
Morpheus: Variability-Aware Refactoring in the Wild

Jörg Liebig1, Sven Apel2, Andreas Janker3, Florian Garbe4, and Sebastian Oster5

Abstract: Today, many software systems are configurable with conditional compilation. Just like
any software system, configurable systems need to be refactored during their evolution. The inherent
variability of configurable systems induces an additional dimension of complexity that is not addressed
properly by current academic and industrial refactoring engines. Even simple refactorings, such as
RENAME IDENTIFIER, are not handled well by existing refactoring engines and may introduce errors
in some variants of the configurable system to be refactored. To improve the state of the art, we
propose a variability-aware refactoring approach that relies on a canonical variability representation
and variability-aware analysis. The goal is to preserve the behavior of all variants of the configurable
system, without compromising general applicability and scalability. To demonstrate practicality, we
developed MORPHEUS, a sound variability-aware refactoring engine for C code with preprocessor
directives. We applied MORPHEUS to three substantial real-world systems (Busybox, OpenSSL, and
SQLite) showing that variability-aware refactoring is practical (i.e., scalable, sound, and complete) in
the presence of conditional compilation.

Keywords: configurable systems, refactoring, preprocessor

For more than 40 years software developers implement configurable software systems in
the programming language C using conditional compilation with the C preprocessor CPP.
Using preprocessor directives, such as #ifdefs, developers write optional and alternative
code fragments, which form the basis to tailor a configurable system to different application
scenarios and use cases. Many developers are familiar with #ifdefs, and practically every
software system written in C is configurable with conditional compilation [Li10]. To evolve
and maintain software systems, software developers usually rely on refactoring engines
as part of integrated development environments, such as ECLIPSE. A refactoring engine
is a tool, which (semi-)automatically applies code restructings with the goal to improve the
internal code structure while preserving the external program behavior [Me02]. However,
evolving and maintaining configurable systems is challenging, as the behavior not only of
a single system, but of multiple system variants have to be considered, something which
is not adressed properly in current refactoring engines.

To assess the state-of-the-art of refactoring engines for configurable systems, we conducted
an empirical study to classify strategies of how existing refactoring engines (industrial,
open-source, and academic) handle refactorings for configurable systems [Li15]. Overall,
we found that there are five different strategies: code restructurings using standard editor fa-
cilities (find/replace), applying refactorings to single variants only (single variant), applying
refactorings to multiple variants in isolation (variant-based), support for source code with a
1 Method Park, joerg.liebig@methodpark.de
2 University of Passau, apel@fim.uni-passau.de
3 University of Passau, janker@fim.uni-passau.de
4 University of Passau, fgarbe@fim.uni-passau.de
5 Method Park, sebastian.oster@methodpark.de

1



limited set of #ifdef usage patterns in configurable code (limited patterns), and involving
heuristics to reasons about code restructurings in the presence of preprocessor directives
(heuristics). All strategies suffer from certain limitations that hinder their applicability in
practice: they are error-prone (find/replace), are incomplete (single variant and limited
patterns), do not scale (variant-based), or are unsound (heuristics). For example, even a
simple refactoring, such as EXTRACT FUNCTION, does not work properly in the popular de-
velopment environment ECLIPSE in the presence of #ifdefs. In ECLIPSE, which applies a
single-variant strategy, we observed a different program behavior after code restructurings.

As existing strategies and refactoring engines have serious shortcommings, which hinder
their application in practice, we developed our own strategy, called variability-aware refac-
toring [Li15]. The idea is to use variability-aware data-structures and algorithms [Wa14,
Li13, Kä11] for this task, i.e., data-structures and algorithms, which incorporate variability
in the form of #ifdefs directly during code restructurings. To assess the applicability of
variability-aware refactoring, we implemented variability-aware versions of three common
refactorings (RENAME IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION) as
part of our own refactoring engine: MORPHEUS. In experiments with three, real-world case
studies (Busybox, OpenSSL, and SQLite), we could show that variability-aware refactoring
scales well to practical configurable systems, while preserving the behavior of all variants.
The average time for applying a single refactoring is in the order of milliseconds. With
variability-aware refactoring, we close a gap in tool-support for configurable software
systems and show that, for the first time, a scalable, sound, and complete refactoring engine
for C (including preprocessor directives) is possible.

References
[Kä11] Kästner, C.; Giarrusso, P.; Rendel, T.; Erdweg, S.; Ostermann, K.; Berger, T.: Variability-

Aware Parsing in the Presence of Lexical Macros and Conditional Compilation. In: Pro-
ceedings of the Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM, pp. 805–824, 2011.

[Li10] Liebig, J.; Apel, S.; Lengauer, C.; Kästner, C.; Schulze, M.: An Analysis of the Variability
in Forty Preprocessor-Based Software Product Lines. In: Proceedings of the International
Conference on Software Engineering (ICSE). ACM, pp. 105–114, 2010.

[Li13] Liebig, J.; von Rhein, A.; Kästner, C.; Apel, S.; Dörre, J.; Lengauer, C.: Scalable Analysis of
Variable Software. In: Proceedings of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, pp. 81–91, 2013.

[Li15] Liebig, J.; Janker, A.; Garbe, F.; Apel, S.; Lengauer, C.: Morpheus: Variability-Aware
Refactoring in the Wild. In: Proceedings of the International Conference on Software
Engineering (ICSE). ACM, pp. 380–391, 2015.

[Me02] Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering, 28(5):449–462, 2002.

[Wa14] Walkingshaw, E.; Kästner, C.; Erwig, M.; Apel, S.; Bodden, E.: Variational Data Structures:
Exploring Tradeoffs in Computing with Variability. In: Proceedings of the International
Symposium on New Ideas in Programming and Reflections on Software (Onward!). ACM,
pp. 213–226, 2014.

2


