
Efficient Numerical Algorithms and Software
Engineering for High Performance Computing

Effiziente numerische Algorithmen und
Softwareentwicklung für hochparallele Rechensysteme

Department Informatik
Technische Fakultät

Friedrich-Alexander Universität Erlangen-Nürnberg

Abschlussbericht zum Habilitationsverfahren
und

kumulative Habilitationsschrift

vorgelegt von

Dr.-Ing. Harald Köstler

Erlangen – 2014

Als Habilitationsvorhaben genehmigt von
der Technischen Fakultät der
Universität Erlangen-Nürnberg

Tag der Einreichung: January 23, 2014
Fachmentorat:

Prof. Dr. U. Rüde
Prof. Dr.-Ing. J. Hornegger
Prof. Dr. H.-J. Bungartz

Externe Gutachter:
Prof. Dr. P. Bastian
Prof. H. De Sterck, PhD

Abstract

The field ”Computational Science and Engineering” (CSE) lies in between computer sci-
ence, applied mathematics, and various application fields like natural sciences, engineering,
or medical science. Leading edge research in CSE requires often interdisciplinary teams con-
sisting of specialists from each of these fields. Additionally, CSE experts are essential to
bridge the gap between the traditional sciences. Currently, one of the biggest challenges in
CSE, driven by the progress in computer hardware, is the efficient utilization of massively
parallel architectures like Graphics Processing Units (GPUs) for smaller problems and high
performance computing (HPC) clusters for larger problems. From a computer science point
of view, two challenges have to be addressed. First, efficient parallel algorithms have to
be developed that fit to the underlying hardware and allow the user to solve problems in
reasonable time, second, HPC software has to be designed such that it can be easily ported
to new HPC architectures and helps to increase the productivity of its users.

Contents

I. Abschlussbericht zum Habilitationsverfahren 1

1. Überblick Forschung und Lehre 3
1.1. Forschungsarbeiten . 3

1.1.1. Themengebiete . 3
1.1.2. Vorträge (seit 2010) . 4
1.1.3. Organisation von Konferenzen/Workshops/Minisymposia (seit 2010) . 7
1.1.4. Forschungsprojekte (seit 2010) . 7

1.2. Lehre . 8
1.2.1. Lehrveranstaltungen . 8
1.2.2. Betreuung studentischer Arbeiten (seit 2010) 11

1.3. Organisatorische Tätigkeiten . 11

II. Kumulative Habilitationsschrift 13

2. Overview own Publications 15
2.1. Publications during Master and PhD Thesis (2003-2008) 15
2.2. Publications after PhD Thesis (since 2008) 15
2.3. Publications contributing to Habilitation Thesis 17

3. The CSE Software Challenge 21
3.1. Computational Science and Engineering . 21
3.2. Software Development in CSE . 23

4. waLBerla Framework 27
4.1. Brief waLBerla History . 27
4.2. Software Design Concepts . 29

4.2.1. Domain Partitioning . 29
4.2.2. Parallel Communication Concept . 30
4.2.3. Sweep Concept . 33
4.2.4. Software Quality . 33

4.3. Applications in waLBerla . 34
4.4. Extensions and Maintenance of the Framework 38

5. Efficient Multigrid Algorithms 39
5.1. Massively Parallel Multigrid Solvers . 39

i

Contents

5.2. Multigrid on GPU . 40
5.3. Multigrid on Hierarchical Hybrid Grids . 42
5.4. Advanced Multigrid Components . 43
5.5. Abstract Description of Multigrid Algorithms 43

6. Future Trends in Software Design for CSE Applications 47
6.1. Generic Description of CSE algorithms . 48

6.1.1. Domain-driven Software Development 48
6.1.2. Prototypical CSE Application . 48

6.2. Towards Automatic Generation of Multigrid Solvers 53
6.2.1. Abstract Problem Description . 53
6.2.2. Code Generation Prototype . 58

7. Conclusions and Future Work 69

Journal Publications 71

Conference Publications 73

Theses and Other Publications 77

Supervised Theses (since 2010) 79

Bibliography 81

III. Publikationen 87

ii

Part I.

Abschlussbericht zum
Habilitationsverfahren

1

1. Überblick Forschung und Lehre

1.1. Forschungsarbeiten

Aufgrund der Interdisziplinarität des Faches Computational Science and Engineering sind
an vielen Forschungsprojekten Kooperationspartner aus der Mathematik oder einer Anwen-
dungswissenschaft beteiligt. Dadurch ergibt sich eine breite Streuung der besuchten Kon-
ferenzen und der gewählten Zeitschriften für die Veröffentlichungen. Obwohl mein Schwer-
punkt in der Informatik anzusiedeln ist, können sowohl die Entwicklung von Modellen für
verschiedene Anwendungen als auch von numerischen Methoden nicht außer Acht gelassen
werden. Zur besseren Strukturierung habe ich meine Forschungstätigkeiten in verschiedene
Themengebiete unterteilt.

1.1.1. Themengebiete

Bereich High Performance Computing (HPC) Ich war an der Entwicklung der Softwa-
rekonzepte des waLBerla Frameworks zur Simulation von Multi-Physik-Problemen auf
HPC Clustern beteiligt [10, 1],[30, 44], wobei ich mich hier vor allem mit GPUs [5] und
heterogenen GPU-CPU Clustern [2, 3] beschäftigt habe. Methodisch gilt mein besonde-
res Interesse Mehrgitterverfahren zur effizienten Lösung von Gleichungssystemen, die von
mir auch in waLBerla integriert und deren Skalierbarkeit auf GPU Clustern gezeigt wur-
de [37, 34]. Zudem habe ich mich mit hochparallelen Mehrgitterverfahren für CPU Cluster,
z.B. für Anwendungen aus der Quantenchemie [11, 18], und Performance Modellierung zu
Laufzeitvorhersage beschäftigt [4, 12]. Performance Modellierung oder Performance Engi-
neering findet auf mehreren Ebenen statt. Während für HPC Cluster die Modellierung der
Kommunikationszeiten zwischen den Rechenknoten wichtig ist, muss natürlich auch ein Per-
formance Modell für einen einzelnen Rechenknoten, der eine oder mehrere CPUs oder GPUs
enthalten kann, erstellt werden, um valide Modelle zu erhalten. Neben der Simulation auf
Höchstleistungsrechnern, wie z.B. JUQUEEN, SuperMUC und Tsubame 2.0, ist auch die
Echtzeitsimulation auf GPUs ein aktuelles Forschungsthema [14, 19],[64].

Bereich HPC Software Engineering Die Erfahrung bei der Entwicklung von HPC Soft-
ware zeigt, dass die Komplexität der Modelle und damit auch der Umfang der Software
in den letzten Jahren stetig steigen. Wir haben daher versucht, durch eine abstrakte Mo-
dellierung von Mehrgitteralgorithmen und automatische Codegenerierung eine Steigerung
der Produktivität bei der Softwareentwicklung [24, 43] zu erreichen. Seit Anfang 2013 bin
ich in das im Rahmen des DFG-Schwerpunktprogramms 1648 (Software for Exascale Com-
puting) geförderte Projekt

”
Advanced Stencil-Code Engineering (ExaStencils)“ involviert.

Ziel ist es dabei, eine domänenspezifische Sprache für stencil-basierte Mehrgitterverfahren
zu entwickeln, die mit Hilfe von Domänenwissen, moderner Software Engineering Methoden,

3

1. Überblick Forschung und Lehre

Compilertechniken und -werkzeugen eine automatische, hardware- und problemspezifische
Optimierung von Mehrgitteralgorithmen für Höchstleistungsrechner erlaubt. Hier können
die Vorarbeiten zur Implementierung von parallelen Mehrgitterverfahren [40], zur automa-
tischen Codegenerierung [15] und zur Mehrzieloptimierung [8] genutzt werden.

Bereich Bildverarbeitung In diesem Bereich knüpfe ich an meine Dissertation im The-
menbereich effiziente Mehrgitterverfahren in der Bildverarbeitung an [59]. Performance En-
gineering ist auch für verschiedene Anwendungen aus der Bildverarbeitung nützlich, um
realzeitfähige Algorithmen (z.B. Mehrgitterverfahren und Sparse Coding) effizient auf aktu-
elle Hardware zu portieren. Als Anwendungen habe ich mich mit optischem Fluss [17], High
Dynamic Range Imaging [12] auf GPUs, dem Entrauschen [22, 41, 47] von medizinischen
Datensätzen, sowie verschiedenen Verfahren zur Bildsegmentierung [6],[46] befasst. Derzeit
arbeite ich im Rahmen eines Industrieprojektes an einer realzeitfähigen Bildregistrierung von
medizinischen Datensätzen auf GPUs.

Bereich Numerik Einen gegebenen numerischen Algorithmus auf eine spezielle Hardwa-
re zu portieren reicht meist nicht aus, um ein optimales Verfahren zu erhalten. Meist ist
es nötig, auch den Algorithmus selbst an die Hardware anzupassen und z.B. eine Variante
zu wählen, die sich besser parallelisieren lässt. Daher habe ich auch die problemspezifische
Anpassung der verschiedenen Mehrgitterkomponenten (Interpolation, Grobgitterapproxima-
tion) untersucht [20]. Daneben war ich an der Entwicklung von Lösungsmethoden für all-
gemeine lineare least-squares Probleme [16] und von Diskretisierungstechniken für Dipole
in den Quelltermen von partiellen Differentialgleichungen [21] beteiligt. Letzteres war auch
schon Gegenstand meiner früheren Forschung [9].

1.1.2. Vorträge (seit 2010)

9/2013 Köstler, H.; Kuckuk, S.; Gmeiner, B.; Rüde, U.: A Generic Prototype to Benchmark
Algorithms and Data Structures for Hierarchical Hybrid Grids. International Confe-
rence on Parallel Computing - ParCo2013, Munich, Germany.

9/2013 Pickl, K.; Hofmann, M.; Preclik, T.; Köstler, H.; Smith, A.; Rüde, U.: Parallel Simula-
tions of Self-propelled Microorganisms. International Conference on Parallel Computing
- ParCo2013, Munich, Germany.

6/2013 Lengauer, Ch.; Köstler, H.; Apel, S.; Größlinger, A.: Modern Software Technology
for Exascale Computing. International Supercomputing Conference (ISC’13), Leipzig,
Germany.

5/2013 Köstler, H. (invited): Lattice Boltzmann simulations on heterogeneous CPU-GPU
clusters. 2nd International Symposium Computer Simulations on GPU, Freudenstadt,
Germany.

4/2013 Köstler, H. (invited): Algorithm and software development for efficient multigrid
methods on modern HPC systems. Weizmann Workshop 2013 on Multilevel Computa-
tional Methods and Optimization, Rehovot, Israel.

4

1.1. Forschungsarbeiten

3/2013 Bartuschat, D.; Köstler, H.; Rüde, U.: Fast Multigrid Solvers Long Range Potentials.
SIAM Conference on Computational Science and Engineering, Boston, USA.

2/2013 Bartuschat, D.; Köstler, H.; Kluge, A.; Godenschwager, Ch.: An anisotropic non-
linear diffusion filter for 3D CTA image processing. SIAM Conference on Computatio-
nal Science and Engineering, Boston, USA.

2/2013 Köstler, H.: Sparse Solving. 16th Copper Mountain Conference on Multigrid Methods,
Copper Mountain, Colorado, USA.

12/2012 Gmeiner, B.; Donnert, G.; Köstler, H.: Optimizing Opening Strategies in a Real-time
Strategy Game by a Multi-objective Genetic Algorithm. SGAI International Conference
on Artificial Intelligence, Cambridge, UK.

7/2012 Feichtinger, Ch.; Köstler, H.: Complex Flow Simulations using Heterogeneous Super-
computers. 10th World Congress on Computational Mechanics (WCCM), Sao Paulo,
Brazil.

5/2012 Köstler, H.: Large Scale Imaging on Current Many-Core Platforms. SIAM Conference
on Imaging Science, Philadelphia, USA.

2/2012 Schornbaum, F.; Feichtinger, Ch.; Köstler, H.; Rüde, U.: waLBerla: Towards an
Adaptive, Dynamically Load-Balanced, Massively Parallel Lattice Boltzmann Fluid Si-
mulation. SIAM Conference on Parallel Processing for Scientific Computing, Savannah,
Georgia, USA.

11/2011 Köstler, H. (invited): Efficient Imaging Algorithms on Many-Core Platforms. Semi-
nar Efficient Algorithms for Global Optimisation Methods in Computer Vision, Dag-
stuhl, Germany.

8/2011 Gmeiner, B.; Köstler, H.; Rüde, U.: Towards real-time image processing with Hier-
archical Hybrid Grids. IDK Summer School, Pommersfelden, Germany.

7/2011 Köstler, H. (invited): Multicore and GPU Implementation of Multigrid and LBM.
International Workshop on New Algorithms and Programming Models for the Many-
core Era (APMM 2011), Istanbul, Turkey.

6/2011 Köstler, H. (invited): Numerical Methods in Simulation and Imaging. Max-Planck-
Institut für biophysikalische Chemie, Göttingen, Germany.

5/2011 Feichtinger, Ch.; Habich, J.; Köstler, H.; Rüde, U.; Wellein, G.: waLBerla: Hete-
rogeneous Simulation of Particulate Flows in GPU Clusters. 23rd International Con-
ference on Parallel Computational Fluid Dynamics 2011 (ParCFD 2011), Barcelona,
Spain.

3/2011 Köstler, H. (invited): Numerical Codes on Multi-GPU Architectures. ASIM Work-
shop on Trends in Computational Science and Engineering, Garching, Germany.

3/2011 Köstler, H.: A robust geometric multigrid solver within the waLBerla framework.
15th Copper Mountain Conference on Multigrid Methods, Copper Mountain, Colorado,
USA.

5

1. Überblick Forschung und Lehre

3/2011 Stürmer, M.; Köstler, H.; Rüde, U.: How to Optimize Geometric Multigrid Methods
on GPUs. 15th Copper Mountain Conference on Multigrid Methods, Copper Mountain,
Colorado, USA.

2/2011 Köstler, H.; Röhrle, O.: A Fast GPU-based Method for Image Segmentation. SIAM
Conference on Computational Science and Enginnering (CSE11), Reno, Nevada, USA.

2/2011 Köstler, H.; Feichtinger, Ch.; Götz, J.; Donath, S.; Rüde, U.: HPC Software De-
sign for Computational Engineering Simulations. SIAM Conference on Computational
Science and Engineering (CSE11), Reno, Nevada, USA.

2/2011 Stürmer, M.; Rathgeber, F.; Köstler, H.: Performance Engineering of an Orthogonal
Matching Pursuit Algorithm. Second International Workshop on New Frontiers in High-
performance and Hardware-aware Computing, San Antonio, Texas, USA.

9/2010 Köstler, H.: Multigrid algorithms on multi-GPU architectures. European Multigrid
Conference 2010, Ischia, Italy.

9/2010 Ritter, D.; Feichtinger, Ch.; Köstler, H.; Rüde, U.: Multigrid in Quantum Chemistry
on Multiple GPUs. European Multigrid Conference 2010, Ischia, Italy.

7/2010 Köstler, H.; Ritter, D.; Feichtinger, Ch.; Rüde, U.: Performance of Multigrid Solvers
on GPUs. 9th World Congress on Computational Mechanics, Minisymposium on GPUs
and Modern Many-Core Processors, Sydney, Australia.

7/2010 Köstler, H. (invited): Software and Performance Engineering for numerical codes
on GPU clusters. GPU Solutions to Multiscale Problems in Science and Engineering,
Harbin, China.

6/2010 Köstler, H.,; Stürmer, M.: Optimized fast wavelet transform utilizing a multicore-
aware framework for stencil computations. Para 2010: State of the Art in Scientific
and Parallel Computing, Reykjavik, Iceland.

5/2010 Popa, C.; Köstler, H.; Preclik, T.; Rüde, U.: On Kaczmarz’s Projection Iteration
as a Direct Solver for Linear Least Squares Problems. Conference on Applied Linear
Algebra, Novi Sad, Serbia.

4/2010 Köstler, H.; Tatavarty, S.: Accelerating image registration on GPUs. SIAM Conference
on Imaging Science (IS10), Chicago, USA.

4/2010 Dietrich, I.; Köstler, H.; German, R.; Rüde, U.: Modeling Multigrid Algorithms for
Variational Imaging. 21st Australian Software Engineering Conference (ASWEC 2010),
Auckland, New Zealand.

3/2010 Tatavarty, S.; Köstler, H. ; Rüde, U.: Accelerating Image Registration on GPUs - A
proof of concept migration of FAIR to CUDA. Inf/Math Kolloquium der Universität
Lübeck, Lübeck, Germany.

3/2010 Köstler, H.: Numerical Algorithms on Multi-GPU Architectures. 2nd International
Workshop on Advances in Computational Mechanics - IWACOM-II, Yokohama, Japan.

6

1.1. Forschungsarbeiten

2/2010 Köstler, H.; Ritter, D.; Rüde, U.; Stürmer, M.: Multigrid for Multicore. SIAM Con-
ference on Parallel Processing for Scientific Computing, Seattle, USA.

1.1.3. Organisation von Konferenzen/Workshops/Minisymposia (seit 2010)

� International Workshop on New Algorithms and Programming Models for the Many-
core Era (APMM), 2011.

� International Workshop on New Algorithms and Programming Models for the Many-
core Era (APMM), 2013.

� Computing Frontiers, 2013.

� 2nd International Workshop on High-performance and Hardware-aware Computing
(HipHaC), 2011.

� 11th International Symposium on Parallel and Distributed Computing (ISPDC), 2012.

� 12th International Symposium on Parallel and Distributed Computing (ISPDC), 2013.

� 9th International Conference on Parallel Processing and Applied Mathematics (PPAM),
2011.

� 4th Workshop on UnConventional High Performance Computing (UCHPC), 2011.

� 5th Workshop on UnConventional High Performance Computing (UCHPC), 2012.

� 6th Workshop on UnConventional High Performance Computing (UCHPC), 2013.

� 11th International Meeting on High-Performance Computing for Computational Science
(VECPAR), 2014.

� 1st International Workshop on High-Performance Stencil Computations (HiStencils),
2014.

1.1.4. Forschungsprojekte (seit 2010)

� Beteiligt am Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und Höchst-
leistungsrechnen (KONWIHR), z.B. im Rahmen des Projekts walberlaMC: Entwick-
lung von HPC Software zur Simulation von Partikeln in Strömungen für Many-Core
Systeme

� Beteiligt am DFG/AiF Cluster Proteinschäume in der Lebensmittelindustrie

� Seit Anfang 2013 bin ich in das im Rahmen des DFG-Schwerpunktprogramms 1648
(Software for Exascale Computing) geförderte Projekt Advanced Stencil-Code Engi-
neering (ExaStencils)1 involviert.

� Projektleitung und Projektdurchführung bei den Industriekooperationen

1www.exastencils.org

7

1. Überblick Forschung und Lehre

– Entwicklung von Rekonstruktionsprozessen bei Magnet-Resonanz-Tomographie (Sie-
mens Healthcare)

– Parallele Rechnerarchitekturen zur Beschleunigung von komplexen Echtzeitprozes-
sen (Siemens Industry)

– Bereitstellung und Anpassung eines GPU-basierten Poisson-Lösers (Siemens He-
althcare)

– Entwicklung eines effizienten Spannungsmodells in Zylinderkoordinaten (Siemens
Industry)

– Entwicklung von Simulationsmodellen für die Berechnung der Myocard-Perfusion
(Siemens Healthcare)

– Erweiterung eines echtzeitfähigen Temperaturmodells (Siemens Industry)

– Portierung einer affinen Registrierung auf GPUs (Siemens Healthcare)

1.2. Lehre

Bereits während meines Studiums und meiner Promotion konnte ich Erfahrungen bei der
Betreuung von Studenten sammeln. Zudem war ich auch aktiv an der Gestaltung innovati-
ver Lehrkonzepte beteiligt [25, 27],[67]. Um meine eigenen didaktischen und pädagogischen
Fähigkeiten weiter zu verbessern, habe ich im Jahr 2011 das Zertifikat Hochschullehre vom
Fortbildungszentrum Hochschullehre (FBZHL) erworben (insgesamt 88 Arbeitseinheiten).
Offiziell wurde ich am 11.5.2011 als Habilitand im Fachgebiet Informatik an der Technischen
Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) angenommen.

1.2.1. Lehrveranstaltungen

Seit meiner Dissertation im Jahr 2008 führe ich regelmäßig selbständig Lehrveranstaltungen
durch. Dazu gehören die von mir entworfene Vorlesung mit Übungen Advanced Program-
ming Techniques, die ich seit WS 09/10 vor allem für Studenten im Fach Computational
Engineering (CE), aber auch im Fach Informatik anbiete. Hier geht es vor allem um ein
tieferes Verständnis für die Programmiersprache C++ und für die ihr zugrunde liegenden
objektorientierten Konzepte. Daneben habe ich im SS 10 in Vertretung von Prof. Ulrich
Rüde die Vorlesung mit Übungen Simulation und wissenschaftliches Rechnen 2 gehalten.
Von den unterschiedlichen Seminaren, an denen ich beteiligt war, möchte ich vor allem das
Seminar Scientific Writing herausstellen, in dem Grundlagen dafür vermittelt werden sollen,
selbstständig wissenschaftliche Texte zu verfassen. Es wurde ursprünglich für Studenten der
Bavarian Graduate School of Computational Engineering (BGCE) entwickelt. Die BGCE ist
Teil des Elitenetzwerks Bayern und verbindet die Masterstudiengänge CE an der FAU sowie
Computational Mechanics (COME) und Computational Science and Engineering (CSE) an
der TU München. Seit 2004 betreue ich als Koordinator der BGCE in Erlangen die Studenten
mit und beteilige mich auch an gemeinsamen Lehrveranstaltungen. Auch außerhalb Bayerns
konnte ich schon Lehrerfahrungen in einwöchigen Kompaktkursen sammeln. Dazu gehören
der Kurs Efficient Multigrid Methods in Computer Vision and Medical Image Processing,
den ich 2009 an der KTH Stockholm angeboten habe und der Kurs Introduction to OpenCL
for Medical Imaging im Jahr 2010 an der Universität zu Lübeck. Auch im Frühjahr 2014

8

1.2. Lehre

Abbildung 1.1.: Überblick über die thematische Einordnung der Lehrveranstaltungen.

werde ich wieder einen einwöchigen Kurs an der KTH Stockholm zum Thema Computatio-
nal Fluid Dynamics with the lattice Boltzmann Method anbieten. Im Folgenden möchte ich
meine Lehrtätigkeiten seit dem Sommersemester 2011 im Detail auflisten.

Daten Lehrbericht 2011

SS 11: Im SS11 habe ich zusammen mit dem Physiker M. Bannerman die interdisziplinäre
Vorlesung mit Übungen High End Simulation in Practice ins Leben gerufen (Globalindi-
kator Evaluation 1.28). Die Idee war hier, eine Veranstaltung zu kreieren, die im Kernbe-
reich von CSE liegt und die auf den Vorkenntnissen aufbaut, die die Studenten in meiner
informatiknahen Vorlesung Advanced Programming Techniques erwerben. Ausgehend von
einem physikalischen Modell und dessen mathematischer Beschreibung sollen die Studenten
in die Lage versetzt werden, numerische Algorithmen für bestimmte Simulationsaufgaben
zu verstehen und in effizienten und parallelen Code umzusetzen. Konkret geht es dabei um
Partikelsimulation in OpenCL auf moderner Grafikhardware. Daneben war ich noch an drei
Seminaren beteiligt, die alle bereits mehrfach stattfanden: Zusammen mit Klaus Iglberger
am Seminar Advanced C++ Programming, das sich ebenfalls an Studenten richtet, die ihre
Kenntnisse aus Advanced Programming Techniques vertiefen wollen, zusammen mit dem
Physiker Gerald Donnert an Image Processing in Optical Nanoscopy, das neben Studenten
in CE und Informatik auch besonders Studenten im Masterprogramm Advanced Optical
Technologies (MAOT) angesprochen hat. Hier ging es inhaltlich vor allem um die physika-

9

1. Überblick Forschung und Lehre

lischen Grundlagen und den Aufbau von neuartigen, hochauflösenden Mikroskopen und das
Verbessern der Bildqualität der resultierenden Aufnahmen durch Image Deblurring. Zudem
habe ich zusammen mit dem Philosophen/Theologen Benjamin Gleede das Soft Skills Se-
minar Zahl und Wirklichkeit betreut, in dem versucht wurde, einen Abriss vom Wandel des
Zahlverständnisses in Philosophie und Mathematik von der Antike bis hin zur heutigen Zeit
vorzunehmen.

WS 11/12: Wie auch in den vorangegangenen Wintersemestern bot ich die Vorlesung mit
Übungen Advanced Programming Techniques an (Globalindikator Evaluation V/Ü 1.3/1.4;
Platz 4 von 28 in der Kategorie ÜW5). Zudem war ich auch wie schon früher in das Soft
Skills Angebot Supervised Teaching involviert. Hierbei handelt es sich um eine Lehrveranstal-
tung speziell für Studierende der BGCE, die meist im Rahmen einer Übungsleitertätigkeit
von erfahrenen Dozenten begleitet werden. Dazu gehören auch der Besuch eines eintägigen
Didaktikseminars und ein individuelles Coaching, das von einer professionellen Trainerin
durchgeführt wird.

Daten Lehrbericht 2012

SS 12: Auch im SS12 fand die interdisziplinäre Vorlesung mit Übungen High End Simulati-
on in Practice statt (Globalindikator Evaluation V/Ü 1.26/1.31), diesmal mit Unterstützung
von Severin Strobl. Des Weiteren vertrat ich Prof. Christoph Pflaum in der Vorlesung mit
Übungen Multigrid (Globalindikator Evaluation 2.18). Diese ist in der angewandten Mathe-
matik (Numerik) angesiedelt und behandelt mit Multigrid eines der wichtigsten und effizien-
testen iterativen Lösungsverfahren für sehr große, dünn besetzte Gleichungssysteme. Diese
treten z.B. nach der Diskretisierung von partiellen Differentialgleichungen auf.

WS 12/13: Im WS 12/13 wurde die Vorlesung mit Übungen Advanced Programming Tech-
niques von mir überarbeitet (Globalindikator Evaluation V/Ü 1.32/1.62; Platz 2 von 40 in
der Kategorie VW10), da ein neuer C++ Sprachstandard eingeführt wurde. Zudem wird
nun etwas mehr Zeit auf die Vermittlung von Konzepten zur parallelen Programmierung
verwendet, die nun besser und direkter unterstützt werden. Vor eine besondere Herausfor-
derung wurde ich durch die gewachsene Anzahl an Hörern gestellt, die sich im Vergleich zu
den Vorjahren auf etwa 75 verdoppelt hatte. Dies bedeutete für das ganze Team vor allem
bei den Programmierübungen einen deutlichen Mehraufwand.

Daten Lehrbericht 2013

SS 13: Wiederum im SS13 fand die interdisziplinäre Vorlesung mit Übungen High End
Simulation in Practice statt (Globalindikator Evaluation V/Ü 1.41/1.13), auch dieses Mal
mit Unterstützung von Severin Strobl. Ausserdem habe ich zusammen mit dem Physiker
Gerald Donnert wieder die Vorlesung Image Processing in Optical Nanoscopy angeboten.

WS 13/14: Im WS 13/14 wurde die Vorlesung mit Übungen Advanced Programming Tech-
niques von mir zum ersten Mal zweigeteilt, zum einen aufgrund der hohen Hörerzahl und

10

1.3. Organisatorische Tätigkeiten

zum anderen aufgrund der Heterogenität der Vorkenntnisse der Studenten. Die Version Ad-
vanced Programming Techniques für CE (2 Stunden Vorlesung und 4 Stunden Übung pro
Woche) richtet sich nun vor allem an (vorwiegend ausländische) Studenten im Masterstu-
diengang CE, die nicht den Bachelorstudiengang CE in Erlangen absolviert haben. Hier
liegen die Schwerpunkte auf der Vermittlung von grundlegenderen Informatikkenntnissen.
An alle anderen Studenten richtet sich die Version Advanced Programming Techniques (4
Stunden Vorlesung und 2 Stunden Übung pro Woche), die tiefergehende Konzepte der ob-
jektorientierten und parallelen Programmierung vermitteln soll. In der dazugehörigen Übung
wird nun in Gruppenarbeit ein größeres Softwareprojekt fast über die gesamte Dauer des
Semesters durchgeführt.

1.2.2. Betreuung studentischer Arbeiten (seit 2010)

Einen Überblick über die von mir betreuten Abschlussarbeiten findet sich im gesonderten
Literaturverzeichnis [69]-[74]. Daneben habe ich auch bei der Betreuung von Doktoranden
mitgewirkt [102, 107] und bin Mentor der Erlangen Graduate School in Advanced Optical
Technologies (SAOT). In dieser Funktion unterstütze ich Doktoranden bei fachlichen Fragen
oder gebe Hilfestellung bei organisatorischen Problemen.

1.3. Organisatorische Tätigkeiten

Studienfachberatung Master Computational Engineering und Elitestudiengang BGCE
Das Aufgabenfeld umfasst unter anderem

� Organisation des Studiengangs

� Mitglied der Zulassungskommission

� Mitglied der Studienkommission

� Erstellen und Pflegen der individuellen Studienpläne

� Beratung der Studenten

COSSE-Koordinator Das Erasmus-Mundus-Programm Computer Simulations for Science
and Engineering (COSSE) ist ein internationales Doppelabschlussprogramm, bei dem es
die FAU zusammen mit den Universitäten KTH Stockholm, TU Berlin und TU Delft den
Studenten ermöglicht, an zwei der vier Universitäten innerhalb von zwei Jahren einen Ma-
sterabschluss zu erlangen2. Hierbei bin ich beteiligt an

� Auswahl der COSSE Studenten

� Betreuung der COSSE Studenten

� Organisation von COSSE Workshops

� Betreuung spezieller Lehrveranstaltungen

2http://www.kth.se/en/studies/master/em/cosse

11

1. Überblick Forschung und Lehre

Erasmus-Koordinator des Departments Informatik

� Auswahl der Erasmus-Studenten (Incoming and Outgoing)

� Beratung über Studienmöglichkeiten im Ausland

� Beratung von Austauschstudenten an der FAU

� Genehmigung von Learning Agreements

Mitgliedschaften

� CUDA Research Center an der FAU

� SIAM (Society for Industrial and Applied Mathematics)

� GAMM Fachausschuss Computational Science and Engineering

� GAMM Fachausschuss Mathematical Signal and Image Processing

� Zentralinstitut für Scientific Computing (ZISC), FAU

� SAOT – Erlangen Graduate School in Advanced Optical Technologies, FAU

� Elitenetzwerk Bayern – Bavarian Graduate School of Computational Engineering (BG-
CE)

12

Teil II.

Kumulative Habilitationsschrift

13

2. Overview own Publications

The main focus of my research lies on development and implementation of efficient, parallel
numerical algorithms for applications in computational science and engineering (CSE) on
HPC systems. In general, it is often not enough to take an existing numerical algorithm and
simply implement it on a certain hardware architecture. To obtain optimal efficiency and
scalability one usually has to adapt the algorithm for example to enable a better paralleliza-
tion. One class of methods in CSE for the iterative solution of large (non)linear systems are
multigrid methods. They play an important role, since they can reach an optimal complexity
that grows linearly with the problem size.

2.1. Publications during Master and PhD Thesis (2003-2008)

My first publications involving multigrid algorithms stem from my master thesis in computer
science [57], where I investigated the accurate treatment of singularities in the source term of
partial differential equations (PDEs) within a multigrid solver [38]. Later, I added a formal
derivation of the discretization error expansion [9]. One application for this technique is found
in EEG source reconstruction, where the source term consists of one or more dipoles [21],[51,
26],[70].

During my PhD thesis I was mainly concerned with multigrid methods for applications in
medical imaging and computer vision [59] like geometric multigrid solvers for optical flow [7,
17],[55, 61],[23, 52], video compression [65, 63],[50, 49], sinogram interpolation [39], image
denoising [42, 41], image registration [17], image segmentation [6], or algebraic multigrid
solvers for image reconstruction [35, 36, 45],[62].

Besides multigrid I also worked on orthogonal matching pursuit [47] that is used in context
of sparse representations of signals, e.g., for image denoising [53],[22].

2.2. Publications after PhD Thesis (since 2008)

GPU computing After my PhD I developed parallel algorithms especially for GPUs and
massively parallel HPC clusters. One of the first applications was high dynamic range
compression on GPU [12]. In addition to that, I supervised master theses on nonrigid image
registration [77] and 3D anisotropic diffusion [73] on GPU. Further, I was involved in a larger
industry project to achieve real-time simulations of temperature in hot rolling rolls and the
heat-induced elastic deformations of the rolls on GPU [19],[69, 76]. Another publication
deals with fast wavelet transform on GPU [48].

waLBerla framework In order to combine GPU and large clusters, I provided a first GPU
support within the waLBerla (widely applicable lattice Boltzmann solver from Erlangen)

15

2. Overview own Publications

multi-physics simulation framework. GPU support was then fully integrated in waLBerla
and extended to heterogeneous GPU-CPU clusters during a PhD thesis [2, 3]. I am cur-
rently leading the waLBerla group at the chair of system simulation. Chapter 4 describes
waLBerla in more detail, I primarily contributed to its software design concepts [1, 10],
implemented a massively parallel multigrid solver in waLBerla [37, 34], helped with adding
OpenCL support for LBM [5], and co-supervised a master thesis on free surface LBM on
GPU [78]. Besides GPU clusters waLBerla also performs well on current CPU clusters,
e.g., to do large scale blood flow simulations based on LBM [31, 30], or large particulate flow
simulations, e.g., to model self-propelled microorganisms in a fluid [44],[72]. For the particle
simulation, the rigid body physics engine pe is used. It was also developed at our chair and
can be fully coupled to waLBerla. Resulting from a student project for my lecture High
End Simulation in Practice, an interactive particle simulation on GPU was implemented.
It can be controlled via the Microsoft Kinect device [14]. This work was extended to en-
able interactions with waLBerla and pe simulations, which run on HPC clusters [74],[64].
In [16], an iterative linear least squares solver based on an extended Kaczmarz method for
rigid multibody dynamics was proposed. I also supervised a thesis to solve the 3D bidomain
equation in waLBerla [71].

Efficient and scalable multigrid algorithms As already mentioned, due to the changing
computer architectures, new parallel numerical algorithms are required. I implemented
adapted multigrid components, e.g., to be able to handle highly jumping coefficients [20]
within geometric multigrid. While for standard geometric multigrid we deal with structured
grids, hybrid hierarchical grids (HHG) are more flexible, since they work on an unstructured
coarse grid that is refined regularly [54]. This makes it possible to apply efficient data struc-
tures and memory accesses, and thus achieve a very efficient and highly scalable multigrid
solver [40, 29, 32]. Based on performance models the runtime on HPC clusters can be pre-
dicted [4]. One possible application field for multigrid is quantum chemistry [11, 18]. As a
basic example we provided a simple geometric and algebraic multigrid solver for teaching
multigrid [66, 60].

Increasing productivity in HPC software development There is one drawback of multigrid:
Its components and parameters are highly problem-dependent. Thus, for a new application,
or even for the same application running on a different architecture, a completely different
implementation may be necessary. Furthermore, our experience with HPC software devel-
opment shows that the complexity of the models, and thus of the software, grows over the
years, due to the higher capabilities of the hardware. It is therefore necessary to address the
productivity of software development. One approach is to provide the algorithm designer a
graphical front-end to exchange multigrid components [24], another to automatically gen-
erate code from a high level C++ description of multigrid components for different plat-
forms [43],[15]. One can also learn multigrid parameters from previous simulation runs [33].
In chapter 6 we will outline one promising approach for an automatic code generation for
CSE applications to increase productivity.

Applications Other applications I have considered over the last years are blood flow es-
timation based on angiographic images sequences [68], segmentation of muscle fibres from

16

2.3. Publications contributing to Habilitation Thesis

skeletal muscle cross-section images [46],[75], and optimization of build orders in a strat-
egy game using a multi-objective genetic algorithm [8],[28]. In the latter, a discrete-event
simulation is performed rather than a continuous simulation as for most CSE problems.

Education and teaching in CSE At FAU, CSE is called Computational Engineering (CE)
and has a strong focus on computer science and engineering, because it is located at the
engineering department. Since 2003, I am involved in the CE program. I am one of the
coordinators of the Bavarian Graduate School of Computational Engineering1 (BGCE), an
elite program that is part of the Elitenetzwerk Bayern. BGCE builds upon the regular CE
master program and offers additional soft skills courses, specific compact courses held by
international experts, regular meetings, and an elite project [25, 27]. Since 2009, I am also
the study adviser for the regular CE master program. Here, an interesting challenge is to
work with the international students. About 80 % of the 40-50 students per year come from
outside of Germany, most of them from Asia. I was also involved in a study on the behavior
of the students when working in international teams [67].

2.3. Publications contributing to Habilitation Thesis

The following publications contribute to this thesis and are centered mainly around software
development for CSE applications and parallel multigrid methods. They are listed in the
order of occurrence in the text and attached at the end of the Habilitation thesis.

1. The CSE software challenge – covering the complete stack [10]: gives an overview over
software development for CSE applications with waLBerla as one exemplary CSE
software framework. I wrote most of the text (see chapter 3).

2. waLBerla: HPC Software Design for Computational Engineering Simulations [1]:
first journal publication introducing the software design concepts within waLBerla.
I contributed to the text, especially to the software quality section (see section 4.2).

3. A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex
Geometries [30]: shows our latest LBM scaling results with waLBerla on two of the
TOP 10 supercomputers in the world, JUQUEEN and SuperMUC. I supervised the
work (see section 4.2).

4. A Flexible Patch-Based Lattice Boltzmann Parallelization Approach for Heterogeneous
GPU-CPU Clusters [2]: introduces software design concepts for porting waLBerla
to heterogeneous GPU-CPU Clusters. I contributed to to the ideas for these concepts
(see section 4.2).

5. Performance Modeling and Analysis of Heterogeneous Lattice Boltzmann Simulations
on CPU-GPU Clusters [3]: here excellent LBM scaling results on Tsubame 2.0 up to
more than 1000 GPUs are shown. I contributed to the text (see section 4.2).

6. Parallel Simulations of Self-propelled Microorganisms [44]: shows scaling results on
SuperMUC and JUQUEEN for coupled waLBerla and pe swarm simulations. I
supervised the work (see section 4.3).

1http://www.bgsce.de/

17

2. Overview own Publications

7. Interactive particle dynamics using OpenCL and Kinect [14]: emerged from one of my
lectures and a subsequent student project. I contributed to the text (see section 4.3).

8. A Framework for Interactive Physical Simulations on Remote HPC Clusters [64]: intro-
duces VIPER, a computational steering framework that can be coupled to waLBerla
and pe and enables interactive simulations. I supervised the work (see section 4.3).

9. A Geometric Multigrid Solver on Tsubame 2.0 [34]: shows multigrid scaling results on
Tsubame 2.0 up to more than 1000 GPUs. I implemented the multigrid solver within
waLBerla, performed the experiments, and wrote most of the text (see section 5.2).

10. Performance Engineering to achieve Real-time High Dynamic Range Imaging [12]: a
highly tuned multigrid solver on GPU is developed and its runtime is predicted based
on a performance model. I did the original implementation on GPU for an industry
project, contributed to the performance model, especially the LFA prediction, and the
text (see section 5.2).

11. Parallel multigrid on hierarchical hybrid grids: a performance study on current high
performance computing clusters [4]: shows multigrid scaling results on the HPC clusters
JUGENE and lima and includes a performance model that is able to predict runtimes
on large clusters. I contributed to the text and the performance model (see section 5.3).

12. A Generic Prototype to Benchmark Algorithms and Data Structures for Hierarchical
Hybrid Grids [40]: shows multigrid scaling results on JUQUEEN up to more than
450.000 cores. I supervised the work (see section 5.3).

13. A practical framework for the construction of prolongation operators for multigrid
based on canonical basis functions[20]: deals with advanced multigrid components like
matrix-dependent interpolation for geometric multigrid. I implemented the multigrid
solver, performed parallel experiments, and contributed to the text (see section 5.4).

14. Modeling Multigrid Algorithms for Variational Imaging [24]: presents a graphical front-
end based on UML to describe multigrid components. I provided the multigrid knowl-
edge, a basic multigrid implementation and contributed to the text (see section 5.5).

15. Towards a Performance-portable Description of Geometric Multigrid Algorithms using
a Domain-specific Language [15]: shows how one can automatically generate CPU and
GPU code for multigrid components from a high level C++ description. I provided
the multigrid knowledge, a basic multigrid implementation and contributed to the text
(see section 5.5).

16. A parallel multigrid accelerated Poisson solver for ab initio molecular dynamics appli-
cations [11]: shows how multigrid can accelerate ab initio molecular dynamics simula-
tions. I wrote most of the text and integrated the parallel geometric multigrid solver
into the Python software RSDFT2 (see section 6.1.2).

2http://www.rsdft.org

18

2.3. Publications contributing to Habilitation Thesis

17. Section 6.2 contains original research that is not yet published. I have implemented
a prototype in Scala3 for generating CPU and GPU code from an abstract problem
description of a CSE application.

18. A Multi-objective Genetic Algorithm for Build Order Optimization in StarCraft II [8]:
contains an example for a discrete-event simulation and a heuristic optimization appli-
cation. I contributed to the implementation, did the parallelization, and wrote most
of the text (see section 6.2.2).

3http://www.scala-lang.org

19

3. The CSE Software Challenge

This chapter summarizes and complements the article The CSE software challenge – cov-
ering the complete stack [10].

3.1. Computational Science and Engineering

Computational Science and Engineering (CSE) is an interdisciplinary field that at its core
develops computer simulations to solve complex (physical) problems. Often, simulation is
considered to be a third pillar in science beside theory and experiment. More general, typical
CSE applications try to extract information based on a model out of given data purely relying
on computations. Examples are weather and climate prediction, aircraft design, conceptual
development of medical devices, computation of molecular structures, or understanding of
complex biological phenomena. Thus, CSE is an own discipline and more than the sum of
different fields. It lies in between computer science, applied mathematics, and application
fields like engineering or natural sciences (see Figure 3.1). In order to establish the field
CSE it is important to be clear about its scope and unique and distinguishing methods
compared to classical fields. The SIAM Working Group on CSE Education1 gives a nice and
comprehensive overview over CSE. In Germany, the GAMM activity group on Computational
Science and Engineering (CSE)2 was launched recently as one organ for CSE, and more and
more study courses in CSE have been offered by German universities in the last years.

The central research problem in CSE is to develop efficient algorithms for the various
applications. Typically, these (numerical) algorithms tend to be complex and their under-
standing and design require deep mathematical knowledge that only well–trained experts
have. However, the algorithmic structures in CSE applications follow often certain compu-
tational patterns [79]. These are classified as

� dense matrix,

� sparse matrix,

� spectral methods,

� particle methods,

� structured grids,

� unstructured grids, and

1http://www.siam.org/students/resources/report.php
2http://www.uni-stuttgart.de/gamm/fa-cse

21

3. The CSE Software Challenge

Figure 3.1.: The CSE discipline lies in between computer science, applied mathematics, and appli-
cations fields.

� Monte Carlo methods.

Real-life examples will often require a combination and coupling of several models and thus
several of these patterns.

Having the goal to develop efficient algorithms in mind, one can provide a more detailed
picture of the most relevant parts from the related fields for CSE in Figure 3.2. Note that
in math also optimization and stochastics are becoming more and more important. Within
computer science, we roughly distinguish between high-performance computing (HPC), high-
throughput computing (HTC), and many-task computing (MTC). HTC typically focuses on
grid computing, where many (independent) tasks are running over a long period of time
on a lot of compute resources. MTC also deals with both independent or dependent tasks
on a lot of compute resources running over a shorter period of time, where data is usually
exchanged via file system operations. In CSE mainly HPC is considered. Here, in most
(physical) simulations tightly coupled parallel tasks run over a short period of time. In that
case it becomes crucial to use parallel algorithms with optimal complexity and implement
them as efficiently as possible on current computer architectures.

Depending on the hardware, one can distinguish real-time simulations and large-scale
simulations. For the first kind, often accelerators like GPUs are used, and computational
steering, i.e., a direct interaction between user and simulation becomes possible. For many
realistic, especially multi-physics and multi-scale simulations, one requires tremendous com-
putational resources, e.g., huge data has to be processed, and therefore large-scale simulations
must be done on HPC clusters. In the TOP 500 list3 one finds the currently largest running
machines in the world. In November 2013 the biggest machine, Tianhe-24 (MilkyWay-2),
was located at the National Super Computer Center in Guangzhou, China. It is equipped
with Intel Xeon E5-2692 processors and Intel Xeon Phi 31S1P accelerators, summing up to
overall 3.12 million compute cores, and a peak performance of 54.9 PFLOP/s.

3http://www.top500.org
4http://www.top500.org/system/177999

22

3.2. Software Development in CSE

Figure 3.2.: Most relevant parts for CSE from computer science, applied math, and applications
fields.

3.2. Software Development in CSE

Developing software for applications in CSE is becoming more and more challenging because
of many reasons. First, with the continued increase in available compute power and improved
algorithms, the (physical) models of interest become more and more complex. Furthermore,
several models may have to be combined from different fields. This includes examples like
fluid-structure interaction, or simulations involving effects on different time and length scales.
Generally, more detailed theoretical models require improved numerical methods and faster
algorithms. Thus, the complexity of the computational algorithms and data structures is
increasing radically.

From the implementation point of view, large amounts of data have to be processed in
order to obtain physically meaningful and sufficiently accurate results. A challenge is here to
post-process the obtained results on larger HPC clusters, simply because of the huge amount
of data that is produced. One way is to analyze the results during the simulation, another
way is to store only part of the simulation data. Parallel algorithms have to be developed
that fit to the underlying parallel hardware, and tools are necessary to analyze and tune the
code. With the current trend to multicore technology, it is foreseeable that the number of
processors will continue to rise sharply. This will additionally drive the complexity of CSE
software upwards.

In order to pinpoint the challenges and requirements for software development in CSE,

23

3. The CSE Software Challenge

Figure 3.3 depicts the schematic workflow for a prototypical CSE application. At the first
stage an expert from the application field defines the problem, e.g., a doctor has a patient
with an aneurysm and wants to estimate the risk of rupturing in order to plan further treat-
ment. With data from modern techniques like computed tomography, digital subtraction
angiography, or magnetic resonance imaging, and a suitable physical model, a simulation of
the blood flow through the vessels of the patient can provide information about hemody-
namic values, like shear stress or pressure, at the aneurysm. The expert from the application
field can interpret the simulation results and then draw the necessary conclusions to solve
his problem. The CSE expert usually starts with a formal description of the problem given
by, e.g., a partial differential equation (PDE) or an optimization problem. After that, often
in cooperation with a mathematician, a formal solution process is derived, e.g., the PDE is
discretized and a suitable numerical solver is chosen. Finally, a suitable (parallel) algorithm
that fits to the target HPC hardware is developed and implemented.

Figure 3.3.: Schematic workflow for a prototypical CSE application.

This approach for writing software is specific for the CSE field. In order to reduce the
required time and cost both for the developer and later also for the user, it is reasonable to
think about software quality factors (see Figure 3.4).

For CSE applications, special attention must usually be paid to performance because many
applications have constraints on runtime or memory consumption. They quickly become in-
feasible, unless an efficient implementation on current HPC systems is available. Note that
also power costs can become an issue. However, the development of efficient parallel CSE
software is difficult since the underlying hardware evolves quickly, typically much faster than
the software. Maximal performance can be achieved only on high-end clusters and the latest

24

3.2. Software Development in CSE

hardware architectures, which become obsolete after only few years. To achieve good per-
formance with reasonable effort, one can practice structured performance engineering. This
means, that usually based on performance models, the runtime of a certain implementation
is predicted, and compared to the measured performance. Supported by performance anal-
ysis tools, bottlenecks can be detected, and then they can be resolved either by optimizing
the code manually, guiding the compiler to do so, or using auto-tuning tools. In order to
write optimized code, not only the algorithm and hardware itself must be considered, but
also the used computing language, compiler, operating system, and thus the whole software
environment.

Figure 3.4.: Software quality factors.

In CSE portability ensures that the software does not have to be completely rewritten for
the next generation of HPC clusters or accelerator architecture. Unfortunately, so far often
different programming languages and paradigms are required within one code, e.g., C++ for a
standard CPU and CUDA for a GPU. Besides functionality, also non-functional parameters,
such as run-time efficiency and parallel scalability must be portable. In full generality,
this may be difficult or impossible to achieve, so that hardware-aware re-implementations
become necessary. To limit the need for such re-implementations, the software architecture
must be modular also with respect to these performance aspects. CSE software may use a
special kernel-layer, where performance critical data structures and algorithms are suitably
encapsulated and can be easily replaced depending on the hardware under consideration.

Productivity is important in all software projects. For CSE applications, the user often
expects support for visualizing the results or an easy-to-use interface to change, e.g., input
parameters. It should be possible to run many simulation setups for parameter studies or
optimization tasks. Especially for physical simulations reliability is essential, if, e.g., a real
crash test is replaced by a simulation it has to be ensured that the simulation result is correct.
A modular software design is also crucial to be able to maintain larger simulation codes.
Since the application experts learn from experiments and simulations, how the underlying

25

3. The CSE Software Challenge

models can be refined, it should also be easily possible to extend the simulation software
and add new models and algorithms without major changes of the code. For many complex
applications it is also necessary to combine different frameworks, or to make use of external
libraries and thus well-defined, clear interfaces must be provided.

Since CSE is a cross-disciplinary field, the software must be easy to understand, easy to
use, and easy to extend also for non-specialists in computer science. This enables efficient
teamwork that is necessary to handle the growing complexity of the applications.

Summarizing, CSE software has to be designed such that

� it fulfills its purpose to create information out of given data based on a model using
simulations,

� it can be used and extended by people from different fields,

� it runs efficiently on HPC systems.

In the following, waLBerla will be described as an example for a larger CSE software
framework, multigrid methods are shown to be one of the most efficient and highly scalable
numerical solvers, and a new trend in CSE to generate and optimize software automatically
will be discussed.

26

4. waLBerla Framework

This chapter summarizes my contributions to the waLBerla framework [1]. Mainly,
I was involved in providing GPU [2, 3, 5] and multigrid support [34, 37] for waLBerla.
Since 2012, I am the manager of the waLBerla group and concerned with coordinating the
integration of new algorithms and applications into the framework [30, 44].

4.1. Brief waLBerla History

One approach to develop software for CSE applications is to combine fast, specific, hardware-
dependent, shared-memory parallel kernels with a general, easy-to-use, simple, extendable,
distributed-memory or hybrid parallel framework.

A prototype implementation that follows this paradigm is named waLBerla (widely ap-
plicable lattice Boltzmann from Erlangen). waLBerla is a state-of-the-art C++ framework
for multi-physics simulations centered around the lattice Boltzmann method (LBM) [95]. A
brief history of its development is shown in Figure 4.1, Table 4.1 lists the specifications of the
depicted HPC clusters. HRLB-II1, SuperMUC2, JUGENE3, and JUQUEEN4 are CPU-
based HPC clusters located at German supercomputing sites. Tsubame 2.05 is a multi-GPU
cluster, which is besides CPUs also equipped with 3 NVIDIA Tesla M2050 per node. The
GPUs deliver most of its performance (around 2.2 PFLOP/s). The development started
2006 with four former PhD students, S. Donath [99], Ch. Feichtinger [102], J. Götz [109],
and K. Iglberger [118]. All of them required massively parallel fluid simulations based on
LBM for their projects, e.g., for fluid in arbitrary geometries to simulate blood flow, for
fluid-structure interaction to simulate moving particles in fluid, for simulating fluids having
a free surface like a rising bubble, or to simulate ionized fluid. The particles in the fluid
were modeled via rigid bodies, and to solve electrostatics a multigrid method was integrated.
Since the data structures and algorithms differ for rigid body dynamics and fluid dynam-
ics, the rigid body dynamics simulation was realized in the separate software framework pe
(physcis engine) [120] from the beginning, which is closely coupled to waLBerla in order
to enable fluid-structure interaction. Already in the first technical reports about the waL-
Berla software concepts [110] and scalability [103], the main focus was on performance. In
2008, waLBerla ran on the HLRB-II Altix 4700 cluster [119] using 8192 cores and simu-
lating 3.3 · 1010 fluid cell with LBM. Here, a performance of more than 18 GFLUPS (billion

1http://www.lrz.de/services/compute/museum/hlrb2
2http://www.lrz.de/services/compute/supermuc
3http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/JUGENE_node.html
4http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
5http://www.gsic.titech.ac.jp/en/tsubame2

27

4. waLBerla Framework

2006 2007/08 2009 2010 2011/12 2013 2014

First report
on waLBerla

PRACE award
SC paper

GPU support

waLBerla 2.0
waLBerla 3.0
SC paper

5 contributors
from LSS

>15 contributors
from different

institutes

HLRB-II
8192Cores

Tsubame 2.0
1029GPUs

Juqueen
458752cores

3,3E+10fluid cells 2,4E+08fluid cells 7,9E+11fluid cells
18GFLUPS 150GFLUPS 1835GFLUPS

Figure 4.1.: Important milestones in the waLBerla history including performance on different
HPC clusters. While at the beginning, the software was mainly developed at the chair
for system simulation (LSS) in Erlangen, there are now contributors from different
universities and companies.

fluid lattice updates per second) was achieved. A paper about massively parallel granular
flow simulations [121] was submitted to the International Supercomputing Conference (ISC)
in 2010. It got the PRACE (Partnership for Advanced Computing in Europe) award. In
the same year a paper was presented at the International Conference for High Performance
Computing, Networking, Storage and Analysis conference (SC10) [112]. Here, numerical
experiments for the segregation of suspensions of particles of different density with up to
264 million particles and 150 billion LBM cells were performed on up to 294.912 cores of
the BlueGene/P system JUGENE. The first journal article dealing with the waLBerla
software design was published in 2011 [1]. At that time, a major code revision was under-
taken mainly by Ch. Feichtinger, on the one hand to support heterogeneous CPU-GPU
clusters, and on the other hand to improve maintainability of waLBerla, which faced a
growing user and contributor base over the years. With waLBerla 2.0, we were able to
obtain 150 GFLUPS on 1029 GPUs of Tsubame 2.0 on a computational domain consisting
of 2.4 ·108 fluid cells. In order to support adaptive grid refinement within waLBerla and to
further increase productivity, we have now almost completed the next major code revision
waLBerla 3.0, where the three core developers are M. Bauer, Ch. Godenschwager, and F.
Schornbaum. A first publication was already accepted at SC13 [30]. Here, LBM simulations

28

4.2. Software Design Concepts

Table 4.1.: Specifications for HPC clusters, where waLBerla was tested on. Besides the total
number of available compute cores, the theoretical peak performance (floating point
operations per second) is provided.

Name Location Architecture No. of cores Peak Performance

JUQUEEN Jülich, Germany BlueGene/Q 458,752 5.9 PFLOP/s
SuperMUC Munich, Germany IBM System x iDataPlex 147,456 3.2 PFLOP/s
Tsubame 2.0 Tokyo, Japan HP ProLiant, NVIDIA 4224 GPUs 2.4 PFLOP/s
JUGENE Jülich, Germany BlueGene/P 294,912 1.0 PFLOP/s
HLRB-II Munich, Germany SGI Altix 4700 9,728 56 TFLOP/s

were performed on two of the recent TOP 10 supercomputers within the TOP 500 list, Su-
perMUC and JUQUEEN. Our largest simulation with 7.9 · 1011 fluid cells achieved 1835
GFLUPS on 458.752 cores of the BlueGene/Q system JUQUEEN. Next, we will develop
waLBerla into open-source software in February 20146. Currently, more than 15 people
from different universities and companies are contributing to waLBerla and we expect this
number to increase steeply with adding additional CSE applications to the framework in the
coming years.

4.2. Software Design Concepts

In the following some of the important design concepts for the different waLBerla versions
are highlighted. A comprehensive summary of the software features of the first waLBerla
implementation is given in [1].

4.2.1. Domain Partitioning

All simulations are performed in a 3D physical domain. At first, the simulation domain was
a regular patch (see Figure 4.2), which was subdivided into several regular blocks consisting
of cells. Within one block it was possible to have different kinds of data, e.g. a list of
particles or Cartesian data for the fluid. For being able to simulate complex geometries with
obstacles, blocks were also allowed to be empty, i.e., no memory was allocated for the block
data.

In order to support adaptive grid refinement in waLBerla 3.0, the patch concept was
changed. Now, first the simulation domain is divided into blocks (see Figure 4.3) and then
these blocks can be further subdivided in 3D into eight smaller blocks. The current domain
partitioning represents a forest of octrees [92], where each initial block is the root of one
octree. Note that no concepts and structures typically associated with trees like father-child
connections or inner nodes are used. Each block only knows all of its direct neighbors,
therefore this approach is well-suited for parallelization. Grid refinement and load balancing
is the focus of our core developer F. Schornbaum.

6http://www.walberla.net

29

4. waLBerla Framework

Figure 4.2.: Patch concept [1].

Summary: A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in
Complex Geometries [30] Performance and scalability results of our lattice Boltzmann flow
solver within waLBerla are presented for SuperMUC, at that time the world’s fastest x86-
based supercomputer ranked number 6 on the Top500 list, and JUQUEEN, a Blue Gene/Q
system at that time ranked as number 5. It reaches resolutions of more than one trillion cells
and performs up to 1.93 trillion cell updates per second using 1.8 million parallel threads.
Based on a careful performance analysis, elaborate node level optimizations and vectorization
with specific SIMD instructions on both machines result in highly optimized compute kernels
for the single- and two-relaxation-time LBM. Excellent weak and strong scaling for hybrid
OpenMP and MPI parallelization is achieved, also for a complex vascular geometry of the
human coronary tree (see Figure 4.4), where simple load balancing strategies had to be
applied. Note that the initialization phase and the setup of the simulation is completely
parallelized.

4.2.2. Parallel Communication Concept

By introducing ghost layers at block boundaries it is easily possible to split up the com-
putational domain for parallelization. Recently, more and more GPU HPC clusters have
been installed, and thus there was a need to adapt waLBerla to multi-GPU environments.
Figure 4.5 shows different kinds of data transfers used to realize multi-GPU support in

30

4.2. Software Design Concepts

Figure 4.3.: Two-stage domain partitioning: block division and subsequent grid generation [30].

(a) One JUQUEEN nodeboard (512 processes, 485
blocks)

(b) Whole JUQUEEN (458752 processes, 458184
blocks)

Figure 4.4.: Domain partitioning of a coronary tree dataset with a target of one block per pro-
cess [30].

waLBerla 2.0. Note that if two neighboring blocks are located at the same GPU, no
communication is necessary and only the buffers holding ghost layer data are swapped. The
GPU kernels are written in CUDA and also partly in OpenCL (Open Computing Language),
and we use the corresponding functions to realize CPU-GPU data transfers via the PCI ex-
press bus. A manually created thread pool enables heterogeneous CPU-GPU simulations

31

4. waLBerla Framework

and overlapping of computation and communication for multi-GPU simulations [2, 3].

MPI Buffers
MPI_Isend

MPI_Irecv

N
e
ig

h
b
o
ri

n
g
 P

ro
c
e
s
s

PCI Express

Transfer

GPU Buffers

InfiniBand

Transfer

GPU Buffers

Local

Communication

GPU CPU

Swap

Figure 4.5.: Multi-GPU design [2].

Summary: A Flexible Patch-Based lattice Boltzmann Parallelization Approach for Het-
erogeneous GPU–CPU Clusters [2] Sustaining a large fraction of single GPU performance
in parallel computations can be a problem on multi-GPU clusters. This issue is addressed
by a multi-GPU implementation of LBM in waLBerla using a block-structured MPI par-
allelization, which is suitable for load balancing and heterogeneous computations on CPUs
and GPUs. It is demonstrated that most of the kernel performance can be sustained for
weak scaling on InfiniBand clusters, leading to excellent parallel efficiency. However, in
strong scaling scenarios using multiple GPUs is much less efficient than running CPU-only
simulations on CPU-based HPC clusters. Hence, a cost analysis must determine the best
course of action for a particular simulation task and hardware configuration. Weak scaling
results of heterogeneous simulations conducted on CPUs and GPUs simultaneously are also
presented.

Summary: Performance Modeling and Analysis of Heterogeneous lattice Boltzmann
Simulations on CPU-GPU Clusters [3] As already mentioned, software design concepts for
an efficient and scalable multi-GPU parallelization within waLBerla support a pure-MPI
and a hybrid parallelization approach. Thus, waLBerla is capable of running heterogeneous
simulations on both CPUs and GPUs in parallel. Weak and strong scaling performance
results obtained on the Tsubame 2.0 cluster for more than 1000 GPUs are presented. With
the help of a model, a detailed and structured performance analysis is done. As one possible
application of multi-GPU simulations, results of strong scaling experiments for flows through
a porous medium are shown.

32

4.2. Software Design Concepts

4.2.3. Sweep Concept

Most physical simulations are interested in effects showing up at or after a certain physical
time, and therefore most simulations require time stepping or involve an iterative process. In
each time step, usually operations on all blocks of the domain are performed. This time loop
is modeled as sweep concept in waLBerla. A number of sweeps are executed sequentially,
where in each sweep one or more kernels are called, which work on single blocks or the whole
domain. Before or after each sweep, local communication between neighboring blocks, global
communication like a reduction, timing, or visualization of the results can be done. A new
sweep can be easily added by implementing a C++ class that respects the common sweep
interface.

Figure 4.6.: Sweep concept [1].

4.2.4. Software Quality

As already mentioned, performance was the most important design goal for waLBerla at
first. It can be split up into efficiency, i.e., the possibility to integrate optimized, hardware-
adapted kernels in the simulations, and scalability, i.e., the support of massively parallel
simulations. It was shown that waLBerla runs efficiently on various architectures and
scales on current HPC clusters.

For portability, it is most often necessary to adapt the code to new architectures. This is
obvious for GPU clusters, but also for new CPU clusters, algorithms have to be modified,
e.g., to scale up to the latest HPC clusters it became important to do a hybrid OpenMP-
MPI parallelization instead of a pure MPI parallelization to obtain best performance. Within
single-node kernels, often architecture-specific SIMD instructions have to be used.

The third software quality factor that must not be underestimated is productivity that can
be subdivided into usability, reliability, maintainability, and expandability.

33

4. waLBerla Framework

Usability means an easy integration of new simulation scenarios and numerical meth-
ods also by non-programming experts. A compact and complete documentation is provided,
which is generated by the tool doxygen and several tutorials are available to learn basic waL-
Berla concepts. To keep track of the development history and to manage multi-developer
access, the version control system git7 is used. The main user interface of waLBerla is
currently a single, clearly structured input file activating and configuring the application.
Simple input example files document the possibilities and give an insight in all features.
This kind of user interface is especially useful for batch processing on large HPC clusters.
For smaller or faster simulation runs, waLBerla provides a simple graphical user interface
(GUI), and it is possible to couple waLBerla to our computational steering framework [14]
VIPER, where one can interactively visualize the simulation results and manipulate simula-
tion parameters.

Reliability in waLBerla concerns two main aspects: first, the robustness of the sim-
ulation, e.g., the certainty that the code will deliver numerically correct results and will
terminate with a well-defined error message, when this is not possible, and second, coding
errors. The first aspect is addressed by runtime checks that test whether the simulation
is still in a correct physical state. As an example, the simulation will be interrupted, if
physical parameters are no longer in a valid range. Support to help with coding errors is
provided by several mechanisms. Since many of them impact the performance without con-
tributing to the simulation itself, they are only active in a so-called debug execution mode.
A comprehensive logging system supporting several levels of logging granularity and parallel
simulations is used to report runtime information. If the monitoring system is activated,
coding errors and problems originating from the physical model can be analyzed in detail.
For most modules and classes, unit tests exist that are executed automatically after a change
in the affected part of the code, when checking it in to the repository. For whole applications
there are integration tests for the interplay between different modules.

Expandability addresses the integration of new functionality and applications without a
major restructuring of code or a modification of core parts within the framework. It has been
demonstrated by the integration of various applications, ranging from simple flow scenarios
for scalability studies, over complex real-world multi-phase computations, to heterogeneous
simulations that run concurrently on several types of hardware like GPU and CPU. The
sweep concept in waLBerla also ensures a good maintainability and expandability. It is
easily possible to adapt the internal data structures of the simulation to the needs of the
application. Additionally, we provide clear and well documented interfaces that ensure that
all parts of the framework have unique functionality.

4.3. Applications in waLBerla

Figure 4.7 shows some of the early CFD applications. The main focus in waLBerla 2.0
was on parallelization concepts for heterogeneous GPU–CPU Clusters. However, it was also
possible to integrate new applications as highlighted in Figure 4.8. More details about the
recent projects and an image gallery can be found at the websites of waLBerla8 and pe9.

7http://git-scm.com/
8http://www.walberla.net
9http://www10.informatik.uni-erlangen.de/Research/Projects/pe/

34

4.3. Applications in waLBerla

Figure 4.7.: Selection of simulation tasks in waLBerla [1]. The implementation has also been
carried out within several joint projects and partly by master students. Form top
left to lower right, one finds free-surface flows [100], free-surface flows with floating
objects [86], flows through porous media, clotting processes in blood vessels [113],
particulate flows for several million volumetric particles [111] on up to 8192 cores, and
a fluctuating lattice Boltzmann [126] for nanoscale flows where thermal fluctuations are
important.

Details how waLBerla and pe are coupled in order to realize combined fluid and particle
simulations are depicted in Figure 4.9. The pe simulation domain is decomposed into a
regular grid of cuboids matching with the domain decomposition of waLBerla.

Summary: Parallel Simulations of Self-propelled Microorganisms [44] Weak scalability
of a parallel swarm simulation of self-propelled microorganisms in a fluid in the regime of low
Reynolds numbers is investigated on JUQUEEN and SuperMUC. For this, waLBerla is
coupled with the rigid body physics engine pe. The latter is enhanced with spring-like pair-
wise interactions that can not only span over neighboring process domains, but as well act
as long-range pair-wise interactions between distant process domains. The communication
is designed in such a way that only neighboring processes and the processes hosting the
objects, which are attached to the springs, have to exchange information directly.

Because of the increasing compute power, especially of accelerators like GPUs, real-time
simulations and computational steering becomes possible. The user is able to visualize the
simulation results in real-time and to interact with a running simulation, e.g., in order to
change parameters or input data. Resulting from a student’s project within my lecture
High End Simulation in Practice, a computational steering framework called VIPER was
developed by S. Kuckuk and coupled to waLBerla and pe [74].

35

4. waLBerla Framework

Figure 4.8.: Some of the newer multi-physics simulations coupling waLBerla and pe. Form top
left to lower right, the attraction of homogeneously charged particles in fluid flow
by an oppositely charged surface [82], the flow field of three three-sphere swimming
devices [129], and particle segregation in a water basin [87] are visualized.

Summary: Interactive particle dynamics using OpenCL and Kinect [14] An interactive
real-time simulation of granular, spherical particles which is able to run on a single work-
station is described. It is based on a discrete element method approach and implemented in
OpenCL and thus can be executed on CPUs and GPUs. The simulation results are visualized
using DirectX� 10 and instancing. Furthermore, the user can control the visualization and
the simulation in a very intuitive way by supporting user tracking and speech recognition,
both realized via the Microsoft® Kinect� sensor. The performance of different implemen-
tation strategies on both CPUs and GPUs is compared, and, as a sample application, the
Brazil nut effect is simulated.

Summary: A Framework for Interactive Physical Simulations on Remote HPC Clus-
ters [64] The computational steering framework for visualization and interactivity for
physics engines in real-time, for short VIPER, is introduced. It is able to execute various
physical simulations and to visualize the simulation results in real-time. Especially inter-

36

4.3. Applications in waLBerla

Figure 4.9.: Illustration of the four-way coupling of the waLBerla LBM fluid solver and pe rigid
body physics engine [44].

esting in this context are simulations running on remotely accessible HPC clusters. As an
example, we present a coupled waLBerla and pe simulation, together with the chosen vi-
sualization strategy and steering possibilities. Additionally, performance evaluations and a
performance model concerning the update rate for remote simulations in the context of the
VIPER framework are provided.

Figure 4.10.: Interactive visualization of a coupled waLBerla and pe simulation. Several capsules
are located inside a box filled with liquid, at top and bottom opposing flows exist.
The velocity in x direction is visualized [64].

37

4. waLBerla Framework

4.4. Extensions and Maintenance of the Framework

Besides the traditional applications we currently extend waLBerla to be capable of doing
micro-structure simulations based on phase-field models [125, 135, 137]. Here, we will benefit
from adaptive grid refinement in massively parallel simulations, what will enable us to study
physical effects that could not be simulated so far because of limited compute power.

As already mentioned, beginning 2014 we make waLBerla an open-source software and
hope this step will help us to build up an even larger user base for our framework. Internally,
the next major step is to finish the grid refinement and show that we are able to sustain
performance for it also in massively parallel simulations.

The biggest issue with growing code complexity is maintainability. While new applications
can be added easily, it is not always clear how they interact with other modules and if one
can combine different modules without having to change them. This especially holds for
parts of the code running on different hardware like GPU or CPU. Here, often kernels must
be implemented twice, e.g., one CUDA and one C++ version. Thus, it is difficult to have
GPU support for all applications. To my opinion this shows the limits of the classical
framework approach in general, because the developers have to provide a large library to
fulfill all requirements. In the next chapters, I will therefore start from the class of multigrid
algorithms, and then show a different approach to provide implementations on different
hardware or for different CSE applications, which require adapted algorithmic components
or parameters. Instead of writing a larger framework manually, which becomes more and
more complex to maintain, the user will be able to specify his problem in an abstract way,
and then a very specific implementation will be created automatically for him. Of course,
it is very difficult to create code for a whole CSE application. Therefore, a first step is to
generate only parts of the code, e.g., single compute kernels. Combined with a framework
like waLBerla, this approach can on the one hand help us to extend the framework much
faster, and on the other hand it will be simpler for users to include their own applications.

38

5. Efficient Multigrid Algorithms

5.1. Massively Parallel Multigrid Solvers

Multigrid methods belong to the important class of algorithms in CSE that deal with the
numerical solution of large, sparse, (non)linear systems arising, e.g., after the discretization
of (elliptic) partial differential equations (PDEs) [136, 90]. The most basic elliptic PDE is
Poisson’s equation

∆u = f in Ω (5.1a)

u = 0 on ∂Ω (5.1b)

with homogeneous Dirichlet boundary conditions. It has proven to be a good test case
especially for showing scalability of parallel multigrid algorithms, because of its ratio between
computation and data transfer, which makes its performance mainly bounded by memory
bandwidth and communication costs.

One way to distinguish multigrid methods is with respect to the type of grid. In the
following, we concentrate on geometric multigrid methods on regular and on hierarchical
hybrid grids, i.e., unstructured coarse grids that are regularly refined. On a regular grid
Eq.(5.1) can be discretized, e.g., by finite differences, on hierarchical hybrid grids, e.g., by
linear finite elements. Both lead to a linear system

Ahuh = fh ,
∑
j

ahiju
h
j = fhi , i, j ∈ {1, . . . , N} (5.2)

with system matrix Ah ∈ RN×N , unknown vector uh ∈ RN and right hand side (RHS) vector
fh ∈ RN on a discrete grid Ωh. N denotes the total number of grid points and corresponds
to the number of unknowns in the linear system.

The main part of a standard iterative multigrid solver is the V-cycle listed in algorithm 5.1.
It traverses fine and coarse grids in the grid hierarchy [136].

Over the last years our group gained experience with different multigrid methods on
various platforms, where the emphasis is on highly parallel geometric multigrid solvers. In
Figure 5.1 our most important performance results obtained for parallel multigrid for Eq.(5.1)
are pinpointed together with early parallel multigrid solvers from some of the multigrid
pioneers. In [81] one finds performance results for one of the first vectorized multigrid
Poisson solvers on the CDC Cyber 205, a system with four vector pipelines, theoretically
delivering 400 MFLOPs (double precision). Here, a linear system with 16.129 unknowns
was solved and one V(2,1)-cycle took about 5.9 s. Note that besides modern GPUs like
NVIDIA GTX 480, where we apply similar algorithmic transformations [12], this is the only
architecture, where the ratio between number of unknowns and unknowns per second and
thus the solver runtime is much smaller than 1 s. In 1986, it was possible to solve a linear

39

5. Efficient Multigrid Algorithms

Algorithm 5.1 Parallel recursive V-cycle: u
(k+1)
h = Vh(u

(k)
h , Ah, fh, ν1, ν2)

1: if coarsest level then
2: solve Ahuh = fh by direct or iterative method in parallel
3: else
4: ū

(k)
h = Sν1h (u

(k)
h , Ah, fh) // ν1 pre-smoothing steps and exchange ghost layers of solution

5: rh = fh −Ahū(k)h // compute residual
6: rH = Rhrh // restrict residual and exchange ghost layers of residual
7: eH = VH(0, AH , rH , ν1, ν2) // recursion
8: eh = P heH // interpolate error

9: ũ
(k)
h = ū

(k)
h + eh // coarse grid correction and then exchange ghost layers of solution

10: u
(k+1)
h = Sν2h (ũ

(k)
h , Ah, fh) // ν2 post-smoothing steps and exchange ghost layers of

solution
11: end if

system with around one million unknowns on one Intel 80286/80287 machine, but it took
around 14 hours and one had to use hard disk space, since there was not enough main
memory to store all data [130]. Around that time several parallel multigrid algorithms were
developed [134, 124] and tested, e.g., on the Caltech Mark II Hypercube, which was based
on 8086/8087, and the Intel iPSC/2 consisting of 16 Intel 80386 processors. Some years later
multigrid methods had already grown up and were used in many applications and on many
platforms [80, 89, 83, 140], e.g., on a Cray T3D (3D torus) supercomputer with 256 processing
elements. Since 2003 the hierarchical hybrid grids framework HHG was developed, first by
B. Bergen [85, 84], then by T. Gradl [32], and recently by B. Gmeiner [107]. Over the
years HHG always scaled nicely to some of the biggest machines available, e.g., Hitachi
SR8000-F1 [84], HLRB II [32], JUGENE [4], JUQUEEN [108], and SuperMUC [108]
(see Table 4.1). Especially for regular grids and GPU clusters, a multigrid solver was also
integrated in waLBerla. Its scalability on the multi-GPU cluster Tsubame 2.0 is reported
in [34]. On the currently biggest machine, Tianhe-2, one could theoretically solve Eq.(5.1)
on a regular grid with around 20 trillion unknowns. The limiting factor for the number of
unknowns is the available main memory.

5.2. Multigrid on GPU

Geometric multigrid methods are perfectly suitable for GPUs due to their regular memory
access patterns. This fact can, e.g., be exploited to achieve real-time image processing on
GPUs.

Summary: Performance Engineering to achieve Real-time High Dynamic Range Imag-
ing [12] Image processing applications like high dynamic range imaging can be done ef-
ficiently in the gradient space. For it, the image has to be transformed to gradient space
and back. While the forward transformation to gradient space is fast by using simple finite
differences, the backward transformation requires the solution of Eq.(5.1) via multigrid.

40

5.2. Multigrid on GPU

Figure 5.1.: Problem sizes (number of unknowns) and runtimes in unknowns per second over the
years for geometric multigrid solvers applied to Eq.(5.1). The year corresponds to the
first time the specific machine was installed.

In order to predict the optimal performance on a certain architecture, and to judge the
quality of an implementation, a performance model is developed. For a standard multigrid
algorithm the overall runtime

T = tV · logρ∞κ (5.3)

depends on the time for one V-cycle tV , the desired error reduction factor κ, and the asymp-
totic convergence rate ρ∞. Convergence rates can be predicted for geometric multigrid solvers
via local Fourier analysis (LFA) [138]. tV is determined by computation and communication
time of the algorithm summed over all levels.

The performance model guides us to an efficient implementation, where we achieve an
overall performance of more than 25 frames per second for 16.8 Megapixel 2D X-ray images,
doing full high dynamic range compression including data transfers between CPU and GPU.
The most important optimizations are on the one hand algorithmic changes, like switching
to a red-black version of the smoother and splitting the data arrays accordingly, on the other
hand a reduction of the memory transfers by, e.g., cache blocking techniques. Together with
a simple OpenGL visualization it becomes possible to perform real-time parameter studies
on medical data sets.

As already mentioned we extended waLBerla to support geometric multigrid algorithms
for the numerical solution of PDEs on multi-GPU clusters [37]. Basically, the grid hierarchy
was realized by a number of nested simulation domains in waLBerla, and efficient compute
kernels for the multigrid components were integrated. As solver on the coarsest grid a
conjugate gradient (CG) method is used. Alternatives would be parallel direct solvers or a

41

5. Efficient Multigrid Algorithms

reduction of the coarser grids to less processes.

Summary: A Geometric Multigrid Solver on Tsubame 2.0 [34] In the proceedings of the
Dagstuhl seminar [91] one finds weak and strong scaling results on Tsubame 2.0 with up to
1029 GPUs for our waLBerla multigrid solver. Tsubame 2.0 was at that time number 5
in the Top 500 list. Although a large fraction of the performance can be sustained, for an
increasing number of GPUs the efficiency of the CG method on the coarsest grid decreases
and becomes a bottleneck for the parallel efficiency.

5.3. Multigrid on Hierarchical Hybrid Grids

The HHG framework is based on unstructured tetrahedral finite elements that are regularly
refined to obtain a block-structured computational grid. We call this hierarchical hybrid
grid.

Summary: Parallel multigrid on hierarchical hybrid grids: a performance study on cur-
rent high performance computing clusters [4] Performance and scalability of a geometric
multigrid solver for Eq.(5.1) and implemented within HHG is studied on HPC clusters up
to nearly 300,000 cores. One challenge was the parallel mesh generation from an unstruc-
tured input grid, which roughly approximates a human head from a 3D magnetic resonance
imaging data set. This grid is then regularly refined to create the HHG grid hierarchy. As
test platforms, JUGENE and lima, an Intel Xeon 5650 cluster located at the local comput-
ing center in Erlangen, are chosen. To estimate the quality of our implementation and to
predict runtime for the multigrid solver, a detailed performance and communication model
is developed and used to evaluate the measured single node performance, as well as weak
and strong scaling experiments on both clusters. Thus, for a given problem size, one can
predict the number of compute nodes that minimize the overall runtime of the multigrid
solver. Overall, HHG scales up to the full machines, where the biggest linear system solved
on JUGENE had more than one trillion unknowns. Note that CG is again applied as solver
on the coarsest grid and is included in the performance model. In contrast to Tsubame 2.0,
also for larger test runs CG does not influence the parallel efficiency severely.

Summary: A Generic Prototype to Benchmark Algorithms and Data Structures for Hier-
archical Hybrid Grids [40] In order to generalize the data structures and multigrid compo-
nents required to solve elliptic PDEs on hierarchical hybrid grids, a generic 2D prototype for
hierarchical hybrid grids was implemented including a standard multigrid solver. Starting
with rectangles, our goal is to extend the implementation to various primitives like triangles,
cubes, tetrahedra, or prism. The resulting multigrid algorithm is again highly scalable up
to more than 450, 000 cores of JUQUEEN. To solve the problem on the coarsest grid, CG

42

5.4. Advanced Multigrid Components

is compared to a parallel algebraic multigrid, which is realized by the BoomerAMG [101]
implementation included in the HYPRE1 package.

5.4. Advanced Multigrid Components

If one is interested in solving more complex PDEs, e.g., involving jumping coefficients, the
multigrid components usually have to be adapted, because they are problem-dependent.
This means suitable smoothers, transfer operators, and coarse representations of the sys-
tems have to be found. We neglect here the selection of the coarse grid points as done in
algebraic multigrid, because this is trivial for geometric multigrid on regular grids. For paral-
lel multigrid, often block smoothers or hybrid smoothers are used [136]. Note that the latter
lead in general to a worse convergence rate, since communication at process boundaries is
neglected or delayed. Prolongation depends on the system matrix in general, and restriction
is often chosen to be its transpose for symmetric problems. The coarse grid system matrix
can be computed via direct or Galerkin coarsening.

Summary: A practical framework for the construction of prolongation operators for
multigrid based on canonical basis functions [20] A general approach for the construc-
tion of prolongation operators for multigrid methods is discussed. It turns out that classical
black-box prolongation or prolongation operators based on smoothed aggregation can be clas-
sified as special cases. The approach is suitable both for geometric and for purely algebraic
multigrid settings. It allows for a simple and efficient implementation and parallelization by
introducing canonical basis functions. Numerical results are shown for several diffusion prob-
lems with strongly varying or jumping coefficients. Possible applications for the method are
3D medical image segmentation or non-symmetric convection-diffusion problems. Instead
of traditional Galerkin coarsening collocation coarse approximation (CCA) [139] is applied.
This keeps the number of non-zero entries in each row of the coarse system matrix constant.

5.5. Abstract Description of Multigrid Algorithms

Multigrid consists of several components and the algorithm requires various parameters to
be set, like the number of smoothing steps or the cycle type. Thus, if multigrid is integrated
into a software framework like waLBerla, it should be easily possible to exchange the
components and adapt parameters dependent on the current problem that has to be solved.
As outlined in the last chapter, one requires therefore an abstract description of the multigrid
algorithm.

1http://www.llnl.gov/CASC/hypre/

43

5. Efficient Multigrid Algorithms

Vcycle_act

«numericLoop»
smoother.smooth (npost)

set levc

read levc

this.vcycle lev

interpolation.interpolateCorrect

residual.restrictResidual

set zero

«numericLoop»
smoother.smooth (ncoarse)

«numericLoop»
smoother.smooth (nprae)

lev : Integer sd : SolverData sp : SolverParameters

[lev == nlevels-1]

Figure 5.2.: UML activity diagram representing an abstract implementation of the V-cycle algo-
rithm 5.1 [24].

44

5.5. Abstract Description of Multigrid Algorithms

Summary: Modeling Multigrid Algorithms for Variational Imaging [24] One approach
based on a graphical representation of the multigrid algorithm using UML is found in Fig-
ure 5.2. UML-based modeling is becoming increasingly popular in many software develop-
ment projects. One of the key aspects is the possibility to support automatic code generation
from UML models while keeping the easy to use modeling abstraction for the software de-
veloper. The framework Syntony2 has been developed to generate discrete-event simulations
from standard-compliant UML models, in order to support simulation-based performance
evaluation of systems. Syntony was extended to include automatic code generation in the
context of large-scale continuous simulations, which require the numerical solution of PDEs.
As examples multigrid solvers for applications in variational imaging are chosen. Since the
V-cycle exhibits a fixed sequential structure, and only the single steps are problem depen-
dent, these can be implemented in separate, efficient kernels, e.g., in a high-level language
like C++. Syntony provides a modeling framework, which can assemble new application
code from basic modules and data structures in C++ and abstract descriptions of algo-
rithms and classes provided as UML class and activity diagrams. The approach is evaluated
in a case study for image denoising. The generated code is a fully working application, which
computes a denoised output image from a given input image using the methods specified in
the UML model. The key benefit lies in the abstraction from low level programming when
building complex denoising algorithms. In addition, it is shown that the code generation and
compilation process runs significantly faster than the compilation of the entire framework.
The run-time overhead introduced by the generated code is negligible.

While this first approach to automatically generate multigrid codes worked in principle,
there were still some unresolved issues. While the abstract description via UML is very in-
tuitive, its expressiveness and tool-support to create the correct diagrams was limited. Fur-
thermore, the compute kernels still had to be provided manually. Thus, we followed another
path in order to obtain (performance)-portable implementations of multigrid solvers [43].

Summary: Towards a Performance-portable Description of Geometric Multigrid Algo-
rithms using a Domain-specific Language [15] Different processor types can be found on
a single node of current HPC systems including accelerators such as GPUs. To cope with the
challenge of programming such heterogeneous systems, a domain-specific approach to auto-
matically generate code tailored to different processor types is presented. Low-level CUDA
and OpenCL is generated from a high-level description of a geometric multigrid algorithm
written in a Domain-Specific Language (DSL), which is embedded in C++ instead of writing
hand-tuned code for GPU accelerators directly. The DSL is part of the Heterogeneous Im-
age Processing Acceleration (HIPAcc) framework3. It was extended in this work to handle
grid hierarchies in order to model different cycle types like V-cycles or W-cycles within the
multigrid algorithm. The proposed approach allows to generate efficient implementations
that achieve similar performance compared to hand-tuned codes [12].

2http://www7.informatik.uni-erlangen.de/syntony

45

5. Efficient Multigrid Algorithms

Building upon this previous work, a more general way to design an abstract description
not only of a multigrid algorithm, but of a whole CSE application, is introduced in the next
chapter.

3http://sourceforge.net/projects/hipacc

46

6. Future Trends in Software Design for CSE
Applications

This chapter describes ongoing research done within the project Advanced Stencil-Code En-
gineering (ExaStencils). It started in 2013 and is supported by the German Research
Foundation (DFG) through the Priority Programme 1648 Software for Exascale Computing
(SPPEXA). The project partners are listed in Figure 6.1.

Figure 6.1.: ExaStencils project.

Main goal of the project is to develop new concepts to increase productivity, performance,
and portability of geometric multigrid codes. Currently, five PhD students are working on
ExaStencils. In Erlangen, S. Kuckuk deals with massively parallel multigrid algorithms
on hierarchical hybrid grids [40], Ch. Schmitt with domain specific language design, code
transformations, and platform-specific code adaptations. In Passau, S. Kronawitter considers
loop optimization in the polyhedron model and other low-level, hardware-specific optimiza-
tions [123], A. Grebhahn domain-specific optimization using parameter tuning and machine
learning [33],[133]. In Wuppertal, H. Rittich works on multigrid theory and develops an
LFA tool to estimate geometric multigrid convergence rates for various multigrid compo-
nents and parameters. In the following, the current state of the project from my point of
view is summarized in more detail.

47

6. Future Trends in Software Design for CSE Applications

6.1. Generic Description of CSE algorithms

6.1.1. Domain-driven Software Development

In Figure 6.2, one common way to develop CSE applications is described. Here, the CSE
expert mainly focuses on parallel algorithms, implementation or extension of a framework,
and tuning to specific hardware. The users of the framework have to port the application
to it, i.e., the model and the solution method have to be formulated in the language of the
framework. If the framework already supports the application, this means that just suitable
modules have to be used, if not, the framework has to be extended. For waLBerla, a C++
interface is provided, other frameworks also provide interfaces to high-level languages like
Python. But in both cases, the user has to implement his application directly, perhaps with
the help of the framework developers.

In contrast to a classical framework, which contains a collection of algorithms and appli-
cations and can be extended manually, our approach generates implementations adapted to
a specific application and hardware. The code generation process itself has to work not only
for a single application, but a certain class of applications (also called domain) typically
defined by the underlying algorithms (see Figure 6.3). Note that in most cases, frameworks
will not become obsolete, but will be complemented by this approach, since they can be
integrated in the generated code as external modules.

Our domain consists of classical CSE applications that require the solution of PDEs. Users
can specify a problem on a high level of abstraction. The domain expert brings in algorithmic
knowledge and is usually a CSE expert, the mathematician sets constraints to the algorith-
mic components or provides knowledge to estimate the (problem-dependent) efficiency for
certain algorithms, the software specialist implements the code generation framework, and
the hardware specialist may add problem-independent tuning of the implementation to a
certain platform. The feature model allows to build up a global optimization problem to
find the optimal implementation for a certain problem, where algorithms, their components
and parameters, and possible tuning strategies to a specific hardware are selected automati-
cally from a list of possibilities. The search space for the optimization problem is constrained
by domain knowledge, either specified by the domain experts, or found based on machine
learning techniques.

6.1.2. Prototypical CSE Application

In fact, this is an ambitious goal that one can reach only step by step. First, the process
to describe a prototypical CSE application is summarized in Figure 6.4. To illustrate the
complexity of real-world CSE applications, we consider an example from quantum chemistry.
It will be later also the first test case within the ExaStencils project.

Problem The goal is to simulate the dynamics of a molecular system consisting of nn nuclei
and ne electrons [18].

Continuous Domain and Model The time-dependent Schrödinger equation [132]

i~
∂

∂t
Ψ = ĤΨ (6.1)

48

6.1. Generic Description of CSE algorithms

Figure 6.2.: State of the Art: Application-driven Projects.

Figure 6.3.: Proposed: Domain-driven Projects.

on the regular 3D domain Ω ⊂ R3 describes, how quantum systems evolve over time t. i
is the imaginary unit, ~ the reduced Planck constant, and Ĥ is a Hamiltonian operator
that characterizes the total energy in the system. The wave function Ψ, which is in general

49

6. Future Trends in Software Design for CSE Applications

Figure 6.4.: Different levels or steps for describing a prototypical CSE application.

complex, describes the quantum state of an elementary particle, |Ψ|2 is the probability
density of observing the particle at a certain time at a certain position. A quantum state is
a state vector, e.g., for an electron in an atom, it is simply the principal or first quantum
number. A complete description of the electron requires the four quantum numbers energy,
angular momentum, magnetic moment, and spin.

In Eq.(6.1) the wave function depends on the spatial coordinates of all elementary particles
and thus one would have to solve a 3 · (nn +ne) dimensional time-dependent PDE to obtain
it. Already for small systems this becomes infeasible. Therefore, an often applied simplifi-
cation is the Born-Oppenheimer (BO) approximation [88]. It splits the wave function into a
component for the electrons and a component for the nuclei and then solves the Schrödinger
equation for both parts independently. This is motivated by the high ratio between nuclear
and electronic masses. Thus, in a first step the positions of the nuclei are fixed and modeled
as external potential when computing the electron movement. In a second step, only the
nuclei are moved. Thus, we have to solve one 3nn and one 3ne dimensional time-dependent
PDE now.

If the Hamiltonian Ĥ does not depend explicitly on time, one can separate Ψ(x, t) into
Ψ(x, t) = ψ(x)τ(t). Then, i~ ∂

∂t becomes an energy eigenvalue ε and the resulting time-
independent Schrödinger equation is an eigenvalue equation for the Hamiltonian

εψ = Ĥψ . (6.2)

The density functional theory (DFT), here specifically the Kohn-Sham DFT [116, 122],
is a modeling approach to further simplify the simulation of quantum systems especially to
investigate the electronic structure of atoms or molecules. Within DFT, the Kohn-Sham
equation is the Schrödinger equation of a fictitious system of non-interacting electrons that
generate the same density as any given system of interacting electrons. Since electrons do
not interact, one can further simplify Eq.(6.2). It now reads for each particle i

εiψi(r) =

(
− ~2

2m
∇2 + veff (r)

)
ψi(r) . (6.3)

50

6.1. Generic Description of CSE algorithms

Basically the energy characterized by Ĥ is the sum of kinetic energy and the potential energy
of the electron. The local effective (fictitious) external potential veff is called the Kohn-Sham
potential.

In principle, the one-electron wave function ψi can be seen as an atomic orbital and εi is
its orbital energy. The quantum states of an atom are labeled by a set of quantum numbers
usually associated with particular electron configurations, i.e., by occupation schemes of
atomic orbitals.

Depending on the density of the system

ρ =

ne∑
i

|ψi|2 (6.4)

one constructs an energy functional

E(ρ) =

ne∑
i=1

∫
drψ∗i (r)

(
− ~2

2m
∇2

)
ψi(r) +

∫
drvext(r)ρ(r) + VH(ρ) + Exc(ρ) (6.5)

in order to obtain the total energy of the system. Besides the kinetic energy, E(ρ) contains
an external potential vext, which will later model the influence of the nuclei, the Hartree
(Coulumb) potential VH modeling electron-electron interactions, and the energy Exc corre-
sponding to, e.g., the non-classical and non-linear exchange-correlation potential [94, 128],
which includes all many-particle interactions.

Method 1: One can now solve the nonlinear eigenvalue problem stated in Eq.(6.2), e.g.,
by a multigrid algorithm as proposed in [96]. This will be considered later in ExaStencils.

Method 2: For now, we follow the approach from the quantum chemical program RSDFT1

developed by R. Schmid [18] to simulate ab initio molecular dynamics.

RSDFT uses Car-Parrinello molecular dynamics [93], where one introduces a fictitious
mass parameter for the wave functions and then performs a joint dynamic of both nuclei
and wavefunction. Next we use the bra-ket notation [98] to describe quantum states, e.g.,
the dot product on a complex vector space for two quantum states Ψ1 and Ψ2 can be written
as 〈Ψ1|Ψ2〉. The above energy functional (6.5) becomes

EDFT =

ne∑
i=1

〈ψi| −
1

2
∇2|ψi〉+ Ene(ρ,R) + Enn(R) + Eee(ρ) + Exc(ρ) , (6.6)

where R denotes the position of the nuclei, and the single terms correspond to the energy
of different kinds of interactions between electrons e and nuclei n. Formulated as eigenvalue
problem as above, one obtains

εi|ψi〉 =

(
−1

2
∇2 + Vne + Vee + Vxc

)
|ψi〉 . (6.7)

The Hartree potential Vee can be computed by solving the Poisson equation

∇2Vee(r) = −4πρ(r) . (6.8)

1http://www.rsdft.org

51

6. Future Trends in Software Design for CSE Applications

For the exchange-correlation potential Vxc = δExc/δρ many approximations exist, we choose
here generalized gradient approximation functionals depending on the local density and the
density gradient.

In order to further reduce the computational effort we note that electrons on inner shells
are not playing a significant role in the chemical binding of atoms. Thus, they can be ignored
and only the valence electrons have to be considered in many applications, especially if they
involve metals. One then works with pseudo-potentials that approximate in Vne the potential
felt by the valence electrons [115].

The one-electron wave functions ψi must fulfill the orthogonality constraint 〈ψi|ψj〉 = δij
with Kronecker delta δij . This is ensured by a Lagrange multiplier matrix Λij .

The overall Car-Parrinello Lagrangian reads now

LCPMD =
1

2

nn∑
n=1

MnṘ
2
n +

1

2

ne∑
i=1

µe〈ψ̇i|ψ̇i〉 − EDFT +
∑
ij

Λij (〈ψi|ψj〉 − δij) (6.9)

Mn is the mass of the nuclei, Rn the position of the nuclei, µe the fictitious mass of the
electrons. The Euler-Lagrange equations are Newton’s equations of motion F = ma for the
nuclei and the electron wavefunctions

MnR̈n = −∂EDFT
∂Rn

(6.10)

µe|ψ̈i〉 = −δEDFT
δ〈ψi|

+
∑
j

Λij |ψj〉 (6.11)

Note that in the limit µe → 0 we approach the BO approximation.

Discrete Domain and Model In RSDFT the wavefunctions ψi are discretized on a regular
3D grid with grid spacing h = (hx, hy, hz) resulting in vectors ψhi . The main issue for the
numerical molecular dynamics simulation is energy conservation. Spatial integrals are ap-
proximated via a trapezoidal rule, i.e., a simple sum weighted by the cell volume. Derivatives
like occurring in the kinetic energy term or the exchange-correlation energy term are evalu-
ated using higher order finite differences. In order to obtain the discrete Poisson equation

∇2
hV

h
ee(rh) = −4πρ(rh) (6.12)

one can apply mehrstellen discretization [136] to achieve a discretization error order O(h4).

For time discretization we use a second order Verlet propagator

Rn(+) = 2Rn(0)−Rn(−) +
∆t2

Mn

(
−∂EDFT (0)

∂Rn

)
(6.13)

|ψi(+)〉 = |2ψi(0)〉 − |ψi(−)〉+
∆t2

µe

−〈ψ̇i(0)|+
∑
j

Λij |ψj(0)〉

 (6.14)

δρ = ρ(r)−
∑
n

ρcompn . (6.15)

52

6.2. Towards Automatic Generation of Multigrid Solvers

Algorithm and Application Settings The problem-dependent parametrization like the num-
ber of electrons in the system or physical properties like domain sizes have to be set by the
application expert, the other algorithmic parameters can be also tuned automatically.

Pseudo Code In each time step the wave function gradient δEDFT
δ〈ψi| is updated as described

in [18] via

1. compute Laplacian of wave function for kinetic energy term,

2. add Vnn =
∑
|ρ(Rn)〉〈ρ(Rn)|ψi〉,

3. compute density ρ,

4. compute exchange correlation potential Vxc depending on ρ,

5. solve Poisson’s equation for changes in ρ, compute it before, and

6. compute total potential.

After propagating nuclei and electron wavefunctions, the orthonormality constraint 〈ψi|ψj〉 =
δij is ensured by using the SHAKE algorithm [131].

Summary: A parallel multigrid accelerated Poisson solver for ab initio molecular dynamics
applications [11] A parallel multigrid solver was integrated in RSDFT to solve the Coulomb
problem for the charge self-interaction. Techniques such as mehrstellen discretization and
τ -extrapolation are used to improve the order of the discretization error. The results show
that the expected convergence rates and performance of the multigrid solver are achieved.
Within the applied Car-Parrinello molecular dynamics scheme the quality of the solution
also determines the accuracy in energy conservation. All forms of discretization employed
lead to energy conserving dynamics. In order to test the applicability of our code to larger
systems in a massively parallel environment, a 256 atom periodic supercell of bulk gallium
nitride is investigated.

6.2. Towards Automatic Generation of Multigrid Solvers

In order to obtain an implementation for ab initio molecular dynamics, one can either de-
scribe the whole application on all levels in detail and then generate the full code, or one can
build upon existing software and only replace performance critical parts like the multigrid
solver by generated code. The latter is usually much easier to do. Note, however, that there
is no guarantee that this approach scales very well, since other parts of the existing code can
become the bottleneck for performance and portability then.

6.2.1. Abstract Problem Description

As a showcase, I have implemented a first prototype in Scala2 that is able to generate from
abstract descriptions on all levels, depicted in Figure 6.4, CUDA or C++ code for geometric

2http://www.scala-lang.org

53

6. Future Trends in Software Design for CSE Applications

multigrid solvers on regular grids in 2D and 3D. We mainly choose Scala, because of the
built-in support for parser combinators [127] and the possibility to do object-oriented and
also functional programming, what helps to write code transformations in a compact form.
The abstract descriptions are formulated in external domain-specific languages (DSLs) [105],
i.e., they are not embedded in another language. Context-sensitive grammars for them can
be specified in a notation similar to Extended Backus–Naur Form (EBNF) [104]. Note that
only a very limited number of language features is required on most levels except on Level
4.

Although the final DSLs will be most likely similar to LATEX on Level 1, Matlab3 on Level
2, XML on Level 3, and a C++-like language on Level 4, we start with a simpler syntax on
each level in our first prototype and only provide rudimentary DSLs stored in one file per
level.

Continuous problem and domain An example for the description of the continuous problem
from Eq. (5.1) on the domain Ω = [0, 1]2 on Level 1 is found next:

Domain d = UnitSquare

Function f = 0

Unknown solution = initrandom

Operator Lapl = Laplacian

PDE pde { Lapl(solution) = f }

PDEBC bc { solution = 0 }

Accuracy = 12

On this Level the user is able to name the domain, e.g., changing it to UnitCube would
result in solving a 3D instead of a 2D problem. Accuracy = 12 sets the desired mesh size
to 2−12 in order to determine the number of grid points in each dimension for discretization
on Level 2. The solution is initialized randomly. Furthermore, a function can be provided
for the right hand side f .

Descriptions of all other levels can be generated automatically from information on Level
1 and internal domain knowledge. However, it is possible to adapt them after the default
versions are created.

Discrete problem and domain On Level 2, the description of the default discretization of
the above problem is:

Fragments f1 = Regular_Square

Discrete_Domain d {

xsize = 4096

ysize = 4096

}

3http://www.mathworks.de

54

6.2. Towards Automatic Generation of Multigrid Solvers

field<Double,1>@nodes f

field<Double,1>@nodes solution

field<Double,1>@nodes Res

stencil<Double,FD,2>@nodes Lapl

stencil<Double>@nodes RestrictionStencil

A number of decisions had to be made here, either directly based on domain knowledge, or
later based on domain-specific optimization. First, the computational domain is partitioned
into fragments, then the grid sizes can be derived from the accuracy on Level 1 in this
simple case. Further defaults are the underlying data type, here double precision floating
point numbers, the number of components per grid point within a field, a node-based location
of the grid points, and a second order finite difference discretization. Note that vectors are
mapped to fields and sparse matrices to stencils. The restriction stencil is required by the
multigrid solver and only declared here, it is defined later on Level 3.

Algorithmic components and parameters On Level 3 mainly default multigrid compo-
nents and parameters are set (compare to algorithm 5.1). Note that for real-world CSE
applications, input parameters and other algorithmic components are also prescribed on this
Level.

mgcomponents {

smoother = GaussSeidel

interpolation = interpolatecorr

restriction = Restrict

coarsesolver = GaussSeidel

cycle = VCycle

}

mgparameter {

nlevels = 7 // number of multigrid levels

restr_order = 2 // order of restriction operator

int_order = 2 // order of interpolation operator

ncoarse = 10 // number of coarse grid solver iterations

nprae = 2 // number of pre-smoothing steps

npost = 1 // number of pre-smoothing steps

iters = 10 // maximum number of V-cycles

omega = 1.0 // smoother parameter

}

For each of the components the name of a corresponding function in the pseudo code
implementation on Level 4 is provided. With the additional information, that the order of
the restriction operator is 2, the restriction stencil from Level 2 can now defined to be full
weighting, the interpolation to be bilinear. The decisions on this Level can be supported
by a performance model including LFA predictions for the multigrid convergence rates and
domain knowledge.

55

6. Future Trends in Software Design for CSE Applications

Pseudo code implementation Level 4 offers an interface to add algorithms or links to
modules from an external framework. After this Level has been generated from previous
levels, one is able to formulate own functions and classes in a Scala-like syntax close to
concrete code. The application specialist can provide a short description of the application,
which will become the main function in the generated code. The CSE expert can add new
numerical algorithms, which work on the discrete domain and can access stencils and fields
defined on Level 2. One may also prescribe for each function, on which platform it should be
executed. Basic language elements can be used, e.g., local variables, statements, expressions,
several kinds of loops, and simple I/O like printing to the standard output.

For the above test problem, all multigrid components are automatically generated using
domain knowledge. The application is found in the main function, furthermore the V-cycle,
the smoother, and the transfer operator functions are shown below.

def cpu Application () : Unit

{

decl res0 : Double = L2Residual (0)

decl res : Double = res0

decl resold : Double = 0

print (’startingres’ res0)

repeat up 10

resold = res

VCycle (0)

res = L2Residual (0)

print (’Residual:’ res ’residual reduction:’ (res0/res))

next

}

def cpu VCycle (lev:Int) : Unit

{

if coarsestlevel {

repeat up ncoarse

GaussSeidel (lev)

next

} else {

repeat up nprae

GaussSeidel(lev)

next

Residual (lev)

Restrict ((lev+1) f[(lev+1)] Res[lev])

set((lev+1) solution[(lev+1)] 0)

VCycle (lev+1)

interpolatecorr(lev solution[lev] solution[(lev+1)])

repeat up npost

GaussSeidel (lev)

next

}

56

6.2. Towards Automatic Generation of Multigrid Solvers

}

def cpu GaussSeidel (lev:Int) : Unit

{

loop innerpoints level lev order rb block 1 1

solution = solution[lev] + (inverse(diag(Lapl[lev])) * omega

* (f[lev] - Lapl[lev] * solution[lev]))

next

}

def cpu Restrict (lev:Int coarse:Array fine:Array) : Unit

{

loop innerpoints level coarse order lex block 1 1

coarse = RestrictionStencil * fine | ToCoarse

next

}

def cpu interpolatecorr(lev:Int uf:Array uc:Array) : Unit

{

loop innerpoints level uf order lex block 1 1

uf += transpose(RestrictionStencil) * uc | ToFine

next

}

Two important language features are the loop concept and the matrix-vector product. The
loop keyword corresponds to a (nested) for-loop construct, which iterates over parts or the
whole discrete computational domain (grid) in a certain manner. The first modifier specifies
the part of the grid, currently allpoints, innerpoints, or boundarypoints, level on which grid
level the loop iterates, order the order of traversal through the grid points, and block, if a
point-wise or block-wise update is done. Inter-grid transfers are triggered by the additional
modifiers ToCoarse or ToFine at the end of the statement within a loop. A matrix-vector
(stencil-field) product is usually also found inside a loop over (parts of) the grid, where
one requires data from neighboring grid points, when applying the stencil, depending on its
shape and size. This is often the most expensive operation and thus has to be implemented
efficiently.

What is missing in this example are explicit calls to communication routines necessary
for MPI-parallel code. Basically, they are treated just like usual function calls, where the
function name is communicate and the arguments are the field and the grid level, on which
ghost layers should be exchanged. Low level optimizations like vectorization or blocking are
not yet supported and will be done internally via code transformations and not specified
explicitly in the DSL. Level 4 has to be adapted, if our approach is combined with a new
external framework in order to provide an interface to it. In case of waLBerla, Level 4
could be an abstraction of a waLBerla application written in C++ that uses modules and
data structures from the framework.

57

6. Future Trends in Software Design for CSE Applications

Hardware specification In addition to the problem, the user also lists hardware details in
a separate file.

Hardware cpu {

bandwidth = 60

peak = 118

cores = 4

}

Node {

sockets = 1

}

Cluster {

nodes = 1

networkbandwidth = 10

}

Information about peak performance (in GFLOP/s) and bandwidth (in GB/s) is important
for the internal performance model, the type of hardware triggers, if C++ or CUDA code
has to be generated. If there is more than one core available on CPU, OpenMP support is
enabled, and in case of more than one node, MPI support is enabled.

The features of the prototype that can be set on different levels are summarized in Ta-
ble 6.1. Currently, we are building up an automatic test suite such that it becomes easier to
test all possible feature combinations.

6.2.2. Code Generation Prototype

Structure With the hardware description and information from all levels, one can generate
CPU or GPU code as summarized in Figure 6.5. In Figure 6.6 one finds the structure of the
pretty-printed source file. The Scala prototype implementation consists of several packages
listed in Figure 6.7.

Parsers for all levels are found in the Parser Package. The Generate Package uses domain
knowledge formulated as rules to decide on Level 2, how to discretize the problem, on Level 3,
which multigrid components and parameters are suitable, and on Level 4, how the multigrid
components are implemented. These rules will be collected in a rule data base later in order
to enable an automatic learning process and an easy way to extend the domain knowledge.

The class DomainKnowledge stores global data from all levels, global variables, fields, and
stencils. It contains, e.g., global rules for determining array sizes and helper functions for
index mapping. Furthermore, it defines how stencil operations and boundary conditions are
implemented.

Representation of computational domain and discretization A fragment represents the
geometry of the computational domain. It contains primitive classes, like faces, edges, and
vertices. An example for the regular square is found next.

58

6.2. Towards Automatic Generation of Multigrid Solvers

Table 6.1.: A feature model for the first Scala prototype. Blue color denotes that the feature value
has not been fully implemented or tested for all feature combinations yet. Features in
bold font have to be specified by the application expert, all others can be derived from
these.

Feature Level Values

Computational domain 1 UnitSquare, UnitCube
Operator 1 Laplacian, ComplexDiffusion
Boundary conditions 1 Dirichlet, Neumann, periodic
Location of grid points 2 node-based, cell-centered
Discretization 2 finite differences, finite elements
Data type 2 single/double accuracy, complex numbers
Multigrid smoother 3 ω-Jacobi, ω-Gauss-Seidel, red-black variants
Multigrid inter-grid transfer 3 constant and linear interpolation and restriction
Multigrid coarsening 3 direct (re-discretization), Galerkin
Multigrid parameters 3 various
Implementation 4 various code optimization strategies
Platform Hardware CPU, GPU
Parallelization Hardware serial, OpenMP, MPI

var fragments: ListBuffer[Fragment] = ListBuffer ()

def initfragments () {

var v: List[Vertex] = List()

var e: List[Edge] = List()

var f: List[Face] = List()

if (DomainKnowledge.fragment_L2.get._2.equals("Regular_Square")) {

v = List(new Vertex(ListBuffer (0.0, 0.0)), new Vertex(ListBuffer (0.0, 1.0)) ,

new Vertex(ListBuffer (1.0, 0.0)), new Vertex(ListBuffer (1.0, 1.0)))

e = List(new Edge(v(0), v(1)), new Edge(v(0), v(2)),

new Edge(v(1), v(3)), new Edge(v(2), v(3)))

f = List(new Face(List(e(0), e(1), e(2), e(3)), v))

fragments += new Fragment(f, e, v)

}

}

For parallel simulations, a fragment represents a local block, the computational domain
is split into fragments of the same shape and size, and each process owns one or several
fragments. The handling of boundary conditions and the parallel data exchange via ghost
layers is also based on fragments, where a mapping, e.g., for copying data to or from boundary
primitives like edges into data buffers, is described by an affine coordinate transformation.

For discretization simple finite differences are supported, the finite element local stiffness
matrices can be assembled using the COLSAMM library4, and for mehrstellen discretization
we plan to generate the stencil entries via an approach described in [114].

4http://www10.informatik.uni-erlangen.de/People/Alumni/jochen/.www/colsamm.html

59

6. Future Trends in Software Design for CSE Applications

Figure 6.5.: General structure of Scala prototype. DSL descriptions on different levels are parsed,
transformed into an implementation-oriented representation, and then pretty-printed
to C++ or CUDA source code.

60

6.2. Towards Automatic Generation of Multigrid Solvers

Figure 6.6.: Structure of the pretty-printed source file.

Code Transformations The parsers create for each entry in the abstract description on
all levels corresponding objects of one of the classes found in the Abstract Package. These
objects are transformed into objects of classes from the Implementation Package that can
already pretty-print themselves to C++ or CUDA code. As an example the Scala classes
for fields in both packages are

class AbstractField(val name: String , val datatype: String , val location: String)

class ImplField(val name: String , val datatype: String ,

val sizex: Int , val sizey: Int , val sizez: Int , val addpoints: Int)

The Scala classes for stencils look similar. For functions and classes it is more complex,
here one has to construct an abstract syntax tree (AST) for each of them.

61

6. Future Trends in Software Design for CSE Applications

Figure 6.7.: Packages of the Scala prototype.

class AbstractFunction(fname: String , location: String , rettype: String ,

paramlist: List[Param], stmts: List[AbstractStatement]) {

def transform: ListBuffer[ImplFunction] = { return ... }

}

class ImplFunction(fname: String , location: String , rettype: String ,

paramlist: ListBuffer[ParameterInfo],

bodylist: ListBuffer[ImplStatement]) {

def toString : String = { return ... }

}

Besides the function name, the location, i.e., CPU or GPU, the return type, the list of pa-
rameters, and the list of statements in the function body are specified. The routine transform
models the internal code transformations that involve, in general, information from all levels
and domain knowledge. For completeness, in Figure 6.8 all possible abstract statements, and
in Figure 6.9 all possible abstract expressions are depicted, which can occur in the AST. The
implementation-oriented statements and expressions after code transformation are found in
Figure 6.10.

The AST Package stores lists of objects for all defined classes, functions, fields, and sten-
cils. Currently, Ch. Schmitt is implementing a more general code transformation framework,
where one can apply also external transformations and it is possible to traverse the tree more
than once.

In the Expert Package predefined classes for fields and stencils are contained including
information about data layout and data access, the Stencil class also has member functions
for matrix-vector operations, which are inlined later on. Furthermore, there are special
functions, e.g., for initializing and cleaning up MPI, OpenMP, or CUDA, allocating fields
and stencils, boundary treatment, and copy to or from MPI buffers.

62

6.2. Towards Automatic Generation of Multigrid Solvers

Figure 6.8.: Class hierarchy for abstract statements.

Figure 6.9.: Class hierarchy for abstract expressions.

A routine found in the Pretty Package writes the generated source string to a file that can
be compiled directly.

GPU Support In principle, an abstract function, specified on Level 4 to be located on GPU,
is transformed into a CPU interface function and a GPU kernel function. The first sets up
necessary information about GPU kernel block and grid sizes and then calls the GPU kernel.
The computations are performed within the GPU kernel. Note that one has to assure that
data is also present in GPU memory, i.e., GPU memory must be allocated before on GPU,
and data transfers between CPU and GPU via the relatively slow PCIe bus can be necessary.
Therefore, it typically makes no sense to switch too often between CPU and GPU kernels,
but to transfer data once to GPU at the beginning, then do all computations on GPU, and
transfer at the end the results back to CPU.

Performance Modeling Support The Scala prototype also contains concepts for future
support of automatic performance modeling (see Figure 6.11). In order to predict runtime
during code generation, one can annotate functions, statements, and expressions with static
cost information like number of FLOP/s or number of bytes, which have to be loaded from
or stored to memory. For a bigger part of the application, e.g., a whole V-cycle, a call graph

63

6. Future Trends in Software Design for CSE Applications

Figure 6.10.: Class hierarchy for implementation-oriented statements and expressions.

can be constructed and static costs of its parts are summed up.

The runtime estimate becomes more accurate, if first computationally expensive parts of
the code are generated and then analyzed via external tools like, e.g., likwid5 or scalasca6.
The gathered information from performance measurement flows back to the code generator
via a more detailed hardware knowledge and additional code transformations. This helps to
improve the accuracy of the static cost analysis.

Experimental Results Currently, the Scala prototype is already capable of creating imple-
mentations for several different feature combinations, where the problem, the computational
domain, and the hardware are varied. As a consequence, discretization, multigrid compo-
nents and parameters, and thus the overall implementation changes significantly. As test
problems Poisson’s equation (see Eq.(5.1)) and complex diffusion are considered. Motivated
by a simplified time-dependent Schrödinger equation, one can model a nonlinear isotropic
complex diffusion process by the time-dependent PDE

div (g (Im(u))∇u) = ut (6.16)

5http://code.google.com/p/likwid
6http://www.scalasca.org

64

6.2. Towards Automatic Generation of Multigrid Solvers

Figure 6.11.: Support for performance modeling.

with Neumann boundary conditions, initial condition u(0) = u0, and time t = 0. Im(u)
denotes the imaginary part of u and the complex diffusivity function is given by

g (Im(u)) =
eiθ

1 +
(
Im(u)
kθ

)2 . (6.17)

with small angle θ and scaling parameter k > 0. Complex diffusion is used, e.g., for de-
noising of images [106, 117]. For discretization, averaged finite differences (corresponding
to finite volumes) in space and an implicit Euler scheme in time are applied. The arising
(non)linear system of equations is solved in each time step via a full approximation (FAS)
multigrid scheme [136], where the non-linearity is treated by lagged diffusivity. The transfer
operators are cell-centered restriction and constant interpolation. Note that one can change
the multigrid V-cycle description on Level 4 to the FAS scheme [24] easily.

Table 6.2 summarizes some preliminary runtime results for generated codes using different
feature combinations. The experiments are conducted on a quad-core Intel Xeon Processor
E5-1620 v2 running at 3.7 GHz and achieving a maximal peak memory bandwidth of 59.7
GB/s and 118.4 GFLOP/s peak performance, and an NVIDIA GeForce GTX 680 achieving
192.2 GB/s and 3.1 TFLOP/s (single precision) respectively 128.8 GFLOP/s (double pre-
cision). As operation system Windows 7 is used, furthermore Visual Studio 2012 and the
CUDA 5.5 compilers.

In case of Poisson, the L2-norm of the residual is reduced by a factor of more than 108

within 5 V(2,2)-cycles for all tests, for complex diffusion by a factor of 105. Note that
the generated code tries to avoid manual problem-specific optimizations as far as possible,

65

6. Future Trends in Software Design for CSE Applications

Table 6.2.: Measured runtimes in seconds for one V(2,2)-cycle for different feature combinations.
Default settings are a serial run on one CPU core, red-black ω-Gauss-Seidel with ω = 1.0,
and double precision. In case of Jacobi smoother ω = 0.8. The number of unknowns is
N = 40952 (node-based) resp. N = 40962 (cell-centered) in 2D, and N = 2553 in 3D.
Direct coarsening down to less than three unknowns per direction on the coarsest grid
is applied.

Computational Platform PDE Settings runtime
Domain in s

UnitSquare CPU Poisson 0.7
UnitSquare CPU Poisson Jacobi 1.0
UnitSquare CPU Poisson OpenMP 4 threads, Jacobi 0.3
UnitCube CPU Poisson 1.1
UnitSquare GPU Poisson 0.05
UnitSquare CPU ComplexDiffusion Jacobi 32.1
UnitSquare CPU ComplexDiffusion OpenMP 4 threads, Jacobi 12.8
UnitSquare GPU ComplexDiffusion single precision, Jacobi 0.09

because the selection of suitable code transformations to obtain the most efficient imple-
mentation will be part of the global feature value optimization problem. Complex diffusion
on CPU is especially slow, where std::complex<double> from the C++ standard library is
used as built-in data type. For the GPU version a field with two components, one for the
real and one for the imaginary part, is allocated and own device functions for complex arith-
metic are provided. A hand-tuned implementation for 2D Poisson takes about 0.008 s on
GPU in single precision [12], with the same settings a hand-tuned complex diffusion takes
about 0.037 s. Optimizations in these implementations include, e.g., vectorization, change
of data layout, simplification of index calculations and other computations, loop unrolling,
and blocking techniques.

Tuning of Algorithmic Components and Parameters As already mentioned, A. Grebhahn
deals with domain-specific optimization of algorithmic components and parameters within
ExaStencils [33]. Once the code generation framework is completed, it will be possible to
generate thousands of different multigrid implementations already out of feature combina-
tions listed in Table 6.1. The global optimization problem to find the best implementation
for a certain application with respect to accuracy of the solution and time to compute the
solution is in general infeasible to solve, of course. Our approach will be based on the feature
model and first define, which parts of the optimization problem involve functional quantities,
e.g., optimal multigrid parameters, and which parts involve non-functional quantities, e.g.,
the type of discretization or smoother. One idea is to optimize functional quantities based on
performance models, LFA predictions, domain knowledge, and sample measurements. The
resulting accuracy of the solution together with runtime and convergence rate estimates or
measurements can be used as fitness function within a multi-objective heuristic algorithm
that optimizes (non-functional) feature strings.

66

6.2. Towards Automatic Generation of Multigrid Solvers

Summary: A Multi-objective Genetic Algorithm for Build Order Optimization in Star-
Craft II [8] This article presents a modified version of the multi-objective genetic algorithm
NSGA II [97] in order to find optimal opening strategies in the real-time strategy game

StarCraft® II: Wings of Liberty� published by Blizzard Entertainment7. Based on an
event-driven simulator capable of performing an accurate estimate of in-game construction
times the quality of different build lists can be judged. These build lists are used as chromo-
somes within the genetic algorithm. Procedural constraints, e.g., given by the dependencies
of build orders or other game mechanisms, are implicitly encoded into them. Typical goals
are to find the build list producing most units of one or more certain types up to a certain
time (Rush) or to produce one unit as early as possible (Tech-Push). Here, the number of
entries in a build list varies and the objective values have in contrast to the search space a
very small diversity. The proposed algorithm is tested on different Tech-Pushes and Rushes
for all three races, and validated with empirical data of expert StarCraft II players.

Clearly, the above work is far off the traditional CSE applications with respect to the used
algorithms. But it performs a simulation of the game, where in each time step the player
chooses his next action that has to fulfill several constraints. The same now holds for the
CSE expert when developing code. On each Level several choices have to be made under
certain restrictions and earlier decisions influence later ones. This domain knowledge about
feature combinations and interactions can be extended by machine learning techniques in
order to reduce the global search space for the multi-objective genetic algorithm.

7©2010 Blizzard Entertainment, Inc. All rights reserved. Wings of Liberty is a trademark, and StarCraft
and Blizzard Entertainment are trademarks or registered trademarks of Blizzard Entertainment, Inc. in
the U.S. and/or other countries.

67

7. Conclusions and Future Work

Researchers in the field of computational science and engineering require knowledge in com-
puter science, applied mathematics, and at least one of the various application fields. Central
for CSE are efficient (parallel) algorithms. The types of algorithms are not limited to the
ones listed in chapter 3, but CSE methods can also be applied to other kinds of algorithms.

Besides classical iterative algorithms like multigrid, which can be used to solve PDEs nu-
merically, optimization algorithms, statistical algorithms, and data processing algorithms
are important within CSE applications (see figure 3.3). Statistics helps to deal with uncer-
tainty in models and data. Furthermore, handling and processing the massive amount of
input and output data with larger and larger HPC clusters is a big issue currently. Addi-
tional challenges arise with increasing energy consumption and growing heterogeneity of the
platforms. Code complexity also increases, because in many real-world applications several
physical models are coupled.

One way to address some of these issues from the software side is code generation. It is clear
that a tailored implementation for a specific application usually fits all its needs, but very
often it cannot be extended easily to new models or hardware. Thus, since hundreds of similar
implementations are not feasible, the typical solution is to use abstractions, e.g., generic
programming, and to provide libraries or frameworks. This common approach works quite
well, as long as the class of applications is not too diverse, and the implementation details
like data structures or parallelization strategies do not vary too much. Code generation
makes it possible to create many platform-specific implementations, which are usually shorter
and can be optimized easier by standard compilers. However, it is absolutely necessary to
provide automatic tests for the generated codes in order to ensure maintainability. Another
advantage of code generation is that it can be combined with automatic tuning, where one
wants to find the best possible implementation for a specific problem based on a feature
model, which includes feature constraints derived from domain knowledge.

The waLBerla framework will benefit from our code generation framework, e.g., by
adding automatically new LBM kernels, performing parameter tuning, or providing a DSL
as application interface. This has the advantage that users have to learn less details about
waLBerla software concepts, before they can start to port their own application.

As was shown, my work focuses on algorithm and software development for CSE applica-
tions running on current HPC platforms. While performance was always the most impor-
tant software quality factor for large-scale simulations, with growing model and thus code
complexity and arising new (parallel) programming paradigms, portability and productivity
become more and more important, too. In the next years, a joint effort from application,
hardware, and software side will be necessary to reach the desired exa-scale performance for
real-world CSE applications.

69

Journal Publications

[1] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde, WaLBerla: HPC Software
Design for Computational Engineering Simulations, Journal of Computational Science
2 (2011), 105–112.

[2] C. Feichtinger, J. Habich, H. Köstler, G. Hager, U. Rüde, and G. Wellein, A Flexible
Patch-Based Lattice Boltzmann Parallelization Approach for Heterogeneous GPU-CPU
Clusters, Journal of Parallel Computing 37 (2011), 536–549.

[3] C. Feichtinger, H. Köstler, J. Habich, T. Aoki, and U. Rüde, Performance Modeling
and Analysis of Heterogeneous Lattice Boltzmann Simulations on CPU-GPU Clusters,
Journal of Parallel Computing (2013), submitted.

[4] B. Gmeiner, H. Köstler, M. Stürmer, and U. Rüde, Parallel multigrid on hierarchical
hybrid grids: a performance study on current high performance computing clusters,
Concurrency and Computation: Practice and Experience (2012), 1–24.

[5] J. Habich, C. Feichtinger, H. Köstler, G. Hager, and G. Wellein, Performance engi-
neering for the Lattice Boltzmann method on GPGPUs: Architectural requirements and
performance results, Computers & Fluids (2012).

[6] J. Han, C. Bennewitz, H. Köstler, J. Hornegger, and T. Kuwert, Computer-Aided Val-
idation of Hybrid SPECT/CT Scanners, Computerized Medical Imaging and Graphics
32 (2008), no. 5, 388–395.

[7] E. M. Kalmoun, H. Köstler and U. Rüde, 3D optical flow computation using a parallel
variational multigrid scheme with application to cardiac C-arm CT motion, Image and
Vision Computing 25 (2007), no. 9, 1482–1494.

[8] H. Köstler and B. Gmeiner, A Multi-objective Genetic Algorithm for Build Order Opti-
mization in StarCraft II, KI - Künstliche Intelligenz 27 (2013), no. 3, 221–233 (English).

[9] H. Köstler and U. Rüde, An accurate multigrid solver for computing singular solutions
of elliptic problems, Numerical Linear Algebra with Applications 13 (2006), no. 2-3,
231–249.

[10] H. Köstler and U. Rüde, The CSE software challenge – covering the complete stack,
it-Information Technology 55 (2013), no. 3, 91–96.

[11] H. Köstler, R. Schmid, U. Rüde, and Ch. Scheit, A parallel multigrid accelerated Poisson
solver for ab initio molecular dynamics applications, Computing and Visualization in
Science 11 (2008), 115–122.

71

JOURNAL PUBLICATIONS

[12] H. Köstler, M. Stürmer, and T. Pohl, Performance engineering to achieve real-time high
dynamic range imaging, Journal of Real-Time Image Processing (2013), 1–13.

[13] H. Köstler, M. Stürmer, and U. Rüde, A fast full multigrid solver for applications in
image processing, Numerical Linear Algebra with Applications 15 (2008), no. 2–3, 187–
200.

[14] S. Kuckuk, T. Preclik, and H. Köstler, Interactive particle dynamics using Opencl and
Kinect, International Journal of Parallel, Emergent and Distributed Systems 28 (2013),
no. 6, 519–536.

[15] R. Membarth, O. Reiche, Ch. Schmitt, F. Hannig, J. Teich, M. Stürmer, and H. Köstler,
Towards a performance-portable description of geometric multigrid algorithms using a
domain-specific language, Journal of Parallel and Distributed Computing (2013), sub-
mitted.

[16] C. Popa, T. Preclik, H. Köstler, and U. Rüde, On Kaczmarz’s projection iteration as a
direct solver for linear least squares problems, Linear Algebra and its Applications 436
(2011), no. 2, 389–404.

[17] K. Ruhnau, H. Köstler, and R. Wienands, A multigrid method for the computation
of the optical flow using a curvature based regularizer, Numerical Linear Algebra with
Applications 15 (2008), no. 2–3, 201–218.

[18] R. Schmid, M. Tafipolsky, P. König, and H. Köstler, Car-Parrinello molecular dynamics
using real space wavefunctions, Physica status solidi. B. Basic research 243 (2006), no. 5,
1001–1015.

[19] M. Stürmer, J. Dagner, P. Manstetten, and H. Köstler, Real-time simulation of temper-
ature in hot rolling rolls, Journal of Computational Science (2013), submitted.

[20] R. Wienands and H. Köstler, A practical framework for the construction of prolongation
operators for multigrid based on canonical basis functions, Computing and visualization
in science 13 (2010), 207–220.

[21] C.H. Wolters, H. Köstler, C. Möller, J. Härdtlein, L. Grasedyck, and W. Hackbusch,
Numerical Mathematics of the Subtraction Method for the Modeling of a Current Dipole
in EEG Source Reconstruction Using Finite Element Head Models, SIAM J. on Scientific
Computing 30 (2007), no. 1, 24–45.

72

Conference Publications

[22] D. Bartuschat, M. Stürmer, and H. Köstler, An orthogonal matching pursuit algorithm
for image denoising on the cell broadband engine, Parallel Processing and Applied Math-
ematics (PPAM), Lecture Notes in Computer Science, vol. 6067, Springer-Verlag, Berlin,
Heidelberg, New York, 2010, pp. 557–566.

[23] I. Christadler, H. Köstler, and U. Rüde, Robust and efficient multigrid techniques for the
optical flow problem using different regularizers, Proceedings of 18th Symposium Simula-
tionstechnique ASIM 2005 (F. Hülsemann, M. Kowarschik, and U. Rüde, eds.), Frontiers
in Simulation, vol. 15, SCS Publishing House, Erlangen, Germany, 2005, pp. 341–346.

[24] I. Dietrich, R. German, H. Köstler, and U. Rüde, Modeling multigrid algorithms for
variational imaging, Proceedings of 21st Australian Software Engineering Conference
(ASWEC2010), IEEE Computer Society Washington, DC, USA, 2010, pp. 224–234.

[25] U. Fabricius, C. Freundl, H. Köstler, and U. Rüde, High performance computing edu-
cation for students in computational engineering, Computational Science - ICCS 2005
(V.S. Sunderam, G.D.v. Albada, P.M.A. Sloot, and J.J. Dongarra, eds.), Lecture Notes
in Computer Science, vol. 3515, Springer-Verlag, Berlin, Heidelberg, New York, 2005,
pp. 27–35.

[26] C. Freundl and H. Köstler, Using ParExPDE for the numerical solution of bioelec-
tric field problems, Proceedings of 18th Symposium Simulationstechnique ASIM 2005
(F. Hülsemann, M. Kowarschik, and U. Rüde, eds.), Frontiers in Simulation, vol. 15,
SCS Publishing House, Erlangen, Germany, 2005, pp. 89–94.

[27] C. Freundl, H. Köstler, and U. Rüde, Teaching the foundations of computational sci-
ence on the undergraduate level, Computational Science - ICCS 2006: 6th International
Conference. Proceedings, Part II (Reading, UK) (M.A. Sloot and J. Dongarra, eds.),
Lecture Notes in Computer Science, vol. 3992, Springer-Verlag, Berlin, Heidelberg, New
York, 2006, pp. 185–192.

[28] B. Gmeiner, G. Donnert, and H. Köstler, Optimizing opening strategies in a real-time
strategy game by a multi-objective genetic algorithm, Research and Development in In-
telligent Systems XXIX (2012), 361–374.

[29] B. Gmeiner, T. Gradl, H. Köstler, and U. Rüde, Highly parallel geometric multigrid
algorithm for hierarchical hybrid grids, Proceedings NIC Symposium (2012), 323–330
(NIC Series).

73

CONFERENCE PUBLICATIONS

[30] Ch. Godenschwager, F. Schornbaum, M. Bauer, H. Köstler, and U. Rüde, A framework
for hybrid parallel flow simulations with a trillion cells in complex geometries, Proceed-
ings of SC13: International Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, 2013.

[31] J. Götz, S. Donath, C. Feichtinger, K. Iglberger, H. Köstler, and U. Rüde, walberla:
Simulation of complex flows on supercomputers, Proceedings NIC Symposium (2012),
349–356 (NIC Series).

[32] T. Gradl, C. Freundl, H. Köstler, and U. Rüde, Scalable Multigrid, High Performance
Computing in Science and Engineering. Garching/Munich 2007 (S. Wagner, M. Stein-
metz, A. Bode, and M. Brehm, eds.), LRZ, KONWIHR, Springer-Verlag, Berlin, Hei-
delberg, New York, 2008, pp. 475–483.

[33] A. Grebhahn, N. Siegmund, S. Apel, S. Kuckuk, Ch. Schmitt, and H. Köstler, Op-
timizing performance of stencil code via parameter interaction detection, 9th Interna-
tional Conference on High-Performance and Embedded Architectures and Compilers
(HiPEAC) (2013), accepted.

[34] H. Köstler, C. Feichtinger, U. Rüde, and T. Aoki, A Geometric Multigrid Solver on
Tsubame 2.0, Proceedings Dagstuhl Seminar (2013), in print.

[35] H. Köstler, C. Popa, M. Prümmer, and U. Rüde, Algebraic Full Multigrid in Image
Reconstruction, Mathematical Modelling of Environmental and Life Sciences Prob-
lems. Proceedings of the fifth workshop. September, 2006, Constanta, Romania (S. Ion,
G. Marinoschi, and C. Popa, eds.), Editura Academiei Romane, 2008, pp. 123–130.

[36] H. Köstler, C. Popa, U. Rüde, and M. Prümmer, Towards an algebraic multigrid method
for tomographic image reconstruction – improving convergence of ART, European Con-
ference on Computational Fluid Dynamics (ECCOMAS CFD) (TU Delft, Egmond aan
Zee, The Netherlands) (P. Wesseling, E. Onate, and J. Périaux, eds.), 2006.

[37] H. Köstler, D. Ritter, and C. Feichtinger, A Geometric Multigrid Solver on GPU Clus-
ters, GPU Solutions to Multi-scale Problems in Science and Engineering (David A.
Yuen, Long Wang, Xuebin Chi, Lennart Johnsson, Wei Ge, and Yaolin Shi, eds.), Lec-
ture Notes in Earth System Sciences, Springer-Verlag, Berlin, Heidelberg, New York,
2013, pp. 407–422.

[38] H. Köstler and U. Rüde, Accurate techniques for computing singular solutions of el-
liptic problems, Computational Science - Proceedings ICCS 2004: 4th International
Conference, Part IV, Krakow, Poland (M. Bubak, G. v. Albada, and J. Dongarra, eds.),
Lecture Notes in Computer Science, vol. 3039, Springer-Verlag, Berlin, Heidelberg, New
York, 2004, pp. 410–417.

[39] H. Köstler, U. Rüde, M. Prümmer, and J. Hornegger, Adaptive variational sinogram
interpolation of sparsely sampled CT data, Proceedings of the 18th International Con-
ference on Pattern Recognition (ICPR), Hongkong, China 3 (2006), 778–781.

74

CONFERENCE PUBLICATIONS

[40] S. Kuckuk, B. Gmeiner, H. Köstler, and U. Rüde, A generic prototype to benchmark
algorithms and data structures for hierarchical hybrid grids, Advances of Parallel Com-
puting (2013), accepted.

[41] M. Mayer, A. Borsdorf, H. Köstler, J. Hornegger, and U. Rüde, Nonlinear Diffusion
vs. Wavelet Based Noise Reduction in CT Using Correlation Analysis, Proceedings of
Vision, Modeling and Visualization (Saarbrücken, Germany), Aka GmbH, IOS Press,
2007, pp. 223–232.

[42] , Nonlinear Diffusion Noise Reduction in CT Using Correlation Analysis,
3rd Russian-Bavarian Conference on Biomedical Engineering (Erlangen, Germany)
(J. Hornegger, E. Mayr, S. Schookin, H. Feußner, N. Navab, Y. Gulyaev, K. Höller,
and V. Ganzha, eds.), vol. 1, Union aktuell, 2008, pp. 155–159.

[43] R. Membarth, F. Hannig, J. Teich, and H. Köstler, Towards Domain-specific Com-
puting for Stencil Codes in HPC, Proceedings of the 2nd International Workshop on
Domain-Specific Languages and High-Level Frameworks for High Performance Comput-
ing (WOLFHPC) (Salt Lake City, UT, USA), IEEE, 2012.

[44] K. Pickl, M. Hofmann, T. Preclik, H. Köstler, A. Smith, and U. Rüde, Parallel sim-
ulations of self-propelled microorganisms, Advances of Parallel Computing (2013), ac-
cepted.

[45] M. Prümmer, H. Köstler, U. Rüde, and J. Hornegger, A full multigrid technique to accel-
erate an ART scheme for tomographic image reconstruction, Proceedings of 18th Sym-
posium Simulationstechnique ASIM 2005 (F. Hülsemann, M. Kowarschik, and U. Rüde,
eds.), Frontiers in Simulation, vol. 15, SCS Publishing House, Erlangen, Germany, 2005,
pp. 532–537.

[46] O. Röhrle, H. Köstler, and M. Loch, Segmentation of skeletal muscle fibers for appli-
cations in computational skeletal muscle mechanics, Computational Biomechanics for
Medicine, Springer-Verlag, Berlin, Heidelberg, New York, 2011, pp. 107–117.

[47] M. Stürmer, H. Köstler, and F. Rathgeber, Performance engineering of an orthogonal
matching pursuit algorithm for sparse representation of signals on different architec-
tures, High-performance and Hardware-aware Computing (HipHaC’11), San Antonio,
Texas, USA (R. Buchty and J.-P. Weiß, eds.), KIT Scientific Publishing, 2011, pp. 17–
24.

[48] M. Stürmer, H. Köstler, and U. Rüde, Fast wavelet transform utilizing a multicore-aware
framework, Applied Parallel and Scientific Computing (K. Jonasson, ed.), Lecture Notes
in Computer Science, vol. 7134, Springer-Verlag, Berlin, Heidelberg, New York, 2012,
pp. 313–323.

[49] M. Stürmer, D. Ritter, H. Köstler, and U. Rüde, Experiences with Numerical Codes on
the Cell Broadband Engine Architecture, High performance and hardware aware com-
puting (HipHaC’08), Lake Como, Italy (R. Buchty and J.-P. Weiß, eds.), KIT Scientific
Publishing, 2008, pp. 9–16.

75

CONFERENCE PUBLICATIONS

[50] M. Stürmer, G. Wellein, G. Hager, H. Köstler, and U. Rüde, Challenges and Potentials
of Emerging Multicore Architectures, High Performance Computing in Science and En-
gineering. Garching/Munich 2007 (S. Wagner, M. Steinmetz, A. Bode, and M. Brehm,
eds.), LRZ, KONWIHR, Springer-Verlag, Berlin, Heidelberg, New York, 2008, pp. 551–
566.

[51] C. Wolters, H. Köstler, C. Möller, J. Härdtlein, and A. Anwander, Numerical ap-
proaches for dipole modeling in finite element method based source analysis, Interna-
tional Congress Series, BIOMAG2006, 15th Int. Conf. on Biomagnetism, vol. 1300,
Elsevier Science Publishers, Amsterdam, The Netherlands, 2007, pp. 189–192.

[52] Y. Zheng, H. Köstler, N. Thürey, and U. Rüde, Enhanced Motion Blur Calculation
with Optical Flow, Proceedings of Vision, Modeling and Visualization (RWTH Aachen,
Germany), Aka GmbH, IOS Press, 2006, pp. 253–260.

76

Theses and Other Publications

[53] D. Bartuschat, A. Borsdorf, H. Köstler, R. Rubinstein, and M. Stürmer, A parallel
K-SVD implementation for CT image denoising, Tech. Report 09-1, Department of
Computer Science 10 (System Simulation), Friedrich-Alexander-Universität Erlangen-
Nürnberg, Germany, 2009.

[54] B. Gmeiner, H. Köstler, and U. Rüde, Wie viel Unbekannte hat das grösste Gle-
ichungssystem, das man heute lösen kann?, GAMM Rundbrief (2013), 18–23.

[55] E. M. Kalmoun, H. Köstler and U. Rüde, Parallel multigrid computation of the 3D op-
tical flow, Tech. Report 04-4, Department of Computer Science 10 (System Simulation),
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2004.

[56] H. Köstler, Analyse von eukaryontischen Promotorregionen mit exhaustiver Suche,
Studienarbeit, Department of Computer Science 5 (Pattern recognition), Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, 2001.

[57] , Akkurate Behandlung von Singularitäten bei partiellen Differentialgleichungen,
Master’s thesis, Department of Computer Science 10 (System Simulation), Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, 2003.

[58] , Der künstliche Autodidakt: Informationsbedarf einer Wissensbasis, Master’s
thesis, Betriebswirtschaftslehre, Operation Research, Fernuniversität Hagen, Germany,
2003.

[59] , A Multigrid Framework for Variational Approaches in Medical Image Process-
ing and Computer Vision, Verlag Dr. Hut, München, 2008.

[60] , Multigrid HowTo: A simple Multigrid solver in C++ in less than 200 lines
of code, Tech. Report 08-3, Department of Computer Science 10 (System Simulation),
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2008.

[61] H. Köstler, C. Möller, and F. Deserno, Performance Results for Optical Flow on an
Opteron Cluster Using a Parallel 2D/3D Multigrid Solver, Tech. Report 06-5, De-
partment of Computer Science 10 (System Simulation), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany, 2006.

[62] H. Köstler, C. Popa, and U. Rüde, Algebraic multigrid for general inconsistent linear
systems: The correction step, Tech. Report 06-4, Department of Computer Science
10 (System Simulation), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany,
2006.

77

THESES AND OTHER PUBLICATIONS

[63] H. Köstler, M. Stürmer, Ch. Freundl, and U. Rüde, PDE based Video Compression in
Real-Time, Tech. Report 07-11, Department of Computer Science 10 (System Simula-
tion), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2007.

[64] S. Kuckuk and H. Köstler, A Framework for Interactive Physical Simulations on Re-
mote HPC Clusters, Tech. Report CS-2013-6, Universitätsbibliothek der Universität
Erlangen-Nürnberg, Universitätsstr. 4, 91054 Erlangen, 2013.

[65] P. Münch and H. Köstler, Videocoding using a variational approach for decompression,
Tech. Report 07-1, Department of Computer Science 10 (System Simulation), Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, 2007.

[66] T. Preclik and H. Köstler, Multigrid HowTo: An Open Source Algebraic Multigrid Solver
in C++, Tech. Report 09-2, Department of Computer Science 10 (System Simulation),
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2009.

[67] L. Renker and H. Köstler, Multikulturalität in Studiengängen - Chancen und Heraus-
forderungen für die Teamarbeit, Tech. Report CS-2012-3, Universitätsbibliothek der
Universität Erlangen-Nürnberg, Universitätsstr. 4, 91054 Erlangen, 2012.

78

Supervised Theses (since 2010)

[68] S. Alassi, Estimating Blood Flow Based on 2D Angiographic Image Sequences, Master’s
thesis, Department of Computer Science 10 (System Simulation), Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, 2012, Betr. Kowarschik, Pohl, Köstler.

[69] H. Attar, Simulation of heat-induced elastic deformation of cylindrical-shaped bodies,
Master’s thesis, Department of Computer Science 10 (System Simulation), Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, 2010, Betr. Pickl, Köstler, Rüde.

[70] M. Bauer, Special Finite Elements for Dipole Modelling, Master’s thesis, Department of
Computer Science 10 (System Simulation), Friedrich-Alexander-Universität Erlangen-
Nürnberg, Germany, 2012, Betr. Köstler, Rüde.

[71] M. Grießinger, 3D Bidomain Equation for Muscle Fibers, Master’s thesis, Department of
Computer Science 10 (System Simulation), Friedrich-Alexander-Universität Erlangen-
Nürnberg, Germany, 2011, Betr. Köstler.

[72] M. Hofmann, Parallelisation of Swimmer Models for the Simulation of Swarms of Bacte-
ria in the Physics Engine pe, Master’s thesis, Department of Computer Science 10 (Sys-
tem Simulation), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2013,
Betr. Pickl, Preclik, Köstler.

[73] T. Kluge, Development and GPU-based implementation of a complex anisotropic non-
linear diffusion filter for 3D CTA image preprocessing, Master’s thesis, Department of
Computer Science 5 (Pattern recognition), Friedrich-Alexander-Universität Erlangen-
Nürnberg, Germany, 2012, Betr. Hornegger, Kollorz, Köstler, Bernhardt.

[74] S. Kuckuk, Visualization and Interactivity for Physics Engines in Real Time, Master’s
thesis, Department of Computer Science 10 (System Simulation), Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, 2013, Betr. Köstler.

[75] M. Loch, Segmentation of skeletal muscle fibers, Master’s thesis, Department of Com-
puter Science 10 (System Simulation), Friedrich-Alexander-Universität Erlangen-Nürn-
berg, Germany, 2010, Betr. Köstler.

[76] P. Manstetten, Real-time Simulation of Heat Conduction in Rolls with Internal Cooling,
Master’s thesis, Department of Computer Science 10 (System Simulation), Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, 2012, Betr. Stürmer, Köstler.

[77] S. Tatavarty, Accelerating Image Registration on GPUs, Master’s thesis, Department of
Computer Science 10 (System Simulation), Friedrich-Alexander-Universität Erlangen-
Nürnberg, Germany, 2010, Betr. Köstler.

79

SUPERVISED THESES (SINCE 2010)

[78] Z. Wang, GPU implementation of Free Surface Lattice Boltzmann code, Studienar-
beit, Department of Computer Science 10 (System Simulation), Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, 2011, Betr. Donath, Köstler, Rüde.

80

Bibliography

[79] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,
D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, A view of the parallel
computing landscape, Commun. ACM 52 (2009), no. 10, 56–67.

[80] C. Baillie, J. McWilliams, J. Weiss, and I. Yavneh, Implementation and Performance of
a Grand Challenge 3d Quasi-Geostrophic Multi-Grid code on the Cray T3D and IBM
SP2., Proc. Supercomputing, 1995.

[81] D. Barkai and A. Brandt, Vectorized multigrid Poisson solver for the CDC Cyber 205,
Applied Mathematics and Computation 13 (1983), no. 3, 215–227.

[82] D. Bartuschat, D. Ritter, and U. Rüde, Parallel multigrid for electrokinetic simula-
tion in particle-fluid flows, High Performance Computing and Simulation (HPCS), 2012
International Conference on, IEEE, 2012, pp. 374–380.

[83] P. Bastian, K. Birken, K. Johannsen, S. Lang, V. Reichenberger, Ch. Wieners, G. Wit-
tum, and Ch. Wrobel, A parallel software-platform for solving problems of partial dif-
ferential equations using unstructured grids and adaptive multigrid methods, High Per-
formance Computing in Science and Engineering, Springer, 1999, pp. 326–339.

[84] B. Bergen, Hierarchical hybrid grids: Data structures and core algorithms for efficient
finite element simulations on supercomputers, SCS Publishing House eV, 2006.

[85] B. Bergen and F. Hülsemann, Hierarchical hybrid grids: A framework for efficient multi-
grid on high performance architectures , Tech. Report 03-5, Department of Computer
Science 10 (System Simulation), Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany, 2003.

[86] S. Bogner, Simulation of Floating Objects in Free-Surface Flow, Master’s thesis, De-
partment of Computer Science 10 (System Simulation), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany, 2009.

[87] S. Bogner and U. Rüde, Simulation of floating bodies with the lattice Boltzmann method,
Computers & Mathematics with Applications 65 (2013), no. 6, 901–913.

[88] M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik
389 (1927), no. 20, 457–484.

[89] E. Briggs, D. Sullivan, and J. Bernholc, Real-space multigrid-based approach to large-
scale electronic structure calculations, Physical Review B 54 (1996), no. 20, 14362.

81

BIBLIOGRAPHY

[90] W. Briggs, V. Henson, and S. McCormick, A multigrid tutorial, 2nd ed., Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2000.

[91] A. Bruhn, Th. Pock, and X. Tai, Efficient Algorithms for Global Optimisation Methods
in Computer Vision (Dagstuhl Seminar 11471), Dagstuhl Reports 1 (2012), no. 11,
66–90.

[92] C. Burstedde, L. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees, SIAM Journal on Scientific Computing 33 (2011),
no. 3, 1103–1133.

[93] R. Car and M. Parrinello, Unified approach for molecular dynamics and density-
functional theory, Physical Review Letters 55 (1985), 2471–2474.

[94] D. Ceperley and B. Alder, Ground state of the electron gas by a stochastic method,
Physical Review Letters 45 (1980), 566–569.

[95] S. Chen and G. Doolen, Lattice boltzmann method for fluid flows, Annual review of fluid
mechanics 30 (1998), no. 1, 329–364.

[96] O. Cohen, L. Kronik, and A. Brandt, Locally Refined Multigrid Solution of the All-
Electron Kohn–Sham Equation, Journal of Chemical Theory and Computation 9 (2013),
no. 11, 4744–4760.

[97] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective ge-
netic algorithm: NSGA-II, Evolutionary Computation, IEEE Transactions on 6 (2002),
no. 2, 182–197.

[98] P. Dirac, A new notation for quantum mechanics, Proceedings of the Cambridge Philo-
sophical Society, vol. 35, Cambridge Univ Press, 1939, pp. 416–418.

[99] S. Donath, Wetting models for a parallel high-performance free surface lattice boltzmann
method, Verlag Dr. Hut, München, 2011.

[100] S. Donath, C. Feichtinger, T. Pohl, J. Götz, and U. Rüde, Localized Parallel Algorithm
for Bubble Coalescence in Free Surface Lattice-Boltzmann Method, Lecture Notes in
Computer Science, Euro-Par 2009, vol. 5704, Springer, 2009, pp. 735–746.

[101] R. Falgout, V. Henson, J. Jones, and U. Yang, Boomer AMG: A parallel implemen-
tation of algebraic multigrid, Tech. Report UCRL-MI-133583, Lawrence Livermore Na-
tional Laboratory, 1999.

[102] C. Feichtinger, Design and Performance Evaluation of a Software Framework for Multi-
Physics Simulations on Heterogeneous Supercomputers, Verlag Dr. Hut, München, 2012.

[103] C. Feichtinger, J. Götz, S. Donath, K. Iglberger, and U. Rüde, Concepts of waLBerla
Prototype 0.1, Tech. Report 07-10, Department of Computer Science 10 (System Simu-
lation), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2007.

[104] L. Garshol, BNF and EBNF: What are they and how do they work, acedida pela última
vez em 16 (2003).

82

BIBLIOGRAPHY

[105] D. Ghosh, DSLs in action, Manning Publications Co., 2010.

[106] G. Gilboa, N. Sochen, and Y. Zeevi, Image enhancement and denoising by complex
diffusion processes, IEEE Transactions on Pattern Analysis and Machine Intelligence
26 (2004), no. 8, 1020–1036.

[107] B. Gmeiner, Design and Analysis of Hierarchical Hybrid Multigrid Methods for Peta-
Scale Systems and Beyond, Verlag Dr. Hut, München, 2013.

[108] B. Gmeiner and U. Rüde, Peta-scale hierarchical hybrid multigrid using hybrid par-
allelization, Large-Scale Scientific Computing, Lecture Notes in Computer Science,
Springer Verlag, 2013, accepted.

[109] J. Götz, Massively parallel direct numerical simulation of particulate flows, Verlag Dr.
Hut, München, 2012.

[110] J. Götz, S. Donath, C. Feichtinger, K. Iglberger, and U. Rüde, Concepts of waLBerla
Prototype 0.0, Tech. Report 07–4, Department of Computer Science 10 (System Simu-
lation), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2007.

[111] J. Götz, K. Iglberger, C. Feichtinger, S. Donath, and U. Rüde, Coupling Multibody
Dynamics and Computational Fluid Dynamics on 8192 Processor Cores, Parallel Com-
puting 36 (2010), no. 2-3, 142–151.

[112] J. Götz, K. Iglberger, M. Stürmer, and U. Rüde, Direct Numerical Simulation of
Particulate Flows on 294912 Processor Cores, 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, IEEE, 2010,
pp. 1–11.

[113] D. Haspel, Simulation of Clotting Processes using Non-Newtonian Blood Models and
the Lattice Boltzmann Method, Master’s thesis, Department of Computer Science 10
(System Simulation), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany,
2009.

[114] M. Heisig, Efficient generation of Mehrstellenverfahren for elliptic PDEs, Bachelor
thesis, Department of Computer Science 10 (System Simulation), Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, 2013.

[115] H. Hellmann, A new approximation method in the problem of many electrons, The
Journal of Chemical Physics 3 (1935), no. 1, 61–61.

[116] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical review 136 (1964),
B864–B871.

[117] O. Honigman and Y. Zeevi, Enhancement of Textured Images Using Complex Dif-
fusion Incorporating Schroedinger’s Potential, 2006 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, vol. 2, 2006.

[118] K. Iglberger, Software design of a massively parallel rigid body framework, Verlag Dr.
Hut, München, 2010.

83

BIBLIOGRAPHY

[119] K. Iglberger, J. Götz, S. Donath, C. Feichtinger, and U. Rüde, Large Scale Simulations
of Realistic Flow Problems, inSiDE 7 (2009), no. 2, 40–45.

[120] K. Iglberger and U. Rüde, The pe Rigid Multi-Body Physics Engine, Tech. Report
09-9, Department of Computer Science 10 (System Simulation), Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, 2009.

[121] K. Iglberger and U. Rüde, Massively parallel granular flow simulations with non-
spherical particles, Computer Science Research and Development 25 (2010), no. 1-2,
105–113.

[122] W. Kohn and L. Sham, Self-consistent equations including exchange and correlation
effects, Physical Review 140 (1965), A1133–A1138.

[123] S. Kronawitter and Ch. Lengauer, Optimization of two jacobi smoother kernels
by domain-specific program transformation, 9th International Conference on High-
Performance and Embedded Architectures and Compilers (HiPEAC) (2013), accepted.

[124] O. McBryan, P. Frederickson, J. Lindenand, A. Schüller, K. Solchenbach, K. Stüben,
C. Thole, and U. Trottenberg, Multigrid methods on parallel computers – a survey of
recent developments, IMPACT of Computing in Science and Engineering 3 (1991), no. 1,
1–75.

[125] B. Nestler, H. Garcke, and B. Stinner, Multicomponent alloy solidification: Phase-field
modeling and simulations, Physical Review E 71 (2005), no. 4, 041609.

[126] P. Neumann, Numerical Simulation of Nanoparticles in Brownian Motion using the
Lattice Boltzmann Method, Master’s thesis, Department of Computer Science 10 (Sys-
tem Simulation), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2008.

[127] M. Odersky, L. Spoon, and B. Venners, Programming in scala: a comprehensive step-
by-step guide, Artima Inc, 2008.

[128] J. Perdew and A. Zunger, Self-interaction correction to density-functional approxima-
tions for many-electron systems, Physical Review B 23 (1981), 5048–5079.

[129] K. Pickl, J. Götz, K. Iglberger, J. Pande, K. Mecke, A.-S. Smith, and U. Rüde, All
good things come in threes – Three beads learn to swim with lattice Boltzmann and a
rigid body solver, Journal of Computational Science 3 (2012), no. 5, 374–387.

[130] U. Rüde and Ch. Zenger, A Workbench for Multigrid Methods, Tech. Report TUM-
I8607, Institut für Informatik der Technischen Universität München, 1986.

[131] J. Ryckaert, G. Ciccotti, and H. Berendsen, Numerical integration of the cartesian
equations of motion of a system with constraints: molecular dynamics of n-alkanes,
Journal of Computational Physics 23 (1977), no. 3, 327–341.

[132] E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys-
ical Review 28 (1926), no. 6, 1049.

84

BIBLIOGRAPHY

[133] N. Siegmund, S. Kolesnikov, Ch. Kästner, S. Apel, D. Batory, M. Rosenmüller, and
G. Saake, Predicting performance via automated feature-interaction detection, Proceed-
ings of the 2012 International Conference on Software Engineering, IEEE Press, 2012,
pp. 167–177.

[134] K. Solchenbach, C. Thole, and U. Trottenberg, Parallel multigrid methods: imple-
mentation on suprenum-like architectures and applications, Supercomputing, Springer,
1988, pp. 28–42.

[135] T. Takaki, T. Shimokawabe, M. Ohno, A. Yamanaka, and T. Aoki, Unexpected selec-
tion of growing dendrites by very-large-scale phase-field simulation, Journal of Crystal
Growth 382 (2013), 21–25.

[136] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, San Diego,
CA, USA, 2001.

[137] A. Vondrous, M. Selzer, J. Hötzer, and B. Nestler, Parallel computing for phase-field
models, International Journal of High Performance Computing Applications (2013).

[138] R. Wienands and W. Joppich, Practical Fourier analysis for multigrid methods, Nu-
merical Insights, vol. 5, Chapmann and Hall/CRC Press, Boca Raton, Florida, USA,
2005.

[139] R. Wienands and I. Yavneh, Collocation coarse approximation in multigrid, SIAM
Journal on Scientific Computing 31 (2009), no. 5, 3643–3660.

[140] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hil-
finger, S. Graham, D. Gay, and Ph. Colella, Titanium: A high-performance java dialect,
Concurrency Practice and Experience 10 (1998), no. 11-13, 825–836.

85

Part III.

Publikationen

87

