
Polymorphic Bytecode:
Compositional Compilation for Java-like Languages

Davide Ancona
DISI - Università di Genova

davide@disi.unige.it

Ferruccio Damiani
Dip. di Informatica - Università di Torino

damiani@di.unito.it

Sophia Drossopoulou
Dep. of Computing - Imperial College

sd@doc.ic.ac.uk

Elena Zucca
DISI - Università di Genova

zucca@disi.unige.it

ABSTRACT
We define compositional compilation as the ability to type-
check source code fragments in isolation, generate corre-
sponding binaries, and link together fragments whose mu-
tual assumptions are satisfied, without reinspecting the code.
Even though compositional compilation is a highly desirable
feature, in Java-like languages it can hardly be achieved.
This is due to the fact that the bytecode generated for a
fragment (say, a class) is not uniquely determined by its
source code, but also depends on the compilation context.

We propose a way to obtain compositional compilation for
Java, by introducing a polymorphic form of bytecode contain-
ing type variables (ranging over class names) and equipped
with a set of constraints involving type variables. Thus,
polymorphic bytecode provides a representation for all the
(standard) bytecode that can be obtained by replacing type
variables with classes satisfying the associated constraints.

We illustrate our proposal by developing a typing and a
linking algorithm. The typing algorithm compiles a class
in isolation generating the corresponding polymorphic byte-
code fragment and constraints on the classes it depends
on. The linking algorithm takes a collection of polymor-
phic bytecode fragments, checks their mutual consistency,
and possibly simplifies and specializes them. In particular,
linking a self-contained collection of fragments either fails, or
produces standard bytecode (the same as what would have
been produced by standard compilation of all fragments).

Categories and Subject Descriptors: D.3.3[Programming
languages]: Language constructs and features—classes and
objects; D.3.1[Programming languages]: Formal definitions
and theory—syntax, semantics; D.3.4[Programming languages]:
Processors—incremental compilers

General Terms: languages, theory, design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05, January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

Keywords: type systems, compositional analysis

1. INTRODUCTION
Compilers have two main tasks: To check that the source

code adheres to the language rules (which usually means
that it typechecks), and to produce target code.

Originally, compilers would process the complete source
of an application; thus they would apply global compilation.
In strongly typed languages execution of a globally compiled
application is guaranteed to be type safe.

In the 70s, inspired by Parnas’s ideas about abstract data
types, languages like Mesa, LIS, Modula-2, and Ada intro-
duced separate compilation, whereby an application would
consist of fragments (e.g., modules, packages, or classes).1

A fragment would be compiled separately in the context of
other, used fragments. The produced target code fragment
would reflect these used fragments, that is, it would reflect
the compilation environment in which it was created.

An application would be put together through safe link-
ing of target fragments; linking of target fragments was legal
only with target fragments which corresponded to the com-
pilation environment in which the former was created. Thus,
linking preserved a correspondence between the compilation
and the execution environment, and the ensuing application
would correspond to a globally compiled one, and have the
same type safety guarantees.

In recent years, Java and C] have adopted the separate
compilation approach, however combined with dynamic link-
ing, whereby fragments (in this case, classes in binary form)
are loaded lazily at run-time. Thus, dynamic linking does
not attempt to preserve a correspondence between the com-
pilation and the execution environment, nor does the en-
suing application correspond to a globally compiled one;
type safety can only be achieved through runtime verifica-
tion checks.

Thus, we argue that in Java (and C] too) there is a clash
of philosophy between compilation and execution. Namely,
the adoption of separate compilation means that the target
fragments reflect the compilation environment in which they

1Separate compilation should not be confused with indepen-
dent compilation, introduced by FORTRAN II, which does
not use type information from the used fragments, and thus
does not guarantee type-safety [15].

were created, while the adoption of dynamic linking means
that there is no correspondence between compilation and
execution environment.

For example, compilation of the source method declara-
tion mds:

E m(B x){ return x.f1.f2; }

in an environment ∆1 containing class B with field f1 of type
C, and class C with field f2 of type E, generates bytecode mdb

1

with annotations which reflect the classes where fields were
found and their types, that is:

E m(B x){ return x[B.f1 C][C.f2 E]; }

On the other hand, compilation of mds in an environment
∆2 containing a class B with a field f1 of type D, and a
class D with a field f2 of type F, for some F subclass of E,
generates a different bytecode mdb

2:

E m(B x){ return x[B.f1 D][D.f2 F] }

More importantly, execution of mdb
1 in the environment ∆2

will throw a FieldNotFoundException, even though compila-
tion and subsequent execution of mds in the environment ∆2

would be successful.2

Thus, given the lazy nature of Java dynamic linking, sepa-
rate compilation is, in some sense, too eager, and too context
dependent.

In this paper, we consider, instead, compositional compi-
lation, whereby target fragments do not reflect the compi-
lation environment in which they were created, while link-
ing produces an application which corresponds to a globally
compiled one, and which, therefore, has all its type safety
guarantees.

We define compositional compilation to be the ability
to typecheck source code fragments in isolation, to gener-
ate corresponding binaries, and to link together fragments
whose mutual assumptions are satisfied, without reinspect-
ing the code.

We illustrate a new approach to compilation and linking
for Java-like languages, which will support compositional
compilation. We propose a polymorphic form of bytecode
containing type variables (ranging over class names) and
equipped with a set of constraints involving type variables.
Thus, polymorphic bytecode provides a representation for
all the (standard Java) bytecode that can be obtained by
replacing type variables with class names satisfying the as-
sociated constraints.

In terms of our example, mds can be compiled in isola-
tion; the set of polymorphic constraints associated with mds

is { φ(B, f1, α), φ(α, f2, β), β ≤ E }, where α, β are type
variables, and a constraint of the shape φ(t, f, t′) expresses
that type t is expected to declare or inherit a field f of type
t′. Furthermore, the following polymorphic bytecode mdb

would be generated:

E m(B x){ return x[B.f1 α][α.f2 β]; }

Our approach also supports linking, which checks whether
the polymorphic bytecode of the various fragments satisfies

2This example shows, in a sense, the most simple case of
dependency of generated bytecode on the context; Java fea-
tures such as method overloading and field hiding complicate
matters even further, but the essence of the problem remains
the same.

each other’s requirements, without inspecting the code it-
self. The process involves the replacement of some type
variables by concrete class names. In our example, linking
mdb in the environment ∆1 leads to mdb

1, linking mdb in the
environment ∆2 leads to mdb

2.
The rest of the paper is organized as follows. In Section 2

we define a schema formalizing global and compositional
compilation, introduce the notions of soundness and com-
pleteness of compositional compilation w.r.t. global compi-
lation, and give sufficient conditions for guaranteeing them.
These conditions place requirements on the linking process,
and on the relation between global and compositional com-
pilation of one class. In Sections 3 and 4 we instantiate the
schema to model global compilation and compositional com-
pilation for a small Java-like language [9]. In Section 5 we
give an algorithm for linking which satisfies the properties
required by the theorems in Section 2. Finally, in Section 6
we discuss related work and in the Conclusion applicability
of our approach and further work.

A preliminary version of the material from this paper ap-
peared in [1]. Proofs of the main results can be found in an
extended version of this work [2].

2. FORMALIZING COMPILATION
In this section we define a schema formalizing both global

and compositional compilation.
We start by listing the basic syntactic categories and judg-

ments such a type system should define. We use a Java-
oriented terminology, since a significant class of languages
on which the schema could be instantiated are Java-like (in
particular, in the next sections we present an instance which
defines global and compositional compilation for Feather-
weight Java [9]). However, the schema is much more general,
and is appropriate for any language where, roughly speak-
ing, generated binary code is context-dependent. Hence,
“class” below can be thought of, in general terms, as “lan-
guage entity”.

• Source and binary class declarations (s and b).

• Source fragments (S), which are sequences of source
class declarations; and binary fragments (B), which
are sequences of binary class declarations.

• Class type environments (∆), which are sequences of
class type assignments (δ). A class type assignment
can be thought of as the type information which can be
extracted from a class declaration (hence the metavari-
ables ∆ and δ); thus a class type environment corre-
sponds to a sequence of source class declarations de-
prived of bodies.

• Global compilation (of a class), ∆ ` g s : δ | b, to
be read: The source class declaration s has type δ and
compiles to b in the class type environment ∆.

• Type constraint environments (Γ), which are sequences
of type constraints (γ). A type constraint expresses
expectations from used classes, e.g., that a given class
has a field of a given type.

• Compositional compilation (of a class), `c s : δ | Γ | b,
to be read: The source class declaration s has type δ

and compiles to b under the type constraints in Γ.

• Linking, ∆ ` Γ | B Γ′ | B′, to be read: In the
class type environment ∆ the type constraints Γ are
simplified into Γ′, and the binary fragment B becomes
B′.

Empty class type environments and empty type constraint
environments will be denoted by Λ.

The ingredients from above model two different approaches
to compilation.

In the first approach, code fragments are compiled in the
context of full type information on other fragments (formal-
ized by the class type environment ∆), as shown by the rules
in Fig.1. The global compilation (of a fragment) judgment
∆′ `G S : ∆ | B means that in ∆′ the fragment S has
type ∆ and compiles to B. Here ∆′ represents (full) type
information related to classes which are not being compiled,
such as libraries. In particular, Λ `G S : ∆ | B models the
compilation of a self-contained fragment.

(g-frag1)
∆ δ `g s : δ | b

∆ `G s : δ | b

(g-frag2)
∆ ∆1 ... ∆i−1 ∆i+1 ... ∆n `G Si : ∆i | Bi ∀i ∈ 1..n

∆ `G S1 ... Sn : ∆1 ... ∆n | B1 ... Bn

n ≥ 2

Figure 1: Global compilation of a fragment

In the second approach, code fragments can be compiled
in isolation producing binary code equipped with type con-
straints (both the binary code and the type constraints might
contain type variables denoting yet unknown classes). Then,
it is possible to link together a successfully compiled collec-
tion of fragments, obtaining, if their mutual requirements
are compatible, a new binary fragment with simplified type
constraints. Notice that this check does not depend on the
source code. This is shown by the rules in Fig.2. The com-
positional compilation (of a fragment) judgment ` C S :
∆ | Γ | B means that the source fragment S has type ∆ and
compiles to B under the type constraints in Γ.

(c-frag1)

`c s : δ | Γ′ | b′

δ ` Γ′ | b′
 Γ | b

`C s : δ | Γ | b

(c-frag2)

`C Si : ∆i | Γ′
i | B′

i ∀i ∈ 1..n
∆1 ... ∆n ` Γ′ | B′

 Γ | B

`C S1 ... Sn : ∆1 ... ∆n | Γ | B

n ≥ 2

(Γ′,B′)=
i∈1..n

⊕ (Γ′
i, B

′
i)

Figure 2: Compositional compilation of a fragment

In rule (c-frag2), we assume an operator ⊕ which, given a se-
quence of (at least two) pairs consisting of a type constraint
environment and a binary fragment, gives a new pair, intu-
itively obtained by combining them avoiding interferences
(typically, this operator will eliminate clashes in type vari-
ables, through α-renaming.)

Iterating this process, we will eventually obtain a fragment
for which no type constraints are left, that is, a judgment

`C S : ∆ | Λ | B. This means that we have obtained a self-
contained fragment. In this case, we expect to have obtained
the same result as global compilation, that is, compositional
compilation to be sound w.r.t. global compilation, and con-
versely, that is, compositional compilation to be complete
w.r.t. global compilation. As a first approximation, sound-
ness and completeness could be expressed as follows:

`C S : ∆ | Λ | B if and only if Λ `G S : ∆ | B.

However, since compositional compilation is obviously ex-
pected to be incremental, and since global compilation al-
lows for the import of some library classes, whose binary
may be available, but whose source may not be available, the
claim above should be generalized in order to deal with open
source fragments, that is, fragments where some needed class
is missing.

We say that a class type environment ∆ is consistent
(w.r.t. global compilation) if Λ `G S : ∆ | B for some S,
B.3

Definition 1. We say that compositional compilation is
sound w.r.t. global compilation iff for consistent ∆′ ∆:
`C S : ∆ | Γ | B, and ∆′ ∆ ` Γ | B Λ | B′

imply ∆′ `G S : ∆ | B′.

We now state sufficient conditions for soundness. These
conditions (and analogously those which guarantee com-
pleteness later on) provide a general schema for proving
that compositional compilation is sound (resp. complete).
Indeed, they allow to split the proof in two parts: First,
checking that compositional compilation of a single class is
sound and complete — conditions (1) in Theorems 4 and
6. Second, checking that linking satisfies some requirements
of well-behaviour — conditions (2) and (3) in Theorems 4
and 6. In particular, conditions (2) are related to vertical
(sequential) composition and conditions (3) to horizontal
composition of linking steps. Conditions (2) require that,
whenever two linking steps in sequence allow to eliminate
all type constraints, and the latter requires more type in-
formation on classes, then starting with this richer type in-
formation the two steps can be combined in just one step;
conversely, given a linking step which allows to eliminate all
type constraints under some type information on classes, if
we start with only partial type information it is always pos-
sible to perform a partial simplification of type constraints.
Conditions (3) require that, whenever a linking step allows
to eliminate a combination of type constraint environments,
it is always possible to eliminate each component, and con-
versely. Finally, condition (4) in Theorem 4 is just a trivial
requirement needed to express soundness for closed frag-
ments as a particular case of soundness.

Note that, in order to prove soundness and completeness,
it is not necessary that linking is well-behaved for all type
constraint environments, but only for those which can be
obtained through the compilation and linking process. This
is formalized by the following definition:

Definition 2. Relevant type constraint environments are
inductively defined by the following clauses:

• if ` c s : δ | Γ | b holds for some s, δ, b, then Γ is
relevant;

3This definition assumes the fact that libraries used in global
compilation have been obtained by correctly compiling some
code.

• if Γ is relevant and ∆ ` Γ | B Γ′ | B′ holds for some
∆, B, B′, then Γ′ is relevant;

• if Γ1, ..., Γn are relevant and (Γ,B)=
i∈1..n

⊕ (Γi, Bi) for
some B, B1, ..., Bn, then Γ is relevant.

Fact 3. If `C S : ∆ | Γ | B holds for some S, ∆, B, then
Γ is relevant.

Theorem 4 (Sufficient conditions for soundness).
Compositional compilation is sound w.r.t. global compilation
if the following conditions hold:

1. `c s : δ | Γ′ | b′, and ∆ δ ` Γ′ | b′
 Λ | b, and

∆ δ consistent imply ∆ δ `g s : δ | b.

2. Γ′′ relevant, ∆2 ` Γ′′ | B′′
 Γ′ | B′, and ∆1∆2 `

Γ′ | B′
 Λ | B imply ∆1 ∆2 ` Γ′′ | B′′

 Λ | B.

3. ∆ ` Γ | B Λ | B′′, and (Γ,B)=
i∈1..n

⊕ (Γi, Bi) for some
B1, ..., Bn and Γ1, ..., Γn relevant, implies ∆ ` Γi | Bi

Λ | B′
i, for some B′

i, for all i∈1..n, and B′′ = B′
1 ... B′

n.

4. Λ ` Λ | B Λ | B for all B.

Definition 5. We say that compositional compilation is
complete w.r.t. global compilation iff
∆′ `G S : ∆ | B′ implies ∃ B, Γ s.t.
`C S : ∆ | Γ | B and ∆′ ∆ ` Γ | B Λ | B′.

Theorem 6 (Sufficient conditions for completeness).
Compositional compilation is complete w.r.t. global compi-
lation if the following conditions hold:

1. ∆ δ `g s : δ | b implies ∃ b′, Γ′ s.t.

`c s : δ | Γ′ | b′ and ∆ δ ` Γ′ | b′
 Λ | b.

2. Γ′′ relevant and ∆1 ∆2 ` Γ′′ | B′′
 Λ | B imply ∃ Γ′, B′

s.t. ∆2 ` Γ′′ | B′′
 Γ′ | B′ and ∆1 ∆2 ` Γ′ | B′

Λ | B.

3. Γi relevant and ∆ ` Γi | Bi Λ | B′
i, for i∈1..n, with

i∈1..n

⊕ (Γi, Bi) = (Γ, B), imply ∆ ` Γ | B Λ | B′
1 ... B′

n.

Note that theorems 4 and 6 imply soundness and com-
pleteness for closed fragments. Namely, if we take ∆′ =
Λ = Γ, applying (4) from theorem 4 we get soundness for
closed fragments:

`C S : ∆ | Λ | B implies Λ `G S : ∆ | B.

On the other hand, for ∆′ = Λ, if there exist B, Γ s.t.
` C S : ∆ | Γ | B and ∆ ` Γ | B Λ | B′, we get
`C S : ∆ | Λ | B′ by applying rule (c-frag2), and hence we
obtain completeness for closed fragments:

Λ `G S : ∆ | B implies `C S : ∆ | Λ | B.

3. FJ GLOBAL COMPILATION
In this section, we formalize global compilation of a small

Java-like language. This models both standard type check-
ing for Java-like languages (see, e.g., [9, 16]), as well as
bytecode generation (as already in, e.g., [4, 8]).

The syntax of the (source) language is defined in Fig.3.
It is basically Featherweight Java [9] (FJ in the sequel) hence
a functional subset of Java with no primitive types, except

S ::= s1 . . . sn

s ::= class c extends c′ { fds mdss } (c 6= Object)
fds ::= c1 f1; ... cn fn;

mdss ::= mds
1 ... mds

n

mds ::= mh {return es;}
mh ::= c0 m(c1 x1 ... cn xn)
es ::= x | es.f | es

0.m(es
1 ... es

n) |
new c(es

1 ... es
n) | (c)es

where field, method and parameter names
in fds, mdss and mh are distinct

Figure 3: Source language

for the minor difference that here class constructors are im-
plicitly declared. Every class can contain instance field and
method declarations and has only one constructor whose pa-
rameters correspond to all class fields (both inherited and
declared) in the order of declaration. In class declarations
we assume that the name of the class c cannot be Object.
Method overloading and field hiding are not supported. Ex-
pressions are variables, field access, method invocation, in-
stance creation and casting; the keyword this is considered
a special variable. Finally, in order to simplify the presenta-
tion, we assume field names in fds, method names in mdss,
parameter names in mh to be distinct.

In Fig.4 we give the syntax of bytecode generated by
global compilation — that is (an abstraction of) standard
Java bytecode.

B ::= b1 ... bn

b ::= class c extends c′ { fds mdsb }
mdsb ::= mdb

1 ... mdb
n

mdb ::= mh {return eb;}
eb ::= x | eb[c.f c′] | eb

0[c.m(c̄)c′](eb
1 ... eb

n)
| new [c c̄](eb

1 ... eb
n) | (c)eb

c̄ ::= c1 ... cn

where fds and mh are defined in Fig.3 and
method names in mdsb are distinct

Figure 4: (Abstract) standard bytecode

Our notion of bytecode is abstract, since the only differences
between source code and bytecode of interest here are the
annotations needed by the JVM verifier — recall that in
Java bytecode a field access is annotated with the static
type of the receiver and the type of the field, a method
invocation with the static type of the receiver, the type of
the parameters and the return type, and an instance creation
with the type of the parameters.

In Fig.5 we define class type assignments. A class type as-
signment collects the type information needed for compiling
other classes which can be extracted from a class declara-
tion; it is a 4-tuple consisting of the name of the class, the
name of the parent class, the set of field signatures (type
and name of declared fields) and the set of method signa-
tures (return type, name and parameter types of declared
methods).

We assume the existence of a function type extracting type

δ ::= (c, c′, fss, mss)
fss ::= {fs1, . . . , fsn}
fs ::= c f

mss ::= {ms1, . . . , msn}
ms ::= c m(c̄)

Figure 5: Class type assignments

information from a source class declaration. So we will write
type(fds) and type(mdss) to denote the set of field signatures
and the set of method signatures extracted from the field
declarations fds and from the method declarations mdss, re-
spectively. The straightforward definition of type has been
omitted.

The typing rules defining global compilation of a class are
given in Fig.6. They are standard rules analogous to those
given in other type systems for Java-like languages [9, 8, 4].
We use the following auxiliary judgments:

• ∆; c `g mdss : mdsb, meaning that method declara-
tion(s) mdss in class type environment ∆ and current
class c (needed for assigning the right type to this)
compile(s) to mdsb.

• ∆; Π ` g es : c | eb, meaning that expression es in
class type environment ∆ and local type environment
Π (which maps this and method parameters to class
names) has type c and compiles to eb.

In rule (g-class), for compiling a class c in a class type
environment ∆ we check that ∆ is well-formed (judgment
`g ∆�), and compile each method body in ∆ and current
class c. A class type environment is well-formed if there are
no multiple type assignments for the same class name, the
inheritance relation is acyclic, each extended class is avail-
able, there is no field hiding, the Java rule on overriding is
respected and there is no overloading (the last two condi-
tions correspond to the requirement that a class may not
declare a method with the same name and different return
or parameter types as an inherited method). Note, how-
ever, that a class which is only used as a type may not have
an assignment in ∆. This definition of well-formedness ex-
actly models the checks which Java compilers perform on the
needed compilation context.The formal definition of `g ∆�
can be found in [2].

It is easy to see that the notion of well-formed class type
environment is the concrete version in the FJ case of the gen-
eral notion of consistent class type environment introduced
in Section 2 (see [2] for the details).

In rules for compiling expressions, we use an auxiliary
judgment of the form ∆ ` γ, meaning that in the class
type environment ∆ the type constraint γ holds. Type con-
straints are listed in Fig.7. They have the following informal
meaning:

• c ≤ c′ means “c is a subtype of c′”.

• ∃ c means “c is defined”.

• φ(c, f, c′) means “c provides field f with type c′”.

γ ::= c ≤ c′ | ∃ c | φ(c, f, c′) | µ(c, m, c̄, (c′, c̄′))
| κ(c, c̄, c̄′)

Figure 7: Type constraints

• µ(c, m, c̄, (c′, c̄′)) means “c provides method m appli-
cable to arguments of type c̄, with return type c′ and
parameters of type c̄′.

• κ(c, c̄, c̄′) means “c provides constructor applicable to
arguments of type c̄, with parameters of type c̄′”.

Note that both the constraints µ(c, m, c̄, (c′, c̄′)) and κ(c, c̄, c̄′)
implicitly include the constraint c̄ ≤ c̄′.

The rules defining the judgment ∆ ` γ (in Fig.8) are in-
tuitive and almost self-explanatory. In rule (φ-2), the side
condition f 6∈ fss means that f is not declared in fss; analo-
gously, in rule (µ-2), m 6∈ mss means that m is not declared
in mss. The type constraints in Fig.7 and the rules in Fig.8
are essentially a subset of those defined in [5] (where type
constraints were called local type assumptions).

The rules for the compilation of a class in Fig.6, together
with the general rules for the global compilation of a frag-
ment, given in Fig.1, provide an instantiation to FJ of the
global compilation schema introduced in Section 2.

4. FJ COMPOSITIONAL COMPILATION
In this section we formalize compositional compilation for

the small Java-like language introduced in Section 3. Classes
are compiled in isolation into polymorphic bytecode. That
is, bytecode where the annotations may contain type vari-
ables denoting names of yet unknown classes. The syntax of
polymorphic bytecode is described by the first four produc-
tions in Fig.4 (defining binary fragments, class declarations,
method sequences, and methods, respectively) and by the
productions in Fig.9 (defining binary expressions).

eb ::= x | eb[t.f t′] | eb
0[t.m(t̄)t′](eb

1 ... eb
n)

| new [c t̄](eb
1 ... eb

n) | (c)eb | �c, t� eb

t ::= c | α
t̄ ::= t1 ... tn

Figure 9: Polymorphic bytecode (expressions)

Besides the presence of type variables, the only difference be-
tween polymorphic and standard bytecode is the presence of
the “polymorphic casting” annotated expression; if the type
variable α is substituted with c′, then � c, α� eb can be
specialized either into eb, if c′ ≤ c holds (casting-up), or into
(c)eb, if c ≤ c′ holds (casting-down), or into � c, c′� eb if
nothing can be said about c′ ≤ c and c ≤ c′. For the
“polymorphic casting” annotation we use a different nota-
tion (double angle brackets rather than parentheses) since
this annotation is only allowed in polymorphic bytecode.

Polymorphic bytecode comes with a sequence of polymor-
phic type constraints, which involve type variables and class
names. These are listed in Fig.10. As for polymorphic byte-
code, the meta-variable t denotes either a type variable or a
class name. Besides the presence of type variables, the only

(g-class)

`g ∆�
∆; c `g mdss : mdsb

∆ `g class c extends c′ {fds mdss} : (c, c′, fss, mss) | class c extends c′ {fds mdsb}

type(mdss) = mss

type(fds) = fss

(g-methods)
∆; c `g mds

i : mdb
i ∀i ∈ 1..n

∆; c `g mds
1 ... mds

n : mdb
1 ... mdb

n

n 6= 1

(g-method)
∆; x1:c1 ... xn:cn, this:c `g es : c′ | eb

∆; c `g c0 m(c1 x1 ... cn xn) {return es;} : c0 m(c1 x1 ... cn xn) {return eb;}

∆`c′ ≤ c0

∆`∃ci ∀i ∈ 0..n

(g-parameter)
Π`x :c

∆; Π `g x : c | x
(g-field access)

∆; Π `g es : c | eb

∆; Π `g es.f : c′ | eb[c.f c′]
∆`φ(c, f, c′)

(g-meth call)

∆; Π `g es
0 : c0 | eb

0

∆; Π `g es
i : ci | eb

i ∀i ∈ 1..n

∆; Π `g es
0.m(es

1, . . . , e
s
n) : c | eb

0[c0.m(c̄)c](eb
0, . . . , e

b
n)

∆`µ(c0, m, (c1, . . . , cn), (c, c̄))

(g-new)
∆; Π `g es

i : ci | eb
i ∀i ∈ 1..n

∆; Π `g new c(es
1 ... es

n) : c | new [c c̄](eb
1 ... eb

n)
∆`κ(c, c1 ... cn, c̄)

(g-downcast)
∆; Π `g es : c′ | eb

∆; Π `g (c)es : c | (c)eb
∆`c ≤ c

′
(g-upcast)

∆; Π `g es : c′ | eb

∆; Π `g (c)es : c | eb
∆`c′ ≤ c

Figure 6: Global compilation

γ ::= t ≤ t′ | ∃ c | φ(t, f, t′) | µ(t, m, t̄, (t′, t̄′))
| κ(c, t̄, t̄′) | c ∼ t

Figure 10: Polymorphic type constraints

difference between the polymorphic type constraints and the
type constrains listed in Fig.7 is the presence of the last con-
straint in Fig.10, whose informal meaning is the following:

• c ∼ t means “c and t are comparable” (this constraint
will be generated when compiling a cast).

Polymorphic type constraints not containing type variables
will be called monomorphic type constraints.

The rules defining the judgement for compositional com-
pilation of classes are given in Fig.11. We use the following
auxiliary judgments:

• c `c mdss : Γ | mdsb, meaning that method declara-
tion(s) mdss in current class c (needed for assigning the
right type to this) compile to mdsb under the poly-
morphic type constraints in Γ.

• Π `c es : t | Γ | eb, meaning that expression es in lo-
cal type environment Π (which maps this and method
parameters to class names) has type t and compiles to
eb under the polymorphic type constraints in Γ.

The intuition behind the compositional compilation rules is
that they extract the polymorphic type constraints Γ nec-
essary to compile a given source fragment into a certain
polymorphic binary fragment.

However, note that the rules do not check whether the
inferred collection of constraints Γ is actually satisfiable; in-
deed, for any fragment it is possible to derive a judgment,
even for those that are not statically correct. Consistency
checks are performed by the rule for the linking judgment
(see below). This approach has the advantage that the typ-
ing rules for separate compilation are very simple and can
be implemented in a straightforward way.

Note also that in the type system a unique judgment can
be derived for any class declaration (the proof is immedi-
ate); therefore, we can easily define a type inference algo-
rithm, that is, an effective way for deducing just from the
single declaration of a class c the type and the (polymor-
phic) bytecode of c, and the required type constraints. This
is not possible for the systems in [4, 5, 3], where one needs
to know the environment where c is compiled.

We now define the linking judgment ∆ ` Γ | B Γ′ | B′.
Linking a fragment of polymorphic bytecode B, equipped
with polymorphic type constraints Γ, in a given class type
environment ∆, amounts to finding a suitable substitution
σ mapping the type variables into class names. The substi-
tution σ instantiates some polymorphic type constraints in
Γ into monomorphic type constraints that hold in ∆, and in-
stantiates variables in B correspondingly; these constraints
can be eliminated, leaving only the constraints in Γ′. In
particular, when all constraints are eliminated, we obtain
a fragment of standard bytecode (like the one produced by
global compilation).

Instantiation of Γ w.r.t. substitution σ is denoted by σ(Γ);
we have omitted the trivial inductive definition which coin-
cides with conventional variable substitution. Instantiation
of B w.r.t. ∆ and σ is denoted by Iσ

∆(B); ∆ is needed for

(Γ)
∆ ` γ ∀γ ∈ Γ

∆ ` Γ
(∃)

∆, (c, c′, fss, mss) ` ∃ c
(∃-Obj)

∆ ` ∃ Object

(≤-refl)
∆ ` c ≤ c

(≤-trans)
∆, (c1, c2, fss, mss) ` c2 ≤ c3

∆ ` c1 ≤ c3

(≤-Obj)
∆ ` c ≤ Object

(φ-1)
∆, (c, c′, fss, mss) ` φ(c, f, c′′)

c
′′

f ∈ fss (φ-2)
∆, (c, c′, fss, mss) ` φ(c′, f, c′′)

∆, (c, c′, fss, mss) ` φ(c, f, c′′)
f 6∈ fss

(µ-1)
∆, (c, c′, fss, mss) ` ci ≤ c′′i ∀ i ∈ 1..n

∆, (c, c′, fss, mss) ` µ(c, m, c1 ... cn, (c′′, c′′1 ... c′′n))
c
′′

m(c′′1 ... c
′′
n) ∈ mss

(µ-2)
∆, (c, c′, fss, mss) ` µ(c′, m, c̄, (c′′, c̄′′))

∆, (c, c′, fss, mss) ` µ(c, m, c̄, (c′′, c̄′′))
m 6∈ mss

(κ-1)
∆ ` κ(Object, ε, ε)

(κ-2)

∆, (c, c′, fss, mss) ` κ(c′, c′1 ... c′k, c1 ... ck)
∆, (c, c′, fss, mss) ` c′i ≤ ci ∀ i ∈ k + 1..n

∆, (c, c′, fss, mss) ` κ(c, c′1 ... c′n, c1 ... cn)
fss = {ck+1 fk+1, . . . , cn fn}

Figure 8: Entailment judgement ∆ ` γ (rules for the type constraints in Fig.7)

(∼-1)
∆ ` c ≤ c′

∆ ` c ∼ c′
(∼-2)

∆ ` c ∼ c′

∆ ` c′ ∼ c

Figure 12: Entailment judgement ∆ ` γ (rules for
the type constraint c1 ∼ c2)

dealing with the case �c, t� eb:

Iσ
∆(�c, t� eb) =

8

<

:

Iσ
∆(eb) if σ(t) = c′ and ∆ ` c′ ≤ c

(c)Iσ
∆(eb) if σ(t) = c′ and ∆ ` c ≤ c′

�c, σ(t)� Iσ
∆(eb) otherwise.

In all other cases instantiation of polymorphic bytecode cor-
responds to variable substitution.

Remark. Note that the ability of instantiating polymorphic
bytecode into different kinds of standard bytecode instruc-
tions is a key feature for dealing with important issues, such
as resolution of Java syntax ambiguities (see the Conclusion
for an example of such ambiguities) and, in a wider context,
code optimization.

The fact that the monomorphic type constraint γ holds in
the class type environment ∆ is expressed by the judgement
∆`γ, which is defined by the rules in Fig.8 and in Fig.12.

(c-linking)

`c ∆�
∆ ` Γ →ls σ | Γ′

∆ ` Γ | B Γ′ | Iσ
∆(B)

Figure 13: Linking

The linking judgement is defined by rule (c-linking) in

Fig.13, which is parameterized w.r.t. a linking-simplification
relation →ls . A linking-simplification relation models a par-
ticular way of finding suitable substitutions for simplifying
type constraints w.r.t. class type environments.

The formal definition of `c ∆� (well-formed type environ-
ments for compositional compilation) can be found in [2].
The judgment `c ∆� is more liberal than `g ∆�, since it
allows extended classes to be undefined in ∆. Indeed, the
check `g ∆� in global compilation (rule (g-class)) models
the behaviour of standard Java compilers. On the other
hand, the premise `c ∆� in rule (c-linking) corresponds to
an intrinsic notion of consistency, and expresses that some
additional constraints on each compiled class c are satis-
fied in ∆, that is, that there is no other declaration for c,
that the parent class does not have conflicting field/method
declarations, and that the parent class is not a subtype of
c. These constraints could be equivalently generated dur-
ing compositional compilation of class c, as done in [4, 5,
3]; here we preferred a more compact and efficient formu-
lation. Note that for FJ the check of ∃ c constraints could
also be moved to be part of well-formedness of class type en-
vironment, since used classes are always mentioned in field
or method declarations; but this is not true in general, for
instance if we have local variables.

The rules for the compilation of a class in Fig.11 and the
rule for linking in Fig.13, together with the general rules
for the compositional compilation of a fragment, given in
Fig.2, provide an instantiation to FJ of the compositional
compilation schema introduced in Section 2. In this case
the operator ⊕ used in rule (c-frag2) in Fig.2 in Section 2
just corresponds to pairwise concatenation of sequences (of
constraints and binary fragments, respectively) with proper
α-renaming in order to avoid conflicts of type variables.

Note that all the type variables occurring in a compo-
sitional compilation judgement are (implicitly) universally
quantified. In fact, in a class compilation judgement `
c s : δ | Γ | b, the triple δ | Γ | b represents all the standard
binary class declarations of the form Iσ

∆′ ∆(b), for some class

(c-class)
c `c mdss : Γ | mdsb

`c class c extends c′ {fds mdss} : (c, c′, fss, mss) | Γ, ∃ c′ | class c extends c′ {fds mdsb}

type(mdss) = mss

type(fds) = fss

(c-methods)
c `c mds

i : Γi | mdb
i ∀i ∈ 1..n

c `c mds
1 ... mds

n : Γ1 ... Γn | mdb
1 ... mdb

n

n 6= 1

(c-method)
x1:c1 ... xn:cn, this:c `c es : t | Γ | eb

c `c c0 m(c1 x1 ... cn xn) {return es;} : Γ, t ≤ c0, ∃ ci
i∈0..n | c0 m(c1 x1 ... cn xn) {return eb;}

(c-parameter)
Π ` x :c

Π `c x : c | Λ | x
(c-field access)

Π `c es : t | Γ | eb

Π `c es.f : α | Γ, φ(t, f, α) | eb[t.f α]
α fresh

(c-meth call)

Π `c es
0 : t0 | Γ0 | eb

0

Π `c es
i : ti | Γi | eb

i ∀i ∈ 1..n

Π `c es
0.m(es

1 ... es
n) : β | Γ0Γ1 . . . Γn, µ(t0, m, t1 ... tn, (β, ᾱ)) | eb

0[t0.m(ᾱ)β](eb
1, . . . , e

b
n)

β,ᾱ fresh

(c-new)
Π `c es

i : ti | Γi | eb
i ∀i ∈ 1..n

Π `c new c(es
1 ... es

n) : c | Γ1 . . . Γn, κ(c, t1 ... tn, ᾱ) | new [c ᾱ](eb
1 ... eb

n)
ᾱ fresh

(c-cast)
Π `c es : t | Γ | eb

Π `c (c)es : c | Γ, c ∼ t | �c, t� eb

Figure 11: Compositional compilation

type environment ∆′ and substitution σ such that `c ∆′ ∆�
and ∆′ ∆ ` σ(Γ).

We prove now that, under suitable hypothesis on the linking-
simplification relation, the compositional compilation which
we defined for FJ can be safely used in place of global com-
pilation, that is, is sound and complete w.r.t. global compi-
lation in the sense of Def.1 and Def.5 in Section 2.

We start by stating some properties of entailment which
will be needed in the proof and hold independently of the
linking-simplification relation we choose. Let σ and σ′ be
two substitutions, that is, finite mappings from type vari-
ables to class names. Then σ σ′ denotes the unique substi-
tution s.t. (σ σ′)(Γ) = σ(σ′(Γ)) for all Γ; the empty substi-
tution is denoted by ε. Finally, Γ \ Γ′ denotes the sequence
of constraints obtained by removing from Γ all constraints
in Γ′, while Vars(Γ) (resp. Vars(b)) denotes the set of type
variables appearing in Γ (resp. in b).

Proposition 7. If `g ∆ δ�, ∆ δ ` σ(Γ), then for all s, b :

`c s : δ | Γ | b implies ∆ δ `g s : δ | Iσ
∆ δ(b).

Proposition 8. If ∆ δ ` g s : δ | b, then there exist
σ, Γ, b′ s.t. dom(σ) ⊆ Vars(Γ), and

`c s : δ | Γ | b
′
, ∆ δ ` σ(Γ), b = Iσ

∆ δ(b
′).

Proposition 9 (Weakening of entailment). ∆ ` Γ

implies ∆ ∆′ ` Γ.

Proposition 10. `c ∆1∆2� implies `c ∆1�.

Note that Prop.10 does not hold for the judgment `g ∆�
defining well-formed type environments for global compila-
tion; indeed, `g ∆� holds only if the class hierarchy in ∆ is
(upward) complete.

In order to establish assumptions in Theorem 4 and The-
orem 6, we require the simplification relation to satisfy the
properties listed in Theorem 11 below, which have the fol-
lowing informal meaning.

→ls -sound guarantees that the simplification step is sound,
in the sense that, after applying the given substitution,
it actually eliminates only type constraints which hold
in the current class type environment.

→ls -complete-1 guarantees that, if ∆ contains enough type
information to satisfy all type constraints in Γ, then
this simplification step must be possible in →ls .

→ls -complete-2 handles the case in which there is not
enough type information in a class type environment,
say ∆2, to guarantee that all constraints in Γ hold.
However, if it is possible to eliminate these type con-
straints in a larger class type environment ∆1 ∆2, then
it must be possible to partially simplify Γ in ∆2, ob-
taining Γ′.

Note that the last requirement allows many different “strate-
gies” for →ls — including the strategy where simplification
just does nothing (Γ′ = Γ in the above) until the class
type environment contains sufficient information to simplify
all type constraints, in which case it applies all the sub-
stitutions. However, algorithms implementing →ls should
attempt to find as many simplifications as possible at any
step. We will present such an algorithm in the next section.

Theorem 11. If the linking-simplification relation → ls

satisfies the following properties:

→ls -sound
Γ relevant and `c ∆� and ∆ ` Γ →ls σ | Γ′ imply
dom(σ)⊆Vars(Γ) and Γ′⊆σ(Γ) and ∆ ` σ(Γ) \ Γ′.

→ls -complete-1
Γ relevant and `c ∆� and ∆ ` σ(Γ) and dom(σ) ⊆
Vars(Γ) imply ∆ ` Γ →ls σ | Λ.

→ls -complete-2
Γ relevant and `c ∆1 ∆2� and ∆1 ∆2 ` Γ → ls σ | Λ
imply ∃ Γ′, σ′, σ′′ s.t. (1) ∆2 ` Γ → ls σ′ | Γ′, (2)
∆1 ∆2 ` Γ′ →ls σ′′ | Λ, and (3) σ = σ′ σ′′.

Then, compositional compilation of FJ is sound and com-
plete w.r.t. global compilation.

5. A LINKING ALGORITHM
In this section we describe a particular linking algorithm,

thus making rule c-linking effective, and we sketch a proof
that this algorithm is a correct implementation of the →ls

relation. We start with some basic definitions which specify
the problem we are aiming to solve.

5.1 Basic definitions
Unless specified, in this section we will only consider type

environments ∆ s.t. `c ∆�, that is, possibly open envi-
ronments with no multiple type assignments for the same
class name, no inheritance cycles, no field hiding and no bad
method overriding. Furthermore, when more convenient, we
will treat ∆ and Γ as the sets of their elements (regardless
possible repetitions in Γ), and use the standard set theory
notations.

As a first, rather imprecise attempt, the problem could
be informally stated as follows: given a type environment ∆

and a sequence of constraints Γ, find the possibly maximal
Γ′ ⊆ Γ s.t. ∆ satisfies Γ′; note that, since we are inter-
ested in incremental linking, ∆ might not satisfy the whole
environment Γ.

A first problem with the above statement is that satis-
faction of type constraints is under-specified; e.g., for ∆ =
(c, Object, ∅, ∅) and Γ = φ(c1, f, α), α ≤ c (with c 6= c1), one
might be tempted to assert that α ≤ c is satisfied by ∆ with
α = c. Nevertheless, even though α = c originally seems like
the only possible solution, it cannot be considered valid be-
cause it is sensitive to extensions to ∆. For instance, if we
take ∆′ = ∆, (c1, c, {c1 f}, ∅) then we discover that α = c is
no longer a valid solution, and that the whole Γ is satisfied
by ∆′ with α = c1. In terms of the linking process, this
means that we would need to backtrack from α = c when
adding a class c1 as specified by ∆′.

We now formalize the above reasoning. First, a solution is
a substitution σ for type variables s.t. ∆ satisfies σ(Γ), that
is, ∆ ` σ(Γ) is valid. Second, in order to avoid backtracking,
σ must be the unique possible choice (up to inclusion of
maps) for all extensions of ∆.

Definition 12. For substitutions σ, σ′, we say σ ⊆ σ′ iff
dom(σ) ⊆ dom(σ′) and for all α ∈ dom(σ), σ(α) = σ′(α).

Definition 13. A sequence of constraints Γ has solution
σ w.r.t. a given ∆ iff

1. ∆ ` σ(Γ);

2. ∀σ′, ∆′: if ∆ ⊆ ∆′ and ∆′ ` σ′(Γ), then σ ⊆ σ′.

Fact 14. A Γ has at most one solution w.r.t. a given ∆.

Now that we have formalized the notion of solution, we
can consider in more detail the situation where Γ has no
solution w.r.t. a given ∆; as already said, this situation oc-
curs quite naturally when considering incremental linking,
because ∆ is likely to be incomplete, and thus may contain
insufficient information to compute a solution for Γ. Nev-
ertheless, the algorithm should be able to identify a subse-
quence Γ′′ ⊆ Γ s.t. Γ′′ has a solution σ w.r.t. ∆, and perform
a simplification step: the constraints Γ′′ are removed in order
to avoid unnecessary checks in further linking steps, whereas
σ is applied to the remaining constraints Γ\Γ′′, thus return-
ing a sequence Γ′. Note that if the algorithm was smart
enough, then Γ′′ would be maximal, that is, there would not
exist a Γ′′′ s.t. Γ′′ ⊂ Γ′′′ ⊆ Γ and Γ′′′ has solution w.r.t. ∆.

We distinguish two possible situations w.r.t. remaining
constraints Γ′: If there exists no extension of ∆ which gives
a solution for Γ′, then the algorithm should detect a linking
error. In this case, we say that Γ is inconsistent w.r.t. ∆.

Otherwise, linking succeeds, but the constraints Γ′ still
need to be satisfied, therefore the obtained fragment needs
to be linked further before execution. In this case, we say
that Γ′′ is undetermined w.r.t. ∆.

Definition 15. A sequence of constraints Γ is inconsis-
tent w.r.t. a given ∆ iff for all ∆′ if ∆ ⊆ ∆′, there is no σ

s.t. ∆′ ` σ(Γ); it is consistent (w.r.t. ∆) otherwise.

A sequence of constraints Γ which is inconsistent w.r.t.
Λ (that is, for all ∆) is called inconsistent. Conversely, a
sequence of constraints Γ which is consistent w.r.t. some ∆

(hence, w.r.t. Λ as well) is called consistent.

Definition 16. A sequence of constraints Γ is determined
w.r.t. ∆ iff Γ either has a solution or is inconsistent w.r.t.
∆; it is undetermined (w.r.t. ∆) otherwise.

Definition 17. A sequence of constraints Γ is determined
iff for all ∆, there exists ∆′ s.t. ∆ ⊆ ∆′ and Γ is determined
w.r.t. ∆′; and is undetermined otherwise.

Proposition 18. The constraint γ is determined iff it
matches one of the following patterns: ∃ c, c ≤ c

′, φ(c, f, t),
µ(c, m, c̄, (t, t̄)), κ(c, c̄, t̄), c ∼ c

′.

Finally, in order to prove that our algorithm implements a
→ls relation satisfying properties →ls -sound, →ls -complete-
1, and →ls -complete-2 of Theorem 11 — hence, soundness
and completeness of compositional compilation w.r.t. global
compilation is guaranteed — we show that each relevant set
of constraints satisfies a quite intuitive syntactic property,
and that for constraint sets which satisfy this syntactic prop-
erty we can define an algorithm which satisfies the conditions
of Theorem 11.

This syntactic property is based on a topological relation
≺ between constraints, with the following intuitive meaning:
if γ ≺ γ′, then γ has to be processed prior to γ′. For this we
define the predicates I(α, γ), expressing that α appears in
an “in-position” in γ that is, needs to have been substituted
before γ can be processed, and O(α, γ) expressing that α
appears in an “out-position” in γ, that is, processing γ will
provide a substitution for this variable. I(γ), I(Γ), O(γ),
O(Γ) have the obvious meaning, that is, the set of I variables
in γ, or Γ, and the set of O variables in γ, or Γ.

Input:
this: a well-formed Γ

argument: a well-formed ∆

Output:
if it fails then Γ is inconsistent w.r.t. ∆

else returns σ and transforms Γ into Γ′ s.t.
– Γ′ = σ(Γ \ Γ′′)
– Γ′′ ⊆ Γ

– σ is the solution of Γ′′ w.r.t. ∆

– for all γ ∈ Γ′, γ has no solution w.r.t. ∆

Pseudo-code:

Subs solve(Env ∆) throws fail{
σ = ε
this.topsort () // Γ must be topologically sorted
for each γ ∈ this { // according to the order

try{
γ.apply(σ)
σ′ = γ.entailedBy(∆)
this.remove(γ)
σ.update(σ′)

}
catch(undetermined){}

}
return σ

}

Figure 14: Constraint solving algorithm solve

Definition 19. For any Γ, α, and γ we define:

1. I(α, γ) iff γ = α ≤ t, or γ = t ≤ α, or γ = c ∼ α,
or γ = φ(α, f, t), or γ = µ(t, m, t̄, (t′, t̄′)) with α = t

or α ∈ t̄, or γ = κ(c, t̄, t̄′) with α ∈ t̄.

2. O(α, γ) iff γ = φ(t, f, α), or γ = µ(t, m, t̄, (t′, t̄′)) with
α ∈ t̄

′ or α = t
′, or γ = κ(c, t̄, t̄′) with α ∈ t̄

′.

3. I(γ) = {α | I(α, γ) }, I(Γ) = ∪γ∈ΓI(γ),
O(γ) = {α | O(α, γ) }, O(Γ) = ∪γ∈ΓO(γ).

Definition 20. The following topological relation is de-
fined on type constraints: γ ≺ γ′ iff O(γ) ∩ I(γ′) 6= ∅.

Definition 21. Let ≺+ denote the transitive closure of
≺. Then a set of constraints Γ is well-formed iff

1. ∀γ ∈ Γ : I(α, γ) =⇒ ∃γ′ ∈ Γ : O(α, γ′),

2. 6 ∃γ ∈ Γ : γ ≺+ γ,

3. ∀γ, γ′ ∈ Γ : O(α, γ) and O(α, γ′) =⇒ γ = γ′

5.2 Description of the algorithm
The Java pseudo-code of the main algorithm is defined in

Figure 14. The method solve takes a class type environment
∆ and returns a substitution; it is declared in the class im-
plementing sequences of constraints, therefore this denotes
a certain Γ. When invoked, method solve either throws fail
or returns a substitution σ and simplify Γ into Γ′.

The invocation γ.entailedBy(∆), will throw the exception
fail if a γ ∈ Γ is found to be inconsistent w.r.t. ∆ (and
hence the whole Γ is inconsistent as well).

The method solve returns a σ, if it has found a subse-
quence Γ′′ ⊂ Γ which has solution σ w.r.t. ∆, and has

modified Γ to Γ′ by removing Γ′′ and applying σ. We can
see that Γ′′ is maximal, by proving that for all γ ∈ Γ′, γ
has no solution w.r.t. ∆. However, while all possible sim-
plifications are always performed, some inconsistencies may
be discovered later on, when some new fragment is linked,
mainly because each constraint γ ∈ Γ is checked separately.

For instance, given ∆ = (c, Object, ∅, ∅) and Γ = c1 ≤
c2, c2 ≤ c1 (with all class names distinct), Γ.solve(∆) re-
turns the empty substitution and does not modify Γ, even
though Γ is clearly inconsistent; however, such inconsistency
can be captured when performing further linking steps. For
instance, if we take ∆′ = ∆, (c1, Object, ∅, ∅) then Γ.solve(∆′)
throws fail since c1 ≤ c2 is clearly inconsistent w.r.t. ∆′.

The constraints are processed respecting the topological
order given in Definition 20, so that it is possible to scan
Γ only once without failing to simplify some constraints.
To see that the topological sorting is needed, consider for
instance Γ = α ≤ c, φ(c, f, α), which is not topologically
sorted, and ∆ = (c, Object, {c f}, ∅). The constraint α ≤ c

is processed first and kept, since is undetermined w.r.t. ∆.
Then the constraint φ(c, f, α) is removed (since it has solu-
tion α = c); however, the already examined constraint α ≤ c

cannot be further instantiated into c ≤ c, and, therefore, is
not removed. Therefore solve fails to perform a simplifi-
cation step. Finally, note that since Γ is assumed to be
well-formed, it can always be topologically sorted.

Before being processed, each γ is instantiated w.r.t. the
current substituion σ. Then, the method entailedBy checks
whether γ has solution w.r.t. ∆; if so, it returns the corre-
sponding substitution σ′, otherwise it throws either fail, if
γ is inconsistent w.r.t. ∆, or undetermined if γ is undeter-
mined w.r.t. ∆. As already explained, fail is propagated by
solve, whereas undetermined is captured; in this way, the
constraint is not removed, the current substitution is not
updated, and solve continues with the next constraint.

Figure 15 contains pseudo-code for entailedBy in the class
representing constraints of the form t ≤ t′ (the other cases
can be found in [2]).

If either the left or right hand side of the constraint is
a variable, then the constraint is undetermined, therefore
the corresponding exception is thrown. Otherwise the con-
straint is ground and we can check whether it is satisfied by
∆. If the trivial cases do not apply (reflection and top type),
then we perform an inheritance graph traversal from c1 up
to Object which can terminate in three different ways: if c2

is found, then the constraint is satisfied and we return the
empty substitution; if Object is reached without finding c2

then the constraint is inconsistent and fail is thrown; other-
wise the traversal stops because method superclass throws
undetermined since some superclass of c1 (c1 included) could
not be found in ∆. In the last case, the exception must
be caught since the constraint still could be inconsistent if
there exists c s.t. c2 ≤ c and c ≤ c1. For this reason a new
traversal is started from c2 looking for a superclass of c2 (c2

included) contained in the set S of all superclasses of c1 (c1

included) collected during the first traversal. If such a class
is found, then fail is thrown, otherwise (if either superclass
throws undetermined , or Object is reached) undetermined
is thrown.

5.3 Correctness of the algorithm
In the sequel, let →ls denote the relation implemented by

solve, that is, the relation defined as follows:

Subs entailedBy(Env ∆) throws undetermined , fail{
// ∆ assumed to be well-formed

if this.lhs().var () ∨ this.rhs().var () throw undetermined
c1 = this.lhs()
c2 = this.rhs()
if c1.equals(c2) ∨ c2.equals(Object) return ε
c = c1

S = {c1} // will contain all c s.t. c1 ≤ c
try {

while c 6= Object{
c = ∆.superclass (c)
S.add(c)
if c.equals(c2) return ε

}
throw fail // chain complete up to Object

}
catch(undetermined){}
c = c2 // still could fail
while c 6= Object{

c = ∆.superclass(c)
if S.contains(c) throw fail

}
throw undetermined

}

Figure 15: Definition of entailedBy for t ≤ t′

∆ ` Γ →ls σ | Γ′ iff Γ.solve(∆) returns σ and transforms Γ

into Γ′.
The following propositions ensure that → ls leads to a

sound and complete compositional compilation of FJ w.r.t.
global compilation.

Proposition 22. Any relevant Γ is well-formed.

Proposition 23. The relation → ls satisfies properties
→ls -sound, →ls -complete-1, and →ls -complete-2 of Theo-
rem 11 for any well-formed Γ.

Finally, note that Prop. 22 ensures also that solve is only
invoked for sequences of constraints which can be sorted
w.r.t. the topological order ≺ defined in Definition 20.

6. RELATED WORK
No formal model for separate compilation and linking had

been developed until Cardelli’s seminal work in 1997 [7],
which can be considered a milestone in the area. It develops
a simple formal framework for separate compilation (which,
for the sake of simplification, is considered to consist only
of typechecking), and linking. This framework can be con-
sidered to embody the notion of compositional compilation
formalized in the present paper. The main differences are
that we are also interested in code generation, and that the
general framework in Section 2 abstracts from a particular
programming language, and is parametric in the definition
of separate compilation and linking judgments. Instead, [7]
illustrates the concepts on a simple lambda-calculus, and
linking just amounts in checking that each used entity has
the required type and replacing its name by its definition.

Moreover, [7] did not consider the issue of which prop-
erties compositional compilation should satisfy in order to
produce the same final result as global compilation. These

properties correspond to some form of soundness and com-
pleteness as described in the present paper. They have
been firstly introduced and formalized in [5], within a gen-
eral framework for separate compilation and linking espe-
cially suited for Java-like languages similar to that intro-
duced here. However, the framework in [5] did not take
into account possible specialization of bytecode during link-
ing, hence linking was reduced to inter-checking, that is,
checking that mutual assumptions on fragments are satis-
fied. As a consequence, in the instantation of the frame-
work presented in [5] (again on Featherweight Java) the
code generated by separate compilation was standard Java
bytecode, rather than the polymorphic bytecode introduced
here; hence, since generated bytecode is context-dependent,
separate compilation of a class was only possible under some
given type constraints (or, equivalently, for each possible re-
sulting bytecode).

The result in [5] was nevertheless important, since a type
system for a Java-like language was firstly formally proved to
guarantee sound and complete inter-checking (or, from an-
other point of view, to support principal typings, see below).
On the practical side, type systems as that in [5] (see also
[4, 3]) constitute a good basis for selective recompilation,
as exploited for full Java in [11, 12, 14], since it is possi-
ble to check whether a change in a source fragment affects
other fragments by simply checking that their requirements
still hold, but not for type inference, since type constraints
needed for compiling a class cannot be inferred by just in-
specting its source code.

In other words, compositional compilation as meant in
this paper (compilation of a fragment in isolation) is not
possible; type constraints can only be inferred for a given
resulting bytecode.

The difference between the present paper and [5] becomes
clearer by discussing the relation of our approach with the
notion of principal typing . According to Wells [17]:

• a typing for a term T is the collection of all the infor-
mation other than T which appears in the final judge-
ment of a proof derivation showing that T is typable,
and

• (roughly speaking) a typing for a term T is principal
if it somehow represents all the typings for T .

The paper [17] (see also [10]) pointed out that the principal
typing property (that is, every typable term has a principal
typing) plays a key role in compositional type inference.

In this paper, as in [5], we have formalized compilation (in-
cluding code generation) by means of a type system. There-
fore, in our framework, performing compilation amounts to
performing type inference.

In the type system in [5], the principal typing property
holds by taking as terms pairs consisting of a source and a
binary fragment (in other words, bytecode is considered part
of the term). Instead, in the type system for compositional
compilation proposed in this paper, `C , the principal typing
property holds by taking as terms source fragments S: a
typing is a triple ∆ | B | Γ (note that bytecode is considered
part of the typing) and the system has the principal typing
property since, for any source fragment S, at most one typing
(modulo renaming of type variables) can be derived.

7. CONCLUSION
In this paper we addressed the problem of supporting

compositional compilation for languages (like Java and C])
where the binary code depends on the compilation context.
For this, we defined a schema formalizing global and com-
positional compilation for such languages, and instantiated
it by providing algorithms supporting compositional com-
pilation for Featherweight Java. To the best of our knowl-
edge, this is the first compositional compilation procedure
for a Java-like language.

We believe that the results in this paper can be exploited
at least in two different ways.

Firstly, they can be directly applied to the development
of a new generation of compilers/interpreters/linkers (sup-
porting compositional compilation) for real languages like
Java and C]. In this approach, polymorphic bytecode would
be instantiated eagerly, in a step corresponding to static-
linking. Such compilers would naturally support selective
recompilation mechanisms, in the same spirit of [11, 12, 14].
In this respect, note that the application of our approach
to, e.g., full Java, does not pose substantially new problems,
though obviously more and more involved forms of type con-
straints, as we briefly discuss below. Type constraints mod-
eling field hiding and method overloading were already pre-
sented (in the non polymorphic approach) in [4, 5, 3], and
are omitted in this paper for simplicity. Roughly speaking,
allowing method overloading simply leads to a different in-
terpretation of the type constraint µ(c, m, c̄, (c′, c̄′)), which
becomes: “for a call of method m with receiver of type c

and arguments of type c̄ the most specific method has re-
turn type c′ and parameters of type c̄′” (and analogously
for field hiding). Hence, rule (c-meth-call) in Fig.11 is not
affected, whereas rules defining the entailment judgment for
this type constraint, that is, (µ-1) and (µ-2) in Fig.8, must
change in order to reflect that the type constraint holds when
c′ and c̄′ are the return and parameter types of the most
specific method for the call in the given class type envi-
ronment. The linking simplification algorithm must change
accordingly. Type constraints modeling most other relevant
Java features, such as checked exceptions, accessibility lev-
els, unreachable code, compile-time constants, are presented
in [11, 12, 14]. Finally, in [13] it is shown how to deal with
another Java peculiar feature, that is, the ambiguity in an
expression such as A.B.C.4

Secondly, the results in this paper could lead to the de-
velopment of a more flexible run-time support for Java-like
languages, allowing execution of bytecode containing type
variables. In this approach, polymorphic bytecode would be
instantiated lazily, during dynamic linking and loading —
some initial exploration appears in [6].

Further work includes extensions of our polymorphic model
to other Java features, adapting to the polymorphic case
the results mentioned above, and, more interestingly, to F-
founded polymorphic methods and classes as introduced by
GJ and Java 1.5. We also plan to investigate the extension
of the source language so that it may contain type variables
as well.

4For instance, A could be a class, B a static field, C a field,
or A could be a class, B a nested class, C a static fied, or A
could be a package, B a class, and C a field.

Acknowledgements. We are grateful to the anonymous ref-
erees for detailed and insightful comments and suggestions,
and to to Alex Buckley for feedback. This work has been
partially supported by Dynamic Assembly, Reconfiguration
and Type-checking - EC project IST-2001-33477, and by
APPSEM II - Thematic network IST-2001-38957.

8. REFERENCES
[1] D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca. Even

more principal typings for Java-like languages. In 6th Intl.
Workshop on Formal Techniques for Java Programs 2004,
June 2004.

[2] D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca.
Polymorphic bytecode: Compositional compilation for
Java-like languages. Technical report, Dipartimento di
Informatica e Scienze dell’Informazione, Università di Genova,
November 2004. Extended verson with proofs, available at
ftp://ftp.disi.unige.it/pub/person/AnconaD/PBCCJL.pdf.

[3] D. Ancona and G. Lagorio. Stronger Typings for Smarter
Recompilation of Java-like Languages. Journal of Object
Technology, 3(6):5–25, June 2004. Special issue: ECOOP 2003
workshop on Formal Techniques for Java-like Programs.

[4] D. Ancona, G. Lagorio, and E. Zucca. True separate
compilation of Java classes. In ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming
(PPDP’02), pages 189–200. ACM Press, 2002.

[5] D. Ancona and E. Zucca. Principal typings for Java-like
languages. In ACM Symp. on Principles of Programming
Languages 2004, pages 306–317. ACM Press, January 2004.

[6] Alex Buckley and Sophia Drossopoulou. Flexible Dynamic
Linking. In 6th Intl. Workshop on Formal Techniques for
Java Programs 2004, June 2004.

[7] L. Cardelli. Program fragments, linking, and modularization.
In ACM Symp. on Principles of Programming Languages
1997, pages 266–277. ACM Press, 1997.

[8] Sophia Drossopoulou and Susan Eisenbach. Is the Java Type
System Sound? In 11th European Conference on Object
Oriented Programming (ECOOP’97), volume 1241 of LNCS,
pages 389–418. Springer-Verlag, June 1997.

[9] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. In ACM Symp. on
Object-Oriented Programming: Systems, Languages and
Applications 1999, pages 132–146, November 1999.

[10] T. Jim. What are principal typings and what are they good
for? In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
42–53. ACM Press, 1996.

[11] G. Lagorio. Towards a smart compilation manager for Java. In
Blundo and Laneve, editors, Italian Conf. on Theoretical
Computer Science 2003, number 2841 in Lecture Notes in
Computer Science, pages 302–315. Springer, October 2003.

[12] G. Lagorio. Another step towards a smart compilation
manager for Java. In Hisham Haddad, Andrea Omicini,
Roger L. Wainwright, and Lorie M. Liebrock, editors, ACM
Symp. on Applied Computing (SAC 2004), Special Track on
Object-Oriented Programming Languages and Systems, pages
1275–1280. ACM Press, March 2004.

[13] G. Lagorio. Capturing ghost dependencies in Java sources.
Journal of Object Technology, 2004. To appear.

[14] G. Lagorio. Type systems for Java separate compilation and
selective recompilation. PhD thesis, Dipartimento di
Informatica e Scienze dell’Informazione, Università di Genova,
May 2004.

[15] Robert Sebesta. Concepts of Programming Languages.
Addison-Wesley, 2004. Seventh edition.

[16] D. von Oheimb and T. Nipkow. Java is Type Safe - Definitely.
In ACM Symp. on Principles of Programming Languages
1998, ACM Press, 1998.

[17] J.B. Wells. The essence of principal typings. In International
Colloquium on Automata, Languages and Programming
2002, number 2380 in Lecture Notes in Computer Science,
pages 913–925. Springer, 2002.

