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Abstract

We apply a previously reported synthesis method of control signals for systolic
arrays [19]. In [19], a systolic array is described by an index transformation
expressed as a non-singular square integer matrix, which happens to be a bijection
from Q" to @”. The method expects uniform recurrence equations (source UREs)
and returns a specification of control signals in terms of another set of UREs
(control UREs); n is the number of indices in the source UREs. We apply this

method to the special case of one-dimensional systolic arrays; they are described

by index transformations from Q" to Q2. This requires a modification of the part
of the method that depends on the bijectivity of the space-time mapping.
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1 Introduction

Elsewhere, we have presented a method on the synthesis of control signals for systolic arrays
[19]. There, a systolic array is described by an index transformation that is expressed as
a non-singular square integer matrix, where the first row is a scheduling vector and the
remaining rows form an allocation matrix. The method complements previous work on data
flow synthesis [12, 16]. Starting with a system of uniform recurrence equations (source UREs)
for systolic design, our method constructs a specification of control signals for systolic arrays
in terms of another set of UREs called uniform control recurrence equations (UCREs). An
application of the standard space-time mapping to these two systems of equations delivers
a specification of a systolic array; essentially, it describes both data and control signals in
space and time.

Our method has the following advantages. First, we specify the control signals for systolic
arrays at the source level; here, we are concerned with correctness. Then, we derive a systolic
array by means of the space-time mapping; here, we are concerned with efficiency. A direct
benefit from separating the two concerns of correctness and efficiency is that the UCREs,
once proved correct at the source level, are independent of the space-time mapping and,
therefore, not array-specific. Second, the correctness of the UCREs is easily preserved when
the source UREs and the UCREs are partitioned and mapped to a fixed-size systolic array.
Third, the method can be generalized in a systematic way to systolic arrays of reduced
dimension. The case of dimension 1 is the topic of this paper.

To make the presentation more precise, we duplicate the terminology of UREs for UCREs
and prefix the words “data” and “control”, respectively. That is, we speak of data variables
vs. control variables, and so on. When we speak of UCREs we always mean the UCREs
derived for a given system of source UREs.

The UCREs consists of two types of control variables: computation control variables
determine how the points in the index space are evaluated, and separation control variables
determine the pipelining of input values from border cells to internal cells and output values
from internal cells to border cells.

Conventionally, two distinct points of the index space must not be scheduled simulta-
neously at the same cell, regardless of the dimensions of the systolic array. Based on this
premiss, we have developed a provably correct construction that provides the UCREs for
the computation control variables. This construction works also for one-dimensional sys-
tolic arrays. The separation control variables must indicate correctly when data need to be
pipelined at what cells. This information depends on the space-time mapping. We have two
options:

e We can derive the separation control variables with a construction that, consequently,
also depends on the space-time mapping.

e We can define explicitly UCREs for separation control that are independent of the
space-time mapping but that expect the index space to be in a certain shape.

We prefer the latter. Index spaces that do not conform to the expected shape can be made to
do so (Sects. 8.4 and 9.4). To make the UCREs for separation control variables correct, we
must choose their control dependence vectors wisely. In [19], the construction of the UCREs
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Figure 1: The one-dimensional systolic array model. The larger solid boxes represent cells.
The lines represent connecting channels; solid lines carry data streams and dashed lines
control streams. A sequence of small boxes symbolizes a sequence of delay buffers.

for the separation control variables relies on the bijectivity of the space-time mapping. In
the present paper, we are concerned with the synthesis of control signals for one-dimensional
systolic arrays. Their space-time mappings are, in general, not bijective (Lemma 2).

Sect. 6 contains a brief description of a method reported elsewhere on the construction
of UCRE:s for the computation control variables [19]. Sect. 7 focuses on the construction of
the UCREs for the separation control variables. Beside the final product, i.e., the UCREs
for the separation control variables, the construction itself is interesting in its own right.
It demonstrates how a system of UREs that respects some pre-defined specification can be
constructed at the source level, independent of the space-time mapping, by exploiting certain
properties common to all valid space-time mappings (Thm. 1).

The combination of this paper and [18] for data flow provides a complete framework for
the synthesis of one-dimensional systolic arrays.

We do not consider two-dimensional UREs here; they can already be treated with the
simpler method [19]. We present our method first for three-dimensional UREs and generalize
it subsequently to n-dimensional UREs. To avoid unduly complex notation, the UCREs are
expressed in the form of programs: one program for the host corresponds to the input
equations, one program for the cells corresponds to the computation equations.

2 The Model

Definition 1 A one-dimensional systolic array consists of a finite sequence of cells with the
following properties (Fig. 1).

1. The array is driven by a global clock that ticks in unit time. Each cell is active in
every cycle.

2. Only the two border cells are connected to the host.
3. Ounly neighbburing cells are connected directly with each other.

4. There are two types of streams: data and control streams. A stream moves along a
single dedicated channel between any two neighbouring cells. All channels associated



with a fixed stream have the same non-negative number of buffers. A buffer retains a
value for one cycle. This means that a stream moves with a constant velocity.

5. A cell consists of a functional unit, a control unit and memory. O

We refer to the sequence of channels dedicated to a stream as the link for that stream. This
model has been used previously in the synthesis of data flow for one-dimensional arrays
[9, 14]. o

3 The Source: A System of UREs

Z and Q denote the set of integers and rationals. Let S be Z or Q, St denotes the positive
subset, S; the non-negative subset and S™ the n-fold Cartesian product of 5. We write
dim(S) for the dimension of an integral polytope SCZ".

Following [4], we denote quantification by (q v : r(v) : e(v)); q is a quantifier, v the
dummy variable that is bound by the quantification, r(v) is a predicate that specifies the
range of v and e(v) is an expression in v.

We write a URE in the format: domain predicate — recurrence equation [12]. All
variables have n indices. The domain for which variable v is defined is denoted by ®,. The
index space ® is a union of all these domains; it is assumed to be a (convex) polytope of n
dimensions. ‘If these conditions are satisfied, we say that the source UREs are n-dimensional.

We use the conventional concept of a data dependence graph and a data dependence
matrix [16]. For notational convenience, we assume that, for each data variable, there is
only one associated data dependence vector, denoted ¥,. When we write 4, € Dy, we mean
that 9, is a data dependence vector, which is a column of the data dependence matrix Dy.
The subscript d stands for “data”. D, denotes the control dependence matrix for the UCREs;
the subscript ¢ stands for “control”. D denotes the dependence matrix whose columns are
taken from both D4 and D..

The points in the index space are called computation points. If I is inside and 119, is
outside the index space, then I is called a first computation point of v and variable v(1—1,)
defines an input value. If I is inside and I+9,, is outside the index space, then I is called a
last computation point of v and variable v(I) defines an output value.

Definition 2 The set in(®,4,) of first computation points of v and the set out(®,d,,) of last
computation points of v are given by: :

in(®,9,)={I|1€9®, I-9,¢£®} out(®,9,) ={I|I€®, I+9,¢9}
The set of input values of v is given by CI)ijnz{I | (I+9,)€in(®,9,)}. O

Def. 2 implies that input values are used and output values are defined at the boundary
of the index space. If this is not the case, they can be made so by adding pipelining equations
[15]; a pipelining equation is of the form v(I) = v(I—9¥,). Not every variable needs to be
initialized externally. Similarly, the output of a variable may not be of interest. The concept
of input and output values, as defined here, is syntactic rather than semantic.



An equation whose right-hand side is an input value is an input equation and an equation
whose left-hand side is an output value is an oufput equation. An equation that is neither
an input nor an output equation is a computation equation. We abbreviate (3 m : me Z; :
J = I+md,) to I > J and its negation to I -4 J.

Example: Matrix Product
Specification: (V4,7 :0<i<mAO<j<m: (T k:0<k<m : ¢; = a;;b; ;)

UREs:
0<i<m, 0<j<m, k=m — ¢;j =C(i,5,k)
0<i<m, 0<j<m, 0<k<m — C(i,5,k) =C(s,5,k—1)+A(,j—1,k)B(:—1,5,k)
0<i<m, 0<j<m, 0=k — C(i,5,k)=0
0<i<m, 0<j<m, 0<k<m — A(:,7,k) = A(3,5—1,k)
0<i<m7 0=.7 ’ 0<k<m - A(i7j’k)=ai,k
0<i<m, 0<j<m, 0<k<m — B(,j,k)=B(i—1,5,k)
0=2 , 0<j<m, 0<k<m — B(i,j,k)=b;;

Index Space: ® = {(i,5,k) | 0<i<m, 0<j<m, 0<k<m}
Variables: A,B,C

: 010
Data Dependence Matriz: Dy = [9,4,9p,0¢] = l 1 00 ]
0 01

First Computation Points: in(®,9,) = {(z,1,k) | 0<i<m, 0<k<m}
in(®,9p) = {(1,7,k) | 0<j <m, 0<k<m }
in(®,9¢) = {(2,7,1) |0<i<m, 0<j<m }

Last Computation Points: out(®,9s) = {(3,7,m) | 0<i<m, 0<j<m}
Data Dependence Graph (m=4): A AR
"Z"Z"Z‘
'Z'ﬂ'ﬂ'i
D% %%
W'ﬂ'ﬂ'i
W% %%
A LALT R
B% %
Vs

4 The Target: A One-Dimensional Systolic Array

This section describes the synthesis of the data flow in one-dimensional systolic arrays from
the source UREs by means of the space-time mapping. In particular, it defines the validity
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of the space-time mapping and contains a study of the space-time behaviour of the resulting
systolic array. This provides a basis for the derivation of the UCREs that will be described
in Sect. 5.

4.1 The Space-Time Mapping

The synthesis of systolic arrays amounts to finding a suitable space-time mapping, a linear
transformation of the index space [12, 16]. In the transformed UREs, one index represents
time and the remaining indices represent processor coordinates.

Definition 3 A space-time mapping consists of two components: step and place. Useful
functions defined in terms of step and place are flow, input and output.

o step: & — Z, step(l) = AI, A€Z". step specifies the temporal distribution. A is
the scheduling vector. I is computed at step Al.

o place : ® — Z, place(I) = oI, o €Z". place specifies the spatial distribution. o
is the allocation vector. {oI | I € ®} is called the processor space. I is computed
at location ¢I. p.;, and p,., are the coordinate of the leftmost and rightmost cell:
Prin = min{ol | I€®} and p_,, = max{cl | I € ®}.

o flow:V — Q, flow(v) = o¢d,/M,, J,€D. flow specifies the velocity at which
elements of a variable travel at each step. V denotes the set of data variables. Variable
v is called moving if flow(v)#0 and stationary if flow(v)=0.

o input: V — (9, — 7), ¥,=(U v:veV:in(®,9,),

. step(I)—(place(I) — ppin)/flow(v) if flow(v)>0
input(v(l)) = {stegEI;—EglaceEIg——gmax))//flow((v)) ifﬂowgvgzﬂ

input specifies the steps at which input values are injected into the array. tg; is the
first such step: tg, = min{input(v(I)) | I€®;,, veV}.

e output: V — (&, — Z), P, = (U v:veV :out(?,9,)),

step(I)—(place(]) — pmay)/flow(v) if flow(v) >0
output(v(l)) = {steﬁﬁz)_§§|acefz§_§m))/ﬂow((v> if flow(v) <0

output specifies the steps at which output values are ejected from the array. ty; is the
last such step: t,, = max{output(v(l)) | I€® y, vEV}. O

We make the following assumptions (gcd stands for the greatest common denominator):
e (Jv:veV :flow(v)#0)
o (ged 1:0<2n o) =1

e (gcd v:veV :if flow(v)=0— A, [ flow(v)#0 — M, [od, fi) =1



The conditional statement is from [3]. The first assumption is reasonable because an array
that has no moving variables cannot be called systolic. The second and third assumption
are for convenience: they normalize step and place.

Not every space-time mapping describes a systolic array. The following theorem [18]
states necessary and sufficient conditions for validity of a space-time mapping.

Theorem 1 Assume that evaluation of a point takes unit time. A space-time mapping is
valid iff the following conditions are satisfied. o

" 1. Precedence Constraint: (Y v:veV :Ad,21).
2. Delay Constraint: (Y v:veV :flow(v)#£0 = |\, /00, |eZ").

3. Commaunication Constraint:

(Vv:veV :flow(v)#0 = (VI,J:I,J€in(®,9,)N#J :input(v(l))#input(v(J))).

The image of some z under a given space-time mapping is denoted by an overbar: . We
sometimes write II for A and ¢ in combination:

M- [,\] _ [Al,...,/\n}
o O1y..+,0p
A,

If one allows non-neighbouring connections, the image 9, of 9, is o9 |’ where A\J, —1

represents the number of delay buffers associated with channel o9,. Because of the restriction

to neighbouring communication, the image 9, of 9, is given by:

5 . _ 1 Ad,/|od,|

9, = if flow(v)=0 — [ 0 l [ flow(v)#0 — [ sign (flow()) fi
where sign is defined as usual: sign(z) =if 2>0—-1[2=0—-0[]2<0— -1fi
M, /|09, —1 represents the number of delay buffers associated with channel sign(flow(v))
between any two neighbouring cells. If v is stationary, this interpretation is still valid if we
presume the existence of a loop channel, for v, at every cell.

4.2 The Space-Time Diagram

Syntactically, a systolic array is a set, T, of points called space-time points:

T = {(t,(l?) I tfst <t<tlsta pm.ingwgpmaxa t7$€ Z}

where t represents time and z space. Because of the restrictions of our systolic array model,
cell z is active at step ¢ iff (¢,z) € Y. Semantically, space-time points fall into two categories:

o The set ® of computation points is the image of ®. We call both the points in @
and the points in ® computation points. This is justified because the communication
constraint ensures that a valid space-time mapping is a bijection from ® to @ [18]. We
say that two computation points are of the same type if, for every data variable of the
source UREs, the defining equation at both points are the same.
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o The set TP of pipelining points is the complement of ® in Y. These points arise due to
the restrictions of our model. Pipelining points are specified by pipelining equations.
This follows from the nature of the space-time mapping.

It is often convenient to represent a one-dimensional systolic array as a space-time dia-
gram, which is obtained by viewing the space-time points as a two-dimensional lattice, where
the horizontal axis represents time and the vertical axis represents space.

Let us introduce some concepts that will emphasize the regular distribution of pipelining
points relative to computation points in the space-time diagram.

Definition 4 Consider an integral polytope S CZ". A d,-path in S consists of all points
I € S such that the index difference between I and its direct predecessor in the path is 9,.
We write p(I,v, S) for the (unique) ¥,-path that passes through point I, and P(v, S) for the
set of all the ¥,-paths (of v): P(v,S)={p(I,v,S)|I€S}. a

In Def. 4, p(I,v,S) and p(J,v,S) denote the same ¥,-path if I—J is an integral multiple
of 9,. Def. 4 implies that the union of all J,-paths in S, for any fixed v, is S. When we refer
to a ¥J,-path, we mean a path in the space-time diagram Y.

The first point (i.e. the source) of a ¥,-path is called an input point of v. The last point
(i.e., the target) of a J,-path is called an output point of v. The elements of a variable are
input at its input points and output at its output points. Of course, only one element can
be input to and output from any 9,-path.

There are two types of J,-paths (Fig. 2):

o Paths that contain computation points. These paths can be viewed as consisting of
the following three consecutive segments:

— The first segment, called the soaking path and denoted s(I,v,T), consists of
pipelining points. The points of this segment are called soaking points.

— The second segment, called the computation-relaying path and denoted c(I,v,T),
consists of both computation and pipelining points. The first point of the segment
is the image of a first, the last point the image of a last computation point of
v. We also call the points in in(®,4,) (out(®,9,)) the first (last) computation
points of v, because a valid space-time mapping preserves dependence and, thus,
order (Thm. 1 and Lemma 3). The pipelining points of the segment are called
relaying points. There are [}, —1 relaying points between every two neighbouring
computation points (e.g., see the ¥ 5-paths in Fig. 2; in this case, I'5=3):

T, = if flow(v)=0 — AJ, [ flow(v)#0 — |9, | fi

— The third segment, called the draining path and denoted d(I,v,Y), consists of
pipelining points. The points of this segment are called draining points.

e Paths that do not contain computation points. The points of these paths are called
undefined points (e.g., see the dashed arrow in Fig. 2).
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Figure 2: The space-time diagram for Ramakrishnan and Varman’s one-dimensional systolic
array (m=4). The array is described by the following space-time mapping [9]:
Heyen = 22_? i _Zg (for even m) Mygq = 22 i _EZ:};;;
The point at the bottom-left corner is (fg¢, Pmin) = (—6, —4), that at the top-right corner is
(tists Pmax) = (48, 14). The fat dots represent computation points. The regular dots and stars
represent pipelining points; the stars are the points at which at least one data element is
propagated. The output of A and B is of no interest and is not depicted. Three solid arrows
denote three paths: a ¥4-path, a 9g-path and a Jg-path, to which agq, bs4 and ¢, are
input, respectively. The dashed arrow denotes a J-path, to which L is input.

(for odd m)

Note that the definitions of soaking, draining, relaying and undefined points are associated
with a particular variable. For example, a pipelining point that is a soaking point for one
variable may be either a soaking or draining or relaying or undefined point for another
variable.

The soaking points of v serve to propagate the input values of v from its input points to
its first computation points; the draining points of v serve to propagate the output values
of v from its last computation points to its output points; the relaying points of v serve
to employ the intermediate cells as delay buffers for relaying the values of v between non-
neighbouring cells (e.g., see the ¥ g-path highlighted in Fig. 2). The concept of soaking and
draining serves to satisfy the restriction of border communication; the concept of relaying
serves to satisfy the restriction of neighbouring communication. .

We denote the set of soaking points, the so-called soaking space, of v by Y, the set of
draining points, the so-called draining space, of v by Td and the set of undefined points,
the so-called undefined space, of v by T For convenience, we call the set of computation
points the computation space; it is the same for all variables. By definition, {Y?, Td TJ'} is

a partitioning of YP. Therefore, {1}, Td TJ‘ ,®} is a partitioning of Y.
We can rephrase the commumcatlon constramt with respect to the concept of a 9,-path.

Lemma 1 The communication constraint is satisfied iff

(Vo:veV :flow(®)#0 = (V¥ I,J:1,J€in(®,9,) AI#J : p(I,v,Y) #p(J,v,T))).



Proof. H, for any I,J €in(®,4,), p(I,v,Y) and p(J,v,T) denote the same 9 ,-path, then
v(I) and v(J) must be input at the same time, and vice versa. O

Remark.
A 9 -path of data variable v may start at an internal cell in the following two cases.

1. If v is a stationary, all 9,-paths start at internal cells. The elements of the variable
must be loaded before the computation starts, i.e., before step #g;. "

2. If v is a moving, some 9,-paths may start at internal cells. In this case, the input value
must be L; it can be ignored, i.e., need not be supplied by the host. O

4.3 The Generation of Pipelining Points

This section explains how pipelining points are generated by means of a two-step extension
of the index space. The presence of pipelining points complicates the specification of control
signals; we introduce separation control variables to deal with this complication.

First, to impose the restriction of border communication, the index space is extended in
such a way that the inverse images of input and output points are at the boundary of the
extended index space. The basic idea is to replicate a data dependence vector in the data
dependence graph forward and backward until the images of points so created are outside
the processor space [15]. This method works only for moving variables.

Next, to impose the restriction of neighbouring communication, the directed arc repre-
sented by ¥, between any two nodes, say I and J with J=I449,, in the data dependence
graph that was created in the first step is sliced into T, consecutive directed arcs 4, /I},. This
creates I, — 1 points in the original arc. Consider one such point K; the cell at location
place(K) serves at step(K) as a delay buffer to propagate an element of v from the cell at
location place(I) to the cell at location place(J).

Definition 5 The ezxtended indez space is defined as follows:

v = T I=J+md, /), Je®, J+d,€0, meZ, 0<m< A} if flow(v)=0
T\ I I=Jd+md, 00, JEDR, MEL, Py < 0L < Pray} if flow(v)#0
UV =(Uv:veV:7,)

The portion attributed to variable v is ¥,,. g

The points in ¥ \ ® may be rational rather than integral: ¥ CQ". The images of the points
in U\ ® constitute all space-time points at which at least one datum is propagated. The
defining equation of data variable v at points ¥, \V is a pipelining equation.

We rephrase the communication constraint by considering the space-time mapping as a
mapping from ¥, to T.

Lemma 2 The communication constraint is satisfied iff

Vo:veV:NVI,J:1,JeV,AI#J :place(I)=place(J) => step(I)#step(J))).



Proof. The definition of input and the communication constraint. d
In general, valid space-time mappings from ¥ to T are not injective; one example is the
mapping displayed in Fig. 2.
The communication constraint can also be restated with emphasis on the correspondence
between 9,-paths in the extended index space and J,-paths in the space-time diagram.

Lemma 3 The communication constraint is satisfied iff

(Vo:veV: flow(v)#0 = B _
(VI,J:1,Je¥:p(l,v,0)#p(J,v,¥) = p(I,v,T)#p(J,v,T))).

Proof. Lemma 2. O

Lemma 3 states that a valid space-time mapping is an injection from P(v, ¥) to P(v,T),
but it is in general not a surjection. This is the reason for the existence of J,-paths that
contain no computation points (Fig. 2).

Let us now examine the complication caused by the presence of pipelining points in the
synthesis of control signals for one-dimensional systolic arrays.

A valid space-time mapping is injection from ¥, to T, for any fixed v (Lemma 2). But, it
is not an injection from ¥ to Y. Two points, one in ¥,\® and another in ¥, \®, for different
v and w, may share the same image. Take the pipelining point (12, —1) highlighted in Fig. 2
by a circle. Elements ag;, bs 4, and ¢, ; are propagated at this point. A simple calculation
shows that they are specified by variables A(3,—8,1), B(1/3,4,3) and C(1,1,5/2) in the
extended index space. The problem is that the inverse images of pipelining points depend
on the space-time mapping.

Hence, a correctness criterion for the UCREs for the separation control variables has
to involve the space-time mapping (Sect. 7). But our method requires that the UCREs be
specified at the source level, independent of the space-time mapping. We accomplish this by
relying on certain properties common to all valid space-time mappings (Lemma 7) and by
exploiting the uniformity of pipelining points in the space-time diagram with an additional,
so-called evolution control scheme.

5 The Derivation of Control Signals

The specification of a control variable, v, proceeds in three steps:

1. Choose a non-zero vector 9, € Z" that satisfies the restriction (V I,J : I,J € @ :
Am:meQ" : I-J=md, = m>1)) as the control dependence vector. 9, is
the smallest index distance between any two points in the index space with a common
orientation. This is to enforce the restriction to one link per variable (Def. 1).

2. Define one or more input equations that specify the initialization of v by control signals.

3. Define the computation equation that defines the value of v([) in terms of the value
of variable v(I—4,).

10



The output of control signals is irrelevant.

Several factors that may influence the choice of a control dependence vector for variable
v are discussed in [19]. It is best to choose one of the data dependence vectors; we write £.v
for the corresponding data variable: ¥, =1,,. This implies flow(v) = flow(£.v). There are
two advantages. First, a step function that is valid for the source UREs is also valid for the
UCREs. Second, the latency of the array (i.e., the number of steps required) is retained.

Control variable v is specified by one of two types of computation equations: a pipelining
equation, which is of the form v(I)=v(I-9,) (Sect. 3), or a data-dependent equation, which
is of the following form:

v(I) = ifBo(w(I-Dy), ) — folv(I-0,))
0 By(w(I-18y),--) — filv(I-7,))

Ei B.r—-l(w(I—ﬂw% v ) — fr—-l(v(I”lﬁv))

B;(w(I—-19,),---) — fi(I-19,) is called a guarded command [3]; w is a control variable.
The three dots stands for an arbitrary fixed number of control variables. ¥, and 9, are
the control dependence vectors of v and w, respectively. The guard B;(w(I,—9,), ) is a
Boolean expression. A guard can always be written in disjunctive normal form, where each
disjunct consists of a conjunction of tests of an argument for a control signal. f;(v(I-7,)) is
a function that recursively defines the control value of v(I) in terms of argument v(I—19,).
The evaluation of guards is deterministic. We require that one and only one guard is true
at a point.

A control variable is called a pipelining variable (data-dependent variable) if its compu-
tation equation is a pipelining (data-dependent) equation.

Both the specification of separation and computation control variables are constructed
for the index space @ of the source UREs. Pick a control variable v.

o The domain of its input equations is @i}n.
o The domain of its computation equation is ®.

To obtain both data and control flow, we apply the same space-time mapping to both the
source UREs and the UCREs. Therefore, we must ensure the validity of the space-time
mapping for both the source UREs and the UCREs (Thm. 1). When we refer to a valid
space-time mapping from now on, we mean a space-time mapping that is valid for both the
source UREs and the UCREs. Note that the first step tg, and the last step #;; are now
defined with respect to both data and control variables.

The concept of an extended index space applies also for the UCREs. In contrast to the
source UREs, there are data-dependent variables in the UCREs. At the points added in the
extension, the defining equation of a data-dependent variable is the equation at the points
in the index space, i.e., it is not a pipelining equation.

Similarly, the concept of a space-time diagram applies also to the UCREs. At pipelining
points, the distribution of control signals can be obtained in a similar manner as that of
data, except that data-dependent variables must be treated in addition:
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e The defining equation of a control variable at a pipelining point is the same as that at
computation points.

o If the input of a control variable is undefined at some step, then the undefined value
L is injected.

Computation control serves to distinguish different types of computation points. The
distribution of computation control signals at pipelining points is irrelevant. Separation
control serves to distinguish pipelining points from computation points. The distribution of
separation control signals at pipelining points is of relevance.

6 The Specification of Computation Control Variables

This section summarizes the separating hyperplane method for the construction of the com-
putation control variables [19].

Let {®; | 0<i<r} be a partitioning of ® such that two points are contained in ®; iff
they are of the same type. The computation control variables are correct if, under a valid
space-time mapping, the combinations of their values at two computation points differ if the
two points are in different partitions.

Computation control variables are specified for the index space. They are pipelining
variables. Thus, their specification amounts to defining their control dependence vectors
and input equations. Each partition is a union of a finite set of polytopes. Without loss of
generality, we assume that each partition is itself a polytope (if not, choose a finer partition-
ing). Since every partition is a polytope, the existence of at least one separating hyperplane
between any two neighbouring partitions is guaranteed [17]. We want to find a set of sepa-
rating hyperplanes that contains at least one separating hyperplane for any two partitions.
We write NN, ; for the separating hyperplane that separates ®; from @;. This set is calcu-
lated from the domain predicates that appear in the source UREs. These domain predicates
induce the partitioning {®; | 0<i<r}.

We associate a distinct computation control variable, denoted C; ;, with every N, ;. The
idea is that, instead of computing two inequalities 7; ;] <4, ; and m; ;1> 6; ; at every cell the
result of evaluatlng each inequality can be shared by the plpehmng of a control signal that
represents the result from the boundary of the array. Each computation control variable
takes on two different control signals, one in the half-space {I | 7; ;] <§; ;} and the other in
the half-space {I | 7; ;1>6; ;}.

Definition 6 (UCREs for computation control variable C; ;)

1. Tts control dependence vector J, ; is any solution of ¥, ,m;;=0.

2. Let {<I>m’< (Dm’>} be the partitioning of <I>m _such that all points in <I>in’< satisfy m; ;1 <
6; ; and all points in <I> ~ satisfy m; ;1 > 6” With S(C;;) = {c”, 2]}, the input

1,J
equations of C; ; are deﬁned as follows:

qu’a’f —~ Cy)=c;, and Te®g” — Cy(I)=c; -

Theorem 2 [19] The computation control variables as specified previously are correct.
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7 The Specification of Separation Control Variables...

A separation control variable, v, can always be interpreted to label a data variable. If it is
not already, the following augmentation of the source UREs makes £.v a data variable:

I1ed™ — to(D)=
Ied — Lo(l)=Lo(I-9,)

For convenience, we assume in subsequent sections that the extended index space ¥ and
the space-time diagram T are defined for the thus augmented UREs. When we refer to ¥,
T, Td Tl in(®,9,) and out(®,4,), for control variable v, we mean ¥,,, 1 , Td Telv,
ln((I) 19“) and out(®,9,,), for the corresponding data varlable £.v, respectively. We present
the specification of separation control variables with respect to the space-time diagram.

Now, we introduce a correctness criterion for the separation control variables. We write
() for the vector of control signals at space-time point I; each component of the vector
corresponds to one separation control variable:

o) = (o(I-7,), ).

Definition 7 The separation control variables are correct if, under a valid space-time map-
ping, control signals at a computation point and a pipelining point differ, i.e., if

VT,7:TeT? ATe®: o) # o)) 0

To avoid unduly complex notation, we present the specification of control signals in the
form of programs: a program for the host that corresponds to the input equations and a
program for the array cells that corresponds to the computation equations.

In the next section, we cover the case of three-dimensional source UREs. The section
after that discusses source UREs of higher dimension.

8 ...for Three-Dimensional Source UREs

8.1 Inmitialization, Termination and Evolution Control Variables

For any data variable v, {T°, Td TJ‘ ,®} is a partitioning of the space-time diagram. To
distinguish computation and plpehnlng points, it suffices to distinguish these four partitions.
To distinguish these four partitions, it suffices to identify their common boundarles |n(<I) J 2
is the boundary between 17 and ®, and out(®,9,) is the boundary between T and ®. T,
is the boundary between Ti‘ and the remaining three partitions. The choice of v is of no
consequence to the correctness of the separation control variables.

We write S(v) for the set of values of control variable v. A control variable is denoted by
an upper-case letter with or without a subscript. Its values, excluding L, are denoted by the
corresponding lower-case letter with subscripts. There are five separation control variables:

¢ The initialization control variables, F, and F;. They are the pipelining variables that
together identify the first computation points of £, i.e., the boundary in(®, Jz) between
T% and @. S(Fp) = {fo, L} and S(F) ={fi,L}.
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e o0 . oe;E_l 2 ° QG;E—1 - _EE ceos — —E;
& X & X fL mX X X MmX X X Lix X X X

s(I,E,v) o(I,B,%) a(1,E,w)

Figure 3: Illustration of the construction of the separation control variables. Fat dots are
computation points, circles are soaking points, boxes are relaying points and ovals are drain-
ing points. The relevant control signals at a point are shown. Arrows pointing southeast
are for ¥p,, arrows pointing northeast for Jp, arrows pointing southwest for ¥, arrows
pointing northwest for ¥;, and arrows pointing east for 95. x stands for “don’t- care”. &,

and & satisfy (&% fo V & # f1)- no and 1y satisfy (no#Lo V ny #41)-

o The termination control variables, Ly and L,. They are the pipelining variables that to-
gether id_e_ntify the last computation points of E, i.e., the boundary out(®,¥g) between
1L and T. S(Lo) = {4y, L} and S(Ly) = {4, L}.

o The evolution control variable, E. It is a data-dependent Varlable that depends on
variables F07 F,, Ly and L,. E by itself identifies the points in Tt i 1.e., the boundary

between T+  and the remaining three partitions. S (E) = {es, €0, ", €rg—1,€as L}

Now, we can explicitly define the control dependence matrix:
Dc - [19Fo> 19F1 9 ﬂLoa 19L1 9 79E]

We can also explicitly define the set of control signals ¢(I) at space-time point I:

(I) ( ( 19 )Fl(—j_lgF1)7L0(7"""9Lo)7L1(7_5L1)7E(7”§E))

8.2 The Construction of Input and Computation Equations

In this section, we present a construction of the UCREs for the separation control variables,
assuming an arbitrary choice of control dependence vectors. Sect. 8.3 describes how to choose
the control dependence vectors appropriately.

Let us first consider the specification of evolution control variable . We consider two
types of Jg-paths in the space-time diagram:

1. Path p(I, E,T) contains computation points (Fig. 3). We input e, at the input point
of s(T,v,T) and adopt this value for all soaking points of £. We shall construct Fq
and F, such that the first computation point of ¢(T, E, T) satisfies Fo(I—9p, ) = fo A
F,(I-9, )= f, but the soaking points do not. There, e, is converted to ey, the value for
all computation points (but the last). Then, if a point receives element e;, of E, it sends
€(k+1) mod I'z; K 15 the distance of a relaying point from its preceding computatlon point.
Thus, the considered element of E periodically adopts the values eg, eq,- -, er,—1. We
shall construct L, and L, such that the last computation point of ¢(I, E T) satisfies
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Lo(T-31,) =4y A Ly (I-01,) =4, but all other computation points do not. There, er,_4
is converted to ey, the value for all draining points. If path p(I, E,T) contains only
one computation point, which is, therefore, both a first and last computation point of
E, e, changes to e4 at that point.

2. Path p(I, E,Y) contains no computation points; it contains only undefined points of
E. We input L at the input point of p(I, E,T) and adopt this value for all points of
the path. Y

By the construction of E, we inject e, at steps input(E(I)), where I €in(®,dg), and L
at the remaining steps. The specification of E must consist of three guarded commands. E
can be viewed as a piecewise pipelining variable.

Next, we consider the specification of initialization control variables Fj; and F; and ter-
mination control variables L, and L;. To establish Fo(T—95 )= fo A Fy(I—95 )= f; at the
first computation points I of E but not at the soaking points of E, it is necessary (but not
sufficient) to inject f; (=0, 1) at input(F;(I)), where I €in(®,9g), and L at the remaining
steps. This is the only way of establishing Fy(I—95) = fo A Fs(I—9p ) = f at the first
computation points of E since F and F; are pipelining variables. It needs not be sufficient:
Fo(I-95)=fo A Fy(I-9F,)=fi may also hold at some soaking points of E because a valid
a space-time mapping is not an injection from ¥ to T (Sect. 4.3).

Similarly, to establish Lo(T-9L,)=£o A Ly(I=91,) =4, but not at the remaining compu-
tation points, it is necessary (but not sufficient) to inject £; (i=0,1) at input(L;(1)), where
I €eout(®,9g), and L at the remaining steps.

For sufficiency, we must choose the control dependence matrix D, appropriately (Sect. 8.3).
This completes the specification of Fy, F}, Ly and L,. Because they are pipelining variables,
no computation equations are required. Now, we have all necessary details for the specifica-
tion of the host and the cell program.

8.2.1 The Host Program

The notation in this program is explained on the following page.

PROGRAM: HostProg,_s(D,)
for t from tg, to t, do
for k£ from 0 to 1 do
if te{input(F,(I)) | I€in(®,95)} — inject(f,, PE(F}))
[ else — inject(L, PE(F}))
fi
if te {input(Ly(I)) | I €out(®,95)} — inject({y, PE(Ly))
[ else — inject(L, PE(L;))
fi
if t {input(E(I)) | I€in(®,95)} — inject(e,, PE(E))
[ else — inject(Ll,PE(E))
fi
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PE(v) stands for the coordinate of the border cell to which elements of moving variable
v are injected:

PE(v) = if flow(v)>0 — puin [ flow(v) <0 — proy fi

inject(s, PE(v)) stands for the injection of control signal s € S(v) to border cell PE(v). The
host executes the following program per step:

We subscribe the name of program HostProg with n=3 to indicate that the program is
for three-dimensional UREs. This program depends on the control dependence matrix D,.

8.2.2 The Cell Program

We name the input (output) channel for control variable v at the cell o™ (v°™). B(F) and
B(L) are defined as follows:

B(F) = (Fy'=fo) A (Fy*=f1)
B(L) = (Ly=t) A(Ly=4)

We use an auxiliary control variable Z, called the action control variable, with no associated
control dependence vector: S(Z)= {zc, z,}. I T is a computation point, then F(T)=z; if 1
is a pipelining point, then Z(I)=z,. The cell executes the following program per step:

PROGRAM: CellProg,_s(D.)

(Vi:0<i<1: F™ = F®)
(Vi:OSigl:L;’ut = LM
E™ = if E®=e, AB(F)A-B(L) — ¢

0 ((Em—es AB(F))V Em-epE_l) AB(L) — eq
(0 %: O<k<_ Ig:E"=¢, — €(k+1)modr‘E)
[ else — E™

fi

7% = if (B™=e, AB(F))VE™=ep,_, — z
[ else — z,
fi

The first guard of E°* selects first computation points of E but excludes points that are
both a first and last computation point of E. E™ = e, A B(F) holds at a point if the
point is a first computation point of E. If it is also a last computation point of E, B(L)
holds also. The second guard of E°° establishes whether a point is a last computation
point of E. E™=e, A (B(F) holds at first computation points of £ and E™ =ep,_; holds
at computation points that are not first computation points of E. Thus, if in(®,9f) and
out(®,95) are disjoint, the first guard of E can be simplified to E™ =e, A B(F) and the
second to B = =ery_1 A B(L). The third guarded command of E°™ is a quantification over
the choice operator [I. It handles points that are relaying or computation points but neither
first nor last computation points of E. The quantification represents I'; separate guarded
commands. The else guard of E™* captures the undefined points of E.
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Like program HostProg,_,(D,), program CellProg,_s(D,.) depends on the control depen-

dence matrix D, (in fact, it only depends on 95).

The host and cell program can be equivalently represented by the control dependence
graph defined for the extended index space ¥:

¢ The nodes are the points in the extended index space; the equations defined at each

node are represented by program CellProg,_s(D.).

s

o The dependence vectors are generated by duplicating control dependence vectors 9 Fy>
Vg, 91,, 91, and V5 throughout the extended index space.

o Let value(p(I,v, ¥)) be the control value initialized at the source point in in(¥,9,) of

the 9,-path p(I,v, ¥):

(VEk:0<k<1: value(p(I,F,,¥)) = if I€in(®,95) — f, [ else — L fi)
(VE:0<k<1: value(p(I, L, ¥)) = if Icout(®,95) — £ [| else — L fi)
value(p(I, E,¥)) = if I€in(®,9g) — e, [ else— Lfi

The definition of value follows directly from program HostProg,—s(D.). Because Fy,
F,, Ly and L, are pipelining variables, we know that, for every control variable v €
{Fy, Fy, Ly, L1} and every point J in 9,-path p(I,v, ¥), v(J)=value(p(I,v, ¥)).

Remark.
A 9,-path of control variable v may start at an internal cell in the following two cases.

1. If v is stationary, all J,-paths start at internal cells. The control signals of the variable

must be loaded before the computation starts, i.e., before step #g;.

. If v is moving, some J,-paths may start at internal cells. In this case, the input value
must be L. In contrast to data variables (Sect. 4.2), L is a meaningful control signal
and must be input. The input of L before step tg; can be implemented by system
reset or by pipelining. Our separation control scheme requires that the initialization
and termination control variables be initialized at all cells with L before step #g;. U

The previous construction of the evolution control variable requires that separation con-

trol variables satisfy the following specification (Fig. 3):

Spec. L. (V 7 : TGT : (7) (fO) f17 Xy Xy € ) — Tem(éaﬂE))

Spec. 2 (VT:Te€Y:9() = (fo, fr,lorl1,es) <> ITeout(®,9g)Nin(2,95)) A
(VT:TeT: ()= (x;xborlrsec) = I€out(®,dp)\in(®,9g))

Spec. 3. (VTTET 90(7) (§0a‘£1aX7X7e) — TGTSE)

Spec. 4. (VT:T€X :(I) = (X, X, M0, M, €c) < T€d\(in(®,95) Uout(®,95)))

Spec. 5. (VI:TeT:9()=(x,x,xo06a) = 1Y)

Spec. 6. (VI:TeT:9()=(x,x,x, X, L) < TeTg)
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where y stands for “don’t care”, £, and ¢; satisfy (& # fo V & # f1), and ny and 7, satisfy
(no# £,V #4£,). The satisfaction of this specification trivially ensures the correctness of the
separation control variables (Def. 7). Note that Spec. 2 is a conjunction: one conjunct cap-
tures the points in both out(®,95) and in(®,95) and the other the points only in out(®,J5)
(Fig. 3).

The following theorem describes the essential role of the evolution control variable E in
the correctness of the separation control variables. ?

Theorem 3 Specs. 1-2 are satisfied iff Specs. 3-6 are satisfied.

Proof. HostProg,—s(D,.), CellProg,_s(D.) and Specs. 1-6. 0

Thm. 3 states that the correctness of the separation control variables is fully established
by the satisfaction of Specs. 1-2. Next, we state a necessary and sufficient condition for the
satisfaction of Spec. 1.

Lemma 4 Spec. 1 is satisfied iff, for every Ig-path containing computation points, the first
computation point of E satisfies B(F) but the soaking points do not.

Proof. HostProg,_s(D,), CellProg,-s(D.) and Spec. 1. O

A similar necessary and sufficient condition exists for the satisfaction of Spec. 2.

Lemma 5 Assume Spec. 1 is satisfied. Spec. 2 is satisfied iff, for every I g-path contain-
ing computation points, the last computation point of E satisfies B(L) but the remaining
computation points do not.

Proof. HostProg,_s(D.), CellProg,_s(D.) and Specs. 1-2. O

In Sect. 8.3, we present sufficient conditions that ensure the satisfaction of Specs. 1-2
and that provide a construction of control dependence matrix D.. These conditions impose
constraints on the shape of the index space.

8.3 The Construction of Control Dependence Vectors

The construction of initialization control variables Fy and F; aims at identifying the points
in in(®,9), and similarly, the construction of termination control variables Ly and L; aims
at identifying the points in out(®,9g).
We write sig.in for the set of the intersection points between a 9, -path p(I, Fy, ¥) such
that value(p(I, Fy, ¥))= f; and a Y -path p(J, Fy, ¥) such that value(p(J, Fy, ¥))=fi: -
sig.in = {K | Kep(I, F,,¥) 0\ p(J, Fy, V), value(p(I, Fy, ¥)) = fo, value(p(J, F}, ¥))=fi }.

Similarly, we write sig.out for the set of the intersection poihts between a ¥, -path p(I, Lo, ¥)
such that value(p(I, Lo, ¥)) =4, and a ¥ -path p(J, L, ¥) such that value(p(J, Ly, ¥))=4;:

sig.oout = {K | Kep(I, Ly, ¥) Np(J, Ly, V), value(p(I, Ly, ¥)) =4y, value(p(J, Ly, ¥)) =4, }.

Lemma 6 in(®,9)Csig.in and out(®,d5) Csig.out.
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Proof. Definitions of sig.in, sig.out, in(®,d5) and out(®, V). O

Let us consider the initialization control variables first. B(F') holds for the points in
sig.in, but it may also hold for a space-time point that is not in sig.in. This may happen
when two points — one in a ¥, -path p(I, Fy, ¥) with value(p(I, Fo, ¥))= f, and another in a
9 p,-path p(J, Fy, ¥) with value(p(J, Fy, ¥))=f; that does not intersect the Jp,-path — share
the same image (Sect. 4.3). A similar argument applies for the termination control variables.
The basic idea in constructing the control dependence matrix is to eliminate this possibility,
Since the definitions of sig.in and sig.out do not depend on the space-time mapping, we can
then establish the correctness of the separation control variables at the source level.

Before presenting a construction of the control dependence matrix, we introduce a lemma,
on which the construction depends.

Lemma 7 Assume 0#flow(v)#flow(w)#0. Assume II satisfies Thm. 1.
VILJLK:ILLEEI"NISKANJBK :I=J = I=J=K).

Proof. T=17T <= step(I) = step(J) A place(I) = place(J) <= M =] Aol =oalJ.
I%K = 3m:mel] : K=md,+I)and JSK < (In:nel;: K=nd,+J). A
simple algebraic calculation establishes mAd, =nAd,, A mod,=nod,,.

We consider all four possible geometric relationships between I and J relative to K (the
proof proceeds to show that only /=J=K can hold):

Case 1: I=K A J#K. This implies m=0 and consequently Ad,, =0, contradicting Thm. 1.
Case 2: I#£K A J=K. This implies n=0 and consequently AJ, =0, contradicting Thm. 1.

Case 3: I#K A J#K. By hypothesis 0# flow(v) # flow(w) #0, we infer mod, =nod,, #0.
Dividing mod, by mAd, and nad,, by nAd,, (note that mAd, =nAd,,) yields 09, /), =
0¥,/ My, 1.€., flow(v) =flow(w), contradicting the hypothesis.

Case 4: I=K AN J=K. Trivially true. O

This proof does not require the containment of I, J and K in the index space; it only
relies on the geometric relationship of the three points. The lemma states that two J-paths of
variables moving with different velocities only share an image at the intersection point. We
choose 9, and ¥, in such a way that every ¥ -path with value(p(I, Fy, ¥)) = f; intersects
all ¥, -paths with value(p(J, Fy, ¥)) = f;. This ensures B(F) at a space-time point iff the
point is in sig.in. But sig.in may be a proper superset of in(®,95) (Lemma 6). To ensure
the satisfaction of Spec. 1, we require sig.in=in(®,dz). This restricts the shape of the index
space.

Similarly, we choose ¥y, and ¥, such that every ¥ -path with value(p(Z, Lo, U)) =4,
intersects all ¥, -paths with value(p(J, L,, ¥))=#; and require sig.out=out(®, 7).

Theorem 4 (Initialization Theorem) 0 # flow(Fp) # flow(Fy) # 0. Spec. 1 is satisfied if
in(®,9g) is a parallelogram; two edges are parallel to vector Jg, and the other two to V.
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Proof. By the hypotheses, every 95, -path p(I, Fy, ) such that value(p(I, Fy, ¥)) = fo must
intersect all ¥, -paths p(J, Fy, ¥) such that value(p(J, Fy, ¥))= f; and the set of intersection
points sig.in satisfies sig.in=in(®,9y). By applying Lemma 7 and Thm. 1, we conclude that
B(F) holds at a space-time point iff the point is in sig.in, i.e., in in(®,9z). Thus, for every
¥ p-path containing computation points, B(F) holds for the first computation point of E but
not for the soaking points of the path. An application of Lemma 4 completes the proof. O

By symmetry, there is an analogue of Thm. 4 for termination control variables. ,

Theorem 5 (Termination Theorem) Assume that Spec. 1 is satisfied and 0 # flow(Lo) #
flow(L,) #0. Spec. 2 is satisfied if the out(®,9g) is a parallelogram; two edges are parallel
to vector 9 and the other two to Jp, . »

Proof. Similar to the proof of Thm. 4. O
Let us introduce some concepts that are used in this and subsequent sections.

o Tz <o (7, mo € QM) is a valid inequality for a polytope S C Q", if it is satisfied at all
points of S. If F={z | z€ S, rz=7,} and 7z <7y is a valid inequality, F is called a
face of S. A face F of S is called a k-face of S if dim(F)=k. A k-face is a facet of S
if k=dim(S)—1 [11, Sect. I. 4].

o Let {9; | 0 <i<n} be n linearly independent n-vectors. Let {§; | 0 < j <n} ben
linearly independent n-vectors such that (Vi : 0<:i<nAi¢#j: §;9;,=0). That
is, 6; is the normal to the hyperplane formed by (n—1) linearly independent vectors
{9, ] 0<i<nAi#j}. The smallest enclosing parallelepiped P(S,9g,- -, 9, 1)
of a convex polytope S C Q" that is generated by n linearly independent n-vectors
{9, ]0<t<n} is defined as follows:

,P(Saﬂm' ’ '7"971—1):{] l H < [507 tre 76n—1]I<H+}'
where H™ = (H;,-++,H__,) and HY = (H},---,H'_)) are n-vectors:
H: = min{6;] | I€S} HY =max{§,I | I€S}.

j
P(S, 3, - ,9,_1) has 2n facets. in(P(S,dg,- -+, P,_1),9;) and out(P(S,dg," -, 9,_1),9;)

are the two facets associated with 9,.

The condition of Thm. 4 can be expressed as: P(in(®,9g), 5,95 ) =in(®,95). The
condition of Thm. 5 can be expressed as: P(out(®,9g),9,,9,)=out(®,9p).

Thm. 4 (Thm. 5), or more precisely, Lemma 7, on which the proof of Thm. 4 (Thm. 5)
depends, justifies the need for two initialization (termination) control variables. ‘

The satisfaction of Spec. 2 relies on the satisfaction of Spec. 1. This is the reason for the
prerequisite “Spec. 1 is satisfied” in Lemma 5 and Thm. 5. We can exploit this asymmetry to
advantage in specifying the termination control variables. Once the first computation points
of E are correctly identified, a space-time point is a last computation point of £ only if it is
a computation point. It turns out that termination control can be specified like computation
control by the separating hyperplane method (Def. 6).

The basic idea in constructing termination control variables is to make sure that the
combination of control signals of the termination control variables at the last computation
points of E and the remaining computation points are disjoint. The number of termination
control variables needed may vary for different source UREs.
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(a) (b)

Figure 4: (a) The shape of the three-dimensional index space @, as required by programs
HostProg,_,(D,) and CellProg,_4(D,). The five control dependence vectors Vg, Vg, Vg,
9, and 9, are shown. The top facet in(®,95) and the bottom facet out(®,J5) must be
parallelograms. (b) Illustration of the adaption index space ®. The dashed polytope depicts
®. Assume that the control dependence vectors of (a) are chosen. The polytope enclosing
® on the left depicts the domain ®g. It is duplicated on the right. The polytope enclosing
O, on the right depicts the adapted index space @,.

8.4 Adaptation of the Source

By Thms. 4 and 5, the correctness of HostProg,_s(D,) and CellProg,.s(D.) relies on the
fact that the index space @ is of the following shape (Fig. 4(a)):

o in(®,95) is a parallelogram; two edges are parallel to ¥, and the other two to Jp.
o out(®,9y) is a parallelogram; two edges are parallel to ¥z, and the other two to Jp,.

This implies that 9, (9gxIF, ) =0 (x denotes the vector product), i.e., that ¥, is perpendicu-
lar to the normal to the hyperplane formed by vectors ¥z and 9,. Similarly, ¥y, (9pxdg ) =0.

Once control dependence vectors ¥, 95, 95, 91, and Iy, satisfying 91, (IgxJIp)=0
and ¥y, (95 x V) =0 are given, the index space can be adapted to be of the required form
with the concept of a supporting hyperplane (Fig. 4(b)).

A supporting hyperplane {I | 1I=§6} to a polytope C C Q" is a hyperplane that contains
at least one point in C such that either all points I in C satisfy 71 <6 or all satisfy 1> 9.
The adapted index space, denoted ®,, is the closed polytope (i.e., including the boundaries)
bounded by the following six supporting hyperplanes to the index space ®:

¢ The two supporting hyperplanes {I | (9gx ¥, )] =H, } and {I | (dgxIp )] = HJ}
where Hy =min{(dgxJg)I | € ®} and HY =max{(dg xVp)I | [ ®}.

e The two supporting hyperplanes {I | (§gx 9 )I =H[} and {I | (19E><19F1)]=Hf}
where H, =min{(JgxVJp )] | I€®P} and H =max{(dg x 95 )I | I€®}.

e The supporting hyperplane {I | (95 XU )[ =P} that contains points of in(®,95) and
the supporting hyperplane {I | (9, x9, )] =p} that contains points of out(®,Jz),
where B (B,) is completely determined by ®, ¥, (91,) and 9g (97, )-
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If 9, is parallel to one of ¥;, and 19L1, and Y, to the other, @g=P(®,9p,I5,95)-
®p, is the union of all ¥z-paths in the adapted index space @, that contain computation
points of the original index space ®:

Bp=(J I: 1€ : p(I, E, ®,))

The UREs defined for ®; can be obtained straight-forwardly from the source UREs; the
points that are not in the original index space are specified by pipelining equations. The con-
trol signals must be specified for the UREs defined at ®g; the two programs HostProg,—s(D.),
with ® replaced by ®z, and CellProg,_;(D,.) constitute the specification of the separation
control. The computation control is then specified for ®z by the separating hyperplane
method (Def. 6). The space-time diagram is calculated for @5, but the space-time mapping
must be valid for the adapted index space @y .

Consider the UREs defined for ®z. The correctness of the computation control follows
from Thm. 2. The correctness of the separation control follows from the fact that B(F)
(B(L)) in program CellProg,_(D,) holds at a space-time point iff the point is in the image
of in(®,,95) (out(®,,95)) because the space-time mapping is valid for the adapted index
space, and the fact that in(®g,95) Cin(®,,95) (out(Pg,¥g) Cout(®,,9g)) (Thms. 4 and
5).

The termination control variables can also be specified by the separating hyperplane
method (Def. 6); no restriction is imposed on the shape of out(®,J5). A similar adaptation
of the index space applies with a domain @ in place of 5 and an adapted index space @,
in place of ®,. @ is a subset of ®p; it excludes the points generated in the extension of £
along direction 95 and &, =®_ Uin(®,,J5).

Let us compare the two methods of the specification of separation control. They differ in
the specification of termination control. For a fixed space-time mapping, the method that
relies on the Termination Theorem (Thm. 5) generally incurs more hardware cost and/or
higher latency than the method that relies on separating hyperplanes since &, C ¢, and
& C ®5. This seems to favour separating hyperplanes but, to apply separating hyperplanes
out((I> Jg) must be partitioned into convex polytopes. The more partitions there are, the
more separating hyperplanes (and, consequently, computation control variables) are needed.
This induces more disjuncts in B(L) of the cell program (App. 2.2.2). The advantage of the
method that relies on the Termination Theorem is the simplicity of the generated programs:

B(L) is fixed. It is more suitable if the exact shape of out(®,?g) is complex but close to
parallelogram.

The cell program that relies on the Termination Theorem can be optimized in the fol-
lowing cases. First, if in(®,9y) satisfies Thm. 4, i.e., if sig.in = in(®,9g), E™ " = e, can
be disregarded. This is because B(F') implies Eout = e, at space-time points. Second, if
out(®,95) satisfies Thm. 5, i.e., if sig.out =out(®, ), there are two alternative optimiza-
tions. Either we can disregard (Em-e AB(F))V E™=er,_; because it is implied by 5(L)
at space-time points, or we can eliminate one termination control variable because, in this
case, we can separate a parallelogram from the rest of the index space by a single separating
hyperplane.
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8.5 Hardware Support

The bit width required to communicate values of v is [log, |S(v)[]. For example, E needs
[log,(Tg+3)] bits — Ig—1 for relaying points, one for computation points, one for soaking
points, one for draining points and one for L. The bit width of E depends on the choice of
both control dependence vector ¥z and the space-time mapping. We should always choose
¥ to minimize I'y. If possible, I'; should be a constant. This is the case in practical
situations. A useful space-time mapping should make I',, constant for at least one data’
variable w; then, we choose £.E = w. The modulo operation in CellProg,_3(D.) can be
implemented by a circular shift (or rotate) operation if I'y is a power of 2. It is superfluous

We reiterate that the correctness of the UCREs does not depend on the space-time
mapping. When we address issues of efficiency, we need to consider the merits and demerits
of different space-time mappings with respect to some cost function.

9 ...for n-Dimensional Source UREs (n>3)

Unfortunately, Thm. 4 does not generalize to n-dimensional UREs. In the general case,
in(®,95) must be of n—1 dimensions in order to be a facet. Because some ¥ -paths and
¥, -paths will not intersect, Lemma 7, on which the proof of Thm. 4 depends, does not apply
and there is no analogue that applies for more than two control variables. The situation for
Thm. 5 is similar.

The separation control scheme for n-dimensional UREs exploits the essential réle of
evolution control variable E. We have the following corollary of Thm. 3.

Corollary 1 Consider the previous specification of evolution control variable E and an ini-
tialization and termination control scheme. The separation control variables are correct iff
the initialization and termination control scheme can correctly identify the first and last
computation points of E.

Proof. Thm. 3. O

9.1 The Construction of Control Dependence Vectors

The basic idea in constructing the separation control variables for n-dimensional UREs is a
hierarchical decomposition of the index space down to 3-faces such that

¢ the method for three-dimensional UREs applies to the 3-faces, and

e the evolution control scheme applies to the remaining faces.

We need n—3 more evolution control variables — one for each extra dimension. We name
them {E; | 0<i<n—3}; E takes on the new name E,,_j.
The control dependence matrix is now redefined as follows:
Dc = [ﬂFo‘) 19F17 1’9[10’ 19L1’ 19E07 Ty 1‘9En_3]'

Our method imposes the following restrictions on the control dependence vectors and on
the shape of the index space:
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® 19F0=?9L0 /\’19F1=79L1.

¢ Vg, 9, g, +,Vg,_, are linearly independent.

-3
o P(Qa'ﬂFo, 1‘9F1719E07 U ,ﬂEn._a):(I)'

Therefore, the index space must be a parallelepiped generated by the control dependence
vectors. in(®,9;) and out(®,9,), for any 9; € D,, are facets of the index space. ;

Next, we describe a procedure for decomposing the index space ®. Actually, we de-
Compose the index space further, into 2-faces (not 3-faces). The 2-faces will be used in the
construction of the host program. If we can identify the set in(®,9g,) of first computa-
tion points and the set out(®, 9, ) of last computation points of Ej in @, we are done, by
Cor. 1. To identify the points in in(®,9y,), it suffices to identify the set in(in(®,95,),d5,)
of first computation points and the set out(in(®,dg,), ¥, ) of last computation points of Ey
in in(®,9g,). Similarly, to identify the points in out(®,d,), it suffices to identify the set
in(out(®,9g, ), ¥, ) of first computation points and the set out(out(®,95,), Vg, ) of last com-
putation points E; in out(®, 9, ). We repeat this procedure for subsequent E;; we decompose
each of the 2 (n—i)-faces obtained in the call for E;_; into the set of first computation points
and the set of last computation points of F; until we obtain 2-faces for E,_;.

This decomposition produces a tree structure: there are 2° (n—i)-faces at level 7 (the top
level is 0). The following recursive equation assigns a unique identifier to each of these faces.

. F(0,0) =29
(Vi,j:0<i<n—2A0<5<27 : F(4,2) = in(F(i-1,4),95,_,))
(Vi,7:0<i<n—2A0<i<27 s F(3,2j+1) = out(F(i—1,5),9%,_,))

Node F(i—1,j) in the tree has two children: F(3,25) and F(¢,25+1). The leaf nodes of
the tree are 2-faces F(n—2,7); for even j, F(n—2,j) corresponds to in(®,dg), for odd j, it
corresponds to out(®,dz) for a three-dimensional index space ®.

Next, we present our construction of the separation control variables. For ease of presen-
tation, we consider each face that is a non-leaf node in the decomposition tree separately,
thus introducing additional control variables, which are eliminated again in Sect. 9.5.

9.2 The Construction of Input and OQutput Equations

The specification of F(n—3, ;) follows from the specification of programs HostProg,_s(D,)
and CellProg,_4(D,). To distinguish instances with different j, we add the arguments n—3
and j to the five control variables Fy, Fy, Ly, Ly and E and all their control signals. In
HostProg,-s(D,), we replace in(®,95) by F(n—2,2j) and out(®,95) by F(n—2,25+1).

We use one evolution control variable, denoted E(1, 7), for every face F(i,7): S(E(3,7)) =
{e(z,7)ss€(2,7)0," -, (2 ’])FE(. - ve(t,1)a, L} F(1+1,25) is the set of first computation
points of E(z,75) and F(i+1,25 +1) is the set of last computation points of E(z,j) with
respect to F(¢,7). F(i+1,25) will be identified by evolution control variable E(i+1,2;5), and
F(i4+1,25+1) will be identified by evolution control variable E(i+1,2j+1). E(i+1,2j) plays
the same role as, for three-dimensional UREs, Fy and F; together. E(i+1,2j+1) plays the
same role as, for three-dimensional UREs, L, and L, together.
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9.2.1 The Host Program

PROGRAM: HostProg,s(D,)
for t from tg, to ¢, do
for 7 from 0 to 2"°—1 do
for k from 0 to 1 do
if te {input(F(n—3,%)(I)) | [€eF(n-2,2¢)}
— inject(f(n—3,1);, PE(F(n—3,1)))
0 else — inject(Ll, PE(F(n—3,1);))
fi
if te {input(L(n—3,%),(1)) | I€F(n—2,2i+1)}
— inject((n—3,1);, PE(L(n—3,1);))
[ else — inject(L, PE(L(n—3,%);))
fi
for : from 0 to n—3 do
for 7 from 0 to 2'—~1 do
if ¢ {input(E(i,§)(1)) | T€ F(i+1,2)} — inject(ei, i) PE(E(i,)))
[ else — inject(Ll,PE(E(,j)))
fi

9.2.2 The Cell Program

PROGRAM: CellProg,s;(D,)
(Vi,7:0<i<2" 2 A0 <
F(n=3,i)]" = F(n—-3,);
L(n—3,5);" = L(n—3,i)7
E(n—3,i)" =if E(n—3,i)"=e(n—3,i), A B(F(n—3,1)) A =B(L(n—3,1)) — e(n—3,4)
(E(n—3,3)"=¢(n—3,4), A B(F(n—3,1)))
VE(n—3,i)"=e(n=3,i)r, _, ;1) AB(L(n—3,4)) — e(n—3,1)q
(I k:0<k< Tgpay : E(n—3,1)"=e(n—3,1);
- e(n‘37i)(k+1)rqodrE(n_3,,-))
I else —» E(n-3,i)"
fi )
(Vi,7:0<i<n—3A0<5<2 :
E@G,)™ =if E(i+1,27)"=e(i+1,25)0 — e(i,5)o
[ E(i+1,2+1)"=e(i+1,2j+1)y — e(3,5)a
(U k: 0<k< FE(i,j) : E(i,j)m= e(i,j)k - e(iaj)(k-i-l)modFE(;,j))
[ else — E(i,5)"
fi )
Z%=if (3j:0<< 2" % E(n—3,7)"=e(n—3,5); AB(F(n—3,5))) V
(34,5:0<i<n—3A0<j<2 : E(5,5)"=e(i, )rp,-1) — %
[ else — =z

P
fi
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B(F(n—3,%) and B(L(n—3,1) are defined as follows:

B(F(n—3,i)) = (F(n=3,i)F=/(n=3,i)) A (F(n—3,1);'=f(n—3,1))
B(L(n—?’vz)) = (L(n—37i):)n=£(n_3>i)0) A(L(n_3,i)11n:£(n—3ai)1)

9.3 The Proof of Correctness

Theorem 6 Assume (Y j : 0<j < 2" : 0 # flow(F(n—3,7)o) # flow(F(n—3,5)1) #0 N
0 # flow(L(n—3,5)o) # flow(L(n—3,7);) #0). If P(®,95,0F, 05 " ",VE,_.) = ©, the
separation control variables specified by HostProg,s(D.) and CellProg,ss(D.) are correct.

Proof. The proof is conducted in two steps. First, we must show that Specs. 1-6 are satisfied
for all 3-faces {F(n—3,7) | 0<j <2"%} of the index space. This follows from Thms. 3-5.
Second, we must show that the set of first computation points and the set of last computation
points of F; in F(i,5) can be correctly identified. This is proved inductively using Cor. 1,
by starting from 7=n—4 and finishing at =0 for faces {F(z,7) | 0<i<n—3, 0<j<2'}. O

Thm. 6 is also valid if the assumption P(®,95,, V5,985, *,9g, ,) = @ is replaced by
the following restrictions:

e There exists 9(i—1, j), which is the control dependence vector for £(:—1, j), such that
F(i,24) and F(4,25+1) are facets of F(i—1, ), i.e., F(3,25)=in(F(i—1,5),9(:—1,7))
and F(%,25+1)=out(F(i—1,7),9(:—1,7)).

e For even j, F(n—2,7) is a parallelogram. Two of its edges are parallel to 9(n—3, )y,
which is the control dependence vector for F(n—3,7),; the other two are parallel to
9(n—3,j);,, which is the control dependence vector for F(n—3,j);.

e For odd j, F(n—2,5) is a parallelogram. Two of its edges are parallel to 9(n—3,7),,
which is the control dependence vector for L(n—3,j)s; the other two are parallel to
#(n—3,5),,, which is the control dependence vector for L(n—3, j);.

9.4 Adaptation of the Source

The definition of P(®, 9y, - -,¥,_;) in Sect. 9.1 indicates how the index space can be adapted
to P(®,9,,-+,9,_1)- The control signals are then specified for the adapted UREs.

Similar to three-dimensional UREs, the termination control for n-dimensional UREs
can be specified by the separating hyperplane method. Then, we can replace the previous
specifications for F(1,1) (i.e., out(®,9g,)) and all its descendants in the decomposition
tree by the specification of F(1,1) derived with the separating hyperplane method (Def. 6).
Therefore, no restriction is imposed on the shape of F(1,1).

A taxonomy of applications suitable for a systolic implementation is given in [5]. A large
proportion of these applications have been specified as n-dimensional source UREs with
n orthogonal data dependence vectors (in most applications, n =3), which are, in general,
orthonormal bases of an n-dimensional vector space and can be chosen as control dependence
vectors. An application of the adaptations described in Sect. 8.4 and this section can readily
make the index space to be of required form.
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9.5 Hardware Support

There are 2 evolution control variables E(i, 7) at level i, 2"7° initialization control variables
F(n—3,3), and F(n—3,5), each, and 2"~ termination control variables L(n—3,j), and
L(n—3,j); each. If all evolution control variables of one level are associated with the
same control dependence vector, they can be merged to variable E;. This reduces the bit
width. Similarly, we can merge the control variables {F(n—3,5) | 0 < j < 2' ' to F,
{F(n—3,); | 0<j <2} to Fy, {L(n=3,5)o | 0<j <2} to Lo, {L(n—3,5)1 | 0<5 <2} to
L,. Note that the value spaces of two control variables, say, v and w that are being merged
must be distinct, i.e., S(v)NS(w)={}. The resulting UCREs can be readily obtained {from
the original UCRES
The bit width of F; is [log2(2’(FE +2)+1)]. The bit width of v (ve {Fp, Fo, Ly, L1 }) is

Mogy(2"~*+1)].

10 The Elimination of Control Signals

Computation control is not necessary if all computation points are of the same type. Sep-
aration control is not necessary if pipelining points can be treated as computation points
without violating the semantics of the source UREs. We have proved that separation control
is unnecessary in all two-dimensional systolic arrays for matrix product by making use of
algebraic properties of addition and multiplication [19]. This is not true for one-dimensional
systolic arrays. Consider Fig. 2. Elements ag;, bs 4, and ¢, ; are propagated at the pipelining
point highlighted by a circle. We cannot treat this point as a computation point; otherwise,
¢, 1 would be recomputed, when it should just be propagated. Separation control plays an
important réle in systolic arrays of reduced dimension.

We illustrate the elimination of separation control with the example of matrix product.

Theorem 7 Separation control is unnecessary iff elements of A and B are not present si-
multaneously at a pipelining point whenever an element of C' is present.

Proof.

<= A and B are pipelining variables at both computation and pipelining points. We only
need to consider variable C, by distinguishing two cases of pipelining points:

¢ A pipelining point that propagates no elements of C'. The operation for C can be
specified as C°"=C"4+A™B™ without violating the semantics of matrix product.

e A pipelining point that propagates some element of C. By the hypothesis, A
or B is undefined at the point. Then, either the ¥ 4-path or the Jg-path that
passes through the point contains no computation points (Lemma 3). cot=cm
is semantically equivalent to C°*=C™+A™0 and C,,, = C’m—I—OBl If we inject
0 in place of L for A or B, we can replace operation C°** = C™ at pipelining
points by operation C°**= Cm A™B™ without violating the semantics of matrix
product.

= Evaluating a pipelining point that propagates an element for each of three variables 4,
B and C as a computation point violates the semantics of matrix product. (]
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A synthesis procedure described in [18] takes an allocation vector o and returns a schedul-
ing vector such that the resulting space-time mapping satisfies the hypothesis of Thm. 7.
One such space-time mapping is:

6m—1 1 1
H-[ 11——1}

Control signals are eliminated at the cost of additional computation steps necessary for the
satisfaction of the hypothesis of Thm. 7. In the presence of control signals, this hypothesis
need not be satisfied. One valid according improvement of the time component is:

2m—-2 1 1
H‘{ 11—1]

The former space-time mapping requires 18m?—18m+1 steps, the latter 6m’ —9m+4 steps.
g

11 Related Work

To our knowledge, Guibas, Kung and Thompson [6] were the first to point out that control
in a systolic array may be implemented by pipelining control signals analogously to data.
Later, Chen [1] gave a formal treatment of this idea. Her method is to replace the test of
some time-dependent domain predicate appearing in a transformed equation by a one-bit
control signal, which is pipelined from the boundary of the array. Rajopadhye [13] presented
a similar idea [13].

The methods of Chen and Rajopadhye represented significant progress but have the
following limitations. First, they require the bijectivity of the space-time mapping. Thus,
they do not readily generalize to arrays of reduced dimension. Second, the pipelining of
domain predicates is determined after the space-time mapping has been selected. If the
array has a fixed size, these methods do not apply. Third, the specification of control signals
for pipelining points is not considered.

Let us mention other work related to this subject. Ramakrishnan and Varman [14]
present a one-dimensional systolic array for matrix product. They supply the flow of data
and control and use linear algebra to prove the correctness of the array. Kumar and Tsai
[7] propose a more general method that requires an explicit choice of the communication
topology and, more seriously, of the sequencing of input variables. The flow of data and
control is then derived by solving a set of constraint equations on timing. Lang [8] shows
how control signals (i.e., instructions) can be pipelined to solve problems such as matrix
product and merging two arrays.

12 Conclusions

It can be shown that the UCREs for the separation control variables presented in this paper
also work for r-dimensional arrays (1<r<n) with o being a scheduling matrix of size r xn.
This is mainly because Lemma 7, on which the construction of UCREs for the separation
control variables depends, is still valid.
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The representation of a one-dimensional systolic array by a space-time diagram has proved
helpful. It would be useful to study the properties of space-time diagrams. Then we could
choose space-time mappings in such a way that systolic arrays from a special class, e.g., with
specific latency, throughput and control complexity, etc. are obtained. The work on systolic
automata may be relevant here (e.g., [2]).

One limitation of our specification of separation control is the requirement that in(®,dz)

be a facet of the index space. Although any index space can be brought into this form, an

adaptation results in more points. This leads potentially to an increased latency or more
processors in the resulting systolic array.

The main question that remains open is the treatment of stationary data variables. We
must derive control circuitry for their reading, writing, loading and recovery. After these
issues have been resolved, we can focus on the minimization of the control hardware.
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A Examples

A.1 Matrix Product

As mentioned in Sect. 7, it is best to choose data dependence vectors as control dependence
vectors whenever possible. For reasons of symmetry, it makes no difference which data
variable we choose for a labelling by E: A, B or C. Let us choose £.E=C. Both in(®,J5)
and out(®,J) are facets of the index space @.

First, let us choose control dependence vectors ¥g, and ¥5,. By Thm. 4, the only choices
are 9, and 95. We choose £.Fy = A and {.F, = B. Symmetrically, choosing £.L, = A and
£.L, =B, Thm. 5 is satisfied. By Thm. 3, the separation control variables are correct. The
control dependence matrix is:

01 010
Dcz[ﬂFo”l?Fl,ﬂLo’ﬂLl?ﬂE]: ]' O 1 0 0
0 0001

Because all computation points are of the same type, computation control is unneces-
sary. Hence, HostProg,.;(D,) and CellProg,_s(D,) specify the control signals for all one-
dimensional systolic arrays for matrix product whose data variables A and B are moving.
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A.1.1 Three Moving Data Variables

Let us choose the space-time mapping that describes Ramakrishnan and Varman’s array
(Fig. 2). Our array runs in (9m®—9m+2)/2 steps. The array of Ramakrishnan and Varman
runs in (12m2+7m+2) /2 steps. Both arrays require the same hardware for data flow. Our
array uses three control variables with a total bit width of six bits. Their array uses only
five bits, but it needs an encoder and decoder per cell.

i

A.1.2 Two Moving Data Variables

Choose the space-time mapping:

_ m4+1 m 1
H_[ lmOI

Both data variable C and control variable E are stationary. Assume that C' is initialized to
zero and FE to e, or L appropriately.

The result is a systolic array that runs in m®+m?—1 steps. The array of Kumar and
Tsai [7] with the same processor space runs in 3m?—m+3 steps. However, it uses two links
for data variables B (we use one). Elements of B must be frequently routed from one link
to the other, complicating the control circuitry.

To compare the hardware required for the control flow: both arrays use a two-bit buffer for
E in each cell. In Kumar and Tsai’s array, there are three one-bit moving control variables;
two control variables need two buffers per channel; one needs one buffer. In our array, there
are four one-bit moving control variables: Fy, Fy, Ly and Ly; Fy and F; do not need buffers;
Ly and L, each needs m buffers per channel.

A.1.3 One Moving Data Variable

Lengauer and Sanders [10] proposed a one-dimensional systolic array for implementation on
transputers. This array conforms to the following space-time mapping:

m 1 1
n=["% 1 o]

Data variables B and C are stationary. The array consists of m cells and runs in m?—m—1
steps. HostProg,_,(D,) and CellProg,_s(D,.) are correct if specifications for the access of
stationary variables are provided.

A.2 LU-Decomposition

LU-decomposition is the unique decomposition of a non-singular mxm matrix C' into a lower-
triangular matrix A and an upper-triangular matrix B such that AB = C. The elements
of the upper triangle of A and the lower triangle of B (excluding the diagonal) are 0; the
diagonal elements of A are 1.

Specification: (¥ i,5:0<i<m A 0<j<m: (T k:0<k<m :a;1b;; = ¢ ;)
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UREs:

0<i<m,0<j<m,0=k — C(i,J, k) = ¢

k<i<m,m=35 ,0<k<m — a;r = A(,5,k)

m=i LkLj<m,0<k<m — by; = B(1,4,k)

k=i ,k=j ,0<k<m — B(,jk) = B(i,j,k-1)" N
k<i<m,k=j ,0<k<m — A(s,j,k) = C(3,5,k—1)B(4, 4, k) A
k=i ,k<j<m,0<k<m — B(i,j,k)=C(,j,k-1) v
k<i<m,k<j<m,0<k<m — A(3,7,k) = A(z,7—1,k)

k<i<m,k<j<m,0<k<m — B(i,j,k) = B(i—1,j,k) j o
k<2<maksjgmv0<k<m - C(Za]ak) = C(i,j,k-—l)—A(i,j-—l,k)B(i—l,j,k) (*)

Indezx Space: ® ={(3,7,k) | k<i<m, k<j<m, 0<k<m}
Variables: A,B,C

010
Data Dependence Matriz: Dy = [04,9p,9¢] = [ 1 00 }
0 01

First Computation Points:  in(®,9¢) = {(4,7,1) | 0<i<m,0<j<m}

Last Computation Points:  out(®,94) = {(3,m, k) | k<i<m, 0<k<m}
: out(®,9p) = {(m, 4, k) | k<j<m, 0<k<m}

Data Dependence Graph (m=4):

For s€ {m, A,V,®}, the equation(s) labelled by s is defined at the points represented by s
in the data dependence graph. The equation labelled by () is defined at every point. Input
and output equations are not depicted.

A.2.1 The Specification of Computation Control Variables

There are four partitions of computation points in the index space:
(I)Vl:{(injak) Ik"—‘iv k=y, 0<k<m}
O, = {(5,5,k) | k<i<m, k=7,  0<k<m}
Oy = {(,5,k) | k<i<m, k<j<m, 0<k<m}
By = {(3,5,k) | k=i, k<j<m,0<k<m}
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The four partitions are formed by dividing the computation points with the two sepa-
rating hyperplanes {(i,,k) | 1=k} and {(3,,k) | j =k}. Thus, we need two computation
control variables. We denote them by P and Q and let S(P)={po,p:} and S(Q)={q0, ¢}
Def. 6, with a choice of 9p=(1,0,0)=94 and J5=(1,0,0)=1p for the corresponding control
dependence vectors yields the following specification of computation control variables:

k=1 Jk—1=j5 ,0<k<m — P(i,5,k) = po
k<i<m,k—1=j ,0<k<m — P(i,j5,k) =p,
k<i<m, k<j<m,0<k<m — P(i,5,k) = P(1,j—1,k)
k—1=1 7k=.7 70<k<m - Q(Zajak)ZQO
k—1=i ,k<j<m,0<k<m — Q(iajak)qu

—

E<i<m, k<j<m,0<k<m — Q(5,5,k) = Q(—1,4,k)

The pairs of control signals of P and @ at the four partitions @4, ®,, @y and P is (o> %),
(P1,90)s (Po>@1) and (py, q1), Tespectively.

A.2.2 The Specification of Separation Control Variables
A.2.2.1 Adaptation of Index Space

The adaptation of the index space described in Sect. 8.4 produces the adapted index space
&, = ®g, the cubic index space of matrix product. Since 94, J5 and J; are the same data
dependence vectors as in matrix product, the specification of the separation control variables
proceeds as for matrix product (App. A.1). Choosing £.Fy=£.Lo=A, £.Fy={.L, =B and
L.E = C, HostProg,_4(D,), with ® replaced by ®g, and CellProg,_,(D,) constitute the
specification for the separation control variables.

The computation control variables are then specified for ®g. If we further note that
variables A, B and C are undefined at all points in @\ ®, only the original index space
needs to be considered. The specification of the computation control variables is as in
App. A.2.1.

The control dependence matrix D, is as for matrix product (App. A.1).

A.2.2.2 Separating Hyperplanes

We choose £.E = C. The specification of the initialization control variables Fy and Fj
proceeds exactly as for matrix product. We obtain £.F,=A and £.F, = B. If we had chosen
0.E = A or £.E = B, an adaptation of the index space as described in Sect. 8.4 would be
necessary, because neither in(®,9,) nor in(®,9p) is a facet of the index space .

The termination control can be specified by the separating hyperplane method (Def. 6).
It turns out that P and Q, as specified previously for computation control, can also serve
as termination control variables. Since out(®,9z) =04 U @, U &y and &\out(®,95) = D,
the pairs of control signals of P and @ at these two domains are distinct. Hence, the last
computation points of E are correctly identified. We must add the termination control value
L: S(P)={po,p1, L} and S(Q)={g0, 1, L}

The control dependence matrix D, is as for matrix product (App. A.1).
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The previous specification of P and @ takes the place of the second conditional statement
in HostProg,_s(D.). Furthermore, B(L) in program CellProg,_s(D,) must be replaced by:

B(P, Q) — (Pin___po A Qin___qO) v (Pin=p0 A Qin:_ql) v (-Pin:_p1 A Qin:qo)

A.2.2.3 Comparison of the Two Methods

The specification of separation control (either as in App. A.2.2.1 or as in App. A2.22)
and the specification of computation control apply for all one-dimensional systolic arrays for
LU-decomposition whose data variables A and B are moving.

For a fixed space-time mapping, the number of links, buffers on the corresponding chan-
nels and the bit widths are independent of the method used for the specification of termi-
nation control. The number of cells and the latency turn out no larger with the separating
hyperplane method than with the other method. The host and cell programs turn out
slightly more complex with the separating hyperplane method. For example, pick the space-
time mapping that describes Ramakrishnan and Varman’s array for matrix product (Fig. 2)

and let m be even. Both arrays run in (9m —11m+4)/2 steps. The array obtained with the
separating hyperplane method has (2m®—2m+2)/2 cells, the one obtained with the other
method has (3m*—3m+2)/2 cells.
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