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ABSTRACT

Our aim is to apply program transformations to stencil codes in order to yield the

highest possible performance. We recognize memory bandwidth as a major limitation
in stencil code performance. We conducted a study in which we applied optimizing

transformations to two Jacobi smoother kernels: one 3D 1st-order 7-point stencil and

one 3D 3rd-order 19-point stencil. To obtain high performance, the optimizations have
to be customized for the execution platform at hand. We illustrate this by experiments

on two consumer and two server architectures. We also verified the need for complex
optimizations with the help of the Execution-Cache-Memory performance model. A code

generator with knowledge about stencil codes and execution platforms should be able to

apply our transformations automatically. We are working towards such a generator in
project ExaStencils.

Keywords: Jacobi smoothers, high-performance computing, program transformations,

stencil codes, ECM performance model

1. Introduction

Multigrid methods [17] are widely used in scientific applications, especially in

physics and chemistry simulations. Much of the time consumed by a multigrid al-

gorithm is spent in its smoother. This paper is not about multigrid, but the center

of our study are two Jacobi smoothers used in multigrid methods [2]: one for a 3D

1st-order 7-point smoother and one for a 3D 3rd-order 19-point smoother. Both

smoothers use constant coefficients and a single output and two input grids. The

three grids are located in distinct memory areas.
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(a) 1st-order stencil (b) 3rd-order stencil

Fig. 1. Footprint of two 3D Jacobi stencils.

for (int x = 1; x < dimX -1; ++x)

for (int y = 1; y < dimY -1; ++y)

for (int z = 1; z < dimZ -1; ++z)

out[x][y][z] = a * in[x][y][z]

+ b1 * (in[x][y][z-1] + in[x][y][z+1] + in[x][y-1][z]

+ in[x][y+1][z] + in[x-1][y][z] + in[x+1][y][z])

- c * rhs[x][y][z];

Fig. 2. Kernel code of a 3D 1st-order Jacobi smoother.

for (int x = 3; x < dimX -3; ++x)

for (int y = 3; y < dimY -3; ++y)

for (int z = 3; z < dimZ -3; ++z)

out[x][y][z] = a * in[x][y][z]

+ b1 * (in[x][y][z-1] + in[x][y-1][z] + in[x-1][y][z]

+ in[x][y][z+1] + in[x][y+1][z] + in[x+1][y][z])

+ b2 * (in[x][y][z-2] + in[x][y-2][z] + in[x-2][y][z]

+ in[x][y][z+2] + in[x][y+2][z] + in[x+2][y][z])

+ b3 * (in[x][y][z-3] + in[x][y-3][z] + in[x-3][y][z]

+ in[x][y][z+3] + in[x][y+3][z] + in[x+3][y][z])

- c * rhs[x][y][z];

Fig. 3. Kernel code of a 3D 3rd-order Jacobi smoother.

In the 3D 1st-order smoother kernel, the update of a single element requires

the old input value along with the nearest neighbors in each direction, and a single

corresponding point of the second input array. Figure 1(a) depicts the 3D footprint

of this stencil. The source code of the corresponding kernel is shown in Figure 2.

In the 3D 3rd-order 19-point smoother kernel, the update of a single element

requires not only the nearest neighbors but all elements in a range of three points

in each direction. Figure 1(b) depicts the 3D footprint of this stencil. The source

code of the corresponding 3D kernel appears in Figure 3.
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The direct implementations of the codes in Figures 2 and 3 have poor perfor-

mance (see below for details). Suitable optimizations can improve the performance

considerably, yet, they are not applied automatically by present-day compilers.

To tackle this problem we present transformations, some of which exploit domain

knowledge. Our intention is to let them be applied automatically by a domain-

specific optimizing compiler. We are working towards such a compiler in project

ExaStencilsa, which is part of the Priority Research Initiative SPPEXAb, funded

by the German Research Foundation (DFG).

A serious limiting factor for lower-order stencils turns out to be the memory

bandwidth, since the computation of a single result value requires loading almost

as many values from memory as floating-point operations are performed and the

overall number of instructions that need to be executed by the processor is low.

For higher-order kernels the CPU needs to process a larger amount of instructions

for a single lattice update, as many more data elements must be retrieved from

the memory hierachy. Therefore, the memory bandwidth is not the only limiting

factor and simpler optimizations may achieve similar performance improvements.

We employ different blocking techniques to reduce the bandwidth requirements of

our codes. The evaluation of our optimizations show that modern x86 CPUs require

a more complex blocking technique than IBM’s BlueGene/Q.

In summary, we make the following contributions:

• a set of six optimizing transformations that can be applied automatically

to stencil codes,

• an empirical evaluation of the optimizations applied to two codes on four

architectures,

• a more detailed, model-based, evaluation of the performance for an x86

server processor,

• insights into the suitability of the various optimizations for the individual

architectures,

• insights into the basic limitations of stencil code performance.

Our work extends a preliminary study [12], with enhanced optimizations and an

additional performance evaluation on a new server processor using our Execution-

Cache-Memory (ECM) model [8, 15].

The rest of the paper is organized as follows. Section 2 describes six different

optimizations, which can be used to optimize stencil codes and to achieve high

performance. Section 3 presents an empirical performance analysis of the presented

optimizations and Section 4 uses our ECM model to evaluate the optimization

techniques.

ahttp://www.exastencils.org
bhttp://www.sppexa.de
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2. Optimizations

This section describes six optimization techniques, which are sufficient to achieve

high performance on all test platforms. Their performance is discussed in the next

section.

We choose three basic optimizations, which can be applied safely to improve

the performance of the generated target code. These optimizations are not domain-

specific. They improve the performance on any architecture and do not exploit

knowledge about stencil codes. In particular, they do not alter the order of the

kernel iterations and do thus not change the data access characteristics. They are

described in Subsection 2.1. Subsection 2.2 describes three further, domain-specific

optimizations. They do affect the order of the kernel iterations which may reduce

the pressure on the bus from processor to main memory. The effect is that different

architectures favour different optimizations.

2.1. Basic transformations

One of the simplest optimizations is to remove complex address computations from

the innermost loop of the kernel. Consider the source code in Figure 2. If each

array is stored linearly in memory, a 3D array access in[x][y][z] results in the

polynomial index expression

*(in+(x*dimY+y)*dimZ+z).

For each iteration of the two loops on x and y, the values of x, y, dimY and dimZ

remain constant. Thus,

in_p = in+(x*dimY+y)*dimZ

can be precomputed before entering the innermost loop. Then, the 3D access

in[x][y][z] can be replaced by in_p[z], which is computed much more easily.

This technique of precomputing the constant values in the index polynomial for

access of elements of a multidimensional array has been standard fare in compiler

classes for decades [1]. However, it is not always applied by a compiler, e.g., by gcc

4.8, since different other, previous transformations can stand in the way of this opti-

mization. We observed that gcc is not able to perform this transformation after the

code has been vectorized manually via vector intrinsics. Consequently, we applied

it explicitly to the innermost loop, which is in every language laid out contiguously

in memory – even in Java. Figure 4 illustrates this optimization for a single 3D ar-

ray, regardless of whether it is linearized in memory or accessed using a 3D pointer

double ***in.

Another optimization beneficial for higher-order stencils would be to reorder the

computations such that an entire cache line is used at the same time. This prevents

a repeated load of the same data into L1 cache [6]. Consider again the stencil of

Figure 1(b). Let us assume that the data is stored in row-major order in memory

(as, e.g., in C) and that the required neighbors in the same row can be loaded from
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for (int x = 0; x < dimX; ++x)

for (int y = 0; y < dimY; ++y) {

double *in_p = &in[x][y][0];

for (int z = 0; z < dimZ; ++z)

use(in_p[z]);

}

Fig. 4. Simplified address calculation for the innermost loop.

contiguous addresses, while the elements from the same column have a larger stride.

If this stride is a power of 2 and the set associativity of the processor’s L1 cache is

n, only n different blocks are available to hold the cache lines for the neighboring

elements. Therefore, a cache line could be evicted, although subsequent elements

in it are needed in the next iteration: unnecessary cache misses result. To prevent

them, contiguous input data for multiple output elements can be stored in CPU

registers at the same time, while the computations are reordered to process the

loaded data early.

This register blocking can also be viewed as a preparatory step for vectorizing

the kernel, our third basic optimization. Almost all modern processors have SIMD

units, which can be used to perform the same computation in parallel on multi-

ple data elements. Current x86 processors support the Advanced Vector Intrinsics

(AVX) or, at least, the Streaming SIMD Extensions (SSE). AVX provides 256-bit

registers, which can be used to load, store and process eight single-precision or four

double-precision floating-point values in parallel. In contrast, SSE provides only 128-

bit registers, which can also be used for both single-precision and double-precision

values. Another common architecture in high-performance computing is the Blue-

Gene/Q. Each of the 16 cores of a BlueGene/Q chip has a 256-bit vector unit but,

in contrast to Intel’s AVX, IBM’s Quad Processing Extension (QPX) performs all

operations with double precision, which restricts the possible vector length to 4.

Today, most compilers provide automatic vectorizers but, in many situations,

an explicit vectorization can yield higher performance. The corresponding compiler

intrinsics can be used to declare and work with appropriate vector types. Not only

must one select the suitable intrinsics carefully, one must also make sure that all

input data is aligned correctly if the architecture does not support unaligned load

and store operations for vector types, as is the case with BlueGene/Q. For multi-

dimensional arrays, the programmer must also choose the width of the innermost

dimension carefully: if it is not a multiple of the vector length, it must be padded

to ensure that all lines are aligned properly. When using normal store instructions,

the hardware has to load a cache line from main memory before it can be modi-

fied, which increases the bandwidth requirements. This so-called write-allocate is

avoided by the use of nontemporal stores on x86 processors, wherever meaningful,

when the test code is vectorized.
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2.2. Domain-specific transformations

Domain-specific optimizations of stencil codes modify the iteration domain of the

kernel. Since every data element is accessed repeatedly during the computation, one

simple optimization is to reorder the iterations such that each grid point is processed

fully during one stay in the processor’s cache. An approach commonly used is to

divide the output grid into axis-aligned blocks and load all input data required to

compute a single block in the highest-level cache. Then, only data points near the

border of the blocks need to be loaded repeatedly.

Let us call a 2D subset of a 3D grid block a plane. The simple 3D blocking

scheme just described can be improved by exploiting the fact that, for the 1st-order

kernel, only three and, for the 3rd-order kernel, seven neighboring planes must

reside in cache at the same time. Thus, the outermost dimension does not need to

be blocked explicitly. In addition, it is beneficial to choose a large enough block

size for the innermost loop. This ensures that, e.g., the processor’s prefetcher can

hide the memory latency. Each time the computation switches to a new block, the

streaming prefetcher requires a few iterations to adapt to the new data streams until

the highest possible performance can be reached. Nguyen et al. call this technique

2.5D blocking [14].

Another possibility to increase the performance is to combine multiple applica-

tions of the kernel code [18]. Since the results of all kernel invocations except the

last one are temporary and are not needed after the final result is computed, it is

sufficient to store only few planes in a temporary buffer. E.g., if two applications of a

1st-order Jacobi smoother are being combined, the buffer for the temporary results

must be large enough to hold no more than three planes, as depicted in Figure 5.

In a warm-up phase, the first two planes of the initial smoother application are

computed and stored in the buffer. In the main phase, a third plane is computed,

which is then stored in the next buffer slot, overwriting the oldest entry. Using all

three temporary planes, one result plane can be computed and stored in the output

grid. This is repeated until the last plane of the input has been processed.

If the cache is large enough to hold the complete buffer, the amount of data

x

y

input temporary result

Fig. 5. 2D representation of temporal blocking for a 1st-order Jacobi smoother.
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that must be transferred across the bus from the processor to main memory can be

reduced. For large grids, even three planes may require too much memory since the

cache size is typically only a few MB. But the amount of data that must reside in

cache can be reduced by combining both temporal and spatial blocking techniques

[16, 20]. For this so-called 3.5D blocking [14], the output grid is tiled, using 2.5D

blocking, and the resulting spatial blocks are blocked further temporally. On the one

hand, this reduces the amount of data to be transferred across the bus significantly,

if the buffer is not evicted accidentally from cache. On the other hand, a combined

temporal and spatial blocking requires a small part of the temporary grid to be

recomputed repeatedly. This leads to an increase in overhead if the block size is

too small or the number of smoother applications which are combined is too large.

A suitable number N of smoother applications to be combined for a maximum

throughput is given by the inequality

N ≥
⌈γ

Γ

⌉
(1)

introduced by Nguyen et al. [14]. γ denotes the bandwidth-to-compute ratio (code

balance) of the stencil kernel. Analogously, Γ describes the peak-bandwidth-to-peak-

compute ratio of the execution platform (machine balance).

Let us consider the 3D 1st-order smoother code of Figure 2. An update of a single

grid point requires three multiplications, six additions, one subtraction, eight reads

from both input arrays and one store to the output, resulting in nineteen operations

in total. Since input elements that have been loaded previously can be reused,

only two elements must be fetched from main memory, one from in and one rhs,

which results in transferring sixteen bytes for double precision. Analogously, a single

value is written back to main memory, which results in another eight bytes to be

transferred. The write-allocate for the store of the result increases the pressure to the

bus and in total, this leads to a bandwidth-to-compute ratio of γ = 32 bytes / 19 op.

3. Performance analysis

This section presents the results of our performance measurements of the optimiza-

tions described in the previous section on four different systems.

We have tested our optimizations on four different systems. Two are consumer

x86 machines, while the others are server processors. The first test environment has

a consumer Intel IvyBridge quadcore processor with a base operating frequency of

2.4 GHz, a 6 MB L3 cache and 16 GB of DDR3-1600 main memory. This processor

supports Intel’s Turbo Boost technology, which can increase the clock rate by up

to 1 GHz. For a better comparison of the results for a different number of cores

used, we disabled Turbo Boost for the performance tests. The second system has

an AMD Thuban hexacore processor, clocked at 2.7 GHz, also a 6 MB L3 cache,

but only 8 GB of DDR2-800 memory. Both processors have an on-chip dual-channel

memory controller. In contrast to these two consumer chips, the third test system

is a dual-socket ten-core IvyBridge EP machine with the clock frequency fixed to



July 27, 2014 15:12 WSPC/INSTRUCTION FILE 2014-ppl

8 Parallel Processing Letters

3.0 GHz. Each of the two processors has a 25 MB wide L3 cache and is connected to

32 GB DDR3-1866 RAM with four memory channels. Our last test system consists

of several 16-core BlueGene/Q processors. The deepest cache of this architecture

is the L2 cache, which is 32 MB wide. Each processor also contains two built-in

dual-channel memory controllers with 8 GB of DDR3-1333 main memory. For both

IvyBridge EP and BlueGene/Q, we use only one processor since we are interested

in socket-level performance.

Both Intel processors, as well as the AMD Thuban, benefit from quite efficient

out-of-order execution units. That is, the processor is able to reorder the instruction

stream decoded from the binary for best use of the available execution units. In

contrast, BlueGene/Q executes all instructions in-order but, to compensate for this

limitation, a single physical processor core can execute up to four threads in parallel

in hardware. Thus, if a single thread is not able to load the processor core to

capacity, parallel threads can take up the slack. For this reason, we also measured

the performance of 32 and 64 threads running on a single 16-core chip. Some of

Intel’s IvyBridge processors are also able to execute two threads concurrently in

hardware but, the aforementioned out-of-order execution unit is sufficient to achieve

best performance for the applications considered here. Because of the additional

overhead, a management of multiple threads could actually decrease performance

at worst-case. Consequently, we disabled this so-called hyper-threading technology

on the Intel processors.

All three x86 processors can perform a floating-point ADD instruction and an in-

dependent MULT instruction in parallel; BlueGene/Q has instead a fused multiply-

add instruction. However, most stencil codes contain far fewer multiplications than

additions and cannot exploit these special instructions. Thus, the peak compute

performance of stencil codes can reach at most half the theoretical peak compute

performance of these architectures. We measured both peak bandwidth and peak

stencil compute performance using micro benchmarks and their results are shown

in Table 1. The peak bandwidth is measured in GB/s and the peak compute per-

formance in Gop/s. A single operation op is either a floating-point operation or a

load/store instruction.

Table 1. Peak bandwidth (GB/s), peak double-precision compute performance (Gop/s)
and bandwidth-to-compute ratio (B/op) of the four platforms.

Platform Peak BW Peak Gop/s Byte/op

IvyBridge 22 38 0.58
Thuban 13 31 0.42

IvyBridge EP 47 120 0.39
BlueGene/Q 38 102 0.37

On the consumer x86 architectures, we used gcc 4.8 to generate the executables,

which is the most common compiler for consumer systems. We checked that the Intel

compiler icc 13 did not generate faster binaries for our optimized test codes. On the

two server systems we used the compiler provided by the vendor of the processors
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instead. Therefore the source code was translated by Intel’s icc 13 on IvyBridge EP.

On the BlueGene/Q, we used bgxlC, IBM’s XL C++ compiler version 12, which

is optimized for this architecture. Because of a compiler bug in the compiler’s C

frontend, we had to use the C++ compiler, even though our test code is written in

standard C99.

3.1. 3D 1st-order smoother

Our first kernel is a 3D 1st-order Jacobi smoother. Figure 6 illustrates the benefits of

our transformations on all test platforms. Performance is measured in million lattice

updates per second (MLUP/s). As a baseline, we measured a naive implementation,

which is basically the same code as shown in Figure 2, except that it was parallelized

using OpenMP.

Experiment basic opt. includes all optimizations described in Section 2.1. We

did not measure the results for any proper subset of these three optimizations,

since they depend on each other. E.g., address precalculation is performed by all

compilers unless the code is vectorized manually, and the vectorization strategy is

based on register blocking. In the spatial blocking code, the middle y-loop is being

blocked in order to ensure that three subsequent planes of the input code fit into the

processors last level cache. The performance of a purely temporal blocking version

is labeled with temp. blocking, and 3.5D blocking refers to the combined temporal
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Fig. 6. Performance results for the 1st-order smoother on four platforms.
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and spatial blocking described in Section 2.2.

Our basic transformations enable the compiler to generate code that saturates

the available memory bandwidth of all test systems. As both consumer processors

have a relatively small cache, three planes of the input grid are too large to ensure

that data is not evicted before it is required again. A spatial blocking of the middle

loop avoids this problem. On IvyBridge EP and BlueGene/Q the spatial blocking

code shows no improvement over basic opt., as their last level cache is large enough

to be able to hold multiple planes of the input grid.

In contrast, the naive implementation is compute-bound on BlueGene/Q. This

means that it does not use the full memory bandwidth; thus, it benefits from the

use of additional available cores. On both consumer processors, the performance of

naive does not increase linearly and is also not able to reach that of the basic opt.

version. Due to the usage of the Intel compiler on IvyBridge EP, we were able to

add additional simple opimization pragmas to the naive version, which enables the

compiler to create code as fast as the hand-tuned basic opt. code.

For the 3.5D blocking technique, we determined the value of N in Eq.(1) to

be 5 for all except Intel IvyBridge. Consequently, we chose to implement a ver-

sion that merges five Jacobi iterations. Figures 6(a), 6(b) and 6(c) show a linear

speedup for all x86 architectures and a resulting performance higher than the mem-

ory bandwidth-bound basic opt. and spatial blocking versions. This technique trans-

forms a bandwidth-bound to a compute-bound kernel. The same holds for the IBM

BlueGene/Q processor with 32 threads, as shown in Figure 6(d), but the difference

to the basic opt. version is not as high as for the other processors. The performance

with less than 16 threads is also worse than for the two other optimized versions,

which can be explained by the higher complexity of the 3.5D blocking code.

The purely temporal blocking experiment showed the most surprising behaviour.

On the two consumer architectures, there is no improvement at all, even though we

combined only two smoother applications, rather than five, in order to save on tem-

porary buffer space needed to hold the data handed from one smoother call to the

next. The reason is that the amount of memory required for three planes of the

5123 elements large input does not fit into the cache of either processor. Therefore,

a simple temporal blocking shows no improvement. On the other hand, the caches

of the two server processors are large enough to hold all temporary buffers as well as

larger parts of the input: even for three smoother applications combined, this code

performs well as shown in Figure 6(d). Combining five smoother applications, as

in case of the 3.5D blocking version, requires temporary buffers to be large enough

to store multiple planes of four intermediate results but, in order to reduce the

danger that parts of the buffer are evicted from cache, an additional spatial block-

ing is required. This leads to smaller blocks of data processed consecutively, which

results in an increase of the number of blocks – or, rather, the number of times

that computation starts with a cold L1 cache. Due to the comparatively high la-

tency of BlueGene/Q’s L2 cache, the purely temporal blocking scheme outperforms

3.5D blocking. In contrast to the temp. blocking scheme, the latter also requires the
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recomputation of temporary results at the border of each block, which causes addi-

tional overhead. With more than one thread per core, the hardware scheduler can

hide the high cache latency. Therefore, the combined temporal and spatial blocking

code catches up with the purely temp. blocking version.

3.2. 3D 3rd-order smoother

The benefits of our optimizations of the 3rd-order smoother are depicted in Figure 7.

Again, we started with a naive baseline implementation as shown in Figure 3, which

was again parallelized using OpenMP. This implementation performs similarly to

the 1st-order experiment. The only difference is that the Intel compiler was not able

to generate a binary as efficient as that for the basic opt. on IvyBridge EP. After

applying all basic transformations, the code becomes memory-bound on the x86

systems but, in contrast to the 1st-order smoother, the 3rd-order basic opt. version

is more compute-intensive: the simple structure of the basic opt. code enables this

version to outperform all others on BlueGene/Q.

The spatial blocking version also performs well on all systems. With only 6 MB

L3 cache on IvyBridge and Thuban, all previous versions require a repeated load of

the input data in cache, which increases the pressure on the memory bus. Therefore,

performance can improve significantly when the input grid needs to be loaded only

once from main memory.
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Fig. 7. Performance results for the 3rd-order smoother on four platforms.
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Combining temporal and spatial blocking, the 3.5D blocking version, first re-

quires to calculate the bandwidth-to-compute ratio γ of the 3rd-order smoother in

order to determine the value of N in Eq.(1). Consider again the code in Figure 3.

Updating a single grid element requires 24 floating-point operations and 21 memory

instructions; thus, a total of 45 operations are needed whereas, in the best case, only

32 bytes have to be transferred across the bus. With a bandwidth-to-compute ratio

of γ = 32 bytes / 45 op = 0.71 bytes/op and

N ≥
⌈γ

Γ

⌉
= 2

for all platforms, we combined two smoother applications in the 3.5D blocking tech-

nique. In contrast to the 1st-order smoother, the combination of temporal and

spatial blocking is not crucial to maximize the throughput of the code as the larger

number of data accesses increases the pressure on the processor and the L1 cache.

On IvyBridge, the performance is even a bit lower than of the spatial blocking code.

A purely temporal blocking approach requires even larger temporary buffers

than for the 1st-order kernel, since more neighboring planes have to be stored for

the computation of a single output plane. Consequently, on both the Intel IvyBridge

and the AMD Thuban, the temp. blocking scheme shows no benefit over the basic

opt. scheme: both are memory-bound. On Intel IvyBridge EP and IBM BlueGene/Q,

theoretically, the cache is large enough to store the entire buffer of the temporal

blocking code but, practically, relevant cache lines are accidentally evicted from

the highest-level cache and have to be reloaded for the next access. Therefore, this

code performs worse than the 3.5D blocking approach, even though both versions

combine two smoother applications.

As a general rule, if the sequential, spatially blocked code scales well across

the cores on a socket, the potential for temporal blocking is limited, because the

memory access time does not dominate in this case. The ECM performance model

(see next section) can describe this effect in a quantitative way.

4. Performance Model

In this section, we introduce the ECM performance model and apply it to the 3D

7-point stencil on the Intel IvyBridge EP processor.

In order to develop a purposeful optimization strategy, the limiting resources

of the baseline implementation as well as the potential benefit of a planned opti-

mization have to be considered. These insights can be obtained from setting up a

performance model, such as the well-known roofline model [19]. The roofline model

considers the achievable data transfer bandwidth and the arithmetic throughput to

estimate the best possible performance (“light speed”).

As we are also interested in the single-core performance and the parallel scaling

behaviour on the chip, we apply a refinement of the roofline model recently intro-

duced, the ECM performance model [8, 15]. The ECM model aims to predict the

performance of single-threaded loop execution by accounting for run time contribu-
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tions from pure code execution (assuming all required data is located in L1 cache)

and data transfers throughout the memory hierarchy. A crucial assumption of the

model in its basic form is that all data transfers between memory hierarchy levels

(including loads and stores in the L1 cache) are mutually non-overlapping and add

up to the total run time unless the pure code execution Texec (arithmetic, in-register

operations, etc.) takes longer:

T = T0 +

n∑
l=1

Tl , with T0 = max
(
TLD/ST, Texec

)
.

Here Tl is the data transfer time between memory hierarchy levels l and l + 1, and

TLD/ST is the time for all loads and stores in the L1 cache. An estimate for T0 can

be obtained by hand in simple cases, or determined with profiling tools like Intel

IACAc. Data transfer bandwidths between the levels of the memory hierarchy are

either documented or have to be measured with suitable micro-benchmarks such as

STREAM [13]. The model assumes a streaming scenario with efficient prefetching,

hence latency effects are neglected. The cache line size is usually used as the basic

unit of work in the model, since this is the minimum amount of data transferred

between memory hierarchy levels. For parallel performance predictions, ideal scaling

is assumed until the bandwidth of the relevant bottleneck (e.g., a shared cache or

memory interface) is fully saturated.

The analysis in this section was performed on the Intel IvyBridge EP system

introduced in Section 3. In the following we apply the ECM model to the 1st-order

Jacobi smoother shown in Figure 2. Therefore, we determine the time required for

one cache line update (eight double-precision elements) for each level of the hierar-

chy. IACA reports that the in-core execution is dominated by load instructions. The

architecture is capable of loading 32 bytes (one full-width AVX load) from L1 cache

to a register per cycle. Eight double-precision elements have to be loaded per LUP

(central element, its six neighbors, and the rhs), resulting in 16 cycles to perform

eight LUPs.

The number of load and store streams in the different levels of the cache hierarchy

and, thus, the number of transferred cache lines, depend on the number of arrays

and on the spatial and temporal access locality. Data reuse during a full grid sweep

with an n-order stencil solver is governed by a layer condition, as described earlier:

if 2n+1 layers of the source grid fit into the usable cache, only a single element (the

next in the outermost dimension, i.e., in the x+ n layer) has to be loaded from the

subsequent memory level per update [4, 9]. All other required elements still reside

in cache from previous updates. In practice, one cannot assume that the full cache

size Cl is available for the source grid; as a rule of thumb we assume that half the

cIntel Architecture Code Analyzer

http://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
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cache can be used:

8 bytes · (2n+ 1) · dimY · dimZ < Cl

2
.

If the layer condition is not satisfied at a certain cache level l, the number of load

streams to the next level increases, giving rise to a growth of Tl+1. To avoid this

the layer size may be adjusted with spatial blocking in one or both of the inner

dimensions in order to re-establish the layer condition.

The growing overhead of spatial blocking with decreasing block size can outweigh

its benefit for the small, lower-level caches. Therefore, in our Jacobi 3D code, spatial

blocking is used to ensure the layer condition for the in array in L3 cache. Together

with the load to rhs, the store to out and the associated write-allocate transfer, four

double-precision elements (32 bytes) have to be transferred between memory and

L3 cache per update. On a cache line basis this is equivalent to 16.3 cycles, given a

memory bandwidth of 47 GB/s and 3.0 GHz clock frequency. As the layer condition

is not satisfied for higher-level caches, two additional load streams to in have to

be considered (one for the k and one for the k − 1 layer), resulting in overall six

streams. The transfer of six cache lines takes twelve cycles, because the architecture

is capable of inter-cache transfers at 32 bytes per cycle.

See Figure 8 for an overview of the model. The aggregated duration of eight

updates is 56.3 cycles, which translates to 426 MLUP/s at 3.0 GHz. The pre-
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Fig. 8. ECM model for the 3D Jacobi 7-point stencil with spatial blocking on an IvyBridge
EP core. An arrow is a 64-byte cache line transfer. Spatial blocking is used to satisfy the layer

condition in L3 cache, resulting in only one load on the in array per update. As the overhead
of spatial blocking would outweigh the benefit for the lower-level caches, two more load streams
have to be accepted from L3 and L2 cache. Storing requires an additional load (write-allocate)

on this architecture. Memory bandwidth is measured using the STREAM benchmark (47 GB/s

@ 3.0 GHz), other bandwidths are given by the machine model. From this, the required time for
one cache line update can be calculated for each level of the hierarchy (right column). The 16 cycles

for L1 result from loading the central element, its six neighbors, and the rhs.



July 27, 2014 15:12 WSPC/INSTRUCTION FILE 2014-ppl

Domain-Specific Optimization of two Jacobi Smoother Kernels 15

Threads

M
LU

P
/s

1 2 3 4 5 6 7 8 9 10

0

1000

2000

3000

4000

5000

6000 ECM spatial blocking
spatial blocking w/o NT stores
spatial blocking w/ NT stores
ECM 3.5D blocking
3.5D blocking

Fig. 9. Single-chip performance scaling of the 3D 7-point Jacobi smoother on 5123 double-

precision grid points.

dicted single-core performance is in good agreement, with a measured value of

409 MLUP/s. As the memory interface is the single resource shared among cores,

the roofline model predicts a limit for the full socket of (47 GB/s)/(32 B/LUP) =

1.47 GLUP/s. Assuming ideal scaling, this saturation performance should be

reached at four cores. As Figure 9 illustrates, this socket scaling behavior is quali-

tatively predicted by the ECM model.

Note that the single-socket saturation performance can be increased by a the-

oretical factor of 4/3 via the use of nontemporal stores. This leads to a maximum

socket performance of (47 GB/s)/(24 B/LUP) = 1.96 GLUP/s. In practice, the

achievable main memory bandwidth is lower with nontemporal stores, leading to

a measured performance of only 1.76 GLUP/s. This value will be the baseline for

later comparisons with further optimizations. The ECM model in its current state

is not suitable for modeling the scaling behavior when nontemporal stores are used.

Another prominent strategy to reduce memory pressure is temporal blocking as

described in Section 2.2. With 3.5D blocking for the L3 cache, the implementation

considered here, five Jacobi sweeps are executed on a data set once loaded in L3

cache, as explained in Section 3.1. Neglecting the overhead induced by blocking,

this reduces memory traffic by a factor of five (compared to the spatially blocked

baseline code without nontemporal stores). With this optimistic assumption, the

16.3 cycles required for memory access reduce to 3.3 cycles, resulting in a best-case

single-core performance prediction of 555 MLUP/s, which is a 30% improvement

over the baseline. The measurement of 508 MLUP/s is within a 10% margin of the

prediction. A 30% speedup may seem marginal, but the true potential of temporal

blocking lies in the lifting of the main scalability bottleneck: since the pressure on

the memory interface is strongly reduced, performance should scale perfectly up to

13 cores. However, the data in Figure 9 does not show ideal scaling. Possible reasons

could be load imbalance and synchronisation overhead as well as excess work due

to halo updates. This discrepancy will be subject to further investigation.
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5. Related Work

Due to the low amount of computation performed per data point and the usually

large grid size, the main optimization goal of stencil codes is to reduce the bandwidth

requirements and increase the reuse. Therefore, spatial blocking can be used to

increase performance [4, 6, 7]. For the automatic discovery of suitable tiling sizes,

different auto-tuning techniques offer themselves [3, 5, 10]. However, a blocking of

only the spatial dimensions requires loading each data element at least once from

the main memory to the processors cache, which is not sufficient to achieve best

performance for lower-order stencil kernels.

If the stencil code is reiterated, it is necessary to include the corresponding

time dimension in the blocking scheme to increase data locality. A combination of

temporal and spatial blocking introduces data dependences that must be addressed

accordingly. Section 2.2 suggests a way of dealing with this phenomenon: reiterate

some computations on different processor cores [11, 14]. A similar technique, which

does not require the recomputation of values, is called time skewing [21]. But the

combination of temporal and spatial blocking without a need to recompute values

requires either additional memory or more complex address calculations. Time skew-

ing comes with different blocking techniques, which may result in differently sized

trapezoidal blocks [7]. In contrast, the 3.5D blocking scheme described previously

generates always equal-sized blocks.

6. Conclusions

We have conducted a study of domain-specific program transformations to bring

Jacobi smoother stencil codes to highest performance. In summary, we have learned

the following.

Memory bandwidth can be a serious performance brake, especially for low-order

Jacobi stencils. In order to not let it take hold, the optimization of the codes has

to be customized for the execution platform.

For the 1st-order kernel the best partitioning scheme is 3.5D blocking for all sys-

tems. On BlueGene/Q and AMD Thuban, all cores of the processor must be loaded

to capacity; otherwise, other transformations can achieve a better performance. A

performance analyises of the spatial blocking and the 3.5D blocking version using

the ECM performance model revealed the need for a combination of a temporal

and a spatial blocking in order to reduce the bandwidth requirements and also to

ensure satisfaction of the layer condition.

The 3rd-order Jacobi smoother requires to load more than twice as many data

elements from the memory hierarchy, which increases the amount of work per pro-

cessor involved in a single lattice update. This reduces the single-core performance

to roughly a factor of two. The performance improves if the layer condition is sat-

isfied, which can easily be assured by applying a simple spatial blocking. Besides

having a simpler code structure, this version performs even better than the 3.5D

blocking scheme on Intel IvyBridge and BlueGene/Q.
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An additional observation is that the auto-vectorizer of the Intel compiler per-

forms very well for stencil codes but, with gcc or the IBM compiler, vectorization

has to be done mostly by hand.

All optimizations presented in Section 2 can be applied automatically by a stencil

code generator. If the generator has knowledge of the target architecture, it can

generate highly optimized code for a specific problem. Using the cache and grid

size, along with the available vector instructions, the smoother code can be tiled and

vectorized to saturate the memory bandwidth and to achieve a similar performance

as the spatial blocking version presented in Figures 6 and 7. Building such a generator

is the charter of project ExaStencils.
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