
Potential Synergies of Theorem Proving
and Model Checking for Software Product Lines

Thomas Thüm
University of Magdeburg

Germany

Jens Meinicke
University of Magdeburg

Germany

Fabian Benduhn
University of Magdeburg

Germany

Martin Hentschel
University of Darmstadt

Germany

Alexander von Rhein
University of Passau

Germany

Gunter Saake
University of Magdeburg

Germany

ABSTRACT
The verification of software product lines is an active re-
search area. A challenge is to efficiently verify similar prod-
ucts without the need to generate and verify them individ-
ually. As solution, researchers suggest family-based ver-
ification approaches, which either transform compile-time
into runtime variability or make verification tools variability-
aware. Existing approaches either focus on theorem proving,
model checking, or other verification techniques. For the
first time, we combine theorem proving and model check-
ing to evaluate their synergies for product-line verification.
We provide tool support by connecting five existing tools,
namely FeatureIDE and FeatureHouse for product-line
development, as well as KeY, JPF, and OpenJML for ver-
ification of Java programs. In an experiment, we found the
synergy of improved effectiveness and efficiency, especially
for product lines with few defects. Further, we experienced
that model checking and theorem proving are more efficient
and effective if the product line contains more defects.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, Languages, Verification

Keywords
Software product lines, theorem proving, model checking,
design by contract, feature-based specification, family-based
verification, variability encoding, feature-oriented contracts

1. INTRODUCTION
Many software systems are not developed from scratch,

but rather by starting from existing systems [62, 47]. Con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC ’14, September 15–19 2014, Florence, Italy
Copyright 2014 ACM 978-1-4503-2740-4/14/09 ...$15.00.

sequently, these software systems share similarities with each
other. Software product-line engineering is a means to take
advantage of these similarities [42]. A software product line
is a set of products that share substantial similarities and
are created from a set of reusable parts [2]. These prod-
ucts are typically distinguished in terms of the features they
provide, and each product can be generated automatically
based on a selection of features.

As software product lines are increasingly used in mission-
critical and safety-critical systems, such as medical, avionic,
and automotive systems [61], there is a need for their ver-
ification. A simple strategy for product-line verification is
to generate and verify all products individually, known as
product-based verification [55]. However, product-based ver-
ification involves redundant computations, because products
have similarities, and is often even infeasible due to a large
number of products.

In the last decade, several verification approaches have
been proposed that take commonality and variability in a
product line into account [55]. A well-known strategy is
family-based verification, in which all products are verified
simultaneously – either by making tools variability-aware or
by transforming compile-time into runtime variability [55].
We focus on the latter, which is known as configuration lift-
ing [44] or variability encoding [6]. The family-based strat-
egy has been applied to scale different verification techniques
to software product lines, such as type checking [7, 54, 32, 21,
35, 34], dataflow analyses [14, 35, 13], model checking [23,
25, 44, 4, 18, 33, 6], and theorem proving [58, 26].

Each of these verification techniques has unique strengths
and weaknesses. Type checking is relatively fast, but limited
in the defects that can be detected [41]. Dataflow anal-
yses are typically fast, but often unsound or incomplete
(e.g., they may miss actual defects or may produce false
positives) [39]. In contrast, if supported by the particu-
lar specification language, arbitrary reachability and safety
properties can be verified with model checking and theorem
proving. While model checking often requires experts for
parametrization to avoid the state space explosion and may
produce hard-to-understand traces [17], theorem proving of-
ten requires user interaction, such as providing invariants or
applying proof tactics, and the understanding of a logical
representation of the program [50]. Consequently, it seems
useful to combine several techniques for product-line verifi-
cation [55]. However, to the best of our knowledge, combi-
nations have not yet been used to verify the same property
for a particular product line.

A challenge in combining several verification techniques
for the very same property is that this property needs to be
translated into the input language of each verifier. Fortu-
nately, design by contract is a methodology for specifications
that has already been extensively applied to many verifica-
tion techniques, such as static analysis, model checking, and
theorem proving [16, 46, 11, 8, 28]. In design by contract, a
contract is assigned to a method with a precondition stat-
ing a property that needs to be ensured by the caller, and
a postcondition being a property ensured by the callee [38].
Researchers already proposed contracts for software product
lines [60, 49, 5] and checked them by means of runtime as-
sertion checking [56], static analysis [48], and theorem prov-
ing [15, 58, 26, 20]. We focus on the combination of theorem
proving and model checking for product-line verification. To
the best of our knowledge, this is the first time that product-
line contracts are verified using model checking.

We provide tool support for contract-based verification of
product lines by extending and reusing several existing tools.
We extended FeatureHouse [3], a tool for the composition
of feature-oriented source code, with support for variability
encoding for contracts written in JML [16]. An advantage of
variability encoding is that the result is a Java program with
JML specifications that can be verified by a variety of JML
tools. We use KeY [11] for automated theorem proving. For
model checking, we utilize Java PathFinder (JPF) [29],
which, however, has no built-in support for contracts. For
that reason, we transform contracts into runtime assertions
using OpenJML [19] before analyzing the product line with
JPF. Finally, we extended FeatureIDE [57] to integrate
these complex tool chains into Eclipse. Our extension pro-
vides the first tool support for (a) variability encoding of
contracts, (b) family-based theorem proving, and (c) family-
based model checking with contracts.

In our evaluation, we compare model checking and theo-
rem proving for product-line verification. In particular, an
interesting question is whether one of them is superior for
earlier or later stages in the development process, in which
the product line may contain more or less defects. Conse-
quently, we consider the number of defects as independent
variable. We introduce artificial defects by means of mu-
tation techniques as known from mutation testing [31]. As
dependent variables, we focus on effectiveness, performance,
and efficiency to find the first defect of the product line.
For that, we measure how often defects are found, the time
for verification, and the ratio of both. In contrast, existing
evaluations of product-line verification techniques have ei-
ther verified a product line with [4, 18, 6] or without [44,
59, 58, 35, 14, 13] defects, or have not compared these veri-
fication times [54, 32, 33, 34]. Furthermore, the influence of
defects on verification has not yet been explored.

In summary, we make the following contributions:

• We combine model checking and theorem proving for
efficient and effective product-line verification.

• We provide tool support in FeatureIDE based on
FeatureHouse, KeY, JPF, and OpenJML.

• We evaluate model checking and theorem proving for
a small product line with no, some, or many defects.

• We evaluate synergies of model checking and theorem
proving regarding their ability to identify defects.

BankAccount

DailyLimit Interest

InterestEstimation

Overdraft Logging

TransactionLog

CreditWorthiness Lock

Transaction

Legend:

Optional

Logging ∧ Transaction ⇔ TransactionLog

Figure 1: Feature model for bank account software.

2. FEATURE ORIENTATION
We base our work on feature-oriented software product

lines [2], in which valid combinations are specified using fea-
ture models [9], the implementation is separated into feature
modules [10, 45], and code-level specifications are given in
feature modules by means of feature-oriented contracts [60].
We briefly exemplify these concepts in the following.

2.1 Feature Models
In product lines, not all combinations of features are mean-

ingful. A feature model is often used to define the features
of a product line and their valid combinations [9]. In Fig-
ure 1, we give an example feature model for a variable bank
account software. Feature BankAccount represents a basic
implementation of a bank account, which may be combined
with several optional features to ensure a maximum daily
withdrawal, to calculate and estimate interests, to support
a negative balance to a certain overdraft limit, to log changes
to accounts and transactions, to calculate credit worthiness,
and to support locking of accounts and transactions. For
our considerations, it is sufficient to know that feature mod-
els can be automatically translated into propositional for-
mulas [9]. The example feature model is equivalent to the
following propositional formula:

(InterestEstimation⇒ Interest) ∧ (Transaction⇒ Lock) ∧
(Logging ∧ Transaction⇔ TransactionLog) ∧ BankAccount

2.2 Feature Modules
A goal of feature-oriented software product lines is that

products are generated automatically for a selection of fea-
tures [2]. Consequently, a mapping from features to source
code is needed. It is often not sufficient to map features
to classes, because features are typically cross-cutting to
classes [53]. In feature-oriented programming, a feature mod-
ule is created for each feature consisting of a set of classes
and class refinements [10, 45]. Class refinements can add
new members, such as fields and methods, to existing classes
and refine existing methods. Products are generated by au-
tomatically assembling selected feature modules [10].

In Figure 2, we show a simplified version of three fea-
ture modules for our bank account product line, namely fea-
ture BankAccount, Transaction, and TransactionLog. Fea-
ture BankAccount contains class Account, a simple Java class
(Lines 1–9). It stores the balance for a bank account and
enables changes to the balance using the method update.

Similarly, the feature modules Transaction and Transac-
tionLog introduce the classes Transaction and Log, respec-
tively. In addition, they also refine classes introduced in
other feature modules. For example, class Account is refined
by feature module Transaction with support for locking and

1 class Account { BankAccount
2 //@ invariant balance >= 0;
3 int balance = 0;
4 /∗@ requires balance + x >= 0;
5 @ ensures balance == \old(balance) + x; @∗/
6 boolean update(int x) {
7 balance = balance + x;
8 return true;
9 } }

10 refines class Account { Transaction
11 boolean lock = false;
12 /∗@ requires !lock; ensures lock; @∗/
13 void lock() { lock = true; }
14 /∗@ ensures !lock; @∗/
15 void unLock() { lock = false; }
16 /∗@ ensures \result == lock; @∗/
17 boolean isLocked() { return lock; }
18 }
19 class Transaction {
20 /∗@ requires src != null && dest != null;
21 @ requires src != dest && x > 0;
22 @ ensures \result ==>
23 @ (\old(dest.balance) + x == dest.balance) &&
24 @ (\old(src.balance) − x == src.balance);
25 @ ensures !\result ==>
26 @ (\old(dest.balance) == dest.balance) &&
27 @ (\old(src.balance) == src.balance); @∗/
28 boolean transfer(Account src, Account dest, int x) {
29 if (!lock(src, dest)) return false;
30 try {
31 if (!src.update(−x))
32 return false;
33 if (!dest.update(x))
34 { src.update(x); return false; }
35 return true;
36 } finally {
37 src.unLock(); dest.unLock();
38 } }
39 /∗@ requires src != null && dest != null;
40 @ requires src != dest;
41 @ ensures \result ==> src.isLocked() &&
42 @ dest.isLocked(); @∗/
43 static boolean lock(Account src,
44 Account dest) {
45 if (src.isLocked()) return false;
46 if (dest.isLocked()) return false;
47 src.lock(); dest.lock(); return true;
48 } }

49 refines class Transaction { TransactionLog
50 /∗@ requires \original;
51 @ ensures \original && (\result <==>
52 @ Log.contains(src, dest, x)); @∗/
53 boolean transfer(Account src, Account dest, int x) {
54 if (original(src, dest, x))
55 { Log.add(src, dest, x); return true; }
56 return false;
57 } }
58 class Log { /∗ ... ∗/ }

Figure 2: Extract from three feature modules of a
bank account product line.

unlocking the account (Lines 10–18), which is then used by
class Transaction (e.g., Lines 45–47). Essentially, the class
refinement adds a field and three new members to class Ac-
count, if the according feature is selected. Besides adding
members, a class refinement can also refine existing meth-
ods, such as the method transfer in class Transaction. The
keyword original may be used in a method refinement (e.g.,
Line 54) to refer to the method that is subject to refinement
(similar to keyword proceed in aspect-oriented around ad-
vice). Based on a selection of features, the according feature
modules are composed automatically to generate a product.

2.3 Feature-Oriented Contracts
Static verification techniques, such as theorem proving or

model checking, can be used to verify general properties of
programs (e.g., the absence of runtime exceptions). How-
ever, to verify that the program behaves as intended, we
need to express our intention, for instance, by means of
specifications. We specify the intended behavior by means
of contracts defined in JML, because there is already tool
support for several verification techniques [16, 46, 11].

For an example specification in JML, we refer to Figure 2
again. Lines 4–5 show a precondition stating that an update
is only allowed if the balance does not become negative and a
postcondition stating that the balance is updated correctly.
The keyword old can be used in a postcondition to refer to
the object state before method execution, and keyword result
to refer to the return value of a method. Line 2 shows a class
invariant stating that the balance is always non-negative.

While the specification of feature module BankAccount is
given in JML, for the other feature modules we use a feature-
oriented extension of JML, named explicit contract refine-
ment [60]. With this JML extension, we can specify method
contracts and class invariants similar to JML. The difference
is that contracts for method refinements may contain key-
word original to refer to the contract of the method that is
subject to refinement. The semantics is similar as for source
code: original in a precondition or postcondition refers to the
previous precondition or postcondition, respectively. For ex-
ample, Lines 50–52 in feature module TransactionLog show
a contract refinement. The precondition remains as spec-
ified in feature module Transaction and the postcondition
is maintained, but concatenated with a further condition
stating that the transaction is logged, if the method returns
true. Given a selection of features, we can compose the fea-
ture modules including their feature-oriented contracts to a
Java program with a JML specification.

3. VARIABILITY ENCODING
In variability encoding, compile-time variability of a prod-

uct line is translated into run-time or load-time variability
for verification purposes. The result is a metaproduct, which
simulates the behavior of all products. Our approach and
evaluation is based on variability encoding, because existing
verification techniques and tools can be reused for software
product lines. Variability encoding has been proposed for
model checking [44, 4, 6, 33] and theorem proving [58] be-
fore. We give a brief overview on variability encoding.

Variability Encoding for Feature Models. The fea-
ture model is encoded into the metaproduct to simulate ex-
actly those feature selections that are valid. A boolean class
variable is created for each feature, whereas the variable as-

signment true indicates that the feature is selected and false
that it is not. However, verification tools are configured to
treat those feature variables as not initialized to consider
all combinations. The dependencies between features are
translated into a propositional formula into the host lan-
guage (e.g., Java in our case). This formula is then used to
prohibit any execution of non-valid feature selections.

Variability Encoding for Feature Modules. In con-
trast to the generation of products, where typically only a
subset of feature modules is composed, all feature modules
are encoded into the metaproduct. To simulate all products,
a branching statement over feature variables is included at
the beginning of each method that is refined. Depending on
the feature selection, either the code of the current method
refinement will be executed or the previous method refine-
ment in the refinement chain. For a given feature selection,
each method of the metaproduct behaves as the method in
the according product (except for some further branching
statements and method calls). Similarly, variability encod-
ing can be applied to constructors and fields [36].

Variability Encoding for Contracts. Contracts and
invariants are encoded into the metaproduct by introducing
implications with feature variables. Each precondition and
postcondition (for short condition) c defined in a feature f
is rewritten as f ⇒ c to ensure that the condition is checked
only if the according feature is selected. Similar to the en-
coding of feature modules, we need to specify the behavior
if f is not selected. Given the previous condition c′ in the
refinement chain, we also add the condition ¬f ⇒ c′. As in-
variants cannot be refined [60, 12], it is sufficient to rewrite
each invariant i in feature f as f ⇒ i.

Theorem Proving. In theorem proving, programs are
typically verified method-by-method. Given a method and
its contract, a theorem prover transforms the precondition
while symbolically executing the method. Then, it checks
whether the transformed precondition is a model of the post-
condition (i.e., it implies the postcondition). That each
method is verified without its calling context requires two
adaptions to variability encoding for contracts. First, to
consider only valid feature selections, a precondition with
the feature model needs to be added to every method (ei-
ther directly, or as an invariant). Otherwise, we may not be
able to prove certain contracts, because they are not fulfilled
for invalid feature selections. Second, to only verify each
method for those feature selections, in which the method is
available, we add a precondition to forbid calls otherwise.

Software Model Checking. In software model checking,
programs are usually verified by means of test scenarios [4].
A model checker takes the program and test scenarios as
input and exhaustively searches for possible violations. The
difference of test scenarios compared to test cases is that
they can include arbitrary values (e.g., a boolean value or
a positive integer), which are all considered during model
checking. Similarly to theorem proving, we need to rule out
all execution paths that are not available in the products.
However, for model checking, it is sufficient to check this
once at the beginning of each test scenario.

4. TOOL SUPPORT
We provide tool support for variability encoding of fea-

ture modules and their contracts as illustrated in Figure 3.

FeatureIDE FeatureHouse

product

meta-
product

OpenJML

JPF

KeY

J
a
v
a

+
J
M

L

feature-oriented
Java + JML

configuration

feature model

Java byte code

errors

warnings

Figure 3: Product-line verification with FeatureIDE.

Previous work either required manual assembly of metaprod-
ucts [44, 58], which is laborious and error-prone, or did not
support contracts [4, 18, 6, 33], which we rely on to support
several verification techniques. We implemented variability
encoding based on FeatureHouse [3], because this tool al-
ready supports the composition of feature-oriented source
code in several languages, such as Java and C. For our ex-
tension, we had to provide a new grammar for JML based
on the existing one for Java. Furthermore, we implemented
the composition of products and variability encoding as de-
scribed in Section 3.

As the generated metaproduct is a JML-annotated Java
program, we can use any JML tool for verification. However,
as described in Section 3, theorem provers and model check-
ers require smaller modifications of the metaproduct. Our
extension of FeatureHouse currently supports theorem
proving with KeY [11] and model checking with JPF [29].
As JPF has no built-in support for contracts, we use Open-
JML [19] to translate contracts of the metaproduct into run-
time assertions before model checking. Each of these verifi-
cation tools is reused as-is.

Finally, FeatureIDE [57] is an Eclipse-based develop-
ment environment that already integrates several generation
tools, such as FeatureHouse. We extended FeatureIDE
with support for contracts and variability encoding. First,
the user can choose whether products or metaproducts are
generated for each project. Second, we implemented er-
ror propagation for metaproducts, which propagates error
markers in the metaproduct to the source feature module.
Third, we extended several FeatureIDE views with support
for contracts, such as the collaboration diagram and outline.

All our extensions are open-source and available in Fea-
tureIDE v2.7.0. We plan to use the tool support for teach-
ing product-line specification and verification. Furthermore,
we envision that our tool support is a stepping stone to
transfer research on product-line verification to industry.

5. EVALUATION
Given our tool support in FeatureIDE it is possible

to implement feature modules, specify feature-oriented con-
tracts, and verify them using theorem proving and model
checking by means of variability encoding. This gives rise to
a number of questions. What are the benefits of combining
theorem proving and model checking? Which verification
technique is a programmer supposed to use when? How do

Source/Target Target/Source In Java In JML Sum

false true 27 1 27
* / 12 0 12
- + 7 8 15

+= -= 4 0 4
< <= 7 5 12
> >= 1 12 13
&& || 0 11 11
==> <==> 0 27 27
== != 0 37 37

Sum 58 101 159

Table 1: Mutations applied to feature modules and
feature-oriented contracts of the bank account.

the verification techniques scale depending on the number of
features or defects? In the following, we describe our experi-
ment to explore potential synergies of combining techniques,
the results of the experiment, and threats to validity. We re-
fer interested readers to our website containing screencasts,
source code, and raw data for reproduction purposes.1

5.1 Experiment
In our experiment, we use a product line that is com-

pletely verified with KeY and JPF. In contrast to the tool
support described above, we use MonKeY [58], an extension
of KeY providing a batch mode for automatic verification.
For model checking, we use JPF-BDD [6], an extension of
JPF for product-line verification that symbolically encodes
feature variables in a binary decision diagram for better per-
formance. We deliberately introduced defects by means of
mutations in feature modules and feature-oriented contracts,
respectively. The goal of mutations is to simulate different
phases of development (i.e., mature and less mature product
lines). We measured the verification time and effectiveness
of KeY and JPF for the product line containing no defects,
some defects, and many defects.

Experiment Subjects. Our experiment is based on a
bank account product line that has been previously used to
evaluate techniques for product-line specification [60, 5] and
verification [59, 58]. We extended the product line by four
new features to ten features overall. The feature model of
the product line has already been presented in Figure 1, and
a simplified version of three feature modules and their con-
tracts have been shown in Figure 2. Overall, the product
line consists of four classes, ten class refinements, 17 unique
methods with a contract each, six class invariants, eight
method refinements, and six contract refinements. Quan-
tifiers and model methods were not necessary for specifying
the bank account product line. The test cases of the prod-
uct line are composed along with the feature modules and
achieve a method coverage of 100.0 %, an instruction cover-
age of 91.6 %, and a branch coverage of 72.2 % for the largest
product. Based on this product line, we simulate different
product-line sizes by successively removing existing features.
The resulting product lines have between 2 and 10 features
(2, 4, 6, 12, 24, 36, 36, 72, and 144 products).

Automatic Defect Generation. While the goal of
product-line verification is a defect-free product line, veri-
fication tools are used to detect defects on the way towards
a verified product line. Consequently, an interesting char-

1http://fosd.de/spl-contracts

0
20

40
60

80
10

0

Index

ke
ys

m
al

l

2 3 4 5 6 7 8 9 10

1−3 Defects

N
um

be
r

of
 e

ffe
ct

iv
e

ru
ns

 (
in

 %
)

Index

ke
yl

ar
ge

2 3 4 5 6 7 8 9 10

4−10 Defects

KeY
JPF
KeY or JPF
Key and JPF

Number of featuresNumber of featuresNumber of featuresNumber of features

Figure 4: Effectiveness for finding one defect in
product lines with some and many defects.

acteristic for evaluating verification techniques is how they
perform for product lines containing many, some, or no de-
fects. While extending the bank account product line, we
introduced defects, but they are too few to make any general
statements. Hence, we decided to automatically introduce
defects as known from mutation testing [31]. We mutate fea-
ture modules before variability encoding to simulate realistic
defects. Table 1 shows the considered mutation operators
as well as the number of occurrences for our product line.
These operators are typical for mutation testing [31]. As
common in mutation testing, we use string replacements, as
they are applicable to feature modules and contracts. With
regular expressions, we identified possible positions for mu-
tations and randomly selected mutations in our experiment.

Experiment Set-Up. We computed all experiments on a
lab computer with Intel Core i5 CPU with 3.33 GHz, 8 GB
RAM, and Windows 7. In all runs, we measured the time
for verification with KeY and JPF. We created separate runs
for no defects, one defect, and so on, until reaching ten de-
fects, whereas each run was repeated 20 times with different,
randomized mutations each to avoid computation bias and
bias due to mutations. We stopped both tools after the first
defect had been identified, because this time is more critical
for developers than the overall verification time; a developer
can investigate the first defect already and need to start ver-
ification again after fixing the defect anyway. In particular,
we stopped KeY if a proof obligation could not be proven
automatically. In general, an open proof obligation does not
necessarily indicate a defect, because it requires user inter-
action. However, we inspected all open proof obligations for
each single mutation and they all indicate a defect.

5.2 Empirical Comparison
We evaluated effectiveness, performance, and efficiency of

theorem proving and model checking for the bank account
product line, and share our results in the following.

Effectiveness. We measured effectiveness as how often a
verifier will find at least one defect, independent of whether
the product line contains one, two, or more defects. In par-
ticular, we consider a verifier as effective, if it finds less de-
fects than the product line contains. The rational behind
this decision is that developers typically work on one defect
at a time and then verify the product line again.

●

●

●

●

●

●
●

●●●●
●●●● ●●●

0.
5

2.
0

10
.0

10
0.

0

K
eY

KeY, 0 Defects

(in
 s

, l
og

ar
ith

m
ic

)

●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●KeY, 1−3 Defects

●●

●

●

●

●
●

●

●●●

●
●

●

●●●

●

●
●

●●●

●

●
●

●●●

●

●●●●●

●

●●●●●

●

●

●
●●

●
●
●●

●●

●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●

●

●●

●●

●

●

●●
●
●

●●●●
●
●●●●●●
●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●●

●

●●

●●

●●

●●

●●

●●

●

●

●

●
●
●
●
●

●

●
●
●

●

●
●
●

●

●●

●●

●●

●●

●●

●●

KeY, 4−10 Defects

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

2 3 4 5 6 7 8 9 10

1
2

5
10

JP
F

JPF, 0 Defects

V
er

ifi
ca

tio
n

tim
e

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

2 3 4 5 6 7 8 9 10

JPF, 1−3 Defects

Number of features

●●

●
●
●●●●●

●
●●●

●

●

●●

●

●
●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●
●

●

●
●●●

●

●

●

●

●

●●

●

●
●
●●●

●

●●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

2 3 4 5 6 7 8 9 10

JPF, 4−10 Defects

Figure 5: Performance for finding the first defect in product lines with no, some, and many defects.

In Figure 4, we show the effectiveness of theorem prov-
ing and model checking for some defects (left diagram) and
many defects (right diagram). With regard to the size of our
subject product line, we already consider more than three
defects as many. Each run is either effective or not, and
we show the percentage of runs in which KeY (solid, blue
line) and JPF (dashed, green line) were effective. The x-
axis represents the number of features of the product line in
each run. Furthermore, we show the percentage of runs in
which both, KeY and JPF, were effective (dashed, black line,
named ”KeY and JPF”) and the percentage in which at least
one of them was effective (solid, black line, named ”KeY or
JPF”). We computed the percentage for each number of de-
fects separately and show mean values in the diagram (e.g.,
for one, two, and three defects in the left diagram).

These diagrams lead to the following observations. First,
both verification techniques are more effective, when more
defects are introduced, because it is more likely that they
detect one defect. Second, JPF is, in general, less effective
than KeY. A code inspection in these cases revealed that
our test scenarios were not sufficient to detect several de-
fects. Third, JPF detects some defects that KeY does not.
One reason is that the test scenarios can expose defects in
addition to the contracts. Another reason is that KeY does
not check precondition violations of called methods when
a method body is inlined instead of applying its contract.
Fourth, the effectiveness varies for different sizes of product
lines, which is caused by our rather small product line with
only few mutations (58 mutations in Java and 101 mutations
in JML, cf. Table 1). Finally, using both verifiers leads to
better effectiveness compared to each of them. This is espe-
cially the case if there are only few defects in the product
line. That the combined effectiveness is not 100 % is due
to the fact that some mutations can simply not be detected
with the given contracts and test scenarios. Overall, we
found that the combination of theorem proving and model
checking improves the effectiveness, especially if there are
only a few defects (i.e., in later development stages).

Performance. We assess the performance of theorem
proving and model checking as the time needed to detect
the first defect. If no defects were found, we consider the
time to completely verify the product line. For JPF, we
measured the time until the first runtime assertion was vio-
lated. For KeY, we measured the time until the first proof
obligation could not be proven automatically. In Figure 5,
we present the performance of KeY and JPF in box plots
(created with default parameters of R). Note that the y-axes
are logarithmic. Compared to effectiveness, we also consider
the product line without defects.

Again, we make several observations. First, the most ob-
vious result is that JPF is significantly faster than KeY (39.5
times in average). However, this result heavily depends on
the test scenarios and should not be overestimated. Second,
the verification time grows with the size of the product line,
which is due to the larger code base. Third, the deviation
of verification is larger for some and many defects than for
no defects. The reason is that the computation bias is much
smaller than the bias introduced by mutations; the left dia-
grams only show computation bias as we repeatedly verified
the source code without mutations. Finally, the average ver-
ification time of both verifiers reduces when more defects are
added; for KeY from 163.4 s to 50.7 s and 19.3 s, and for JPF
from 1.19 s to 1.06 s and 1.01 s, for some and many defects,
respectively. Thus, the speed-up from no to many defects
is 8.5 for KeY and 1.2 for JPF. The better average perfor-
mance is caused by the fact that both verifiers are aborted
once they detect a defect. In contrast, larger verification
times in some cases indicate that verifiers have, depending
on the mutation, some extra effort. In those cases, JPF ex-
ecutes more statements and KeY needs to consider further
proof rules than for the defect-free product line.

Efficiency. Based on the effectiveness and performance,
we measured efficiency as the ratio of both. However, with
our insight that JPF was faster than KeY, we propose to
combine both verifier as follows: the product line is checked
with JPF first and, depending on the result, KeY is only

0
20

40
60

80
10

0
14

0

2 3 4 5 6 7 8 9 10

1−3 Defects

KeY
JPF
Synergy

E
ffe

ct
iv

en
es

s
/ v

er
ifi

ca
tio

n
tim

e
(in

 %
/s

)

2 3 4 5 6 7 8 9 10

4−10 Defects

Number of featuresNumber of featuresNumber of featuresNumber of features

Figure 6: Efficiency as the ratio of effectiveness and
performance (larger values are better).

used if no defects were identified by JPF, resulting in the
same effectiveness as always running both verifiers (i.e., ”KeY
or JPF” in Figure 4). Another reason for using JPF first is
that it always indicates actual defects, compared to an open
proof obligation in KeY. We show our results in Figure 6
(the new strategy is named Synergy), whereas larger val-
ues indicate higher efficiency. In the combination, KeY was
utilized in 17.6 % of all runs and consumed 90.2 % of the
verification time. However, KeY indicated additional defects
in 71.3 % of those runs, in which JPF did not find a defect.

Based on the diagrams in Figure 6, we make the follow-
ing observations. First, each verifier and the combination of
both is more efficient for many defects than for some defects.
The reason is that they are more effective and require less
time. Second, JPF is more efficient for all sizes of product
lines as well as some and many defects, because of the better
performance. Third, the combination of both verifiers is less
efficient than JPF but more efficient than KeY. This is an
interesting result, as the combination achieves a better ef-
fectiveness than each verifier individually, but the efficiency
is still better than KeY. The reason is that we do only verify
a product line with KeY, if no defects were found with JPF.
In summary, combining KeY and JPF seems beneficial, as
it increases the effectiveness compared to both in isolation
and the efficiency compared to KeY.

5.3 Discussion
Besides our empirical evaluation, we discuss fundamental

differences of theorem proving and model checking in the fol-
lowing, such as inherent guarantees, support for incomplete
product lines, defect identification, and tool support.

Software model checking does not provide the same guar-
antees as theorem proving. With theorem proving, we verify
methods for all given inputs, whereas software model check-
ing is usually based on test scenarios, which are then exe-
cuted symbolically. A test scenario is more than a simple
test case, as it may consider a set of values at the same time.
For example, method update in Figure 2 may be called with
any positive integer value, which can be handled symbol-
ically in JPF (with extensions dedicated to symbolic exe-
cution). While, in principle, for each possible defect we can
write a test scenario exposing the defect, defects are typically
not known in advance. Test scenarios are often incomplete
and it is up to the developer to write meaningful tests.

In principle, theorem proving enables verification with in-
complete implementations and model checking with incom-
plete specifications. In theorem proving, we can verify meth-
ods separately by only relying on contracts of called meth-
ods. By doing this, we can even verify product lines that
are not completely implemented. In contrast, model check-
ing requires that for each test scenario all called methods
are implemented, but they do not need to have contracts.
Modular verification with theorem proving may be impracti-
cal, because contracts of all called methods must be strong
enough, which comes with the price of high specification
effort. In particular, some contracts in the bank account
product line are too weak and we configured KeY to use the
implementation of called methods (a.k.a. method inlining).

A further characteristic difference is how the programmer
can identify defects. Using JPF, the result is a trace that
is essentially a counter example. With KeY, we can inspect
the proof, in general, and the unclosed goal, in particular.
Both, the trace and the proof, can be large and hard-to-
understand. However, an advantage of combining theorem
proving and model checking is that we can use both to locate
the defect. Nevertheless, a benefit of contracts in both cases
is that the violated method contract is already identified,
and we only need to identify whether the defect is in the
specification or implementation of that method.

A rather technical detail is that each JML tool implements
a different set of keywords and a slightly different seman-
tics, which requires some effort to use them in concert. For
example, OpenJML reports invalid use of access modifiers
(e.g., private, public) in contracts that KeY does not report.
A further example is that OpenJML creates runtime as-
sertions reporting every violation of a precondition, whereas
KeY does only check precondition violations if a method call
is treated by applying its contract (e.g., not for method inlin-
ing). In addition, each tool usually only supports a certain
subset of Java (e.g., OpenJML does not support threads
and KeY does not support floating numbers).

5.4 Threats to Validity
We discuss issues that may influence the internal or ex-

ternal validity of our experiments in the following.

Internal Validity. We measured the verification time for
KeY and JPF until the first contract cannot be proven and
the first assertion is thrown, respectively. While this time
strongly depends on the order of test scenarios and proof
order, we randomly generated a large number of mutations
for each case to increase our confidence in the results. In
general, an unproven contract in KeY does not necessarily
mean that there is a defect; the theorem prover may need
additional support, such as providing loop invariants [16, 11,
8]. However, we inspected all unproven contracts for single
mutations and they all indicated a defect.

The mutations that we applied to the product line may
not be considered as defects in all cases. To avoid this prob-
lem, first, our implementation makes sure that each position
in the code is only mutated once, to avoid that two muta-
tions compensate each other. Second, some of the muta-
tions cannot be detected with the given method contracts, as
contracts do typically not encode the behavior completely.
However, this is independent of the verification technique
and should not influence our comparison.

The verification with JPF is influenced by the test sce-
narios, which are not required for KeY. Whether our test

scenarios are meaningful for a comparison with KeY is ques-
tionable. As JPF with our test scenarios has a similar ef-
fectiveness as KeY indicates that our test scenarios are rea-
sonable. Nevertheless, other test cases may lead to changes
in effectiveness, performance, and efficiency of JPF.

The performance and efficiency of KeY could be better
than measured in our experiment. The reason is that KeY
can store proofs and check them after changes rather than
finding a new proof. A common experience is that proof
checking is magnitudes faster than proof finding [11]. In our
experiment, we have not used the ability to store proofs,
because it is questionable how to simulate two subsequent
versions of a product line with mutations. Simply taking
the product line with and without mutations does not seem
realistic and it is future work to incorporate proof checking
into the comparison. For model checking, there are similar
strategies that save effort during evolution [52].

External Validity. It is questionable to which extent our
results can be generalized to larger product lines (i.e., more
features and larger feature implementations). While exper-
iments with larger product lines would be more valuable,
already verifying the bank account product line with several
tools was a considerable effort. Furthermore, each verifi-
cation tool does only support a certain subset of Java and
JML, which rules out large product lines. Nevertheless, ac-
cording to experience with previous studies [60], our subject
product line including its contracts has typical characteris-
tics (e.g., with respect to the mapping between features and
classes). In addition, we simulate different sizes of product
lines each bringing us to the same conclusions.

Our mutations may not represent real defects in product
lines. As it was necessary for our evaluation to automat-
ically generate defects into feature-oriented Java code and
JML specifications, we decided to use mutation techniques.
We used typical string replacement operators from muta-
tion testing [31] to mutate feature modules and their con-
tracts directly. More sophisticated operators operating on
abstract syntax trees may provide more realistic defects, be-
cause a real defect may consist of not only slightly wrong
parts, but also missing parts or wrong orders of statements.
Furthermore, the generated mutations may represent typi-
cal feature-interaction bugs in product lines. The automatic
generation of representative feature-interaction bugs is non-
trivial and should be investigated in future research.

Other verification tools for theorem proving and model
checking may lead to different results, which should be eval-
uated in further studies. We have chosen KeY and JPF as
both tools have been used by many other researchers before
and in particular also for product-line verification [58, 6].

Our comparison is based on fully automated verification,
but in practice, both, theorem proving and model checking
may depend on user input. Theorem proving may require to
provide loop invariants or to guide the proof interactively.
Besides creating test scenarios, model checking is automatic
itself, but may require tuning of parameters to avoid the
state explosion. Hence, further experiments are needed to
assess the effort when evolving a product line.

6. RELATED WORK
Recent surveys on product-line analyses give a detailed

overview on related work [55] and related tools [37]. In par-
ticular, several analysis techniques are discussed, such as

type checking, dataflow analyses, model checking, and the-
orem proving. Besides the family-based strategy that we fo-
cus on, the surveys describe also product-based and feature-
based strategies, as well as combinations thereof. So far,
researchers evaluated product-line analyses only for product
lines with defects or without [55]. In contrast, we measure
the influence of defects on effectiveness and efficiency.

Other researchers proposed a combination of verification
techniques. Liebig et al. combine type checking and dataflow
analysis to find defects in the Linux kernel [35]. However,
both techniques are used for different kinds of errors, while
we focus on synergies for the same kind of error. Others
used Event-B for product-line verification, which has sup-
port for theorem proving and model checking [43, 51, 24].
However, they do neither discuss nor evaluate the benefit
of that combination. Besides product lines, several combi-
nations of theorem proving and model checking have been
proposed [27, 40, 22, 1, 30], but they all inherently require
to create new or change existing verifiers, whereas we used
each verifier as-is. Nevertheless, more sophisticated combi-
nations of theorem proving and model checking should be
considered for product lines in future work.

All approaches for product-line theorem proving are based
on contracts. Thüm et al. [59] use interactive theorem prov-
ing with Coq to write proof scripts for each feature that
are composed together with feature modules and feature-
oriented contracts. Bruns et al. [15] combine KeY with slic-
ing techniques to reuse verification effort from one product
for other products. Damiani et al. [20] verify features as far
as possible separately by means of uninterpreted assertions,
and remaining proofs are done for products. However, all
these approaches require to generate and verify each prod-
uct. In contrast, two family-based approaches have been
presented that avoid the generation of all products [58, 26].
Our comparison is based on one of them [58], but there was
no tool support for variability encoding. The other approach
by Hähnle and Schaefer [26] verifies features in isolation and
than the whole product line similarly to variability encoding.
However, they assume that features have to adhere to be-
havioral subtyping, which reduces the applicability [60] and
is not assumed in our approach. All these approaches for
theorem proving have neither been evaluated in the context
of defects nor been compared to model checking.

Product-line model checking has been proposed for source
code [44, 4, 33, 6], similar to our approach, and for ab-
stract models [23, 25, 18]. Some of these approaches take
advantage of variability encoding to reuse existing tools,
such as NuSMV [18], CBMC [44], CPAchecker [4, 6], and
JPF [33, 6] as we do. Others specify the expected behav-
ior with an extension of µ-calculus [25], computation tree
logic [18], and aspect-oriented programming [4, 6] (for fur-
ther techniques see [55]), whereas we are the first to check
feature-oriented contracts with model checking.

A common assumption of variability encoding is that all
products of the product line are type safe (i.e., free of com-
piler errors) [58]. However, type safety can be efficiently
checked for product lines [7, 54, 32, 21, 35, 34], and should
be even combined with theorem proving and model checking.

7. CONCLUSION AND FUTURE WORK
Rather separate communities considered product-line ver-

ification by means of theorem proving and model checking,
respectively. We propose to integrate both to verify feature-

oriented contracts. We use variability encoding to verify
product lines without the need to generate all products. We
provide tool support in Eclipse by extending FeatureIDE.

While theorem proving with KeY and model checking with
JPF have been evaluated before, we are the first to evalu-
ate the influence of defects and synergies of using both in
concert, leading us to the following main results. First, the-
orem proving and model checking are both more effective
and more efficient to find defects if the product line contains
many defects rather than only some or no defects. Second,
in our experiments, model checking was more efficient, but
less effective than theorem proving. However, this heav-
ily depends on the test scenarios used for model checking.
Third, combining theorem proving and model checking im-
proves effectiveness, especially if the product line contains
only few defects, and may at the same time even improve
efficiency compared to using only theorem proving.

In future work, our tool support should be used to to
verify evolving product lines, in which non-artificial defects
will occur. Our evaluation may be extended by consider-
ing the time to find at least one defect for each configura-
tion, if existent [18, 6]. Besides theorem proving and model
checking, further verification and testing techniques could
be compared. A further dimension are other analysis strate-
gies, such as sample-based or feature-family-based analyses,
which could be considered for the integration of multiple ver-
ification techniques. Finally, it should be investigated how to
combine verification techniques on a per-method basis (e.g.,
choosing a verification technique based on code metrics).

8. ACKNOWLEDGMENTS
This work is based on bachelor’s theses by Jens Meinicke

and Fabian Benduhn [12, 36]. We thank Sven Apel, Reiner
Hähnle, Ina Schaefer, and Matthias Praast for discussions
and the anonymous SPLC reviewers for their constructive
reviews. We gratefully acknowledge Jörg Liebig and Chris-
tian Kästner for their help with FeatureHouse. This work
is partially supported by the German Research Foundation
(DFG – AP 206/4, SA 465/34-2).

9. REFERENCES
[1] J.-R. Abrial. Modeling in Event-B: System and

Software Engineering. Cambridge University Press, 1st
edition, 2010.

[2] S. Apel, D. Batory, C. Kästner, and G. Saake.
Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer, 2013.

[3] S. Apel, C. Kästner, and C. Lengauer.
Language-Independent and Automated Software
Composition: The FeatureHouse Experience. TSE,
39(1):63–79, 2013.

[4] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and
D. Beyer. Detection of Feature Interactions using
Feature-Aware Verification. In ASE, pages 372–375.
IEEE, 2011.

[5] S. Apel, A. von Rhein, T. Thüm, and C. Kästner.
Feature-Interaction Detection Based on Feature-Based
Specifications. ComNet, 57(12):2399–2409, 2013.

[6] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and
D. Beyer. Strategies for Product-Line Verification:
Case Studies and Experiments. In ICSE, pages
482–491. IEEE, 2013.

[7] L. Aversano, M. D. Penta, and I. D. Baxter. Handling
Preprocessor-Conditioned Declarations. In SCAM,
pages 83–92. IEEE, 2002.

[8] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,
W. Schulte, and H. Venter. Specification and
Verification: The Spec# Experience. Comm. ACM,
54:81–91, 2011.

[9] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In SPLC, pages 7–20.
Springer, 2005.

[10] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. TSE, 30(6):355–371, 2004.

[11] B. Beckert, R. Hähnle, and P. Schmitt. Verification of
Object-Oriented Software: The KeY Approach.
Springer, 2007.

[12] F. Benduhn. Contract-Aware Feature Composition.
Bachelor’s thesis, University of Magdeburg, Germany,
2012.

[13] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand,
P. Borba, and M. Mezini. SPLLIFT: Statically
Analyzing Software Product Lines in Minutes Instead
of Years. In PLDI, pages 355–364. ACM, 2013.

[14] C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, and
P. Borba. Intraprocedural Dataflow Analysis for
Software Product Lines. TAOSD, 10:73–108, 2013.

[15] D. Bruns, V. Klebanov, and I. Schaefer. Verification of
Software Product Lines with Delta-Oriented Slicing.
In FoVeOOS, pages 61–75. Springer, 2011.

[16] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst,
J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An Overview of JML Tools and Applications. STTT,
7(3):212–232, 2005.

[17] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

[18] A. Classen, P. Heymans, P.-Y. Schobbens, and
A. Legay. Symbolic Model Checking of Software
Product Lines. In ICSE, pages 321–330. ACM, 2011.

[19] D. R. Cok. OpenJML: JML for Java 7 by Extending
OpenJDK. In NFM, pages 472–479. Springer, 2011.

[20] F. Damiani, O. Owe, J. Dovland, I. Schaefer, E. B.
Johnsen, and I. C. Yu. A Transformational Proof
System for Delta-Oriented Programming. In
FMSPLE, pages 53–60. ACM, 2012.

[21] F. Damiani and I. Schaefer. Family-Based Analysis of
Type Safety for Delta-Oriented Software Product
Lines. In ISOLA, pages 193–207. Springer, 2012.

[22] P. Dybjer, Q. Haiyan, and M. Takeyama. Verifying
Haskell Programs by Combining Testing, Model
Checking and Interactive Theorem Proving. IST,
46(15):1011–1025, 2004.

[23] D. Fischbein, S. Uchitel, and V. Braberman. A
Foundation for Behavioural Conformance in Software
Product Line Architectures. In ROSATEA, pages
39–48. ACM, 2006.

[24] A. Gondal, M. Poppleton, and M. Butler. Composing
Event-B Specifications: Case-Study Experience. In
SC, pages 100–115. Springer, 2011.

[25] A. Gruler, M. Leucker, and K. Scheidemann. Modeling
and Model Checking Software Product Lines. In
FMOODS, pages 113–131. Springer, 2008.

[26] R. Hähnle and I. Schaefer. A Liskov Principle for

Delta-Oriented Programming. In ISOLA, pages 32–46.
Springer, 2012.

[27] J. Y. Halpern and M. Y. Vardi. Model Checking vs.
Theorem Proving: A Manifesto. In V. Lifschitz,
editor, Artificial Intelligence and Mathematical Theory
of Computation, pages 151–176. Academic Press
Professional, Inc., 1991.

[28] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller,
and M. Parkinson. Behavioral Interface Specification
Languages. CSUR, 44(3):16:1–16:58, 2012.

[29] K. Havelund and T. Pressburger. Model Checking
Java Programs using Java PathFinder. STTT,
2(4):366–381, 2000.

[30] M. Ismail, O. Hasan, T. Ebi, M. Shafique, and
J. Henkel. Formal Verification of Distributed Dynamic
Thermal Management. In ICCAD, pages 248–255.
IEEE, 2013.

[31] Y. Jia and M. Harman. An Analysis and Survey of the
Development of Mutation Testing. TSE,
37(5):649–678, 2011.

[32] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type
Checking Annotation-Based Product Lines. TOSEM,
21(3):14:1–14:39, 2012.

[33] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch,
S. Apel, T. Rendel, and K. Ostermann. Toward
Variability-Aware Testing. In FOSD, pages 1–8. ACM,
2012.

[34] S. Kolesnikov, A. von Rhein, C. Hunsen, and S. Apel.
A Comparison of Product-based, Feature-based, and
Family-based Type Checking. In GPCE, pages
115–124. ACM, 2013.

[35] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre,
and C. Lengauer. Scalable Analysis of Variable
Software. In ESECFSE, pages 81–91. ACM, 2013.

[36] J. Meinicke. JML-Based Verification for
Feature-Oriented Programming. Bachelor’s thesis,
University of Magdeburg, Germany, 2013.

[37] J. Meinicke, T. Thüm, R. Schöter, F. Benduhn, and
G. Saake. An Overview on Analysis Tools for Software
Product Lines. ACM, 2014. To appear.

[38] B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, Inc., 1st edition, 1988.

[39] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer, 2010.

[40] S. Owre, S. P. Rajan, J. M. Rushby, N. Shankar, and
M. K. Srivas. PVS: Combining Specification, Proof
Checking, and Model Checking. In R. Alur and T. A.
Henzinger, editors, CAV, pages 411–414. Springer,
1996.

[41] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[42] K. Pohl, G. Böckle, and F. J. van der Linden.
Software Product Line Engineering : Foundations,
Principles and Techniques. Springer, 2005.

[43] M. Poppleton. Towards Feature-Oriented Specification
and Development with Event-B. In REFSQ, pages
367–381. Springer, 2007.

[44] H. Post and C. Sinz. Configuration Lifting: Software
Verification meets Software Configuration. In ASE,
pages 347–350. IEEE, 2008.

[45] C. Prehofer. Feature-Oriented Programming: A Fresh

Look at Objects. In ECOOP, pages 419–443. Springer,
1997.

[46] Robby, E. Rodŕıguez, M. B. Dwyer, and J. Hatcliff.
Checking JML Specifications using an Extensible
Software Model Checking Framework. STTT,
8(3):280–299, 2006.

[47] J. Rubin and M. Chechik. A Framework for Managing
Cloned Product Variants. In ICSE, pages 1233–1236.
IEEE, 2013.

[48] W. Scholz, T. Thüm, S. Apel, and C. Lengauer.
Automatic Detection of Feature Interactions using the
Java Modeling Language: An Experience Report. In
FOSD, pages 7:1–7:8. ACM, 2011.

[49] R. Schröter, N. Siegmund, and T. Thüm. Towards
Modular Analysis of Multi Product Lines. In
MultiPLE, pages 96–99. ACM, 2013.

[50] J. Schumann. Automated Theorem Proving in
Software Engineering. Springer, 2001.

[51] J. Sorge, M. Poppleton, and M. Butler. A Basis for
Feature-Oriented Modelling in Event-B. In ABZ,
pages 409–409. Springer, 2010.

[52] O. Strichman and B. Godlin. Verified Software:
Theories, Tools, Experiments. In B. Meyer and
J. Woodcock, editors, Regression Verification - A
Practical Way to Verify Programs, pages 496–501.
Springer, 2008.

[53] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.
N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In ICSE, pages 107–119.
ACM, 1999.

[54] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In GPCE, pages
95–104. ACM, 2007.

[55] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and
G. Saake. A Classification and Survey of Analysis
Strategies for Software Product Lines. CSUR,
47(1):6:1–6:45, 2014.

[56] T. Thüm, S. Apel, A. Zelend, R. Schröter, and
B. Möller. Subclack: Feature-Oriented Programming
with Behavioral Feature Interfaces. In MASPEGHI,
pages 1–8. ACM, 2013.

[57] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke,
G. Saake, and T. Leich. FeatureIDE: An Extensible
Framework for Feature-Oriented Software
Development. SCP, 79(0):70–85, 2014.

[58] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel.
Family-Based Deductive Verification of Software
Product Lines. In GPCE, pages 11–20. ACM, 2012.

[59] T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel.
Proof Composition for Deductive Verification of
Software Product Lines. In VAST, pages 270–277.
IEEE, 2011.

[60] T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and
G. Saake. Applying Design by Contract to
Feature-Oriented Programming. In FASE, pages
255–269. Springer, 2012.

[61] D. M. Weiss. The Product Line Hall of Fame. In
SPLC, page 395. IEEE, 2008.

[62] Y. Xue, Z. Xing, and S. Jarzabek. Feature Location in
a Collection of Product Variants. In WCRE, pages
145–154. IEEE, 2012.

