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ABSTRACT

Software product-line engineering aims at developing fam-
ilies of related products that share common assets to pro-
vide customers with tailor-made products. Customers are
often interested not only in particular functionalities (i.e.,
features), but also in non-functional quality attributes, such
as performance, reliability, and footprint. Measuring quality
attributes of all products of a product line usually does not
scale. In this research-in-progress report, we propose a sys-
tematic approach aiming at efficient and scalable prediction
of quality attributes of products. To this end, we establish
predictors for certain categories of quality attributes (e.g., a
predictor for high memory consumption) based on software
and network measures, and receiver operating characteris-
tic analysis. We use these predictors to guide a sampling
process that takes the assets of a product line as input and
determines the products that fall into the category denoted
by the given predictor (e.g., products with high memory
consumption). We propose to use predictors to make the
process of finding “acceptable” products more efficient. We
discuss and compare several strategies to incorporate pre-
dictors in the sampling process.
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1. INTRODUCTION

A software product line is a family of related products
that share common assets. Products differ in terms of fea-
tures [3]. A feature is an end-user-visible characteristic that
satisfies stakeholder requirements [4]. By using a software
product-line approach, a manufacturer designs and imple-
ments a family of software products to provide each cus-
tomer a tailor-made product.

Variability, reuse, and automated product generation are
important goals of product-line engineering. Another impor-
tant goal is to provide products of a certain quality. Prop-
erties of software, such as time efficiency and memory con-
sumption, are often called quality attributes and cover im-
portant aspects of software. Quality attributes can be mea-
sured by a software manufacturer to ensure that its software
adheres to certain standards or customer requirements.

Measuring a certain quality attribute of a single product
can be done, for example, by running a benchmark. How-
ever, benchmarking every single product of a product line
turns out to be impractical. In the worst case, the num-
ber of products of a product line grows exponentially with
the number of features. If we consider a product line with
hundreds and thousands of features [1], it becomes obvious
that product-based measurement does not scale. Therefore,
we need better methods for determining quality attributes
of all products.

We propose a systematic procedure for predicting quality
attributes of all products of a product line. The prediction
procedure uses only statically available information about
a product line. In particular, the procedure uses a feature
model and data inferred from source code, and makes predic-
tions about runtime behavior of products without executing
them.

We use data provided by software and network measures.
We do not consider runtime data such as workload, input
data, exact execution paths, loop boundaries, and many
other runtime and environment parameters. We use static
data only, because it is much faster to calculate measures on
source code and use them in the prediction process than to
collect dynamic data from a potentially exponential num-
ber of products. The drawback is, however, we cannot
make accurate predictions of quantitative values of quality
attributes, but we give qualitative statements about prod-
ucts. For example, our approach cannot predict the accurate
amount of memory required by a product, but it can predict
which products have a low memory consumption, compared
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Figure 1: Overview of the prediction process

to other products of a product line.

The central part of the prediction procedure is the smart
sampling algorithm, which was inspired by game theory. We
feed the statically available information about a product
line, encoded in a predictor, into the sampling algorithm.
The sampling algorithm uses the predictor to predict those
products of a product line that have desired quality prop-
erties, for example, products with high performance, low
memory consumption, or small binary footprint. We argue
that a sampling that utilizes measure-based predictors can
deliver better results than sampling procedures that treat a
product-line as a black-box and do not use any information
about the code internals (cf. Section 5).

The overall prediction process and the smart sampling as
its central part are the main contributions of this research-
in-progress report.

2. PREDICTION PROCESS OVERVIEW

Next, we give a high-level overview of our prediction ap-
proach and illustrate it by means of an example. The pre-
diction process consists of two steps, as outlined in Figure 1.
First, we define quality categories for a quality attribute of
interest and find predictors for each category. Second, we
use these predictors to sample representative feature sets
for the quality categories. Based on these feature sets, we
predict which products of the product line belong to which
quality category.

In our example, the quality attribute of interest is the
severity of product failures. Our goal is to predict high-
risk products (i.e., high-risk feature combinations). That is,
products that risk exhibiting high-severity failures if running
into error conditions.

Step 1: Establishing a Predictor. First, we define two qual-
ity categories for our attribute: (1) “High Risk Category”
and (2) “Low Risk Category.” At the end of the prediction
process, every product of a product line is assigned to one
of these categories. Possible failures in the products from
“High Risk Category” are likely to be of a relatively high
severity. Possible failures in the products from “Low Risk
Category” are likely to be of a relatively low severity.

To construct a predictor for the “High Risk Category”, we
use the NodeRank network measure, which is computed on
a static call graph of a system. Bhattacharya et al. found
that software components with high NodeRank are more
likely to contain high-severity bugs [2]. We do not need an
extra predictor for the second category, because products
not assigned to the “High Risk Category” fall into the “Low
Risk Category.”

A predictor is defined by two ingredients: (1) a measure or
a combination of several measures and (2) a corresponding
threshold. Let us assume that we have a predictor consisting
of a function NR that computes an aggregated NodeRank for
a given set of features, and a threshold 7" that discriminates

between the low and high-risk categories. If we want to
categorize a set {F1, F»} of features, we apply function NR
to it and compare the resulting value to the threshold T'.
If NR({F1,F2}) < T, then we assign it to the “Low Risk
Category”. If NR({F1, F>}) > T, then we assign the feature
set to the “High Risk Category”. We discuss the general
problem of finding predictors and their thresholds in more
depth in Section 3.

Now, we are able to predict to which category a given fea-
ture set belongs. However, how can we make a prediction
for all products of a product line? We do not want to calcu-
late NR for every product, because product-based approach
does not scale (cf. Section 1). The solution is our smart
sampling technique.

Step 2: Smart Sampling. Sampling selects feature sets
that we use to predict the quality attributes of the products
containing these feature sets. For example, consider a prod-
uct line with 10 optional and independent features (i.e., with
210 products). Features Critical; and Criticals are special
because all their combinations fall into the “High Risk Cat-
egory”. That is, for the three possible combinations of these
features we have: NR({C'ritical1}) > T, NR({C'riticalz}) >
T, and NR({C'riticaly, Criticalz}) > T. Furthermore, prod-
ucts containing one or all three feature sets fall in the “High
Risk Category” too. All remaining products fall into the
“Low Risk Category.” Using these representative feature
sets, we can predict which products fall into which category.
Based on this working assumption, reliability predictions for
all products of a product line can be made without time con-
suming analysis of every product.

The main task of smart sampling is to identify such repre-
sentative feature sets without measuring every possible fea-
ture combination. While the predictive capability of feature
sets for entire product populations remains to be validated,
there is a strong indication for software systems that the
emergent effects (e.g., bottlenecks, failures, etc.) are pro-
voked by a relatively small fraction of the code (i.e., the
780-20 rule” [9]). Thus, to make predictions about the whole
code of a product line, it is sufficient to investigate only this
fraction of the code.

3. ESTABLISHING PREDICTORS

In this section, we describe a method for establishing pre-
dictors for product lines.

3.1 Measurement for Prediction

In our approach, we leverage information provided by soft-
ware and network measures that numerically characterize
different quality attributes of software. According to the
classification given by Fenton et al. [6], we use measures
of internal product attributes to predict external product
attributes. Product attributes represent different quality as-
pects of the program code, for example, coupling between
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source-code components or memory consumption of the re-
sulting program.

Internal attributes of a product can be measured by ana-
lyzing the product on its own. For example, to measure the
coupling between two classes of an object-oriented program,
we need only the source code of this program. Therefore,
coupling is an internal product attribute.

External attributes of a product can be measured only
with respect to its behavior and its environment. For ex-
ample, to measure the exact memory consumption of a pro-
gram, we have to know the workload, the platform char-
acteristics, etc. Consequently, memory consumption is an
external product attribute.

In the example from Section 2, we used a measure of an in-
ternal attribute, NodeRank, to predict an external attribute,
severity of product failures. In other words, we established a
prediction model that relates an internal product attribute
to an external products attribute. By supplementing this
model with procedures for determining unknown parame-
ters (e.g., thresholds) and procedures for interpreting results
(e.g., representative feature sets), we obtain a prediction sys-
tem [8] that uses internal product attributes to predict ex-
ternal product attributes.

Kitchenham et al. showed that a useful prediction sys-
tem can be created using statistical methods [7]. Follow-
ing their example, we use a statistical method for discover-
ing relations between internal and external attributes (Sec-
tion 3.2). We encode information about these relationships
in predictors that are purposely bound to a specific product
line. Product-line-specific predictors that are established
and trained on the source code shared by multiple prod-
ucts can cover relationships between internal and external
attributes of the products more precisely than general pre-
dictors.

To establish a product-line-specific predictor, we select a
small set of products, the training set, from the number of
all possible products of a product line. To this end, we need
a criterion for building the training set. For example, we can
take a simple random selection of 1% of the products or use
domain knowledge to define the training set. We can also
use an algorithm that is based on the assumption that prod-
ucts with more structural differences have more differences
in their behavior [5]. Thus, including structurally different
products into the training set will make the predictor more
powerful. We plan to conduct additional experiments to find
the best way of constructing the training set.

3.2 Finding Good Predictors

The failure-severity predictor introduced in Section 2 is
a binary classifier. Based on a threshold value, it clas-
sifies products into one of two categories. We apply the
Receiver Operating Characteristic (ROC) analysis to find
good thresholds and to evaluate performance of binary clas-
sifiers [11], which we illustrate next.

The NR function of our failure-severity predictor produces
values in the range [0,1]. To find a good threshold for this
predictor, we define a set of candidate thresholds (e.g., an
interval 0.2-0.6 with a step of 0.1) and establish candidate
predictors based on these thresholds. Then, we build a train-
ing set of products with known severity of failures that these
products have experienced (e.g. using information from a
bug database). We use the candidate predictors on the train-
ing set to calculate the true positive rate (TPR) and the false
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Figure 2: Example of an ROC plot

positive rate (FPR). If the predictor assigns a product to the
“High Risk Category”, we call it a positive result and if it
assigns a program to the “Low Risk Category”, we call it
a negative result. True positive rate is the relation of the
number of correct positive results produced by a predictor
to the number of test programs actually belonging to the
“High Risk Category.” False positive rate is the relation of
the number of incorrect positive results produced by a pre-
dictor to the number of test programs actually belonging to
the “Low Risk Category.”

The TPR and FPR values, derived for a given candidate
predictor, define one point on an ROC plot (Figure 2). We
have defined five candidate predictors based on the five can-
didate thresholds. After calculating TPR and FPR values
for each of these predictors, we have five points (named A
to E) on our ROC plot. A predictor with the highest TPR
and the lowest FPR has per definition the highest predic-
tive power among all candidate predictors. On an ROC plot,
such a predictor is represented by a point that lies nearest
to the top-left corner; in our case, it is predictor C.

After finding a predictor with a good threshold, we deter-
mine how good the predictor is in classifying products in one
of the categories, that is, what its classification performance
is. First, we complete the points on the ROC plot to an
ROC curve (dashed curve on Figure 2). Subsequently, we
compute the area under the ROC curve that measures the
classification performance of a predictor; it lies in the range
[0,1]. A practical predictor should have a classification per-
formance of 0.7 or higher [11].

By applying ROC analysis to our predictors, we find pre-
dictors with good predictive power and we determine if these
predictors can be useful.

4. SMART SAMPLING

Next, we describe our sampling framework and the corre-
sponding smart sampling algorithm.

4.1 Sampling Framework

The main idea of our approach is to incorporate informa-
tion about the source code of a product line to improve ac-
curacy, scalability, and performance of sampling to identify
desired products. Moreover, we aim at building a general
sampling framework that is not restricted to certain external
quality attributes. There are two preconditions: the avail-
ability of good predictors and the availability of product-line
assets, such as source code of features and the feature model.

The workflow for the sampling framework is illustrated in
Figure 1, Step 2. We provide a predictor for a quality cate-



gory of interest as well as product line assets to the sampling
framework. The sampling algorithm of the framework gen-
erates a collection of feature sets. Each of these feature sets
belongs to the quality category of interest. Consequently, a
product containing one or more of these feature sets will be-
long to the same quality category. Thus, in the end, we can
effectively predict which products belong to the quality cat-
egory of interest, which allows us to judge the corresponding
quality attribute of these products.

4.2 Sampling Algorithm

The core of our framework is the sampling algorithm. Its
design was inspired by cooperative game theory. In a cooper-
ative game, agents build groups and coordinate their actions
to achieve better outcomes compared to acting selfishly [10].

Our sampling algorithm models a round-based cooperative
sampling game. Features of a product line are agents of the
game, and their general goal is to build coalitions (i.e., fea-
ture sets) with other agents. In each round, an agent can join
a coalition of other agents, or a coalition can join another
coalition to build a larger one. The choice of a coalition to
join to is governed by the mazimum-value rule. The rule
states that the resulting coalition must have the maximum
coalition value compared to all possible alternatives. The
coalition value is calculated by the predictor supplied to the
sampling framework. For example, the value of the coali-
tion {Criticali, Criticalz} from Section 2 is its NodeRank
NR({Criticaly, Criticalz}).

At the end of each round, the coalitions with the value
above the predictor’s threshold go into the next round. The
coalitions with the value below the predictor’s threshold
are dismissed. In the next round, the same procedure re-
peats. The sampling game lasts until no more new coali-
tions can be built or none of the coalitions can overcome
the threshold. At the end of the game, we get representa-
tive coalitions (i.e., representative feature sets) that fall into
the quality category denoted by the predictor. In the exam-
ple from Section 2, these resulting coalitions would be the
three representative feature sets {Critical,}, {Criticals},
and {Criticali, Criticala} from the “High-Risk Category.”

The predictor strongly influences the progress of the sam-
pling game and the quality of the results through its thresh-
old and the calculated coalition values. We can take ad-
vantage of this important role of the predictor to fine-tune
and optimize the sampling game. Assume we possess do-
main knowledge about a certain feature combination. For
example, we know that this combination will certainly lead
to a higher memory consumption. Then, we tune the pre-
dictor such that the value of the coalition containing the
feature combination always exceeds the threshold. Thus, we
guarantee that this interesting feature combination will be
present in one of the resulting coalitions and will help us to
predict products with high memory consumption.

It is possible that in the first round none of the start-
ing coalitions exceeds the threshold, because their coalition
values are too low. Therefore, we start the game with a
warm-up phase. During the warm-up phase, no coalitions
are dismissed, even if their values are under the threshold
at the end of a round. The warm-up phase lasts until some
coalition exceeds the threshold. This way, we produce at
least one feature set of interest at the end of the sampling
game.
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4.3 Sampling Algorithm Variants

We can influence different properties of the sampling al-
gorithm by changing the way coalitions are build. By spec-
ifying a rule for building coalitions, we control the following
two aspects of the algorithm: (1) how fast the size of coali-
tions grows and (2) to what extent the number of coalitions
changes during the sampling game. These aspects influence
the run time of the algorithm and the accuracy of results.

We identified three different ways for features to build a
coalition and defined corresponding coalition-building rules.
Based on these rules, we propose three sampling-algorithm
variants. We use coalition tables to illustrate how these vari-
ants work. An example of a coalition table is presented in
Figure 3a. For this coalition table, we assume that the cor-
responding product line has 6 features: A, B,... F.

In the first step, each algorithm variant builds the base ta-
ble, as shown in Figure 3a. The algorithm assigns features
of the product line to rows and columns of the base table.
One feature for each row and one for each column. This
way, each cell of the table represents a feature coalition that
consists of the features from the corresponding row and col-
umn. A cell contains the coalition value of the corresponding
coalition (not shown in the Figure 3a).

In the second step, the value of each coalition is calculated.
The coalitions with the value above the predictor’s threshold
go into the next round. Let us assume that the coalitions
exceeding the threshold are AB, BF, DC and EF (marked
red in Figure 3a). We use them in the second round to
illustrate different coalition-building rules. The remaining
coalitions are dismissed.

From the second round on, the construction of coalitions
and the coalition table depends on the coalition-building
rules, which we describe next.

Symmetric-headers rule. The symmetric-headers rule pre-
scribes that the vertical and horizontal headers are sym-
metric and contain the coalitions coming from the previous
round (Figure 3b). This way, the size of coalitions grows
fast from round to round: In our example, in the second
round, these will be four-feature coalitions, in the third,
eight-feature coalitions, and so on. The number of coalitions
in the table header shrinks steadily from round to round. Al-
together, the number of coalitions reduces with each round,
the sampling game evolves rapidly towards termination, and
we get the resulting feature sets sooner. On the other hand,
smaller coalitions, which may be of interest to us on their
own, are not considered and get lost between the rounds.

Asymmetric-headers rule. This rule gives a chance to
smaller coalitions. The horizontal header of the coalition
table is the same in every round and always contains sin-
gle features. The vertical header always contains the coali-
tions coming from the previous round (Figure 3c). This way,



we get also smaller coalitions (e.g., three- and five-feature
coalitions), which are not created by the symmetric-headers
rule. Using the asymmetric-headers rule, the sampling game
evolves slowly and may take longer to terminate. Due to
the constant horizontal header, we have to calculate more
coalitions in every round, compared to the symmetric-header
rule. This fact may have negative impact on the algorithm’s
performance. Moreover, the additional smaller coalitions
are still forced to grow with each round, and will not reach
the end of the sampling game. Consequently, the products
that could be predicted by these smaller coalitions, if they
reached the end of the sampling game, are lost. Thus, we
consider one further game variant that lets smaller coalitions
survive multiple rounds and potentially reach the end of the
sampling game.

Diagonal-coalitions rule. The symmetric-headers rule ig-
nores the coalitions lying on the main diagonal of the ta-
ble (marked blue in Figure 3b). In contrast, the diagonal-
coalitions rule allows these to participate in the game. Apart
from this difference, it is analog to the symmetric-headers
rule. Due to this modification, smaller coalitions can sur-
vive multiple rounds and are not forced to grow. Therefore,
smaller coalitions that fall into the desired quality category
can reach the end of the game. However, the headers do not
shrink steadily from round to round. Depending on if and
how many diagonal coalitions have survived in the previous
round, the headers may shrink or grow. Consequently, the
sampling game will evolve faster or slower. Furthermore,
the number of coalition-value calculations increases. So, the
same performance concerns arise as for asymmetric axes.

S. RELATED WORK

Measurement for Prediction. Bhattacharya et al. [2] cal-
culated network measures for graph representations of sev-
eral software projects. The authors successfully used the
measurements to make predictions about maintenance ef-
fort, bug severity, and defect count for software modules.

Eichinger et al. found strong correlations between soft-
ware measures and runtime behavior [5]. The authors com-
puted software measures, and applied data-mining on them
to successfully predict a program’s performance on different
hardware architectures.

Sampling in Product Lines. Black-box heuristics proved
to be effective in predicting external quality attributes of
products [12, 13], but they do not take the code into consid-
eration. Our discussion in Section 3 suggests that white-box
heuristics that use information extracted from source code
may surpass black-box heuristics.

Domain or project-history knowledge provide precise in-
formation that can be used to judge quality attributes of
products [14, 13]. However, this knowledge is not always
available, which reduces its general applicability.

6. CONCLUSION

Measuring all products of a product line to estimate their
quality attributes is not feasible. In this research-in-progress
report, we described our ongoing work to efficiently predict
quality attributes of all products of a product line. We ap-
ply static program analysis to collect information about the
internal code structure that we use in a sampling process to
find relevant feature sets. Based on these features sets, we
predict the quality attribute of interest. Due to the addi-
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tional information encoded in a predictor, we expect better
results compared to other sampling techniques. We imple-
mented the presented sampling algorithm variants, and we
prepare a set of predictors to start evaluating the algorithms.
We will validate the predictors on a repository of 40 product-
lines (http://fosd.de/fh) containing C and Java projects
of different sizes and from different domains.
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