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Abstract. The success of software model checking depends on finding an ap-
propriate abstraction of the program to verify. The choice of the abstract domain
and the analysis configuration is currently left to the user, who may not be fa-
miliar with the tradeoffs and performance details of the available abstract do-
mains. We introduce the concept of domain types, which classify the program
variables into types that are more fine-grained than standard declared types (e.g.,
‘int’ and ‘long’) to guide the selection of an appropriate abstract domain for a
model checker. Our implementation on top of an existing verification framework
determines the domain type for each variable in a pre-analysis step, based on the
usage of variables in the program, and then assigns each variable to an abstract
domain. Based on a series of experiments on a comprehensive set of verification
tasks from international verification competitions, we demonstrate that the choice
of the abstract domain per variable (we consider one explicit and one symbolic
domain) can substantially improve the verification in terms of performance and
precision.

1 Introduction

One of the main challenges in software model checking is to automatically select, for
each program variable, an abstract representation (also known as abstract domain) that
allows to effectively prove the program correct or to identify an error path. Several ab-
stract domains have been applied successfully to software-verification problems, with
different strengths and weaknesses. Abstract domains can be based on explicit represen-
tations (e.g., hash tables for integers, memory graphs for the heap) and symbolic repre-
sentations (predicates, binary decision diagrams (BDD)). For example, using an explicit-
value domain [14] was efficient on many benchmarks from the recent competition on
software verification [9], while using a BDD domain [15] was more efficient on event-
condition-action (ECA) systems that involve only simple operations over integers in an
ECA competition [30]. In the context of product-line verification, it has been shown
that BDD-encodings of feature variables improve verification performance [5, 24]. The
key insight is that different abstract domains are successful on different programs, and
for every abstract domain, we can find programs for which the abstract domain is not
successful.
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So far, the choice of the abstract domain for a given verification problem (which
often implies the choice of a certain verification tool as well) was left to the user. Our
goal is to automate the choice of an effective abstract domain. We analyze the usage
of program variables before the model checker starts the state-space exploration and
assign each variable to a certain domain type. In addition to the declared type of a
variable (e.g., int and char), the domain type represents information about the value
range and the operations in which the variable is involved.

Our approach is based on the CPA verification framework, in which each abstract
domain has a precision associated with it [11]. We use the domain types from the pre-
analysis as guidance for assigning an abstract domain to each variable. In the experi-
ments that we conducted to evaluate our approach, we use two abstract domains: an
explicit-value domain and a BDD-based domain. For both domains, the precision is a
set of variables that should be tracked in the domain. The precisions are initialized based
on the variables’ domain types. The domain assignment improves the overall verifica-
tion performance, if each abstract domain tracks the kind of variables that it is suited
for.

The analysis is implemented in the verification framework CPACHECKER [13], which
implements configurable program analysis for C programs and provides abstract do-
mains for an explicit-value analysis and a BDD-based analysis (we do not use the
predicate analysis). We evaluate our approach on six sets of verification tasks from dif-
ferent application domains (a total of 2 435 files) that have been used by recent interna-
tional competitions on software model checking (SV-COMP 2013 [9], RERS Challenge
2012 [30]).

Our evaluation reveals that the programs in the benchmark sets contain a significant
number of variables that have a much narrower domain type than the declared type of
the variable. We also demonstrate that the verification performance improves if these
variables are tracked using a more suitable abstract domain, compared to using a single
abstract domain for all variables. All results are available on the supplementary web-
site 1.

int enabled, a, b;
b = 20;
if (enabled) {

if (a > 5) {
if (a == 0) {

b = 0;
}
assert (b ∗ b > 200);

}
}

Fig. 1. Example with int variables
of different domain types

Example. We illustrate our approach on the exam-
ple program in Fig. 1. The program contains three
variables that are declared by the programmer as int.
The variables are used in different ways: the variable
enabled is used as a boolean; the variables a and b
are numeric and used in a greater-than comparison,
b is also used in a multiplication. Neither the explicit-
value analysis nor the BDD-based analysis is able to
efficiently verify such a program: The explicit-value
domain is perfectly suited to handle variable b, be-
cause b has a concrete value, and the multiplication
and the greater-than comparison can easily be computed; BDDs are known to be ineffi-
cient for multiplication [31]. The BDD domain can efficiently encode the variables en-
abled and a, whereas the explicit-value analysis is not good at encoding facts like a > 5.

1 http://www.sosy-lab.org/projects/domaintypes/

http://www.sosy-lab.org/projects/domaintypes/
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Thus, without information about variable a, the explicit-value analysis does not know
the value of variable b and cannot determine the result of the multiplication.

It has been proposed to use several abstract domains in parallel, with each domain
handling all variables (e.g. [17]). If the domains are well communicating (reduced prod-
uct), this could solve the verification task, but the load on each domain would be unnec-
essarily high, because every domain has to handle more variables than necessary.

Contributions. We make the following contributions:
– We introduced the concept of domain types and developed a pre-analysis that com-

putes the domain types for all program variables.
– We extended an existing verification framework to use the two abstract domains

‘explicit-value’ and ‘BDD’ in parallel, while controlling the precision of each ab-
stract domain (the variables to track) separately, based on domain types.

– We evaluate our approach on verification benchmarks from recent international
software-verification competitions.

2 Background

We informally explain the concepts that we use, and provide references to the literature
for details. As context, we assume to verify C programs with integer variables.

Abstract Domains and Program Analysis. Abstraction-based software model check-
ers automatically extract an abstract model of the subject program and explore this
model using one or more abstract domains. An abstract domain represents certain as-
pects of the concrete program’s states that the state exploration is supposed to track [1].
Different abstract domains can track different aspects of the program state space and
complement each other. For example, a shape domain [12, 26, 34] stores, for each
tracked pointer, the shape of the pointed-to data structures on the heap. Another ex-
ample is the explicit-value domain that, for each tracked variable, tracks the explicit
value of the variable [14, 28, 29]. These two examples illustrate that abstract domains
can represent different information. However, it is also possible to use different abstract
domains to represent the same information in different ways. Consider a program in
which the value of variable x ranges from 3 to 9. This can be stored by an interval do-
main [17] using the abstract state x �→ [3, 9], or by a predicate domain [7, 10, 27] using
the abstract state x ≥ 3 ∧ x ≤ 9.

Every abstract domain consists of (1) a representation of sets of concrete states, defin-
ing the abstract states (lattice elements), (2) an operator to decide if one abstract state
subsumes another abstract state (partial order), and (3) an operator that combines two
abstract states into a new abstract state that represents both (join). Software verifiers use
one or several abstract domains to represent the states of the program. The characteris-
tics of the abstract domain have implications on the effectivity (low number of failures
and false results) and efficiency (performance) of the program analysis.

Precision. Each abstract domain can operate at different levels of abstraction (i.e., it can
be more fine-grained or more coarse-grained). The level of abstraction of an abstract
domain is determined by the abstraction precision, which controls if the analysis is
coarse or fine. For example, the precision of the shape domain could instruct the analysis
which pointers to track and how large a shape can maximally grow; the precision of the
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1 int x, y, z;
2 x = 5;
3 if (y > 1) {
4 z = 2;
5 } else {
6 z = 2 ∗ x / 5;
7 }
8 ...

Fig. 2. Example program (left), control-flow automaton (CFA) that represents the program (mid-
dle), and abstract reachability graph (ARG, right) for the explicit-value domain. CFA edges model
assume operations (e.g., [y > 1]) and assignment operations (e.g., z = 2;).

predicate domain is a set of predicates to track that can, for example, grow by adding
predicates during refinement steps [23].

Next, we describe the two abstract domains that we consider in our experiments.

Explicit-Value Domain. The explicit-value domain stores explicit values for program
variables. Each abstract state of this abstract domain is a map that assigns to each
program variable that occurs in the precision, an integer value (or no value if an ex-
plicit value cannot be determined). For example, consider the code, the control-flow
automaton (CFA), and the abstract reachability graph (ARG) in Fig. 2: the assignment
of value 5 to variable x is stored in an abstract state for CFA node 3. Then, a conditional
statement starts two possible execution paths, which the verifier has to explore. The
explicit-value domain does not store a value for variable y, because there is no explicit
value for y. After both branches of the CFA are explored, the ARG contains a ‘frontier’
abstract state that is the result of joining the abstract successors from both branches
for CFA node 8. The explicit-value domain might suffer from a loss of information if
no explicit values can be determined (e.g., for y > 1). On the one hand, this introduces
imprecision and potentially false alarms. On the other hand, if values are present, all
operations can be executed extremely fast. The precision controls which variables are
tracked in the explicit-value domain. For the code fragment in Fig. 2, we could use a
precision {x, z} and omit y, if we knew beforehand that it is not necessary to represent
variable y.

BDD Domain. The BDD domain stores information about program variables using bi-
nary decision diagrams (BDD). Each abstract state in the BDD domain is a BDD that
represents a predicate over the variable values [18]. BDDs can be efficient in represent-
ing predicates and performing boolean operations. Because of this characteristic, BDDs
have been used in model checking of systems with a large number of boolean variables,
most prominently in hardware verification [20, 31]. Values of integer variables can be
represented by BDDs using a binary encoding of the values (representing the integer
values using, e.g., 32 boolean BDD variables). We can represent a variable with even
fewer BDD variables if we can statically determine the set of values that the variable
might hold at run time and that (non-) equality is the only arithmetical operation (nom-
inal scale [37]). In our example, there is only one value for variable x (i.e., x = 5), and
thus we need only one boolean variable for program variable x. The size of the BDD
—and thus, the performance of the BDD operations— depends on the number of BDD
variables; therefore, it is important to keep the number of BDD variables small.



266 S. Apel et al.

�������	�
�
��
��	��

������	��
����

�����
����

�	�	�����
��	�
�

�
�����
������
����	�
�

��	��
��	��

��	�
��
��	�������

�
����������
���������

Fig. 3. A model-checking engine with two abstract
domains and domain-type analysis
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Fig. 4. Hierarchy of domain types

The abstraction precision of the BDD domain is (also) a set of program variables that
an analysis should track using this abstract domain. Considering again our example of
Fig. 2, if we knew beforehand that the explicit-value domain can efficiently represent
variables x and z, we would not include them in the BDD precision, which would result
in precision {y} for the BDD domain, and thus we would need only BDD variables
for y. Because the performance of BDD operations decreases with a growing number
of variables, the BDD domain should be used only for variables that the explicit-value
analysis can not efficiently track. To achieve the goal of a better assignment of program
variables to abstract domains, we introduce the concept of domain types in Section 3.

3 Domain Types

The domain-type-based verification process consists of three steps: (1) The subject pro-
gram is type-checked to determine the domain type for each variable (pre-analysis).
(2) Each variable is mapped to an abstract domain that the analysis will use to represent
information about the variable. (3) The actual verification procedure with the initialized
precisions per abstract domain is started. Fig. 3 illustrates the approach of a verifica-
tion engine that is based on domain types. The state-exploration algorithm uses several
abstract domains to represent the state space of the program.

3.1 Classification

In many statically-typed programming languages, variables are declared to be of a
certain type. The type determines which values can be stored in the variable and
which operators are allowed on the variable. For the assignment of abstract domains

int enabled;
if (enabled) {

...
} else {

...
}

Fig. 5. Using an integer variable
as boolean in C

to variables in a program analysis, more specific infor-
mation on the variables are valuable, in particular, which
of the operators that the static type allows are actually ap-
plied to the variable. For example, consider boolean vari-
ables in the programming language C. The language C
does not provide a type ‘boolean’. In C, the boolean val-
ues true and false are represented by the integer values
1 and 0, respectively. When integer variables are read,
the value 0 is interpreted as false and all other values
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SYNTAX DEFINITION

op ::= program operations:
[ expr ] assume

| x = expr; assignment
expr ::= expressions:

| val value
| ! expr negation
| expr == expr equality
| expr != expr inequality
| expr + expr addition
| expr – expr subtraction
| expr * expr multiplication
| expr / expr division

val ::= values:
0 zero

| c non-zero constant
| x variable

TYPE RULES FOR PROGRAM OPERATIONS

expr : τ

[ expr ] : τ
(ASSUME)

expr : τ

x = expr; : τ
(ASSIGNMENT)

uses(op1, x) op1 : τ1
uses(op2, x) op2 : τ2

op1 : max({τ1, τ2})
(CLOSURE)

uses(op, x) op : τ

x : τ
(VARUSAGE)

TYPE RULES FOR EXPRESSIONS

expr : τ

! expr : max({τ, IntBool}) (NEGBOOL)

val : τ

val == 0 : max({τ, IntBool})
val != 0 : max({τ, IntBool})

(EQBOOL)

expr1 : τ1 expr2 : τ2

expr1 == expr2 : max({τ1, τ2, IntEqBool})
expr1 != expr2 : max({τ1, τ2, IntEqBool})

(EQINT)

expr1 : τ1 expr2 : τ2

expr1 + expr2 : max({τ1, τ2, IntAddEqBool})
expr1 – expr2 : max({τ1, τ2, IntAddEqBool})

(ADD)

expr1 : τ1 expr2 : τ2

expr1 * expr2 : max({τ1, τ2, IntAll})
expr1 / expr2 : max({τ1, τ2, IntAll})

(MULT)

DESCRIPTION

Predicate uses(op, x) states that a program operation op
references a variable x; function max({τ1, . . . , τn})
returns the maximal type for our defined set of
types and the following (transitiv) type relation:
IntBool < IntEqBool < IntAddEqBool < IntAll;
a type constraint obj : τ states that the type of obj is
equal or greater than τ , where obj can be either an ex-
pression, a program operation, or a variable; note that
this first proposal for typing rules is very coarse and can
be significantly refined, e.g., by eliminating the closure.

Fig. 6. Syntax definition and domain-type rules; a program is represented as control-flow au-
tomaton (CFA) [10], where nodes represent control-flow locations and edges represent program
operations that are executed when control flows from one control-flow location to the next;
CPACHECKER supports C, we use this largely abbreviated and adjusted grammar of program
operations to simplify the presentation.

are interpreted as true. Let us consider the code in Fig. 5: The expression enabled in
the if condition is internally expanded to the expression enabled != 0 [2]. As described
in Sect. 2, such a variable should be represented in a BDD by one boolean variable,
not by 32 boolean variables. Therefore, we introduce a domain type IntBool that rep-
resents this more precise type. To determine whether an integer variable has actually
the domain type IntBool , our pre-analysis inspects all occurrences of the variable in
the C expressions. If a variable is found to be of domain type IntBool , this fact can
be considered during the assignment of the abstract domain, and thus the variable can
be represented by data structures that efficiently store boolean values during the veri-
fication. Fig. 4 shows the four domain types that we consider in the static pre-analysis
(more domain types are of course possible, but not yet evaluated). The pre-analysis as-
signs every program variable to one of these domain types, from which an appropriate
abstract domain can be derived.

Other programming languages (e.g., JAVA) provide more restrictive types than C
does, such as boolean and byte, but for the purpose of assigning the best abstract
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domain, even more precise information is beneficial. In dynamically-typed or even un-
typed languages, types of variables are unknown before program execution. A static
analysis of domain types can lead to considerable improvements of the verification pro-
cess, because it can infer more specific domain types, and thus, choose more efficient
algorithms and data structures for representing abstract states.

3.2 Pre-analysis

In the first step, a static pre-analysis computes the domain type for each program vari-
able, according to the type system in Fig. 6. For each program operation (either ASSUME

or ASSIGNMENT), the analysis determines the maximal domain type that is needed ac-
cording to the expression operators that occur in the program operation. Then, it con-
structs the type closure over all program operations that use some common variables,
to determine the maximal domain type that the program operations for a program vari-
able require. The type of a variable x is the (maximal) domain type of program op-
erations that use variable x. For example, the program operations x == 0, x == x + 1, and
y == x * (z + x) are of the domain types IntBool , IntAddEqBool , and IntAll , respectively.
If all program operations occur in the program, the closure includes all of them (because
all use variable x), and thus the domain type of x, y, and z is IntAll .

The domain type of an expression is IntBool if all operators in the expression are
negations (!) or comparisons with zero (== 0 and != 0). If an expression also contains
equality tests with non-zero constant values or other variables (==, !=), then the domain
type of the expression is IntEqBool . If an expression, in addition, contains linear arith-
metic (+, –), arbitrary comparisons (==, !=, <, >, <=, >=), or bit operators (&, |, ˆ), then the
domain type is IntAddEqBool 2. Expressions that contain any other operators (e.g., mul-
tiplication, division) are of the most general domain type IntAll .

The four domain types are in subtype relation, as illustrated in Fig. 4. Each variable
that is of type IntBool is also of the domain types IntEqBool , IntAddEqBool , and
IntAll . The type system assigns the strongest (most restrictive, least) possible type
that satisfies the type rules (i.e., the type system assigns domain type IntBool instead
of IntAddEqBool if possible). To be able to refer to variables that are of a certain
domain type and not of the corresponding weaker domain type (e.g., variables that are
in IntAddEqBool and not in IntEqBool ), we introduce four new domain types, for
brevity:

Bool = IntBool

Eq = IntEqBool \ IntBool
Add = IntAddEqBool \ IntEqBool

Other = IntAll \ IntAddEqBool

3.3 Domain Assignment

Once the domain type has been determined for each program variable, each domain
type is assigned to a certain abstract domain that the analysis uses to track the variables

2 The operators <, >, <=, >=, <<, >>, &, |, and ˆ are omitted in the type rules in Fig. 6 for brevity.
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of that domain type. Therefore, we define a domain assignment d to be a map that
assigns an abstract domain to each domain type. To setup the program analysis, we add
all variables of a domain type t to the abstraction precision of the abstract domain d(t).
In principle, every abstract domain can represent any variable, but each abstract domain
has certain strengths and weaknesses. A perfect domain assignment would map each
domain type to the abstract domain that is most appropriate for representing values of
the variables.

It seems straightforward to assign the BDD domain to domain type Bool. The BDD
domain can efficiently represent complex boolean combinations of variables, but is sen-
sitive to the number of represented variables. We can also assign the BDD domain to
the domain types Eq and Add. For domain type Eq, we know from the properties of the
domain type that those variables only hold a limited and static set of values. Therefore,
we can enumerate these values and represent them by log2(n) BDD variables, where
n is the number of values. The explicit-value domain can in principle be used for all
domain types, but the more different combinations of variable assignments need to be
distinguished in the analysis, the larger the state space grows, perhaps resulting in an
out-of-memory exception. Moreover, the explicit-value domain is not appropriate for
analyzing uninitialized variables.

In our experiments, we show that different domain assignments have significantly
different performance characteristics for different sets of verification tasks. Automati-
cally selecting an optimal domain assignment remains an open research problem. The
goal of this paper is to show that the concept of domain types provides a promising
technique to approach the problem.

4 Experimental Evaluation

To evaluate the domain-type-based analysis approach, we conduct a series of experi-
ments with different configurations on a diverse set of verification tasks. The results
provide evidence that the chosen domain assignment has a significant impact on
effectiveness and efficiency. In particular, we address the following issues:

Domain Types. The subject systems contain a sufficient set of integer variables such
that a domain-type analysis is able to classify them into more specific domain types.

Variable Partitioning. The verification performance significantly changes if variables
are represented by different abstract domains, compared to representing all vari-
ables with the same abstract domain.

Advantage of Combinations. Using the BDD domain for some variables (e.g., all vari-
ables of the domain types Bool and Eq) and the explicit-value domain for other
variables can improve the verification performance.

4.1 Implementation

For our experiments, we extended the open verification framework CPACHECKER [13],
which provides various abstract domains and supports the concept of abstraction pre-
cisions in a modular way, such that it is easy to extend and configure. The tool is ap-
plicable to an extensive set of verification benchmarks, because it participated in the
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competition on software verification. This makes it possible to evaluate our approach
on a large set of representative programs.

Explicit-Value Domain. We use the default explicit-value domain that is already im-
plemented in CPACHECKER [14]. It uses a hash-map to associate variables with values.
This implementation is efficient in handling variables with few different values that are
used in complex operations.

BDD Domain. We extended CPACHECKER’s BDD domain [15] to use —depending on
the domain type— specialized encodings of variables in the BDD. For domain type
Bool, we use exactly one BDD variable per program variable. For variables of domain
type Add, we use 32 BDD variables to represent one program variable (we omit the
details of bit-precise analysis). For variables of domain type Eq, we know from the pre-
analysis how many different values the variable can hold. Therefore, we can re-map the
values to a new set of values with the same cardinality (nominal scale [37]), which needs
considerably fewer BDD variables (compared to 32 BDD variables). We use a simple
bijective map from the original constants in the program to a (smaller, successive) set of
integer values encoded with BDD variables. We also encode information about equality
of uninitialized Eq variables (for example, in the expression x==y). To achieve this, we
reserve a value in the encoding for each of the Eq variables. In total, we use log2(n+m)
BDD variables per Eq program variable, where n is the number of program constants
and m is the number of Eq variables.

4.2 Experimental Setup

We performed all experiments on a Ubuntu 12.04 (64-bit) system (LINUX 3.2 as ker-
nel and OpenJDK 1.7 as JAVA VM) with a 3.4 GHz Quad Core processor (Intel Core
i7-2600). Each verification run was limited to 2 cores, 15 GB of memory, and 15 min
of CPU time. We used the version of CPACHECKER that is available as revision tag
cpachecker-1.2.7-hvc13. Each verification task was verified using five different config-
urations:
Explicit: This configuration tracks all variables with the explicit-value domain.
BDD-IntBool: This configuration uses both abstract domains 3; all variables of domain

type IntBool are in the precision of the BDD domain and all other variables are in
the precision of the explicit-value analysis.

BDD-IntEqBool: This configuration uses both abstract domains; all variables of do-
main type IntEqBool are in the precision of the BDD domain and all other vari-
ables are in the precision of the explicit-value domain.

BDD-IntAddEqBool: This configuration uses both abstract domains; all variables of
domain type IntAddEqBool are in the precision of the BDD domain and all other
variables are in the precision of the explicit-value domain.

BDD: This configuration tracks all variables with the BDD domain.

3 We expected that the combined configurations (BDD-IntBool, BDD-IntEqBool, and BDD-
IntAddEqBool) would suffer from the overhead of running two abstract domains. We measured
this overhead in separate experiments (running one of the domains with empty precision) and
found that the impact is negligible.
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4.3 Verification Tasks

We evaluate our approach on six benchmark sets that, in total, consist of 2 435
verification tasks. The benchmark sets are (number of verification tasks in parentheses):

CONTROL FLOW AND INTEGER VARIABLES (94) LOOPS (79)
DEVICE DRIVERS LINUX 64-BIT (1 237) SYSTEMC (62)
ECA (366) PRODUCT LINES (597)

All verification tasks of the benchmark sets have been used in international compe-
titions of software-verification tools [9, 30]; they are publicly available via the compe-
tition repository or the CPACHECKER repository 4. The SV-COMP benchmark suite is
the most comprehensive and diverse suite of this kind that currently exists. It covers
various application domains, such as device drivers, software product lines, and event-
condition-action-systems simulation.

The following description of the systems is partly taken from the report on the first
competition on software verification [8]. Unless stated otherwise, the systems are taken
from the 2013 edition of the competition. The set CONTROL FLOW AND INTEGER

VARIABLES contains, among others, verification tasks that are based on device drivers
from the WINDOWS NT kernel and verification tasks that represent the connection-
handshake protocol between SSH server and clients with protocol-specific specifica-
tions. The set DEVICE DRIVERS LINUX 64-BIT contains verification tasks that are
based on device drivers from the LINUX kernel. The verification tasks in the set SYS-
TEMC are provided by the SYCMC project [21] and were taken (with some changes)
from the SYSTEMC distribution. The benchmark set ECA contains event-condition-
action (ECA) programs, a kind of systems that is often used in sensor-actor systems.
The verification tasks in our benchmark set have been used in the RERS Grey-Box
Challenge 2012 [30] on verifying ECA systems. The LOOPS benchmark set consists
of verification tasks that require the analysis of loops with non-static loop bounds. The
benchmark set PRODUCT LINES models three software product lines used in feature-
interaction detection [5].

Domain Types. To evaluate whether we can assign a non-trivial set of variables to
specific domain types, we measured how many variables could be classified as Bool , Eq
or Add per benchmark set. We were able to classify as Bool , Eq or Add , on average,
60 % for CONTROL FLOW AND INTEGER VARIABLES, 26 % for DEVICE DRIVERS

LINUX 64-BIT, 64 % for LOOPS, 52 % for PRODUCT LINES, 99 % for SYSTEMC, and
100 % for ECA of all program variables. This confirms that there is always a set of
variables that have potential for improvement by alternative domain assignments. In
most benchmark sets, the domain type with the largest number of variables is Eq. We
expect that optimizations for the domain type Eq pay off, especially, in the benchmark
sets ECA and SYSTEMC, because this domain type covers a large part of the variables
in these sets. The benchmark set SYSTEMC also has a high number of Add variables
in a significant number of verification tasks, so we expect a performance difference for
the different domain assignments especially for this domain type.

4 http://cpachecker.sosy-lab.org/

http://cpachecker.sosy-lab.org/
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Fig. 7. The quantile plots show the performance of different configurations; each picture repre-
sents the data for one benchmark set; each data point (x, y) shows the x-th fastest verification
run that needed y seconds of CPU time; the y-axes use logarithmic scales

4.4 Results

Due to the huge amount of verification results, we cannot provide the raw data of all ver-
ification runs. Instead, we discuss results aggregated by categories and configurations
in Fig. 7. The diagrams show the performance of the configurations (Explicit, BDD-
IntBool, BDD-IntEqBool, BDD-IntAddEqBool, and BDD) in quantile plots for each
benchmark set. A point (x, y) in a quantile plot states that the x-th fastest verification
run of the respective configuration took y seconds of CPU time. The right-most x value
of a configuration indicates the total number of correctly solved verification tasks. The
area below the graph is proportional to the accumulated verification time. We also pro-
vide a supplementary web page 5, where the detailed results of all verification runs
(including the raw data and the log files) are available for download and as interactive
plots.

5 http://www.sosy-lab.org/projects/domaintypes/

http://www.sosy-lab.org/projects/domaintypes/
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Effectiveness. Figure 7 witnesses that many tasks are difficult to verify. For example,
in the benchmark set LOOPS, most configurations solve only about half of the tasks
correctly. Failures are caused by timeouts, out-of-memory exceptions, or limitations
of the implemented abstract domains. The combined configurations often demonstrate
good effectiveness results. In several benchmark sets, the configuration BDD-IntBool is
among the configurations that can verify most files correctly (have one of the highest
x values). However, there is no clear winner in terms of effectiveness, which suggests to
further investigate verification based on domain types. The first plot (CONTROL FLOW

AND INTEGER VARIABLES) demonstrates that using combinations of abstract domains
allows solving verification tasks that are not solvable by one abstract domain alone.

Efficiency. The benchmark set CONTROL FLOW AND INTEGER VARIABLES covers
a diverse set of verification tasks. Among others, it contains drivers of the WINDOWS

NT kernel and SSH benchmarks. The plot (Fig. 7) shows that the configurations BDD-
IntEqBool and BDD-IntAddEqBool are fast on many of the files, and that configuration
BDD-IntBool can solve more tasks than any other configuration. This result can be ex-
plained by investigating the number of variables per domain type: the verification tasks
in this category have many variables of domain types that can be efficiently handled
in the BDD domain (Bool, Eq, Add). A certain set of verification tasks can only be
solved using the configuration BDD-IntBool. These verification tasks illustrate a situa-
tion where two variables of types Eq and Other interact in a special pattern. The vari-
ables must be handled by the same domain to verify the file. Only the configurations
Explicit and BDD-IntBool track both variables in the explicit domain and compute a
correct verification result. Configuration Explicit fails on other tasks in this set, such
that its effect on these tasks cannot be seen easily in the plot.

On the benchmark set DEVICE DRIVERS LINUX 64-BIT, all configurations, except
the BDD configuration, show identical performance. Configuration BDD performs so
well because some of the Other variables, which are ignored in configuration BDD,
do not have an effect on the verification result. It would be interesting to combine our
approach with CEGAR [23] (where such variables would be ignored in all configu-
rations). The combination configurations perform similarly because only 26 % of all
variables have been classified as IntAddEqBool , and therefore these tasks do not have
much potential for the domain-type optimization.

For the benchmark set ECA, the configurations that encode Eq variables in BDDs
are most efficient. All variables in the ECA verification tasks are of domain type Eq,
and therefore the configurations that represent Eq variables with the BDD domain are
performing best (BDD-IntEqBool, BDD-IntAddEqBool, and BDD). This indicates that
tracking Eq variables with BDDs can be beneficial. The configurations Explicit and
BDD-IntBool perform worse, because they represent the variables of domain type Eq
using the explicit-value domain. The performance result is in line with the results of a
recent paper on BDD-based software model checking [15].

In the benchmark set LOOPS, the BDD-IntAddEqBool and BDD configurations can
solve a specific group of tasks that the other configurations can not solve. These tasks
model a token-ring architecture with a varying number of nodes. The verification tasks
each contain pairs of Add variables that are difficult to track with the explicit-value do-
main, because they are not initialized at program start. One of the variables is assigned
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to the other, then both are incremented (which makes them Add), and then the values
are compared again. This unique usage profile requires to represent these variables in
the BDD domain, which explains the results.

The benchmark set SYSTEMC shows that the configurations BDD-IntAddEqBool and
BDD-IntEqBool can verify a considerable number of tasks more than the other combi-
nation configuration and configuration Explicit. This is easy to understand: the tasks
contain many IntEqBool (avg. 93 %) and IntAddEqBool (avg. 99 %) variables. This
result shows that it can be extremely efficient to track such variables with BDDs. The
good performance of configuration BDD shows that the non-IntAddEqBool variables
can be ignored during verification.

The configuration BDD-IntBool performs well on the verification tasks in bench-
mark set PRODUCT LINES. The benchmark set has been used for research projects on
product-line verification [4, 5], from which we know that these files contain many vari-
ables of type Bool and Eq. Some of the files that are most difficult to verify contain
Bool variables that guide the control flow and are critical for the verification process.
Therefore, it is no surprise that the BDD-IntBool configuration performs best on these
tasks.

4.5 Discussion

Our experimental study has shown that the performance of the combined configurations
(BDD-IntBool, BDD-IntEqBool, and BDD-IntAddEqBool) depends heavily on the do-
main types of the variables in the program. If the verification tasks contain variables of
domain type IntAddEqBool , then representing these variables with the BDD domain
can significantly improve the performance.

The experiments have also shown that configuration BDD exhibits a good perfor-
mance on many verification tasks, even though it cannot track variables of domain type
Other. This means that variables of domain type Other are ignored during verification,
and still the verification result is correct. But, in the interest of soundness and reliable
results, we are more interested in configurations without obvious ‘blind spots’.

Let us briefly re-visit —based on the experimental results— the issues that we listed
at the beginning of the section. The first issue concerning the domain types has already
been discussed (Sect. 4.3). Concerning the variable–domain mapping, our experiments
confirm that analyzing variables of different domain types with different abstract do-
mains can make a huge difference, in terms of effectiveness and efficiency. Combined
configurations sometimes outperform the single-domain configurations (only explicit-
value domain or only BDD domain) on several benchmark sets. The configuration BDD
performs well on most benchmark sets, in particular on the DEVICE DRIVERS LINUX

64-BIT tasks. However, it is apparent that including the support of the explicit analysis
for Other variables is critical to obtain reliable verification results. Overall, it might be
beneficial to use the BDD domain for variables of domain type IntAddEqBool , and the
explicit-value domain for the Others . This is confirmed by the performance of configu-
rations BDD-IntEqBool and BDD-IntAddEqBool.
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5 Related Work

We infer domain types for program variables according to their usage in program opera-
tions. This principle is also used by the type- and memory-safety analysis of C programs
with liquid types [33]. There, a static program analysis is used to determine, for each
variable, a predicate that restricts the possible values of the variable (the liquid type).
In a second step, each usage of the variable is checked for type safety, or if it could
lead to an unsafe memory access. In contrast to domain types, liquid types use a pred-
icate for each variable. Liquid types are fine-grained, domain types are coarse-grained
in comparison, but the granularity is flexible in both approaches. Our type checker for
domain types does not depend on an SMT solver, which is an advantage in terms of
computational complexity.

Roles of variables are used to analyze programs submitted by students [16]. Program
slicing and data-flow analysis is applied to determine the role of each variable (e.g., con-
stant or loop index). The role is then compared to the role that the students have assigned
to the variables. Variable roles are also used to understand COBOL programs [38, 39],
to understand novice-level programs [35], and to classify programs into categories [25].
These works on variable roles fall into the area of automated program comprehension.
The rather strong behavioral variable types might be interesting to extend our work.

JAVA PATHFINDER [40] has an extension that combines the standard explicit analysis
with a BDD-based analysis for boolean variables [5,32]. In that approach, the variables
that are to be tracked by BDDs were manually selected, based on domain knowledge.
Our new approach handles a broader set of domain types and categorizes them automat-
ically.

BEBOP [6], a model checker for boolean programs, encodes all program variables
(only booleans, in this case) in BDDs, and uses explicit-state exploration for the pro-
gram counter. Our domain-type analysis would correctly classify all variables as Bool
and encode them with BDDs; thus, we subsume this approach. A similar strategy was
followed by others [22].

A hybrid approach combining explicit and BDD-based representations analyzes the
program variables with BDDs and the states of the property automaton explicitly [36].
In our setting, this translates to encoding all program variables in BDDs, because the
property automaton runs separately and explicitly in parallel in CPACHECKER. This case
can be represented in our general framework as configuration BDD.

The two symbolic domains BDDs and Presburger formulas have been previously
used as representation for boolean and integer variables [19]. The approach was eval-
uated on two systems, a control software for a nuclear reactor’s cooling system and
a simplified transport-protocol specification. In contrast to our work, this work is not
based on a separate analysis to determine domain types of variables, but includes the
type analysis in the actual model-checking process. By performing the domain-type
analysis in advance, we avoid overhead during the model-checking process.

6 Conclusion

We introduced the concept of domain types, which makes it possible to assign variables
to certain abstract domains based on their usage in program operations. We define a
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static pre-analysis that maps each variable of type ‘integer’ to one of four more specific
domain types, which reflect the usage of variables in the program.

We performed many experiments with two abstract domains, to demonstrate that the
domain assignment based on domain types has a significant impact on the effectiveness
and efficiency of the verification process. We considered five domain assignments: one
for each considered abstract domain that tracks all program variables in one single ab-
stract domain, without considering the different domain types, and three with different
assignments of the variables to the two abstract domains according to the domain type.

A key insight is that the concept of domain types is a simple yet powerful technique
to create verification tools that implement a better choice for the domain assignment.
State-of-the-art is to use either one single abstract domain, or a fixed combination of ab-
stract domains that adjust precisions via CEGAR or otherwise dynamically, during the
verification run. Our benchmark set contains a significant number of variables for which
we can determine different, narrower domain types. The domain type IntEqBool (and
even more its subtype IntBool ) dramatically decreases the size of the internal BDD rep-
resentation of the variable assignments, and thus can lead to a significant improvement
in verification efficiency. Overall, our experiments show that performance can be im-
proved substantially if the variables are tracked in an abstract domain that is suitable for
the domain type of the variable. Not only the performance is improved: combinations
of abstract domains make it possible to solve verification problems that are not solvable
using one abstract domain alone.
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