
Generation of Multigrid-based
Numerical Solvers for FPGA Accelerators

Christian Schmitt‡, Moritz Schmid‡, Frank Hannig‡,
Jürgen Teich‡, Sebastian Kuckuk†, and Harald Köstler†

‡Hardware/Software Co-Design, Department of Computer Science
†System Simulation, Department of Computer Science

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

ABSTRACT
Not only in the field of High-Performance Computing (HPC),
Field Programmable Gate Arrays (FPGAs) are a soaringly
popular accelerator technology. However, they increase the
heterogeneity of clusters, which might be equipped already
today with accelerators, such as GPUs. This results in
having to combine expertise from different fields, e. g., math-
ematical, algorithmic and technical experts are needed to
create numerical solvers for such systems. To bridge this
programmability gap, Domain-Specific Languages (DSLs)
are a popular choice to generate low-level implementations
from an abstract algorithm description. In this work, we
demonstrate the generation of implementations of numerical
solvers based on the multigrid method for FPGAs from the
same codebase that is also used to generate code for CPUs
using a hybrid parallelization of MPI and OpenMP. Our ap-
proach yields in a hardware design that can compute up to
12 V-cycles per second with an input grid size of 4096×4096
on a mid-range FPGA, beating vectorized, single-threaded
execution on an Intel i7 by a factor of almost three.

1. INTRODUCTION
Already today, a large percentage of clusters and super-

computers are equipped with accelerators and we expect
that, in order to achieve exascale performance, the use of
such technologies will intensify and different solutions will
be employed at the same time. However, the implemen-
tation of numerical solvers that unleash such a machine’s
full potential poses a great challenge, even for programming
experts. They would not only require excellent knowledge of
the different technologies but also of the mathematical and
algorithmic implementation details.

A common solution to this challenge are Domain-Specific
Languages (DSLs). They decouple the algorithm from its
implementation, allowing to formulate a description of the
program in native terms. This description then is trans-

HiStencils 2015
Second International Workshop on High-Performance Stencil Computa-
tions
January 20, 2015, Amsterdam, The Netherlands
In conjunction with HiPEAC 2015.

http://www.exastencils.org/histencils/2015/

formed into a (binary) program by a DSL compiler. To add
new optimizations, e. g., support for upcoming accelerator
technologies, only the compiler has to be extended. Then, it
merely takes a recompilation step of the original DSL pro-
gram to benefit from the compiler’s improvements, where in
traditional approaches the program has to be extended or
often even re-written from scratch in order to be efficiently
parallelized and optimized towards the specifics of a novel
architecture.

This approach is used by project ExaStencils [7], which re-
search the feasibility of generating highly scalable numerical
solvers based on the multigrid method. As input, a multi-
layered DSL is proposed, making it possible to tailor each
layer especially towards a certain user group. Furthermore,
this approach—in combination with a description of the
target platform and profound built-in domain knowledge—
enables a great variety of possible optimizations that can be
done automatically by the DSL compiler.

FPGAs have been a popular choice for the implementa-
tion of signal processing for a long time. Due to their high
computational power in combination with excellent energy
efficiency, they are increasingly drawing interest from users of
other domains. Furthermore, newer approaches to supersede
traditional hand-coding of Register Transfer Level (RTL)
designs have been matured: High-Level Synthesis (HLS)
frameworks often provide an equal quality of results while
achieving significant productivity gains through generating
synthesizable hardware descriptions from behavioral algo-
rithm descriptions on a higher abstraction level, e. g., C code.
However, describing algorithms using such HLS-specific C
code is still very specific towards a certain implementation,
whereas DSLs allow to formulate algorithms in a much more
abstract manner and thus enable even higher productivity
improvements. Regardless of its development, the end prod-
uct of such a hardware development is synthesized into a
so-called Intellectual Property (IP) core, which then can be
loaded onto a FPGA or integrated as part of a Application
Specific Integrated Circuit (ASIC).

In this work, we demonstrate the feasibility of generating
hardware-based multigrid solvers from a Domain-Specific
Language via High-Level Synthesis. We substantiate our
claims by providing results of a solver that has been gen-
erated from our DSL, called ExaSlang 4, and processed by
Vivado HLS. However, the presented approach is applicable
to any C-based High-Level Synthesis in general.

http://www.exastencils.org/histencils/2015/

The rest of this work is structured as follows: In section 2,
related work is reviewed. In section 3, a brief introduction
to multigrid methods is given. We provide a brief overview
of our DSL and present its programming model in section 4.
In section 5, the challenges and solutions arising from the
shift towards code generation for FPGAs are expounded,
whereas in section 6 evaluation results of the actual hardware
implementation are presented. Lastly, conclusions of the
presented research are drawn in section 7.

2. RELATED WORK
For HLS, numerous solutions have been developed. A

popular approach is to start from a simple imperative pro-
gramming language, e. g., a subset of C, and then translate
it by stepwise refinement into a synthesizable hardware de-
scription language (HDL). Commercial examples include,
besides the aforementioned Vivado HLS by Xilinx, Catapult
by Calypto, Forte (now Cadence) Cynthesizer and Synopsys’
Synphony C Compiler.

For specific application fields, programming aids in the
form of libraries are available and often are shipped with HLS
frameworks. For the domain of image processing, a partial
port of the computer vision library OpenCV is shipped with
Vivado HLS [16].

However, extending such a library can become quite a
burden and poses problems when porting to new hardware.
In contrast, DSL-based approaches separate algorithms from
their implementation and provide greater flexibility by al-
lowing easier extension to new platforms. PARO [4], for
instance, is a HLS environment for the domain of image
processing and provides domain-specific augmentations for
border treatment and reductions such as median filtering. It
is also capable of adaptive multiresolution filtering in medical
imaging [5].

In previous work, the benefits of domain-specific optimiza-
tion have been shown in various domains. SPIRAL [9], for
example, is a widely recognized framework for the genera-
tion of hard- and software implementations of digital signal
processing algorithms (linear transformations, such as FIR
filtering, FFT, and DCT). In case of hardware generation,
soft IP cores in synthesizable RTL Verilog are emitted. AT-
LAS [15] and FFTW [3] are examples for the generation
of mathematical code from abstract descriptions for specific
applications such as FFTs, where further optimizations are
selected via auto-tuning.

In the field of scientific computing and especially for stencil
computations, numerous approaches building upon Domain-
Specific Languages and code generation exist. Examples
include Liszt [2], which adds abstractions to Java to ease
stencil computations for unstructured problems, and Pochoir
[14], which employs a divide-and-conquer skeleton on top of
the parallel C extension Cilk to make stencil computations
cache-oblivious. PATUS [1] uses auto-tuning techniques to
improve performance. However, none of the aforementioned
approaches support code generation for FPGAs.

Computations in image processing often are similar to
stencil computations and also another popular area for DSLs.
Halide [10] generates, among others, CUDA and OpenCL
code from a DSL embedded into C++. The same description
can be transformed to Verilog by Darkroom [6].

HIPAcc [8] provides native support for multigrid methods
by offering appropriate language elements. It generates low-
level accelerator such as CUDA, OpenCL and Renderscript

code from a DSL embedded into C++ and was recently
extended to emit code that can be processed to IP cores
using Vivado HLS [12].

3. MULTIGRID METHODS
In scientific computing, multigrid methods are a popular

choice for the solution of large systems of linear equations
that may stem from the discretization of partial differential
equations (PDEs). One of the most researched PDEs is Pois-
son’s equation which is used for modeling diffusion processes,
e. g., in the simulation of temperature distributions.

The V-cycle, one variant of a multigrid method, is shown
in Algorithm 1. In the pre- and post-smoothing steps, high-
frequency components of the error are damped by smoothers
such as the Jacobi or the Gauss-Seidel methods. In the algo-
rithm, ν1 and ν2 denote the number of smoothing steps that
are applied. Low-frequency components are transformed into
high-frequency components by restricting them to a coarser
level, thus making them good targets for the smoother once
more.

On the coarsest level, direct solving of the remaining linear
system of equations is possible due to its low number of
unknowns. However, it is also possible to apply a number
of smoother iterations. In the case of a single unknown,
one smoother iteration corresponds to directly solving the
problem.

if coarsest level then
solve Ahuh = fh exactly or by many smoothing
iterations

else

ū
(k)
h = Sν1h

(
u
(k)
h , Ah, fh

)
{pre-smoothing}

rh = fh −Ahū
(k)
h {compute residual}

rH = Rrh {restrict residual}
eH = VH (0, AH , rH , ν1, ν2) {recursion}
eh = PeH {interpolate error}

ũ
(k)
h = ū

(k)
h + eh {coarse grid correction}

u
(k+1)
h = Sν2h

(
ũ
(k)
h , Ah, fh

)
{post-smoothing}

end
Algorithm 1: Recursive V-cycle to solve

u
(k+1)
h = Vh

(
u
(k)
h , Ah, fh, ν1, ν2

)
.

4. PROGRAMMING MODEL
ExaStencils is a project researching the generation of ef-

ficient and scalable numerical solvers based on multigrid
methods from a description of the problem formulated in
a Domain-Specific Language. During the translation pro-
cess, domain-specific and hardware-specific optimizations are
applied to generate high-performance, scalable C++ code.

ExaSlang—short for ExaStencils language—is a Domain-
Specific Language consisting of four layers of abstractness,
geared towards different classes of users from diverse do-
mains. ExaSlang 4 constitutes the most concrete layer and
allows to specify standard and custom multigrid cycles by
providing appropriate language elements such as fields and
stencils. It is a procedural programming language, featuring
control structures such as functions, loops and conditions.
Furthermore, this layer is explicitly parallel by providing
very simple communication statements to specify data to be

1 Stencil Laplace @all {
2 [0, 0] => 4.0
3 [1, 0] => -1.0
4 [-1, 0] => -1.0
5 [0, 1] => -1.0
6 [0, -1] => -1.0
7 }
8

9 Function Smoother @all () : Unit {
10 loop over Solution @current {
11 Solution2 @current = Solution @current +

(((1.0 / diag(Laplace @current)) * 0.8)

* (RHS @current - Laplace @current *
Solution @current))

12 }
13 }

Listing 1: Example of a stencil definition and its use
as part of a weighted Jacobi smoother in 2D.

communicated. A more thorough description of the language
and its code generation and transformation framework can
be found in [13].

4.1 Language Elements
Being a language that targets the description of multigrid-

based numerical solvers, ExaSlang 4 combines elements of
procedural languages, such as functions and loops, with
domain-specific elements, e. g., stencils and communication-
enabled memory arrays.

ExaSlang 4 features special data types that we call Algo-
rithmic data types, as they stem from the language’s domain.
Therefore, Stencil and Field can only be as part of nu-
merical calculations. They are explained in more detail in
the next paragraphs.

Stencils are defined by listing the weights around the center
using relative addressing. Weights can be represented by any
type of expression, including binary expressions and function
calls, but, naturally, constant values are possible as well. An
example can be seen in Listing 1, where a weighted Jacobi
smoother is described.

Furthermore, this example showcases the loop over state-
ment, a language element that is used to instantiate an it-
eration over the computational domain (or a part of it) by
defining a Field that is used to determine the computational
bounds.

Fields represent the actual data that stencils are applied
to. They may be given by the user, e. g., as the right-hand
side of a calculation, or the unknown to be solved for. A
field is defined by providing a layout which specifies further
options, e. g., enables communication among the domain
partitions. Furthermore, an underlying numerical data type
has to be provided.

A key element of ExaSlang 4 are Level Specifications. They
allow the definition of objects—such as functions, variables,
stencils and fields—depending on multigrid levels and can
be used to override defaults at specific levels, as illustrated
in Listing 2. Here, a smoother that is different from the
one called at other levels is implemented for the second-
finest level. Identifiers such as current and finest can be
used to ease modifying the depth of the multigrid recursion
without rewriting large parts of the DSL code. Consequently,

1 Function Smoother @all () : Unit {
2 /* ... */
3 }
4

5 Function Smoother @(finest - 1) () : Unit {
6 /* ... */
7 }
8

9 Function VCycle @all () : Unit {
10 repeat 3 times {
11 Smoother @current ()
12 }
13 /* ... */
14 }

Listing 2: Example of overriding the default
smoother function at a specific multigrid level.

references to level-dependent entities, e. g., function calls,
need to include the target level.

4.2 Code Generation
Multigrid algorithms described in ExaSlang 4 are trans-

formed into C++ code by a transformation framework writ-
ten in Scala. The input file is parsed and transformed into
an abstract syntax tree (AST), which target platform spe-
cific alterations and optimizations are applied to. We call
this stage, where most of the transformations take place, the
intermediate representation (IR), since it is only available in
the compiler instance. After numerous alterations, the IR is
emitted as C++ code that can be compiled with standard
compilers such as gcc, Clang, IBM XL and MSVC.

5. MAPPING TO HARDWARE
To generate C++ code that can be mapped and synthe-

sized efficiently to a hardware architecture for FPGAs, the
transformation chain has to respect a number of specifics.

5.1 Computational Model
The conventional way to stencil computations is to allocate

a continuous chunk of memory and apply the stencils by
iterating sequentially over the memory, i. e., a multigrid
algorithm is realized as a sequence of smoother, residual
calculation, restriction and prolongation stencils. Usually,
these kernels are executed linearly, where application of a
new kernel starts only after completion of the previous one.
As a consequence, to improve the overall performance, kernel
execution times have to be reduced.

In contrast, FPGAs offer a massively parallel hardware
architecture which can achieve the best results in combina-
tion with data streaming. The concept of implementing the
multigrid algorithm as a sequence of stencils can be carried
over to the FPGA architecture by converting the computa-
tional kernels into hardware modules and laying them out in
parallel on the chip. The modules are then interconnected
by data streams to form a pipeline, through which data is
streamed from one entity to another. Once the pipeline is
completely filled, all of the computations are carried out
in parallel, providing a continuous output flow of results
from a continuous delivery of input data. A key concept in
hardware development is to design a component once and
replicate it as often as necessary. For multigrid algorithms,

8 STAGE MULTIGRID SOLVER

smooth8 smooth8

restrict8 prolong8

smooth7 smooth7

B
B

B

smooth1

restrict2 prolong2

~~ ~~II=4096~~ ~~

II=1

II=4

II=16384 B

B

residual8

down8

sol8 rhs8

smooth7

smooth7

sol7 rhs7

sol7 rhs7

res8

sol7 rhs7

B

up8

correct8

corr8

up8

sm7

data_in data_out

B Buffer

Figure 1: Structural representation of the multigrid
algorithm implementation.

we can make use of this principle by designing one stage of
the algorithm and replicate it to implement the recursion
levels. An important fact to consider is that the lower stages
always only have to process a fraction of the data of the next
higher stage, e. g., a quarter in the case of 2D. Although
this could be exploited in hardware by lowering the clock
frequency of the lower stages, a much more sophisticated
approach is to increase the pipeline interval, also often called
Iteration Interval (II), which describes the amount of clock
cycles between the arrival of new data elements. To achieve a
high performance, the top most level uses a pipeline interval
of one, which means the architecture can accept new input
data in every clock cycle. In consequence, it also produces re-
sults in every clock cycle, after a certain latency. To achieve
this, however, a dedicated operator must be instantiated for
each operation of the algorithm, and therefore the implemen-
tation requires a large amount of hardware resources. If the
pipeline interval is increased on the lower levels, hardware
operators can be shared among the operations, which leads
to significantly lower resource requirements. An overview
of the structure for a multigrid solver is shown in Figure 1.
In addition to the actual implementation of each stage, the
figure also shows the II for the stages, data streams, and
indicates which connections require buffering (depicted as
B). Although it is possible to instantiate buffers on every
stream, there are actually only three cases where the in-
terconnection requires buffering. These are (a) after down
samplers (part of restrict), (b) before up samplers (part of
prolong), (c) before nodes that combine data streams and
have different path lengths. The necessity for buffering after
downsampling and before up sampling is due to different
iteration intervals between the stages. The buffer require-
ment for combining nodes, such as the correction step of
the prolongation, becomes evident from the structure of the
accelerator. For example, the connection between restriction
and prolongation requires a very large buffer, since prolonga-
tion must wait until data arrives after having traversed all of
the lower stages. Other interconnections in the architecture
can be set to simple registered handshake connections, which
will lower the total amount of hardware resources required
for buffer implementation. A limitation of the current HLS

approach is that the re-use of streams is problematic. In case
a data stream is needed as input for multiple kernels, e. g.,
the result of the residual computation is used for downsam-
pling and for correction, it has to be duplicated accordingly
by inserting kernels that copy, or split, the stream into the
required number of output streams. Currently, HLS tools
do not automatically duplicate such streams or insert appro-
priate copy operations. Thus, the required split kernels need
to be identified and placed into the pipeline at the correct
positions.
Proceeding in this section, we will explain how code genera-
tion must be altered to achieve efficient hardware accelerators
by HLS.

5.2 Stencils and Kernels
As already explained, computations are implemented by

kernels and connected via streams that represent input and
output elements. In previous work, we have introduced a
library of standard components to facilitate code generation
for C-based HLS [11]. In addition to support point and local
operators with an arbitrary number of input and output
ports, the library also provides operations to handle data
streams in complex pipelines. Stencils can be expressed by
local operators, where the center corresponds to the out-
put element being calculated and neighboring points are
addressed in a relative manner, similar to the way stencils
are defined in ExaSlang 4.

As a consequence of the shift towards the stream process-
ing model, iterations over the computational domain need
to be transformed into separate kernels. As an iteration is
declared by the loop over statement and all computational
domain sizes are known at compile time, a corresponding ker-
nel function with the correct number of stream elements can
be derived directly and transformed into a computational
kernel. The original loop statement is replaced with an in-
stantiation and call of the kernel. Vivado HLS synthesizes
each instantiated kernel into a dedicated hardware module
and generates the data streaming interconnect fabric.

During the generation of CPU code, stencil weights are
resolved directly into the calculations to reduce memory ac-
cesses and enable further optimizations. The same approach
is used for the HLS code generation, where placing the co-
efficients directly into the code yields a lower number of
memory streams that need to be processed, i. e., streams
that only provide constants are not generated.

5.3 Loops and Recursion
To enable pipelining and parallel execution of the kernels,

the loop and recursion constructs of ExaSlang 4 must be
unrolled and flattened. The principle can be easily applied
to the repeat N times loop, as N is a constant integer. An
example for this is the repeated application of the smoother.
Since the number of applications is known at compile time,
we can simply unroll the loop and generate appropriate ker-
nels.

A control structure that requires more attention is re-
cursion. For example, it is used to define the V-cycle, as
depicted in algorithm 1. However, due to ExaSlang’s static
approach, also this information is available at compile time
which enables us to unroll the recursion and instantiate ap-
propriate kernels. In addition, we must adjust the iteration
interval and the loop bounds of the individual kernels, in-

stantiate restriction and prolongation operators, as well as
duplicate data streams where necessary.

Moreover, ExaSlang contains repeat until loops, which
are executed until a certain criteria is fulfilled. Supporting
these constructs inside of the V-cycle, for example for solv-
ing the coarsest grid is difficult, since it would require the
repeated sequential execution of kernel, which would inter-
rupt the streaming pipeline and require extensive buffering
of the results of the higher levels. Another use case for the
construct is the repeated application of the V-cycle until
desired precision has been reached. However, this does not
affect hardware generation.

6. CASE STUDY
To evaluate our approach, we consider a typical example

problem: A solution to a finite differences (FD) discretiza-
tion of Poisson’s equation with Dirichlet boundary condi-
tions. We have implemented a typical multigrid solver in
ExaSlang 4 using a V(2,2) cycle and a recursion depth of
8. For smoothing, a weighted Jacobi with a pre-calculated
optimal ω is used. Solution on the coarsest grid of 32 × 32
is approximated by multiple smoother steps.

The code generated by ExaSlang 4 was used to infer a
hardware description of the multigrid solver using Xilinx
Vivado HLS v14.2. As evaluation hardware, we have chosen
a mid-range Xilinx Kintex 7 (xc7k325t) FPGA. Although
interconnecting individual modules using FIFO streams and
executing these concurrently is supported by the tool us-
ing the data flow directive, the buffer size is statically
set to 1 and there is no mechanism for automatic deter-
mination of the necessary depth of the buffer. To allow
uninterrupted execution, buffers on all levels must provide
enough space to not produce back-pressure on the pipeline,
which might result in a deadlock, once the upper most level
is affected. In addition to static delays between the inter-
connected functions, due to the latencies of the hardware
modules, a complex pipeline consisting of multiple up and
down sampling steps also produces runtime delays, which
vary according to the chosen architecture and are hard to
anticipate. As under provisioning may at least decrease the
performance and over provisioning may waste resources, we
have used logic simulation to determine the necessary buffer
sizes, which are shown in Table 1. For the chosen grid size
of 4096 × 4096 floating point values and 8 recursion levels,
the buffers on the top four levels become very large and
would overwhelm the amount of available resources, even on
very large FPGAs. A solution to allow the fastest possible
execution and keep within the maximum amount of available

Level RHS buffer Result buffer 4KB Pages

Stage 8 4430946 4430936 4328
Stage 7 1094407 1094397 1069
Stage 6 266942 266932 261
Stage 5 63728 63718 63
Stage 4 14443 14435 NA
Stage 3 2866 2856 NA
Stage 2 338 328 NA
Stage 1 1 64 NA

Table 1: Buffer sizes for interconnecting the stages
of the V-cycle.

resources is to offload the most challenging buffers to exter-
nal DDR3 memory. A drawback is that HLS tools, such as
the here used Vivado HLS, do not support this from within
the tool, but require an FPGA support design to facilitate
this. We add input and output arguments for the streams to
be externalized to the function definition and specify their
type as AXI4-Streaming (AXI4S). In this way, we obtain a
high-performance interface to the FPGA fabric for each data
connection and do not need to make extensive modifications
to the actual accelerator source code. The FPGA support
design uses an AXI4S interconnect (IC) built on top of a
virtual FIFO as an abstraction to an off-chip DDR3 memory.
A structural overview of the design is shown in Figure 2. The
virtual FIFO is an IP core from Xilinx and can be configured
to support up to eight full duplex AXI4S data channels using
word widths of up to 128 bytes. The core uses round robin
arbitration between the channels which can be weighted in
terms of how many data bursts are executed in sequence
before arbitrating to the next channel. The size of the data
burst defines the maximum amount of memory space that
can be allocated to a each channel. For our application, we
use a 64 byte word width, as this is also the word width
supported by the underlying DDR3 memory and select the
smallest available burst size of 128 bytes. As the individ-
ual channels have different data production rates, we assign
different weights for appropriate bandwidth allocation. To
allow uninterrupted data exchange between the DDR3 and
the accelerator, the AXI IC aggregates data to a very large
word width of 64 bytes before passing it to the Virtual FIFO.
To adjust the data from the accelerator to the requirements
for buffering on the off-chip memory, we have designed an
AXI4-Streaming interconnect, as shown in Figure 2. It uses
an internal 64 byte data bus and is situated in the same clock
domain as the memory interface. Incoming data streams
are first adjusted to the internal data width before they are
transferred to the internal clock domain using asynchronous
FIFO buffers. An AXI4S switch merges the data stream
onto the interface of the virtual FIFO, which stores the data
in the channel’s memory region according to the destina-
tion identifier of the data stream. An equal path is used
in reverse order to transfer data from the external memory
back to the output ports of the interconnect and from there
to the accelerator. Table 2 shows evaluation results of the
hardware synthesis from Vivado HLS, which give a rough
estimate a conservation approximation of the resource re-
quirements of the design. Indeed, after externalizing the

Table 2: HLS resource estimates for the multigrid
solver design comparing on-chip and external buffer-
ing.

Resource On-Chip External Available

FF 256368 106311 407600
LUT 880314 177379 203800
BRAM 11812 323 445
DSP48 442 442 840

top four largest buffers for results and RHS, the design can
be fit onto the chip. Table 3 lists the post place and route
(PPnR) results after integrating the modified accelerator
into the described FPGA support system and shows that
the multigrid solver can be implemented on a Kintex 7 and

Figure 2: Structural representation of the FPGA support design.

AXI4 Interconnect
AXI_IC_OUTAXI_IC_IN

AXI4S Data Out Coupler 1

AXI4S Data Out Coupler 8

AXI4S Data In Coupler 1

AXI4S Data In Coupler 8

AXI4S
Switch

8:1
—

64B
@

200MHz

AXI4S
Switch

1:8
—

64B
@

200MHz

AXI4S
Virtual
FIFO

AXI4 MIG DDR3

AXI4S
DataWidthConv

AXI4S
DataFIFO

AXI4S
DataWidthConv

AXI4S
DataFIFO

AXI4S
DataWidthConv

AXI4S
DataFIFO

AXI4S
DataWidthConv

AXI4S
DataFIFO

HLS_Out 1
(4B @ 200 MHz)

HLS_In 1
(4B @ 200MHz)

HLS_Out 8
(4B @ 200 MHz)

HLS_In 8
(4B @ 200MHz)

… … … …

the design achieves a maximum clock frequency of over 200
MHz. We have evaluated the PPnR hardware results on the

Table 3: PPnR resource requirements of the com-
plete multigrid solver design.

LUT FFs DSPs BRAMs Slices Fmax[MHz]

105951 135442 460 808 39147 202.34

Kintex-7 FPGA to measure the performance in terms of how
many clock cycles it takes it takes to process a 4096 × 4096
grid of floating point values. In combination with the clock
frequency of the design, this yields an accurate measurement
of the performance. Contrasting to a software solution, the
pipelining principle also applies here, thus, it is not necessary
to wait until the result is ready, but we can start processing
a new grid, as soon as all of the input values of the previ-
ous grid have been consumed. Using the concept of data
streaming, we can also hide the communication time with
a host that supplies the input data completely, as current
high-speed serial interconnects, such as PCI express and
others, can achieve data rates that exceed the throughput
of the accelerator by far.

In order to compare the hardware accelerator to state-of-
the-art approaches, we have used the specification of the
multigrid solver in ExaSlang to generate C++ code for a
single machine. The evaluation was done on a single core
of an Intel i7-3770, which is clocked at 3.40 GHz and fea-
tures L2 and L3 cache sizes of 1 MB, respectively 8 MB. For
the CPU, AVX vectorization was enabled. Table 4 lists the
performance results in terms of latency in milliseconds for
processing a single iteration of the V-cycle and the through-
put in terms of how many iterations of the V-cycle can be
processed per second ([Vps]), on average. It is also worth

Table 4: Comparison of the performance of the
multigrid solver on different hardware targets.

Target Latency [ms] Throughput [Vps]
Kintex-7 83.1 12.3
Intel i7 223,1 4.5

mentioning that it is irrelevant to the performance of the
accelerator, whether the input data uses only single-precision
floating point or is implemented for double-precision input

data. Although the chosen mid-range Kintex-7 FPGA can-
not provide the necessary amount of logic and memory re-
sources, switching to a larger FPGA, such as a member of the
Virtex-7 family, here an XC7VX485t, can easily solve this is-
sue. To underline this, we have generate source code for HLS
of the multigrid solver using double precision floating point
arithmetic, for which the estimated resource requirements
are listed in Table Table 5.

Table 5: HLS synthesis estimates for implementa-
tion of the multigrid solver using double precision
arithmetic. Values are given as percentage of avail-
able resource type.

FPGA LUT FFs DSPs BRAMs Fmax[MHz]

Kintex-7 140 43 111 124 232.0
Virtex-7 73 29 33 53 229.4

7. CONCLUSIONS
In this work, we have presented an approach to map

descriptions of multigrid algorithms in a Domain-Specific
Language to hardware designs for execution on FPGA by
generating C++ code that can be used with C-based High-
Level Synthesis tools. Furthermore, we have outlined the
specifics of implementing stencil-based calculations on FP-
GAs via HLS tools and highlighted differences from the pro-
cess of code generation for traditional CPU-based programs.
We verified our approach by synthesizing a multigrid-based
solver for Poisson’s equation onto two different hardware
targets, a Kintex-7 FPGA and an Intel i7 CPU. Both im-
plementations were generated from the same code base in
ExaSlang. Additionally, evaluation numbers show that em-
ploying FPGAs in HPC is a promising approach to increase
computing power, while, at the same, to reduce the energy
footprint of clusters.

8. FUTURE WORK
While ExaSlang can be used to describe multigrid-based

solvers for three and more dimensions and code generation
works, the underlying concept of streaming and buffering
needs some refinement. For large datasets in higher dimen-
sions than 2D, current generation FPGAs boards lack suffi-
cient large memories. Instead, data will have to be stored

in the host’s memory, utilizing the PCI express bus and
drawing a huge performance penalty. Nevertheless, we will
re-evaluate our case study with newer generations of FPGAs
boards.

Additionally, to improve dataset sizes by incorporating on-
board DDR3 RAM, memory bandwidths could be improved
by employing multiple memory controllers into the design.

Automatic insertion of split kernels to duplicate streams
is currently unavailable, as data flow and depency analysis
as part of the ExaStencils transformation framework is not
yet finished. From such information, an information-rich
call graph could be build up, easing generation of linearized
kernel executions.

Partitioning of data for multiple FPGAs—similar to the
way data is partitioned across cluster nodes—is another area
worth looking into, especially in the light of HPC, where
large datasets are common.

9. ACKNOWLEDGMENTS
This work is supported by the German Research Founda-

tion (DFG), as part of the Priority Programme 1648 “Soft-
ware for Exascale Computing” in project in project under
contracts TE 163/17-1 and RU 422/15-1.

References
[1] M. Christen, O. Schenk, and H. Burkhart. “PATUS: A code

generation and autotuning framework for parallel iterative
stencil computations on modern microarchitectures.” In:
Proc. IEEE Int. Parallel & Distributed Processing Symp.
(IPDPS). IEEE, 2011, pp. 676–687.

[2] Z. DeVito et al. “Liszt: A domain specific language for
building portable mesh-based PDE solvers.” In: Proc. Conf.
on High Performance Computing Networking, Storage and
Analysis (SC). Paper 9, 12 pp. ACM, 2011.

[3] M. Frigo and S. G. Johnson. “The design and implementa-
tion of FFTW3.” In: Proc. IEEE 93.2 (Feb. 2005), pp. 216–
231.

[4] F. Hannig, H. Ruckdeschel, H. Dutta, and J. Teich. “PARO:
Synthesis of hardware accelerators for multi-dimensional
dataflow-intensive applications.” In: Proc. of the Fourth In-
ternational Workshop on Applied Reconfigurable Comput-
ing (ARC). (London, United Kingdom). Vol. 4943. Lecture
Notes in Computer Science (LNCS). Springer, Mar. 26–28,
2008, pp. 287–293.

[5] F. Hannig, M. Schmid, J. Teich, and H. Hornegger. “A
deeply pipelined and parallel architecture for denoising
medical images.” In: Proc. of the IEEE International Con-
ference on Field Programmable Technology (FPT). (Beijing,
China). IEEE, Dec. 8–10, 2010, pp. 485–490.

[6] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N.
Cohen, S. Bell, A. Vasilyev, M. Horowitz, and P. Hanrahan.
“Darkroom: Compiling high-level image processing code into
hardware pipelines.” In: ACM Transactions on Graphics
(TOG) 33.4 (July 2014), 144:1–144:11.

[7] C. Lengauer et al. ExaStencils: Advanced Stencil-Code En-
gineering – First Project Report. Tech. rep. MIP-1401. De-
partment of Computer Science and Mathematics, University
of Passau, June 2014.

[8] R. Membarth, O. Reiche, C. Schmitt, F. Hannig, J. Te-
ich, M. Stürmer, and H. Köstler. “Towards a performance-
portable description of geometric multigrid algorithms using
a domain-specific language.” In: Journal of Parallel and
Distributed Computing (Nov. 2014), 32 pp.

[9] M. Püschel, F. Franchetti, and Y. Voronenko.“SPIRAL.”In:
Encyclopedia of Parallel Computing. Ed. by D. A. Padua.
Springer, 2011, pp. 1920–1933.

[10] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amaras-
inghe, and F. Durand. “Decoupling algorithms from sched-
ules for easy optimization of image processing pipelines.” In:
ACM Transactions on Graphics (TOG) 31.4 (July 2012),
32:1–32:12.

[11] M. Schmid, N. Apelt, F. Hannig, and J. Teich. “An im-
age processing library for C-based high-level synthesis.”
In: Proceedings of the 24th International Conference on
Field Programmable Logic and Applications (FPL). (Mu-
nich, Germany). Sept. 2–4, 2014.

[12] M. Schmid, O. Reiche, C. Schmitt, F. Hannig, and J. Teich.
“Code generation for high-level synthesis of multiresolution
applications on fpgas.” In: Proceedings of the First Inter-
national Workshop on FPGAs for Software Programmers
(FSP). (Munich, Germany). Sept. 1, 2014, pp. 21–26. arXiv:
1408.4721.

[13] C. Schmitt, S. Kuckuk, F. Hannig, H. Köstler, and J.
Teich. “Exaslang: a domain-specific language for highly
scalable multigrid solvers.” In: Proceedings of the 4th In-
ternational Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing
(WOLFHPC). To appear. (New Orleans, LA, USA). IEEE,
Nov. 17, 2014, 10 pp.

[14] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk,
and C. E. Leiserson. “The Pochoir stencil compiler.” In:
Proc. 23rd ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA). ACM, 2011, pp. 117–128.

[15] R. C. Whaley, A. Petitet, and J. J. Dongarra. “Automated
empirical optimization of software and the ATLAS project.”
In: Parallel Computing 27.1 (2001), pp. 3–35.

[16] Xilinx Inc. Vivado Design Suite User Guide – HLS. User
Guide. 2013.

http://arxiv.org/abs/1408.4721

	Introduction
	Related Work
	Multigrid Methods
	Programming Model
	Language Elements
	Code Generation

	Mapping to Hardware
	Computational Model
	Stencils and Kernels
	Loops and Recursion

	Case Study
	Conclusions
	Future Work
	Acknowledgments

