
JavAdaptor: Unrestricted Dynamic Software Updates for
Java

Mario Pukall
University of Magdeburg

mario.pukall@iti.cs.uni-
magdeburg.de

Alexander Grebhahn,
Reimar Schröter

University of Magdeburg
{alexander.grebhahn,

reimar.schroeter}@st.ovgu.de
Christian Kästner

Philipps-University Marburg
kaestner@informatik.uni-

marburg.de

Walter Cazzola
University of Milano

cazzola@dico.unimi.it

Sebastian Götz
University of Dresden

sebastian.goetz@acm.org

ABSTRACT
Dynamic software updates (DSU) are one of the top-most
features requested by developers and users. As a result,
DSU is already standard in many dynamic programming lan-
guages. But, it is not standard in statically typed languages
such as Java. Even if at place number three of Oracle’s cur-
rent request for enhancement (RFE) list, DSU support in
Java is very limited. Therefore, over the years many differ-
ent DSU approaches for Java have been proposed. Neverthe-
less, DSU for Java is still an active field of research, because
most of the existing approaches are too restrictive. Some of
the approaches have shortcomings either in terms of flexibil-
ity or performance, whereas others are platform dependent
or dictate the program’s architecture. With JavAdaptor, we
present the first DSU approach which comes without those
restrictions. We will demonstrate JavAdaptor based on the
well-known arcade game Snake which we will update step-
wise at runtime.

Categories and Subject Descriptors
D. [Software]: Programming Techniques; Software Engi-
neering; Programming Languages

General Terms
Languages, Design, Algorithms

Keywords
Dynamic Software Updates, Software Maintenance, Tool Sup-
port.

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

1. INTRODUCTION
Research in the field of dynamic software updates (DSU)

has a long tradition and a lot of approaches and solutions
have been proposed over the years. Nevertheless, DSU is still
an active field of research, because most of the existing DSU
approaches are too restrictive. Some of them are inflexible
(i.e., they do not support all updates that are possible with
static program changes) whereas others require specific run-
time environments, cause significant performance penalties,
or dictate the program architecture. With the arrival of vir-
tual machines, which abstract the runtime environment from
the OS and thus offer new starting points for DSU approach
development, the situation slightly relaxed and less restric-
tive DSU approaches came up. However, unrestricted DSU
remained to be subject to dynamic languages (with a typi-
cal associated performance loss). DSU support for statically
typed languages, such as Java, is still restrictive. But, with
place number three in Oracle’s current request for enhance-
ment (RFE) list,1, unrestricted DSU is one of the top-most
requested features for the Java virtual machine (with ongo-
ing new votes pointing out the lively interest in this RFE).
The requester of this RFE argues that better DSU support
would ease software development and thus reduce times to
market. That is, the developer must not stop and restart
the application to test the newly added functionality which
is time consuming particularly when large amounts of data
have to be imported or several initialization steps must be
performed at program start. Even if this is also the main
reason for our DSU research efforts, we go one step further
and argue that unrestricted DSU would also be valuable in
the field of productive program execution. This is because
downtimes as a result of software maintenance decrease the
availability of a program, which may be costly in terms of
highly available applications. Additionally, restarts due to
program updates force users to interrupt their tasks, which
may decrease the user experience. For all these reasons we
have developed JavAdaptor which offers unrestricted DSU
for Java, i.e., it is flexible, platform independent, performant,
and does not affect the program architecture.

1http://bugs.sun.com/top25_rfes.do



We present:
(1) A brief description of the basic ideas behind JavAdaptor.
(2) A short introduction on how to use JavAdaptor.
(3) A practical demonstration of JavAdaptor based on the

well-known arcade game Snake which we will stepwise
update at runtime.

2. STATE OF THE ART
Various approaches for runtime adaptations in Java have

been suggested in literature. To set the context for JavAdap-
tor, we give a brief overview. For a more detailed survey,
see [6].

The most common solution for dynamic software updates
in Java is Java HotSwap [2] which was developed by Dmitriev
and became a feature of virtually all standard JVMs. It al-
lows the developer to change method bodies even of already
loaded and executed classes. However, changing the schema
of loaded classes, which is the key to flexibly update a run-
ning program, is not possible with HotSwap.

In contrast to HotSwap, many JVM patches exist which
made it not into any standard JVM. Such as Jvolve [8] or
the Dynamic Code Evolution VM [9]. The problem with
JVM patches is that they belong to one specific JVM imple-
mentation (and version) and may not be applicable to other
JVMs, which causes platform dependencies.

Another frequently used approach to upgrade Java’s run-
time update capabilities are wrappers respectively decora-
tors [3]. The idea is to decorate old program parts in order
to update them [7, 5]. The principle drawback of decora-
tors is that the implementation of this pattern requires to
completely change the program architecture.

Also common practice to improve the runtime update sup-
port in Java is the usage of components which can be dy-
namically updated. Corresponding approaches are Oracle’s
WebLogic Server [1] and Javeleon [4]. The major down-
sides of components are their influence on the program ar-
chitecture and their update granularity (i.e., replacing whole
components may be more expensive than replacing only the
classes that have changed).

3. JAVADAPTOR
Despite their undisputable quality, existing DSU solutions

have restrictions regarding the criteria mentioned above.
With JavAdaptor, we developed a tool which overcomes the
restrictions. That is, it offers flexible changes (such as chang-
ing the class hierarchy, adding or removing fields and meth-
ods, etc.) to already loaded classes and operates on-top of
every standard JVM supporting HotSwap, which is true for
virtually all important standard JVMs. At the same time,
it does not challenge the program performance and has no
influence on the program architecture.

The very basic idea behind the update mechanism imple-
mented by JavAdaptor is twofold. In order to update an
already loaded class, we rename the new class version and
thus can reload it by the same class loader that loaded the
original class (which is by far more performant than reload-
ing classes through customized class loaders). Once the new
class version is loaded, we update all callers of the original
class. At first, we map all program state of the old class to
the new class. Afterwards, we redirect all references of the
original class to the new class version. The redirection of
the references itself bases on Java HotSwap which allows us

Adaptation Logic

JDI

JavAdaptor

Update Thread Class Loader

Application

JVMTI

Target JVM

Invoke JVMTI to: load new class versions,
update caller, map the program state, and hotswap

method body implementations

Class_v1
Class_v2

Class_v3
Class_v4

Class_v5

create new class version using Javassist

load

Developer

code change

Figure 1: DSU architecture.

to redefine method bodies and thus to modify the references
within the method bodies. However, updating the references
of global fields as well as method signatures and return types
is not possible with HotSwap because those updates would
require to change the schema of the caller class. In order
to update the callers while avoiding to change their schemas
(which otherwise would require to reload the callers as well
and let our update mechanism become ineffective), we use
constructs such as containers and proxies. These constructs
in combination with Java HotSwap allow us to efficiently up-
date the caller side and finally to apply the required changes
to the running program. All this comes without significant
performance drops (measured under real world conditions).
Further details of our update approach can be found in [6].

Technically, we currently provide JavAdaptor as a plug-in,
which smoothly integrates into the Eclipse IDE (we point
out that JavAdaptor could be easily integrated into any
other IDE). Figure 2 shows a common application scenario
of JavAdaptor from the developers point of view. A de-
veloper implements the application in Eclipse (left part of
Figure 2), while the current version of the application is al-
ready running (right part of Figure 2). Then the developer
wants to perform an update without restarting the applica-
tion. To that end, she simply edits the source code of the
application in Eclipse, connects JavAdaptor to the running
application (by pushing the tool bar button C of JavAdaptor
depicted in Figure 2), and triggers the runtime update (by
pushing the tool bar button R of JavAdaptor shown in Figure
2). JavAdaptor then modifies the bytecode of the classes to
be updated in such way that they are compatible with the
unchanged and already executed program parts. Further-
more, JavAdaptor reloads the classes to be updated, maps
the program state from the outdated classes to the new ones
to keep the program state, and updates all callers referring
the outdated classes (the corresponding DSU architecture
is depicted in Figure 1). All these update steps are trans-
parent to the developer except from state mappings that
require user input (e.g., state mappings between different
types). After the update, JavAdaptor can be disconnected
from the running application. The described update process
can be repeated as often as required.

4. SNAKE DEMO
In the accompanying video, we demonstrate JavAdaptor

in action. We update the well-known arcade game Snake in
4 steps without ever stopping it. In this process we make up-
dates from small changes that only change a method body
(that would already been supported by Java HotSwap) to
massive changes that introduce new methods, fields, or even



Figure 2: Snake demo.

change class hierarchies (which is not possible with any stan-
dard JVM). In the following we go through each update step,
describe the functionality it adds, and summarize what kind
of code changes it requires.

With the first update step we add a colored map to the
running program. Additionally, we introduce a barricade
including corresponding extra collision event handling. The
program changes required span method redefinitions and
method introductions, whereas only method redefinitions
are covered by Java HotSwap.

The second update step adds animal objects of type bug
to the Snake program. This also includes extra program
logic to hunt and catch the bugs. Therefore, we added and
redefined methods.

In addition to the bugs, update step 3 adds flies to be
hunted to the running program. Because of the similarities
of class Bug and class Fly we changed their inheritance hier-
archies, i.e., we let them inherit from newly introduced super
class Entity. In addition, we redefined and added methods.

With the final update step, we add logic to the program
which defines when a level is complete. After level comple-
tion, an event is triggered and the snake disappears into a
burrow. To implement this functionality, we added a global
field and redefined 2 methods.

5. CONCLUSIONS
Unrestricted dynamic software updates are an often re-

quested feature because it eases and improves the software
development process, reduces program downtimes, and im-
proves the user experience. Therefore, unrestricted DSU is
standard in many dynamic programming languages. But, it
is not standard in statically typed languages such as Java.
Therefore, many approaches have been suggested in litera-
ture to resolve this deficit. But, all approaches suffer from
(at least) one of the following restrictions: they are platform
dependent, cause performance penalties, affect the program
architecture, and/or do not support all updates that are
possible with static program changes. With JavAdaptor we
presented the first approach (to our best knowledge) which
provides Java with flexible dynamic software update capa-
bilities without those restrictions. It allows the developer
to flexibly update programs at runtime while keeping the
program state and operates on-top of all standard JVMs

supporting Java HotSwap. Furthermore, it does not affect
the program’s performance and architecture.

With our tool demo, we explained the usage of JavAdap-
tor. Last but not least, we gave a practical demonstration of
our tool based on the well-known arcade game Snake which
we stepwise updated at runtime.
The demo video is available on YouTube:

http://www.youtube.com/watch?v=jZm0hvlhC-E

6. ACKNOWLEDGMENTS
Mario Pukall’s work is funded by DFG (Project SA 465/31-

2). Christian Kästner’s work is supported in part by the
European Research Council #203099.

7. REFERENCES
[1] Deploying Applications to Oracle WebLogic Server.

Technical report, Oracle, 2008.

[2] M. Dmitriev. Safe Class and Data Evolution in Large
and Long-Lived Java Applications. PhD thesis,
University of Glasgow, 2001.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1997.

[4] A. R. Gregersen and B. N. Jørgensen. Dynamic Update
of Java applications - Balancing Change Flexibility vs
Programming Transparency. Journal of Software
Maintenance and Evolution: Research and Practice,
21(2):81–112, 2009.

[5] R. Pawlak, L. Duchien, G. Florin, and L. Seinturier.
Dynamic Wrappers: Handling the Composition Issue
with JAC. In TOOLS, pages 56–65, 2001.

[6] M. Pukall, C. Kästner, S. Götz, W. Cazzola, and
G. Saake. Flexible Runtime Program Adaptations in
Java - A Comparison. Technical Report 14, School of
Computer Science, University of Magdeburg, 2009.

[7] M. Pukall, C. Kästner, and G. Saake. Towards
Unanticipated Runtime Adaptation of Java
Applications. In APSEC, pages 85–92, 2008.

[8] S. Subramanian, M. Hicks, and K. S. McKinley.
Dynamic Software Updates: A VM-Centric Approach.
In PLDI, pages 1–12, 2009.

[9] T. Würthinger, C. Wimmer, and L. Stadler. Dynamic
Code Evolution for Java. In PPPJ, pages 10–19, 2010.


