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ABSTRACT
Preprocessors support the diversification of software prod-
ucts with #ifdefs, but also require additional effort from de-
velopers to maintain and understand variable code. We con-
jecture that #ifdefs cause developers to produce more vul-
nerable code because they are required to reason about mul-
tiple features simultaneously and maintain complex mental
models of dependencies of configurable code.

We extracted a variational call graph across all configura-
tions of the Linux kernel, and used configuration complexity
metrics to compare vulnerable and non-vulnerable functions
considering their vulnerability history. Our goal was to learn
about whether we can observe a measurable influence of con-
figuration complexity on the occurrence of vulnerabilities.

Our results suggest, among others, that vulnerable func-
tions have higher variability than non-vulnerable ones and
are also constrained by fewer configuration options. This
suggests that developers are inclined to notice functions ap-
pear in frequently-compiled product variants. We aim to
raise developers’ awareness to address variability more sys-
tematically, since configuration complexity is an important,
but often ignored aspect of software product lines.

1. INTRODUCTION
Diversification of software products is widely desired, but

also induces challenges in development and maintenance pro-
cesses of software product lines [21,32]. Preprocessor direc-
tives (#ifdef statements) are frequently used as a mechanism
to support code variability and thereby permit the diversi-
fication of software products. However, it is known that the
presence of #ifdefs in source code complicates maintenance
tasks and requires additional effort from developers when
trying to understand feature code dependencies [20,21,35].

In this paper, we define configuration complexity as the
complexity induced by the presence of #ifdefs in the code,
and we conjecture that it causes developers to make mis-
takes that lead to more vulnerable code. Our assumption
is motivated by the observation that humans have a limited
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capacity to keep an accurate and complete mental model
of code dependencies [19]. When considering the scenario of
maintaining multiple software products and reasoning about
many variants simultaneously, this limitation could result
in serious consequences. For example, it could cause un-
expected feature interactions and feature code to be inad-
vertently executed or bypassed, creating opportunities for
attackers to exploit software systems [31].

Figure 1 shows a snippet of a commit diff that fixed a vul-
nerability in file arch/x86/kernel/traps.c of the Linux ker-
nel, a large configurable software system that shares many
characteristics with industrial software product lines [13,36].
In this example, the #ifdef statement is used to constrain
feature code according to the setting of two configuration
options. Those are usually Boolean variables that represent
features available in a product line and can be enabled or
disabled in the application engineering process. In this ex-
ample, function do stack segment is constrained by option
CONFIG X86 64, meaning that it will be compiled and be
part of a product variant only when CONFIG X86 64 is
enabled.

We seek to characterize configuration complexity of func-
tions and analyze whether it associates with their past vul-
nerable behavior. To this end, we extract and quantify
presence conditions (predicates over configuration options)
from functions of the Linux kernel and use it as a base-
line to compare samples of vulnerable and non-vulnerable
functions. More than defining and quantifying configuration
complexity, we aim at understanding whether the configura-
tion aspect of unpreprocessed source code (i.e., the presence
of #ifdefs in source code) provides additional information
when used in combination with traditional size and struc-
tural complexity metrics [6, 25,30].

Ultimately, we are interested in learning whether vulner-
able and non-vulnerable functions have each distinguishable
complexity characteristics that would potentially allow us to
warn developers about critical pieces of a product line. We
pose the following research questions:

RQ1 Does configuration complexity associate with past vul-
nerable behavior of functions?

RQ2 Does configuration complexity provide additional in-
sights about past vulnerable behavior of functions when
compared to size and structural complexity?

Our general hypothesis is that complexity metrics can help
maintainers to identify vulnerability-prone code in config-
urable code. High configuration complexity can be used as



a warning sign and, in concert with other quality indicators,
could help to identify potential vulnerabilities, an important
facet of what makes software difficult to assure.

Compile-time configuration complexity has not been con-
sidered in analyses before, because existing tools work on
preprocessed code, that is, in a single configuration after
running preprocessor and compiler. Even parsing unprepro-
cessed code soundly was a challenge that was only recently
solved [10, 18]. Our infrastructure allows, for the first time,
to parse (and type check) unpreprocessed code, while gener-
ating the call graph for all configurations of the Linux kernel.
The produced variational call graph is an important basis
for our analysis of configuration complexity of functions.

To define configuration complexity, we design three simple
configuration complexity metrics (Section 4) that capture
the complexity induced by the presence of #ifdefs in the
code and three structural metrics that capture information
on the relationship of functions in a call graph (Section 5).

Our results show that vulnerable and non-vulnerable func-
tions have distinct characteristics regarding configuration
complexity that can add additional value to traditional size
and structural-complexity measures [6]. For instance, we
found that vulnerable functions have, on average, three times
more #ifdef statements inside them than non-vulnerable
functions, an effect size greater than observable from study-
ing size metrics only. For other measures of configuration
complexity, we found similarly encouraging results. Our re-
sults provide a basis towards the development of prediction
models, but more importantly, raise awareness of product-
line developers to address variability more systematically
(for example, with testing [9,33] and variability-aware anal-
ysis [1, 38]).

Overall, we make the following contributions:

1. We define configuration complexity and provide an in-
frastructure to measure it on unpreprocessed C code.

2. We analyze how configuration complexity is associated
with past vulnerable behavior of functions and investi-
gate potential confounding effects between our metrics
and traditional complexity metrics.

3. We discuss the general implications of our results for
developers and maintainers of product lines.

2. BACKGROUND AND MOTIVATION
Based on existing work that suggests that the presence of

#ifdefs in source code complicates maintenance tasks and
requires additional effort from developers when trying to
understand variable code dependencies [20, 23, 35], we aim
at investigating the influence that code configurability has
on the occurrence of vulnerabilities.

Configuration-related vulnerabilities arise in practice and,
generally, can have serious consequences. One famous exam-
ple is the Heartbleed vulnerability in OpenSSL (CVE-2014-
0160), which affected servers, browsers, and many other
systems that use this encryption library to secure Inter-
net communication. In this specific case, the vulnerability
was associated to one enabled-by-default configuration op-
tion that was frequently included in the build process, but
rarely needed by users of the library.

Another example of a configuration-induced vulnerabil-
ity was reported for the Linux kernel (CVE-2014-9322). In

Figure 1: Snippet from the commit diff that fixed the
CVE-2014-9322 vulnerability (arch/x86/kernel/traps.c)

this case, the code responsible for handling stack segment
violations was distinct for different computer architectures
(32-bit and 64-bit) and caused the 64-bit version to be vul-
nerable. Part of the solution to fix this vulnerability in-
volved modifying the file arch/x86/kernel/traps.c by remov-
ing both the specialized function do stack segment respon-
sible for handling error in 64-bit architectures (Lines 243 to
256) and the #ifdef directives responsible for applying the
default error handling only to 32-bit architectures (Lines 236
and 238).

It has been observed that product line maintainers usu-
ally maximize the functionality of systems to reduce the high
engineering costs required to certify every possible product
variant that can be generated [37] and also rely on default
values for configuration options to avoid the burden of reason
about the complexity induced by code configurability [11].
The latter is even more dangerous because it increases the
attack surface of software systems and, potentially, the num-
ber of undesired interactions among features [31].

To analyze #ifdefs, our analysis focuses on compile-time
variability to enable systematic reasoning of code configura-
bility [34, 39], rather than relying on sometimes useful, but
unsound approximations, such as maximizing the configura-
tion options enabled for a product or translating #ifdefs to
if statements [39]. Moreover, it allows us to explore knowl-
edge about configuration options that is sometimes buried
in build files and macros, which makes it harder for devel-
opers to reason about its true effects without performing an
in-depth analysis of unpreprocessed code.

The goal of our study was to use simple metrics that could
capture our intuition of configuration complexity and allow
us to search for evidence that the complexity induced by
#ifdefs and configuration options associates with vulnera-
ble behavior of functions. We define and operationalize the
metrics in more detail in Sections 4 and 5.

One simple metric that we used to capture configuration
complexity is the number of internal #ifdefs that appear



inside a function. Intuitively, this metric translates to how
many times a maintainer would need to switch context be-
tween feature blocks (in addition to the conditional branches
in the code), while trying to understand or modify a piece
of configurable code.

Although this and other metrics are simple (Section 4),
we believe they complement traditional size and structural
complexity metrics, by augmenting individual function prop-
erties with other properties that originate from their inter-
action with other functions and their inherent variability.

When analyzing structural complexity, we aim at studying
the phenomena that emerge from the interaction of program
elements [15]. To this end, we extract a call graph from
unpreprocessed code (Section 3.2) and maintain informa-
tion about its variability by labeling functions (nodes) and
function calls (edges). These labels, representing configura-
tion complexity, are later quantified and used in combina-
tion with other numerical graph-based metrics. Ultimately,
we expect to increase the usefulness of the traditional met-
rics [6].

3. EXPERIMENTAL SETUP
We decided on the Linux kernel (version 3.19, x86 archi-

tecture) as the subject of our study because it is one of the
largest and most configurable product line publicly available
for analysis [21] and, at the same time, one with the most re-
ported vulnerabilities. With more than 14,000 configuration
options available, the Linux kernel is widely used in industry
and its use expands from high-end servers to mobile phones.
From about 14,000 configuration options, only 8,537 affect
our analysis of the x86 architecture.

In our experiment, we analyze the vulnerability history of
functions, by checking whether a certain function has been
touched by developers to fix past vulnerabilities. Next, we
compute configuration complexity metrics for each function
and analyze differences in samples of vulnerable and non-
vulnerable functions along the selected metrics, such as the
number of internal #ifdefs. To avoid fishing for results, we
carefully design our metrics based on our understanding of
how configuration complexity might affect developers; we
discuss the metrics and their rationale in Sections 4 and 5.

In addition, we analyzed whether the configuration aspect
of the code provides additional information when used in
combination with traditional size and structural complexity
metrics [6]. Our analysis considers the potential confound-
ing effects of traditional complexity metrics and aims at un-
derstanding, quantifying, and isolating the real effect that
#ifdefs have on the complexity of variable code.

3.1 Mining Vulnerabilities
To learn about whether configuration complexity of func-

tions is associated with the occurrence of vulnerabilities, we
needed to identify which functions have been vulnerable in
the past. For this purpose, we mined reported known vulner-
abilities from the National Vulnerability Database (NVD)1.
This database catalogs information about real vulnerabili-
ties that have been reported by developers and users when
an exploit had been identified, each given a unique CVE
number.

When investigating vulnerabilities, we collect information
about the commits that have been assigned as responsible

1https://nvd.nist.gov/

for fixing the code that was vulnerable in the past. That
is, whenever code has been committed to fix a vulnerability,
we identify all files and functions that have been modified
in the commit.

From the vulnerability database, we identified 1,314 vul-
nerabilities reported from 1999 to 2015. For each vulnera-
bility reported, we collected links to the commits fixing the
vulnerability in the source code in either GitHub or ker-
nel.org, resulting in a list of commits fixed reported vulner-
ability. For each commit in the list, we identify all files and
functions that have been touched to fix a vulnerability.

We automated the extraction process to reduce human er-
ror. Specifically, we download the files from the commit diffs
available in the commit, parse the C files using srcML [4],
and then collect information about the location and bound-
aries of each function in the file (begin and end lines). Next,
we use the function location to identify whether the changes
have been made within the limits of a function. The result
of this step is a list of functions that have been changed to
fix each of the vulnerable files.

To increase our confidence in the extraction process and
in the data we were extracting, we also decided to mine the
history of commit messages directly from the Linux kernel
git repository. We observed that some old reported vulner-
abilities are not linked to git commits, so we assumed we
could find information about vulnerable functions directly
from commits that are not referenced in the vulnerability
database. When analyzing the Linux kernel source code
repository, we searched through the git history and looked
for ‘CVE-’ identifiers in commit comments. For each com-
mit that matched with our search, we identified files and
functions that have been modified by analyzing the textual
diffs. We manually checked a few instances of the mined
CVEs for correctness.

In total, we collected information on 1,314 CVEs, success-
fully parsed 11,956 files out of 12,075 files and extracted
233,903 functions of the Linux kernel (x86 architecture).
From the set of extracted functions, 1,170 were associated
with CVEs and are considered vulnerable; the remaining
232,733 functions are considered non-vulnerable.

3.2 Variational Call Graphs
We use variational call graphs to analyze the interactions

among functions [15] and to investigate how configuration
complexity influences those interactions. They serve as a
technical basis for our structural complexity analysis (Sec-
tion 5).

A call graph is an abstraction of a program that represents
potential calls among functions at runtime. Although com-
pact, call graphs are relatively cheap to compute and, yet,
powerful abstractions of a program’s behavior [7]. Besides
being beneficial for developers to reasoning about software
systems, call graphs are a useful approximation of a pro-
gram’s execution, which makes them potentially relevant to
perform security-related program analysis [40].

To take configuration complexity into consideration, we
extend the notion of call graph to make a variational call
graph that compactly represents all possible function defini-
tions and function calls of a given product line. The varia-
tional call graph provides the basis to analyze the effect of
configuration complexity in graph-based metrics. Instead of
producing a call graph for each individual system configura-
tion, a variational call graph includes all possible nodes and
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Figure 2: Excerpt of a variational call graph extracted
from the Linux kernel kernel/fork.c file (a) and the result-
ing call graph when the configuration option X86 PAE is
not selected (b). The presence conditions on nodes and
edges in (a) show in which condition a function or func-
tion call would be included in a product variant.

edges of any system configuration, but labels each node and
each edge with a presence condition, characterizing precisely
in which configurations a function definition or function call
would be included [22]. The result is a labeled graph that
can be used for subsequent analysis; when analyzing con-
figuration complexity, we are especially interested in these
labels. Figure 2(a) shows an excerpt of the variational call
graph for the file kernel/fork.c and the resulting call graph of
a product variant when the configuration option X86 PAE
is not selected (b).

To analyze configuration complexity, we first computed a
variational call graph from the unpreprocessed source code
of the Linux kernel (version 3.19, x86). To compute it, we
implemented our analysis on top of the TypeChef infrastruc-
ture [17,18], which can parse unpreprocessed C code, includ-
ing preprocessor directives, into a variational Abstract Syn-
tax Tree (AST) representing all configurations. The nodes
in the AST representation store the configuration informa-
tion in the form of choice nodes [18]. By walking over the
variational AST, we are able to identify function definitions
and function calls that occur in the Linux kernel, as well
as the presence conditions under which they are enabled or
disabled from a product variant. To increase the accuracy
of the call graph extraction, we implemented a relatively
inexpensive but precise pointer analysis [7]1.

3.3 Null-hypothesis testing
The purpose of the tests is to check whether the sam-

ples of vulnerable and non-vulnerable functions are different
according to the selected metrics that we will discuss in Sec-
tions 4 and 5. The null hypothesis for all tests is that both
vulnerable and non-vulnerable functions are drawn from the
same distribution of the metric.

For each metric, we performed a Welch two sample t-test
between vulnerable and non-vulnerable function samples.
We found significant differences in distributions and means
between vulnerable functions and non-vulnerable functions
for many of the selected metrics (Figure 4), where vulnerable
functions are consistently more complex than non-vulnerable
ones 2. Also, we report both effect size (difference between

1https://github.com/ckaestne/TypeChef/
2Negative values on the x-axis are a consequence of smoothing
the distribution curves for visualization purposes and should not
be interpreted as valid metrics values.

1 #ifdef A
2 int foo(int v) {
3 int l = read_public_value ();
4
5 #if defined(A) || defined(B)
6 l = read_private_value ();
7 #endif
8
9 if (...) {
10 v = l + CONST_VALUE;
11 }
12
13 #ifdef C
14 assertEquals(v, l + CONST_VALUE)
15 #endif
16
17 return v;
18 }
19 #endif

Figure 3: Example of simple C code with preprocessor
directives (#ifdefs).

means) and statistical significance for each metric, as well as
an analysis of the validity of our t-test statistics. In addition
to t-tests, we applied a confounding effect analysis to check
whether our metrics are relevant to characterize complex-
ity, by comparing them against existing ones such as size
metrics (details can be found in an accompanying technical
report [8]).

4. SIMPLE CONFIGURATION-
COMPLEXITY METRICS

We define configuration complexity as the complexity in-
duced by the presence of #ifdefs in source code, and we
select a number of metrics to quantify it. Quantifying con-
figuration complexity is a challenging task. Our goal is to
measure the effect that #ifdefs and configuration options
have on developers when they have to understand or change
a piece of configurable code as well as how these options in-
fluence them to make mistakes. To avoid fishing for results,
we carefully designed a set of simple metrics that character-
ize our key intuitions of configuration complexity. Each of
the following subsections presents an alternative metric to
capture configuration complexity and its intuition, discusses
the results of its null-hypothesis test, and reports an analysis
of potential confounding effects associated with it.

4.1 (Number of) Internal #ifdefs
Our first approximation of configuration complexity is to

simply count the number of #ifdefs that appear inside a
function. Similar to if statements, #ifdef blocks can ap-
pear in many different forms in the code, that is, they can
be nested, in sequence, or both. Our metric captures how
many blocks of feature code, regardless of what configura-
tion options are being used, a developer needs to reason
about while trying to understand or modify a piece of vari-
able code. While it ignores specifics about the variability
inside a function, it captures the complexity generated by
branches of variable code.

For the example, in Figure 3, there are two #ifdef blocks
inside function foo (Lines 5–7 and 15–17), so the value of the
metric is two. In this example, a developer would need to
think about two blocks of variable code, one considering two
configuration options (A and B, Line 5) and another consid-
ering just one (C, Line 15). The insertion of an #ifdef inside
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Figure 4: Difference of vulnerable and non-vulnerable function samples along configuration complexity (first row) and
structural complexity metrics (second row) in log10 scale.

a function, whether nested or in sequence to existing ones,
would increase the configuration complexity of the code. An
increase in the number of blocks of feature code inside a func-
tion would make a function more complex and more likely
to be vulnerable.

Results
Our analysis reveals that vulnerable functions have, on av-
erage, 3.04 times more #ifdefs internally (0.15) than non-
vulnerable functions (0.049); p < 2.1e-07; see Figure 4(a).

Confounding Effect Analysis
The correlation coefficient between the number of internal
#ifdefs in a function and its size is 0.31, which suggests a
moderate relationship between the two metrics, that is, long
methods often tend to have more #ifdefs internally. When
analyzing the regression coefficient for the internal #ifdefs
metric before (7.6e-09) and after the size metric is added
to the regression model (1.5e-10), we see small percentual
change in the regression coefficient (3e-07 percent), which
indicates that there is no confounding effect between size
and number of internal #ifdefs.

4.2 (Number of) Internal Configuration
Options

Complementing the previous metric, our second approx-
imation of configuration complexity counts how many dis-
tinct configuration options are used within a function. The
intuition is that the higher the number of features affecting
code inside a function, regardless of how many #ifdefs are in
the function, the harder the code is to maintain, due to the
increased number of configuration options a developer has to
consider (remember the number of potential configurations
grows exponentially with the number of options). In con-
trast to our previous metric, this metric captures configura-
tion complexity by accounting for the amount of variability
inside a function.

For the example in Figure 3, there are three distinct con-
figuration options used in the two #ifdef blocks (A, B and
C ) inside the function foo, so the value of the metric is three.

In this example, a developer would need to reason about how
three features affect the piece of variable code he is trying
to understand or modify.

Results
Our analysis reveals that vulnerable functions have on av-
erage 4.2 times more configuration options internally (0.11)
than non-vulnerable functions (0.026), p <5.1e-07; see Fig-
ure 4(b).

Confounding Effect Analysis
The correlation coefficient between number of configuration
options used internally and function size is 0.17, which sug-
gests a weak relationship between the two metrics. When
analyzing the regression coefficient for the number of inter-
nal configuration options metric before (-8.5e-08) and after
the size metric is added to the regression model (-3.5e-07),
we see a small change in the coefficient (7.6e-06 percent),
which potentially indicates no confounding effect between
number of internal configuration options and size.

4.3 (Number of) External Configuration
Options

Different from the two previous metrics that consider how
#ifdef blocks and configuration options affect the complex-
ity inside a function, our third measure for configuration
complexity considers the complexity of the presence condi-
tion that constrain the entire function. That is, this metric
captures the chance that a function is included in a con-
figuration in the first place. It counts how many distinct
configuration options affect the decision whether a function
is included in a product variant; technically, it counts the
number of options inside #ifdef blocks around the function.3

3We do not only consider #ifdef blocks visible within the .c file,
but also conditions from the build system and, often nontrivial,
interactions among macro definitions, header inclusion, and con-
ditional compilation [18, 27]. This analysis is more expensive
and required significant infrastructure and engineering work, but
is also much more precise than just scanning a file for #ifdef
directives.



Our intuition is that the higher is the number of features
required to activate a function and its corresponding file,
the more complex is the condition to activate the code and,
consequently, the less often the functionality is included in
product variants. Functions that are only included in few
configurations may be deployed less frequently, thus the
chance of finding and exploiting a vulnerability is lower;
but those functions may also receive less attention in the
quality-assurance process, for example, fewer people might
be interested during code review, leading to a higher chance
of vulnerabilities in the future.

For the example of Figure 3, there is only one configu-
ration option constraining function foo(A), so the value of
the metric is one. If a function was always included in all
product variants, the metric value would be zero, since con-
figuration has no effect on the presence or absence of the
function.

Results
Our analysis reveals that non-vulnerable functions (3.5) are,
on average, constrained by 1.5 times more configuration op-
tions than vulnerable functions (2.3), p <5.5e-132; see Figure
4(c).

Confounding Effect Analysis
We expect that the number of external configuration options
is independent of the size of a function. The correlation
coefficient between the two is 0.02, indicating no correla-
tion. In addition, when analyzing the regression coefficient
for the number of external configuration options metric be-
fore (-3.2e-09) and after the size metric is added to the re-
gression model (-2e-09), we see a small percentual change
(3.7e-07 percent), which potentially excludes a confounding
effect between the two metrics.

4.4 Summary
The results for the simple metrics defined in this section

show that they capture distinct characteristics of configu-
ration complexity. Despite some limitations of the metrics,
including being naturally biased towards syntax rather than
semantics and the existence of potential confounding size
effects, they actually measure distinct characteristics of the
variable code.

While we expected vulnerable functions to have more in-
ternal #ifdefs and more configuration options being used
inside them, and consequently, to be more complex, we did
not expect vulnerable functions to be constrained by fewer
configuration options. We can speculate this happens be-
cause fewer configuration options are required to activate
the presence of a function in a product variant and, due to
broader exposure, more vulnerabilities have been found. Of
course, we cannot claim anything about a specific configu-
ration option, but assuming that all configuration options
have the same chance of being enabled, requiring fewer con-
figuration options would increase the chance of a function
to be included in a product variant. That is, the chances
of a function being exploited would increase along with fre-
quency that it is included in product variants of the Linux
kernel.

5. STRUCTURAL CONFIGURATION-
COMPLEXITY METRICS
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Figure 5: Example of a variational call graph with la-
beled edges representing presence conditions (a); a call
graph produced by one specific configuration (when A,
B, and D are selected) (b); and the call graph consid-
ering all configurations considering the quantification of
configuration complexity as weights.

Whereas the previous metrics considered functions in iso-
lation, our three structural configuration-complexity met-
rics characterize interactions among functions (represented
by function calls) and capture how configuration options af-
fect these interactions. All structural metrics are based on
the variational call graph, introduced in Section 3.2, that
compactly describes all potential call graphs for all configu-
rations, in which functions (nodes) and function calls (edges)
are constrained by presence conditions.

In all three structural metrics that we will present, we
transform the presence conditions on edges into weights.
Our intuition is that calls under very specific conditions are
harder to reason about, so we give them a higher weight,
roughly similar to a case where we would have many differ-
ent calls between two functions. As weight, we use one plus
the number of configuration options that control whether a
call (edge) is included in a variant. In Figure 5(a,c), we show
an example how edge weights are derived from the presence
conditions in a graph.

Based on previous work [28, 42], we assume that graph-
based metrics are a reliable proxy to measure the potential
of interaction of nodes in a graph, and consequently, rep-
resent their structural complexity. We refine three metrics
based on standard graph-based metrics [30] to capture dif-
ferent notions of centrality and, consequently, different no-
tion of interactions among functions. The intuition behind
these three metrics is that functions that interact, either
directly or indirectly, with other functions under compli-
cated configuration conditions, are more complex, and con-
sequently, more prone to vulnerable behavior. That is, we
create graph-based metrics for configuration complexity based
on traditional graph-based metrics by incorporating weights
for configuration decisions and computing them over the en-
tire configuration space, not just a single product variant.

To separate the configuration aspect from the mechanism
of the underlying graph-based metric, we compare each struc-
tural configuration-complexity metric to a corresponding base-
line metric on a single configuration. For example, we com-
pare the configuration-weighted eigenvector centrality met-



ric on the call graph for all configurations with an unweighted
eigenvector centrality metric that we compute on the call
graph on a single representative configuration. With this
comparison, we can establish whether the configuration as-
pect provides additional information compared to traditional
graph-based metrics [30]; Figure 5 illustrates that relation-
ship.

As baseline, we use two configurations commonly used for
quality-assurance tasks in Linux kernel: the default configu-
ration (‘make defconfig’) and the maximum configuration
(‘make allyesconfig’) Especially, the latter is frequently
used to increase code coverage when testing or analyzing
single product variants of the product line [38].

5.1 Degree Centrality
Our first metric combining structural and configuration-

complexity is based on degree centrality [30], which mea-
sures the immediate importance of a node in the (weighted)
graph by counting how many edges connect that node to
other nodes. We consider both incoming and outgoing calls
and add weights based on the number of external configura-
tion options, as described above. We expect that functions
with a high configuration-complexity value are called (or
calling other functions) often and under complicated condi-
tions, and are thus more difficult to understand and more
likely to be vulnerable. Figure 5 shows how the configu-
ration complexity aspect (represented as weights) changes
the result of the metric computation compared to a baseline
degree centrality metric on an unweighted call graph of a
single variant.

Results
Our analysis on the complete call graph reveals that vul-
nerable functions have, on average, a 1.3 times more outgo-
ing function calls (17) than non-vulnerable functions (13),
p <9.1e-10; see Figure 4(d). That is they call more func-
tions or call them under more complicated conditions. The
analysis of incoming function calls was not statistically sig-
nificant.

In comparison, the baseline metric on both the maximum
and default configuration does not yield a statistically sig-
nificant difference between vulnerable and non-vulnerable
samples, but shows an increased difference of 0.91 and 0.85,
respectively for maximum and default configuration. The
results show that the addition of configuration complexity
into the computation of degree amplifies the difference be-
tween the two sample means.

Confounding Effect Analysis
The correlation coefficients between our metric and the both
baseline metrics for the two single configurations (maximum
and default) are 0.0032 and 0.022 respectively, which sug-
gests a weak connection between the two metrics.

When analyzing the change in odds of the regression co-
efficients of the weighted out-degree metric before (1.8e-10)
and after the out-degree metric from the maximum config-
uration is added to the regression model (-6e-11), we see a
small percentual change of the regression coefficient (5.3e-07

percent). The weak correlation and confounding analysis re-
sults practically excludes a confounding effect between the
metrics, which shows that considering configuration infor-
mation improves the distinction of vulnerable functions and
non-vulnerable ones.

5.2 Eigenvector Centrality
Our second structural configuration-complexity metric is

based on eigenvector centrality, which is effectively a recur-
sive version of the degree centrality, assigning higher val-
ues to nodes in neighborhoods of other nodes with high
values [30]. Again, we compute eigenvector centrality on
the weighted call graph of the entire configuration space
and compare it against a baseline implementation of an un-
weighted graph of a single configuration. Our intuition is
that this metric should be higher for functions with compli-
cated conditional call relationships to other functions, espe-
cially in neighborhoods where many such complicated call
relationships exist.

Results
Our analysis on the complete variational call graph reveals
that vulnerable functions have, on average, an eigenvector
score that is 1.5 times (0.0017) higher than non-vulnerable
functions (0.0011), p <1.1e-12.

In comparison, the analysis on both the maximum and
default configuration is not statistically significant. The re-
sults show that the addition of configuration complexity to
the computation of eigenvector amplifies the difference be-
tween the two sample means and highlights the importance
of taking configuration complexity into consideration; see
Figure 4(e).

Confounding Effect Analysis
The correlation coefficients between our weighted eigenvec-
tor score (considering the number of configuration options
that compose the presence condition on the edges) and the
scores for the two single configurations (maximum and de-
fault) are 0.16 and 0.31, respectively. Similarly, this sug-
gests a moderate correlation between the weighted and un-
weighted metrics on single configurations, which is expected
as they are both computed with the same algorithm on sim-
ilar inputs.

When analyzing the change in odds of the regression coef-
ficients for the weighted eigenvector metric before (-6.4e-13)
and after the eigenvector metric from the maximum config-
uration is added to the regression model (-4.9e-14), we see,
again, a small percentual change of the regression coefficient
(1.3e-09 percent), which potentially excludes a potential con-
founding effect between the two metrics.

5.3 Betweenness Centrality
Our third structural configuration-complexity metric is

based on betweenness centrality [30], which captures the no-
tion of flow in the graph, an aspect that the two previous
metrics do not address. Basically, it computes how many
times a node acts as a bridge along the shortest path be-
tween two other nodes. In the context of variational call
graphs, it can be interpreted as the influence potential of a
function for causing global instability in the call graph. The
function with the most strategic location, that is, the func-
tion that appears in most shortest paths of the call graph, is
the most important one; note how this metric approximates
the importance of a function in the runtime behavior of a
program.

To consider configuration complexity, we incorporate the
number of external configuration options that constrain the
edge, and consequently modify the strength of alternative
shortest paths (chain of function calls) between two other



functions. By considering configuration complexity, we intu-
itively reinforce shortest paths with more complex presence
conditions. As baseline, we again compute betweenness cen-
trality on the unweighted graph for two single configurations
(maximum and default).

Results
Our analyses on the variational call graph on the maximum,
and on the default configuration, are all not statistically
significant. For this study, the results indicate that be-
tweenness centrality has no sufficient discriminatory power
to distinguish vulnerable from non-vulnerable functions. We
therefore omit analyzing confounding effects; see Figure 4(f).

5.4 Summary
Overall, we conclude that the configuration complexity

aspect of the metrics adds new information to traditional
notions of structural complexity by amplifying the difference
between the metric values for vulnerable and non-vulnerable
functions. Our results show that combining configuration
complexity and structural complexity metrics amplify the
observed effect of degree- and eigenvector-centrality-based
metrics, which signals to be worth paying attention to this
combination.

6. DISCUSSION
We have shown that vulnerable and non-vulnerable func-

tions in the Linux kernel have distinguishable characteristics
regarding configuration complexity. This result provides a
fresh view on the problem of understanding what causes
vulnerabilities and whether there are measurable correlates
that help us in avoiding vulnerabilities. The fact that static
variability and preprocessors are widely used in practice has
been largely ignored in this quest. Our study closes this gap.

A consequent next step is – in addition to understanding
correlates of vulnerabilities in the presence of static variabil-
ity – to explore whether we can deduce actionable insights
in the form of approved coding guidelines or automatically
quantifiable predictors. While a thorough treatment is well
beyond the scope of this paper, we will discuss to what de-
gree these insights might be used to predict vulnerabilities
and guide quality-assurance effort, which additional char-
acteristics might be measured to improve our metrics, and
threats to validity to our analysis.

Vulnerability Prediction Challenges
A persistent modeling challenge is that vulnerable functions
are extremely rare in the Linux kernel (1,170), not giv-
ing much information by which to compare them to non-
vulnerable functions (232,733). While we can identify dif-
fering characteristics and ensure that they are not caused
by the skewness of our data (see details in an accompanying
technical report [8]), the difference may not be sufficient to
predict at scale. Another issue that we faced is the unbal-
anced nature of the data. That is, in 96 percent of the cases
functions do not have #ifdefs inside their scope. This com-
bined with the fact that vulnerabilities are also rare events,
make our task of analyzing effect sizes and building predic-
tive models challenging.

We have explored logistic regression and discriminant anal-
ysis, but in both cases, the amount of noise and the unbal-
anced nature of the data contributed to a weak prediction

model that, in 99 percent of the cases, predicted functions to
be non-vulnerable. In that context, our metrics make mea-
surable, but effectively tiny improvements to a predictor for
vulnerability.

As a meta-result of our study, we arrived at the conclu-
sion that, more than investigating new metrics, we have to
develop and apply better statistical methods to take the
specifics of the data we have at our disposal in to account,
in particular, the skewness and availability of data.

As said previously, while ending on a sobering note with
regard to predictability, our study nonetheless provides novel
insights into the distinguishing characteristics of vulnerable
functions in the presence of static variability – a dimension
that has been overlooked for too long. More investigation
is required to establish reliable thresholds for these metrics
and to improve them to be used in predictive models.

Refining Configuration Complexity Metrics
While we have shown that even simple metrics, such as
counting internal #ifdefs and configuration options used to
constrain feature code, expose different characteristics of
vulnerable and non-vulnerable functions, we expect that
there are additional influence factors that could capture fur-
ther aspects of configuration complexity.

For example, we could use analyze the importance of indi-
vidual configuration options. Potentially, we could incorpo-
rate information about how and where configuration options
are documented (for example, where in the hierarchy of a
feature model [16]), how much code is affected by a configu-
ration option, and how many developers have touched code
a configuration option. With more information on config-
uration options used in practice (e.g., as in a recent study
on configuration challenges [12]), we could even characterize
how frequently certain configuration options are included
in product variants used (and tested but also exploitable)
in practice. In addition, with information about developers
(e.g., developer/code networks [14]), we could identify which
options have been developed by groups of experienced de-
velopers in a domain familiar to them.

We believe that there are many characteristics of variabil-
ity left to explore. For instance, in an exploratory analysis,
we found that the presence conditions of a major part of
vulnerable functions usually contain only few configuration
options, and that these options are often defined near the
top of the feature model. This result may corroborate that
functions frequently included in the build process are being
noticed and more frequently screened for vulnerabilities. We
think our study on configuration complexity contributes to
making variability information more accessible. Ultimately,
when able to understand complexity metrics and their asso-
ciated thresholds, we envision the creation of a dashboard
that aggregates other quantitative information on variability
(as discussed in the literature [2,12,14,41]) to better support
product line maintainability.

Threats to Validity
We acknowledge that we cannot generalize and claim repre-
sentativeness from our single case study of the Linux Kernel.
Nonetheless, we have selected the Linux kernel because it is
an important case of a product line and also the one with
the largest number of reported vulnerabilities. For exam-
ple, OpenSSL has a much smaller code base and only 139
reported vulnerabilities available for analysis.



Our extraction process can potentially threaten the va-
lidity of our conclusions. For instance, when investigating
the vulnerability history of functions, we rely on the vul-
nerability database completeness and on CVE reports and
commits accuracy, which are both produced by humans and
are consequently subject to human error. Also, we discard
information of multiple appearances of a function in the vul-
nerability history and consider only whether a function was
once vulnerable or not. This way, we lose potentially im-
portant information on code churn, but also simplify the
analysis.

We use third-party software to parse and extract simple
size metrics from C code (srcML [4]), and to calculate graph-
based metrics (igraph [5]). Issues could arise if, for example,
the parser is tricked by unusual and obscure use preprocessor
directives. From prior studies, we know that these cases are
rare, though [21].

As discussed, our analysis results suffer from the high
skewness of the data. The rareness of the events we are in-
terested in, such as, the number of vulnerable functions and
the number of #ifdefs used inside functions, required us to
be careful when using statistical techniques for data analy-
sis. We addressed this as far as possible with corresponding
analyses throughout the paper (e.g., checking the validity of
the t-test [8]). Finally, our configuration-complexity metrics
are only proxies for actual configuration complexity. For
this reason, we explicitly control for potential confounding
effects between our metrics and existing size and structural
complexity ones [6, 30].

7. RELATED WORK
Challenges in developing and maintaining variable code

with preprocessors are frequently discussed in the litera-
ture [20, 23, 26].Researchers state that developers struggle
in understanding source code with variability because it is
hard to keep track of the data-flow and control-flow depen-
dencies and precisely identify what parts of the code are ac-
tually going to be compiled into a product variant. Medeiros
et al. [26] have interviewed developers that use the C pre-
processor in practice and found that they frequently suffer
from preprocessor-related problems and bugs [1]. Despite
all known challenges, developers do not see alternative tech-
nologies that could satisfactorily replace the C preprocessor,
which indicates that it will continue being used as a main
tool to implement variability. Configuration-related issues
have also been discussed as a severe security threat to soft-
ware systems [31].

Similar to our work, Chowdhury et al. [3] investigated the
connection between code complexity metrics and the occur-
rence of vulnerabilities. Their results suggest that code com-
plexity metrics can be dependably used as early indicators
of vulnerabilities in software systems. Our work comple-
ments their work by defining configuration complexity met-
rics, which capture different aspects of complexity, and also
in checking whether these metrics can be used as reliable
indicators of vulnerabilities.

Neuhaus et al. [29] investigated the sources of vulnerabil-
ities in software systems. The authors report that compo-
nents that share similar sets of function calls are likely to be
vulnerable. We explore this notion by identifying functions
that are called under many different configuration options
and have more complex interactions. More sophisticated
metrics have been proposed as an alternative to capture

complexity of software systems by using graph-based rep-
resentations [24,42].

One strategy used by many analyses is to simply ignore
all configuration-related constructs in the source code and
to analyze the system after the code has been preprocessed,
that is, without configuration information (e.g., either gen-
erating a product variant by maximizing the number of fea-
tures enabled or relying on a default configuration) [38]. Al-
though useful in some cases, since developers can reuse ex-
isting tools, this strategy produces incomplete results and
do not allow them to reason about the configuration options
and their effects on the system in a systematic fashion. To
address this limitation, many researchers recently investi-
gated family-based (or variability-aware) analysis across en-
tire configuration spaces [38]; our mechanism to build vari-
ational call graphs is an instance of that line of research.

8. CONCLUSION
Preprocessors directives (#ifdefs) have a bad reputation

when maintainability and comprehension are first priorities
for product-line maintainers. We investigated the influence
of configuration complexity on the occurrence of vulnera-
bilities; our results suggest, among others, that vulnerable
functions have, on average, three times more internal #ifdefs
than non-vulnerable ones. In addition, vulnerable functions
are constrained by fewer configuration options, which sug-
gests that developers are inclined to notice functions that
are frequently compiled in product variants. Our goal is to
raise the awareness of developers to handle code variabil-
ity more systematically, since it is an important, but often
ignored, aspect of product-line engineering.
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