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Abstract Software-merging techniques face the challenge of finding a balance
between precision and performance. In practice, developers use unstructured-
merge (i.e., line-based) tools, which are fast but imprecise. In academia, many
approaches incorporate information on the structure of the artifacts being
merged. While this increases precision in conflict detection and resolution, it
can induce severe performance penalties. Striving for a proper balance between
precision and performance, we propose a structured-merge approach with auto-
tuning. In a nutshell, we tune the merge process on-line by switching between
unstructured and structured merge, depending on the presence of conflicts.
We implemented a corresponding merge tool for Java, called JDime.

Our experiments with 50 real-world Java projects, involving 434 merge
scenarios with over 51 million lines of code, demonstrate that our approach
indeed hits a sweet spot: While largely maintaining a precision that is superior
to that of unstructured merge, structured merge with auto-tuning is up to 92
times faster than purely structured merge, 10 times on average.

Keywords Version Control, Software Merging, Structured Merge, JDime

1 Introduction

Software-merging techniques are gaining momentum in the practice and the-
ory of software engineering. They are important tools for programmers and
software engineers, not only in version control systems, but also in product-line
and model-driven engineering.

Contemporary software-merging techniques can be classified into (1) syn-
tactic approaches and (2) semantic approaches. The former include (1 a) un-
structured approaches that treat software artifacts as sequences of text lines
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and (1 b) structured approaches that are based on the artifacts’ syntactic struc-
ture. In our attempt to push back the limits of practical software merging, we
concentrate on syntactic approaches—semantic approaches are promising but
still too immature to be used in real-world software projects.

The state of the art is that the most widely-used software-merging tools are
unstructured; popular examples include the tools diff and merge of Unix,
used in version-control systems such as CVS, Subversion, and Git. Un-
structured merge is very simple and general: every software artifact that can
be represented as text (i.e., as sequences of text lines) can be processed. So, a
single tool suffices that treats all software artifacts equally. However, the down-
side is that unstructured merge is rather weak when it comes to expressing
differences and handling merge conflicts: the basic unit is the line—all struc-
ture, all knowledge of the artifacts involved is lost (Apel et al, 2011; Mens,
2002).

Previous work has shown that an exploitation of the syntactic structure
of the artifacts involved improves the merge process in that differences be-
tween artifacts can be expressed in terms of their structure (Apel et al, 2011;
Buffenbarger, 1995; Mens, 2002; Westfechtel, 1991), which also opens new op-
portunities for detecting and resolving merge conflicts (Apel et al, 2011)—one
of the key problems in this field (Mens, 2002). Unfortunately, no practical
structured-merge tools for mainstream programming languages are available.
Why?

A first problem is certainly that, when developing a structured-merge tool,
one must commit to a particular artifact language and, as a consequence, de-
velop and use a distinct tool per language. A second problem is that algorithms
that take the structure of the artifacts involved into account are typically at
least of cubic, if not even NP-complete time complexity—a major obstacle
to their practical application (Mens, 2002). The first problem has been ad-
dressed, for example, by the technique of semistructured merge (Apel et al,
2011) (parts of the artifacts are treated as syntax trees and parts as plain text;
see Sec. 5). We strive for a solution to the second problem: Can we develop
a merge approach that takes the structure of artifacts fully into account and
that is efficient enough to be useful in real-world software projects?

We report here on the development and application of a merge approach
that is based on tree matching and amalgamation. It is more precise in cal-
culating differences and merges than an unstructured, line-based approach,
as it has more information about the artifacts at its disposal. To cope with
the computational complexity of the tree-based merging operations involved,
we use an auto-tuning approach. The basic idea is that the tool adjusts the
precision of the merge operations (from unstructured, lined-based to struc-
tured, tree-based) guided by the occurrence of conflicts in a merge scenario.
As long as no conflicts are detected, the tool uses unstructured merge, which is
cheap in terms of performance. Once conflicts are detected, the tool switches
to structured merge, to increase the precision. So, the basic idea is simple:
use the expensive technique only when necessary, which is in line with Mens’
statement on the future of software-merge techniques:
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An interesting avenue of research would be to find out how to com-
bine the virtues of different merge techniques. For example, one could
combine textual merging with more formal syntactic and semantic ap-
proaches in order to detect and resolve merge conflicts up to the level
of detail required for each particular situation (Mens, 2002).

While an auto-tuning approach is not as precise as a purely structured
merge (the unstructured merge involved may miss conflicts or may not be
able to resolve certain conflicts), it is likely faster and thus more practical
in real-world software engineering, especially, if one believes Mens’ conjecture
that unstructured merge suffices in 90% of all merge scenarios (Mens, 2002).
In fact, we strive for a solution that improves the state of practice, namely
getting away from the exclusive use of unstructured-merge tools.

To demonstrate the practicality of our approach, we have implemented a
tool for Java, called JDime, that performs structured merge (optionally) with
auto-tuning. We used JDime in 434 merge scenarios of 50 software projects,
involving over 51 million lines of code. In particular, we compared the per-
formance and the ability to resolve conflicts of unstructured and structured
merge (with and without auto-tuning).

We found that purely structured merge is more precise than unstructured
merge: It is able to resolve many more conflicts than unstructured merge, but it
reveals also conflicts not noticed by unstructured merge. However, as expected,
structured merge is slower by an order of magnitude, which is due to the
more complex differencing and merge technique. Remarkably, the auto-tuning
approach diverges only minimally from purely structured merge in terms of
conflict detection, but it is up to 92 times faster than purely structured merge,
10 times on average.

In summary, we make the following contributions:

– We present a structured-merge approach that is based on tree matching and
amalgamation, and that uses auto-tuning to improve performance while
largely maintaining precision.

– We discuss properties and trade-offs of several algorithms for ordered and
unordered tree matching.

– We provide a practical implementation, called JDime, of our approach for
Java.

– We apply our tool to a substantial set of merge scenarios and compare
its performance and conflict-detection capability (with and without auto-
tuning) to that of unstructured merge.

This article is an extended version of a prior conference paper presented at the
27th IEEE/ACM International Conference on Automated Software Engineer-
ing (Apel et al, 2012). Beside many editorial refinements and more comprehen-
sive discussions of the algorithms that we used (including a new algorithm for
unordered tree matching) and the results we obtained, we extended the scope
of the empirical study substantially, from 8 to 50 Java projects. To increase
validity, we selected in the extended study only merge scenarios that occurred
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in the real world, which was not the case in our prior study, which considered
also synthetic merges that seemed “realistic”.

JDime and the sources of the merge scenarios and the collected data of
all experiments are available at a supplementary Web site: http://fosd.net/
JDime .

2 Software Merge

In his seminal survey, Mens (2002) provides a comprehensive overview of the
field of software-merge techniques. Here, we concentrate on the popular sce-
nario of a three-way merge, which is used in every practical version control
system. A three-way merge aims at joining two independently developed ver-
sions based on their common ancestor (i.e., the version from which both have
been derived) by locating their differences and by selecting and applying cor-
responding changes to the merged version. However, the merge may encounter
conflicts when changes of the two versions are inconsistent (e.g., two versions
apply mutually exclusive changes at the same position) (Mens, 2002). A major
goal is to empower merge tools to detect and resolve conflicts automatically.

As software projects grow, merge techniques have to scale. In this section,
we discuss the principal properties of unstructured and structured merge with
regard to conflict detection and resolution as well as performance.

2.1 Unstructured Merge

For illustration, we use the simple example of an implementation of a bag data
structure that can store integer values. In Figure 1 (top), we show the basic
version, called Base, which contains a Java class with a field and a constructor.

Based on version Base, two versions have been derived independently (mid-
dle of Figure 1): version Left adds a method size and version Right adds a
method get. Merging Left and Right, based on their common ancestor Base,
using unstructured merge results in a conflict, as shown in Figure 1 (bottom
left). The conflict cannot be resolved automatically by any unstructured-merge
tool and thus requires manual intervention. The reason is that an unstructured-
merge tool is not able to recognize that the text is actually Java code and that
the versions can be merged safely: The declarations of the methods get and size
can be included in any order because method declarations can be permuted
safely in Java, as illustrated in Figure 1 (bottom right).

In practice, most unstructured-merge tools compare and merge versions
based on largest common subsequences (Bergroth et al, 2000) of text lines.
This is not without benefits. The unstructured approach is applicable to a wide
range of different software artifacts, and it is fast: quadratic in the length of the
artifacts involved. Mens (2002) conjectures that 90% of all merge scenarios
require only unstructured merge; the other 10% require more sophisticated
solutions, such as structured merge—a fraction that is likely to grow with the
popularity of decentralized version control systems.

http://fosd.net/JDime
http://fosd.net/JDime
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Version Base

class Bag {
int[] values;
Bag(int[] v) { values = v; }

}

Version Right

class Bag {
int[] values;
Bag(int[] v) { values = v; }
int size() {

return values.length;
}

}

Version Left

class Bag {
int[] values;
Bag(int[] v) { values = v; }
int[] get() {

return values;
}

}

Unstructured merge

class Bag {
int[] values;
Bag(int[] v) { values = v; }

<<<<<<< Left
int[] get() {

return values;
}

=======
int size() {

return values.length;
}

>>>>>>> Right
}

Structured merge

class Bag {
int[] values;
Bag(int[] v) { values = v; }
int[] get() {

return values;
}
int size() {

return values.length;
}

}

derive

merge

Fig. 1 A conflict resolved with structured merge but not with unstructured merge

2.2 Structured Merge

Structured merge aims at alleviating the problems of unstructured merge with
regard to conflict detection and resolution by exploiting the artifacts’ struc-
ture. Westfechtel (1991) and Buffenbarger (1995) pioneered this field by using
structural information, such as the context-free and context-sensitive syntax,
during the merge process. Subsequently, researchers proposed a wide variety
of structural comparison and merge tools, including tools for Java (Apiwat-
tanapong et al, 2007) and C++ (Grass, 1992) (see Section 5).

The idea underlying structured-merge tools is to represent the artifacts
as trees (or graphs) and to merge them by tree (or graph) matching and
amalgamation. Additionally, the merge process has all kinds of information on
the language at its disposal, including information on which program elements
can be permuted safely—which has proved useful in software merge (Apel
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et al, 2011). This way, it is almost trivial to merge the two versions of Figure 1
(bottom right).

Structured merge is not only superior in that certain conflicts can be re-
solved automatically. There are situations in which unstructured merge misses
conflicts that are detected by structured merge. In Figure 2, we show again
the basic version of the bag example (top), but two other versions have been
derived independently: Left’ and Right’, both of which add a method getString
(middle). Interestingly, unstructured merge (bottom left) does not report any
conflict but results in a broken program that contains two methods getString:
one before the declaration of array values and constructor Bag, as in version
Right’, and one after, as in version Left’. In contrast, structured merge notices
the two versions of method getString and their difference in the initialization of
the local variable sep, which results in a conflict reported to the user (bottom
right). Note that conflicting code may be even well-typed and still misbehave.

On the downside, structured merge relies on information on the syntax
of the artifacts to be merged. In practice, this means that one has to create
one merge tool per artifact type or language. Although the generation of a
merge tool can be automated to some extent, still manual effort is necessary
to provide the specific information of the particular kind of artifact being
processed (Apel et al, 2011). Nevertheless, for languages that are widely used,
such as Java, it is certainly useful to spend the effort and create and use a
dedicated merge tool.

A more severe problem of structured merge—which we want to address
here—is the run-time complexity of the internal merge algorithm. Typically, it
relies on trees or graphs and corresponding matching and merging operations.
Although there is the possibility of adjusting the complexity by considering
only parts of the artifacts’ structure (e.g., context-free syntax only) or by
using a less precise matching, even these compromises result in, at least, cubic
or even exponential time complexity. This inherent complexity seems to be a
major obstacle to a practical application. In the next section, we present an
approach based on tree matching and amalgamation, paired with auto-tuning,
to push back the limits of structured merge in this respect.

3 Our Approach

Our approach has three ingredients:

– We represent artifacts as context-free syntax trees, including information
on which program elements can be permuted safely.

– We use three tailored tree-matching algorithms, two for unordered and
one for ordered child nodes (the former for program elements that can be
permuted safely, the latter for those that must not be permuted); the rules
for merge and conflict resolution are language-specific.

– We use the full power of structured merge only in situations in which
unstructured merge reports conflicts.
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Version Base

class Bag {
int[] values;
Bag(int[] v) { values = v; }

}

Version Right’

class Bag {
String getString() {

String res = "";
String sep = ";";
for(int v : values) {

res += v + sep;
}
return res;

}
int[] values;
Bag(int[] v) { values = v; }

}

Version Left’

class Bag {
int[] values;
Bag(int[] v) { values = v; }
String getString() {

String res = "";
String sep = ",";
for(int v : values) {

res += v + sep;
}
return res;

}
}

Unstructured merge

class Bag {
String getString() {

String res = "";
String sep = ";";
for(int v : values) {

res += v + sep;
}
return res;

}
int[] values;
Bag(int[] v) {

values = v;
}
String getString() {

String res = "";
String sep = ",";
for(int v : values) {

res += v + sep;
}
return res;

}
}

Structured merge

class Bag {
int[] values;
Bag(int[] v) { values = v; }
String getString() {

String res = "";
String sep =

<<<<<<< Left’
",";

=======
";";

>>>>>>> Right’
for(int v : values) {

res += v + sep;
}
return res;

}
}

derive

merge

Fig. 2 A conflict detected with structured merge but not with unstructured merge

3.1 Artifact Representation

We represent artifacts as trees that reflect their context-free syntax. An al-
ternative would be to model also the context-sensitive syntax, which would
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result in graphs rather than trees (Westfechtel, 1991). Of course, the match-
ing and merging operations would be even more precise in this case, but also
computationally even more complex.

The problems illustrated in Figure 1 (inability to resolve a conflict) and Fig-
ure 2 (inability to detect a conflict) arise from the fact that unstructured-merge
tools have no information on which program elements can be permuted safely.
We include this information in our structured-merge approach. For every type
of program element (e.g., class declaration, method declaration, statement),
the merge tool knows whether the corresponding elements can be permuted,
and it uses this information during the matching and merge operations. For
illustration, we show the tree representing the base revision of our bag example
in Figure 5 (page 25).

3.2 Algorithms

The overall merge process involves three phases: (1) calculating a matching be-
tween the trees of the input versions, (2) amalgamating the trees based on the
calculated matching, and (3) resolving conflicts during the merge operation.
Next, we discuss all three phases in detail.

3.2.1 Tree Matching

Tree matching takes two trees and computes the largest common subtree. In
particular, we perform tree matching on each pair of trees: (left, base), (right,
base), (left, right). As a result, the nodes of each tree are tagged with informa-
tion on the nodes of the other versions that they match. Tree matching based
on computing the largest common subtree compares the input trees by level.
Algorithms that compare trees across levels are more precise but also more
complex, as we discuss in Section 6.

The algorithm establishing a match of nodes depends on their syntactic
category (e.g., two field declarations are considered equal if their types and
names match), and it distinguishes between ordered nodes (which must not
be permuted) and unordered nodes (which can be permuted safely).

Ordered Nodes. For ordered nodes, we use a variation of Yang’s algorithm (Yang,
1991), which is the tree-equivalent of finding the longest common subsequence
of two strings (Hirschberg, 1975): We compute for all pairs (Ai, Bj) recursively
the number of matches (W ) and the maximum matching (M), as shown in
Algorithm 1. Note that the recursive call invokes TreeMatching, which calls
OrderedTreeMatching or UnorderedTreeMatching (Algorithm 2),
depending on whether the nodes at the respective level are ordered or un-
ordered. The problem of finding the largest common subtree of ordered trees
is quadratic in the number of nodes (Yang, 1991).
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Algorithm 1 Ordered Tree Matching
function OrderedTreeMatching(Node A, Node B)

if A 6= B then return 0 . Nodes do not match
end if
m← number of children of A
n← number of children of B
Matrix M ← (m+ 1)× (n+ 1) . Initialize auxiliary matrix
for i← 1..m do

for j ← 1..n do
W [i, j]← TreeMatching(Ai, Bj) . Matching for children
M [i, j]← max(M [i, j−1],M [i−1, j],M [i−1, j−1] +W [i, j])

end for
end for
return M [m,n] + 1 . Return maximum number of matches

end function

Unordered Nodes. As shown in Algorithm 2, for unordered nodes, we also
compute for all pairs (Ai, Bj) the number of matches, recursively. Finding
the highest number of matches in the resulting matrix M is equivalent to
computing the maximum number of matches in a weighted bipartite graph,
an optimization problem also known as the assignment problem, which can be
solved in cubic time (Schrijver, 2002).

We implemented and experimented with two solutions for solving the as-
signment problem: One translates the problem into a linear-programming
problem and feeds it into a linear-program solver, and the other is based on
the Hungarian method, a polynomial-time, combinatorial optimization algo-
rithm (Kuhn, 1955).

The assignment problem can be expressed as linear program as follows1:

max
∑
t∈T

∑
w∈W

ktwxtw

subject to ∑
t∈T

xtw = 1, for all w ∈W∑
w∈W

xtw = 1, for all t ∈ T

xtw ∈ {0, 1}, for all (t, w) ∈ T ×W

where xtw = 1 means that task t is assigned to worker w (In our case workers
and tasks are nodes of the respective abstract syntax trees). The first constraint
set expresses that each worker must be assigned exactly one task, the second
ensures that every task is carried out by exactly one worker. For the assignment
problem, the constraint matrix is equal to the unoriented incidence matrix of
the underlying graph. Therefore, an optimal, integral solution can be computed
in polynomial time, in contrast to general exponential time.

1 http://www.math.ucla.edu/~tom/LP.pdf

http://www.math.ucla.edu/~tom/LP.pdf
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Using the linear-programming approach, SolveAssignmentProblem in
Algorithm 2 creates the constraint matrix and the input matrix, invokes the
solver, and returns the maximum number of matches, of which we can compute
the actual tree matching.

Algorithm 2 Unordered Tree Matching
function UnorderedTreeMatching(Node A, Node B)

if A 6= B then return 0 . Nodes do not match
end if
m← number of children of A
n← number of children of B
Matrix M ← (m)× (n) . Initialize auxiliary matrix
for i← 0..m do

for j ← 0..n do
M [i, j]← TreeMatching(Ai, Bj) . Matching of children

end for
end for
sum ← SolveAssignmentProblem(M) . LP solver or Hungarian method
return sum + 1 . Return maximum number of matches

end function

Our second approach implements the Hungarian method (Kuhn, 1955),
which provides an optimal solution for the assignment problem in polynomial
time. Whereas the original version of the algorithm has a run-time complexity
of O(n4), we use a modified variant that is proven to run in O(n3) (Edmonds
and Karp, 1972).

We conducted experiments with both implementations and decided to use
the LP-based approach as default.

3.2.2 Tree Amalgamation

Tree amalgamation takes the competing trees (left and right), enriched with
matching information, and creates a merged tree as result. The merging process
differs for ordered and unordered trees. Based on this distinction, the algorithm
fills the merged tree, as specified in Algorithms 3, 4, and 5.

Algorithm 3 Tree Amalgamation (Merge)
function Merge(Node left , Node right)

merge ← empty tree
if fixedNumChildren(left , right) ∧ left .hasChanges() ∧ right .hasChanges() then

merge.add(conflict(left , right))
end if
if isOrdered(left , right) then

merge ← orderedMerge(left , right)
else

merge ← unorderedMerge(left , right)
end if

end function
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Algorithm 4 Tree Amalgamation (Ordered Merge)
function OrderedMerge(Node left , Node right)

merge ← empty tree
while ¬(leftdone ∧ rightdone) do

if left .hasNext() then
leftChild ← left .next()

else
leftdone ← 1

end if
if right .hasNext() then

rightChild ← right .next()
else

rightdone ← 1
end if
if ¬leftdone ∧ leftChild /∈ right then

if leftChild ∈ base then
if leftChild .hasChanges() then

merge.add(conflict(leftChild , ∅)) . Insertion–deletion conflict
end if

else
if ¬rightdone ∧ rightChild /∈ left then

if rightChild ∈ base then
if rightChild .hasChanges() then

merge.add(conflict(∅, rightChild)) . Insertion–deletion conflict
else

merge.add(leftChild)
end if

else
merge.add(conflict(leftChild , rightChild)) . Insertion conflict

end if
else

merge.add(leftChild)
end if

end if
end if
if ¬rightdone ∧ rightChild /∈ left then

. . . . Same for right child
else if leftChild ∈ right ∧ rightChild ∈ left then

merge.add(merge(leftChild , rightChild))
end if

end while
return merge

end function

Merging unchanged and consistently changed or added nodes is rather
simple, because the left and right versions are not in conflict and the change
can be applied safely to the merged tree. The challenge of merging is to apply
changes introduced by only one version. Finding such independent changes is
easy, using matching information attached to the nodes. But, before we can
apply an independent change to the merge tree, we have to check whether it
conflicts with a change of the other respective version. We also have to be
careful in cases where the language specification demands a fixed amount of
child elements.
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Algorithm 5 Tree Amalgamation (Unordered Merge)
function UnorderedMerge(Node left , Node right)

merge ← empty tree
while ¬(leftdone ∧ rightdone) do

if left .hasNext() then
leftChild ← left .next()

else
leftdone ← 1

end if
if right .hasNext() then

rightChild ← right .next()
else

rightdone ← 1
end if
if ¬leftdone ∧ leftChild /∈ right then

if leftChild ∈ base then
if leftChild .hasChanges() then

merge.add(conflict(leftChild , ∅)) . Insertion–deletion conflict
end if

else
merge.add(leftChild)

end if
end if
if ¬rightdone ∧ rightChild /∈ left then

if right ∈ base then
if rightChild .hasChanges() then

merge.add(conflict(∅, rightChild)) . Insertion–deletion conflict
end if

else
merge.add(rightChild)

end if
else if leftChild ∈ right ∧ rightChild ∈ left then

merge.add(merge(leftChild , rightChild))
end if

end while
return merge

end function

3.2.3 Conflicts

Next, we explain types of conflicts that can occur while merging. An insertion
conflict occurs potentially when two nodes are inserted concurrently at the
same parent node in the merge tree. Here again, the algorithm has to distin-
guish between ordered and unordered nodes. For ordered nodes, the insertion
positions are essential: if they overlap, the nodes are flagged as conflicting.
For example, including a statement s1 in a block at the first position does not
conflict with another statement s2 included later in the block; only if s1 and
s2 are added to the same position, they are in conflict. However, even though
the insertion positions are unambiguous, we are still not guaranteed to be safe:
Several language elements have a bounded number of arguments. If two in-
sertions result in a violated bound, a conflict has to be reported. An example
is illustrated in Figure 3. An && operation needs exactly two arguments. To
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Version Base

boolean isValid() {
return cond1 && cond2;

}

Version Right

boolean isValid() {
return cond3 && cond2;

}

Version Left

boolean isValid() {
return cond2 && cond4;

}

derive

Fig. 3 Two insertions leading to a violation of the language specification

Version Base

void foo() {
if (true) {

compute(x);
}
int n = 0;

}

Version Right

void foo() {
int n = 0;

}

Version Left

void foo() {
if (true) {

compute(y);
}
int n = 0;

}

derive

Fig. 4 A conflict between an inner change and a deletion

merge both insertions correctly, we have to add a second && operation. As it
is not clear whether this is the desired behavior, our tool reports a conflict in
such cases.

Deletions may also give rise to conflicts when a competing version propa-
gates an insertion at the same position, which results in a deletion–insertion
conflict. As the simplified example in Figure 4 illustrates, deletion–insertion
conflicts during a structured merge can be difficult to detect. The right revision
deletes the conditional expression, whereas the left revision changes an inner
node. The merge engine has to detect the conflict between the conditional
construct, that includes the actually changed node, and its removal.

After performing the merge, the pretty printer traverses the abstract syntax
tree of the merged program and generates source code. To reduce the overall
number of conflicts, we group consecutive conflicts as well as their alternatives
while pretty printing, a practice that is also standard in unstructured-merge
tools.
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3.3 Auto-Tuning

The algorithms presented in Section 3.2 are computationally complex. In par-
ticular, computing the largest common subtree is cubic in the number of (un-
ordered) program elements (Schrijver, 2002). This is a limitation of structured
merge, compared to the quadratic time complexity of unstructured merge.
But we do not want to abandon structured merge entirely. Instead, we strive
for a balance between exploiting syntactic information to detect and resolve
conflicts and attaining acceptable performance.

The idea of auto-tuning is simple. We use unstructured merge as long as no
conflicts have been detected. The rationale is that, in software merge, usually
only few parts of a program are changed and even fewer participate in con-
flicts, as postulated by Mens’ 90/10 rule (Mens, 2002). So, for most parts of a
program, we can save the effort of an expensive tree matching. However, this
way, we may also miss conflicts due to the imprecision of unstructured merge.
This is the price we pay for improving performance, but our experiments sug-
gest that the price is acceptable, as we discuss in Section 4. Once unstructured
merge detects conflicts, we use structured merge selectively on a per-file basis
(i.e., for triples of file versions) instead. This way, we take advantage of the
capabilities of structure merge to detect and resolve conflicts.

Algorithm 6 Auto-Tuning
function CombinedMerge(File left , File base, File right)

result ← UnstructuredMerge(left , base, right)
if hasConflicts(result) then

result ← StructuredMerge(left , base, right)
end if
print(result)

end function

4 Evaluation

To evaluate our approach, especially the balance between precision and per-
formance that we aim to attain with auto-tuning, we implemented a prototype
of a structured-merge tool, called JDime, and we conducted a series of exper-
iments based on 50 real-world, open-source Java projects. The tool as well as
all merge scenarios and experimental data are available at the supplementary
Web site.



Balancing Precision and Performance in Structured Merge 15

4.1 Implementation

We have implemented JDime on top of the JastAddJ compiler framework.2
The implementation is straightforward because JastAddJ provides excellent
extension capabilities. The foundation for our artifact representation is pro-
vided by the abstract-syntax trees generated by JastAddJ. For technical
reasons, we had to build our own tree representation on top of it. We imple-
mented the matching and merging algorithms straightforwardly by means of
visitors and aspects. For unordered tree matching in our linear-programming
variant, we used the GLPK solver.3 Information on which program elements
can be reordered safely was included based on the Java language specification.
We also took care of the fact that Java code usually comes with comments:
They are extracted during parsing and put back in after the merge.

4.2 Hypotheses and Research Questions

To make our expectations precise, we pose four hypotheses and one research
question:

H1 Unstructured merge reports fewer, but larger conflicts than structured
merge.

H2 Unstructured merge is substantially faster than structured merge.
H3 Auto-tuning does not miss many conflicts detected by purely structured

merge.
H4 Auto-tuning is substantially faster than purely structured merge.
R1 What fraction of a merge scenario (in terms of files) can be handled by

unstructured merge in that no conflicts are reported? In other words, can
we confirm Mens’ postulate that 90% of merge scenarios can be handled
properly with unstructured merge?

4.3 Sample Projects

To establish a proper set of real-world Java projects, we developed a history-
analysis crawler for the popular hosting provider GitHub. We used the crawler
to select 50 popular open-source projects that contain several merge scenarios
with conflicts in the histories of their repositories. The number of conflicts was
determined by re-running the merge scenarios and parsing the output. The
crawler is available at the supplementary Web site.

The projects are of substantial but varying sizes, belong to different do-
mains, and have substantial version histories. Of each project, multiple merge
scenarios result in conflicts. Technically, a merge scenario is a triple consisting
of a base, a left, and a right version, whereby the base version is the common

2 http://jastadd.org/web/jastaddj/
3 http://www.gnu.org/software/glpk/

http://jastadd.org/web/jastaddj/
http://www.gnu.org/software/glpk/
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ancestor of the other two. In contrast to the earlier conference version of this
article (Apel et al, 2012), we selected only merge scenarios that were actually
performed in the projects’ histories.

In Table 1, we list information on the sample projects including name,
domain, number of merge scenarios, and number of lines of code. Each of
the 50 projects comes with 5 to 10 merge scenarios. All 434 merge scenarios
together consist of more than 51 million lines of Java code. They are available
and documented at the supplementary Web site.

4.4 Methodology

Our method of evaluation was twofold. First, we compared unstructured and
structured merge (with and without auto-tuning) with regard to conflict de-
tection and performance. Second, we analyzed a subset of conflicts manually
to learn more about the capabilities of unstructured and structured merge.

Overall, we applied our merge tool to each of the 434 merge scenarios
thrice: using unstructured merge, purely structured merge, and structured
merge with auto-tuning. For each merge pass, we measured the execution time
10 times and computed the median, and we counted the number of reported
conflicts and conflicting lines of code. We conducted all measurements on a
desktop machine (AMD Phenom II X6 1090T, with 6 cores @3.2 GHz, and
16 GB RAM) with Gentoo Linux (Kernel 3.10.9) and Oracle Java HotSpot
64-Bit Server VM 1.7.0_25. To avoid side effects on the run times caused by
I/O, we copied each scenario into a RAM-based file system before executing
the merges.

4.5 Results

Figure 6 (page 26), shows the average number of conflicts for each project
as reported by unstructured merge, purely structured merge, and structured
merge with auto-tuning. Similarly, Figure 7 (page 27), reveals the respective
numbers of lines of code involved in conflicts. Finally, in Figure 8 (page 28),
we depict the times consumed by three merge approaches. Tables 2 (page 31)
and 3 (page 32) contain the experimental data for all merge scenarios. All raw
data are available at the supplementary Web site, on a per-file-scenario basis.

At a glance, the numbers and sizes of conflicts reported by unstructured
merge differ significantly from the ones reported by structured merge. In al-
most all projects, structured merge reports fewer and smaller conflicts. In-
terestingly, purely structured merge and structured merge with auto-tuning
report almost similar numbers of conflicts, which means that only few con-
flicts are missed due to the selective use of unstructured merge (apart from
the fact that the reported sets of conflicts are equal). With regard to per-
formance, structured merge is substantially slower than unstructured merge:
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Table 1 Overview of the sample projects (all from http://github.com/)

Project Domain Merge Lines
scenarios of code

androidannotations Mobile Development Framework 10 353K
android_Camera Mobile Application Platform 10 538K
android_Settings Mobile Application Platform 10 972K
Anki-Android Flash Card Application 10 419K
atmosphere Web Applications Framework 10 718K
bigbluebutton Web Conferencing System 10 1528K
cassandra Database 10 4548K
cucumber-jvm Testing Framework 10 279K
cuke4duke Testing Framework 10 47K
grails-core Web Application Framework 10 2068K
hector Database Client 10 684K
hudson Continuous Integration Server 10 2464K
jedis Database Client 10 371K
k-9 Mail Client 10 1938K
Kundera Database Library 10 4071K
lombok Language Extension 10 763K
mongo-java-driver Database Library 10 465K
mustache.java Template Engine 10 122K
orientdb Database 10 4550K
Priam Database Extension 10 290K
rexster Graph Server 10 532K
robolectric Testing Framework 10 1619K
titan Graph Database 10 751K
twitter4j Twitter Library 10 852K
usergrid-stack Mobile Applications Platform 10 2027K
wildfly Application Server 10 354K
zoie Search Engine 10 438K
AndEngine Game Engine 9 514K
androidquery Library 9 237K
junit Testing Framework 9 494K
spring-roo Development Framework 9 1442K
Activiti Business Process Management 8 3127K
dropwizard Web Application Framework 8 197K
graylog2-server Log Management 8 118K
jbpm Business Process Management 8 2258K
netty Network Application Framework 8 1306K
roboguice Mobile Development Framework 8 68K
Solandra Search Engine 8 227K
gradle Build System 7 3146K
OpenRefine Data Management 7 884K
storm Distributed Computation System 7 727K
android_Mms Mobile Application Platform 6 358K
erjang Virtual Machine 6 601K
h2o Hadoop Analytics Engine 6 1010K
reactor Asynchronous Application Framework 6 159K
RESTProvider Caching Proxy 6 80K
SpoutcraftLauncher Game Client 6 99K
couchdb-lucene Database Client 5 30K
greenhouse Web Application 5 44K
metrics Library 5 121K

http://github.com/
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unstructured merge is up to 109 times faster, 23 times on average. But struc-
tured merge with auto-tuning is up to 92 times faster than purely structured
merge, 10 times on average.

4.6 Discussion

4.6.1 Hypotheses and Research Questions

Based on the results, we have to put hypothesis H1 into perspective: Struc-
tured merge tends to produce conflicts of a finer granularity than unstructured
merge, but it is also able to avoid certain types of conflicts completely. In the
merge scenarios under study, structured merge reports 60% of the number of
conflicts of unstructured merge (average over all merge scenarios), which con-
tradicts our hypothesis. Analyzing a random subset of conflicts, we found that
these numbers are mainly due to ordering conflicts that cannot be handled
properly in unstructured merge. But, as we expected, the size of the conflicts
reported by structured merge is smaller. It produced only 21% of the number
of conflicting lines of unstructured merge. Some outliers can be observed in the
results of our experiments, where structured merge produced larger conflicts
than the unstructured approach. This was the case in the project Kundera,
where a conflict inside a class declaration was produced, which resulted in
two competing classes of about 800 lines when using structured merge. We
observed similar cases only in projects zoie and k-9.

Interestingly, our experiments support hypothesis H3: The conflicts re-
ported by purely structured merge are largely the same as the ones reported
by using the auto-tuning approach. That is, the strategy of auto-tuning to use
unstructured merge as long as no conflicts are detected, and to switch upon
detection of a conflict to structured merge, seems to suffice.

Furthermore, our experiments confirm hypothesisH2: In all projects, struc-
tured merge is substantially slower than unstructured merge. Unstructured
merge is up to 109 times faster than structured merge, 23 times on average.
This result does not need much interpretation. Although we could optimize
JDime further, we cannot escape the complexity of the algorithms involved in
the structured merge process.

Also, we can confirm hypothesis H4: structured merge with auto-tuning
is faster than purely structured merge in almost all projects, up to 92 times
and 10 times on average. In projects android_Camera, mustache.java,
dropwizard, and reactor, it is even on the order of using unstructured
merge. So, auto-tuning seems to be, at least, promising to hit a sweet spot
between precision and performance.

Finally, as for research question R1, we found that 5% of the changed files
cannot be merged with unstructured merge—which is even lower than the
value predicted by Mens. With structured merge, this fraction can be reduced
to 2%. This surprised us, as we experienced a way higher number for both
approaches in our preliminary study (Apel et al, 2012). The reason for this
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difference might be the fact that our previous case studies included also merge
scenarios that seemed feasible but were not part of the projects histories. All
scenarios of the study presented here have been actually performed in the
history of the projects.

4.6.2 Run-time Complexity

In Figure 9, we contrast the size of the merge scenarios in terms of lines of code
(mean number of lines of code of the file versions involved in a merge) and the
time needed for the merge of the file versions in question using unstructured
and purely structured merge. Apart from two groups of outliers, the merge time
grows smoothly with the file size. The outliers can be explained with the cubic
run-time complexity of the matching algorithms involved. The most extreme
run-time outliers we observed are due to subsequent definitions of large, hard-
coded arrays with more than thousand elements that our matching algorithm
had to process.

In our quest of understanding the merits of structured merge, we computed
a number of further statistics such as the average number of nodes, depths,
and widths of the syntax trees involved in a merge. We found that the number
of nodes per syntax-tree level is a more accurate measure than lines of code:
The merge time grows smoothly, polynomially with the number of nodes per
syntax-tree level, as displayed in Figure 10. Notice that the outliers of Figure 9
are farther to the right, which demonstrates that small files may be more
complex to merge than large files (when there are many nodes per level in
the syntax trees). The most outlying scenario with over 170 seconds is mainly
caused by three files in the project netty. Here, array declarations with over
2000 hard-coded values each resulted in a processing time of more than 30
seconds for each of these files.

4.6.3 Further Observations

To learn more about the capabilities of structure merge, we inspected a subset
of the conflicts manually. Next, we report the most interesting observations.

Tree matching is at the heart of structured merge. Its precision is much
higher than that of unstructured merge, but it is not perfect. We found situa-
tions in which structured merge was not able to resolve a conflict, even though
it could be resolved manually. The reason is that algorithms based on com-
puting largest common subtrees consider only corresponding tree levels. To
establish a matching across different levels (e.g., to detect shifted code), one
can use algorithms that compute largest common embedded subtrees, but they
are generally APX -hard (Zhang and Jiang, 1994).4 It will be an interesting
avenue of further research to incorporate even such complex algorithms during
auto-tuning, including approximations.

4 The set of APX problems is a subset ofNP optimization problems for which polynomial-
time approximation algorithms can be found.
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Furthermore, we found that most conflicts raised by unstructured merge
are related to the order of program elements. These conflicts can be handled
by structured merge—be it in terms of automatic conflict resolution, as in
Figure 1, or in terms of uncovering hidden conflicts, as in Figure 2. We also
found that conflicts reported by structured merge are typically fine-grained
and align with the syntactic program structure. With unstructured merge, the
conflicts are typically larger and often crosscut the syntactic program struc-
ture, which makes them harder to track and understand. However, there are
exceptions: Conflicts at nodes in the upper levels of the abstract syntax tree,
such as class or method declarations, result in large conflicts. This is also an
effect of our implemented matching algorithms and could be avoided by using
the cross-level matching approaches already mentioned. In our experiments,
we observed such large conflicts several times when generics where involved
(and changed by both revisions) in the declaration of a class. An example of
this can be found in the project Kundera.

4.7 Threats to Validity

In empirical research, a threat to internal validity is that the data gathered
may be influenced by (hidden) variables—in our case, variables other than the
kind of merge. Due to the simplicity of our setting, we can largely rule out
such confounding variables. We applied unstructured and structured merge to
the same set of merge scenarios and counted the number of conflicts and lines
of conflicting code that occurred in the merged code. We performed all perfor-
mance measurements repeatedly to minimize measurement bias. Furthermore,
we used a comparatively large sample to rule out confounding variables such
as programming experience and style.

A common issue is whether we can generalize our conclusions to other
projects, of other domains and written in other languages. To increase external
validity, we collected a substantial number of projects and merge scenarios. We
argue that the simplicity of our setting as well as the randomized sample allow
us to draw conclusions beyond the projects we studied. Our findings should
even apply to languages that are similar to Java (e.g., C#).

We had to exclude 0.13% of files while conducting our experiment. This was
due to technical problems of the underlying framework of our tool (JastAddJ),
which does not handle some language elements (e.g., annotations) very well.
However, we do not expect that excluding these files affects the big picture of
our study.

Another concern is that we do not know whether the merged code is se-
mantically correct. This is due to the nature of our approach, which guaran-
tees syntactic correctness in purely structured mode, but does not consider
semantics. However, this is still an improvement compared to the line-based
state-of-the-art merging tools, which do not incorporate syntax. The usage of
approaches and tools providing behavioral guarantees is simply not realistic
for substantial software projects, such as the ones selected in our study.
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5 Related Work

5.1 Structured Merge

After the seminal work of Westfechtel (1991) and Buffenbarger (1995), many
proposals of structured-merge techniques have been made. On the one hand,
there are proposals for structured-merge tools that are specific to mainstream
programming languages such as Java (Apiwattanapong et al, 2007) and C++
(Grass, 1992). On the other hand, there are many proposals of structured
two-way and three-way merge techniques for modeling artifacts (Kolovos et al,
2006; Mehra et al, 2005; Treude et al, 2007)—a comprehensive bibliography
is available on the Web.5 The approaches are mostly based on graphs, which
allow precise merging but harm scalability. So, it is unclear how they perform
on projects of the size of our case studies. Although aiming at modeling, the
different representations and merge algorithms are promising input for our
auto-tuning approach. Additionally, a renaming analysis could be integrated
to further improve the precision of tree matching (Hunt and Tichy, 2002).

5.2 Semistructured Merge

Semistructured merge aims at another sweet spot: one between precision in
conflict handling and generality in the sense that many artifact types can
be processed (Apel et al, 2011). Much like structured merge, semistructured
merge represents artifacts as trees. But an artifact is only partly exposed in
the tree, the rest is treated as plain text—that is why it is called ‘semistruc-
tured’. This way, a certain degree of language independence can be achieved
by a generic merge algorithm that merges artifacts by tree superimposition
and that concentrates on ordering conflicts. Language-specific information is
fed into the merge engine via a plugin mechanism. Semistructured merge is
less precise than structured merge because only parts of an artifact are treated
structurally. For example, bodies of Java methods are treated as plain text and
merged using a line-based approach. Our experiments with an existing imple-
mentation of semistructured merge6 confirm it to perform between structured
and unstructured merge in terms of conflict handling (it is able to resolve only
50% of conflicts, compared to structured merge), but even significantly worse
than structured merge (on average, 5 times in our sample merge scenarios). At
first sight, the latter finding is surprising, but semistructured merge was not
designed with performance in mind and, possibly, the language independence
attained by the plugin mechanism has to be paid for in terms of performance
penalties. Finally, auto-tuning was not considered in semistructured merge,
but could be combined with it.

5 http://pi.informatik.uni-siegen.de/CVSM/
6 http://http://fosd.net/SSMerge

http://pi.informatik.uni-siegen.de/CVSM/
http://http://fosd.net/SSMerge
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5.3 Other Approaches

A trace of which change operations gave rise to the different versions to be
merged can help in the detection and resolution of conflicts (Dig et al, 2007;
Koegel et al, 2009; Lippe and van Oosterom, 1992; Taentzer et al, 2010). How-
ever, such an operation-based approach is not applicable when tracing infor-
mation is not available, which is common in practice. Other approaches require
that the documents to be merged come with a formal semantics (Berzins, 1994;
Jackson and Ladd, 1994), which is rarely feasible in practice; even for main-
stream languages such as Java, there is no formal semantics available. Finally,
approaches that rely on model finders and checkers for semantic merge have
serious limitations with regard to scalability (Maoz et al, 2011).

6 Conclusion

We offer an approach to software merging that aims at a proper balance be-
tween precision and performance. First, it represents software artifacts as trees,
and merges them using tree matching and amalgamation. Second, it relies on
auto-tuning to improve the performance. The idea is to use unstructured merge
as long as no conflicts occur, and to switch to the more precise structured merge
when conflicts are detected. This way, expensive differencing and merge opera-
tions are used only in relevant situations. The auto-tuning approach may miss
critical conflicts due to the imprecision of the unstructured merge involved,
but experiments suggest that this happens only to an acceptable degree.

We developed the tool JDime, which implements our approach for Java,
and applied it in a series of experiments on 50 real-world projects, including
434 merge scenarios with over 51 million lines of code. We found that, in al-
most all projects, structured merge reports fewer and smaller conflicts than
unstructured merge, and structured merge is substantially slower. Interest-
ingly, purely structured merge and structured merge with auto-tuning report
almost similar sets of conflicts, but the auto-tuning approach is up to 92 times
faster, 10 times on average.

Our results give us confidence that auto-tuning is a viable approach to bal-
ancing precision and performance in software merging. However, we explored
only a subset of possible options. For example, we base our approach on syntax
trees and algorithms that compute largest common subtrees. But other rep-
resentations and algorithms are possible. Several approaches—especially, in
the modeling community (Kolovos et al, 2006; Treude et al, 2007)—represent
software artifacts as graphs, for example, incorporating the context-sensitive
syntax (Westfechtel, 1991). While graph algorithms are computationally more
complex than corresponding tree algorithms, they are also more precise. An
interesting issue is how we can exploit the wealth of representations and al-
gorithms during the merge process. We believe that, with the auto-tuning
approach, we have made a step in the right direction. Future approaches of
auto-tuning shall be more flexible in adjusting precision. The choice of the
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amount of information used as well as of the algorithms involved could be
guided by knowledge collected on-line during the merge process. For example,
it is promising to selectively use graph-based algorithms to resolve conflicts
that tree-based algorithms cannot resolve, or to try to detect situations where
structured merges produce very large conflicts, as we experienced with Kun-
dera.
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Fig. 5 Version Base of the bag example represented as a tree
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Fig. 9 File size (in number of lines of code) versus merge time (in milliseconds)
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Fig. 10 Sum of maximum nodes per syntax-tree level versus merge time (in milliseconds)
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Project #LOC #Files #Conflicts #Conflicting lines

UM SM AT UM SM AT

androidannotations 352832 3125 31 64 64 569 368 368
android_Camera 537849 1064 3 2 0 12 3 0
android_Settings 972019 1678 33 19 19 401 145 145
Anki-Android 419462 591 62 6 6 1545 31 31
atmosphere 718447 3062 110 41 40 3263 318 310
bigbluebutton 1527514 6548 55 38 38 443 125 125
cassandra 4548435 9314 7 18 5 55 114 74
cucumber-jvm 279383 2449 19 8 8 364 38 38
cuke4duke 46957 629 20 7 7 228 15 15
grails-core 2067689 7739 26 26 17 819 355 328
hector 684495 4048 11 2 1 253 10 4
hudson 2464359 10056 55 42 34 5530 584 567
jedis 371353 755 69 39 25 735 135 79
k-9 1938410 2797 41 57 57 519 757 757
Kundera 4071164 12983 53 24 22 1229 2692 996
lombok 762663 3933 17 4 4 323 42 42
mongo-java-driver 465295 1615 27 9 8 415 218 217
mustache.java 122071 559 17 7 7 403 99 99
orientdb 4550346 13423 91 39 39 2637 230 230
Priam 289628 1517 30 12 10 394 73 34
rexster 531674 1916 28 9 9 207 19 19
robolectric 1619060 7187 18 10 5 1085 267 256
titan 751024 3761 69 41 40 846 347 341
twitter4j 851546 3655 17 4 3 223 12 5
usergrid-stack 2027302 7336 95 17 17 2240 74 74
wildfly 353952 1700 24 12 12 428 57 57
zoie 437512 1611 44 8 7 458 991 970
AndEngine 514496 3132 37 93 86 886 369 355
androidquery 236579 495 15 6 3 4300 10 6
junit 493628 2675 28 8 8 1450 46 46
spring-roo 1442323 6623 20 2 2 107 3 3
Activiti 3126627 17220 13 15 14 120 28 26
dropwizard 197140 1563 14 4 4 160 50 50
graylog2-server 118038 863 23 13 12 175 54 52
jbpm 2258245 9286 37 19 18 1049 109 107
netty 1306188 5264 116 105 96 1730 1352 1334
roboguice 68211 589 66 70 70 1105 295 295
Solandra 227265 271 12 6 6 711 47 47
gradle 3146288 23253 38 19 17 325 44 40
OpenRefine 883902 3489 64 9 9 13110 17 17
storm 726582 1756 7 0 0 98 0 0
android_Mms 357782 1088 9 7 7 86 31 31
erjang 600770 1270 12 14 14 218 117 117
h2o 1010483 2046 32 28 26 174 106 101
reactor 158777 790 30 17 17 736 84 84
RESTProvider 80210 418 12 6 6 124 12 12
SpoutcraftLauncher 98587 245 12 3 3 170 108 108
couchdb-lucene 29683 141 12 4 4 84 28 28
greenhouse 44230 419 21 8 8 328 60 60
metrics 120844 719 15 7 6 302 18 14

Table 2 Experimental data (LOC: lines of code; UM: unstructured merge; SM: purely
structured merge; AT: structured merge with auto-tuning)
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Project #LOC #Files Merge time in milliseconds

UM SM AT

androidannotations 352832 3125 6247 163858 27029
android_Camera 537849 1064 2135 77719 3538
android_Settings 972019 1678 3360 120350 6799
Anki-Android 419462 591 1200 63373 5935
atmosphere 718447 3062 6126 164365 37997
bigbluebutton 1527514 6548 13094 526466 24053
cassandra 4548435 9314 18905 1001244 29658
cucumber-jvm 279383 2449 4882 167547 29026
cuke4duke 46957 629 4425 36596 11772
grails-core 2067689 7739 28780 815369 65528
hector 684495 4048 8145 293922 29174
hudson 2464359 10056 20125 599881 41192
jedis 371353 755 1502 69213 12915
k-9 1938410 2797 5540 353205 12798
Kundera 4071164 12983 93320 1017891 123075
lombok 762663 3933 7613 257805 33521
mongo-java-driver 465295 1615 5992 177948 21555
mustache.java 122071 559 4080 40227 6457
orientdb 4550346 13423 92456 1074726 135397
Priam 289628 1517 11019 103872 28073
rexster 531674 1916 9949 158759 17069
robolectric 1619060 7187 14435 508702 26259
titan 751024 3761 11656 305048 23402
twitter4j 851546 3655 7322 214671 14832
usergrid-stack 2027302 7336 43962 621037 70578
wildfly 353952 1700 3400 86558 16252
zoie 437512 1611 11749 110176 27320
AndEngine 514496 3132 6261 152800 37097
androidquery 236579 495 1909 72701 20333
junit 493628 2675 5345 143408 20842
spring-roo 1442323 6623 48127 454850 63215
Activiti 3126627 17220 34167 1158996 57660
dropwizard 197140 1563 3126 78658 4242
graylog2-server 118038 863 1726 40517 8860
jbpm 2258245 9286 18266 689762 34354
netty 1306188 5264 10522 968419 78332
roboguice 68211 589 1082 28515 10096
Solandra 227265 271 553 31661 13166
gradle 3146288 23253 77680 1985987 128082
OpenRefine 883902 3489 7720 198420 52727
storm 726582 1756 3526 103018 6226
android_Mms 357782 1088 2181 65508 7815
erjang 600770 1270 9144 177236 22121
h2o 1010483 2046 15016 210292 46082
reactor 158777 790 5728 59088 8219
RESTProvider 80210 418 3063 27923 4290
SpoutcraftLauncher 98587 245 486 16153 2355
couchdb-lucene 29683 141 278 9205 1529
greenhouse 44230 419 3012 25557 4658
metrics 120844 719 1437 38868 13813

Table 3 Experimental data (LOC: lines of code; UM: unstructured merge; SM: purely
structured merge; AT: structured merge with auto-tuning)


