
HIGH-PERFORMAN

98 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

ANCE JAVA
Despite the popular view that Java implementations are inefficient

(compared to their Fortran, C, and C++ counterparts), high-performance
applications, which demand execution efficiency, are finding ways to

exploit Java that benefit all Java implementations.

❖ Cherri M. Pancake and
Christian Lengauer,
Guest Editors

ver the past six years, the Java
programming language has
captured the attention of a
broad audience of program-

mers, software engineers, and network
application users alike, largely because of
its features for interactive and Internet
programming. Often viewed as the
modern alternative to C++, Java also has
the advantage of including explicit
mechanisms for parallelism and coordi-
nation, making it a natural language for
distributed computing.

Java is commonly perceived as being
execution-inefficient, despite the fact
that inefficiency is a property of lan-
guage implementations, not of the lan-
guage per se. Early implementations
were based on a Java Virtual Machine
(JVM) that interpreted unoptimized
“bytecode” in a relatively unsophisti-
cated way. Recent developments in com-
pilation technology (adding static
analysis capabilities and just-in-time
compilation) and instruction-level opti-
mizations have done away with many
sources of execution inefficiency. These

days, Java is competitive with C and
C++ for some applications on some plat-
forms and is considerably safer to exe-
cute and easier to program.

As Java implementations have
improved, interest has focused on its
possible use for high-performance com-
puting, or HPC. HPC applications
place extreme demands on execution
efficiency, requiring not just sophisti-
cated compilers but highly tuned run-
time environments that exploit the
characteristics of each host architecture.

A large majority of today’s Java pro-
grammers might well ask: Why is it
important to push for a high-perfor-
mance version of Java? The quest for
more efficient Java implementations
should be of interest to the broad Java
community, if for no other reason than
the fact that the most frequent Java crit-
icism is the relative inefficiency of both
its past and current implementations
(compared with those of Fortran, C, and
C++). That initial limitation has been
the basis for recent developments in sta-
tic analysis, just-in-time compilation,

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 99

C
A

R
EN

 R
O

SE
N

B
LA

TT

100 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

and JVM optimization. In pursuing high-perfor-
mance Java, the HPC community is adding to these
efforts with innovative work on faster remote
method invocation and the exploitation of high-
speed networks to improve performance—work that
will ultimately benefit all implementations of Java.

Moreover, non-HPC-minded programmers
should recognize how increasing emphasis on per-
formance will likely change the Java language itself.
Over the past few years, a consortium called the
Java Grande Forum (www.javagrande.org) has
become active in representing the interests of the

HPC community to Java developers. In many cases,
the features needed for HPC are being expressed in
class libraries, such as the ones designed to provide
efficient support for multidimensional, rectangular
arrays. Other proposals extend the base language,
including:

Floating-point computations with hardware support.
A new modifier, strictfp, enforces (locally)
the bit-reproducible behavior prescribed globally
by the original Java semantics but which is not
supported by current floating-point hardware.

Machine-specific performance optimizations.
Another new modifier, fastfp, would indicate
that the compiler may optimize arithmetic
expressions by using machine-specific instruc-
tions, a practice not permitted by Java’s current
specification.

The Java Grande Forum succeeded in getting
strictfp adopted into the Java 1.2 specification,
and a Java Specification Request for the adoption of
fastfp is under review. A current debate in the
HPC community concerns how complex numbers
should be added to the language. These extensions
should be of interest to many programmers outside
the HPC community as well.

HPC programmers might wonder: Why should
Java be proposed as a vehicle for HPC? HPC appli-
cations have typically been developed in Fortran
and C, whose compilers are robust and reflect
decades of research in optimization techniques. Java
offers several potential advantages; the most appar-
ent is access to many new resources, not least of

which are a wide selection of class libraries and a
growing number of trained programmers. One pro-
gramming approach is simply to mimic traditional
HPC techniques in Java, making the compiler pro-
duce essentially the same type of target code
expected of a Fortran, C, or C++ compiler. Some
organizations are doing this to take advantage of a
new generation of programmers whose preferred
language is Java.

A more ambitious approach is to develop new
HPC techniques to do things that could not be
done easily with more traditional languages. For

example, one distinct Java advantage is support for
secure, portable, dynamic target code. This makes it
a promising vehicle for irregular applications, such
as those requiring thread-based parallelism or run-
time compilation and optimization. But can Java
deliver the expected execution efficiency? In its pre-
sent form, it does so only to a limited extent. Many
of the related performance obstacles are due to cur-
rent implementations, which are still somewhat
immature, while others are imposed by Java’s
semantics.

How can Java be made more suitable for HPC?
Should high-performance applications adapt to the
limitations of the language, or should the language
be extended to improve its suitability? If the former,
how can we tune Java implementations so they
exploit the performance potential of the language to
the fullest? If the latter, what form should these
extensions take? Should the addition/modification
of language features be permitted, or should HPC
developers (try to) restrict themselves to class library
extensions?

These and similar questions were explored by 35
researchers at a week-long seminar last year at
Schloss Dagstuhl, Germany. Afterward, they were
invited to team up with various research groups to
address what has been done, and what should still
be done, to make Java more appropriate for HPC.
This issue includes three of the joint articles that
resulted. (Another, “Java and Numerical Comput-
ing,” by R. Boisvert et al., was published in Com-
puting in Science and Engineering, Mar./Apr. 2001).

Java’s suitability for high-performance scientific
computations. The salient design problems are the

The most apparent Java advantage is access to new
resources, including a wide selection of class libraries and a

growing number of trained programmers.

absence of rectangular, multidimensional arrays in
Java, and the fact that, in Java, complex numbers
and arrays are objects, rather than primitive data
types. This design choice incurs storage allocations
and frequent runtime checks due to Java’s semantics
enforcing a high level of security. While the recent
introduction of strictfp alleviates problems with
the initial too-precise floating-point semantics,
Java’s equally precise exception model remains a
challenge to high performance. Moreira et al.
explore the related questions and propose solutions
involving the addition of new Java packages and
compilation techniques.

Java’s ability to achieve high-performance com-
munication rates in a distributed environment.
Today’s most popular paradigm for distributed
computing—single-program-multiple-data (SPMD)
parallelism with message passing—does not inte-
grate well with Java’s OO model. However, using
multiple JVMs executing in parallel can serve to effi-
ciently implement Java’s own communication mech-
anism—remote method invocation in
multithreaded programs operating on a distributed
shared memory. Kielmann et al. compare two such
JVMs: Hyperion and Manta. And Getov et al.
explain how Java’s diverse forms of communication
can be used to advantage for large distributed appli-
cations involving the computational Grid—the
emerging wealth of interlinked, heterogeneous com-
puting resources on the Internet.

The clearest lesson from these articles, as well as
from the seminar, is that Java has significantly more
potential for HPC than is commonly believed.
True, when Java is used and implemented naively,
there can be problems with efficiency, but they are
not inherent in the language itself and therefore can
be overcome. Exploiting Java’s full potential for par-
allel and distributed computing requires efficient
JVMs and high-performance communications.

As the three articles here demonstrate, Java for
high-performance computing is on the horizon.

Cherri Pancake (pancake@cs.orst.edu; pancake@nacse.org) is a
professor of computer science and Intel Faculty Fellow at Oregon
State University, Corvallis, Director of the Northwest Alliance for
Computational Science and Engineering, and Chair of the Parallel
Tools Consortium.
Christian Lengauer (lengauer@fmi.uni-passau.de) is Chair for
programming in the Department of Mathematics and Informatics of
the University of Passau, Germany.

Thanks are due the International Conference and Research Center for Computer Sci-
ence at SchlossDagstuhl (www.dagstuhl.de) funded by the German states of Saarland
and Rheinland-Pfalz. The IBM T.J. Watson Research Center provided additional
financial support for the seminar.

© 2001 ACM 0002-0782/01/1000 $5.00

c

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 101

