of Sect. 2, except that refinement composition is replaced by trace composition (sequential ex-
ecution, to be more precise). Parameters N, BASE, STEP, and LENG have the same meaning as their coun-

terparts in the refinements.
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The refinement uses real division, but the mechanized logic provides only integer division: the func-
tion QUOTIENT [1] which we denote here also by the infix ’/’. Remember that we decided to consider only

sequences whose length is a power of 2. With this restriction, integer division suffices in the trace defini-

tions.

Trace tau™ is defined by the three functions:
Definition

(TAU™ N)

(PAR-CMDS *(0) 1 N+1)
Definition

(PAR-CMDS SEQ-HEAD STEP LENG)

(IF (OR LENG=0 LENG=1)
NIL

(APPEND (PAR-CMDS (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(LIST (SAME-LEVEL SEQ-HEAD STEP LENG))))

Definition

(SAME~LEVEL SEQ-HEAD STEP LENG)

(IF (NOT (LISTP SEQ-HEAD))
NIL
(APPEND (SEGMENT (CAR SEQ-HEAD) STEP LENG/2)
(SAME-LEVEL (CDR SEQ-HEAD) STEP LENG)))

The parallel trace is not derived from a refinement. We have to explain it independently. Function TAU™
uses function PAR-CMDS to compose parallel commands as described in Sect. 2. Each parallel command of
TAU™ contains all the comparator modules at a fixed level of the segment tree. The comparator modules
at a fixed level of the segment tree are collected by function SAME-LEVEL. Remember that every segment
tree has a corresponding sequence tree. PAR-CMDS and SAME-LEVEL have three arguments that, together,
describe the subsequences at a fixed level of the sequence tree: SEQ-HEAD, STEP, and LENG. SEQ—HEAD is
the "sequence head", the list of the first elements of the subsequences at that level, STEP is the difference
of any two adjacent elements of subsequences at that level, and LENG is the length of subsequences at that
level. For the recursive definition of PAR-CMDS, we need to determine the SEQ-HEAD of the next lower
level. For this purpose we define the following function:

Definition

(GEN-SEQ-HEAD SEQ-HEAD STEP)

(IF (NOT (LISTP SEQ-HEAD))
NIL
(CONS (CAR SEQ-HEAD)
(CONS (CAR SEQR-HEAD)+STEP
(GEN-SEQ-HEAD (CDR SEQR-HEAD) STEP))))
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Given SEQ-HEAD and STEP at some fixed level, function GEN-SEQ-HEAD computes SEQ-HEAD of the next
lower level. For example, SEQ-HEAD of the 8-element sequence tree at the second level {the level below the

root) is (0 1), and STEP is 2. Therefore
(GEN-SEQ-HEAD " (0 1) 2) = (0 2 1 3)

Trace tau’ is defined as follows:
Definition

(TAU’ N)

(APPEND-LEVELS ’(0) 1 N+1)
Definition

(APPEND-LEVELS SEQ-HEAD STEP LENG)

(IF (OR LENG=0 LENG=1)
NIL

(APPEND (APPEND-LEVELS (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(SAME-LEVEL SEQ-HEAD STEP LENG))))

TAU” uses function APPEND-LEVELS to compose the levels of the segment tree in bottom-up sequence.
TAU’ differs from TAU™ only by the lack of additional "parallel command* parentheses around each level.

With the definition of traces TAU, TAU™, and TAU’, we are able to state the trace transformation of

the bitonic sort. Our main theorem is:
Lemma TAUT-EQ-TAU:
(M—-CS *SEQ (TAU™ N) R) = (M-CS °SEQ (TAU N) R)
Its proof applies one step of commutations:
Lemma TAU’-EQ-TAU:
(M-Cs *SEQ (TAU’ N) R)

(M-Cs °*SEQ (TAU N) R)

and one step of parallel merges:

Lemma TAUT-EQ-TAU‘:
(M-Cs *SEQ (TAU™ N) R)

{(M-CS ’SEQ (TAU’ N) R)
We shall now explain the proof of lemmas TAU’-EQ-TAU and TAU™-EQ-TAU’ in more detail.

Boyer & Moore make the point that it is sometimes easier to prove a more general theorem than that
in which one is interested [1]. Sometimes, a more general theorem may allow a more powerful or more

convenient induction hypot}hesis.6 We found it useful to generalize our trace transformation in the interest

of a simpler mechanical proof.

6BOyer & Moore actually built the generalization of theorems as a heuristic into their prover.
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In the definition of traces TAU, TAU™, and TAU’, the arguments of SORT, PAR-CMDS, and
APPEND-LEVELS describe the entire sequence, i.e., the root of the sequence tree, and theorems
TAU’-EQ-TAU and TAUT-EQ-TAU’ state the transformation of the entire trace, i.e., deal with the entire
sequence tree. We shall generalize the trace transformation theorems to deal with traces corresponding to
any set of sequence subtrees whose roots reside at some fixed level in the sequence tree. For a set of such
roots specified by SEQ-HEAD, STEP, and LENG, the following function defines the appropriate generalized
sequential trace:

Definition

(SUBTREES SEQ-HEAD STEP LENG)

(IF (NOT (LISTP SEQ-HEAD))
NIL
(APPEND (SORT (CAR SEQ-HEAD) STEP LENG)
(SUBTREES (CDR SEQ-HEAD) STEP LENG)))

Every call of function SORT represents a sequential trace that traverses a segment subtree in post-order.
The root of this segment subtree is a segment corresponding to the subsequence represented by some ele-
ment of SEQ-HEAD, and STEP and LENG. As an example, let us consider the third level (from the top) of
the sequence tree of a 16-element sequence (a,,a,,..., ais). Its subsequences are (a.o, ay,,
(a.2 185,34, a14), (a1 L85, 8, 313), and (3.3 Jag,3 ., ais). They are described by the following
parameters: SEQ-HEAD="(0 2 1 3), STEP=4, and LENG=4. The segment subtrees whose roots are the

segments corresponding to these subsequences are:

2g. 3);

(0:4) (8:12) (2:6) (10:14) (1:5) (9:13) (3:7) (11:15)
/ \ / \ / \ / \
(0:8) (4:12) (2:10) (6:14) (1:9) (5:13) (3:11) (7:15)

Thus, each call of SORT in (SUBTREES (0 1 2 3) 4 4) traverses one of the previous segment sub-

trees in post-order:

(SUBTREES (0 2 1 3) 4 4) = “( (0:8) (4:12) (0:4) (8:12)
(2:10) (6:14) (2:8) (10:14)
(1:9) (5:13) (1:5) (9:13)
(3:11) (7:15) (3:7) (11:15) )

Function SUBTREES is a generalization of our original trace TAU. SUBTREES with arguments that
represent the set of only the entire sequence (i.e., the root of the entire sequence tree) equals TAU:

(SUBTREES *(0) 1 N+1) = (TAU N)

Before we can discuss the generalized trace transformation theorems for the bitonic sort, we have to
add a "recognizer" of legal sets of subsequences. Remember that the set of subsequences expected by
SUBTREES must reside at some fixed level. The following function provides a sufficient condition that the

subsequences represented by SEQ-HEAD, STEP, and LENG reside at the same level and have no duplica-

tion:
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Definition

(SEQ-HEADP SEQ-HEAD STEP)

(IF (NOT (L.ISTP SEQ-HEAD))
T
(AND STEP#0
(NUMBERP (CAR SEQ-HEAD))
(CAR SEQ-HEAD)<STEP
(NOT (MEMBER (CAR SEQ-HEAD) (CDR SEQ-HEAD)))
(SEQ-HEADP (CDR SEQ-HEAD) STEP)))

Function SEQ-HEADP determines that all elements of SEQ-HEAD are distinct natural numbers and less
than STEP. For example, for the subsequences at the third level of the sequence tree of a 16-element
sequence:

(SEQ-HEADP *(0 21 3) 4) =T

If SEQ-HEAD and STEP at some fixed level satisfy property SEQ-HEADP, the following theorem ensures
that the sequence head at the next lower level, generated by GEN-SEQ-HEAD, satisfies SEQ-HEADP with
doubled step, as appropriate for that level:

Lemma GEN-SEQ-HEAD-IS-SEQ-HEADP:

(SEQ-HEADP SEQ-HEAD STEP)
= (SEQ-HEADP (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP)

The proof proceeds by an induction suggested by function SEQ-HEADP, but requires the previous proof of
some technicalities (see App. A, lemma GEN-SEQ-HEAD-IS-NOT-MEMBER).

Now we are ready to explain the generalized trace transformation theorems. The following theorem
is the generalized version of the step of commutations, TAU’~EQ-TAU:

Lemma APPEND-LEVELS-EQ-SUBTREES:

(SEQ-HEADP SEQ-HEAD STEP)
= ( (M-CS *SEQ (APPEND-LEVELS SEQ-HEAD STEP LENG) R)
= (M-CS *SEQ (SUBTREES SEQ-HEAD STEP LENG) R) )

This theorem is proved by commutation of all comparator modules at a fixed level into adjacency, as we
explained in Sect. 2. We cannot expect the prover to discover this transformation strategy without help,
but must communicate it with the following auxiliary lemma:

Lemma SUBTREES-~-COMMUTATIVITY:

(SEQ-HEADP SEQ-HEAD STEP)
=+ ( (M-CS °SEQ
(SUBTREES (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(M-CS *SEQ (SAME-LEVEL SEQ-HEAD STEP LENG) R))

(M-CS °SEQ (SUBTREES SEQ-HEAD STEP LENG) R) )

Let us illustrate by example of the previous subtrees of the 16-element sequence how the mechanical proof

of lemma SUBTREES-COMMUTATIVITY proceeds. To satisfy the premise of the transformation, let us ac-
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cept that SEQ-HEAD="(0 2 1 3), STEP=4, and LENG=4 represent a set of subsequences at some fixed

level, the third level, of the 16-element sequence tree, i.e., let us assert:

(SEQ-HEADP (0 21 3) 4) =T
The proof of SUBTREES-COMMUTATIVITY is based on the induction suggested by the recursive definition
of function GEN-SEQ-HEAD. The induction hypothesis is:’

(APPEND (SUBTREES "(2 6 1 5 3 7) 8 2) (SAME-LEVEL *(2 1 3) 4 4))

(SUBTREES *(2 1 3) 4 4)
Here is an illustration of the induction step:
le ft-hand side:

(APPEND (SUBTREES (GEN-SEQ-HEAD (0 2 1 3) 4) 8 2)
(SAME-LEVEL " (0 2 1 3) 4 4))

{open GEN-SEQ-HEAD}
(APPEND (SUBTREES (0 4 2 6 1 5 3 7) 8 2) (SAME-LEVEL °(0 2 1 3) 4 4))
{open SUBTREES and SAME-LEVEL, and apply M-CS-APPEND}

(APPEND (SORT 0 8 2)
(APPEND (SORT 4 8 2)
(APPEND (SUBTREES *(2 6 1 53 7) 8 2)
(APPEND (SEGMENT 0 4 2)
(SAME-LEVEL (2 1 3) 4 4))))

it

= {commutation: apply SUBTREES—AND-SEGMENT-HAVE-NO-OVERLAP
and ARE“IND—CS—IMPLIES*COMMUTATIVITY}

(APPEND (SORT 0 8 2)
(APPEND (SORT 4 8 2)
(APPEND (SEGMENT 0 4 2)
(APPEND (SUBTREES *(2 6 1 5 3 7) 8 2)
(SAME-LEVEL “(2 1 3) 4 4)))))

{induction hypothesis}

(APPEND (SORT 0 8 2)
(APPEND (SORT 4 8 2)
(APPEND (SEGMENT 0 4 2)
(SUBTREES "(2 1 3) 4 4))))

right-hand side:
(SUBTREES *(0 2 1 3) 4 4)
{open SUBTREES}

1

(APPEND (SORT O 4 4) (SUBTREES *(2 1 3) 4 4))

1

{open SORT, and apply M~CS-APPEND}

7Recall that we use symbol = to denote semantic equivalence. Comments are phrased in curly brackets.
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(APPEND (SORT 0 8 2)
(APPEND (SORT 4 8 2)
(APPEND (SEGMENT © 4 2)
(SUBTREES "(2 1 3) 4 4))))

The proof uses commutation rule ARE-IND-CS—-IMPLIES—COMMUTATIVITY of our basic theory (Sect. 3.2)
to commute (SUBTREES °(2 6 1 5 3 7) 8 2) with (SEGMENT 0 4 2). In order to apply the com-
mutation rule, we have to establish its hypothesis:

(HAVE-NO-OVERLAP (SUBTREES (2 6 1 5 3 7) 8 2) (SEGMENT 0 4 2)) =T
We formulate, again, an auxiliary lemma to this effect:
Lemma SUBTREES—AND-SEGMENT-HAVE-NO-OVERLAP:

(SEQ-HEADP SEQ-HEAD STEP)
= (HAVE-NO-OVERLAP (SUBTREES (GEN-SEQ-HEAD (CDR SEQ-HEAD) STEP)
STEP+STEP
LENG1)
(SEGMENT (CAR SEQ-HEAD) STEP LENG2))))

To prove it, we have to generalize again - this time for a purely technical reason. Boyer & Moore’s logic
requires a uniform substitution of all identical terms in a theorem. However, in the induction hyp othesis
of SUBTREES—-AND-SEGMENT-HAVE-NO-OVERLAP, we need a substitution of (CDR SEQ-HEAD) for
SEQ-HEAD in term (CDR SEQ-HEAD), but not in term (CAR SEQ-HEAD). We generalize by replacing the
two terms (CAR SEQ-HEAD) and (CDR SEQ-HEAD) with variables, say, CAR-SEQ-HEAD and
CDR-SEQ-HEAD, respectively.

The proof of the generalized version of SUBTREES-AND-SEGMENT-HAVE-NO-OVERLAP requires the
non-overlap of certain trace parts. Establishing it has been the biggest challenge of the whole proof. We

had to provide the prover with 25 lemmas of natural arithmetic, mostly of integer division.

Let us return now to theorem APPEND-LEVELS-EQ-SUBTREES. For its proof, we have to supply an
induction hint that forces the proper substitution in the induction hypothesis. Boyer & Moore’s prover
permits us to suggest an induction scheme by a defined function of our choice. The following function
models the induction scheme that we desire:

Definition

(INDUCTION-SCHEME SEQ-HEAD STEP LENG R)

(IF (OR LENG=C LENG=1)

NIL

(INDUCTION-SCHEME (GEN-SEQ-HEAD SEQ-HEAD STEP)
STEP+STEP
LENG/2

(M—-CS °*SEQ (SAME-LEVEL SEQ-HEAD STEP LENG) R)))
Let us illustrate the proof of theorem APPEND-LEVELS-EQ-SUBTREES, again, using our four sequence

subtrees of the 16-element bitonic sequence. The induction hypothesis is:
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(APPEND-LEVELS "(0 4 26 1 53 7) 8 2)

(SUBTREES (0 426 15 37) 82)
Here is an outline of the induction step:

(APPEND-LEVELS *(0 2 1 3) 4 4)

il

{open APPEND-LEVELS and GEN-SEQ-HEAD, and apply M~CS~APPEND}
(APPEND (APPEND-LEVELS (0 4 2 6 1 5 3 7) 8 2) (SAME-LEVEL *(0 2 1 3) 4 4))

{induction hypothesis}

1l

(APPEND (SUBTREES (0 4 2 6 1 53 7) 8 2) (SAME-LEVEL (0 2 1 3) 4 4))
{apply SUBTREES-COMMUTATIVITY}

it

(SUBTREES (0 2 1 3) 4 4)

The commutations in this proof appeal to lemma SUBTREES—-COMMUTATIVITY.

This concludes our discussion of the transformation step of commutations: theorem

APPEND-LEVELS~EQ-SUBTREES. We still have to describe the transformation step of parallel merges.

The generalization of the step of parallel merges, TAUT-EQ-TAU”’, is:
Lemma PAR-CMDS-MERGE:

(SEQ-HEADP SEQ-HEAD STEP)
= ( (M-CS ’SEQ (PAR-CMDS SEQ-HEAD STEP LENG) R)
= (M-CS 'SEQ (APPEND-LEVELS SEQ-HEAD STEP LENG) R) )

The proof is, again, based on induction hint INDUCTION-SCHEME. Let us illustrate the proof of theorem
PAR-CMDS-MERGE with our, by now, familiar example. The induction hypothesis is:
(PAR-CMDS *(0 4 26 1 537) 8 2)

(APPEND-LEVELS (0 4 26 153 7) 8 2)
Here is an illustration of the induction step:

(PAR-CMDS (0 2 1 3) 4 4)

1

{open PAR-CMDS and GEN-SEQ-HEAD, and apply M~CS—APPEND}
(APPEND (PAR-CMDS (0 4 26 1 5 3 7) 8 2) ((SAME-LEVEL (0 2 1 3) 4 4)))

t

{parallel merges: apply SAME-LEVEL~IS~TOTLALLY-NO-OVERLAP and M-CS-TOTALLY-IND}
(APPEND (PAR-CMDS (0 4 2 6 1 5 3 7) (SAME-LEVEL (0 2 1 3) 4 4))

{induction hypothesis}

1

(APPEND (APPEND-LEVELS (0 4 2 6 1 5 3 7) (SAME-LEVEL °(0 2 1 3) 4 4))

I

{open APPEND-LEVELS, and apply M~CS-APPEND}
(APPEND-LEVELS (0 2 1 3) 4 4)

The proof uses independence rule M—CS-TOTALLY-IND of our basic theory (Sect. 3.2). To establish its

prerequisites, we have to prove:
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(TOTALLY-NO-OVERLAP (SAME-LEVEL '(0 2 1 3) 4 4)) = T

The proof, again, requires properties of integer division.

This concludes our discussion of the transformation step of parallel merges: theorem

PAR-CMDS-MERGE.

With generalizations APPEND-LEVELS-EQ-SUBTREES and PAR-CMDS-MERGE at our disposal, the
proofs of the more specific theorems TAU’-EQ-TAU and TAU™-EQ-TAU’ are straight-forward . Only
rewrites, no inductions are required. In fact, the proof of the main theorem, TAU™-EQ-TAU, would succeed
without the previous proof of the specific theorems, only on the basis of the generalized theorems. We

chose to force the prover to use the specific theorems (see App. B) to make the correspondence with the

informal description of our transformation perfectly clear.

Our informal transformation (Sect. 2) was from sequential to parallel. In the mechanized proof, we
rewrite in the reverse direction, from parallel to sequential, in order to avoid implementation problems.
We need not be aware that the prover actually transforms TAU™ into TAU, not vice versa. The direction of

transformation is of no consequence to the proof of the semantic equivalence.

We are at the end of the description of the mechanized proof. The proof rests on five axioms that
are part of our basic theory. They reflect properties of comparator modules and their independence that
we are willing to accept without certification. Relative to the basic theory, our application is com pletely
defined and certified. See App. A for proof outlines of theorems SUBTREES-COMMUTAT IVITY,
APPEND-LEVELS~EQ-SUBTREES, and PAR-CMDS-MERGE. App. B contains the complete proof session.

4. Conclusions

Our interest is in the mechanical support of formal reasoning about properties of programming lan-
guages and programs. Presently, we focus on the transformation of program executions to derive concur-

rency. The bitonic sort is the third in a series of sorting networks for which we have mechanically cer-

tified trace transformations [8].

Our approach differs from most mechanical verification systems in that we make the formal semantic
definition of the programming language itself available to the prover. The more popular approach is to
employ some ad hoc device instead which stands between the program to be verified and the formulas to
be proved, for instance, an informally derived verification condition generator. While the use of a
verification condition generator permits highly automated and reasonably practical verification systems,
the price paid is that the mechanical prover cannot be used for reasoning about program properties other

than the ones handed to it by the verification condition generator. Making the formal semantics of the
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language available to the prover enables independent reasoning about program properties and
metareasoning about properties of the language itself. (Here, the metareasoning is the more significant
gain. For example, our metareasoning is about equivalences of program executions.) Also, one has to
believe the correctness of only one computer program: the mechanical deduction system. One does not
have to rely additionally on the correct implementation of a second program (the verification condition
generator) and the fact that it corresponds to the formal semantic definition of the programming lan-

guage. Understandably, this puts a much heavier burden on the deduction system.

However, while mechanical proofs of language properties on the basis of a formal semantics are far
away from complete automation, our experience in mechanized proofs of trace equivalences suggests that
a mechanized prover will, in general, follow the clean strategy of an on-paper proof, if it is communicated
properly [8]. In the case of the bitonic sort, we communicated the structure of the proof by definition of
three traces: the sequential trace tau, the intermediate trace tau”’, and the final parallel trace tau™, and
the formulation of two theorems: one equating tau and tau’ by a commutation argument, and one
equating tau’ and tau™ by a parallel merge argument. The hardest part of the whole proof was to estab-
lish certain properties of integer division, even though we did not dwell here on that particular aspect. We

have concentrated our efforts on a nice implementation of the theory of trace transformations, mot the

theory of natural arithmetic.

Still, even though successful and with undeniable structure - the tediousity of the mechanical proof,
compared to the informal description of the transformation, cannot be denied. Our point of view is that it
should be expected. A mechanized proof does not permit any short-cuts. Each ever so little detail has to
be formalized. It is the producer of the program or programming language about which is reasoned who
has to suffer from this stringent requirement. The consumer reaps the benefits. Besides believing the cor-
rectness of the theorem proving program, he only has to be convinced that the theorem to be proved is
appropriately represented in the mechanized logic. He does not have to be concerned with any aspects of
the proof. In this example, the consumer must believe that M~CS properly defines the trace semantics,
that TAU and TAU™ properly define the sequential and parallel trace, and that no illegal axiomatic as-

sumptions have been made. The manner in which the prover certifies theorem TAU™-EQ-TAU is of no

concern to him.

Ultimately, the producer benefits as well: while the theorems about his product will be harder to
establish, they will be easier to sell. It must be added that not every programming product justifies com-

pletely formal and mechanized scrutiny. There must be a substantial interest in the product’s precise

properties because the cost of the proof will be high.
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Appendix A: Proof Outlines

Proof outlines display induction steps only. Comments are added in curly brackets.

SUBTREES—-COMMUTATIVITY:

left-hand side:

(M-CS °SEQ (SUBTREES (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(M~CS °SEQ (SAME-LEVEL SEQ-HEAD STEP LENG) R))

{open GEN-SEQ-HEAD}

(M-Cs °SEQ (SUBTREES (CONS (CAR SEQ-HEAD)
(CONS (CAR SEQ-HEAD)+STEP

(GEN-SEQ-HEAD (CDR SEQ-HEAD) STEP))))
(M—-CS ’'SEQ (SAME-LEVEL SEQ-HEAD STEP LENG) R))

H

{open SUBTREES and SAME-LEVEL, and apply M-CS—-APPEND}

(M-CS °SEQ (SORT (CAR SEQ-HEAD) STEP+STEP LENG/2)
(M—CS *SEQ (SORT (CAR SEQ-HEAD)+STEP STEP+STEP LENG/2)
(M-CS ’SEQ (SUBTREES (GEN-SEQ-HEAD (CDR SEQ-HEAD) STEP)
STEP+STEP LENG/2)
(M-CS *SEQ (SEGMENT (CAR SEQ-HEAD) STEP STEP+STEP LENG/2)
(M—-CS *SEQ (SAME-LEVEL (CDR SER-HEAD) STEP LENG) R)))))

{apply SUBTREES-AND-SEGMENT-HAVE-NO-OVERLAP
and ARE-IND-CS-IMPLIES-COMMUTATIVITY}

(M~CS *SEQ (SORT (CAR SEQ-HEAD) STEP+STEP LENG/2)
(M~CS *SEQ (SORT (CAR SEQ-HEAD)+STEP STEP+STEP LENG/2)
(M-CS °SEQ (SEGMENT (CAR SEQ-HEAD) STEP STEP+STEP LENG/2)
(M~CS °SEQ (SUBTREES (GEN-SEQ-HEAD (CDR SEQ-HEAD) STEP)
STEP+STEP LENG/2)
(M~CS °SEQ (SAME-LEVEL (CDR SEQ-HEAD) STEP LENG) R)))))

= {induction hypothesis}

(M-CS *SEQ (SORT (CAR SEQ-HEAD) STEP+STEP LENG/2)
(M-CS "SEQ (SORT (CAR SEQ-HEAD)+STEP STEP+STEP LENG/2)
(M-CS °SEQ (SEGMENT (CAR SEQ-HEAD) STEP STEP+STEP LENG/2)
(M-CS *SEQ (SUBTREES (CDR SEQ-HEAD) STEP LENG) R))))

right-hand side:
(M-CS °SEQ (SUBTREES SEQ-HEAD STEP LENG) R)
= {open SUBTREES, and apply M~CS-APPEND}

(M-CS *SEQ (SORT (CAR SEQ-HEAD) STEP LENG)
(M-CS °*SEQ (SUBTREES (CDR SEQ-HEAD) STEP LENG) R))



= {open SORT, and apply M-~CS~APPEND}

(M-CsS °SEQ (SORT (CAR SEQ-HEAD) STEP+STEP LENG/2)
(M—-CS *SEQ (SORT (CAR SEQ-HEAD)+STEP STEP+STEP LENG/2)
(M-CS *SEQ (SEGMENT (CAR SEQ-HEAD) STEP STEP+STEP LENG/2)
(M—CS *SEQ (SUBTREES (CDR SEQ-HEAD) STEP LENG) R))))

Q.E.D.

APPEND-LEVELS-EQ-SUBTREES :

(M~-CS *SEQ (APPEND-LEVELS SEQ-HEAD STEP LENG))

{open APPEND-LEVELS, and apply M-~CS—APPEND}

(M-CS *SEQ (APPEND-LEVELS (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(M-CS *SEQ (SAME-LEVEL SEQ-HEAD STEP LENG) R))

i

{induction hypothesis}

(M-CS ’SEQ (SUBTREES (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(M-CS ’SEQ (SAME-LEVEL SEQ-HEAD STEP LENG) R))

{apply SUBTREES-COMMUTATIVITY}
(M—CS *SEQ (SUBTREES SEQ-HEAD STEP LENG) R)

Q.E.D.

PAR-CMDS-MERGE :

(M-CS °SEQ (PAR-CMDS SEQ-HEAD STEP LENG) R)

i

{open PAR-CMDS, and apply M—~CS-APPEND}

(M~-CS *SEQ (PAR-CMDS (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(M-CS °*SEQ (LIST (SAME-LEVEL SEQ-HEAD STEP LENG)) R))

{open M-CS}

11

(M~CS *SEQ (PAR-CMDS (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(M-CS *PAR (SAME-LEVEL SEQ-HEAD STEP LENG) R))

I

{appbrPAR"CMDS*IS—TDTALLY—NO~DVERLAP:nuiM—CS—TDTALLY—IND}

(M-Cs ’SEQ (PAR-CMDS (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(M-CS *SEQ (SAME-LEVEL SEQ-HEAD STEP LENG) R))

H

{induction hypothesis}

(M-CS ’*SEQ (APPEND-LEVELS (GEN-SEQ-HEAD SEQ-HEAD STEP) STEP+STEP LENG/2)
(M-CS °SEQ (SAME-LEVEL SEQ-HEAD STEP LENG) R))

i

{open APPEND-LEVELS, and apply M-~CS-APPEND}
(M-CS °SEQ (APPEND-LEVELS SEQR-HEAD STEP LENG R))



Appendix B: Events of Proof Session

This appendix presents all events in the order in which they have been accepted by the theorem
prover. We use five kinds of events: declaration of a function, definition of a function, addition of a shell,
addition of an axiom, and proof of a lemma. We shall briefly review the input command format of each.

The User’s Manual [2] explains how to run proof sessions, in general.

1. Function Declaration: (DCL name args)
DCL declares name to be an undefined function with formal arguments args.
2. Function Definition: (DEFN name args body hints)

DEFN defines a function name name with formal arguments args and with body body. Before
admission of the function, the prover attempts to certify its termination by identifying a well-
founded relation such that some measure of args gets smaller in every recursive call. In some
cases, this relation and measure must be provided in the fourth argument hints.

3. Add Shell: (ADD-SHELL const btm recog acces)

ADD-SHELL defines a new type of object. const, the type’s constructor function, takes n ar-
guments and returns an n-tuple object of the new type. n is the number of accessor functions
that access components of objects of the type. Optional btm is the bottom object of the type,

Tecog is the recognizer function that identifies an object of the type, and acces specifies all
accessor functions.

4. Add Axiom: (ADD-AXIOM name types term)

ADD-AXIOM adds a new axiom. The name of the axiom is name, types specifies the ways in

which the axiom is used by the prover, and the statement of the axiom is term. All of our
axioms are of type REWRITE, i.e., are used as rewrite rules.

5. Prove Lemma: (PROVE-LEMMA name type term hints)

PROVE-LEMMA attempts to prove the conjecture term and remember it as a lemma named
name. Only successfully proved lemmas are admitted as events. Lemma name will be used ac-
cording to types. Our lemmas are all used as rewrite rules. The fourth argument hints may
contain several kinds of directives to aid the proof. We use the following hints:

(INDUCT (name args))

Use the induction scheme reflected by the recursive definition of function
(name args).

(DISABLE ev, ... evn)

Prevent the use of events ev, to a_in the proof.

(USE lemma, ... 1emman)

Enforce the use of axioms or lemmas lemma, to lemma . Fach lemma, has
the form (name (V1 t)) ... (Vn tn)), where name is the name of the

axiom or the lemma to be used, v, is one of the free variables of name, and
t, is a substitution term for v,
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The following list of events contains: 2 declared functions,

22 defined functions,
1 shell,
5 axioms and

75 lemmas, i.e.,

105 events.

BASIC THEORY OF SORTING NETWORKS

Trace Composition
(DEFN APPEND (X Y)

(IF (NLISTP X)

(IF (EQUAL X NIL)
Y

(CONS X Y))
(CONS (CAR X) (APPEND (CDR X) Y))))

(PROVE-LEMMA ASSOCIATIVITY-OF-APPEND (REWRITE)

(EQUAL (APPEND (APPEND X Y) Z) (APPEND X (APPEND Y Z))))

(DEFN ALL~-ATOMS (L)
(IF (NLISTP L)
(IF (EQUAL L NIL)
NIL
(LIST L)

(APPEND (ALL-ATOMS (CAR L)) (ALL-ATOMS (CDR L)))))
(PROVE-LEMMA ALL-ATOMS-APPEND (REWRITE)

(EQUAL (ALL-ATOMS (APPEND X Y))
(APPEND (ALL~-ATOMS X) (ALL-ATOMS Y))))

Trace Semantics

(DCL €S (I R))
(DCL IND-CS (I J))

(ADD-AXIOM IND-CS-IS-PREDICATE (REWRITE)
(OR (TRUEP (IND-CS I J)) (FALSEP (IND-CS I 1))
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(DEFN IS~IND-CS (I L)
(IF (NLISTP L)
(IF (EQUAL L NIL)
T
(IND-CS I L))
(AND (IND-C8 I (CAR L)) (IS-IND-CS I (CDR L)))))

(PROVE-LEMMA IS-IND-CS-APPEND (REWRITE)
(EQUAL (IS-IND-CS I (APPEND L1 L2)) (AND (IS-IND-CS I L1) (IS-IND-CS I L2))))

(DEFN ARE-IND-CS (L1 L2)
(IF (NLISTP L1)
(IF (EQUAL L1 NIL)
T
(IS-IND-CS L1 L2))
(AND (IS-IND-CS (CAR L1} L2) (ARE-IND-CS (CDR L1) L2))))

(PROVE-LEMMA ARE-IND-CS-APPEND-RIGHT (REWRITE)
(EQUAL (ARE-IND-CS L1 (APPEND L2 L3)) (AND (ARE-IND-CS Li L2) (ARE-IND-CS L1 L3))))

(PROVE-LEMMA ARE-IND-CS-APPEND-LEFT (REWRITE)
(EQUAL (ARE-IND-CS (APPEND L1 L2) L3) (AND (ARE-IND-CS L1 L3) (ARE-IND-CS L2 L33

(DEFN TOTALLY-IND-CS (L)
(IF (NLISTP L)
T

(AND (IS-IND-CS (CAR L) (CDR L)) (TOTALLY-IND-CS (CDR L)))))

(PROVE-LEMMA TOTALLY-IND-CS-APPEND (REWRITE)
(IMPLIES (TOTALLY-IND-CS (APPEND Li L2))
(AND (ARE-IND-CS L1 L2) (TOTALLY-IND-CS L1) (TOTALLY-IND-CS L2))))

(DEFN M-CS (FLAG L R)
(IF (NLISTP L)
(IF (EQUAL L NIL)
R
(Cs L R))
(IF (EQUAL FLAG ’PAR)
(IF (ARE-IND-CS (ALL-ATOMS (CAR L)) (ALL-ATOMS (CDR L)))
(M-Cs 'SEQ (CAR L) (M-CS ’PAR (CDR L) R))
F)
(M-CS °PAR (CAR L) (M-CS °SEQ (CDR L) R)))))

(ADD-SHELL PAIR NIL PAIRP ((FIRST (ONE-OF NUMBERP) ZERO) (SECOND (ONE-OF NUMBERP) ZERD)))

(ADD-AXIOM CS-TAKES-PAIRS (REWRITE)
(IMPLIES (NOT (PAIRP I)) (EQUAL (CS I R) F)))
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(ADD-AXIOM CS-IS-NOT-MIRACLE (REWRITE)
(EQUAL (CS I F) F))

(PROVE-LEMMA M-CS-IS-NOT-MIRACLE (REWRITE)
(EQUAL (M-CS FLAG L F) F)
((INDUCT (M~CS FLAG L R))))

(PROVE-LEMMA M-CS-IDENTITY (REWRITE)

(EQUAL (M-CS FLAG (LIST (LIST L)) R) (M-CS FLAG L R))
((INDUCT (M-CS FLAG L R))))

(PROVE-LEMMA M-CS-APPEND (REWRITE)
(IMPLIES (OR (EQUAL FLAG ’SEQ)
(AND (EQUAL FLAG 'PAR)
(ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))))

(EQUAL (M-CS FLAG (APPEND L1 L2) R) (M-CS FLAG L1 (M-CS FLAG L2 R))))
((INDUCT (M-CS FLAG L1 R))))

Trace Transformation Rules

(PROVE-LEMMA M-CS-TOTALLY-IND (REWRITE)

(IMPLIES (TOTALLY-IND-CS (ALL-ATOMS L)) (EQUAL (M~CS 'PAR L R) (M-CS *SEQ L R)))
((INDUCT (M~CS FLAG L R))))

(PROVE-LEMMA G3i (REWRITE)
(IMPLIES (ARE~IND~CS (ALL-ATOMS L1) (ALL-ATOMS L2))
(EQUAL (M-CS 'PAR (CONS L1 L2) R) (M-CS *SEQ (APPEND L1 (LIST L2)) R))))

(PROVE-LEMMA G3ii (REWRITE)
(IMPLIES (ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))
(EQUAL (M-CS ’PAR (CONS (APPEND L1 L) L2) R)

(M-CS *SEQ (APPEND L1 (LIST (CONS L L2))) R)))
((INDUCT (APPEND L1 L))))

(ADD~AXIOM IND-CS-IMPLIES-COMMUTATIVITY (REWRITE)
(IMPLIES (IND-CS I J) (EQUAL (CS J (CS I R)) (CS I (CS J R))D))

(PROVE-LEMMA IS~IND-CS-IMPLIES~COMMUTATIVITY (REWRITE)
(IMPLIES (IS-IND-CS I (ALL-ATOMS L))

(EQUAL (CS I (M~CS FLAG L R)) (M-CS FLAG L (CS I R))))
((INDUCT (M-CS FLAG L R))))

(PROVE-LEMMA ARE-IND-CS-IMPLIES-COMMUTATIVITY (REWRITE)
(IMPLIES (ARE-IND-CS (ALL~ATOMS L1) (ALL-ATOMS L2))

(EQUAL (M-CS FLAG! L1 (M-CS FLAG2 L2 R)) (M-CS FLAG2Z L2 (M-CS FLAGL L1 R)D)D)
((INDUCT (M-CS FLAG1 L1 R))))
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(PROVE-LEMMA ARE-IND-CS-IMPLIES-COMMUTATIVITY-SEQ (REWRITE)
(IMPLIES (ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))
(EQUAL (M-CS ’SEQ L1 (M-CS 'SEQ L2 R)) (M-CS 'SEQ L2 (M-CS °'SEQ L1 R))))
((USE (ARE-IND-CS-IMPLIES~COMMUTATIVITY (FLAG1 ’SEQ) (FLAG2 'SEQ)))))

Theory of Non-Overlap

(DEFN NO-OVERLAP (I J)
(AND (PAIRP I) (PAIRP J)
(NOT (EQUAL (FIRST I) (FIRST 1))
(NOT (EQUAL (FIRST I) (SECOND J)))
(NOT (EQUAL (SECOND I) (FIRST 1))
(NOT (EQUAL (SECOND I) (SECOND D))

(ADD-AXIOM NO-OVERLAP-IND-CS (REWRITE)
(IMPLIES (NO-OVERLAP I J) (IND-CS I 1))

(DEFN HAS-NO-OVERLAP (I L)
(IF (NLISTP L)
(IF (EQUAL L NIL)
T
(NO-OVERLAP I L))
(AND (NO~-OVERLAP I (CAR L)) (HAS-NO-OVERLAP I (CDR L)))))

(PROVE-LEMMA HAS-NO-OVERLAP-IS-IND-CS (REWRITE)
(IMPLIES (HAS-NO-OVERLAP I L) (IS-IND-CS I L)))

(DEFN HAVE-NO-OVERLAP (L1 L2)
(IF (NLISTP L1)
(IF (EQUAL Li NIL)
T
(HAS-NO-OVERLAP L1 L2))
(AND (HAS-NO-OVERLAP (CAR L1) L2) (HAVE-NO-OVERLAP (CDR L1} L2))))

(PROVE-LEMMA HAVE-NO-OVERLAP-ARE~IND-CS (REWRITE)
(IMPLIES (HAVE-NO-OVERLAP L1 L2) (ARE-IND-CS L1 L2)))

(DEFN TOTALLY-NO-OVERLAP (L)
(IF (NLISTP L)
T
(AND (HAS-NO-OVERLAP (CAR L) (CDR L)) (TOTALLY-NO-OVERLAP (CDR L)))))

(PROVE~LEMMA TOTALLY-NO-OVERLAP-TOTALLY-IND-CS (REWRITE)
(IMPLIES (TOTALLY-NO-OVERLAP L) (TOTALLY-IND-CS L)))



(PROVE-LEMMA HAS-NO-OVERLAP-APPEND (REWRITE)
(IMPLIES (AND (HAS-NO-OVERLAP I L1) (HAS-NO-OVERLAP I L2))
(HAS-NO-OVERLAP I (APPEND L1 L2))))

(PROVE~LEMMA HAVE-NO-OVERLAP-NIL (REWRITE)
(HAVE-NO-OVERLAP L NIL))

(PROVE-LEMMA HAVE-NO-OVERLAP-APPEND-RIGHT (REWRITE)
(IMPLIES (AND (HAVE-NO-OVERLAP L1 L2) (HAVE-NO-OVERLAP L1 L3))
(HAVE-NO-OVERLAP L1 (APPEND L2 L3))))

(PROVE-LEMMA HAVE-NO-OVERLAP-APPEND-LEFT (REWRITE)
(IMPLIES (AND (HAVE-NO-OVERLAP L1 L3) (HAVE-NO-OVERLAP L2 L3))
(HAVE-NO~OVERLAP (APPEND L1 L2) L3)))

(PROVE-LEMMA TOTALLY-NO-OVERLAP-APPEND (REWRITE)

(IMPLIES (AND (TOTALLY-NO~OVERLAP L1i) (TOTALLY-NO-OVERLAP L2) (HAVE-NO-OVERLAP Li L2))
(TOTALLY-NO-OVERLAP (APPEND L1 L2))))

APPLICATION: TRACE TRANSFORMATION OF THE BITONIC SORT

Algebraic Prerequisites

(PROVE-LEMMA ZEROP-PLUS-1 (REWRITE)
(IMPLIES (ZEROP Y) (EQUAL (PLUS X Y) (FIX X))))

(PROVE~-LEMMA ZEROP-PLUS-2 (REWRITE)
(IMPLIES (ZEROP X) (EQUAL (PLUS X Y) (FIX )

(PROVE-LEMMA SELF-DIFFERENCE (REWRITE)
(EQUAL (DIFFERENCE X X) 0))

(PROVE-LEMMA PLUS-ASSOCIATIVITY (REWRITE)
(EQUAL (PLUS X (PLUS Y Z)) (PLUS (PLUS X Y) Z)))

(PROVE-LEMMA PLUS-ELIMINATION (REWRITE)
(EQUAL (DIFFERENCE (PLUS X Y) Y) (FIX X)))

(PROVE-LEMMA PLUS-DIFFERENCE-EXCHANGE-1 (REWRITE)
(IMPLIES (LEQ Z X) (EQUAL (PLUS (DIFFERENCE X Z) Y) (DIFFERENCE (PLUS X Y) Z))))

(PROVE-LEMMA PLUS~DIFFERENCE-EXCHANGE-2 (REWRITE)
(IMPLIES (LEQ Z Y) (EQUAL (PLUS X (DIFFERENCE Y Z)) (DIFFERENCE (PLUS X Y) 2))))
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LEQ-DIFFERENCE-IS~ZERC (REWRITE)
(IMPLIES (LEQ X Y) (EQUAL (DIFFERENCE X Y) 0)))

DIFFERENCE-REWRITE-1 (REWRITE)
(IMPLIES (LEQ Z Y)
(EQUAL (DIFFERENCE X (DIFFERENCE Y Z))
(IF (LESSP X Y)
(DIFFERENCE (PLUS X Z) Y)
(PLUS (DIFFERENCE X Y) Z)))))

DIFFERENCE-REWRITE-2 (REWRITE)
(IMPLIES (LEQ Y X)
(EQUAL (DIFFERENCE (DIFFERENCE X Y) 2Z) (DIFFERENCE (DIFFERENCE X Z) O

PLUS-DIFFERENCE-ELIMINATION (REWRITE)
(IMPLIES (LESSP Y Z)

(EQUAL (DIFFERENCE (DIFFERENCE (PLUS X Z) Y) Z) (DIFFERENCE X Y3

ZERO~-DIVIDED-BY-ALL (REWRITE)
(EQUAL (REMAINDER 0 X) 0))

SELF-DIVISION (REWRITE)
(EQUAL (REMAINDER X X) 0))

NOT-DIVIDED-IS-NOT-EQUAL (REWRITE)
(IMPLIES (NOT (EQUAL (REMAINDER X Y) 0)) (NOT (EQUAL X Y))))

SUBSTRACT-DIVISORS (REWRITE)
(IMPLIES (LEQ Y X)
(EQUAL (REMAINDER (PLUS X X) YO
(REMAINDER (DIFFERENCE (DIFFERENCE (PLUS X X) Y) Y) Y))))

DIVIDED-DOUBLE (REWRITE)
(IMPLIES (EQUAL (REMAINDER X Y) 0) (EQUAL (REMAINDER (PLUS X X) Y) 0N

DIVISOR-ELIMINATION (REWRITE)
(EQUAL (REMAINDER (PLUS X Y) Y) (REMAINDER X Y)))

ADD-DIVIDEND (REWRITE)

(IMPLIES (AND (NOT (EQUAL (REMAINDER X Z) 0)) (EQUAL (REMAINDER Y Z) 0))
(NOT (EQUAL (REMAINDER (PLUS X Y) 2) O))))

DIVIDEND-ELIMINATION (REWRITE)
(IMPLIES (AND (EQUAL (REMAINDER Y Z) 0) (EQUAL (REMAINDER (PLUS X Y) 2) 0))
(EQUAL (REMAINDER X Z) 0)))
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(PROVE-LEMMA DIVIDED-ELIMINATION (REWRITE)
(IMPLIES (AND (EQUAL (REMAINDER (DIFFERENCE X Y) Z) 0)
(EQUAL (REMAINDER (DIFFERENCE Y X) Z) 0)
(EQUAL (REMAINDER Y Z) 0))
(EQUAL (REMAINDER X Z) 0))
((DISABLE PLUS-DIFFERENCE-EXCHANGE-1)))

(PROVE-LEMMA DIVIDED-ELIMINATION-1 (REWRITE)
(IMPLIES (AND (EQUAL (REMAINDER (DIFFERENCE X (PLUS Y W)) Z) 0)
(EQUAL (REMAINDER (DIFFERENCE (PLUS Y W) X) Z) 0)
(EQUAL (REMAINDER W Z ) 0))
(EQUAL (REMAINDER (DIFFERENCE X Y) 2) 0)))

(PROVE-LEMMA DIVIDED-ELIMINATION-2 (REWRITE)
(IMPLIES (AND (EQUAL (REMAINDER (DIFFERENCE X (PLUS Y W)) 2) 0)
(EQUAL (REMAINDER (DIFFERENCE (PLUS Y W) X) Z) 0)
(EQUAL (REMAINDER W Z ) 0))
(EQUAL (REMAINDER (DIFFERENCE Y X) 2) 0)))

(PROVE-LEMMA NOT-DIVIDED-1 (REWRITE)
(IMPLIES (AND (NUMBERP X) (NUMBERP Y) (NOT (EQUAL X Y)) (LESSP X Z) (LESSP Y Z))
(OR (NOT (EQUAL (REMAINDER (DIFFERENCE X Y) Z) 0))
(NOT (EQUAL (REMAINDER (DIFFERENCE Y X) Z) 0)))))

(PROVE-LEMMA NOT-DIVIDED-2 (REWRITE)
(IMPLIES (AND (NUMBERP X) (NUMBERP Y) (NOT (EQUAL X Y)) (LESSP X Z) (LESSP Y 2))
(OR (NOT (EQUAL (REMAINDER (DIFFERENCE X (PLUS Y 2)) Z) 0))
(NOT (EQUAL (REMAINDER (DIFFERENCE (PLUS Y Z) X) ) 0)))))

(PROVE-LEMMA LESSP-QUOTIENT (REWRITE)
(IMPLIES (LESSP 0 N) (LESSP (QUOTIENT N 2) M)))

Trace Definitions of the Bitonic Sort

(DEFN SEGMENT (BTM STEP LENG)
(IF (ZEROP LENG)
NIL
(CONS (PAIR BTM (PLUS BTM STEP))
(SEGMENT (PLUS BTM (PLUS STEP STEP)) STEP (SUB1 LENG)))))

(DEFN SORT (BASE STEP LENG)
(IF (OR (ZEROP LENG) (EQUAL LENG 1))
NIL
(APPEND (SORT BASE (PLUS STEP STEP) (QUOTIENT LENG 2))
(APPEND (SORT (PLUS BASE STEP) (PLUS STEP STEP) (QUOTIENT LENG 2))
(SEGMENT BASE STEP (QUOTIENT LENG 2))))))
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(DEFN TAU (N)
(SORT 0 1 (ADDI N)))

(DEFN GEN-SEQ-HEAD (SEQ-HEAD STEP)
(IF (NLISTP SEQ-HEAD)
NIL

(CONS (CAR SEQ-HEAD)
(CONS (PLUS (CAR SEQ-HEAD) STEP)
(GEN-SEQ-HEAD (CDR SEQ-HEAD) STEP)))))

(DEFN SAME-LEVEL (SEQ-HEAD STEP LENG)
(IF (NLISTP SEQ-HEAD)
NIL
(APPEND (SEGMENT (CAR SEQ-HEAD) STEP (QUOTIENT LENG 2))
(SAME-LEVEL (CDR SEQ-HEAD) STEP LENG))))

(DEFN PAR-CMDS (SEQ-HEAD STEP LENG)
(IF (R (ZEROP LENG) (EQUAL LENG 1))
NIL

(APPEND (PAR-CMDS (GEN-SEQ-HEAD SEQ-HEAD STEP) (PLUS STEP STEP) (QUOTIENT LENG 2))
(LIST (SAME-LEVEL SEQ-HEAD STEP LENG)))))

(DEFN TAU~ (N)
(PAR-CMDS (LIST 0) 1 (ADD1 N)))

(DEFN APPEND-LEVELS (SEQ-HEAD STEP LENG)

(IF (OR (ZEROP LENG) (EQUAL LENG 1))
NIL

(APPEND (APPEND-LEVELS (GEN-SEQ-HEAD SEQ-HEAD STEP) (PLUS STEP STEP) (QUOTIENT LENG 2))
(SAME-LEVEL SEQ-HEAD STEP LENG))))

(DEFN TAU' (N
(APPEND-LEVELS (LIST 0) 1 (ADDi N)))

(DEFN SUBTREES (SEQ-HEAD STEP LENG)
(IF (NLISTP SEQ-HEAD)
NIL

(APPEND (SORT (CAR SEQ-HEAD) STEP LENG) (SUBTREES (CDR SEQ-HEAD) STEP LENG))))
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Trace Transformation Prerequisites

(DEFN SEQ-HEADP (SEQ-HEAD STEP)
(IF (NLISTP SEQ-HEAD)

T

(AND (NOT (ZEROP STEP))
(NUMBERP (CAR SEQ-HEAD))
(LESSP (CAR SEQ-HEAD) STEP)
(NOT (MEMBER (CAR SEQ-HEAD) (CDR SEQ-HEAD)))
(SEQ-HEADP (CDR SEQ-HEAD) STEP))))

(PROVE-LEMMA GEN-SEQ-HEAD~IS-NOT-MEMBER (REWRITE)
(IMPLIES (SEQ-HEADP (CONS CAR-SEQ-HEAD CDR-SEQ-HEAD) STEP)
(AND (NOT (MEMBER CAR-SEQ-HEAD (GEN-SEQ-HEAD CDR-SEQG-HEAD STEP)))
(NOT (MEMBER (PLUS CAR-SEQ-HEAD STEP) (GEN-SEQ-HEAD CDR-SEQ-HEAD STEP))))))

(PROVE~LEMMA GEN-SEQ-HEAD-IS-SEQ-HEADP (REWRITE)
(IMPLIES (SEQ-HEADP SEQ-HEAD STEP)

(SEQ-HEADP (GEN-SEQ-HEAD SEQ-HEAD STEP) (PLUS STEP STEP)))
((DISABLE SUBSTRACT-DIVISORS)))

(PROVE~LEMMA ALL-ATOMS-SEGMENT (REWRITE)
(EQUAL (ALL~ATOMS (SEGMENT BTM STEP LENG)) (SEGMENT BTM STEP LENG)))

(PROVE-LEMMA ALL-ATOMS-SORT (REWRITE)
(EQUAL (ALL-ATOMS (SORT BASE STEP LENG)) (SORT BASE STEP LENG)))

(PROVE~LEMMA ALL-ATOMS-SAME-LEVEL (REWRITE)
(EQUAL (ALL-ATOMS (SAME-LEVEL SEQ-HEAD STEP LENG)) (SAME-LEVEL SEQ-HEAD STEP LENG)J)

(PROVE-LEMMA ALL-ATOMS-SUBTREES (REWRITE)
(EQUAL (ALL-ATOMS (SUBTREES SEQ-HEAD STEP LENG)) (SUBTREES SEQ-HEAD STEP LENG)))

(PROVE-LEMMA NO-OVERLAP-PAIRS-1 (REWRITE)
(IMPLIES (AND (OR (NOT (EQUAL (REMAINDER (DIFFERENCE BTMi BTM2) STEP2) 0))
(NOT (EQUAL (REMAINDER (DIFFERENCE BTM2 BTM1) STEP2) 0)))
(EQUAL (REMAINDER STEP1 STEP2) 0))

(NO-OVERLAP (PAIR BTMi (PLUS BTMi STEP1)) (PAIR BTM2 (PLUS BTM2 STEP2))))
((DISABLE PLUS REMAINDER)))

(PROVE-LEMMA HAS-NO-OVERLAP-SEGMENT-1 (REWRITE)
(IMPLIES (AND (OR (NOT (EQUAL (REMAINDER (DIFFERENCE BTM1 BTM2) STEP2) 0))
(NOT (EQUAL (REMAINDER (DIFFERENCE BTM2 BTM1) STEP2) 0)))
(EQUAL (REMAINDER STEP1 STEP2) 0))

(HAS-NO-OVERLAP (PAIR BTM1 (PLUS BTMi STEP1)) (SEGMENT BTM2 STEP2 LENG2)))
((DISABLE NO-OVERLAP PLUS-ASSOCIATIVITY)))
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HAVE-NO-OVERLAP-SEGMENT-1 (REWRITE)
(IMPLIES (AND (OR (NOT (EQUAL (REMAINDER (DIFFERENCE BTM1 BTM2) STEP2) 0))
(NOT (EQUAL (REMAINDER (DIFFERENCE BTM2 BTM1) STEP2) 0)))
(EQUAL (REMAINDER STEP1 STEP2) 0))
(HAVE-NO-OVERLAP (SEGMENT BTM1 STEP1 LENG1) (SEGMENT BTM2 STEP2 LENG2)))
((DISABLE HAS-NO-OVERLAP PLUS-ASSOCIATIVITY)))

HAS~NO-OVERLAP-SEGMENT-2 (REWRITE)
(IMPLIES (AND (LESSP X BTM) (LESSP Y BTM))
(HAS-NO~-OVERLAP (PAIR X Y) (SEGMENT BTM STEP LENG))))

TOTALLY-IND-SEGMENT-1 (REWRITE)
(IMPLIES (NOT (ZEROP STEP)) (TOTALLY-NO-OVERLAP (SEGMENT BTM STEP LENG))))

SEQ-HEADP-SEGMENT-HAVE-NO-OVERLAP-1 (REWRITE) v
(IMPLIES (AND (SEQ-HEADP (CONS CAR~SEQ-HEAD CDR-SEQ-HEAD) STEP) (LISTP CDR-SEQ-HEAD))
(HAVE-NO~OVERLAP (SEGMENT CAR-SEQ-HEAD STEP LENG1)
(SEGMENT (CAR CDR-SEQ-HEAD) STEP LENG2)))
((USE (NOT-DIVIDED-1 (X CAR-SEQ-HEAD) (Y (CAR CDR-SEQ-HEAD)) (Z STEP)))))

SEGMENT~AND-SAME-LEVEL-HAVE-NO-OVERLAP-1 (REWRITE)
(IMPLIES (SEQ-HEADP (CONS CAR-SEQ-HEAD CDR-SEQ-HEAD) STEP)
(HAVE-NO-OVERLAP (SEGMENT CAR-SEQ-HEAD STEP LENG1)
(SAME~LEVEL CDR-SEQ-HEAD STEP LENG2)))
((INDUCT (SAME~LEVEL CDR-SEQ-HEAD STEP LENG2))))

SEGMENT-AND-SAME-LEVEL-HAVE~-NO~OVERLAP (REWRITE)
(IMPLIES (SEQ-HEADP SEQ-HEAD STEP)
(HAVE-NO-OVERLAP (SEGMENT (CAR SEQ-HEAD) STEP LENG1)
(SAME-LEVEL (CDR SEQ-HEAD) STEP LENG2))))

SAME-LEVEL-IS-TOTALLY-NO-OVERLAP (REWRITE)
(IMPLIES (SEQ-HEADP SEQ-HEAD STEP)
(TOTALLY-NO-OVERLAP (SAME-LEVEL SEQ-HEAD STEP LENG))))

SORT-AND-SEGMENT-HAVE-NO-OVERLAP (REWRITE)
(IMPLIES (AND (OR (NOT (EQUAL (REMAINDER (DIFFERENCE BTMi BTM2) STEP2) 0))
(NOT (EQUAL (REMAINDER (DIFFERENCE BTM2 BTM1i) STEP2) 0)))
(EQUAL (REMAINDER STEP1 STEP2) 0))

(HAVE-NO-OVERLAP (SORT BTM1 STEP! LENG1) (SEGMENT BTM2 STEP2 LENG2)))
((DISABLE SEGMENT HAS-NO-OVERLAP)))

SORT-AND-SEGMENT-HAVE-NO~OVERLAP-1 (REWRITE)
(IMPLIES (AND (SEQ-HEADP (CONS CAR-SEQ-HEAD CDR~SEQ-HEAD) STEP)
(LISTP CDR-SEQ-HEAD))
(HAVE-NO-OVERLAP (SORT (CAR CDR-SEQ-HEAD) (PLUS STEP STEP) LENG1)
(SEGMENT CAR-SEQ-HEAD STEP LENG2)))
((USE (NOT-DIVIDED-i (X CAR-SEQ-HEAD) (Y (CAR CDR-SEQ-HEAD)) (Z STEP)))))
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(PROVE-LEMMA SORT-AND-SEGMENT-HAVE-NO-OVERLAP-2 (REWRITE)
(IMPLIES (AND (SEQ-HEADP (CONS CAR-SEQ-HEAD CDR-SEQ-HEAD) STEP)
(LISTP CDR-SEQ-HEAD))
(HAVE-NO-OVERLAP (SORT (PLUS (CAR CDR-SEQ-HEAD) STEP) (PLUS STEP STEP) LENG1)
(SEGMENT CAR-SEQ-HEAD STEP LENG2)))
((USE (NOT-DIVIDED-2 (X CAR~SEQ-HEAD) (Y (CAR CDR-SEQ-HEAD)) (Z STEP)))))

(PROVE-LEMMA SUBTREES-AND-SEGMENT~HAVE-NO-OVERLAP-1 (REWRITE)
(IMPLIES (SEQ-HEADP (CONS CAR-SEQ-HEAD CDR-SEQ-HEAD) STEP)
(HAVE-NO-OVERLAP (SUBTREES (GEN-SEQ-HEAD CDR-SEQ-HEAD STEP)
(PLUS STEP STEP) LENG1)

(SEGMENT CAR-SEQ-HEAD STEP LENG2)))
((DISABLE SEGMENT)))

(PROVE-LEMMA SUBTREES-AND-SEGMENT-HAVE-NO-OVERLAP (REWRITE)
(IMPLIES (SEQ-HEADP SEQ-HEAD STEP)
(HAVE-NO-OVERLAP (SUBTREES (GEN-SEQ-HEAD (CDR SEQ-HEAD) STEP)
(PLUS STEP STEP) LENG1)
(SEGMENT (CAR SEQ-HEAD) STEP LENG2))))

Trace Transformation

(PROVE-LEMMA SUBTREES-COMMUTATIVITY (REWRITE)
(IMPLIES (SEQ-HEADP SEQ-HEAD STEP)
(EQUAL (M-CS 'SEQ
(SUBTREES (GEN-SEQ-HEAD SEQ-HEAD STEP)
(PLUS STEP STEP) (QUOTIENT LENG 2))
(M-CS 'SEQ (SAME-LEVEL SEQ-HEAD STEP LENG) R))

(M-CS *SEQ (SUBTREES SEQ-HEAD STEP LENG) R)))
((DISABLE SEGMENT-AND-SAME-LEVEL-HAVE-NO~OVERLAP

SEGMENT-AND~-SAME-LEVEL-HAVE~-NO-0OVERLAP-1
NOT-DIVIDED-IS~NOT-EQUAL)))

(PROVE-LEMMA SUBTREES-NIL (REWRITE)
(IMPLIES (OR (ZEROP LENG) (EQUAL LENG 1)) (EQUAL (SUBTREES SEQ-HEAD STEP LENG) NILD))

(DEFN INDUCTION~SCHEME (SEQ-HEAD STEP LENG R)
(IF (OR (ZEROP LENG) (EQUAL LENG 1))
NIL
(INDUCTION-SCHEME (GEN-SEQ-HEAD SEQ-HEAD STEP)
(PLUS STEP STEP) (QUOTIENT LENG 2)
(M-CS *SEQ (SAME-LEVEL SEQ-HFAD STEP LENG) R))))
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(PROVE-LEMMA APPEND-LEVELS-EQ-SUBTREES (REWRITE)
(IMPLIES (SEQ-HEADP SEQ-HEAD STEP)
(EQUAL (M-CS ’'SEQ (APPEND-LEVELS SEQ-HEAD STEP LENG) R)
(M-CS *SEQ (SUBTREES SEQ-HEAD STEP LENG) R)))
((INDUCT (INDUCTION-SCHEME SEQ-HEAD STEP LENG R))
(DISABLE NOT-DIVIDED-IS-NOT-EQUAL)))

(PROVE-LEMMA TAU’-EQ-TAU (REWRITE)
(EQUAL (M-CSs 'SEQ (TAU® N) R) (M-CS 'SEQ (TAU N) R)))

(PROVE-LEMMA PAR-CMDS-MERGE (REWRITE)
(IMPLIES (SEQ-HEADP SEQ-HEAD STEP)
(EQUAL (M-CS °SEQ (PAR-CMDS SEQ-HEAD STEP LENG) R)

(M-Cs 'SEQ (APPEND-LEVELS SEQ-HEAD STEP LENG) R)))
((INDUCT (INDUCTION-SCHEME SEQ-HEAD STEP LENG R))

(DISABLE APPEND-LEVELS~EQ-SUBTREES NOT-DIVIDED-IS-NOT-EQUAL)))

(PROVE-LEMMA TAU™-EQ-TAU’® (REWRITE)
(EQUAL (M-CS 'SEQ (TAU™ N) R) (M~CS ’SEQ (TAU’ N) R)))

(PROVE-LEMMA TAU™-EQ-TAU (REWRITE)

(EQUAL (M-CS *SEQ (TAU™ N) R) (M-CS 'SEQ (TAU N) R))
((DISABLE TAU TAU~ TAU')))



TR-84-30 ERRATA

p. 8, line 4 of the definition of ARE-IND-CS: (IF Li=NIL
p. 9, line 2: (TOTALLY-IND-CS L)

p. 16, the following expansion makes our illustrations clearer:
... let us assert:
(SEQ-HEADP (0 21 3) 4) =T

From this fact, theorem GEN-SEQ-HEAD-IS-SEQ-HEADP, and the definition of
SEQ-HEADP we can conclude the premises of the induction hypotheses of all transfor-
mation theorems that we are going to illustrate with this example. The proof of
SUBTREES—~COMMUTATIVITY is based on an induction suggested by the recursive

definition of function GEN-SEQ-HEAD. With validity of the premise, the induction
hypothesis reduces to: ...

p. 23, comment of the third equation of the proof of PAR-CMDS-MERGE:
apply SAME-LEVEL-IS-TOTALLY-NO-OVERLAP, not PAR-CMDS—1IS-TOTALLY-NO-OVERLAP.

p. 24, Point 5: (PROVE-LEMMA name types term hints)
p. 24, explanation of (DISABLE ev, ... evn): Replace a by ev_ .

The whole report: references to [7] apply equally to [6].



