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Platform-independent Description of Imaging Algorithms
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In the last years real-time imaging and more complex models for the various imaging applications became feasible mostly
because of the progress made in parallel computer architectures like found in GPUs and modern multi-core CPUs. However,
the implementation effort increases, if one wants to achieve good performance. A solution to this problem is to formulate the
imaging algorithms in an abstract way in a domain-specific language (DSL) and then automatically generate efficient C++
or CUDA code. A multi-layered approach is sketched that allows users to describe applications in a natural way from the
mathematical model down to the program specification.
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1 Introduction

Variational models are a common class of mathematical models used for imaging applications like image denoising, image
segmentation, or image registration. Typically, one formulates an energy functional or a (time-dependent) partial differential
equation (PDE) that have to be discretized and minimized resp. solved numerically. Often, models for different applications
require similar building blocks like (sparse) matrix vector products or other linear algebra operations. However, efficient
implementations have to take into account the concrete hardware platform and the context within the numerical algorithms
and thus one often has to re-implement similar operations.

Within the project Advanced Stencil-Code Engineering (EXASTENCILS)1 we propose a multi-layered domain-specific lan-
guage that provides an interface to users and developers of imaging algorithms. In figure 1 on the left side these layers are
summarized starting from the continuous variational model, its discretization, application and algorithm specific settings,
down to a program specification that is close to source code.

2 Code Generation Prototype

A first prototype for this concept was realized in the Scala language. Here, DSL descriptions on the different layers are
parsed, transformed into an implementation-oriented representation, and then pretty-printed to C++ or CUDA source code.
An important feature is that the user only has to specify layer 1, all other layers can be automatically generated from layer
1 using domain-specific knowledge. This becomes possible due to the limited scope of the domain, i.e. currently variational
models are supported that require the numerical solution of an elliptic PDE via multigrid. However, the users can adapt the
descriptions on all layers manually to include further applications. Figure 1 shows part of the DSL programs for doing HDR
compression in the gradient domain as described in [1]. Here, one has to solve the PDE

∆u = f in Ω (1a)
u = 0 on ∂Ω (1b)

A second application is image denoising via a nonlinear isotropic complex diffusion process modeled via a time-dependent
PDE [2, 3]. Note that it results in completely different source code compared to solving the simple PDE from eq. (1). Table 1
lists some preliminary solver runtimes for generated codes running on a quad-core Intel Xeon Processor E5-1620 v2 and an
NVIDIA GeForce GTX 680.

Table 1: Measured runtimes in milliseconds for one multigrid V(2,2)-cycle with a Jacobi smoother (ω = 0.8). The image size is N = 40962

resp. N = 2563. Direct coarsening down to less than three pixels per direction on the coarsest grid is applied.

HDR Compression Image Denoising

CPU GPU CPU GPU

2D 156 60 3023 224

3D 202 63 3217 275
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946 Section 21: Mathematical signal and image processing

Domain omega = UnitSquare 
 
f : omega -> R^1 
u : omega -> R^1 
Laplacian : (omega -> R) -> (omega -> R) 
Laplacian = dx^2 + dy^2 
 
pde : Laplacian [ u ] = f in omega 
bc : u = 0 in partial_omega 
 

Fragments f1 = Regular_Square 
 
Discrete_Domain omega levels 8 {  
 xsize [0] = 1024 // from Image  
 ysize [0] = 1024 // from Image  
 xsize [l+1] = xsize [l] / 2 
 ysize [l+1] = ysize [l] / 2 
}  
 
Field<Double,1>@nodes f   
Field<Double,1>@nodes u  
StencilMatrix<Double,1,1, FD, 2>@nodes A 
  

Matrix D = diag(A) 
Constant delta = 0.8 
 
Matrix N = delta * inverse(D) 
Matrix M = Id – N * A  
Iteration Smoother u = M * u + N * f 
Vec Res = f – A * u 
 

def cpu Application( ) : Unit  
{   
 decl res : Double 
 print ( 'startingres' res0 )  
 repeat up 5  
  VCycle ( 0 )  
  res = L2Residual ( 0 )  
  print ( 'Residual:' res ')  
 next   
}   

                Layer 1                                                           Layer 2 

                Layer 3                                                            Layer 4 

Fig. 1: Different layers for describing a prototypical variational imaging application (left) and exemplary DSL description of parts of the
HDR compression application.

3 Future Work

Clearly, it is a very challenging project to fully develop such a multi-layered DSL. Currently, we optimize the generated
code [4,5], add more multigrid components, improve the DSLs and the transformations framework in Scala [6], add distributed
memory parallelization for larger applications [7], and apply domain-specific optimizations [8].
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