AspeCt-oriented C (V 0.9)
Quick Reference

Terminology

ACC

ACC is AsPECT-ORIENTED C implemented by
acc, the Aspect-oriented C Compiler.

aspect

Aspect encapsulate non-modular system con-
cerns, like security policies, transaction support,
synchronization concerns etcetera. ACC repre-
sents aspects as C files containing C declarations
and statements, and ACC syntax, such as point-
cuts and advice.
join point

A join point is a well-defined point in the execu-
tion context of a program. ACC supports call,
execution, set, and get join points. A call join
point is the point where a function is called. An
ezecution join point is the point where a function
is executed. A set join point is the point where
a variable is assigned a value. A get join point is
the point where a variable is read.

pointcut

A pointcut is a language extension representing
one or more join points. ACC supports primitive
pointcuts, composite pointcuts, and named point-
cuts.

advice
An advice represents the code to be executed
when a join point matches a pointcut defined in-
side the advice declaration. ACC supports the
before, after, and around advice.

Pointcut
args (int, int)

The join points of calling and executing functions
taking (int, int) as parameter type.

call(void foo(int))

The join points of calling function foo.

callp (void foo(int))

The join points of calling function foo by deref-
erencing a function pointer.

cflow (call(void foo(int, int)))

The join points under the control flow of calling
function foo.

execution (void foo(int))

The join points of executing function foo.
get(char a)

The join points of reading variable a’s value.
infile(“t1.mc”)

The join points in the input file ¢ ‘t1.mc".
infunc (foo)

The join points inside foo’s function body.
pointcut MyPC(): call(void foo(int));

A named pointcut MyPC() representing the join
points of calling function foo. MyPC() can be
used as a pointcut.

result (int)

The join points of calling and executing functions
whose return type is int.

set (char a)
The join points of writing to variable a.
call(void foo()) && infunc(main)

The join points of calling function foo inside func-
tion main.

call(void foo()) && ! infunc(main)

Calls of function foo, except those called inside
main.

call(void foo()) || call(void bar())
Calls of either function foo or function bar.
call(void foo()) && cflow(call(void bar()))

Calls of function foo in the control flow of calling
function bar.

general form

args(a list of types or identifiers)
[call|callp|execution](function-signature)
cflow (pointcut)
[get|set](variable-declaration)

infile(“file name”)
infunc(identifier)

pointcut pointcut-name (parameter-list):pointcut;
result(type or identifier)

pointcut-1 && pointcut-2

pointcut-1 || pointcut-2

!' pointcut

(pointcut)

Wildcard Matching
call(i$t f$oo(in$))

This represents any call to functions starting
with “f” and ending in “0o”, having a return
type starting with “i” and ending in “t”, and
accepting one parameter having a type start-
ing with “in,” such as “int foo(int)” or “it
f200(in)”.

args(int, ..., char))

This represents any call or execution of functions
accepting an int and a char as first and last
parameters, such as “void foo(int, char)” or
“int foo2(int, char*, char)”.

call (int foo(int)) && infunc (fo$02)
This represents any call of function “foo” inside
functions whose name starts with “fo” and ends
in “02”.

general form

“$”: matches any type identifier or any continuous
length string, including the empty string.

“...”: matches any length item list, including the
empty list.

Advice
before ():execution(void foo (int)){... }

Advice code runs before the execution of function
foo.

after ():call(void foo (int)){... }

Advice code runs after calling function foo.
int around ():call(int foo (char)){...}

Advice code runs instead of calling function foo.
before (int a):call(void foo (int)) $$ args(a) {. ..}

Advice code runs before calling function foo, and
variable “a” holds the parameter value of function
foo and can be used inside the advice code.

after (int a):call(int foo (void)) $% result(a) {... }

Advice code runs after calling function foo, and
variable “a” holds the return value of function
foo and can be used inside the advice code.

before (int a, int b): cflow(call(void foo(int) &&
args(b))) && call(int foo2 (int)) && args(a) {... }

Advice code runs before calling function foo2 in
the control flow of calling function foo, and vari-
able “a” holds the parameter value of function
foo2 and variable “b” holds the parameter value

of function foo. Both “a” and “b” can be used

inside the advice code.

general form

type-specifier. before|after|around (parameter-
type-listop:): pointcut
{ function-body }

special identifiers inside advice body
this—arg(integral-type-expression)

A “void *” pointing to the address of the memory
holding a parameter.

this—argsCount
The number of parameters.
this—argType(integral-type-expression)

A string representation of the type of a parame-
ter.

this—fileName

A string representation of the source file name
containing the matched join point.

this—funcName

A string representation of the caller function
name of the matched join point.

this—kind

A string representation of the join point kind, ei-
ther “call” or “execution”.

this—retType
A string representation of the return type.
this—targetName

A string representation of the callee function
name of the matched join point.

preturn(integral-type-expression)

Forces an immediate return to the parent func-
tion.

proceed()

Only used inside around advice. It takes the orig-
inal value of the arguments, and calls or executes
the original function.

Examples using special identifiers
void around(): call(int foo()) {

printf(“%s %s in function %s of file %s 7,
this—kind,
this—targetName,
this—funcName,
this—fileName);

proceed();

preturn(2);

Static Crosscutting

ACC provides mechanism to support static cross-
cutting, such as the addition of members to structs
and unions.

introduce() : intype(struct X) {

double b;
int d;

A member “double b” and ”int d” is inserted
at the end of the definition of type “struct X”.

general form

intype (type-name)
introduce (): pointcuts { member-declarations }

Exception Handling

ACC provides mechanism to throw and catch
integer-based exceptions.

catch (int e) : try(call(int foo(int))) {

printf(“catch an exception = %d\n”, e);

The advice catches an excption thrown in the con-
trol flow of calling function foo.

before () : call (int foo3(int)) {
throw(3);

An exception with value “3” is thrown before call-
ing function foo3.

general form

try (pointcut-definition).
catch (int e): pointcuts { function-body }
throw (non-zero-integer-value).

Example

The following is a reusable tracing aspect.

before(): call(§ $(...)) && cflow(execution($
main(...))) {

printf(“calling %s in function %s of file
%s \n” this—»targetName, this—funcName,

this—fileName);

if (this—argsCount == 0) {
printf(“no parameter \n”);
} else {
for(int i = 1 ; i <= this—argsCount; i++) {
printf(“arg[%d] = %s ”,
1

this—argType(i));

Using the ACC Compiler

use “tacc”

Suppose the above aspect is saved in file “a.acc”,
and the core file (i.e., the file not containing ACC
syntax) is “b.c”.

>tacc a.acc b.c

use “acc”

Suppose the above aspect is saved in file “a.acc”,
and the core file (i.e., the file not containing ACC
syntax) is save in “b.mc”.

1. Copy files to have .c suffix
>Cp a.acc a-acc.c
>cp b.mc b_mc.c

2. Preprocess the files by a preprocessor, and save
the output in files with the by the ACC com-
piler required suffixes. This step is necessary
because gcc does not recognize the .acc and
.mc suffix. However, if a preprocessor, like cpp,

is not picky about the file suffix, this step could
be skipped.

>gcc -E a_acc.c > a_acc.acc

>gecc -E b_mc.c > b_mc.mc

3. Perform ACC compilation (i.e., weaving)

>acc a_acc.acc b_me.mc

4. Perform compilation

>gce a_ace.c b_me.c

command line options

1. -a , —aspectmatch
The advices will also match the join points
inside aspect files.
2. -af=<suffix> , —aspect-suffix=<suffix>
Specifies the file suffix for the aspect file.

3. -h, “help

Display help information.

4. -m[=<file name>], -matchinfo[=<file name>]
The join point-advice matching information
is output.
5. -mf=<suffix> , —mainfile-suffix=<suffix>
Specifies the file suffix for the non-aspect
file.
6. -n, —no-line

No #line directives are generated in output.

7. -t , —thread-safe

The code generated to support the cflow()
pointcut is thread-safe (based on specific gecc
functionality).

8. -v , —version

The compiler’s version number is printed.

For up to date information, please refer to
http://wuw.AspectC.net.

©Copyright 2007 Middleware Systems Research
Group, University of Toronto, Weigang (Michael)
Gong and Hans-Arno Jacobsen. All Rights Re-
served.

