AspeCt-oriented C Language Specification
Version 0.9 *1

Weigang Gong and Hans-Arno Jacobsen

Middleware Systems Research Group
Department of Computer Science &
Department of Electrical and Computer Engineering
University of Toronto

May 30, 2009

— Working Technical Draft.
For updates and changes, please refer to www.AspeCtC.net.

www.AspeCtC.net

Contents

[1__Overview 4

7
L2 Composite Pointertl . .+ . . . o 10
L3 Named Pointenfl 10
[4.4 cflow() EanLcuﬂ 11
4.5 Matching Mechanismd 13

W51 Simple Character Matching . . - . . o v v v ovov e e 13

W52 Wildcard Character Matching 13

5_Advicd 14
b1 Single Advied 14
B2 Proceed() 16
53 Preturn() 16

“this” i i inPointd 17
.5 Multiple Advicd o oo 19

551 before/after adviced 19
.52 around adviced 20

6 Static Crosscutting 22
6.1 intype() Pointentl 22
6.2 introduce() Advicd 23

*This research is supported by NSERC.
tStarting with Version 0.5, we have changed the name of the language extension from ASPECTC to ASPECT-
ORIENTED C, — ACC for short.

1 Overview

AsSpPECT-ORIENTED C is an implementation of aspect-oriented programming (AOP) for the
C programming language. ASPECT-ORIENTED C is an extension to C.

This specification introduces the ASPECT-ORIENTED C programming model and the new
language constructs. From here on forward we refer to ASPECT-ORIENTED C as ACC.

The specification is implemented by the ACC compiler that weaves code written in ACC
into ACC-unaware ANSI-C code, and generates C sources implementing the aspect-oriented
program. These sources can be compiled by any ANSI-C compliant compiler such as gcc.

The current ACC language design adapts the ideas of aspect-oriented programming laid-
out in the original paper by Kiczales et al. [2] to the C programming language. The ACC
language loosely follows the ASPECTJ programming language design [3] and the partial ACC
language design originally suggested by Coady et al. [1].

To this end ACC aims at being enabling technology. It is the necessary “evil” and in-
vestment in building research infrastructure to eventually lead to further explorations and
investigations not possible today, as no stable ACC implementation exists.

Long-term research objectives of the ACC project include the investigation of

1. concern separation support and aspect-oriented language features tailored to the C lan-
guage and the imperative style of programming

2. aspect-orientation in the context of software written in C, especially systems software
and middleware systems, targeting small-scale, embedded systems (e.g., cell phones,
PDAs, chip cards, sensor boards etc.)

3. techniques and tools for the development of highly customizable and easily configurable
systems and middleware systems software product lines catering to the extensive world
of C-based systems.

The ACC implementation and further information can be found on the project Web pages
at www.AspeCtc.net.

This document is neither a tutorial on ACC, nor a research paper, it simply documents
our current ACC implementation and offers the corresponding language specification.

However, this document should suffice to get you started developing ACC programs and
sending us bug reports. The ACC distribution contains a lot of test cases illustrating the
use of ACC constructs. The project Web pages — www.AspeCtc.net| — also contain a few
examples.

www.AspeCtc.net
www.AspeCtc.net

2 Change Log

Changes in ACC Version 0.9 relative to ACC Version 0.8:

e Section 9.2: more precise description of grammar rules for “set” and “get” pointcut.

3 Join Point Model

A join point is a well-defined point in the execution context of a program. Currently, ACC
supports the following join points:

1. call join point: the point when a function is called
2. execution join point: the point when a function is executed
3. set join point: the point when a variable is assigned a value [}

4. get join point: the point when a variable’s value is read

The above join points are illustrated in the below program.

int x:
Variable Set |oid foofint
wﬁ . Function Execution
X = a
printf(Hello world, x = %dinyx); Function Call
‘ }
Variable Get void maln()4
- Function Execution
Variable Set Int= p;
X = 1
Variable Get
Function Call

4 Pointcut

A pointcut is a language extension representing one or more join points. Currently, ACC
supports primitive pointcuts, composite pointcuts, and named pointcuts.

! Currently, ACC only supports set/get join points involving global variables with base types. In the future
support for other type of variables, like local variables, or struct/union member fields will be considered.

6

4.1 Primitive Pointcut

A primitive pointcut represents one of the join points defined above. The following pointcuts
are defined.

1. call(function-signature)
A call pointcut picks out the join points of calling the function specified by function-
stgnature.

2. callp(function-signature)
A callp pointcut picks out the join points of calling the function specified by function-
signature through dereferencing a function pointer.

3. execution(function-signature)
An execution pointcut picks out the join points of executing the function specified by
function-signature.

4. set(variable-declaration)
A set pointcut picks out the join points of setting a value to the variable specified by
variable-declaration.

5. get(variable-declaration)
A get pointcut picks out the join points of getting the value of the variable specified by
variable-declaration.

6. args(a list of types or identifiers)
An args pointcut picks out the join points whose parameters’ types match the specified
types or the types of the specified identifiers.

7. infile(“file name”)
An infile pointcut picks out the join points which appear in the file specified.

8. infunc(identifier)

An infunc pointcut picks out the join points which appear in the function specified.

9. result(type or identifier)

A result pointcut picks out the join points whose return type matches the specified type
or the type of the specified identifier.

Semantics:

1. The function-signature must be a valid prototype of a function. It represents the function
associated with the call or execution join point.

7

2. For the callp pointcut, the function name specified in the signature can not contain the
wildcard character.

3. The callp pointcut captures function calls by dereferencing the following types of function
pointers: global, local and function pointers passed as argument.

For example, “callp(void foo(int))” captures the function calls shown below.

void (*gp)(int);
struct A {

void (*sp)(int);
b

void foo(int a) {

}
void foo2(void (*ap)(int)) {
void (*Ip)(int);
(*ap)() ; <— capture
lp = foo;
(*1p)(); <— capture
{
void (*llp)(int);
llp = foo;
(*1lp)() ; <— not capture
}
}

int main() {
struct A sa;
sa.sp = foo;
(*sa.sp)(); <— not capture
gp = foo;
(*gp)(); <~ capture
foo2(foo);

}

4. For each parameter in the prototype, only its type can be specified.
For example, “call(int foo(int))” picks out any call to function “foo” accepting

an int parameter and returning an int.

5. The wvariable-declaration represents the variable associated with a set or get join point.
Wildcard characters can be used in the variable-declaration.

6. args or result pointcuts can be used to capture set and get join points of variables.
ACC treats variable set and get join points in the same was as function call join points.
Suppose the variable is declared as T V, a set join point of such a variable is treated as
a call to a function whose prototype is T V(T*, T); a get join point is treated as a call
to a function whose prototype is T V(T).

For example, “args (char)” picks out a call or execution join point for a function having

“char” argument, or a get join point for a variable of type “char”. “result(int)”
picks out a call or execution join point for a function returning “int”, or a set or get join
point for a variable of type “int”.

7. The identifiers specified in the args or result pointcuts must be declared as a parameter
in the advice declaration. The main usage of args and result pointcuts is to expose
program context to advice functions.

For example, “before(int x): args(char, x)” picks out any join points whose pa-
rameter types are "char” and ”int”, and the value of the second parameter is available
for use inside the advice function, as follows:

before(int x) : execution (void foo (char , int)) && args(char , x) {

printf(“inside before advice, param = %d\n” x);

8. There is a special format of args() or result() : “args(x pointer-variable-name)
or “result(* pointer-variable-name) ”. The meaning is that the parameter type or
return type of a join point must match the type after dereferencing the pointer variableH
Using this format, advice functions can change the value of the argument passed into a
function, as follows:

before(int * x) : execution (void foo (char , int)) && args(char , *x) {

= (") *

prlntf(“Inside before advice, argument value is doubled\n”);

9. The file name specified in the infile pointcut must be enclosed in quotes, and it should
be the name of the input file, not the generated file.

For example, say the input main file is timc.mc, if a developer wants to pick out all join

points appearing in this file, she must use “infile(“timc.mc”)”.

10. The identifier specified in the infunc pointcut should be the function name where the
join point occurs.

2“before(int *x):args(x)” is not the same as “before(int *x): args(*x)”. The first matches a join point whose
parameter type is “int *”, but the latter matches a join point whose parameter type is “int”.

9

4.2 Composite Pointcut

A composite pointcut defines a pointcut by composing pointcuts with the following operators:
“&&” 4|7, “7 or “()”. The syntax is as follows:

1. pointcuty && pointcut;: returns join points picked out by both pointcuty, and pointcut,
2. pointcutg || pointcuts: returns join points picked out by either pointcuty or pointcut,
3. !pointcuty: returns join points not picked out by pointcutg

4. (pointcutg): returns join points picked out by pointcuty
Semantics:

1. The pointcuts connected by the afore-mentioned operators can be any valid pointcut
declaration.

4.3 Named Pointcut

To improve usability of pointcuts, developers can attach a name to a pointcut description,
and the name can then be used in places where a pointcut is used. The syntax for attaching
a pointcut name is as follows:

pointcut pointcut-name (parameter-list): pointcut-description;
The syntax for using a named pointcut is as follows:
identifier (identifier-listoy:)

For example, the following example shows how to declare a named pointcut and to use the
name in two different advices:

pointcut callFoo() : call(void foo ()) ;
before() : callFoo() && infunc(main) {

printf(“before calling foo in function main\n”);

}
before() : callFoo() && infunc(foo2) {

printf(“before calling foo in function foo2\n”);

Semantics:
1. The pointcut-name can be any valid identifier.

10

. The parameter-list can be empty, indicating there are no exposed arguments associated
with the pointcut.

. The pointcut-description can be any valid pointcut.
. The identifier must be the name of a named pointcut.

. The number of identifiers in the identifier-list must be the same as the number of pa-
rameters in the parameter-list where the named pointcut is declared.

. The type of each identifier in the identifier-list must be the same as that of the corre-
sponding parameter in the parameter-list.

. The name of each identifier in the identifier-list should be declared as a parameter of
the corresponding advice or named pointcut, such as:

pointcut FirstNamedPC(int z) : call(void foo (int)) && args(z);
before(int j) : FirstNamedPC(j) { ... }
pointcut SecondNamedPC (int w) : FirstNamedPC(w) ;

. The developer can also expose the arguments or the return value by using a named
pointcut, as follows:

pointcut callFoo(int w) : call(void foo (int)) && args(w);
before(int k) : callFoo(k) && infunc(main) {
printf(“before calling foo in function main, value = %d\n”, k);

}
before(int p) : callFoo(p) && infunc(foo2) {

printf(“before calling foo in function foo2, value = %d\n”, p);

cflow() Pointcut

ACC provides a cflow() pointcut to pick out all join points occurring in the dynamic execu-

tion context, i.e., the control flow, of other join points. Its syntax is cflow(pointcut-definition

For example, “call(void foo(int)) && cflow(execution(void f003()))” only picks
out the calls to function foo under the control flow of function foo3.

Given the following advice:

void around() : call (void foo(int)) && cflow(execution(void foo3())) {
printf(“skip call of foo in control flow of foo3\n”);

11

If the advice is applied to the following C code:

void foo(int a) {
printf(“in foo\n\n");
}
void foo2() {
printf(“in foo2\n”);
foo(3);
}
void foo3() {
foo2();
}
int main() {

printf(“call foo in main\n”);

foo(9);

printf(“————\n”);
printf(“call f002 in main\n”);
foo2();

printf(“———\n");

printf(“call foo3 in main\n”);
foo3();

}

The output is:
call foo in main
in foo
call foo2 in main
in foo2
in foo

12

call foo3 in main
in foo2

skip call of foo in control flow of foo3

Semantics:

1. The pointcut definition inside cflow() can be any valid pointcut definition except an-
other cflow() pointcut.

4.5 Matching Mechanism

ACC provides two mechanisms for matching pointcuts with join points — simple character
matching and wildcard character matching.

4.5.1 Simple Character Matching

When a plain string is specified in a pointcut’s declaration, ACC uses simple case-sensitive
string comparison for matching.

For example:

1. “call(int foo(int))” picks out any call to function “foo” accepting an int parameter
and returning an int.

2. “args(int, char))” picks out any call or execution of functiond] accepting an int and
a char as parameters.

3. “call(int foo(int)) && infunc(foo02)” picks out any call of function “foo” inside
function “fo002”.

4.5.2 Wildcard Character Matching

ACC uses “$” and “...” as wildcard characters to enhance the matching capability: $ matches
any type identifier or any length of continuous strings, including the empty string; ... matches
any length item list, including the empty list.

For example:

3The args() pointcut could be used to pick out set or get join points. However, this specific args() pointcut
is cannot do that, because the function derived from the set() join point takes a pointer type as the first
argument, and the function derived from the get() join point takes only one parameter.

13

1. “call(i$t f£$o00(in$))” picks out any call to functions which have a name starting with

Wae

“£” and ending with “00”, have a return type starting with “i” and ending in “t”, and
accept one parameter having a type starting with “in”.

2. “args(int, ..., char))” picks out any call or execution of functions accepting an int
and a char as the first and last parameters.

3. “call(int foo(int)) && infunc(fo$02)” picks out any call of function “foo” inside
functions whose name starts with “fo” and ends with “02”.

Semantics:

1. Developers can use $$ to match one $ inside a target name.
2. ... can only be used when specifying parameter types for a function’s prototype.

3. When the name specified in args() or result() pointcuts has $, ACC searches an advice
parameter having the exact same name. If found, the name is bound with the advice
parameter, otherwise, ACC treats the name as a type name.

For example,

(a) “pbefore(int x$x): args(char, x3$x)” picks out any call or execution join point
whose parameter types are ”char” and ”int”, because “x$x” matches an advice
parameter having type “int”.

(b) “pefore(): args(char, x$x)” picks out any call or execution join point whose
first parameter type is ”char” and second parameter type’s name starts with “x”
and ends with “x”.

5 Advice

5.1 Single Advice

An advice represents the code to be executed when a join point is matched by a pointcut
defined inside the advice declaration. Currently, ACC supports the following types of advices:

1. before: code is executed before some join points
2. after: code is executed after some join points
3. around: code is executed instead of code at some join points

The general syntax for an advice declaration is:

type-specifiers: before|after|around (parameter-type-listoy:) : pointcuts
{ function-body }

Semantics:

14

1. For before/after advice, the type-specifier should not be specified. The ACC compiler
uses “void” as the return type of the function generated from the advice.

2. For around advice, the type-specifier must be specified, and it becomes the return type
of the function generated from the advice. Furthermore, the type-specifier must be the
same as the return type of the matched functions.

3. The ACC compiler generate a unique function name for each advice.

4. If the parameter-type-list is specified, it becomes the parameter list of the generated
function.

5. The information specified by the pointcuts is used to match join points.

6. For each parameter name in the parameter-type-list, the name must be used inside one
pointcut among the pointcuts, like args() or result().

For example:

before() : execution (void foo (int)) {

printf(“before execution foo\n”);

The “before” advice indicates that a message is printed out before the execution of function
“fOO” .

int around() : call (int foo (int)) {
printf(“around call foo\n”);

return 100;

This “around” advice indicates that a message is printed out, 100 is returned, and the
calling of function “foo” is skipped.

after(int k) : execution (void foo (int)) && args(k) {

printf(“after execution foo, argument = %d\n” k);

This “after” advice takes a parameter which exposes the argument value of function foo
to the advice function.

15

5.2 Proceed()

Around advice can be used to skip code at an existing join point. However, sometimes devel-
opers still want to access the original join points inside the advice. This can be achieved by
using proceed() inside the around advice. The proceed() call takes the original value of the
argumentsﬂ and calls/executes the original function.

For example:

int around() : call (int foo (int)) {
printf(“around call foo\n”);
printf(“value of foo = %d\n”, proceed());

return 0;

}

This shows that function foo() is accessed inside an around advice, and its return value is
used by the advice.

5.3 Preturn()

When a join point is matched by pointcuts, the advices associated with the pointcuts are
invoked. After the advice functions finish, the control flow of the function containing the
join point, which is called parent function, continues to execute. Sometimes, developers want
to exit the parent function immediately after the advice functions are invoked. This can be
achieved by using preturn() inside the advice. preturn() allows an immediate return from
the parent function of a pointcut-matched join point. It is used to skip the rest of the code
inside the parent function. Its syntax is preturn(integral-type-expression).

For example, suppose ”"t1l.acc” contains the following advice,

void * around(): call (void * malloc ($)) {
void * ret = proceed();
if(ret ==0) {
printf(“malloc calls fails\n”);
preturn(1);

}

return ret;

}

“Note, the developer can use the args() construct to change the value of the original argument. If
proceed() is called afterward, the new value is used to call/execute the original function.

16

and the core file is as follows:

int foo(int a) {
char * p;
p = (char *)malloc(1000);
printf(” after malloc \n”);

Whenever a malloc () function fails, i.e., its return value is 0, the advice function will emit
a message and immediately return from function fooﬁ, which is the parent function of this
malloc() call. Therefore, the printf statement in function foo will not be executed.

5.4 “this”: Reflective Information at Join Points

Inside an advice , ACC provides a special pointer variable, this, to access reflective informa-
tion about the current join point.ﬁ The following fields can be accessed by this:

1. arg(<integer-value>): a “void *” pointer pointing to the address of the memory holding
the <integer-value>-th parameter.

2. argsCount: the number of parameters.

3. argType(<integer-value>): the type name of the <integer-value>-th parameter.
4. fileName: the name of the source file containing the join point.

5. funcName: the name of the function calling the join point.

6. kind: the join point kind, “call”, “execution”, “set” or “get”.

7. retType: the return type name.

8. targetName: the callee function name of a call or execution join point.ﬁ, or the variable
name of a set or a get join point.

For example, a generic tracing aspect could be written as:

5When the parent function requires a return value, the value specified in preturn() is used to as the return
value of the parent function, otherwise, the value is discarded. The value specified in preturn() should have
an integral type, like int, char, or pointer type. In the future, ACC might support other types, such as float
or double.

6this is similar to the thisJoinPoint variable in ASPECTJ.

"For an “execution” pointcut, the “targetName” is the same as “funcName”.

17

before(): call($ $(...)) {
printf(“%s \ “%s\” in function %s \n”, this—kind, this—targetName, this—funcName);
if (this—argsCount == 0) printf(“no parameter \n”);
else {
for(int i = 1 ; i <= this—argsCount; i++) {
printf(“arg[%d] = %s 7, i, this—argType(i));
if(strcmp(this—argType(i), “int”) == 0) {
printf(“, value = %d ”, *(int *)(this—arg(i)));
} else if(stremp(this—argType(i), “double”) == 0) {
printf(“, value = %.2f 7, *(double *)(this—arg(i)));

}

printf(“\n”);

}

printf(“return type = %s \n \n”, this—retType);

}

When the advice is applied to the following C code:

char * foo(int a) {

return “just a test ”;

}

void foo2(int a, double b) {
foo(3);

}

void foo3() {
foo2(5, 2.2);

}

int main() {
foo3();

}

The output is:

18

call "foo3" in function main
"foo3" parameter type:

no parameter

return type = void

call "foo02" in function foo3
"foo2" parameter type:

arg[1] = int , value = 5
arg[2] = double , value = 2.20
return type = void

call "foo" in function foo2
"foo" parameter type:
arg[1] = int , value = 3
return type = charx*

5.5 Multiple Advice

When a join point is matched by pointcuts from multiple advices, the various types of advices
are handled differently.

5.5.1 before/after advices

Advices are executed sequentially according to the matching sequence.

For example:

/* advice 1 */
before() : execution (void foo (int)) {
printf(“before advice 1”);

}

/* advice 2 */
before() : execution (void foo (int)) {
printf(“before advice 2”);

}

Since the execution join point of function foo is matched by both advice 1 & 2 and both
are before advices, the two advices are executed in sequence. That is advice 1 is executed
before advice 2.

19

5.5.2 around advices

e no proceed(): the first matched advice is executed, and the rest are skipped.

e has proceed(): the proceed() call inside the around advice invokes the next matched
around advice if there is one; otherwise, the proceed() call invokes the original function.

For example:

/* advice 3 */
void around() : execution (void foo (int)) {

printf(“around advice 3”);

/* advice 4 */
void around() : execution (void foo (int)) {

printf(“around advice 4”);

The execution join point of function foo is matched by both around advices 3 & 4. Since
there is no proceed() inside the advices, the first matched advice, advice 3, is executed, and
advice 4 is skipped

The situation changes, if a proceed() call is present in the advice. For example:

/* advice 5 */
void around() : execution (void foo (int)) {
printf(“around advice 5”);

proceed() ;

/* advice 6 */
void around() : execution (void foo (int)) {
printf(“around advice 6”);

proceed() ;

}

8Even if there is a proceed() call inside advice 4, it is not executed, since the execution join point is already
surrounded by advice 3 without proceed (i.e., defined as “around” advice of advice 3 that does not let the call
proceed to either further advice or the surrounded code).

20

Since there is a Eproceed() call used inside the advices, the execution sequence is: advice 5
— advice 6 — foo

By using multiple around advice and proceed(), the developer can impose different advices
for join points. This can achieve effects similar to multiple if-statements, like:

/* advice 7 */
void around(int x) : execution (void foo (int)) && args(x) {
if(x < 3) {
printf(“around advice 7”);

return;

}else {

proceed();

}

/* advice 8 */
void around(int x) : execution (void foo (int)) && args(x) {
if(x < 9) {
printf(“around advice 8”);

return;

}else {

proceed();

}

/* advice 9 */
void around(int x) : execution (void foo (int)) && args(x) {
if(x < 20) {
printf(“around advice 9”);

return;

}else {

proceed();

}

9Tf there is no proceed() in advice 6, the original function foo() will not be executed.

21

The effects of applying advice 7, 8, & 9 is same as: whenever calling a function “foo” with

[}
parameter “x”,

if(x < 3) {
printf(“around advice 77);
else if(x < 9) {
printf(“around advice 8”);
}else if(x < 20) {
printf(“around advice 9”);

}else {
foo(x);

6 Static Crosscutting

In addition to expressing dynamic crosscutting represented by call/execution and set/get join
points, ACC also provides mechanism to support static crosscutting, such as the addition of
members to structs and unions.

6.1 intype() Pointcut

An intype pointcut picks out the struct or union type whose name matches the type name
specified or which has been typedefed by a name matching the one specified. Its syntax is
“intype (¢dentifier)”.

For example, if the types are declared as follows:

struct X { <— first struct
int a;

5

typedef struct X MYX1;

typedef MYX1 MYX2;

typedef struct { <— second struct
int b;

} MYX3;

typedef MYX3 MYX4;

22

then the intype () pointcut has the following effects:

1. “intype(struct X)”, “intype(MYX1)”, and “intype(MYX2)” match the first struct.
2. “intype(MYX3)” and “intype(MYX4)” match the second struct.

3. “intype (MYX$)” matches both structs.
Semantics:

1. The identifier must be a struct or union type name, or a name assigned by a typedef
for a struct or a union.

2. The wildcard character $ can be used inside the identifier.

3. The intype() pointcut must only be used within an introduce () advice.

6.2 introduce() Advice

An introduce() advice adds new data members to the struct or union type picked out by
the intype () pointcut. Its syntax is:

introduce (): pointcuts { function-body }

Semantics:

1. The pointcuts must contain only intype() pointcuts, or contain composite or named
pointcuts built from intype() pointcuts.

2. The function-body must contain valid struct or union member declarations.

3. The data member name declared inside the function-body must not collide with the
existing member names in the matched type.

4. ACC simply copies the function-body and adds them to the end of the matched struct
or union declaration.

5. If multiple introduce() advices are applied to the same type, the data members from
each advice are added according to the matching sequence.

For example, for the types described above and the following advice declarations:

introduce() : intype(struct X) { <— advice 1
double b;

}

introduce() : intype(MYX1) { <— advice 2

23

double c;

}

introduce() : intype(MYX3) { <— advice 3
double c;

}

introduce(): intype(MYX3) || intype(MYX1) { <— advice 4
char * p;

After the advices are applied, the types become:

struct X {
int a;
double b; <— from advice 1
double c; <— from advice 2
char * p; <— from advice 4

typedef struct {

int b;

double c; <— from advice 3

char * p; <— from advice 4
} MYX3;

7 Exception Handling

In addition to support dynamic and static crosscutting, ACC also provides mechanisms to
add exception handling to C programs.

0Currently, an “exception” in ACC is represented by any non-zero integer value. In the future, ACC might
allow the developer to specify user-defined exceptions.

24

7.1 try() Pointcut
ACC provides the try() pointcut to set an exception handler for the exceptions thrown in
the control flow of some join points. Its syntax is try(pointcut-definition).

For example, “try(execution(void foo03()))” captures all exceptions occuring under
the control flow of executing the function foo3.

Given the following advice:

catch(int e): try(execution(void foo3())) {
printf(“catch an exception = %d\n”, e);

before(): call(void foo()) {
printf(“throw an exception before calling foo\n”);

throw(34);

If the advice is applied to the following C code:

void foo(int a) {
printf(“in foo\n\n");
}
void foo2() {
printf(“in foo2\n”);
foo();
}
void foo3() {
foo2();
}
int main() {
printf(“call foo3 in main\n”);

foo3();
}

The output is:

25

call foo3 in main
in foo2
throw an exception before calling foo

catch an exception = 34

Semantics:

1. The pointcut definition inside try() can be any valid pointcut definition except another
try() pointcut.

2. Only catch() advices can be specified for the try() pointcut.

7.2 catch() Advice

A catch() advice is invoked when an exception is captured by a try() pointcut. Its syntax
is as follows:

catch (int para-name): pointcuts { function-body }

Semantics:

1. The pointcuts must contain only try() pointcuts, or contain composite or named point-
cuts built from try() pointcuts.

2. There must be only one parameter, which is of “int” type. It stores the captured
exception value, and can be used inside the advice function body. The parameter name
should not be used by an args() pointcut in the pointcuts.

3. If multiple catch() advices are applied to the same try() pointcut, the first catch()
advices take precedence. If there is another exception thrown from the first catch()
advice, the second catch() advice takes effect, and so on.

In the above example, the catch() advice is replaced by the following three catch()
advices:

catch(int e): try(execution(void foo3())) {
printf(“Ist catch, catch an exception = %d\n”, e);
throw(35);

}

catch(int e): try(execution(void foo3())) {

26

printf(“2nd catch, catch an exception = %d\n”, e);
throw(36);

}

catch(int e): try(execution(void foo3())) {

printf(“3rd catch, catch an exception = %d\n”, e);

The output of running the C code is:

call foo3 in main
in foo2

throw an exception before calling foo

1st catch, catch an exception = 34
2nd catch, catch an exception = 35
3rd catch, catch an exception = 36

7.3 throw()

In an advice function, ACC uses throw() to throw an exception. The syntax is as follows:

throw(non-zero-integer-value).

8 Implementation

ACC is implemented as a source-to-source translator. The inputs are ACC files and C source
filed]. The aspect files contain pointcut, advice, or normal C code. The outputs are normal
C files with advice code inserted at the point specified by pointcuts. The output files can then
be compiled by a C compiler.

There are 3 phases in the ACC compilation process: aspect compilation, syntax analysis
and advice weaving. The compilation process is described by the following figure.

HBoth kinds of input files need to be pre-processed by a C pre-processor or by gec using the ”-E” option.

27

C compiler
(eg. gee)

—executable file

AspectC Compilation

) |
' |
) |
' [
[|
|
aspect file Il I
(.acc file) | !
] |
; |
h 1. Aspect !
!'| Compilation |
| pointcut/advice info. :
' 3.Advice |! _ .
| \ H-.c file—|
| Weave i
|
! abstract syntax tree |
I
1 2. Syntax !
- Analysis |
i |
normal C file :
(.mc file) I
|
|
|

8.1 Aspect Compilation

In the aspect compilation phase, each advice is compiled to a unique C function. The advice
parameters are compiled to parameters of the new C function. In the advice weaving phase,
these parameters are bound to function arguments. Since before advice and after advice have
no return type, the ACC compiler uses “void” as return type for the corresponding functions.
For around advice, the ACC compiler uses the return type specified in the advice declaration

as the return type of the function.

Another task in this phase it to collect information related to pointcut and advice, which

is used in the advice weaving phase.

The following figure illustrates the kind of C functions generated from the advice in the

aspect file.

28

before() : execution(void sort{int [], int)) {
printf(“before sort execution\n™);

}

after() : execution(void sort(int [], int)) {
printf(“after sort execution\n”);
}

void around() : execution(void sort(int [], int)) {
printf(“around sort execution\n”);

¥

before() : call{int incr(int)) {
printf(“before incr callin™);
}

after() : call(int incr(int)) {
printf(“before incr call\n”);
}

int around() : call(int incr(int)) {
printf(*“around incr call\n”);
return 100;

Aspect
[Compilation

8.2 Syntax Analysis

inline void __utac_acc__TestAspect__1(void) {
printf("before sort executionin™);

}

inline void __utac_acc__TestAspect__ 2(void) {
printf("after sort execution\n™);
}

inline void __utac_acc__TestAspect__3(void) {
printf("around sort execution\n™);

}

inline void __utac_acc__TestAspect__4(void) {
printf("before incr call\in™);

}

inline void __utac_acc__ TestAspect__ 5(void) {
printf("before incr call\n");

}

inline int __utac_acc__TestAspect__6(void) {
printf(“around incr call\n");
return 100;

The main purpose of this phase is to collect information to facilitate join point matching by
generating an abstract syntax tree (AST) for the C sources.

8.3 Advice Weaving

The last phase is to insert calls to advice functions in appropriate locations in the C sources.
The following figure illustrates how calls are inserted into a C file.

29

before() :
execution({void sort(int [], int)) {
printf(*before sort executionin™);

}

after() :
execution(void sort(int [], int)) {
printf(“after sort execution\n");

}

void around) :
execution(void sort(int [], int)) {
printf(“around sort execution\n");

}

before() : call{int incr(int)) {
printf(“before incr call\n”);
}

after() : call(int incr{int)) {
printf(“before incr call\n”);

}

int around() : call(int incr(int)) {
printf(“around incr call\n”);
return 100;

void sort(int x[], int n) {
printf("here is sort\n");
}

int incr(int x) {
X=xX+1;
return x;

}

int main() {
int x[5] = {3,5,2,1,4};
int a;
sort(x,5);
a=38;
a = incr(a);
return 0;

Advice
Weave

30

void sort(int x[], int n) {

{ __utac_acc__ TestAspect__1(); }
{ __utac_acc__TestAspect__ 3(); }
{ __utac_acc__TestAspect__2(); }
}

int incr{int x) { int retValue_acc;

x=x+1;
retValue_acc = x;
return (int)retValue_acc;

}

return (int)retValue_acc;

}

int main() {int retValue_acc;

int x[5] = {3,5,2,1,4};
int a;
sort(x, 5);
a=§;
a=incr__timc_ 0{a);

retValue_acc = 0;
return (int)retValue_acc;

return (int)retValue_acc;

}

static inline int incr__timc__0 (intx) {
int retValue_acc;
{ __utac_acc_ TestAspect_ 4(); }

{ retValue_acc = __utac_acc__TestAspect_ 6();}

{ _utac_acc__TestAspect__5(); }

return (int)retValue_acc;

9 Grammar

In order for ACC to support aspect-oriented language extensions, the following keywords and
grammar rules are added to the C language grammar.

9.1 Keywords

[43

New keywords are : “args”, “after”, “around”, “before”, “call”, “callp”, “catch”, “cflow”, “ex-
ecution”, “get”, “infile”, “infunc”, “introduce”, “intype”, “pointcut”, “preturn”, “proceed”,
“result”, “set”, “throw”, “try”.

9.2 Grammar Rules

function-definition:

declaration-specifiersoy: declarator : pointcuts compound-statement

declaration:

pointcut declarator : pointcuts ;

pointcuts:
or-pointcuts

pointcuts && or-pointcuts

or-pointcuts:
unary-pointcut

or-pointcuts || unary-pointcut

unary-pointcut:
base-pointcut

! base-pointcut

base-pointcut:
args (type-or-id-list)
call (func-jointpoint)
cflow (pointcuts)
execution (func-jointpoint)

get (declaration-specifiers declarator)

31

identifier (identifier-listop:)

infile (string-literal)

infunc (identifier)

intype (type-name)

result (type-or-id)

set (declaration-specifiers declarator)

try (pointcuts)

func-jointpoint:

declaration-specifiers declarator

type-or-id-list:
type-or-id
type-or-id-list type-or-id

type-or-id:
type-name

identifier

direct-declarator:
before
after
around
introduce

catch

10 Usage

10.1 General Usage

The ACC compiler takes C source files with and without ACC syntax as input. The files
with ACC syntax should have the suffix ”.acc” and those without AspectC syntax should have
suffix ”.mc”. Furthermore, both types of files should be pre-processed by a C preprocessor
before passing through the ACC compiler.

12The file suffix could be changed by -af and -mf options.

32

The ACC compiler outputs ANSI-C compliant C source files to be processed by a C
compiler. If any input file has an unknown suffix, the ACC compiler emits an error message
and stops compilation.

Example 1:

Suppose there are neither #include nor macro directives used in the a.acc or the b.mc
files:

>acc a.acc b.mc

The ACC compiler generates a.c and b.c C-source files for processing by a C
compiler, like for example gcc.

>gcc a.c b.c
>./a.out
Example 2:

Suppose there are #include or macro directives used in the a.acc or the b.mc files. This
requires that the source files have to be pre-processed before weaving and compilation.

1. since gcc does not recognize the .acc or the .mc suffix, the suffix must to be
changed to .c.

>Cp a.acc a_acc.c

>cp b.mc b_mc.c

2. pre-process the files by a pre-processor, and save the output in files with the by
the ACC compiler required suffixes

>gce -E a_acc.c > a_acc.acc

>gce -E b_mc.c > b_mc.mc
3. perform the ACC compilation
>acc a_acc.acc b_me.mc

4. the ACC compiler generates a_acc.c and b_mc.c C-source files for processing
by a C compiler, like for example gcc.

>gce a_acc.c b_mc.c

>./a.out

Makefile examples capturing the above steps are part of the ACC distribution.

33

10.2 Use “tacc”

In order to make it easy to use the ACC compiler (“acc”) and integrate aspect compilation
into an existing building system of a C project, the ACC distribution also provides “tacc”.
Users are encouraged to and should use “tacc” directly, instead of “acc”, because “tacc” will
automatically conduct the steps of preprocessing, weavin and compilation.

User can invoke “tacc” in the same was as invoking a C compiler, like gcc. For example,
suppose there is an aspect file (a.acc) and a normal C file (b.c), using “tacc” compilation
works as follows:

>tacc a.acc b.c
>./a.out

For details of “tacc”, please refer to www.aspeCtc.netl

10.3 Command Line Options

The following command line options are supported by the ACC compiler:

1. -a
—aspectmatch

The advices will also match join points inside aspect files.

2. -af=<file suffix> |
—aspect-suffix=<file suffix>

Specifies the file suffix for the aspect file.

3. -h
—help
Display help information.

4. -m[=<file name>|
~matchinfo[=<file name>|

The join point-advice matching information is output.

5. -mf=<file suffix>
—mainfile-suffix=<file suffix>

Specifies the file suffix for the non-aspect file.

I34tace” weaves aspects according to a set of rules, which are available on www.aspeCtc.net.

34

www.aspeCtc.net
www.aspeCtc.net

6. -n
—no-line
No #line directives are generated in output.
7. -t
~thread-safe
The code generated to support the cflow() pointcut is thread-safe [

8. -v
—version
The compiler’s version number is printed.
References

[1] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using aspectc to improve
the modularity of path-specific customization in operating system code. In ESEC/FSE,
2001.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In ECOOP, 1997.

[3] AspectJ Team. Aspect]J project web site. http://www.eclipse.org/aspectj/.

4The ACC compiler uses a GCC specific feature, — thread-local storage, — to ensure thread-safety for
the generated code. The “__thread” keyword is used. However, since this is not a standard feature and not
supported by all C compilers, ACC turns the option off by default. The default code generated for cflow
pointcuts is not thread-safe. For more information about the thread-local storage feature, visit gcc.gnu.org/.

35

http://www.eclipse.org/aspectj/
gcc.gnu.org/

	Overview
	Change Log
	Join Point Model
	Pointcut
	Primitive Pointcut
	Composite Pointcut
	Named Pointcut
	cflow() Pointcut
	Matching Mechanism
	Simple Character Matching
	Wildcard Character Matching

	Advice
	Single Advice
	Proceed()
	Preturn()
	``this'': Reflective Information at Join Points
	Multiple Advice
	before/after advices
	around advices

	Static Crosscutting
	intype() Pointcut
	introduce() Advice

	Exception Handling
	try() Pointcut
	catch() Advice
	throw()

	Implementation
	Aspect Compilation
	Syntax Analysis
	Advice Weaving

	Grammar
	Keywords
	Grammar Rules

	Usage
	General Usage
	Use ``tacc"
	Command Line Options

