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ABSTRACT

Product-line analysis has received considerable attention in
the last decade. As it is often infeasible to analyze each prod-
uct of a product line individually, researchers have developed
analyses, called variability-aware analyses, that consider and
exploit variability manifested in a code base. Variability-
aware analyses are often significantly more efficient than
traditional analyses, but each of them has certain weak-
nesses regarding applicability or scalability. We present the
Product-Line-Analysis model, a formal model for the classi-
fication and comparison of existing analyses, including tradi-
tional and variability-aware analyses, and lay a foundation
for formulating and exploring further, combined analyses.
As a proof of concept, we discuss different examples of anal-
yses in the light of our model, and demonstrate its benefits
for systematic comparison and exploration of product-line
analyses.

Categories and Subject Descriptors: D.2.4 [Software]:
Software Engineering—Software/Program Verification; D.2.13
[Software]: Software Engineering—Reusable Software

General Terms: Measurement, theory, verification

Keywords: Software product lines, product-line analysis,
PLA model

1. INTRODUCTION

Software product-line engineering is an approach to de-
velop a set of similar software products based on a com-
mon code base for a particular domain. Differences between
products can be specified and communicated by means of
features, which are end-user visible units of behavior or other
product characteristics that are of interest to stakehold-
ers [9]. A user can automatically derive different products by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
VaMoS ’13 January 23 - 25 2013, Pisa , Italy
Copyright 2013 ACM 978-1-4503-1541-8/13/01 ...$15.00.

selecting a set of desired features. The set is called a config-

uration. Each configuration defines a different product with
specific functional characteristics.
To gather (or maintain) knowledge about the characteris-

tics of the products, it is imperative to use software analyses,
which range from simple statistics (e.g., complexity metrics)
to complex analyses such as type checking, model checking,
deductive verification, and testing [17]. A naive approach
to product-line analysis is to create and analyze all possible
products individually. Even for a relatively small product
line with 39 features (SQLite, [16]) and over 3 million prod-
ucts, this is clearly infeasible. Even if we could analyze all
products, the analyses would involve redundant computa-
tions caused by the similarities among products.
In an ongoing endeavor to make product-line analyses fea-

sible, researchers have developed approaches that consider
variability and exploit similarities among products during
analysis [17]. These variability-aware analyses have been
shown to be faster than comparable analyses that do not
consider variability [3, 4, 7, 8, 11,18].
We and others observed that contemporary variability-

aware analyses rely on a set of recurring patterns or strate-
gies which we describe in detail in Section 2. While these
strategies are the key to their success, we found that each
has disadvantages that limit scalability and efficiency of the
analysis [17]. For example, one strategy is to build a prod-
uct simulator that can simulate the behavior of all individual
products of a product line, and to analyze the simulator in a
single pass (called a family-based strategy). While this ap-
proach is much faster than analyzing all or even only some
products (e.g., [4, 7, 8]), we also made the experience that
the analysis of a simulator induces a considerably higher
memory consumption than the analysis of a single prod-
uct [4] (because the simulator can get very large). Another
strategy is to analyze features and their implementations as
far as possible in isolation (called a feature-based strategy),
which saves analysis effort. Feature-based analyses require
additional analysis effort to detect interactions between fea-
tures [14, 17]. Depending on the implementation approach
and the analysis used, this approach may be infeasible, espe-
cially, when features crosscut the entire code base at a fine
grain.
Based on a discussion of individual strengths and weak-

nesses of the strategies used in existing product-line analy-
ses, we propose the Product-Line-Analysis model, a novel,
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formal model for comparison of product-line analyses. It
is based on an existing classification [17], and it includes
traditional and variability-aware analyses. Our preliminary
investigation suggests that, based on individual strengths
and weaknesses, it is beneficial to combine existing strate-
gies in different ways, depending on the considered analysis
problem.

The contributions of our paper are:
• The Product-Line-Analyis model (PLA model), a for-

mal model for the classification and comparison of
product-line analyses

• A notation for the visualization of product-line analy-
ses based on the PLA model

• An application of the model on three product-line anal-
yses and a summary of our initial experiences with de-
scribing the analyses in the context of our model

• A discussion of perspectives that arise from the PLA
model for the field of product-line analysis

Our model is based on a recent survey on product-line anal-
ysis [17]. It improves over previous work by formalizing
and discussing combinations of existing and future product-
line analyses, and considering new combinations of analyses.
This paper is meant to provide a guideline and inspiration
for ongoing and further developments in the field of product-
line analysis.

2. PRODUCT-LINE ANALYSES

In this section, we discuss software product-line analyses
and introduce concepts that are used in the paper. As a
running example, we use a very simplistic printing-device
product line. In our example, features are implemented by
means of FeatureHouse-style feature modules and com-
posed using superimposition [2]. But our classification ab-
stracts from feature representation and composition, and is
even compatible with variability implemented using prepro-
cessor directives and conditional compilation. We discuss
one such application (TypeChef) in Section 4.

2.1 Terminology and Running Example

The printing-device product line consists of four features
that implement different printing and scanning functional-
ities (Figure 1). Feature BasicPrinter supports printing a
single page as well as manual duplex printing (i.e., the user
has to turn the page). This feature is the basis for each
product of the product line. The optional features Duplex

and Scan implement additional functionality for automatic
duplex printing and scanning. Optional features do not de-
pend on the presence of other features. The fourth feature
Copy depends on feature Scan. It can only be included in
configurations that contain feature Scan. Typically, these
constraints are defined by a feature model [10], which de-
scribes relationships and constraints between features. The
feature model of the printer product line has two constraints:
first, the feature BasicPrinter is mandatory, it must be en-
abled in all products, and, second, feature Copy can only be
selected if feature Scan is present.
The configurations that satisfy the feature model are called

valid configurations. Their features can be composed to
form products. In our example, {BasicPrinter} and {Ba-
sicPrinter, Duplex} are valid configurations, but {Scan, Du-

plex} is not valid because it does not contain BasicPrinter.
A set of features is called partial configuration if it can be
extended to a valid configuration by adding features. In this

Feature BasicPrinter

1 c l a s s P r i n t e r {
2 // basic printing method
3 pub l i c vo id p r i n t ( Page p ) {
4 . . .
5 }
6 // manual duplex printing
7 pub l i c vo id p r i n tDup l e x ( Page f r on t , Page back ) {
8 p r i n t ( f r o n t ) ;
9 . . . // ask user to turn and re−insert page

10 p r i n t ( back ) ;
11 }
12 }

Feature Duplex

1 c l a s s P r i n t e r {
2 //automatic duplex printing
3 pub l i c vo id p r i n tDup l e x ( Page f r on t , Page back ) {
4 . . .
5 }
6 }

Feature Scan

1 c l a s s P r i n t e r {
2 // scanning of one page
3 pub l i c Page scan ( ) {
4 . . .
5 }
6 }

Feature Copy

1 c l a s s P r i n t e r {
2 // scans one page and prints i t
3 pub l i c vo id copy ( ) {
4 p r i n t ( scan ( ) ) ;
5 }
6 }

Figure 1: A feature-oriented implementation of a small
printing device driver (the class declarations of Duplex,
Scan, and Copy refine the corresponding declaration of Ba-
sicPrinter like mixins)

simple notion of configurations, a configuration is a set of en-
abled features. Disabled features are not stated explicitly.
Figure 2 shows a product composed based on a valid con-
figuration. The product contains the features BasicPrinter,
Duplex, and Scan. Method printDuplex(Page,Page) from fea-
ture BasicPrinter is not included because it has been over-
written by the method from feature Duplex with the same
signature.

2.2 Product Line Analysis Strategies

A product-line analysis takes as input the domain imple-
mentation (feature modules in our example) and the feature
model of a product line, and attempts to make a statement
about some property of the product line. Such properties
include static code properties (software metrics), some form
of correctness (well-typedness or functional correctness), or
even non-functional properties (e.g., average throughput).
A simple approach to run analyses on product lines is

to select a subset of all valid configurations, generate all
corresponding products and analyze them. Normally, the
generated products are expressed in a general purpose pro-
gramming language, so one can use off-the-shelf analysis
tools. The generation of the products (e.g., the product
in Figure 2), is done with standard product-line generator
tools that are also used for the actual deployment. We call
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Product {BasicPrinter, Scan, Copy}
1 c l a s s P r i n t e r {
2 // basic printing method
3 pub l i c vo id p r i n t ( Page p ) {
4 . . .
5 }
6 pub l i c vo id p r i n tDup l e x ( Page f r on t , Page back ) {
7 p r i n t ( f r o n t ) ;
8 . . . // ask user to turn and re−insert page
9 p r i n t ( back ) ;

10 }
11 // scanning of one page
12 pub l i c Page scan ( ) {
13 . . .
14 }
15 // scans one page and prints i t
16 pub l i c vo id copy ( ) {
17 p r i n t ( scan ( ) ) ;
18 }
19 }

Figure 2: A product of the printing-device product line in-
cluding the features BasicPrinter, Scan, and Copy.

this approach sample-based, because it is based on a sample
set selected from the set of all possible products. However,
the sample-based approach has two drawbacks: First, if not
all valid configurations have been considered, the analysis
only checks a subset of products and cannot make a general
statement about the whole product line (except for statisti-
cal statements). Second, it generates many similar products
and the analysis has to analyze similar code or behavior re-
peatedly. In a type analysis of our example, the basic print-
ing method of feature BasicPrinter would be type checked
in every product, six times if all products are checked.

Variability-aware analyses aim at reducing analysis effort
by exploiting similarities among products in the sense that
shared code or behavior is not re-checked multiple times.
Instead, variability-aware analyses run directly on the fea-
ture implementations or pre-process the features and their
implementations to produce a representation suitable for ef-
ficient analysis. Variability-aware analyses consist of var-
ious steps that either combine features (integration step),
process features or feature combinations to produce a result
(processing step). An overall analysis that consists of mul-
tiple integration and processing steps is called henceforth
compound analysis.

A simple compound analysis is product-based testing. The
first step is an integration step where different products are
built from the features’ source code. In the next step (pro-
cessing step), all products are tested separately and for each
product one verdict is produced. In the final step, again
an integration step, all verdicts are combined to determine
which features or feature interactions cause exceptional be-
havior (c.f., [16] for an example of this step).

A more sophisticated compound analysis is family-based

analysis [17], which takes features and variability informa-
tion and creates a product simulator, which includes code of
all features and that can simulate the behaviors of all valid
products (integration step). Normally, the feature selection
is fixed after product generation at compile time (features
cannot be deactivated any more). In a product simulator,
some features can still be activated or deactivated, even at
runtime (the simulator contains runtime variability). There-
fore, the simulator retains the selection of enabled features
until analysis time and can simulate a whole set of valid

Product simulator {BasicPrinter, Duplex}
1 c l a s s P r i n t e r {
2 s t a t i c boolean Fea tu r eDup l e x enab l e d ;
3 // basic printing method
4 pub l i c vo id p r i n t ( Page p ) {
5 . . .
6 }
7 pub l i c vo id p r i n tDup l e x ( Page f r on t , Page back ) {
8 i f ( F ea t u r eDup l e x enab l e d ) {
9 //code from Duplex feature

10 } e l s e {
11 p r i n t ( f r o n t ) ;
12 . . . // ask user to turn and re−insert page
13 p r i n t ( back ) ;
14 }
15 }
16 }

Figure 3: A product simulator of the printing-device product
line covering the features BasicPrinter and Duplex

products instead of only one. Figure 3 shows a simulator of
the printer product-line, where the Duplex feature is vari-
able. In this case, the variability is implemented with a
conditional statement that selects the code depending on a
boolean variable (Line 9). As this product simulator can
switch between the behaviors of all encoded valid products,
a variability-aware analysis can reason about all products by
analyzing the simulator once (processing step). This saves
time compared to the separate analysis of all indiviual prod-
ucts [3,4,6–8,11,18] because shared parts have to be analyzed
only once.

3. CLASSIFICATION OF ANALYSES

Our model of product-line analyses is motivated by the
observation that variability-aware analyses can be expressed
as combinations of integration and processing steps. The
model can be used to classify analyses along three dimen-
sions, which represent different combination patterns under-
lying different variability-aware analyses (Section 3.1).
Most of these analyses are rather complex and difficult to

describe without a suitable vocabulary. One benefit of our
formal model is that it helps to explain these complex analy-
ses. Another advantage is that we can describe the indiviual
steps of the analysis in isolation and discuss tradeoffs of the
different approaches, which will help in the development of
novel, efficient analyses. The formal model describes com-
binations of integration and combination steps algebraically
(Section 3.2).

3.1 Dimensions of Classification

In previous work, we have identified three dimensions of
the classification of product-line analyses [17], which form
the basis of our model. The dimensions give rise to a cube,
which we call Product-Line-Analysis cube (PLA cube), as
illustrated in Figure 4.

Sampling. The first dimension is “sampling” (e.g., edge A–
B); it represents the fraction of products of a product line
that are subject to analysis. For a very small product line,
it is feasible to analyze all products; for large product lines,
developers have to resort to sampling (i.e., selecting a proper
subset of products based on a sampling heuristics, e.g., pair-
wise feature coverage or code coverage) [5, 15, 16]. For the
printer product line, we might decide that only products

75



!"#$%&'()*+,$ -*./01()*+,$

-,*'%",()*+,$
!"#&,++/23

!"#$%&'(

4

)
5

6
7

- 8

9

)"*&"+&%&,-./'012&'(

34",5*4
6*15$&'(

:/230,
!"#$%&'

Figure 4: The PLA cube – visualization of the space of
possible combinations of product-line analyses

with feature Duplex have to be tested, as other products are
currently not requested by customers. So, only 3 of 6 prod-
ucts must be analyzed, saving roughly half of the analysis
time (compared to analyzing all products). However, sam-
pling means that not all valid products are considered, which
may influence the conclusions one can draw from the analy-
sis results (e.g., we may have missed a bug). Extreme cases
of the sampling dimension are“all valid products”(A) and“a
single product only” (B). In contrast to previous work [17],
we consider sampling in combination with all other dimen-
sions, not just with product-based analyses.

Feature Grouping. The second dimension is“feature group-
ing” (e.g., edge A–E); it represents the granularity and size
of feature combinations that is considered during analysis.
A corner case represents analyses considering features in iso-
lation (vertex E), which are called feature-based. Examples
include collecting metrics of code associated with individ-
ual features or certain intra-procedural static analyses that
can operate on isolated code snippets [17]. Analyses whose
results may depend on runnable programs or feature inter-
actions are difficult to implement this way. To check for
feature interactions, we could use a feature-based step to ex-
tract “feature interfaces”. In the next step, we would check
whether the interfaces fit each other (linker check, [1, 13]).
Another corner case are analyses that consider only entire,
valid products (A), as done in the product-based approach.
Cases inbetween include analyses that strategically group
features to form compound units and analyze these units as
a whole. Examples are analyses that search for critical fea-
ture interactions among combinations of the most common
features.

Variability Encoding. The third dimension is “variability
encoding” (edge A–D); it represents the extent to which
variability is preserved and used during analysis. At one
end, we have the traditional approach, where each prod-
uct is created and analyzed separately with standard tools
(product-based, A). At the other end (D) is the family-based

approach that encodes all features, information on variabil-
ity, and valid configurations into one analysis subject that
simulates all products of the product line (e.g., for verifica-
tion as in Figure 3). Because the simulator contains infor-
mation about all products, only a single analysis pass (e.g.,
model checking) is necessary. To implement a family-based
analysis, we need an analysis tool that can handle the vari-

ability information in the simulator. Some tools such as
model checkers can handle the variability out-of-the-box by
an exhaustive state-space exploration (e.g., [3]), but in other
cases, a special analysis tool might be needed. In the range
in between A and D, the analysis divides the product line in
several sub product-lines and builds a smaller simulator for
each sub product-line. This way, still the whole product line
is covered, but the simulators are smaller and the analysis
might be feasible even if a simulator for the whole product
line exceeds system resources (such as main memory).

Combinations. The remaining vertices of the cube (F,C,G
andH) represent combinations of the described analysis pat-
terns. To combine the approaches, we apply different tech-
niques successively.
Vertex F represents an analysis that targets only one sin-

gle feature. For example, if we found that feature Duplex

contains bugs, we would analyze this feature in isolation. In
this example, we first used sampling to select one feature
and then used feature-based analysis.
Vertex C combines sampling and family-based analysis.

For example, we could run a family-based analysis on a prod-
uct line to determine erroneous products. Subsequently, we
would run a detailed debugging analysis on only one of the
identified products, assuming that the identified bugs also
appear in other products.
Vertex H combines feature-based and family-based anal-

yses. For example, an analysis could count the lines of code
per feature (feature-based) and aggregate them with vari-
ability encoding (family-based) to print the size of all possi-
ble products.
Vertex G represents an analysis that uses family-based

techniques to analyze a single feature. This corner is prob-
ably not useful in practice, however, there are very useful
analyses on the way to vertex G. For example, we could ask
a domain expert to select groups of possibly interacting fea-
tures, build simulators from them, and analyze the simula-
tors for feature interaction detection. This is a cost-effective
analysis, because we consider only a subset of features, and
we can focus on the points where they interact. This analysis
is situated in the middle of the cube near vertex G.

3.2 Formal Model

Next, we present the PLA model, a formal model for the
description and comparison of product-line analyses. The
model defines four operators that can be used recursively
to build complex expressions. The operators are based on
the dimensions of the PLA cube and denote integration and
processing steps. The expressions denote compound analy-
ses (i.e., combinations of integration and processing steps).
First, we introduce the operators informally and, second, we
provide a formalization.
The operators are general in the sense that they can be

used to describe any product-line analysis. However, they
are not complete. To describe complex analyses, the opera-
tors are extended by textual descriptions. The model helps
to describe and illustrate the core concepts of the analyses.

Operators. We define four operators for the description of
product-line analyses. The operators work either on basic
features or on the results of other operators, as illustrated in
Table 1. We call the input and output items of operators ob-
jects. We introduce the operators for two purposes: first, to
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Operator Visual Definition Signatures Description

Fixed combinator
ρC(A1, A2, . . .) ρC : Cn → C Combines all operands into a new
ρV(A1, A2, . . .) ρV : Vn → V object where the operands are fixed

Variability combinator ν(A1, A2, . . . ,m) ν : ((C ∪ V)n ×M) → V Generates a variable object
from operands (variable or fixed)
with variability model m ∈ M

Variability restriction
†C(A, sel) †C : (V× S) → C Restricts the variablity according to

a feature selection sel ∈ S

†V(A, sel) †V : (V× S) → V The sink circle is unfilled iff
no variability remains

Processing step
τ(A) τC : C → Cn Applies a processing step to a fixed

or variable object;

τV : V → Vn the results are fixed or variable
depending on the input object

Table 1: Operators of the Product-Line-Analysis model

give abstract descriptions of existing complex analyses and,
second, to develop and describe new analyses. We describe
briefly our experience with the tradeoffs of each operator.

The fixed combinator (ρ) takes two objects and com-
bines them to a (partial) product, in which both objects
are fixed. In the resulting product, both operands are al-
ways activated and cannot be deactivated any more. If the
operands contain variability (e.g., two existing product sim-
ulators), the variability is preserved in the result (e.g., a
composed product simulator). An example of the fixed com-
binator is the composition of two feature modules using a
code generator such as FeatureHouse [2]. The result con-
tains the artifacts from both operands as shown in Figure 2.
Normally, features cannot be extracted from the result of a
fixed combination. Our experience is that an analysis that
uses only the fixed combinator is relatively cheap, because
the analyzed object contains little or no variability. The
downside is that one needs to build and analyze many prod-
ucts (exponential explosion). We use solid lines leading to a
circle as visual notation for the fixed combinator. The circle
is filled if and only if the resulting object contains variability.

The variability combinator (ν) takes two objects and
a feature model, and combines the objects into one object.
The combinator retains variability information according to
the given feature model. The resulting object is a simulator
in which each operand can be switched on and off at a later
point in time (e.g., as in Figure 3 at runtime). An analysis
that uses only the variability combinator with an unmodi-
fied feature model produces one simulator that includes the
variability of the entire product line. Our experience is that
the analysis of the simulator is efficient, because the analy-
sis examines shared parts only once. However, the analysis
of the simulator is more expensive than the analysis of a
single product, which can cause problems with limited sys-
tem resources such as main memory. We use dashed lines
as visual notation for the variability combinator. The lines
lead to a filled circle representing an object with variability
information.

The operator variability restriction (†) is used when
existing variability needs to be fully or partially eliminated.
The operator takes one argument that contains variability
(e.g., a variable piece of code or a product simulator) and
restricts it according to a given feature selection. A well-
known example of this pattern is the C-preprocessor cpp.

If one applies cpp to a product line that contains features
implemented with #ifdef annotations, cpp eliminates all an-
notations and leaves only the artifacts that correspond to a
given feature selection. This operator has essentially the
same tradeoffs as the fixed combinator (relatively simple
analysis of resulting objects, but potentially many objects
that have to be analyzed). In contrast to the fixed combina-
tor, which combines multiple objects, variability restriction
takes one object with variability and restricts variability.
In the visual notation the variability-restriction operator is
denoted by a solid line leading from a filled to a filled or un-
filled circle, depending on whether the result still contains
variability information.
The operator processing step (τ) represents an analysis

or a pre processing step that is performed on objects (fea-
tures or combined structures). The processing step produces
results that can, again, be aggregated with other transfor-
mation operators. An example processing step takes feature
source code and filters the code for some properties. In the
context of a locking protocol, we are interested only in the
calls to functions such as lock or unlock. So, we can write a
processing step that filters these calls from the source code.
The filtered features are then processed with other opera-
tors. The main analysis can be executed more efficiently,
when uninteresting information has been filtered as early as
possible. Our experience is that the efficiency of the pro-
cessing step depends on whether it is applied to an object
with or without variability and whether the analysis tool
is variability-aware, that is, the tool can recognize parts of
the analyzed object that are not influenced by variability
and analyze these parts only once. We use a box as visual
notation for a processing step.

Combination of Operators. The four operators can be
combined to form complex and powerful analyses that com-
bine the advantages of several operators while reducing the
disadvantages. If we want to run an analysis on the printer
product-line introduced in Section 2, we could use any of
the patterns shown in Figure 5 and more.

• The left pattern creates all six products by applying
the fixed combinator in a brute-force fashion and ana-
lyzes the resulting products individually. This product-
based approach leads to many analysis runs.

77



!

"

#

$

!

"

#

$

!

"

#

$

Figure 5: Three possible operator combinations for the
printer product line (features are abbreviated with first let-
ter). The operators are always applied from left to right.

• The pattern in the middle uses the variability combi-
nator to generate a product simulator incorporating
all features. The analysis of the simulator requires
special tools that can cope with the variability infor-
mation. The product simulator captures the behavior
of all products and therefore it might get very large
and costly to analyze.

• The right pattern applies a processing step on each fea-
ture before combining the results with the variability
combinator. This can lead to a small simulator that
can be analyzed more efficiently. For example, we can
use the processing step to filter interesting functions
(e.g., locking and unlocking). The simulator would
be much smaller and contain only the locking behav-
ior that we are interested in. However, implementing
this analysis pattern requires three tools: an abstrac-
tion mechanism for filtering, a tool to combine the
abstraction results into a simulator, and a tool that
can analyze the abstract simulator. Few off-the-shelf
tools provide these functionalities, so this analysis re-
quires special tools. This implementation effort causes
a higher upfront investment for the right analysis pat-
tern than for the left or the middle one.

Formalization. We denote the set of all feature implemen-
tations by F (every element f ∈ F represents all code ar-
tifacts belonging to feature f). Derived objects are partial
products c1, c2, . . . ∈ C and simulators v1, v2, . . . ∈ V. Each
partial product c ∈ C and each simulator v ∈ V is built from
a fixed set of features fs ⊆ F. Each simulator can simulate
the behaviors of all valid products that can be built from the
respective set of features. Each single feature implementa-
tion is also a partial product (with only one feature), so
∀f ∈ F : {f} ∈ C. The subset P ⊆ C denotes the set of valid
products according to the feature model FM of the product
line. In #ifdef product lines, the implementation artifacts
already contain variability. In terms of our model, these im-
plementation artifacts are product simulators (elements of
V). Again, we use the printer product line to illustrate the
meanings of the sets F, C and P:

• F = {BasicPrinter ,Duplex ,Scan,Copy}

• C = P({BasicPrinter ,Duplex ,Scan,Copy})

• P = {{BasicPrinter}, {BasicPrinter ,Duplex},
{BasicPrinter ,Scan}, {BasicPrinter ,Scan,Duplex},
{BasicPrinter ,Scan,Copy},
{BasicPrinter ,Scan,Duplex ,Copy}}

!"#"$%&"'
%((')$*+,-&.
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Figure 6: Simplified notation for recurring product-line anal-
ysis patterns. The notation on the left side represents the
generation of all valid products and the notation on the right
side represents the generation of a subset of all valid prod-
ucts (sampling).

Based on the basic objects, we define operators as formalized
in Table 1. The fixed combinator (ρ) is applied to objects
that may contain variability (C or V) and combines them
into a new object that always covers the behavior of both
operands. So far, we discussed only operators with binary
cardinality, but they can be generalized for application to
more than two objects. The variability combinator (ν) is
applied to objects with variability (V) or without variability
(C). The resulting object is always variable (V) (the be-
havior encoded in the operands can be switched on and off).
The variability restriction (†) operator takes one object with
variability (one element of V) and eliminates variability ac-
cording to a given feature selection. A processing step (τ)
is applied to any object in C or V. The result of the pro-
cessing step is a set of objects which can contain variability
information if the operand is in set V.

Sampling by Combining Operators. In our model, sam-
pling can be accomplished in several ways.
When using the fixed combinator, a sample set can be

build by constructing only some valid products. τ(ρ(B,S))
is a sampling analysis of the printer product line based only
on the features BasicPrinter and Scan.
The variable combinator has an operand that determines

the variability model of the resulting object. This operand
is used to restrict the analyzed products to a set of inter-
esting configurations. To this end a restricted variability
model that only allows the interesting configurations is used
as operand. If only processing steps on features are used,
then sampling can be accomplished by analyzing only a sub-
set of features.

3.3 Notational Sugar

We noticed two patterns that occur in many analysis de-
scriptions. Given that they are quite cumbersome to draw,
we introduce notational sugar that can be used as short-
cut. The first pattern is the generation of all valid products
from a given set of features. In our model, this pattern
is expressed by multiple applications of the fixed operator
(shown on the left side of Figure 5). As shortcut, we denote
this pattern by a trapezoid, as shown on the left side of Fig-
ure 6. The second pattern is the application of a sampling
heuristic where only a subset of all valid products are gener-
ated. We denote this pattern by a reversed trapezoid shape
that reflects that only few products are generated, as shown
on the right side of Figure 6.
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4. ANALYSIS EXAMPLES

In this section, we discuss existing analyses by means of
our formal model, to demonstrate the capabilities of our
model for systematic description and comparison of product-
line analyses. Our experience is that it was relatively easy to
express these high-level descriptions of complex product-line
analyses using our model. Also, the descriptions, including
visualization, are very space efficient (we fit three complex
analyses on roughly one page).

Product-line verification with variability encoding. In
the past, verification of functional properties of software
product lines was often limited to the verification of abstract
models or to the verification of a sample set of products. In
recent years, several researchers [3,7,8,11,18] have developed
analysis techniques that can be summarized as variability-
encoding techniques. They aim at encoding the functional
behavior of all valid products of the product line in one prod-
uct simulator and use model checking or theorem proving to
verify the correctness of the simulator. If the simulator can
be proven correct, then all products satisfy the functional
properties. Features that are unknown when the simulator
is generated cannot be included subsequently, so this is a
closed-world approach.

In terms of our model, the techniques use a variability
combinator to build the simulator and then use a processing
step for model checking. In the work of Classen et al. [7,
8] and Thüm et al. [18], the first step was done manually,
whereas Apel et al. [3, 4] used an automatic combination
tool. In terms of our model, both analysis approaches are
expressed by the schema shown in Figure 5 (middle), and
they are located on vertex D in the PLA cube (Figure 4).

Modular verification of product lines. Li et al. [13] used
modular verification to check the correctness of features in
an open-world setting. In an open world, features are devel-
oped in isolation, possibly by different teams. Yet, the fea-
tures have to satisfy specifications when working together.
To prove feature compatibility, Li et al. have used a feature-
based processing step, in which they analyze individual fea-
tures and extract interfaces. During this processing step,
they already search for specification violations in the fea-
tures. Then, the feature-based interfaces are aggregated in
a combination step (fixed combination) for a subset of prod-
ucts. The resulting abstractions of products are analyzed
to detect feature interactions that cause violations of the
the product-line specifications. This approach incurs less
effort than analyzing all concrete products. This analysis
approach can be expressed in our model as shown in Fig-
ure 7. The analysis uses two sub analyses. The first sub
analysis is feature-based (vertex E in the cube) and the sec-
ond is product-based (vertex A).

Detection of non-functional feature interactions. Sieg-
mund et al. [16] have developed an analysis technique to
automatically detect feature interactions based on perfor-
mance measurements. In this context, a feature interac-
tion between two features is a change in application perfor-
mance that is only measured when both features are present.
For their analysis, Siegmund et al. use a combination of
feature-based and product-based sampling strategies, which
is shown in Figure 8. In the PLA cube (Figure 4), it is
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Figure 7: Pattern of the analysis of Li et al. [13]. In the
first step, all features are analyzed and interfaces of the fea-
tures are extracted. Then, these interfaces are combined
and analyzed to find critical feature interactions.
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Figure 8: Pattern of the analysis of Siegmund et al. [16]. F

denotes the feature under analysis, B is the base product F
depends on, and X to Z are all other features. The circles
with bold frame denote products that contain feature F

located on the plane between vertices A, B, F and E, be-
cause grouping and sampling are combined. The analysis
determines whether there is an interaction between feature
F and any other feature in the product line. The analysis
calculates the set B of features that F depends on. It mea-
sures the performance of, (1) the product that contains only
the features B, and (2) the product that contains the fea-
tures F and B. The difference between these measurements
is used as prediction for the performance of F. In this exam-
ple, the influence which the feature F has on performance
is estimated to be 10 seconds. To detect interactions, the
analysis builds another pair of products that contain more
features (again the only difference between the products is
F ). If the difference between the measurements of the second
pair (20 seconds in this example) is different from the first
pair, then there exists an interaction between F and some
other feature. The analysis is sample-based, because it uses
a systematically chosen set of four products. To determine
which feature is interacting, one can systematically evaluate
more pairs of products [16].

Type checking variability-aware ASTs. Kästner et al. [12]
developed an analysis for type checking of large annotation-
based product lines in C. The analysis is used to check files
of the Linux kernel. The analysis can be expressed in terms
of our formal model as shown in Figure 9. Each file contains
C-code with variability annotated in CPP directives. As
first step, Kästner et al. parse and type check each file sepa-
rately. The type checking step produces possible type errors
and a type interface of the file. In the second step, the type
interface is checked for compatibility with type interfaces of
other files (linker check). The analysis uses a fixed combina-
tor (interface combination) on objects containing variability.
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Figure 9: Visualization of an analysis by Kästner et al. [12].
A and B denote the files under analysis. Both contain vari-
ability information (in #ifdef annotations). The analysis ex-
ecutes parsing and typechecking on the files and then checks
the compatibility of the computed type interfaces.

Therefore the analysis developed by Kästner et al. is located
between vertices A and D in the PLA cube.

5. CONCLUSION AND FUTURE WORK

As it is often infeasible to analyze each product of a prod-
uct line individually, researchers have developed analyses
specially tailored to take the variability in product lines
into account. To investigate patterns for efficient variability-
aware analyses, we identified reoccuring patterns in product-
line analyses and built a model for classification and com-
parison of analyses (called PLA model).

We demonstrated the usefulness of the model for the com-
parison of analyses by means of existing product-line anal-
yses. Our initial experience with the model suggests that
it is helpful for the description of complex analyses. We
also expect it to be beneficial when designing new analyses,
because one can select from a catalog of clearly structured
analysis patterns. Our work is a step forward in making
product-line analyses easier to understand and to simplify
the development of future product-line analyses.

In future work, one interesting analysis seems to be the
application of a family-based analysis on semantic interfaces
that are extracted from features in a preprocessing step. It
would also be interesting to develop guidelines for position-
ing of a given analysis on the PLA cube. Another area we
want to explore is the relation between analysis patterns ex-
pressed in our model using rewrite rules on the patterns.
For example, we could investigate under which assumptions
a rewrite rule that replaces an analysis on each product by
an analysis on a simulator holds.
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