
- Technical Correspondence
PREDICATIVE PROGRAMMING
Hehner’s proposal that predicates can be interchanged
with programs and specifications [Z] is a good one, but
there are older methods that allow us to do that with-
out the “technical difficulties” he notes in his paper.
This correspond.ence discusses those difficulties and ad-
vises on the use of other approaches to support predica-
tive programming.

The ability io interchange predicates on the values of
state variables with programs or specifications is a con-
sequence of two well-known facts:

(1) The beh,avior of a program may be described by a
set of ordered pairs (x, y) where x and y are possible
states of the data, and it is possible for the program to
stop in state y after being started in state x. The set of
ordered pairs defines a relation, and this approach has
been called relational semantics. It has been used by
many authors, among them, Majster [3], de Bruijn [l],
and Meyer [a]. For the deterministic programs that we
usually encounter, the relation is a function. That case
has been discussed extensively by Mills [5, 61, Nelson
[i’], and others. Mills’s papers use functional semantics
to provide an elegant description of the ideas of struc-
tured program:ming and program verification using the
interchangeability of functional specifications and pro-
grams.

(2) Any set relevant to this discussion can be charac-
terized by a predicate, which is called its characteristic
predicate. That predicate may be used to describe the
relational semantics of the program.

Hehner’s nezy semantics (NS) can be understood as a
variant on relal’ional semantics (RS). The notation intro-
duced in [2] is a convention for writing the characteris-
tic predicates. However, the interpretation of the predi-
cates under NS is different from the interpretation of
those predicates under RS. Let R be the relation associ-
ated with a program by RS, then H, the relation associ-
ated with a program by NS, is apparently’ given by

H = R + 1(x, ,y) 1 termination is not guaranteed
when the program is started in
state x).

We can illusirate the difference in interpretation by
several examples. In RS, a program that will not termi-
nate when started in state x is denoted by excluding x
from the domain of R; in NS, this is denoted by includ-
ing the pair (x, y) for all data states y. In RS, a program
that never terminates would be characterized by the
predicate false. In NS, it can only be characterized by
true. In NS, true describes all possible programs, that is,
an unrestricted set of programs. In RS, true describes
’ The relation is not explicilly stated in [I], hut the one given here is consis-
tent with all the examples and discussion.

the least-restricted program, a program with no restric-
tions on its behavior. NS offers no predicate that only
describes programs that never terminate. The implica-
tions of this innovation can be best discussed after re-
viewing a well-known problem with RS.

When RS is used for deterministic programs, two pro-
grams with externally distinguishable behavior will al-
ways be represented by distinct relations. For nondeter-
ministic programs this is not the case. Consider two
programs X and Y as follows:

l X is guaranteed to terminate for all initial states.
l Y has behavior identical to X except that, for some

starting states, it may sometimes, but not always, fail
to terminate. When it does terminate, it will only
terminate in a state in which X could terminate.

X and Y are described by the same relation (and
hence the same predicate) in RS. This is a severe weak-
ness in RS, which has led some workers to conclude
that it cannot be used for nondeterministic programs.

Two ways to correct this deficiency have been pro-
posed. Several authors have added a distinguished final
state representing nontermination. The characteristic
predicate of such relations cannot be a predicate on
values of the program variables (in the familiar predi-
cate calculus) because the variables have no values in
the special state. One can also supplement the relation
with a set, called the competence set in [8], containing
the states in which termination is guaranteed. Both ap-
proaches are equivalent in the sense that the algebraic
properties of the mathematical objects are the same. It
is not possible to provide complete descriptions of an
unrestricted class of programs by a single predicate on
the values of the program variables. Either one uses
two predicates, or one adds additional elements that are
not program variables.

Although NS associates different predicates with X
and Yin most (but not all) cases, it cannot express other
distinctions that can be expressed by RS. The specifica-
tion associated with Y will not reveal that it can only
terminate in states where X could terminate. Hehner
argues that such distinctions are not useful because
nonterminating mechanisms are undesirable. My expe-
rience suggests otherwise.

A software engineer should be able to use a program
semantics to write specifications that can express the
difference between any pair of programs with observa-
bly different behavior. Otherwise, one will be forced to
overspecify, that is, require something that is not really
needed. This can happen with regard to nontermina-
tion because there are applications where one would
want to either:

(1) Specify that either termination in a restricted set
of finite states or nontermination is allowable. We

534 Communications of fhe ACM May 1985 Volume 28 Number 5

Technical Correspondence

might want to forbid termination in certain states be-
cause termination in those states would lead to unde-
sirable effects from subsequent programs.

(2) Specify that termination in certain situations is
allowed, but not required. These are cases that will
never arise, and it is therefore not appropriate to con-
strain the behavior.

(3) Specify that termination is required, but that the
state is immaterial. We might do this because the pro-
gram that is executed afterwards will have behavior
that is independent of its starting state.

We cannot distinguish these three cases if we use the
NS interpretation of the predicates when writing speci-
fications. In fact, we cannot express (1) or (3) at all.

There are other complications. The NS definition of
composition is far more complicated than the usual def-
inition of relational composition. A consequence of that
definition is that composition in NS is not associative;
the properties of the predicates are clearly different
from the properties of the programs they are to model.
A further complication resulting from the NS interpre-
tation of the predicates comes with the introduction of
nondeterministic choice (“or”). Because of the way that
NS represents nontermination, it is possible that the
“or” of two programs, each of which is required to ter-
minate, will not be required to terminate. Again, the
properties of the mathematical structure are not those
of the programs it was intended to model.

As Hehner points out, one can avoid some of these
difficulties by the introduction of (otherwise) superflu-
ous variables. However, we should ask why one should
accept these problems and possible pitfalls when RS
supports the same programming methodology without
such anomalies. In the sequel we review the methods
available for three different classes of programs and
specifications.

Deterministic Programs and Specifications
When dealing with deterministic programs, the RS rela-
tions are functions, and one can use functional seman-
tics (FS). The weakness of RS, described above, does not
arise with FS, and one can use the characteristic predi-
cates of the functions associated with the programs to
describe or specify programs. These predicates com-
pletely characterize the programs. The definition of
composition is simple and well known, and there are
none of the technical problems noted above. This suf-
fices for many practical applications because the pro-
grams that we usually deal with are deterministic.
Mills’s work has led to widespread use of FS within the
IBM Federal Systems Division.

Nondeterministic Programs and Specifications
with “Safe” Domains
There are situations in which we want to deal with
nondeterministic programs or use specifications that al-
low a choice of final states for certain starting states. It
is useful to distinguish a restricted class of programs
and specifications, in which for all states x, if a program

can ever terminate when started in state x, it is certain
to terminate when started in state 3~. We refer to these
as having safe domains. In the terminology of [8], pro-
grams with safe domains are programs in which the
domain of the program is the same as the competence
set of the program.

If you restrict your attention to programs or specifica-
tions with safe domains, the characteristic predicate of
the RS relation provides a complete description of the
program or specification. Unfortunately, the set of pro-
grams with safe domains is not closed under ‘I;“. Pro-
grams X and Y may both have safe domains while X;Y
does not. (Note that this is a property of the programs
and specifications, not a quirk of the formalism used to
represent them.) The vast majority of programs and
specifications of practical interest are programs with
safe domains, and as long as one remains within that
class, one can use a single predicate corresponding to
the standard relational semantics without fear of math-
ematical anomalies. Theorems corresponding to those
proved in [2] about NS are proved about relational se-
mantics in standard mathematical texts. Because FS is a
special case of this method, it is easy to compare deter-
ministic programs with programs in this class and to
use FS whenever a safe program is found to be deter-
ministic.

Unrestricted Nondeterministic Programs
An unrestricted class of nondeterministic specifications
and programs can be represented by the RS predicate
together with an additional predicate giving the set of
states in which termination is guaranteed (LDRS). Add-
ing the second predicate is a natural extension to the
approach used for programs with safe domains, making
it easy to compare safe domain programs with other
programs and to determine when a program has a safe
domain. The pair of predicates constitutes a representa-
tion of an LD-relation. All properties of LD-relations are
properties of nondeterministic programs. The necessary
theorems about these predicates were proved in [8].

I have made extensive use of the notation introduced
in [2], but applied the older interpretation of the predi-
cates as outlined above. It can be used by both experi-
enced programmers and beginners. I have not found
any situation in which there is an advantage to using
the NS interpretation. Because the properties of the
mathematical objects used in FS, RS, and LDRS are
exactly those of the programs that they model, one
need never worry that one will unintentionally write a
program that is not properly represented by the seman-
tics. Such errors can be particularly vexing because the
semantics cannot help you in such cases.

Acknowledgments. John McLean and Art Sedgwick
made useful suggestions during the preparation of this
correspondence.

David L. Parnas
Dept. of Computer Science
University of Victoria
Victoria, B.C. VBW 2Y2 Canada

May 1985 Volume 28 Number 5 Communications of the ACM 535

Technical Correspondence

REFERENCES
1. de Bruijn. N.G. Unpublished reports on the Automath Project,

Technische IHogeschool Eindhoven. The Netherlands.
2. Hehner. E.C.R. Predicative programming: Part 1. Commun. ACM 27, 2

(Feb. 19843, 13-143.
3. Majster-Cederbaum. M. A simple relation between relational and

predicate transformer semantics for non deterministic programs. If.
Process. Left. 2, 4, 5 (Dec. 12, 19801.

4. Meyer, A.R.. and Halpern. 1.Y. Axiomatic definitions of program-
ming langua[tes: A theoretical assessment. 1. ACM 29, 2 (Apr. 1982).
555-576.

5. Mills. H.D. The new math of computer programming. Commun. ACM
l&l (Jan. 1975). 43-48.

6. Mills, H.D. Mathematical foundations of structured programming.
Sofrware Productivity. Little Brown. Boston, Mass.. 1983.

7. Nelson, E. Functional programming analysis. J. Syst. Softw. 2 (1981).
225-235.

8. Parnas. D.L. A generalized control structure and its formal defini-
tion. Commun. ACM 26, 8 (Aug. 1983), 572-581.

AUTHOR’S RESPONSE
Parnas’s letter shows a number of fundamental misun-
derstandings. I shall reply on two levels, one concern-
ing the general predicative principle and the other con-
cerning the details of my particular semantics.

A description of X is a true statement about X. “Is
Catholic” describes the Pope, and “is Jewish” does not,
because the former is true of the Pope and the latter is
not. When Parnas states “In RS, such a program would
be described by false,” he is clearly misusing the word
“describe,” since false is not true of anything. Of course,
Parnas is free to make any association between pro-
grams and predicates that he wishes, but he cannot call
his association a descriptive semantics. In my paper, I
was careful to follow this general principle: The
stronger the predicate, the fewer things it describes,
and at the extremes, true describes everything and false
does not describe anything.

That is one half of my “predicative principle.” The
other half concerns what a program is. In my paper, I
do not specify or describe programs. I specify desired
computer behavior (activity). In the traditional view, a
program is identified with computer behavior, hence it
is traditional to talk about the specification of programs.
But I am considering programs to be specifications (of
desired computer behavior). This view is essential in
allowing me to consider programs as predicates and to
integrate programming notations with other specifica-
tion notations. This is a main point of my paper, but
Parnas clearly has not taken it to heart. He says “In NS,
true describes all possible programs,” “a program that
never terminates,” and similar phrases. Of course, all
programs terminate; it is the machine activity they
specify that may not terminate. Does anyone talk about
a nonterminati.ng specification?

A forthcoming paper by C. A. R. Hoare in [l] entitled
“Programs Are Predicates” adopts exactly the predica-
tive principle, as in my paper (but with a different
choice of programming connectives). For further read-
ing, I recommend it.

Now let me turn to the detail in my semantics that
seems to bother Parnas most: the treatment of termina-
tion. My specifications (and therefore my programs)

speak only of initial and final values of variables and o:f
communication sequences. I have chosen not to speak
directly of termination. If we specify that a particular
poststate is required, then indirectly we are saying that
termination is required. If we specify that an infinite
sequence of communications is required, then indi-
rectly we are saying that nontermination is required.
(We may even specify that an infinite sequence of corn..
munications is required of one process, and that a
poststate is required of another. For a comment on that
possibility, see Lengauer’s letter.) The relation that
Parnas associates with a program according to my se-
mantics should have been

H = ((ti, ti) (for input ti, output Z; is acceptable)

with no mention of termination.
According to Parnas, “Hehner argues that such dis-

tinctions (e.g., may terminate versus must not termi-
nate) are not useful because nonterminating mecha-
nisms are undesirable. My experience suggests other-
wise.” In Part II of my paper, I introduce communica-
tion channels and consider nonterminating activity
without any difficulty. Parnas must be referring only to
Part I (he never mentions communication and refer-
ences only Part I). The assumption there is that, after
an initial input, without communication channels,
nothing further is observable unless and until the com-
putation properly terminates. And then, what is observ-
able is not the fact of termination, but the final values
of the variables. Without communication channels,
nonterminating behavior is unobservable and cannot
possibly serve any purpose.

Parnas lists three kinds of specification he might
want, and states that my specifications cannot be used
for the first and third. The first is to “forbid termination
in certain states.” This is no problem for my specifica-
tions: i # 3 is a specification satisfied only by behavior
that does not terminate with x = 3. Of course, if we are
to observe that a mechanism achieves (implements] this
specification, its behavior must terminate in some other
state. (We cannot observe that a mechanism’s behavior
never terminates.) In Parnas’s third kind of specifica-
tion, “termination is required, but . . . the [final] state is
immaterial.” This time Parnas is right: My specifica-
tions can say that the final state is undetermined, but
not that termination is also required. However, in the
absence of communication channels, such behavior is
useless.

The decision not to speak directly about termination
was made also by Hoare in his axiomatic semantics and
by Dijkstra in his predicate transformer semantics, and
with similar consequences. We are unable to distin-
guish among some or all of the pathological behaviors:
abortion, nontermination, undetermined poststate. For
example, using Dijkstra’s weakest precondition seman-
tics, we cannot say that nontermination is required (not
even indirectly). (The reader should note that lwp(S,
true) is interpreted as meaning that no postcondition is

536 Communicatioys of the ACM May 1985 Volume 28 Number 5

Technical Correspondence

guaranteed, hence termination is not guaranteed, but ables. There is a weakest possible description of the
termination in an arbitrary poststate is a possibility.) state of a program variable x; let us call it K(x), or
These semantics, like mine, were designed for the com- “chaos at x.” For ordinary variables it is the predicate
putations that people want. To study pathology, we true-nothing may be assumed about the state of the
may wish to use Parnas’s semantics. Or even better, we variable; for channel variables it is the assertion that
can have a predicative semantics and speak directly past communications are never modified (see [l]
about (non)termination simply by adding a variable for for a formal definition). Hehner employs assertion
that purpose, exactly as suggested in the appendix to K =df Vxtv. K(x), where v is the vector of program vari-
Part I of my paper. ables. His use of chaos deserves some discussion,

Parnas is wrong to say that “RS supports the same
programming methodology.” Here is a simple example.
The specification (in integer variables n and x)

says that if n is initially nonnegative then the final
value of x must be the factorial of n’s initial value, and
n must be unchanged. According to the predicative se-
mantics of if-then-else,

(if n > 0 then (ti > 0 + i = ti! A ri = t?)

else (ti = 0 =3 i = fi! A fi = ti)) d S

is a trivial theorem. It says that the problem S can be
solved by the use of if-then-else, introducing two new
problems to be solved. But before we solve them, we
have the confidence of a theorem that we have taken a
correct step, and a good implementation can tell us
immediately if we have made a logic error. This step
does not commit us to any particular solutions to the
new subproblems, but expresses them in their full gen-
erality. Similarly, according to the predicative seman-
tics of assignment and composition (semicolon),

Most of Hehner’s semantics follows the philosophy of
global chaos: “If chaos occurs at one variable, it will
spread to all others.” For instance, if an assignment
x := e goes wrong, that is, the in value of expression e is
undefined, chaos results at all variables of vector v.
Similarly, in the composition P;Q, chaos in P makes
all of P;Q chaos. For example, for P: x := l/O and
Q: y := 0, Hehner’s semantics yields P;Q = Q;P = true.
Composing P and Q spells chaos for both x and y, be-
cause of a chaotic assignment of x. At least in the ab-
sence of channel variables, P;Q is appropriately imple-
mented by sequential execution of P and then Q. (We
shall consider channels later.) Hehner points out that
composition is, in some rare cases, not associative.

(n := n - 1; S; n := n + 1; x := x X n)

*(il>O=ai=fi!Ari=ti)

(x := I) + (h = 0 - i = ti! A ri = ri)

In the conclusion of Part I, Hehner proposes (but does
not adopt) the alternative philosophy of local chaos: “If
chaos occurs at one program variable, it will spread
only to dependent variables.” Variable x depends on
variable y if an assignment of x uses y. In this philoso-
phy, a chaotic assignment spoils only the target vari-
able. Solely the definition of assignment governs the
propagation of chaos. Composition is not concerned
with chaos. For our previous programs P and Q, this
semantics yields P;Q = Q;P = (i = 0). Variable y is
spared from chaos, since y does not depend on x. Com-
position is associative, and its implementation requires
a data-flow analysis.

are theorems that complete the solution. The ability to
mix programming and other specification notations this
way depends essentially on the predicative principle.

Acknowledgments. Lorene Gupta suggested the exam-
ple program.

Eric CR. Hehner
Computer Systems Research Institute
Sanford Fleming Building
University of Toronto
Toronto, Ontario MSS IA4
Canada

One connective in Hehner’s semantics follows the
philosophy of local chaos: independent composition
P 1) Q. In independent composition, chaos in one pro-
gram does not spread to the other. Two programs P and
Q may only be composed by 1) if they are independent.
P and Q are independent if they manipulate distinct
portions z+ and up of vector v. Our programs P: x :=
l/O and Q: y := 0 can be independently composed to
P I) Q = (g = 0). P)I Q may be implemented by parallel
execution of P and Q.

REFERENCES
1. Hoare. C.A.R.. and Shepherdson. J.C., Eds. Mathemafical Logic and

Programming Languages. Prentice-Hall. Englewood Cliffs, N.J., 1985.

In Hehner’s semantics, the composition of P and Q
does not imply their independent composition. This
means that not all parallel executions of P and Q may
be replaced by execution in sequence. We would like
independent composition to always subsume composi-
tion: P;Q =+ P 1) Q. Hehner’s semantics provides the re-
verse implication: PII Q + P;Q (Theorem 14 in [l]). Best
would be the conjunction of both implications: PII Q =
P;Q. Then, independent composition would be a special
case of composition with no purpose other than to sim-
plify the detection of concurrency, as Hehner intended.
We accomplish PII Q = P;Q by entirely committing the
semantics to one or the other chaos philosophy:

Hehner provides a semantics that identifies imperative
(i.e., Pascal-like) programs with “implementable” predi-
cates that relate in values of program variables v (de-
noted ti) to out values (denoted ti). Program variables
may be ordinary (assignable) variables or channel vari-

May 1985 Volume 28 Number 5 Communications of the ACM 537

Technical Correspondencr’

(1) Global chaos-redefine independent composition dent composition: the potential for unbounded nonde-
as follows: terminism.

P (I Q =df (((+dik P=K)

A (+dd. Q=K)) * (P(vp) A Q(va))) A K.

Now, independent composition (P 11 Q) subsumes com-
position (P;Q and Q;P). To achieve equality of P 11 Q and
P;Q, we must a.lso weaken composition

P;Q =,Jf (((Tvti. P=K)

A (1%. Q=K)) + (36. P: A Q:)) A K.

Hehner’s semantics is partly centralized and partly
distributed. Program parts (processes) that are them-
selves composed by centralized semantics (ordinary
composition) may be further composed by distributed
semantics (independent composition). Independent
composition may not be replaced by ordinary composi-
tion. Independent composition identifies concurrency,
but its implementation still requires a data-flow analy-
sis: Freedom from chaos of P)(Q does not imply free-
dom from chaos of both P and Q.

This version of composition is again not associative. It
reflects a very strict philosophy of global chaos, in
which chaos spreads backward from the point of its
occurrence to previous program parts. Any arbitrarily
interleaved composition of independent P and Q equals
their ordinary composition P;Q.

(2) Local chaos-keep independent composition as is,
and adopt the previously defined local chaos semantics
for assignment and ordinary composition. Since chan-
nel input c?x and channel output d!e can be expressed
as assignments of sequence variables (see [l]), they in-
herit local chaos semantics from assignment and com-
position. Essentially, in case of missing input or unsuc-
cessful output, chaos is restricted to the variables in-
volved: c and :[, or d, respectively. The semantics of
input choice [a?~ -+ P 0 c?y ---, Q] requires a similar
change. If input is missing on both channels a and c,
chaos occurs at a and x, and c and y; the states of all
other variables are preserved.

We have based our discussion on the assumption
that ordinary composition is appropriately implemented
by normal (von Neumann) sequential execution. In
Hehner’s semantics this holds without a doubt in the
absence of channel variables. In the presence of chan-
nels, a program may execute infinitely without being
chaos. Hehner gives the example of a program ONES:
(d!l; ONES) that outputs an infinite sequence of ones on
a channel d. Because ONES is not chaos, (ONES; x := 2)
must satisfy f = 2. Channels suggest the notion of “par-
tial” termination. To support it, we may, as in this ex-
ample, prefer the implementation to delay certain oper-
ations and instead apply an order of execution that is
fair to both components of the composition. An imple-
mentation with such capabilities gives composition lo-
cal chaos semantics, and if such an implementation is
assumed, composition should be defined accordingly.
Then, ordinary composition once again implies inde-
pendent composition, as we desire.

One pleasing property of a semantics where
P 11 Q = P;Q, as in both (1) and (2), is that the ordi-
nary composition of independent programs is commu-
tative since it equals their independent composition,
which is commutative. This holds, in particular, for
independent channel communications. In contrast
to [I], c?x; d!l = d!l: c?x.

Christian Lengauer

Dept. of Computer Sciences
University of Texas at Austin

Austin, TX 78712

REFERENCES
1. Hehner. E.C.R. Predicative programming (Parts I and II). Commun.

ACM 27, 2 (Feb. 1984). 134-151.

Global chaos is the “centralized” chaos philosophy. It
yields a less determined, that is, weaker semantics in
which a computation may either succeed completely or
fail completely. An occurrence of chaos in just one of
many independent components may cause abortion of
the entire program. A concurrent computation termi-
nates when all its concurrent components have termi-
nated. Concurrency is identified by independent com-
position and is implemented by traditional techniques;
for example, it may be simulated with arbitrarily inter-
leaved sequential execution.

AUTHOR’S RESPONSE

Local chaos is the “distributed” chaos philosophy. It
yields a more determined, that is, stronger semantics
that takes the notion of partial success to the extreme.
Chaos only affects dependent parts of a computation.
Only those parts may abort: independent parts must
continue. This requires a data-flow analysis. Indepen-
dent composition becomes obsolete. Its justification was
to identify concurrency. Here, concurrency is a by-
product of the data-flow analysis. The rest of the se-
mantics inherit.; one of the properties of indepen-

I agree with Lengauer. I wish to point out that, in my
semantics, A;B can always be implemented as sequen-
tial execution (first A, then B) in circumstances where
we would expect that implementation (e.g., A is non-
communicating, or A communicates only a finite
amount). But, as Lengauer points out, in other circum-
stances, it is less obvious what the execution should be.
When A is an infinite but nonchaotic communicating
loop and B does not depend on the variables in A, we
may prefer that B be given a fair portion of time. Or, we
may prefer sequential execution, so that B is infinitely
delayed. I believe my semantics is open to both inter-
pretations.

The main point of my papers is not the specific
choice of connectives that I have defined, but the pred-
icative (and prescriptive) approach to the semantics of
programs. I am happy to see alternative suggestions,
particularly when they have nicer algebraic properties
than my definitions.

Eric C.R. Hehner

538 Communications of fhe ACM May 1985 Volume 28 Number 5

