
Science of Computer Programming 37 (2000) 1–2
www.elsevier.nl/locate/scico

Foreword

The 4th International Conference on Mathematics of Program Construction was held
in June 1998 on the island of Marstrand near G�oteborg in Sweden. This special issue
of Science of Computer Programming contains a selection of the papers presented at
the conference. The conference papers have been extended and improved considerably
for this special issue.
The general theme of this series of conferences is the use of crisp, clear mathematics

in the discovery and design of algorithms and in the development of corresponding
software or hardware. A more extensive description of the �eld is given by Backhouse
[1]. Of course, ‘the’ mathematics of programming does not exist. Just as we need
domain speci�c languages to implement software for speci�c domains, we need domain
speci�c mathematics to construct and reason about software for such domains. This
need for domain speci�c mathematics is witnessed by the fact that the conference was
followed by three workshops with a more narrow focus: workshops on constructive
methods for parallel programming, generic programming, and formal techniques for
hardware and hardware-like systems. This special issue also contains a selection of
papers presented at these workshops.
The six papers selected from the mathematics of program construction conference

cannot show more than a fraction of the �eld of mathematics of program construction.
The topics discussed in this issue are:

• Dijkstra introduces the computation calculus: an algebra that is intended to bridge the
gap between abstract programming formalisms and their operational interpretations.

• Gibbons constructs generic accumulations: programs that accumulate information up
and down any kind of tree. He shows that the resulting, elegant, de�nitons satisfy a
number of desirable properties.

• Hughes introduces arrows, a combinator library that generalizes monads. He shows
how to use this library in the construction of libraries for stream processors and pro-
gramming active web pages. These libraries would have been di�cult or impossible
to implement with monads.

• Joshi and Leino give a general condition that speci�es a secure program, and show
how this condition is used to prove that a program is secure. This approach gives a
�ner control over security than the known abstract interpretation techiques.

• Von Karger introduces a calculus for reactive systems. He starts with the logical
connectives and the axioms of Boolean algebra, and extends this calculus in several
ways to obtain calculi such as the sequential calculus for reactive and, especially,
real-time systems.

0167-6423/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6423(99)00020 -9



2 Foreword / Science of Computer Programming 37 (2000) 1–2

• SHrensen presents a framework for proving termination of program transformers.
He introduces the notion of an abstract program transformer, and gives a su�cient
condition for such a transformer to terminate. Using this framework, he shows that
positive supercompilation terminates.

Three papers come from the International Workshop on Constructive Methods for
Parallel Programming:

• Jay proposes a preliminary parallel version of his language FISh, whose special trait
is the anlaysis of the shape (i.e. topology and size) of data structures. One central
requirement for e�cient prallelism is the reference to an accurate cost model; Jay
sketches one based on shapes.

• Nitsche also uses properties of shape to optimize parallel programs, which are de-
�ned by program templates (the so-called skeletons). His requirement is shapeliness:
in a mapping, the shape of the result must only be determined by the shape of
the arguments, not by their content. He exploits this prerequisite in optimizing the
dynamic distribution of data.

• Loulergue, Hains and Foisy propose an extension of the �-calculus for
bulk-synchronous programming (BSP), which they call BS�, and relate the reduction
process in BS� to the BSP cost model.

Finally, one paper is included from the Workshop on Formal Techniques for Hard-
ware and Hardware-like Systems:

• McMillan presents a methodology for system-level hardware veri�cation based on
compositional model checking. The problem of a verifying large system is decom-
posed into small �nite state subgoals, which are discharged by symbolic model
checking. The appplication of the methodology, which is supported by a special
purpose proof system, is illustrated by examples, including Tomasulo’s algorithm
for implementing out -of-order execution in instruction set processors.

We hope you enjoy reading these papers.

Johan Jeuring
Christian Lengauer

Mary Sheeran
Department of Computer Science,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

References

[1] R. Backhouse, Mathematics of Program Construction, Sci. Comput. Programm. 26 (1996) 5–9.


