
Classifying Developers into Core and Peripheral:
An Empirical Study on Count and Network Metrics

Mitchell Joblin
Siemens AG

Erlangen, Germany

Sven Apel, Claus Hunsen
University of Passau

Passau, Germany

Wolfgang Mauerer
Siemens AG / OTH Regensburg
Munich / Regensburg, Germany

Abstract—Knowledge about the roles developers play in a
software project is crucial to understanding the project’s collab-
orative dynamics. In practice, developers are often classified ac-
cording to the dichotomy of core and peripheral roles. Typically,
count-based operationalizations, which rely on simple counts of
individual developer activities (e.g., number of commits), are used
for this purpose, but there is concern regarding their validity
and ability to elicit meaningful insights. To shed light on this
issue, we investigate whether count-based operationalizations
of developer roles produce consistent results, and we validate
them with respect to developers’ perceptions by surveying 166
developers. Improving over the state of the art, we propose
a relational perspective on developer roles, using fine-grained
developer networks modeling the organizational structure, and
by examining developer roles in terms of developers’ positions
and stability within the developer network. In a study of 10
substantial open-source projects, we found that the primary
difference between the count-based and our proposed network-
based core–peripheral operationalizations is that the network-
based ones agree more with developer perception than count-
based ones. Furthermore, we demonstrate that a relational
perspective can reveal further meaningful insights, such as that
core developers exhibit high positional stability, upper positions
in the hierarchy, and high levels of coordination with other core
developers, which confirms assumptions of previous work.

I. INTRODUCTION

The popular “onion” model—first proposed by Nakakoji et
al. [26]—comprises eight roles typically appearing in open-
source software projects. These roles extend from passive users
of the software, to testers and, active developers. According
to this model, there is a clear and intentional expression of
the substantial difference in scale between the group sizes ful-
filling each role. Quantitative evidence from several empirical
studies substantiates this model by showing that the number
of code contributions per developer is described by heavy-
tailed distributions, which implies that a very small fraction
of developers is responsible for performing the majority of
work [25], [11], [14]. On the basis of these results, the dis-
tinction between different roles of developers is often coarsely
represented as a dichotomy comprised of core and peripheral
developers [11]. In an abstract sense, core developers play an
essential role in developing the system architecture and form-
ing the general leadership structure, and they have substantial,
long-term involvement [11]. In contrast, peripheral developers
are typically involved in bug fixes or small enhancements, and
they have irregular or short-term involvement [11].

Despite having a substantial understanding about the defin-
ing characteristics of core and peripheral developers and
recognizing the importance of the interplay between these
roles, there is significant uncertainty around core–peripheral
operationalizations. A valid and reliable core–peripheral op-
erationalization is crucial for testing empirical evidence of
proposed theories regarding collaborative aspects of software
development [31], [17]. While several basic operationaliza-
tions have been proposed and loosely justified by abstract
notions, they may be overly simplistic. For example, one
common approach is to apply thresholding on the number
of lines of code contributed by each developer [25], but
this could result in incorrectly classifying developers who
just make large numbers of trivial cleanups. Further evidence
suggests that, as a developer moves into a core role, their
activity in terms of commit count or lines of code decreases
substantially, because they shift their efforts to coordinating
the work of others [19]. The major weakness of existing
core–peripheral operationalizations stems from the fact that
they are primarily based on counting individual developer
activity (e.g., lines of code, number of commits, number of
e-mails sent), which lack any explicit consideration of inter-
developer relationships. Since many important characteristics
of developer roles are concerned with how developers, or their
actions, interact with other developers [19], [27], we recognize
inter-developer relationships to be of primary importance for
the operationalization of developer roles.

The contributions of this work can be summarized by two
main achievements. Firstly, we statistically evaluate the agree-
ment between the most commonly used operationalizations
of core and peripheral developers by examining data stored
in the version-control systems (VCS) and developer mailing
lists of 10 substantial open-source projects. Secondly, we
establish and evaluate richer notions of developer roles with
a basis in relational abstraction. More specifically, we adopt a
network-analytic perspective to explore manifestations of core
and peripheral characteristics in the evolving organizational
structure of software projects, as operationalized by fine-
grained developer networks [21], [20]. For evaluation, we
performed a survey among 166 developers to establish a
ground-truth classification of developer roles to test whether
the existing operationalizations and our network-based insights
are consistent with respect to each other and valid with respect
to developer perception.



In summary, we make the following contributions:
• We statistically evaluate the agreement between classifi-

cations of core and peripheral developers generated from
commonly used operationalizations—henceforth called
count-based operationalizations—by studying 10 sub-
stantial open-source projects, over at least one year of
development, with data from two sources (version-control
system and mailing list).

• We conducted a survey among 166 developers to establish
a ground truth composed of 982 samples, which we
use to evaluate the validity of several core–peripheral
operationalizations with respect to developer perception.

• We identify structural and temporal patterns in the
project’s organizational structure that operationalize core–
peripheral roles using network-analysis techniques, re-
ferred to as the network-based operationalizations.

• We demonstrate that network-based operationalizations
exhibit moderate to substantial agreement with the ex-
isting count-based operationalizations, but the network-
based operationalizations are more reflective of developer
perception than the count-based operationalizations.

• We highlight and discuss a number of insights from our
network-based operationalizations that are incapable of
being expressed by count-based operationalizations, such
as positional stability, hierarchical embeddings, and inter-
action patterns between core and peripheral developers.

All experimental data and source code are available at a
supplementary Web site.1

II. BACKGROUND & RELATED WORK

Researchers have examined the core and peripheral de-
veloper roles from two distinct perspectives: from a social
perspective, by studying communication and collaboration
patterns [8], [23], [25], [14], [19], and from a technical
perspective, by studying patterns of contributions of devel-
opers to technical artifacts [11], [25], [32], [18], [14], [19].
Regarding social characteristics, core developers play a central
role in the communication and leadership structure [8] and
have substantial communication ties to other core developers,
especially in projects with a small developer community
(10–15 people) [23], [25]. Regarding technical characteris-
tics, core developers typically exhibit strong ownership over
particular files that they manage, they often have detailed
knowledge of the system architecture, and they have demon-
strated themselves to be extremely competent [11], [25], [32],
[18]. In contrast, peripheral developers are primarily involved
in identifying code-quality issues and in proposing fixes,
while also participating moderately in development-related
discussions [25]. As the roles of developers are not static,
prior research has also investigated temporal characteristics of
core and peripheral developers in terms of the advancement
process to achieving core-developer status. Advancement is
typically merit-based and often involves long-term, consistent,

1http://siemens.github.io/codeface/icse2017/

and intensive involvement in a project [25], [10], [33], [18],
[19].

Many of the aforementioned studies applied empirical meth-
ods based on interviews, questionnaires, personal experience
reports, and manual inspections of data archives to identify
characteristics of core and peripheral developers. An alterna-
tive line of research has attempted to operationalize the roles of
core and peripheral developers using data available in software
repositories, such as version-control systems [25], [32], [30],
[29], [27], [12], bug trackers [11], and mailing lists [27],
[3]. By operationalizing the notion of core and peripheral
developers, these studies have taken important steps towards
gaining insight that is not attainable with (more) manual
approaches, including evaluating and basing conclusions on
results from hundreds of projects [10].

Despite the usage of numerous operationalizations by re-
searchers [11], [25], [32], [30], [29], [19], we have very limited
knowledge about their validity, though. There is a reasonable
cause for concern that some corresponding metrics are overly
simple: Most operationalizations are single-dimension values
that represent the developer’s activity level (e.g., the number
of commits made), with a corresponding threshold based on a
prescribed percentile. A commonly used approach is to count
the number of commits made by each developer, and then
to compute a threshold at the 80% percentile. Developers
that have a commit count above the threshold are considered
core, developers below are considered peripheral [11], [25],
[32], [30], [29]. This threshold was rationalized by observing
that the number of commits made by developers typically
follows a Zipf distribution (which implies that the top 20% of
contributors are responsible for 80% of the contributions) [11].
Following a similar direction, Mockus et al. found empirical
evidence for Mozilla browser and Apache Web server that a
small number of developers are responsible for approximately
80% of the code modifications [25]. However, in a replication
study performed on FreeBSD, the results indicated that a set
of “top developers” are responsible for approximately 80% of
the changes, but this group does not coincide well with the
elected core developer group [14]. Further attempts have been
made to investigate the difference between core and peripheral
developers by using basic social-network centrality metrics
and a corresponding threshold [27], [12], [3]. In these cases,
developer networks have been constructed on a dyadic domain
of either mutual contributions to mailing-list threads or source-
code files.

While many approaches exist to classify developers into
core and peripheral, no substantial evidence has been ac-
cumulated to evaluate the validity and consistency of these
different operationalizations. Crowston et al. [11] investigated
three operationalizations of core and peripheral developers,
but they focused only on bug-tracker data and neglected code
authorship entirely. Olivia et al. [27] dedicated attention on
developing a more detailed characterization of so-called “key
developers”, which is similar to the core-developer dichotomy.
They investigated mailing lists and version-control systems
with three operationalizations to classify developers as core or

http://siemens.github.io/codeface/icse2017/


peripheral. Their results indicate that there is some evidence of
agreement between the different operationalizations, but this
was only shown for one release of a single small project with
only 16 developers, in total, and 4 core developers. We im-
prove over the state of the art by considering a larger and more
diverse set of projects with larger developer communities, by
using more metrics, and by analyzing, at least, one year of
development, to evaluate the temporal stability of our results.
Additionally, we use developer-network models that have been
validated in prior studies [21], [4].

III. COUNT-BASED OPERATIONALIZATIONS

Based on a review of the existing literature, we have
identified three variations of count-based operationalizations of
core–peripheral roles [25], [32], [30], [29], [27], [12], [11], [3].
In the literture, metrics are used with a percentile threshold to
define a dichotomy composed of core and peripheral develop-
ers. We apply the standard 80th percentile threshold, because
of its wide use and its justification based on the data following
a Zipf distribution (see Section II). Two operationalizations
capture technical contributions to the version-control system
and one captures social contributions to the developer mailing
list.

Commit count is the number of commits a developer has
authored (merged to the master branch). A commit represents
a single unit of effort for making a logically related set of
changes to the source code. Core developers typically make
frequent contributions to the code base and should, in theory,
achieve a higher commit count than peripheral developers.

Lines of code (LOC) count is the sum of added and deleted
lines of code a developer has authored (merged to the master
branch). Counting LOC, as it relates to developer roles, follows
a similar rationale as commit count. As core developers are
responsible for the majority of changes, they should reach
higher LOC counts than peripheral developers. A potential
source of error is that developers writing inefficient code or
changing a large number of lines with trivial alterations (e.g.,
whitespace changes) could artificially affect the classification.

Mail count is the number of mails a developer contributed
to the developer mailing list. Core developers often posses in-
depth technical knowledge, and the mailing list is the primary
public venue for this knowledge to be exchanged with others.
Core developers offer their expertise in different forms: mak-
ing recommendations for changes, discussing potential integra-
tion challenges, or providing comments on proposed changes
from other developers. Typically, peripheral developers ask
questions or ask for reviews on patches they propose. Core
developers often participate more intensively and consistently
and have greater responsibilities than peripheral developers,
in general. This should result in core developers making a
large number of contributions to the mailing list. This is still
only a very basic metric because a developer answering many
questions and one asking many questions will appear to be
similar, and there is no inter-developer information, so who is
speaking with whom or with how many people is completely
ignored.

Each of the above metrics has a foundation rooted in
our current empirical understanding of the characteristics of
core and peripheral developers, but in the end, they are all
relatively simple abstractions of a potentially multifaceted and
complex concept [14]. A comparison between the resulting
classification of developers from these different metrics will
provide valuable insights into whether systematic errors exist
in these count-based operationalizations, which we perform in
Section VI-A. However, as the focus of these metrics is still
only to assign developers exclusive membership to one of two
unordered sets—without relational information between sets
or within the sets—the insights offered by the classification
are of limited practical value. To address this shortcoming,
we propose a relational view on developer coordination and
communication as the basis for developer-role operationaliza-
tions.

IV. A NETWORK PERSPECTIVE

A developer network is a relational abstraction that rep-
resents developers as nodes and relationships between de-
velopers as edges. The promise of a network perspective is
greater practical insights concerning the organizational and
collaborative relationships between developers [8], [24], [9],
[12], [4]. But to what extent can this promise be fulfilled?
So far, we know that developer networks, when carefully
constructed on version-control-system and mailing-list data,
can be both accurate in reflecting developer perception and
reveal important functional substructure, or communities, with
related tasks and goals [21], [4]. What can be elicited from
developer networks regarding the core–peripheral dichotomy
has not yet been greatly explored, especially in comparison
to non-network-based approaches, which is our intention in
this work. Practical opportunities for network insights are, for
example: identifying core developers that are overwhelmed
by the peripheral developers they need to coordinate with;
structural equivalence (that is two nodes with the same
neighbors) could reveal which core developers have similar
knowledge or technical abilities, which helps to determine
appropriate developers for sharing or shifting development
tasks; structural holes between core developers may indicate
deteriorating coordination; or a single globally central core
developer may indicate an important organizational risk.

A. Network Model

We now present the details of our network-analytic ap-
proach for analyzing data from version-control systems and
mailing lists to examine relational characteristics of core and
peripheral developers. Intuition and prior research led us to the
conclusion that the role a developer fulfills can change over
time [18]. For this reason, we analyze multiple contiguous
periods over one year of a project in question using overlap-
ping analysis windows. Each analysis window is three months
in length, and each subsequent analysis period is separated
by two weeks [20]. We chose three-month analysis windows,
because it has been shown that, beyond this window size,



the development community does not change significantly, but
temporal resolution in their activities is lost [24].

E-mail networks: For a given project, we download the
mailing lists archives either from gmane using nntp-pull or di-
rectly from the project’s homepage to obtain an mbox format-
ted file containing all messages sent to the mailing list. Most
projects have different mailing lists for different purposes. We
consider only the primary mailing list for development-related
discussions. We apply several preprocessing steps to remove
duplicated messages, normalize author names, and organize
the mails into threads using the Message-IDs and In-Reply-
To-IDs [15]. Furthermore, we decompose the From lines of
each mail into a 〈name, e-mail address〉 pair. In some cases,
only an e-mail address or only a name is possible to recover,
and this can present issues with identifying all e-mails that
a single person sent. To resolve multiple aliases to a single
identity, we use a basic heuristic approach similar to the one
proposed by Bird et al. [2]. Despite the potential problems
regarding author-name resolution—as developers accumulate
valuable credibility through contributions to the mailing list—
it is counterproductive for highly active individuals to use
multiple aliases and conceal their identity. To construct a net-
work representation of developer communication, we apply the
standard approach, where edges are added between individuals
who make subsequent contributions to a common thread of
communication [2].

Version-control-system networks: Data in version-control
systems are organized in a tree structure composed of commits.
We analyze only the main branch of development, as a
linearized history, by flattening all branches merged to master.
Furthermore, we analyze only the authors of commits, not
the committer (which are expressed differently in Git), and
attribute the commit to a unique individual using the same
aliasing algorithm as for the mailing-list data. We count
lines of code for each commit based on diff information,
where the total line count is the sum of added and deleted
lines. The network representation of developer activities in
the version-control system is constructed using fine-grained
function-level information, which was observed to produce
authentic networks that agree with developer perception [21].
In this approach, changes are localized to function blocks
using source-code structure to identify when two developers
edit interdependent lines of code. We enhance the network
with semantic-coupling relationships between functions, which
has shown to also reflect developer perception of artifact
coupling [1]. The semantic relationships are identified by
making use of the domain-specific words that are embedded
in the textual content of the implementation (e.g., variable and
function identifiers) [20].

B. Core and Peripheral Developers in Developer Networks

In Section II, we discussed the expectation that characteris-
tics of core and peripheral developers should manifest in ways
that transcend the count-based operationalizations introduced
in Section III—an expectation that is also supported by a
survey among 166 open-source developers (see Section VI-E).

Next, we introduce five network-based operationalizations that
are rooted in the structure and evolution of developer networks
(see Section IV-A).

Degree centrality aims at measuring local importance. It
represents the number of ties (edges) a developer has to other
developers [7]. As essential members of the leadership and
coordination structure, core developers associate with other
core members and with peripheral developers that require their
technical guidance. Peripheral developers are likely involved
in only a small number of isolated changes and thus have only
a limited number of interactions with other members of the de-
velopment community. The expectation is that core developers
then have a larger degree than peripheral developers.

Eigenvector centrality is a global centrality metric that
represents the expected importance of a developer by either
connecting to many developers or by connecting to developers
that are themselves in globally central positions [7]. Since
core developers are critical to the leadership and coordination
structure, we expect them to occupy globally central positions
in the developer network.

Hierarchy is present in networks that have nodes arranged
in a layered structure, such that small cohesive groups are
embedded within large, less cohesive groups. In a hierarchical
network, nodes with high degree tend to have edges that span
across cohesive groups, thereby lowering their clustering coef-
ficient [28]. Prior work has shown that developers tend to form
cohesive communities [21], and we expect core developers to
play a role in coordinating the effort of these communities of
developers. If this is true, then core developers should have
a high degree and low clustering coefficient, placing them in
the upper region of the hierarchy, while peripheral developers
should exhibit a comparatively low degree and high clustering
coefficient, placing them in the lower region of the hierarchy.

Role stability is a temporal property of how developers
switch between roles. For this reason, we investigate the
patterns of developers’ transitions through different roles by
observing changes in the corresponding developer network
over time. As core developers typically attain their credibility
through consistent involvement and often have accumulated
knowledge in particular areas of the system over substantial
time periods (see Section II), we expect their stability in
the developer network to be higher than for peripheral de-
velopers. We operationalize developer stability by estimating
the probability that a developer in a given role leaves the
project by not participating for, at least, three months. For
each developer the role during each development window is
determined using the degree-centrality operationalization. The
time-ordered sequence of roles for each developer is then used
in a maximum-likelihood estimation to solve for each state
transition parameter (e.g., the probability that a core developer
transitions to a peripheral role) [5].

Core–peripheral block model is a formalization, proposed
in the social-network literature, that captures the notion of
core–periphery structure based on an adjacency-matrix repre-
sentation. The block model specifies the core–core region of
the matrix as a 1-block (i.e., completely connected), the core–



peripheral regions as imperfect 1-blocks, and the peripheral–
peripheral region as a 0-block [34]. Intuitively, this model
describes a network as a set of core nodes, with many edges
linking each other, surrounded by a loosely connected set of
peripheral nodes that have no edges connecting each other.
Of course, this idealized block model is rarely observed
in empirical data [6]. Still, we are able to draw practical
consequences from this formalization by estimating the edge
presence probability of each position to test if core and
peripheral developers (operationalized by degree centrality)
occupy core and peripheral network positions according to this
block model. From the block model, one can mathematically
reason that the probability of observing an edge in each block
is distinct and related according to pcore–core > pcore–periph >
pperiph–periph [34]. This model aligns with empirical data that
indicate that core developers are typically well-coordinated
and are expected to be densely connected in the developer
network [25]. Since peripheral developers often rely on the
knowledge and support of core developers to complete their
tasks, it follows that peripheral developers often coordinate
with core developers, and only in rare cases would we expect
substantial coordination between peripheral developers. This
expected behavior aligns very well to the formalized notion
of core–periphery positions from social-network analysis.

V. EMPIRICAL STUDY

A. Subject Projects

We selected ten open-source projects, listed in Table I,
to study the core–peripheral developer roles. We specifically
chose a diverse set of projects to avoid biasing the results. The
projects vary by the following dimensions: (a) size (source
lines of code from 50KLOC to over 16 MLOC, number of
developers from 15 to 1000), (b) age (days since first commit),
(c) technology (programming language, libraries), (d) appli-
cation domain (operating system, development, productivity,
etc.), (e) development process employed. Developers of the
project referred to as Project X have requested that their
project name remains anonymous.

B. Research Questions

While each of the approaches for classifying core and
peripheral developers is inspired by common abstract notions
rooted in empirical results, it has not been shown that the ap-
proaches agree. It may be the case that they capture orthogonal
dimensions of the same abstract concept, which gives rise to
our first research question:

RQ1: Consistency—Do the commonly applied operational-
izations of core and peripheral developers based on version-
control-system and mailing-list data agree with each other?

Compared to the extent of our knowledge regarding the
characteristics of core and peripheral developers, existing
count-based operationalizations are relatively simple. Since
core developers often have strong ownership over particular
files and play a central role in coordinating the work of
others on those artifacts [8], [25], [19], we would expect

core developers to differ, in a relational sense, from peripheral
developers in how they are embedded in the communication
and coordination structure. Furthermore, as core developers
typically achieve their status through long-term and consistent
involvement [18], we expect their temporal stability patterns
to differ from peripheral developers.

RQ2: Positions & Stability—Do the differences between core
and peripheral developers manifest in relational terms within
the communication and coordination structure with respect to
their positions and stability?

The utility offered by an operationalization is limited by
the extent to which the operationalization is able to accu-
rately capture a real-world phenomenon. So far, it is unclear
to what extent the core–peripheral operationalizations reflect
developer roles as seen by their peers. We explore whether
relational abstraction, as in the network-based operational-
izations, improves over the count-based operationalizations
by more accurately reflecting developer perception through
explicit modeling of developer–developer interactions.

RQ3: Developer Perception—To what extent do the various
count-based and network-based operationalizations agree with
developer perception?

C. Hypotheses

The existing count-based operationalizations of core and
peripheral developers discussed in Section III claim to be
valid measures, and if this is a matter of fact, we expect to
reach consistent conclusions about whether a given developer
is core or peripheral. Due to finite random sampling and
sources of noise, we expect imperfect agreement between two
operationalizations even if they are consistent in capturing
the same abstract concept. However, if the operationalizations
are consistent, the level of agreement should be significantly
greater than the case of random assignment of developer
roles. Our null model for zero agreement is the amount of
agreement that results from two operationalizations that assign
classes according to a Bernoulli process.2 To operationalize
agreement between two binary classifications (core or periph-
eral) of a given set of developers, we use Cohen’s kappa,
κ = (po − pe)/(1− pe), where po is the number of times the
two classifications agree on a role of a developer, divided by
the total number of developers and where pe is the expected
probability of agreement when there is random assignment
of roles to developers but the proportion of each class is
maintained. Cohen’s kappa is more robust than simple percent
agreement because it incorporates the effect of agreement
that occurs by chance [22]. This characteristic is particularly
important in our case since the frequency of roles is highly
asymmetric as the majority of developers are peripheral and
only a small fraction are core. The ranges for Cohen’s kappa
and corresponding strengths of agreement are: 0.81–1.00 al-

2A Bernoulli process generates a sequence of binary-valued random vari-
ables that are independent and identically distributed according to a Bernoulli
distribution. The process is essentially simulating repeated coin flipping.



TABLE I: Overview of subject projects

Edge Probabilities Hierarchy

Project Domain Lang Devs SLOC Commits Date C–C C–P P–P Rho1 p value

Project X User C/++, JS 826 10M 276K 2015-12-05 9.75e-02 4.19e-03 2.70e-03 -0.552 5.51e-33
Django Devel Python 100 430K 41K 2015-12-06 2.95e-01 9.09e-03 3.08e-03 -0.812 1.28e-06
FFmpeg User C 103 1M 78K 2015-11-08 5.50e-01 2.44e-02 5.16e-03 -0.725 7.10e-06
GCC Devel C/++ 122 7.5M 144K 2015-11-03 4.07e-01 1.84e-02 1.01e-02 -0.646 1.12e-04
Linux OS C 1467 18M 637K 2015-12-05 2.39e-02 5.93e-04 3.60e-04 -0.689 6.06e-62
LLVM Devel C/++ 180 1.1M 62K 2015-11-02 7.80e-01 5.54e-02 2.62e-02 -0.778 8.72e-24
PostgreSQL Devel C 17 1M 40K 2015-12-05 1.00e+00 1.62e-01 5.13e-02 -0.871 1.31e-03
QEMU OS C 134 1M 43K 2015-11-02 3.20e-01 1.95e-02 1.16e-02 -0.756 4.76e-07
U-Boot Devel C 142 1.3M 35K 2015-11-01 2.00e-01 7.59e-03 4.20e-03 -0.728 8.27e-05
Wine User C 62 2.8M 110K 2015-11-06 3.46e-01 2.91e-02 1.28e-02 -0.832 1.04e-05

1 Spearman’s correlation coefficient

most perfect, 0.61–0.80 substantial, 0.41–0.6 moderate, 0.21–
0.40 fair, 0.00–0.20 slight, and < 0.00 poor [22].

H1—Existing count-based operationalizations of core and
peripheral developers based on version-control-system and
mailing-list data are statistically consistent in classifying
developer roles.

The abstract notion of core and peripheral developers
discussed in Section II emphasizes the multitude of ways
the two groups differ (e.g., contribution patterns, knowledge,
level of engagement, organization, responsibility, etc.). While
existing operationalizations of core and peripheral developers
are primarily based on simple metrics of counting high-level
activities of developers, these metrics largely ignore the rich-
ness in the definition of core and peripheral roles. In particular,
the dimension of time is largely ignored, though time plays a
central role in the developer-advancement process [18].

H2—The well-known abstract characteristics of core develop-
ers will manifest as distinct structural and temporal features
in the corresponding developer network: Core developers will
exhibit globally central positions, relatively high positional
stability, and hierarchical embedding.

As core developers form the primary coordination struc-
ture, we expect to observe: many edges in the developer
network between core developers, less edges between core
and peripheral developers, and even fewer edges between
peripheral developers. We investigate this hypothesis in terms
of preferences between the groups to associate based on the
probability of an edge occurring between them according to
the core–peripheral block model (see Section IV-B).

H3—Core developers have a preference to coordinate with
other core developers; peripheral developers have a pref-
erence to coordinate with core developers instead of other
peripheral developers.

We expect developer networks to reveal core and peripheral
developers, albeit in a richer representation, with comparable
precision to the currently accepted operationalizations. More
specifically, we expect developer networks capture the core–
peripheral property to an equally high standard as the currently
accepted operationalizations; any disagreement should be on

the order of the discrepancy between existing operationaliza-
tions.

H4—The core–peripheral decomposition obtained from de-
veloper networks will be consistent with the core–peripheral
decomposition obtained from the prior accepted operational-
izations. The discrepancy in agreement will not exceed the
amount observed between the existing operationalizations.

As the count-based operationalizations appear to reason-
ably capture simple aspects of developer roles, we expect a
certain level of agreement between these operationalizations
and developer perception. In the case of the network-based
operationalizations, we expect even higher agreement with
developer perception since the relational abstraction explicitly
captures developer–developer interactions, which are neglected
by the count-based operationalizations.

H5—Count-based operationalizations agree with developer
perception, but network-based operationalizations exhibit
higher agreement.

D. Developer Perception

To establish a ground-truth classification of developer roles,
we designed an online survey in which we asked developers to
report the roles of developer’s in their project according to their
perception. The goal of acquiring these data is to test whether
the core–peripheral operationalizations are valid with regard to
developer perception (not only to other operationalizations).
A sample of the survey instrument can be found at the
supplementary Web site.

We recruited participants for the study from the version-
control-system data of our ten subject projects by identifying
the e-mail addresses of individuals that made a commit within
the three months prior to the survey date (see Table I). This
was to ensure that the selected developers have current knowl-
edge of the project state, so that their answers are temporally
consistent with our analysis time frame. One subject project,
GCC, was excluded from the survey because the developer e-
mail addresses are not available in the version-control system.
For the remaining 9 projects, we sent recruitment e-mails to
3369 addresses of which 166 elicited a complete response.
In total, we obtained 982 role classifications. The distribution
of responses from the projects was 41% for Linux, 7% for



Django, 8% for QEMU, 15% for LLVM, 8% for PostgreSQL,
13% for Wine, and 7% for FFmpeg. One explanation for the
low response rate is that the e-mail addresses in the version-
control system are often inactive or unreachable.

The survey includes two primary sections: The first section
contains questions that require the developers to self-report
their role in the project (core or peripheral) and to provide
a textual description of the nature of their participation.
This question is useful for identifying potential sampling-bias
problems and to determine if developers’ self-reported role is
consistent with the answers provided by their peers. The sec-
ond section includes a list of 12 developers, identified by name
and e-mail address, sampled from their specific project. For
each developer appearing in the list, the respondent was asked
to provide a classification of the developer’s role. Appropriate
options are also available if the respondent did not know the
developer in question or was unsure of the role. We applied
the following sampling strategy to select the list of twelve
developers: Five developers were randomly selected from the
core group and five from the peripheral group, classified
according the the commit count-based operationalization (see
Section III). The remaining two developers were randomly
selected from the direct neighbors, in the developer network,
of the survey participant. We chose to use neighbors because
it is likely that neighbors work directly together and are aware
of each other’s roles.

VI. RESULTS

We now present the results of our empirical study and
address the five hypotheses described in Section V-C. For
practical reasons, we are only able to present figures for a
single project that is representative of the general results.
Please refer to the supplementary Web site for the remaining
project figures.

A. RQ1: Consistency of Count-Based Operationalizations

To address H1, we compute the pairwise agreement be-
tween all count-based metrics for a given project. For this
purpose, we analyze each subject project in a time-resolved
manner using a sliding-window approach (see Section IV)
to generate time-series data that reflect the agreement for
a particular three-month development period. An example
time series is shown in Figure 1 for QEMU. While being
only one project, the insights are consistent with the results
from the other projects. The figure illustrates the agreement
for Cohen’s kappa, and we see that, for all comparisons,
the agreement is greater than fair (e.g., greater than 0.2),
which significantly exceeds the level of agreement expected by
chance (see Section V-C). This is evidence that the different
count-based operationalizations do not contradict each other.
For operationalizations that are based on the same data source
(i.e., version-control system), we typically see substantial
agreement (0.61–0.8). One reason for the lower cross-archive
agreement could be due to problems of multiple aliases, which
will be discussed in detail in Section VII. Another interesting
result is that the agreement is relatively stable over time, which

Fig. 1: QEMU time series representation of pairwise agree-
ment between count-based operationalizations. The data in-
dicate that agreement is fair to substantial and is temporally
stable (i.e., mean and variance are time invariant).

is again visible in Figure 1 for QEMU. More specifically, the
arithmetic mean and variance do not significantly change over
time—a property referred to as “wide-sense stationary” in the
time-series analysis literature [16]. This feature of the data is
a testament to the validity of the operationalizations, as we
would not expect the agreement between operationalizations
to change drastically from one development window to the
next. The wide-sense stationary property is also important
because it permits us to aggregate the data by averaging over
the time windows to attenuate noise and generate more concise
overviews without sacrificing scientific rigor or interpretability
of the result.

Overall, the results demonstrate that the count-based opera-
tionalizations largely produce consistent results regarding the
classification of developers into core and peripheral groups.
We therefore accept H1.

B. RQ2: Core and Peripheral Developers in Developer
Networks

Hierarchy: In a hierarchical network, nodes at the top of
the hierarchy have a high degree and low clustering coefficient;
nodes at the bottom of the hierarchy have a low degree
and high clustering coefficient [28]. If hierarchy exists in a
developer network, we should see mutual dependence between
the clustering coefficient and the degree of nodes in the net-
work [28]. The hierarchical relationship for QEMU is shown
in Figure 2; there is an obvious dependence between the node
degree and clustering coefficient. Nodes with a high degree are
seen to exclusively have very low clustering coefficient and are
indicative of core developers according to Section IV-B; low
degree nodes have consistently higher clustering coefficients
and are indicative of peripheral developers. For the remaining
projects, the scatter plots are available on the supplementary
Web site; here, we illustrate the relationship in a more compact
form in terms of Spearman’s correlation coefficient between
clustering coefficient and degree (see Table I “Hierarchy”).
We see that, for all projects, there is a strong negative
correlation, indicating that the developers are indeed arranged
hierarchically. In Sections VI-C and VI-D, we will see if



Fig. 2: QEMU’s developer hierarchy during four development
periods. The linear dependence between clustering coefficient
and degree expresses the hierarchy. Core developers should
appear clustered at the top of the hierarchy (bottom right re-
gion) and peripheral developers at the bottom of the hierarchy
(upper left region)

a developer’s position in the hierarchy is an organizational
manifestation of their particular role.

Stability: Developers who fulfill a particular role within a
project and who maintain participation over subsequent devel-
opment periods are defined to be stable (see Section IV-B).
We study this characteristic by examining the developers’
transitions from one state to another (e.g., core to peripheral) in
a time-resolved manner. The result of examining the developer
transitions over one year of development for QEMU are shown
in Figure 3. In this figure, the transition probabilities between
developer states are shown in the form of a Markov chain.
The primary observation is that developers in a core state are
substantially less likely to transition to the absent state (i.e.,
leave the project) or isolated state (i.e., have no neighbors
in the developer network by working exclusively on isolated
tasks), in comparison to developers in a peripheral state.
So, the core developers represent a more stable group than
peripheral developers.

Core–periphery block model: The core–periphery block
model describes the core and peripheral groups, formalized
as positions in a network, as a particular two-class partition
of nodes (see Section IV-B). To test whether our empirical
data are plausibly described by the core–periphery block
model, we must compute the edge-presence probabilities for
core–core, core–peripheral, and peripheral–peripheral edges.
If the edge-presence probabilities are arranged according to,
pcore–core > pcore–periph > pperiph–periph, then we can conclude
that core developers constitute the most coordinated developers
in the project, peripheral developer coordinate primarily with
core developers, and peripheral developers rarely coordinate

Peripheral

Core

Isolated

Absent

10%6%

74%

22%

4%
72%

3%
6% 7%

39%

Fig. 3: Developer-group stability for QEMU shown in the form
of a Markov Chain. A few less important edges have been
omitted for visual clarity.

with other peripheral developers. This provides an example of
a relational perspective that captures intra- and inter-relational
information (see Section IV-B).

The edge-presence probabilities for all projects are shown
in Table I (column “Edge Probabilities”). In all projects, the
inequality holds, indicating that the model plausibly describes
our projects. The edge-presence probability for core–core has
a mean value of 4.02× 10−1, for core–peripheral edges it
is significantly lower with a mean value of 3.30× 10−2,
and the peripheral–peripheral edge probability is lower yet
with a mean value of 1.28× 10−2. The interpretation is that
peripheral developers are twice as likely to coordinate with
core developers as opposed to other peripheral developers.

Two projects are noteworthy outliers, but are still described
by the core–periphery block model: Linux and PostgreSQL.
For Linux, the edge-presence probabilities are notably lower
in all cases, and the difference in scale between core–core
edge probabilities and the others is two orders of magnitude.
In the case of PostgresSQL, we see an outlier in the opposite
direction. The core–core edge probability is 1, notably higher
than for all other projects, much like core–peripheral edges.
It is interesting that both of these projects are also outliers
in terms of the size of the developer community: Linux is
much larger than most projects (1510 developers), PostgreSQL
is much smaller (18 developers). From this result, it appears
that the scale of a project influences how likely it is for two
developers to coordinate, and this influence has a greater effect
on the coordination of peripheral developers.

Overall, the network-based operationalizations illustrate clear
manifestations of core and peripheral developer roles that
agree with the abstract characteristics established by earlier
empirical work. We also found evidence in terms of the core–
peripheral block model that developer roles imply specific
coordination preferences. On the basis of these results, we
accept H2 and H3.

C. Agreement: Network-Based vs. Count-Based

So far, our results have provided evidence that the count-
based operationalizations produce consistent classifications of
developers, which is a testament to their validity, and that



Fig. 4: Time-averaged agreement in terms of Cohen’s kappa
for QEMU. The pairwise agreement is shown for the count-
based and network-based operationalizations

developer networks exhibit specific characteristics that are
indicative of core and peripheral developer roles. Next, we
present the results to relate the network-based to the count-
based operationalizations for identifying core and peripheral
developers. We approach this evaluation again using Cohen’s
kappa by averaging the level of agreement over one year of
development. QEMU is used as an example project and the
pairwise agreement for each operationalization is illustrated
in Figure 4. The stability and core–periphery block-model
operationalizations do not show up explicitly since they are
derived from degree centrality.

In general, the level of agreement always exceeds 0,
which indicates that the strength of agreement between all
operationalizations significantly exceeds what is expected by
chance. The rows/columns beginning with “VCS” are based
on data stemming from the version-control system, and those
with “Mail” are based on the mailing list. We again see that
agreement between operationalizations defined on same data
source typically have substantial agreement (0.6–0.8).

Overall, the results indicate that the network-based and count-
based operationalizations are mostly consistent. While the
agreement is imperfect, the results show that the divergence
from perfect agreement is similar what is seen among the
count-based operationalizations. We therefore accept H4.

D. RQ3: Developer Perception vs. Network-Based and
Count-Based Operationalizations

To establish a ground-truth classification of developers
based on the perception of our survey participants, we com-
puted the number of core and peripheral votes for each devel-
oper from the survey responses (see Section V-D). For each
developer, we chose the role with the highest number of votes
as the ground truth and, if the count was equal, the developer
was removed. Upon inspection of the responses, we found that
they were largely consistent regarding a given developer’s role.

TABLE II: Agreement with developer perception

Cohen’s kappa p value

C
ou

nt
s Commit Count 0.387 3.12e-06

LOC Count 0.355 1.91e-05
Mail Count 0.421 2.08e-05

N
et

w
or

ks VCS Degree 0.465 4.48e-08
VCS Hierarchy 0.437 2.22e-07
VCS EigenCent 0.404 1.74e-06
Mail Degree 0.497 8.23e-07
Mail EigenCent 0.427 1.26e-05

The results of comparing both the count and network-based
operationalizations to the ground-truth classification are shown
in Table II. Agreement was computed for 163 ground-truth
samples provided by the survey participants. Three participant
responses were eliminated because they were incomplete.3

The nominal agreement values, in terms of Cohen’s kappa,
exceed 0 indicating that all operationalizations agree with
developer perception significantly more than what is expected
by chance (see Section V-C). The highest and second highest
agreement is seen in the node-degree metric for the E-mail
network and VCS network, respectively. The lowest agreement
is seen for the count-based version-control-system metrics
(Commit and LOC count). In general, all network-based
operationalizations agree better (albeit in some cases only
slightly) with developer perception than the basic version-
control-system count-based metrics. Focusing on the com-
parison between different data archives, the agreement for
the mailing lists metrics have even greater agreement than
the corresponding version-control-system metric. However,
network-based metrics always outperform the count-based
metrics when the data source is the same.

In general, the mailing list is most accurate in captur-
ing characteristics that reflect developer perception of roles.
However, in many projects communication archives are not
available, and in this case, a network perspective on version-
control system data can closely resemble the insights (regard-
ing developer roles) provided by the communication archive.
Overall, we see that a network perspective always improves the
agreement with developer perception over the simpler count-
based operationalizations. To this end, we accept H5.

E. Support for Relational Perspective

In addition to providing data for testing our hypotheses, the
developer survey provides additional evidence for and insights
into the usefulness of a relational perspective on developer
roles. Our survey results suggest that developer roles are often
defined in terms of differences in the mode of interaction
between developers. For example, one developer wrote “core
maintainers participate in discussions on areas outside the
ones that they maintain”. Only a relational perspective is
able to capture this view, for example, in terms of core
developers having a higher degree than peripheral developers,

3The survey response data are available at the supplementary Web site.



because they interact with developers working in areas that
are distinct from the ones that they maintain. In the same
vein, core developers are likely to occupy upper positions in
a hierarchy, as they provide coordination bridges between the
peripheral developers that have a comparatively narrow focus.
Another core developer mentioned, “I may not be contributing
as much as I did in past years, but I am still active and
available to answer questions from and provide guidance to
other developers.” Again, the developer has emphasized their
role based on a mode of interaction with other developers.
Another survey participant commented: “The Wine project
has lots of committers and a very loose structure. It’s very
hard to know who does what.” A relational view on the
global organizational structure has practical value to support
this kind of developer awareness that is currently missing.
Beside static network properties, we argue that the temporal
dimension is needed to accurately operationalize developers
roles, which is also supported by survey responses: “The
boundaries are fuzzy and can change over time — sometimes
I’m a core developer on libvirt, while at the present I’m only
a peripheral developer” or “I tend to classify contributors as
regular opposed to occasional.” This is especially important
as count-based operationalizations do not capture temporal
relationships.

VII. THREATS TO VALIDITY

Construct Validity: Quantifying the extent to which the
operationalizations of developer roles represent the real world
is one of the primary contributions of this work. We used the
concept of mutual agreement as a testament to the validity of
the operationalizations, however, one explanation for observ-
ing mutual agreement could be that all the operationalizations
consistently reach the same wrong conclusion. While this
would be a rather improbable explanation, we carried out a
developer survey to provide additional evidence for that the
operationalizations are valid.

For the network-based operationalizations, we used devel-
oper networks and network-analysis techniques to establish a
relational basis for studying core and peripheral developers.
This poses the threat that the networks and metrics do not
accurately capture reality. This threat is minor as there is
already evidence indicating that both the networks and the
metrics are authentic in reflecting developer perception [21],
[24]. One concern we have is regarding the unification of
developers contributions, across multiple archives (i.e., mailing
list and version-control system), to a single alias. However,
core developers have an interest in being recognized for each
contribution they make, therefore, maintaining multiple aliases
would not be productive. For this reason, we think this issue
has limited influence on developer classifications.

Internal Validity: We quantify the agreement between dif-
ferent operationalizations in terms of Cohen’s kappa. For these
experimental conditions, we required a probabilistic definition
of agreement, because a non-error-tolerant agreement metric
would be too strict to yield practical results. Cohen’s kappa
requires some degree of interpretation though, so we have

conservatively chosen thresholds that have been established
in the literature.

The results of the developer survey depend partially on
individual perceptions. To limit this threat, we designed the
questionnaire such that multiple developers classified the same
developer and we then took the average classification to limit
individual bias.

External Validity: The results of our study are based
on the analysis of ten open-source projects. Although, the
projects do represent a broad spectrum in several dimensions,
they are still limited to relatively successful, mature, and large
projects. So, the results may not be relevant to immature or
very small projects. Likewise, some projects, while having
significant commercial involvement (e.g., Linux), are still in
the end open source, and it is not yet clear if these results hold
for commercial projects.

VIII. CONCLUSION

Information on developer roles is crucial to understanding
the collaborative dynamics of software projects. In particular,
accurate knowledge of developer roles provides insight into
which developers are appropriate for coordinating other de-
velopers’ efforts, given their current skill set and expertise.
In large, globally-distributed projects, this kind of insight
can provide enormous efficiency advantages by reducing the
overhead associated with developer coordination [9], [13].

In an empirical study of ten substantial open-source projects,
we established evidence that the commonly used count-based
operationalizations of developer roles are outperformed by
network-based operationalizations in terms of reflecting de-
veloper perception. While offering some utility for identifying
developer roles, the insights count-based operationalizations
can provide are clearly limited, in particular, with regard to the
manifold relationships between developers, which may even
vary over time. As a novel contribution, we use fine-grained
developer networks to establish a relational perspective on de-
veloper roles. A key hypothesis is that developer roles should
manifest distinctly in the organizational structure, which is
also supported by a survey among developers. To this end, we
have proposed a number of corresponding network metrics,
such as positional stability, hierarchy, and a core–peripheral
block model, to explore structural characteristics that capture
differences between core and peripheral developers.

Our results suggest that a network perspective can offer
valuable insights regarding developer roles that are concealed
by non-relational operationalizations. For example, the core
group is comprised of the most heavily coordinated developers,
and peripheral developers are more likely to coordinate with
core developers than with other peripheral developers. The
richness of a network perspective has only begun to be
explored, and we hope that our work establishes the foundation
and inspiration to explore further.

ACKNOWLEDGMENT

We thank all participants of the online survey. This work
has been supported by Siemens and the DFG grants AP 206/4,
AP 206/5, and AP 206/6.



REFERENCES

[1] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia. An empirical study on the developers’ perception of
software coupling. In Proc. International Conference on Software
Engineering, pages 692–701. IEEE, 2013.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining
email social networks. In Proc. International Workshop on Mining
Software Repositories, pages 137–143. ACM, 2006.

[3] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu. Open
borders? Immigration in open source projects. In Proc. International
Workshop on Mining Software Repositories. IEEE, 2007.

[4] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu. Latent so-
cial structure in open source projects. In Proc. International Symposium
on Foundations of Software Engineering, pages 24–35. ACM, 2008.

[5] C. M. Bishop. Pattern recognition and machine learning. Springer,
2006.

[6] S. P. Borgatti and M. G. Everett. Models of core/periphery structures.
Social networks, 21(4):375–395, 2000.

[7] U. Brandes and T. Erlebach. Network Analysis: Methodological Foun-
dations. Springer, 2005.

[8] M. Cataldo and J. D. Herbsleb. Communication networks in geo-
graphically distributed software development. In Proc. International
Conference on Computer Supported Cooperative Work, pages 579–588.
ACM, 2008.

[9] M. Cataldo and J. D. Herbsleb. Coordination breakdowns and their
impact on development productivity and software failures. IEEE
Transactions on Software Engineering, 39(3):343–360, 2013.

[10] K. Crowston and J. Howison. The social structure of free and open
source software development. First Monday, 10(2), 2005.

[11] K. Crowston, K. Wei, Q. Li, and J. Howison. Core and periphery in
free/libre and open source software team communications. In Proc.
International Conference on System Sciences, pages 45–56. IEEE, 2006.

[12] C. de Souza, J. Froehlich, and P. Dourish. Seeking the source: Software
source code as a social and technical artifact. In Proc. International
Conference on Supporting Group Work, pages 197–206. ACM, 2005.

[13] C. R. B. de Souza and D. F. Redmiles. The awareness network, to whom
should I display my actions? And, whose actions should I monitor? IEEE
Transactions on Software Engineering, 37(3):325–340, 2011.

[14] T. T. Dinh-Trong and J. M. Bieman. The FreeBSD project: A replication
case study of open source development. IEEE Transactions on Software
Engineering, 31(6):481–494, 2005.

[15] I. Feinerer and W. Mauerer. tm.plugin.mail: Text Mining E-Mail Plug-In,
2014. R package version 0.1-1.

[16] J. D. Hamilton. Time Series Analysis, volume 2. Princeton University
Press, 1994.

[17] J. D. Herbsleb and A. Mockus. Formulation and preliminary test
of an empirical theory of coordination in software engineering. In
Proc. European Software Engineering Conference and the International
Symposium on Foundations of Software Engineering, pages 138–137.
ACM, 2003.

[18] C. Jensen and W. Scacchi. Role migration and advancement processes
in OSSD projects: A comparative case study. In Proc. International
Conference on Software Engineering, pages 364–374. IEEE, 2007.

[19] C. Jergensen, A. Sarma, and P. Wagstrom. The onion patch: Migration
in open source ecosystems. In Proc. European Software Engineering
Conference and the International Symposium on the Foundations of
Software Engineering, pages 70–80. ACM, 2011.

[20] M. Joblin, S. Apel, and W. Mauerer. Evolutionary trends of developer
coordination: A network approach. Empirical Software Engineering,
2017. Online first.

[21] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle. From
developer networks to verified communities: A fine-grained approach.
In Proc. International Conference on Software Engineering, pages 563–
573. IEEE, 2015.

[22] J. R. Landis and G. G. Koch. The measurement of observer agreement
for categorical data. Biometrics, 33(1):159–174, 1977.

[23] C. Manteli, B. Van Den Hooff, and H. Van Vliet. The effect of
governance on global software development: An empirical research in
transactive memory systems. Information and Software Technology,
56(10):1309–1321, 2014.

[24] A. Meneely and L. Williams. Socio-technical developer networks:
Should we trust our measurements? In Proc. International Conference
on Software Engineering, pages 281–290. ACM, 2011.

[25] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open
source software development: Apache and Mozilla. ACM Transactions
Software Engineering Methodology, 11(3):309–346, 2002.

[26] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye.
Evolution patterns of open-source software systems and communities.
In Proc. International Workshop on Principles of Software Evolution,
pages 76–85. ACM, 2002.

[27] G. A. Oliva, F. W. Santana, K. C. M. de Oliveira, C. R. B. de Souza,
and M. A. Gerosa. Characterizing key developers: A case study with
Apache Ant. In Proc. International Conference on Collaboration and
Technology, pages 97–112. Springer, 2012.

[28] E. Ravasz and A.-L. Barabási. Hierarchical organization in complex
networks. Physical Review E, 67(2), 2003.

[29] G. Robles and J. M. Gonzalez-Barahona. Contributor turnover in libre
software projects. In Open Source Systems, pages 273–286. Springer,
2006.

[30] G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz. Evolution of the
core team of developers in libre software projects. In Proc. Mining
Software Repositories, pages 167–170. IEEE, 2009.

[31] F. Shull, J. Singer, and D. I. Sjøberg. Guide to Advanced Empirical
Software Engineering. Springer, 2007.

[32] A. Terceiro, L. R. Rios, and C. Chavez. An empirical study on the
structural complexity introduced by core and peripheral developers in
free software projects. In Proc. Brazilian Symposium on Software
Engineering, pages 21–29. IEEE, 2010.

[33] Y. Ye and K. Kishida. Toward an understanding of the motivation
open source software developers. In Proc. International Conference
on Software Engineering, pages 419–429. IEEE, 2003.

[34] X. Zhang, T. Martin, and M. E. J. Newman. Identification of core-
periphery structure in networks. Physical Review E, 91, 2015.


