
Modelling Variability in Self-Adaptive Systems: Towards a Research Agenda

A. Classen?∗ A. Hubaux? F. Sanen† E. Truyen† J. Vallejos‡

P. Costanza‡ W. De Meuter‡ P. Heymans? W. Joosen†

?PReCISE Research Centre, Faculty of Computer Science, University of Namur
{acs,ahu,phe}@info.fundp.ac.be

†Distrinet Research Group, Department of Computer Science, K. U. Leuven
{frans.sanen,eddy.truyen,wouter.joosen}@cs.kuleuven.be
‡Programming Technology Lab, Vrije Universiteit Brussel

{jvallejo,pascal.costanza,wdmeuter}@vub.ac.be

Abstract

The combination of generative programming and com-
ponent engineering applied to software product line en-
gineering (SPLE) has focused thus far mostly on static
systems (as previous editions of AOPLE indicate), with
variability that is bound once. Meanwhile, an emergent
paradigm in software engineering deals with self-adaptive
and dynamic systems. While there is a well-known and
agreed SPLE process for static systems, there has been less
focus on dynamically adaptive systems. As such it appears
imperative to include it in an extended research agenda.

In the present paper we observe limitations related to
domain engineering in SPLE and identify what fundamen-
tal concepts, such as context and binding time, must be re-
tought in order to achieve SPLE for dynamically adaptive
systems. The main contribution of this paper is a set of
research questions, aimed at defining a common research
agenda for addressing these limitations.

1 Introduction

As previous editions of the AOPLE workshop indicate,
the combination of generative programming and component
engineering applied to software product line engineering
(SPLE) has focused thus far mostly on systems with static
variability binding. Meanwhile, an emergent paradigm
in software engineering deals with self-adaptive systems
(viz. SEAMS workshop at ICSE, or DSPL at SPLC). Self-
adaptive systems are systems that are able to autonomously
adapt to changing circumstances without human interven-
tion, or, in other words, systems that are able to cope with

∗FNRS Research Fellow.

A Survey of Autonomic Communications • 227

Fig. 1. Autonomic control loop.

and dynamics of modern network scenarios. The ultimate vision of autonomic
communication research is that of a networked world in which networks and
associated devices and services will be able to work in a totally unsupervised
manner, able to self-configure, self-monitor, self-adapt, and self-heal—the so-
called self-∗ properties. On the one hand, this will deliver networks capable of
adapting their behaviors dynamically to meet the changing specific needs of
individual users; on the other, it will dramatically decrease the complexity and
associated costs currently involved in the effective and reliable deployment of
networks and communication services.

Despite their evident similarities, there are significant differences between
autonomic computing and communication. While autonomic communication
is more oriented towards distributed systems and services and to the man-
agement of network resources at both the infrastructure and the user levels
[Quitadamo and Zambonelli 2007], autonomic computing is more directly ori-
ented towards application software and management of computing resources.
Nevertheless, both research areas recognize that traditional software systems
are facing a decreasing incremental benefit from technological advances (pow-
erful CPUs, large memories, and so forth) because the complexities of develop-
ment and management are overwhelming the technical gains. Accordingly, the
twin visions of autonomic communications and computing are aligned in iden-
tifying the need for decentralized algorithms and control, context-awareness,
novel programming paradigms, end-to-end privacy management, and compre-
hensive evaluation in order to deliver the desired self-∗ properties.

In the communications arena, the traditional architecture of control and data
planes has been expanded in a number of ways. Clark’s influential vision of a
knowledge plane [Clark et al. 2003] provides architectural support for integrat-
ing low-level (transport and network) knowledge with higher-level applications

ACM Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 2, December 2006.

Figure 1. Typical control loop (from [6])

dynamic variability. To support dynamic variability, a self-
adaptive system typically implements a control loop that
consists of monitoring the application and its context, an-
alyzing the situation, planning and executing any required
adaptations (as depicted in Figure 1).

System-specific adaptation knowledge is used to specify
when, where and how to adapt the system. This adapta-
tion knowledge is typically specified by developers as adap-
tation rules following the well-known Event-Condition-
Action format. For example, the Rainbow framework from
Garlan et al. [8] allows to express rules like “when the re-
sponse time observed by a client exceeds a well-defined
threshold, and the server is overloaded, then migrate the
client to a less loaded server”. The control loop of a self-
adaptive system is thus basically programmed as a set of
such adaptation rules. Depending on the application re-
quirements, the realization of these dynamic adaptations
may be complex, and the number of adaptations may be-
come unwieldy and therefore difficult to manage. On the



other hand, reuse of this system-specific adaptation knowl-
edge across a family of related self-adaptive systems is pos-
sible and desirable [8].

While there is a well-known SPLE approach for static
systems [19], there has been less focus on self-adaptive sys-
tems. Yet, it would be desirable to at least apply a domain
engineering approach that focuses at the analysis and design
of reusable adaptions. However, the engineering process to
come to generic adaptations that are reusable across mul-
tiple applications is far from trivial. We believe the main
reason is that there has been not much support for explicitly
capturing context-dependent dynamism in variability mod-
els such as Feature Diagrams (FDs) [16]. Albeit more re-
cent work on variability models acknowledges the concept
of dynamic variability in SPLE, e.g. [18], key concepts in
SPLE, such as context and binding time, are not well under-
stood in the light of self-adaptive systems. This limits the
applicability of current SPLE approaches in real adaptive
scenarios.

For the purpose of this paper, we stick to the definition of
context as any piece of information which is computation-
ally accessible [11], and binding time as the time at which
the system is bound to a particular variant [24]. With static
binding we refer to the binding to a variant prior to the us-
age of the system, while dynamic binding is considered to
be the binding that occurs during runtime [23].

The goal of the present paper is to take the first steps
towards an extended research agenda including modelling
dynamic variability as part of the domain engineering phase
of SPLE: what are the most challenging problems concern-
ing modelling dynamic variability and the fundamental con-
cepts of context and binding time, and how these issues
affect the research community. In this regard, we list six
common research questions aimed at defining a common
research agenda for tackling these problems with domain
engineering (issues with application engineering are out of
the scope of this paper). This set of questions originated
from three distinct research cases that motivate the differ-
ent issues related to modelling dynamic variability in self-
adaptive SPLs. Most of this research is actually carried out
in the context of the Belgian MoVES project,1 fostering the
collaboration among different Belgian universities.

The paper is structured as follows. Section 2 presents
three different cases that each raise several issues w.r.t.
modelling dynamic variability. From these separate ac-
counts, we formulate common research questions in Sec-
tion 3, which are used to bootstrap a first high-level research
agenda in Section 4. Section 5 introduces related work and
confronts it to our research questions. We conclude the pa-
per in Section 6.

1More information at http://prog.vub.ac.be/moves

2 Motivating scenarios

We now elaborate on three different motivating scenarios
that prove the lack of support for modelling dynamic vari-
ability in adaptive SPLs. In each motivating scenario, we
discuss the issues that were experienced when performing a
concrete case study as part of our research: context-aware
cellphone systems, a web-based e-government application
and runtime interactions in domotics systems respectively.

2.1 Context-aware cellphone systems

2.1.1 Overview

Currently, there is little explicit support for context aware-
ness in traditional software engineering techniques and
tools, which makes the development of these applications
even more complex. We introduce an intelligent cell phone
as an illustration of a context-aware system. Whereas tra-
ditionally a cell phone’s action (e.g. to receive or to make
a call) typically corresponds to a single behaviour, context-
aware cell phones aim to have multiple behavioural varia-
tions associated to a single action. The choice of the ap-
propriate variation is determined by the use context of the
system. For instance, context-dependent variations can look
as follows: if the battery level is low, ignore all phone calls
except for contacts classified as VIP; if the user is in a meet-
ing, redirect all calls and messages to the secretary; if there
is a WiFi connection available, try to make phone calls or
send messages via VoIP since this is cheaper for the user; if
there is a GPRS connection available, try to send messages
using TCP/IP also since this is cheaper.

2.1.2 Current achievements

In [5], we proposed the Context-Oriented Domain Analy-
sis (CODA) model as a specialised approach for analysing,
structuring, and formalising context-aware software re-
quirements. In this work we identify a number of rela-
tionships that may exist among context-dependent adapta-
tions. A context-dependent adaptation can include another
adaptation which means that the applicability of the sec-
ond adaptation is verified only if the first one is activated.
Next, a context-dependent adaptation can conditionally de-
pend on another adaptation. In this case, the applicability
of the second adaptation depends on the result of the first
adaptation, yielding a sequential execution. We finally in-
troduce the notion of a choice point which is a variation
point or context-dependent adaptation which has multiple
adaptations associated to it. Optionally, one can associate
a resolution strategy to deal with semantically interacting
adaptations.

The CODA model proposes a solution that considerably
differs from the existing design and programming tech-



niques to model runtime variations such as if-statements,
polymorphism or design patterns. Using such techniques
for context-awareness would lead to cluttered implemen-
tations (due to scattered context-dependent if-statements),
combinatorial explosion of class definitions (when using
polymorphism to model all the possible adaptations to the
context), or to considerable infrastructural overhead (when
using design patterns). By separating the system’s de-
fault behaviour from the behavioural variations, the CODA
model enables to make a clear distinction between the tasks
of context reasoning, and dynamic binding of the variations.

2.1.3 Open research issues

Although the CODA model can help in tackling some of the
challenges for modelling context-aware software, a number
of challenging issues needs to be further explored.

In our approach, we assume that context-dependent vari-
ations primarily occur while the program is running. This
approach gives the highest dynamicity but rises the issue
on how requests that are currently being processed should
be affected by the dynamic software update. A more ex-
haustive analysis should be done to determine what exactly
should occur at runtime (context acquisition, context rea-
soning, variation binding, etc.) and what can be derived to
earlier stages of the software development. The decision
as to when the behaviour should vary has an impact on the
design of the system (use of dedicated design patterns to
achieve variability) and the choice of technology (imple-
mentation platform, programming language paradigm, exe-
cution environment).

Experience has pointed out that the evolution of relation-
ships among context-dependent adaptations in the CODA
model is error-prone since contradictions and cases of
under-specification might seep into the specifications. This
is mainly caused by the fact that a new adaptation can pos-
sibly interact with all existing adaptations in the system.
Nevertheless, the solution for this issue is not to add extra
information to the CODA diagram as this can dramatically
diminish its understandability.

2.2 Web based eGovernment application

2.2.1 Overview

PloneGov is an open source project fostering the develop-
ment of web based eGovernment applications and gathering
around 55 international public organizations into 19 prod-
ucts [1]. All these products promote the cooperative de-
velopment of applications and web sites targeted to pub-
lic organizations and their citizens. The worldwide scope
of PloneGov yields specific legal, social, political or lin-
guistic aspects to deal with. All constrain the features re-
quired from a given product, hence the need for flexibil-

ity regarding product derivation. For now, we focus on
one of PloneGov’s products, namely PloneMeeting, a Bel-
gian government-initiated project offering advanced meet-
ing management functionalities to national authorities.

Central to PloneMeeting is the concept of meeting itself.
The allowed states of a meeting are defined according to a
workflow, which can be changed in the configuration. There
is, however, no restriction as of when such changes may be
made, e.g. installation time or runtime. Yet, changing the
workflow at runtime might result in an inconsistent system
since the states of already existing meetings might not be
compatible with those of the newly selected workflow.

The Plone internationalisation initiative intends to pro-
vide a flexible mechanism to manage language selection
and display. The so-called PlacelessTranslationService
(PTS) is Plone’s built-in translation management service.
The PTS uses the language of the web browser to automat-
ically determine the display language of the pages.

2.2.2 Current achievements

In previous work [4], we introduced the idea of using SPL
principles to engineer the PloneGov project. Our conclu-
sion showed a number of organisational and technical prob-
lems that had to be tackled. such as handling the distributed
developers and managing the already existing variability.

In [14], we focused on the identification and modelling
of the variability in PloneMeeting. Since no variability
model formerly existed, the variation points had to be re-
verse engineered from stakeholders, developers and exist-
ing artefacts to enable the re-engineering of configurable
artefacts. We therefore defined a reverse engineering pro-
cess taking these various information sources as input and
producing separate FDs for the different concerns we iden-
tified.

The most significant results we obtained so far are four
modelling challenges identified during the variability re-
verse engineering of PloneMeeting [13]. The first one refers
to the implicit modelling viewpoint underlying the variabil-
ity modelling. The second one discusses the modelling
of contextual elements whose availability is unpredictable.
The third one focuses on the consistency between the FD
and its constraints as they both evolve over time. The fourth
one addresses the representation of large sets of features in
a FD. The workarounds we proposed to tackle these issues
still have to be systematically applied to concrete cases and
properly assessed.

2.2.3 Open research issues

Apart from the workflow selection and browser-dependent
translation aspect of Plone, the dynamic side of PloneMeet-
ing has been disregarded is recent work. Although being



a rather static application, PloneMeeting still exhibits some
dynamic, typically runtime, configuration alternatives.

As the language selection scenario shows, the changing
environment requires some extra flexibility from the sys-
tem to keep it displaying pages flawlessly. Since each web
browser encodes the language differently, elicitating, scop-
ing and modelling this contextual information is our first
issue. Secondly, a recurrent issue was the classification of
binding times and the identification of the proper time gran-
ularity. Although extensively covered in mainstream liter-
ature [12], solutions to these issues are still fragmentary.
Thirdly, a more practical research issue was the selection
of the most suitable means to identify and mark dynami-
cally configurable variation points. Finally, we struggled
to express runtime constraints conditioning the evolution
of product configurations. Further investigations will tell
whether existing solutions are comprehensive enough.

2.3 Runtime interactions in domotics sys-
tems

2.3.1 Overview

Domotics systems typically combine a wide range of fea-
tures in the area of home control, home security, communi-
cations, personal information, health, etc. We will motivate
the relevance of runtime context information when mod-
elling interactions by exploring two scenario’s for protect-
ing the housing environment. The first scenario concerns
a fire control feature that turns on some sprinklers during
a fire and a flood control feature which shuts off the water
main to the home during a flood. Turning the sprinklers on
during a fire and flooding the basement before the fire is un-
der control results in the house further burning down. The
second scenario involves a presence simulation feature that
turns lights on and off to simulate the presence of the house
occupants and a doorkeeper feature which controls the ac-
cess to the house and allows occupants to talk to the visitor.
Obviously, we would like the doorkeeper not to give away
the fact that nobody is home if there is an unidentified per-
son in front of the door in order to prevent the house owners
from a burglary. However, if the person can be identified
and trusted, there aren’t any problems. Both the basement
being flooded and the fact if a person can be identified or
not are conditions that are only available at runtime.

2.3.2 Current achievements

Domotics systems already have been introduced in a prod-
uct line context elsewhere by Kang et al. [17]. What is
missing in their FDs is that the dependencies and other re-
lationships between features cannot be expressed in terms
of runtime context information. As a result, runtime be-
havioural feature interactions (FIs) caused by runtime vari-

ability cannot be modelled. A behavioural FI is a situation
where a feature that works correctly in isolation does not
work correctly anymore when it is combined with other fea-
tures. The fact that an interaction only might or might not
occur depending on the runtime context at hand makes it a
runtime behavioural FI.

In previous work [20], we proposed a conceptual model
to enable the management of interactions so that knowl-
edge about interactions can be shared and used in the course
of system evolution. An important part of the conceptual
model consisted of a concern hierarchy that resembles the
feature hierarchy in FDs. In this model, we already intro-
duced the notion of a condition to take into account certain
runtime circumstances. A shortcoming of current FD ap-
proaches is the lack of support for modelling exactly this
runtime context information. To the best of our knowledge,
no appropriate formalism or methodology exists to reify in-
formation about runtime behavioural FIs, reason about them
and enforce resolutions. A number of extensions to FODA
have been proposed to express more complex feature rela-
tions, e.g. using propositional logic. However, we are not
convinced that propositional logic can distinguish between
all possible interpretations of runtime behavioural FIs. In
[21], we argument for instance that traditional logic is not
suited to represent the fire and flood control FI.

It is also important to realise that traditionally used
mechanisms, such as e.g. prioritisation, are not always fea-
sible for representing runtime behavioural FIs. Next to the
fact that an interaction between two features with the same
priority cannot be resolved, the relative priority of two fea-
tures to one another can be different in varying circum-
stances. The latter is illustrated by the second domotics sce-
nario from above where everything depends on the result of
identifying the visitor.

2.3.3 Open research issues

Based on this need for modelling runtime context informa-
tion relevant for FIs, we can identify the following open
research issues. First of all, although it is easy to come up
with the relevant context information for particular FIs, an-
swering the question what context to model is a non-trivial
problem. Secondly, we need to decide on how to model
runtime context information. Coming up with a widely ap-
plicable methodology for modelling runtime context infor-
mation poses an interesting challenge. One of the usual sus-
pects here are propositional logic, but are these sufficient to
express the possibly complex relationships including run-
time context information? Moreover, it is not clear how we
can express more complex interactions involving more than
two features. Finally, we need to ask ourselves if this run-
time context information should be part of the FD itself or
should be specified in a separate, dedicated modelling lan-



guage, complementary to the FD. In the latter case, an ob-
vious need arises for traceability links between the different
models. For now, we want to leave this open for discussion
(cfr. RQ2). Either way, we are convinced that this kind of
knowledge is an important form of information that can be
(re)used to manage runtime variability and therefore should
be modelled.

3 Common research questions

After having presented three distinct cases, each of
which identifies different modelling problems, we will de-
rive from them a number of crosscutting research questions.
The goal of the present section is thus to formulate a com-
mon research focus for the coauthors of this paper.

RQ1: How to determine what context drives dynamic
change? To the best of our knowledge, there is currently no
methodological support to determine which are the context
variables that will have an influence on dynamic change and
to determine the course of action to deal with a change of
these context variables. For instance, in case of the mo-
bile phone example (Section 2.1), the decision of whether
the low battery level is a trigger for forwarding phone calls
could reasonably be made by a project manager or devel-
oper. The decision that VIP phone calls should be able
to circumvent this, however, needs to be taken on a higher
level (it requires an infrastructure that lets users decide who
VIPs are). Furthermore, the need for additional context in-
formation might emerge from the combination of several
features, as shown by the presence simulation and door-
keeper features in the domotics example (Section 2.3).

Such a methodology could be inspired, for instance, by
Kang et al. FODA’s context analysis [16]. It could also be
based on the Problem Frames approach [15], which aims
at identifying physical context given a requirement, or the
KAOS method [25] whose goal is to elicit requirements
based on high-level goals. The output of this methodology
would be (i) a set of relevant context info specifying what
elements in the environment of the system are relevant, (ii)
constraints specifying when adaptations must be performed
(due to changes in the context), (iii) concrete actions speci-
fying what adaptations must be taken (to deal with the con-
textual changes).

RQ2: How to explicitly model context-dependent
adaptations and how to compose it with the FD? Part of
this question is whether or not the context information and
adaptation knowledge uncovered in the methodology needs
to be incorporated into the FD. In the case of CODA, for
instance, it appears that including all context information in
the FD leads to a highly complex and unwieldy diagram. A
more scalable approach might be to model this kind of in-
formation in separate diagrams and to trace them to the fea-
tures that are concerned. At the same time, it might appear

natural to consider environment variables such as battery
level low in the FD.

RQ3: How do non-functional concerns constrain the
execution of context-dependent adaptations? Perform-
ing dynamic adaptations should preserve the non-functional
properties of the system. For instance, in the event of a
dynamic change, the structural integrity and global state-
consistency of the system have to be ensured. Other non-
functional properties of interest are reliability, correctness
or efficiency. In the scenario of PloneMeeting, for instance,
an issue is how to reliably change a running workflow. In
this case, we need to specify when it is safe to change
a workflow so that it remains compatible with the work-
flows of already existing meetings. In the scenario of the
context-aware cellphone, several variations may apply for
the context conditions in which the phone calls are received
or made, and therefore a correct integration between the
variations and the cellphone’s base behaviour should be en-
sured. Other type of constraints involve taking into account
the dependencies and conflicts between different context-
dependent adaptations

RQ4: How to specify constraints in order to avoid
under-specification? Given constraints (e.g. binding time
and runtime behavioural interaction constraints) have to be
expressed and formalised in some way. Take, for instance,
the interaction between the fire control and flood control
features in the domotics system. With current constraint
languages for FDs, we found it hard to express this kind of
constraint in order to capture it and/or process it later. It
is difficult to capture all possible context combinations in a
generic way (instead of enumerating all context combina-
tions) or referring to context information at all.

RQ5: How to map domain models to
implementation-specific elements? Given a suitable
notation for expressing constraints (see RQ2 & RQ3),
these constraints are ideally expressed at a level that makes
abstraction of specific context info related to a particular
implementation technology. For example, in the case of
PloneGov (Section 2.2), there are many different ways in
which a browser communicates the user language to the
web server. At the level of domain analysis and domain
design, however, one would like to identify and reason
about the desired user language as a context element that
is independent from the particular implementation technol-
ogy. Yet during domain implementation, a specification
is needed that maps this abstract context element to the
appropriate browser-specific information.

RQ6: How to classify context-dependent adaptations
according to their context and binding-time? As our
three cases from above already indicate, there is seem-
ingly no consensus as to what different types of context-
dependent adaptations can be supported by a self-adaptive
SPL. One of the key issues here is that the relation between



the three concepts, that are at the heart of what we call self-
adaptive SPLs, namely “dynamism”, context and binding
time is not clear. And so, it seems imperative at some point
to classify the different types of adaptation, primarily, by
their suitable binding times and contexts.

4 Towards a research agenda

Having stated the research questions, let us examine how
they affect the classical SPLE process by Pohl et al. [19].
This leads us to a more concrete research agenda. The well-
accepted SPLE process, consists of a domain engineering
and an application engineering phase. In the domain en-
gineering phase, the scope of the product line is decided,
and a set of customisable components developed. The ap-
plication engineering phase exists for each product that is
to be delivered. Following a requirement analysis, it starts
by configuring the product, i.e. deciding what goes into the
product, and ends with integrating and testing it.

By mapping the research questions to the SPLE process,
we are able to identify a set of concrete objectives that must
be achieved in order to realise a suitable SPLE approach
for self-adaptive systems. Before we proceed, note that an
SPLE approach for self-adaptive systems is defined as an
extension and not as a replacement of a classical SPLE ap-
proach. For example the design of reusable components that
make up the technical infrastructure of self-adaptive system
(sensors, effectors, monitors, planners,..) remains largely
the same. The extension that a self-adaptive SPLE approach
brings focuses mostly on the domain engineering of the con-
trol loop in a family of self-adaptive systems:

RQ1 To implement RQ1, one would need to extend the do-
main engineering phase by (i) a context scoping activ-
ity, that decides what part of the context must be mon-
itored; and by (ii) a context modelling activity that ex-
plicitly captures the essence of the context-dependent
adaptations in a model, so that it can be referred to.

RQ2 Complementary to RQ1, addressing RQ2 would lead
to a scalable structure for relating the context-
dependent adaptation knowledge to standard feature
models.

RQ3 Addressing RQ3 would involve a quality attribute
analysis [2] to determine the important non-functional
requirements (performance, reliability, ...) and to iden-
tify reconfiguration tactics that aim at preserving these
quality attributes in the presence of dynamic adapta-
tions.

RQ4 We expect that the outcome of RQ4 will lead to the se-
lection or the improvement of existing modelling and
constraint languages supporting constraint specifica-
tion at the different stages of the context modelling and
integration process.

RQ5 In order to address RQ5, a translation infrastructure
is necessary that bridges the gap between the concepts
of the context models elicited during analysis, and the
concrete artefacts of the implementation. Generally
speaking, this translation infrastructure involves the
mapping from the context models to system-specific
sensors and actuators, but also involves connecting
context elements to specific state properties of soft-
ware components.

RQ6 This RQ is rather of conceptual nature, we hope that
it will lead to a better understanding of key concepts
and to a clearer terminology. It thus affects the whole
SPLE process, albeit indirectly.

The application engineering process also needs to be
extended with activities involving the analysis of required
context-dependent adaptations and the configuration, inte-
gration and testing of these adaptations into a fully opera-
tional control loop. But as stated in the introduction, this pa-
per has focused mostly on domain engineering, and leaves
the study of issues with application engineering for future
work.

5 Related work

Cheng et al. [3] propose a research roadmap focusing
on the requirements, modelling, engineering and assurance
activities of self-adaptive systems. For each of them, the in-
adequacy of existing techniques to support the development
of reliable self-adaptive systems and the challenges ahead
are systematically formulated. Out of their study, they no-
tably conclude that the design time and runtime processes
can no longer be dealt with separately and advocate SPLE
as a possible opportunity to drive the development of self-
adaptive systems. All the research questions we set forth
go along the same line of research by further precising the
issues self-adaptivity raises in SPLE.

Fernandes et al. [7] present UbiFEX, a modelling nota-
tion extending existing feature diagram languages with con-
textual information. The general feature model generated
with UbiFEX is composed of a feature model, a context
feature model with the associated activation expressions,
and context rules binding the context and feature models to-
gether. UbiFEX also comes with a simulation tool checking
the consistency of the produced models.

Desmet et al. [5], propose the Context-Oriented Domain
Analysis (CODA) which is heavily inspired by the origi-
nal Feature-Oriented Domain Analysis (FODA) [16] used
in product-line development. It enforces software engineers
to think of context-aware systems as pieces of basic context-
unaware behaviour which can be further refined by means
of context-dependent adaptations at certain variation points.
A context-dependent adaptation is a unit of behaviour that



adapts a subpart of a software system only if a certain con-
text condition is satisfied. Both this work and the one from
Fernandes et al. should provide valuable solution elements
to RQ2 and RQ3.

Hartmann et al. [10] introduce context variability mod-
els (CVM) to represent high-level context information of
software supply chains. A CVM is a general classifier
of the context of products that is expressed in a FODA
like notation. The combination of the CVM and the SPL
feature model results in a Multiple Product Line Feature
Model where the dependencies between both models are
expressed with requires and excludes links. They do
not explicitly present their work as suited to self-adaptive
or dynamic systems. Once adopted, the context configura-
tion choices are immutable and do not lead to self-adaptive
behaviours. Conversely, Desmet et al. and Hartmann et
al. [7, 10] consider the dynamic evolution of the context and
its impact on the model. The relevance of this work to our
current research will therefore require further evaluations.

Lee et al. [18] propose an approach grouping features in
binding units which are assigned binding times and binding
states used to constrain the SPL configuration in a dynamic
context. Their framework also provides a product reconfig-
uration process encompassing a context analysis, a recon-
figuration strategy selection and a reconfiguration imple-
mentation phase. Their solution might notably offer means
to clarify the issues outlined in RQ6.

Gomaa et al. [9] present a solution based on reconfigura-
tion patterns for dynamic reconfiguration of software prod-
uct families. Their reconfiguration patterns are based on
UML collaboration and state diagrams. They focus on com-
ponents and do not model contextual information nor pro-
vide explicit links with variability models. Nevertheless,
their approach might be part of a solution to RQ5.

In contrast, Schmid et al. [22] propose a taxonomy of
issues that can arise when migrating a system from devel-
opment time (static) to runtime (dynamic) variability. They
analyse the impact of dynamicity on the input of the pro-
cesses, the processes themselves and the output of the pro-
cesses, and delineate the required capabilities of the code
base for each of them. Such a taxonomy might help us in-
vestigating solutions to RQ5.

Although promising, these solutions still call for system-
atic assessments and need to be augmented with thorough
guidelines covering the steps going from the context scop-
ing down to the implementation of self-adaptive SPLs. We
hope the outcome of this analysis will generate meaningful
results that will help us answering RQ1 and RQ4.

Finally, different research projects indicate the relevance
of defining a roadmap when it comes to investigating dy-
namic variability. DiVA2 will combine aspect-oriented and
model-driven techniques in an innovative way to provide a

2www.ict-diva.eu

new tool-supported methodology with an integrated frame-
work for managing dynamic variability in adaptive systems.
Their basic idea is to use models at both the design time and
runtime level to manage dynamic variability in combination
with aspect-oriented modeling techniques in order to tackle
the issue of the combinatorial explosion of variants. Model-
driven techniques are then used to automate and improve the
creation of (re)configuration logic. The MUSIC project3 is a
European project intending to offer an open platform for the
development of self-adaptive mobile applications. Among
the expected results of this project are a methodology, tools
and a middleware suited for software developers. MUSIC
builds further on the results of the MADAM project4 in
which adaptation requirements of mobile applications were
studied and a theory of adaptation was developed. A set of
reusable adaptation strategies and adaptation mechanisms,
based on dynamically reconfigurable component architec-
ture was one of their main results. Compared to DiVA, the
main variability mechanism in these two projects consists
in loading different implementations for each component
type of the architecture. The idea of the AMPLE project5

is to holistically treat variability at each lifecycle stage by
combining aspect-orientation and model-driven techniques
(similar to DiVA). Obviously, different implementation pos-
sibilities exist for binding variation points in various devel-
opment stages, e.g. at design, development, deployment or
even at runtime. Implementation artefacts will not only in-
clude traditional program code but also runtime configura-
tion and domain specific languages. Therefore, one of the
most promising results will be AMPLE’s variability frame-
work with integrated tool support for each lifecycle stage.
The careful study of the ongoing research in these projects
appears to be imperative to evaluate the sustainability of the
coming results of our research.

6 Conclusion

SPLE process support for dynamically adaptive sys-
tems is fragmented, although a well-known SPLE pro-
cess for static systems already exists. Therefore, the main
contribution of this paper is our list of six common re-
search questions indicating limitations we observed related
to modelling variability in self-adaptive SPLs and identify-
ing the need for clarification of fundamental concepts such
as context and binding time. Starting from this set of re-
search questions, we defined a high-level research agenda
in which we discuss the needed enhancements to the tradi-
tional SPLE process in order to achieve SPLE for dynami-
cally adaptive systems.

3www.ist-music.eu/MUSIC/about-music
4www.ist-music.eu/MUSIC/madam-project
5ample.holos.pt



Acknowledgements

This work was partially funded by the Interuniversity At-
traction Poles Programme, Belgian State, Belgian Science
Policy, the FNRS, and the VariBru project of the ICT Im-
pulse Programme of the Institute for the encouragement of
Scientific Research and Innovation of Brussels (ISRIB).

References

[1] PloneGov. http://www.plonegov.org/.
[2] L. Bass, P. Clements, and R. Kazman. Software Architecture

in Practice. Addison-Wesley.
[3] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,

editors. Software Engineering for Self-Adaptive Systems,
13.1. - 18.1.2008, volume 08031 of Dagstuhl Seminar Pro-
ceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2008.

[4] G. Delannay, K. Mens, P. Heymans, P.-Y. Schobbens, and
J.-M. Zeippen. PloneGov as an Open Source Product Line.
In Workshop on Open Source Software and Product Lines
(OSSPL07), collocated with SPLC, 2007.

[5] B. Desmet, J. Vallejos, P. Costanza, W. De Meuter, and
T. D’Hondt. Context-Oriented Domain Analysis. In 6th In-
ternational and Interdisciplinary Conference on Modeling
and Using Context (CONTEXT 2007), Lecture Notes in Ar-
tificial Intelligence. Springer-Verlag, August 2007.

[6] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe,
F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zam-
bonelli. A survey of autonomic communications. ACM
Trans. Auton. Adapt. Syst., 1(2):223–259, 2006.

[7] P. Fernandes and C. Werner. Ubifex: Modeling context-
aware software product lines. In 2nd International Workshop
on Dynamic Software Product Line Conference, Limerick,
Ireland, 2008.

[8] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. IEEE Computer, 37(10):46–54,
2004.

[9] H. Gomaa and M. Hussein. Dynamic software reconfigu-
ration in software product families. In Software Product-
Family Engineering, Lecture Notes in Computer Science,
2004.

[10] H. Hartmann and T. Trew. Using feature diagrams with con-
text variability to model multiple product lines for software
supply chains. In 12th International Software Product Line
Conference. IEEE Computer Society, 2008.

[11] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
Oriented Programming. Journal of Object Technology.
http://www.jot.fm, 7(3), March-April 2008.

[12] A. Hubaux and A. Classen. Taming time in software product
lines. Technical Report Draft Version, University of Namur,
June 2008.

[13] A. Hubaux, P. Heymans, and D. Benavides. Variability mod-
elling challenges from the trenches of an open source prod-
uct line re-engineering project. In Software Product Line
Conference (SPLC’08), 2008. To appear.

[14] A. Hubaux, P. Heymans, and H. Unphon. Separating Vari-
ability Concerns in a Product Line Re-Engineering Project.
In International workshop on Early Aspects at AOSD, 2008.

[15] M. A. Jackson. Problem frames: analyzing and structuring
software development problems. Addison-Wesley, Boston,
MA, USA, 2001.

[16] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibil-
ity Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, CMU, November 1990.

[17] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented prod-
uct line engineering. IEEE Software, 19(4):58–65, 2002.

[18] J. Lee and K. C. Kang. A feature-oriented approach to devel-
oping dynamically reconfigurable products in product line
engineering. In 10th International Software Product Line
Conference, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

[19] K. Pohl, G. Bockle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, July 2005.

[20] F. Sanen, E. Truyen, and W. Joosen. Managing concern in-
teractions in middleware. In J. Indulska and K. Raymond,
editors, 7th International Conference on Distributed Appli-
cations and Interoperable Systems, volume 4531 of Lecture
Notes in Computer Science, pages 267–283. Springer, 2007.

[21] F. Sanen, E. Truyen, and W. Joosen. Modeling context-
dependent aspect interference using default logics. In 5th
Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAMSE), 2008.

[22] K. Schmid and H. Eichelberger. From static to dynamic soft-
ware product lines. In 2nd International Workshop on Dy-
namic Software Product Line Conference, Limerick, Ireland,
2008.

[23] K. Schmid and H. Eichelberger. Model-Based Implemen-
tation of Meta-Variability Constructs: A Case Study using
Aspects. In Proceedings of VAMOS 2008, pages 63–71, Es-
sen, January 2008.

[24] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques. Software – Practice and
Experience, 35(8):705–754, 2005.

[25] A. van Lamsweerde. Goal-oriented requirements enginer-
ing: A roundtrip from research to practice. In RE ’04:
Proceedings of the Requirements Engineering Conference,
12th IEEE International, pages 4–7, Washington, DC, USA,
2004. IEEE Computer Society.


