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Abstract

Open source projects play an important role in modern software culture as they
attract many software developers and consumers. Since many developers are con-
tributing to the same repository and there often is no structured hierarchy, this
construct seems to be very fragile. Thus, we are interested in the aftereffects of
social and organizational change to an open source project covered by the media.
Core developers leaving the project or the decision to switch to an open governance
model are some example events. Also, we show the impact of major project releases
on the repository. We use count-based information of the repositories such as devel-
oper count and commit count as well as network metrics to identify changes. We use
plots which we create with the programming language R as well as tables to identify
trends. In this thesis, we investigate the following repositories, which are hosted on
the collaboration platform GitHub: Owncloud, Node.js, Qt, and Keras. We
differ events by social or organizational cause. Additionally we separate the events
by assuming positive or negative consequences. Depending on the event type, we
can recognize changes through the commit data of each repository at the respected
time period. In this thesis, we show that certain event groups do not necessarily
imply the same consequences for count-based and network-based repository data.
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1 Introduction

Open source projects occupy an important place in modern software development,
as they are accessible for everyone and therefore often have a high participation
number on collaborative platforms such as GitHub. Major motives why developers
voluntarily work on open source projects are their need for the software, the enjoy-
ment of the work itself and the enhanced reputation that may flow from making
high-quality contributions [LVH04]. Node.js as an popular example for an open
source project has currently over 2,000 contributors (as of February 2019) [nod].

In this thesis, we examine the resonance of open source software projects to special
events happening within the particular community or leadership.

An example for a special event is the resignation of the Owncloud-Company
founder Frank Karlitschek and other developers in April 2016. The founder quoted
social and moral reasons for his decision. Five weeks after the event, Frank Karl-
itschek created a new fork called Nextcloud. As we expect both events to have
an impact on the ownCloud project, we are going to analyze them.

In this work we investigate the effects of such events on the developer network and
on count-based commit data. We expect those events to have consequences on the
network structure or count-based data like lines of code or commits. In addition to
special events, we also track main releases of projects. Node.js’s major releases, for
example, are cut from the master branch every six months. We also expect to see
changes in terms of developer activity in those periods. We analyze the data from
the Git repositories of our casestudies before and after a specific event happens.
By doing so, we can compare both results and point out differences like the change
of developer roles, for example. We use different network metrics to support our
hypotheses.

In detail, in this thesis, we analyze four different well-known open source projects:
ownCloud, Node.js, Qt, and Keras. We organize the events by choosing if
the reason for the event has a social or organizational background. Also, we differ
between positive and negative influence of the events. We found out that positive or
negative social events can have a huge impact on the underlying data and network,



2 1. Introduction

whereas organizational events tend to have a smaller impact but are often caused
by previous downtrends.

In Chapter 2, we inform about previous work and the framework we use for creat-
ing our analyses. In the chapter thereafter, we step-by-step describe our approach
to identify changes on the existing data. For analyzing the data, we use the pro-
gramming language R, which is suited for statistical analysis and plotting graphs. In
Chapter 4, we introduce our casestudies and the events we are interested in. We also
take major releases into account. After that, we construct hypotheses for the events
containing effects on count-based and network-based information in Chapter 5. In
Chapter 6, we present and discuss the results which we get from our analyses for
each project and check if our hypotheses hold. Finally, we have a conclusion for the
complete thesis in Chapter 7.



2 Background

The emergence of distributed version control systems has led to the development of
a new paradigm for distributed software development. Instead of pushing changes
to a central repository, developers pull them from other repositories and merge
them locally [GPD14]. GitHub is the pioneer in the field of distributed version
control systems. As social applications on the web are getting more encouragement,
it is only natural that collaboration platforms like GitHub follow suit by keeping
the repositories of open source projects as transparent as possible. Previous work
has shown that such transparency might lead to more commitment, higher quality,
community significance, and personal relevance [DSTH12]. For our thesis, we can
use the public available data for repository analysis.

Open source projects are not formally organized and do not have a pre-assigned
command and control structure. Developers work on various areas by writing doc-
umentation, submitting bug reports, refactoring source code for different code ar-
eas of the code base, etc [BPD+08]. In comparison to commercial projects, open
source projects do not have a fix organizational structure. This does not necessar-
ily mean that commercial projects are more successful then open source projects.
Henderson and Clark even point out that fixed organizational structures actually
might hinder innovation [HC90]. Bird et al. [BPD+08] showed that even if open
source projects do not have an organizational structure at first, subcommunities
arise dealing with specific part of development. If we want to get a deeper under-
standing of how open source projects are organized, we also have to take a look at
the onion model [NYN+02]. The onion model comprises several roles which appear
in open source software projects. These roles include passive users of the soft-
ware, testers, project leaders, core developers, contributing developers, etc [AVH10].
The model states that there is a clear and intentional expression of the substantial
difference in scale between the group sizes fulfilling each role [JAHM17]. Several
empirical studies substantiate this model and show that the number of code con-
tributions per developer is described by heavy-tailed distributions, which means
that a very small group of developers is responsible for performing the majority of
work [MFH02, CWLH06, JAHM17]. Because only a very small group of develop-
ers takes care of most of the organizing work and additionally developers for open
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source software projects have a high turnover rate, it is important to know how
many developers can leave the project until the project starts to crumble. For this
purpose, the truck factor helps to measure how prepared a project is to deal with
developer turnover [APHV16]. The truck factor is defined as ”the number of people
on your team that have to be hit by a truck (or quit) before the project is in serious
trouble” [WK03]. Avelino et al. [WK03] calculate the truck factor of a repository
by following five steps. First, the latest point in the commit history is going to be
checked out. Then, developers with multiple accounts have to be identified. In step
3, the history of each source-code file is being tracked. The next step defines the
authors with their authored files. Finally, the truck factor can be calculated. The
truck factor is a good example of what can be calculated by using commit data.
We also analyze the change in developer count of projects, affected by social and
organizational events. To be able to create such analyses, the open source software
projects have to be mined and the results have to be visualized [JSS11]. For extract-
ing the data from a GitHub repository, the tools Codeface1 (by Siemens) and
codeface-extraction2, which are publicly available on GitHub, were used.

Now we will talk about methods for analyzing development data from a git reposi-
tory. We have access to count-based data, like the commits of developers at a given
time. With this kind of information, we can for example visualize the amount of
active developers during a timespan. In open source software projects, we often
encounter a huge amount of active developers. We can differ developers into core
and peripheral. Core developers are characterized by prolonged, consistent, and
intensive participation in the project. They often have extensive knowledge of the
system architecture and have strong influence on decision making [JAM17]. On the
other hand, peripheral developers are characterized by irregular, and often short-
lived, participation in the project [JAM17]. As an example, we can use the commit
count of developers to classify developers into core or peripheral at a certain time
window. The amount of written code lines per developer can also be used to decide
the developer role.

As coordination among developers is important in open source software projects,
we are going to build networks which capture the cooperation between developers.
Therefore we connect developers who worked on the same file. Figure 2.1 shows a
small example network where the nodes represent developers and the edges between
developers mean that they work on the same file. In this example, developer Dev
1, Dev 2 and Dev 3 worked on File 1. Additionally, developer Dev 2 worked
with Dev 3 on File 2 and with developer Dev 4 on File 3. Those networks are
used to understand the social behavior of developers and therefore represent socio-
technical networks [JAM17]. If we want to evaluate developer networks, we can
use network-based metrics to get information about the network in form of numeric
values. In this thesis, we use network-based operationalizations for example the
clustering coefficient and node degree of single developers. We talk more about
those metrics in Chapter 3. Next to count-based operationalizations to determine
the developer role, we can also use operationalizations on developer networks to
identify the developer role. Another aspect is the stability of developer networks.

1https://github.com/siemens/codeface
2https://github.com/se-passau/codeface-extraction
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Figure 2.1: Example network with four developers working on three different files.

Developers in open source projects tend to have a high turnover rate. This might
have an influence on the project. To identify the stability of a network, we can
use a network-metric to calculate the scale-freeness of a network [JAM17]. If a
network is in a scale-free state, it typically is robust against turnovers. We will
talk more in detail about the scale-freeness of a network in Chapter 3. Joblin
et al. dealt with developer networks and count-based information from GitHub
repositories [JAM17]. The authors did an empirical study of 18 large open source
projects to find out the evolutionary principles of developer coordination. They used
network metrics like clustering coefficient and node degree for creating hierarchy
diagrams and for classifying developer roles. They, for example, compared hierarchy
diagrams of a project from an early state to a later state of the project. At the same
time, count-based metrics were used to keep track of the developer count. The results
contain the information that developers form a hierarchical structure at first and
tend to become hybrid where only core developers are hierarchically arranged. The
paper also concluded that projects exceeding 50 developers form scale-free networks
in which the developer coordination is managed by a small number of developers as
well as developers accumulate coordination with more developers over time [JAM17].

Joblin et al. covered the topic of identifying developer roles within open source
projects by count-based and network-based approaches [JAHM17]. To support their
results, the authors surveyed 166 developers to match the developers’ perceptions
with the results from the used count- and network-based metrics. Their paper de-
scribes the use of commit count, lines of code count, and mail count as count-based
operationalizations to identify developer roles. In terms of network-based opera-
tionalizations, the authors used different approaches: Degree centrality was used to
identify core-developers by counting the connections to other developers. The paper
concluded that peripheral developers have only a limited number of interactions with
the community. Another used metric was the eigenvector centrality to represent the
importance of a developer by either connecting to many developers or by connecting
to developers who are in a central position [JAHM17, BE05]. The authors also took
the network hierarchy of the investigated projects into account to identify core and
peripheral developers. In a study of 10 substantial open source projects, they found
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out that commonly used count-based operationalizations for extracting developer
roles are outperformed by network-based operationalizations [JAHM17].

We use a network library (codeface-extraction-r) which contains functions
for creating analyzable count-based information as well as networks by connecting
developers working together. codeface-extraction-r also contains functions
to identify core and peripheral developers by different sources. The codeface-
extraction-r project on GitHub was developed by the Chair of Software Engi-
neering I at the University of Passau. In this thesis, we also use count-based and
network-based operationalizations to identify core and peripheral developers at our
dates of interest. We compare the results before and after an event to identify trends
caused by this event.



3 Methodology

In this section, we are going to introduce our workflow. We split the casestudies into
suitable time windows to gain expressive results. By matching the mined git data
with our created time windows, we can build developer networks and retrieve count-
based information for those periods. Additionally, we will describe the different type
of data structures which we examine.

3.1 Workflow
In this thesis, we use commit data extracted from GitHub, for each of our casestud-
ies. The data was extracted by the tool codeface-extraction which we referred
to in the previous chapter. We now use the framework codeface-extraction-
r to create expressive results from the commit data. Figure 3.1 shows the basic
workflow of our analysis script.

We want to analyze the evolution of open source projects, affected by social and
organizational events. We use the commit data of the git repository for every
casestudy to gain count-based and network-based information. In step a) we create
time windows for each casestudy. That means we split the whole project into uniform
time windows from the start of the project until the end. For this we have decided to
use three-month time periods, because previous work [JAM17] has shown that those
time windows provide the best results in terms of plausibility. Figure 3.2 illustrates
the lifetime of a project and how we split it into three-month time windows. We use
this kind of splitting to initially get an overview for a complete casestudy. In step
b) we now consider all the events and releases involved in our analyzes. For each
event/release we create an individual splitting. Therefore, we also use three-month
time windows with an overlap of 45 days. We start to cut the time windows six
months before the event until six months after the event. By doing so, we get seven
time windows where the first three and the last three windows do not contain the
event at all. The fourth time window is where the event itself lies in the middle of
the window. Figure 3.3 shows the splitting for an event/release in detail.

Once all time windows for a casestudy are constructed, we split the data by the time
windows for our count-based information and additionally construct the developer
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Figure 3.1: Basic analysis workflow. Step a) covers the process of generating time
windows for a complete project. With step b), we create individual time windows
for each event. Afterwards, we build developer networks for the constructed time
windows in step c). Step d) represents count-based and network-based calculations.
Step e) covers the analyzing and visualizing process.

networks based on the time windows for the network-based information. Step c)
covers this process. As the network generating step takes much computing time, we
only run that ones and store the results into a file. For further processing, we load
the created file with all its information about the network.

Step d) is our actual analyze script for creating plots and calculating statistical
information. We use the generated data and networks which are split by the time
frames for creating count-based and network-based information. In the next sections,
we will talk in detail about which data we are taking into account and how we are
going to visualize it. The visualization and analysis are covered by the final step e).

3.2 Count-Based Data

When we talk about count-based data we are primarily interested in the commit
count and lines of code during a three month time window. We are also interested
in the developer count which we split into core developer and peripheral developers.
We also keep track of developers switching their role from one time window to the
next time window, which we will cover in the role stability section (see Section 3.2.3).
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Figure 3.2: Splitting the complete project from start to end into three-month time
windows.

Figure 3.3: Splitting into three-month time windows with 45 days overlap for an
individual event/release. The start is six months before the event and the end is six
months after. In summary, there are seven time windows for an event.

3.2.1 Commits and Lines of Code

For each three-month time window, we are interested in the lines of code and commit
count during that period. But we also have to take into account that the amount
of written lines of code is not very expressive for a project. For example, computer
generated code which was part of a commit would also count as lines of code, as
well as deleted lines. Therefore, we have to be cautious with that information. We
assume that the commit count on the other hand might be more expressive. Even
though there might be regular commits caused by bots for cleaning up the project
for example. For visualising that information, we apply the measured numbers for
commit count and lines of code on the y-axis and provide the time line on the x-axis.
Additionally, we will insert vertical lines at our chosen event- and release-dates of
the respective repository. We do that for each individual event/release as well as for
the whole project. Figure 3.4 shows an example plot for an event in the Node.js
repository containing the amount of commits six months before and six months after
the event. We create the same plot for lines of code where the amount of written
code lines are represented by the y-axis. Additionally we generate the same plots for
the whole project with the difference that we do not have overlapping time windows.

3.2.2 Developer Count and Role

An open source software project consists of peripheral and core developers, where
core developers are consistent contributors and are essential for guidance and dis-
tributing tasks, whereas peripheral developers are persons who do not have much
impact on the project but still have occasional commits. By investigating the amount
of commits or written lines, we can use count-based metrics in order to point out
core and peripheral developers. Communication between developers is not taken into
account here. The network-based approach which considers connections between de-
velopers might be suited better for identifying core and peripheral developers. For
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Figure 3.4: Example plot for visualizing the commit count for an event E4. The
y-axis stores the amount of commits and the x-axis represents the timeline. Each
point represents an overlapping three-month time window and not a concrete date.

the visualization, we choose the sum of core and peripheral developers to be on the
y-axis, while we apply the time line on the x-axis. We will choose a three month
time window to determine the developer role. We also will insert vertical lines at
our chosen event- and release-dates of the respective repository. Figure 3.5 shows an
example for a Node.js event, where the developer count is visualized. We not only
create those plots for the events, but also for the complete project lifetime with the
difference that we do not have overlapping time windows.

3.2.3 Role Stability

We want to visualize the role change of developers from one time window to the next
time window. Because we will hypothesize predictions about change in developer
roles at an event, we create expressive plots which show the role transition of core
developers between two time frames. Those plots should visualize the amount of
leaving and joining core-developers. Information like core developers moving to an
inactive state or continuing as peripheral developers is depicted. We use the commit
count to identify core and peripheral developers, because it is more suited than lines
of code. Figure 3.6 shows an example role transition plot for an event.

3.3 Network-Based Data

Besides count-based data we also inspect the interaction between developers. Our
created networks are undirected graphs, where the nodes represent the developers
and the edges symbolize developers working on the same file. With that structure,
we can calculate network metrics like average node degree or global clustering co-
efficient. We also can calculate the node degree and clustering coefficient for an
individual developer. The node degree is the number of connections a node has to
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Figure 3.5: The bar plot shows the developer count for an event E4. The y-axis
stores the count of developers and the x-axis represents the timeline. Each bar is
split into core and peripheral, where core developers are marked red and peripheral
are marked blue. The commit count was used to classify the developer roles. Each
bar represents an overlapping three-month time window.

other nodes. The clustering coefficient describes the connectivity between neigh-
bouring nodes of a node. Furthermore, we can determine if the network satisfies
the conditions for scale-freeness. The state of scale-freeness is reached if there are
hub nodes with an extraordinary large number of connections [DM13]. Those net-
works tend to be very robust and scaleable. An open source software project with
a developer count greater than 50 usually is scale free [JAM17].

3.3.1 Developer Hierarchy

The local clustering coefficient and node degree of every developer is needed to build
hierarchy networks. The relationship between node degree and clustering coefficient
in a hierarchical network is described by C(k) ∝ k−1, where C(k) is the clustering
coefficient and k is the degree for a node [RB03]. In a hierarchical network, nodes at
the top of the hierarchy have a high degree and a low clustering coefficient. Nodes
at the bottom of the hierarchy have a low degree and a high clustering coefficient.
The clustering coefficient describes the connectivity between neighboring nodes of a
node. Figure 3.7 shows the clustering coefficient for the green node. As we can see,
the clustering coefficient always is between zero and one. Zero means that there is
no connectivity among the neighbors of the green node at all and one means that
every neighbor of the node is connected to each other as well [BLM+06].
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Figure 3.6: The bar plot visualizing the developer activity for two consecutive time
windows. The first bar represents the core developers from the first time window.
The colors express their movement towards a different developer type in the next
time window, where red means that they are still identified as core developers. Blue
means that they switched their role to peripheral and green means that they are
not present at all in the new time window. The second bar represents the activity
of peripheral developers from the first time window.

Figure 3.7: Example for the clustering coefficient for the green node.

The number of connections a developer has to other developers is called node degree.
We can calculate the local clustering coefficient and node degree for each developer.
To identify core and peripheral developers using the developer network structure,
we need the node degree and clustering coefficient for each developer. Using this
method to determine core and peripheral developers is more reliable than just using
count-based data. This was proofed by Joblin et al. [JAHM17].
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For visualizing this information, we choose to apply the logarithmic node degree on
the x-axis and the logarithmic clustering coefficient on the y-axis. The result plot
where each point represents a single developer can be used to visualize core and
peripheral developers. Core developers are positioned at the bottom-right at the
coordinate system. Developers with high degree tend to have edges that span across
cohesive groups, thereby lowering their clustering coefficient. In Chapter 2, we men-
tioned that open source projects do not have an organizational structure at first and
subcommunities arise dealing with specific part of development [BPD+08, JMA+15].
As core developers coordinate the effort of these subcommunities, they tend to have
higher node degrees and smaller clustering coefficients. Peripherals are placed at the
top left having higher clustering coefficients and smaller node degrees [JAHM17]. To
classify core and peripheral developers we calculate a hierarchy value deg

cc
for each

developer, where deg is the node degree and cc is the clustering coefficient. We
order the developers by their hierarchy value and compute a threshold at the 80%
percentile. Developers that have a value above the threshold are considered core,
developers below are considered peripheral [JAHM17, CWLH06, MFH02]. The chal-
lenge here is to visualize the difference between two consecutive time windows. Ad-
ditionally, we need to adjust the size of the x- and y-axis to be the same for both
plots. Figure 3.8 shows an example how we visualize hierarchy for a release date of
the Keras project.
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Figure 3.8: Example for seven consecutive hierarchy diagrams of a Keras release.
Each plot represents an overlapping three-month time window.
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3.3.2 Scale-Freeness

Large networks sometimes show different characteristics for the degree of a node.
If the node degree distribution follows a power law, those networks are called scale
free [BA99, BEJ18]. Those networks tend to be very robust and scaleable. More than
50 developers being in a network often implies scale-freeness [JAM17]. codeface-
extraction-r provides us with the function to determine whether a network is in
a scale-free state or not. For visualizing this kind of information, we use True and
False on the y-axis symbolizing whether the network is in a scale-free state or not.
A time line is provided on the x-axis. Figure 3.9 shows an example plot for a release
of the Keras project, displaying changes to the scale-freeness state of the networks.
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Figure 3.9: Scale-freeness example for a Keras release. Each point represents an
overlapping three-month time window and not a concrete date.



4 Case Studies

In this section, we present four different software projects which use Git as version
control system. First, we provide basic information for each project, like the current
contributor count, fork count and historical background. If available, we examine
release periods to learn at which dates we should investigate the data later on. After
that, we choose some major events which we expect to have consequences for the
project. We group all events into four different event-groups: negative social events,
positive social events, negative organizational events, and positive organizational
events. In Section 4.5, we explain why those groups exist and why we grouped certain
events into its respective group. We will then hypothesize on those consequences in
Chapter 5 and check those in Chapter 6.

4.1 ownCloud

ownCloud is a client-server software for creating and using file hosting services
founded by Frank Karlitschek. Development on GitHub started in January 2010.
The corresponding company ownCloud Inc. was founded in 2011. The main
programming language for ownCloud is PHP. The repository1 currently has 455
contributors and was forked over 1800 times (as of September 2018).

4.1.1 Release Dates

As ownCloud has not a fixed schedule for their main releases, we pick them by
choosing releases which have a new main version number. In addition, we pick release
version 7.0.15 and 9.1 because they overlap with our event dates. In Table 4.1, we
show all releases, starting with 1.0 in June 2010 and ending with 10.0.0 in April
2017.

1https://github.com/owncloud/core
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version release date

1.0 2010-06-24
2.0 2011-10-11
3.0 2012-01
4.0 2012-05-22
5.0 2013-03-14
6.0 2013-12-11
7.0 2014-07-23
7.0.15 2016-05-13
8.0 2015-02-09
9.0 2016-03-08
9.1 2016-07-21
10.0.0 2017-04-27

Table 4.1: ownCloud release dates from June 2010 to April 2017.

2016 2017
08 March 2016

v 9.0

27 April 2016

E1: Developers Leave

13 May 2016

v 7.0.15

2 June 2016
E2: Nextcloud Fork

14 July 2016

E3: new Investor/CEO

21 July 2016

v 9.1

Figure 4.1: ownCloud event time line from 2016 to 2017.

4.1.2 Resignation of the Founder & Core-Developers – E1

In April 2016, founder Frank Karlitschek and other core developers leave the com-
pany. Karlitschek served as the chief technology officer of ownCloud Inc. and
stated moral reasons for his resignation. The following quote is taken out from his
blog:

With ownCloud 9.0 we released a huge milestone and an amazing product
developed in close collaboration between the ownCloud company and the
ownCloud community. [Kar16a]
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I thought a lot about this situation. Without sharing too much, there
are some moral questions popping up for me. Who owns the commu-
nity? Who owns ownCloud itself? And what matters more, short term
money or long term responsibility and growth? Is ownCloud just another
company or do we also have to answer to the hundreds of volunteers who
contribute and make it what it is today? [Kar16a]

Karlitschek writes about doubts and reasons why he is leaving the company. As we
see here, he was an active part of the development until release 9.0. His resignation
was also covered by the media [Gr6].

Management turnover is found to be negatively correlated with its consequences for
the company. An improving performance after turnover can generally not be shown.
CEO turnover often leads to diffusion of authority as well as change, regardless of
direction [FK90, Mil93]. As Frank Karlitschek was the CTO of ownCloud Inc., he
was part of management and thus we evaluate this event because we expect to see
changes. As this event was caused by moral conflicts, we associate this to a negative
social event.

4.1.3 Start of Nextcloud which is an ownCloud Fork – E2

On June 02, 2016, Karlitschek created a fork of ownCloud, which goes by the
name Nextcloud. In addition he wrote on his blog:

So today we are forking ownCloud into a new open source project called
Nextcloud and we are also founding a new company called Nextcloud
GmbH to offer Nextcloud software and services for companies and bigger
organizations. [Kar16b]

This fork is a consequence from Frank Karlitschek leaving the company five weeks
before. Therefore, we assume this to be correlated to E1 and we identify the event
as a negative social event as well.

4.1.4 New CEO and Finance Investments for ownCloud –
E3

In July 2016, the ownCloud company gets millions of dollars of finance investments
and a new CEO [Bö16]. Rapid change of the ownCloud management covered by
E1 probably led to this consequence several months after. We previously noted that
a change in CEO often leads to negative consequences in terms of management.
But as this event also comes with new investment money supporting the project, we
classify this event to a positive organizational event.

4.2 Node.js
Node.js is a cross-platform JavaScript run-time environment that executes JavaScript.
The repository2 has over 2000 contributors and was forked over 12000 times. Node.js
is often being used for back-end development of websites as it is suited to realize
web servers. Joyent is the development company which acted as sponsor at the
very beginning of Node.js.

2https://github.com/nodejs/node
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4.2.1 Release Dates

Major releases of Node.js are cut from the master branch every six months. Ta-
ble 4.2 lists all releases which are of interest for us from February 2015 to October
2017.

version release date

0.12.x 2015-02-06
4.x 2015-09-08
5.x 2015-10-29
6.x 2016-04-26
7.x 2016-10-25
8.x 2017-05-30
9.x 2017-10-01

Table 4.2: Node.js release dates from February 2015 to October 2017.

2014 2016

03 December 2014
E4: io.js fork

06 February 2015

v 0.12.x

15 May 2015

E5.1: io.js & Node.js cooperation

15 September 2015

E5.2: io.js & Node.js merge

08 September 2015

v 4.x

Figure 4.2: Node.js event time line from 2014 to 2016.

4.2.2 io.js Fork Caused by Dissatisfaction due to the Open
Development Regulations – E4

In January 2014, many core developers were not satisfied with Joyent’s efforts for
an open development of the Javascript framework. This led to the fork io.js. The
new fork uses the open governance model. The details for this model were introduced
at the start of the fork [Amo15]. Those notes contained information about the tasks
and authority of the technical committee. Additional information like technical com-
mittee meetings and technical committee membership are covered. Also the state
of developers becoming contributors are written down in detail [Amo15]. Because
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this event was triggered due to social conflict of some contributors we associate this
event to be a negative social event.

4.2.3 Cooperation between io.js and Node.js – E5

On May 2015, both projects announced their cooperation to merge both projects
into the new Node.js-Foundation. Until everything was settled, there were many
discussions with contributors, developers and the leadership of both communities.
Finally, the io.js community voted for joining the Node.js community once again.
Until the merge is complete, io.js announces to continue their scheduled releases.
We split the event into E5.1 and E5.2 where E5.1 indicates the start of the coop-
eration and E5.2 represents the end of the io.js and Node.js merge. The merge
took place continuously from 15 Mai 2015 to 15 September 2015 [Dol15]. Because
this event is correlated to E4, as a result after the social conflicts were solved, we
associate this event to be a positive social event.

4.2.4 Ayo Fork Caused by Behavioral Code Violations – E6

In August 2017, there were again problems between the leadership and the commu-
nity, because a member of the technical steering committee and the core technical
committee violated behavioral codes and was not banned from the project. That did
not only lead to disagreement within the leadership, but also to a new fork named
Ayo. The new fork was mainly created out of protest against violations to the
code of conduct. In addition to the new fork, three persons of the technical steering
committee left Node.js. When we look at the progress of the Ayo repository, we
can see that development stopped till mid of December 2017 [MS17, Baa17]. We
associate this event to be a social negative event.

2017 2018
30 May 2017

v 8.x

23 August 2017

E6: Ayo fork

01 October 2017
v 9.x

Figure 4.3: Node.js event time line from 2017 to 2018.

4.3 Qt

Qt is a cross-platform software framework with ready-made UI elements, C++
libraries, and a complete integrated development environment. Qt was developed
with C++. Nokia acquired Qt in June 2008 and sold the commercial licensing
part of Qt to Digia in March 2011. In August 2012, Digia fully acquired Qt from
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Nokia, shortly before release Qt 5.0 [War12]. The repository3 now has over 600
contributors and was forked over 300 times. The Qt repository is being regularly
mirrored between qt-project.org and GitHub.

4.3.1 Release Dates

For Qt, we use two different repositories. For every release and event which hap-
pened before release Qt 5.0, we use the Qt4 repository4. We use the Qt5 repos-
itory3 for every event and release past Qt 5.0. As Qt had many different releases
during its lifetime, we only choose those which are near our dates of interest. Ta-
ble 4.3 lists all those release dates.

version release date

4.8 2011-12-15
5.0 2012-12-19
5.1 2013-07-03
5.2 2013-12-12
5.3 2014-05-20
5.4 2014-12-10

Table 4.3: Qt release dates from December 2011 to July 2015.

2011 2016

21 October 2011
E7 03 August 2012

E8

19 December 2012
Qt 5.0

September 2014

E9

20 May 2014

Qt 5.3
10 December 2014

Qt 5.4

Figure 4.4: Qt event time line from 2011 to 2016.

4.3.2 Switch to an Open Governance Model – E7

On October 2011, the Qt development was under the open governance development
model at the Qt project website. Previously, the qt code base was under open
source. That means that all the source code is available to all developers in the
Qt ecosystem, but the code development processes was primarily done by the paid

3https://github.com/qt/qtbase
4https://code.qt.io/cgit/qt/qt.git/
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Qt development team. Whereas in the open governance model, the development
model was changed in order to accept contributions from any member of the Qt
ecosystem [qt:15, Kno11]. The Qt development for release 5.0 was done under the
open governance model. Qt 5.0 was released about a year after the introduction of
this new model. When this new model was introduced the development switched to
a different repository. For this event, we only take the Qt5 repository into account
when mining and evaluating the data. The Qt5 repository allows any contributor to
take part in the development. We assume this event to be a positive organizational
event.

4.3.3 Closing of the Qt-Development Department in Bris-
bane – E8

Nokia closes the Qt-development department in Brisbane till the end of August 2012
which consists of 60 employees. Three employees should handle open tasks until the
end of December 2012 [Nan12]. This led to the question if those employees will
continue their work on Qt in the community. During that time in September 2012
Qt 5.0 was released. We associate this event to be a negative organizational event.
We use both repositories to analyze this event.

4.3.4 The Qt-Company Takes Over the Qt-Business and
Copyrights – E9

In September 2014, Digia transfers the Qt-business and copyrights to their sub-
sidiary company named ”Qt-Company” [Duc14]. As everything is now being han-
dled by a single institution, we expect management to become more transparent and
controlled. Thus we associate this event to be a positive organizational event. We
use the Qt5 repository to analyze this event.

4.4 Keras
Keras is a neural-network library written in Python and especially suited as a
deep learning library. Keras currently has over 700 contributors and was forked
over 14,000 times. Keras is capable of running on top of machine learning libraries
such as TensorFlow, CNTK and Theano5.

4.4.1 Release Dates

For Keras, we only pick release dates which are close to our picked event-dates.
We are interested in the release dates covered by table Table 4.4 from December
2015 till November 2017.

version release date

v 0.3.0 2015-12-01
v 1.0.0 2016-04-11
v 2.0.8 2017-08-25
v 2.0.9 2017-11-1

Table 4.4: Keras release dates from December 2015 to November 2017.
5https://github.com/keras-team/keras
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2015 2018

01 December 2015
v 0.3.0

11 April 2016

v 1.0.0

25 August 2017

v 2.0.8
1 November 2017

v 2.0.9

16 January 2016

E10
29 September 2017

E11

Figure 4.5: Keras event time line from 2015 to 2018.

4.4.2 Cooperation Between Google and Tensorflow Announced
– E10

The founder of Keras, François Chollet, who is a Google developer, announced the
cooperation between TensorFlow and Google in the following reddit post:

Keras is gaining official Google support, and is moving into contrib,
then core TF. If you want a high-level object-oriented TF API to use for
the long term, Keras is the way to go [16].

We associate this event to be a positive social event. The reason for the decision
that this event represents a social event instead of an organizational one is that the
opinion of contributors towards the cooperation might change. Developers might
consider to stay or to leave the project.

4.4.3 Stop of Theano Support – E11

Announcement of Keras not supporting Theano after Theano release 1.0 [Lam17].
This decision seems to be an aftereffect of E10, because TensorFlow which be-
longs to Google went into cooperation with Keras about two years before. We
assume that event to be a negative organizational event.

4.5 Event-Groups

We group multiple events which we consider alike. We expect those groups to have
similar consequences for the data, which we examine.

Group one represents events, which were caused by negative social reasons. Core-
developers were unsatisfied with organizational decisions and quit their contribution.
Additionally all those events led to new forks. For Group 1 we pick events E1, E2,
E4, and E6.
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Group 2 represent events which also were caused by social reasons, but we expect
them to have positive impact on the project. For group two we pick events E5 and
E10. Both events lead to a cooperation of two different communities. In E5, we
know definitely that changes are going to happen to the main project because a
continuous merge of a fork was announced. In E10, a cooperation was announced
but without a fixed schedule.

Groups 3 and 4 represent events, which have an underlying organizational change.
We assume those changes to have a positive effect on the repositories. For group
3 we pick E8, E11: Both events are about to shut down: In E8, a development
department shuts down and E11 was the announcement of stopping support for a
third-party software.

Whereas Group 3 is about negative side effects of organizational change, Group 4
covers positive consequences for the projects. For Group 4, we pick E3, E7 and
E9. We expect E3 to lead to positive change, caused by a new CEO and invest-
ment money. In E7 the Qt project switches to an open-governance model which
is appreciated by open source developers. For E9, we cannot predict if the organi-
zational change will have a positive effect on the repository. But transferring the
Qt-Business into a representative company handling everything from there should
be beneficial.
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Project Event Description Date

Group 1 - Social Events (negative) – (G1)
ownCloud E1 Resignation of the Founder & Core-

Developers
2016-04-27

ownCloud E2 Start of Nextcloud which is an ownCloud
Fork

2016-06-02

Node.js E4 io.js Fork Caused by Dissatisfaction due to
the Open Development Regulations

2014-12-03

Node.js E6 Ayo Fork Caused by Behavioral Code Viola-
tions

2017-08-23

Group 2 - Social Events (positive) – (G2)
Node.js E5 Cooperation between io.js and Node.js 2015-05-15
Keras E10 Cooperation Between Google and Tensorflow

Announced
2016-01-16

Group 3 - Organizational (negative) – (G3)
Qt E8 Closing of the Qt-Development Department

in Brisbane
2012-08-03

Keras E11 Stop of Theano Support 2017-09-29
Group 4 - Organizational (positive) – (G4)
ownCloud E3 New CEO and Finance Investments for own-

Cloud
2016-07-14

Qt E7 Switch to an Open Governance Model 2011-10-21
Qt E9 The Qt-Company Takes Over the Qt-

Business and Copyrights
2014-09

Table 4.5: All events grouped by event-group.



5 Hypotheses

In the previous section, we listed some major events to our projects of interest. We
also grouped them by social and organizational events. We now will hypothesize
the effects on our data during those time periods for each group we created in the
previous chapter.

5.1 Hypotheses for Group 1 (G1)

The effects of negative social events are covered by Hypothesis 1. We expect decreas-
ing commit and changed line of code numbers because we assume many developers
to leave and stop continuing their development. As we think that the developer
count will decrease, we also suspect the node degree to drop for core developers. On
the other hand, the clustering coefficient should increase because there will be less
neighbouring nodes. We only hypothesize about changes to core developers because
peripheral developers are not very expressive for the projects. As we think that the
projects can loose stability, it might effect the scale-freeness in a negative way.

Hypothesis 1.1. The lines of code and the commit count after the event will de-
crease.

Hypothesis 1.2. In general, the projects will loose contributors. More than the
usual amount of developers which were previously identified as core developers will
not be identified as core in the future.

Hypothesis 1.3. If the repository was in a scale-free state before, it might loose it.

Hypothesis 1.4. The clustering coefficient will get higher and the node degree will
become smaller for core developers in the network hierarchy.

5.2 Hypotheses for Group 2 (G2)

The effects of positive social events are covered by Hypothesis 2. As we expect
many developers to join the project, it is only natural to think about increasing
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commit and changed line of code numbers. With an increasing developer count,
the node degree should increase. At the same time, the clustering coefficient should
decrease due to an increase in neighbouring nodes. As the projects gain stability
and developers they might hit the state of scale-freeness.

Hypothesis 2.1. The lines of code and the commit count after the event will in-
crease.

Hypothesis 2.2. In general, the projects will get more contributors. There will be
more and new identified core developers.

Hypothesis 2.3. If the developer network was not in a scale-free state, then it is
going to reach it.

Hypothesis 2.4. The clustering coefficient will slowly decrease, whereas the node
degree will increase for core developers.

5.3 Hypotheses for Group 3 (G3)

The effects of negative organizational events are covered by Hypothesis 3. We ex-
pect similar effects to the count-based and network-based information as we did for
Group 1.

Hypothesis 3.1. The lines of code and the commit count after the event will de-
crease.

Hypothesis 3.2. The amount of contributing developers will decrease.

Hypothesis 3.3. If the project was in a scale-free state, it will loose it and slowly
recover into a scale-free state.

Hypothesis 3.4. The clustering coefficient for core developers will get higher, whereas
the node degree will get lower.

5.4 Hypotheses for Group 4 (G4)

The effects of positive organizational events are covered by Hypothesis 4. We ex-
pect similar effects to the count-based and network-based information as we did for
Group 2.

Hypothesis 4.1. The lines of code and the commit count after the event will in-
crease.

Hypothesis 4.2. The amount of contributing developers will increase.

Hypothesis 4.3. If the project was not in a scale-free state, it will gradually achieve
it.

Hypothesis 4.4. The clustering coefficient for core developers will decrease, whereas
the node degree will increase.

In the next chapter, we are going through the results for the events of each case
study and check the hypotheses.



6 Results

In this chapter, we go step by step through each hypothesis and present and discuss
the results of our analysis. We compare the results for each event in the specific
event group. For each hypothesis, we conclude whether it holds or not.

6.1 Evaluation for Negative Social Events (G1)

Hypothesis 1 contains statements about the development of ownCloud and Node.js,
which are affected by negative social events.

6.1.1 Hypothesis 1.1: Lines of Code and Commit Count

Hypothesis 1.1. The lines of code and the commit count after the event will de-
crease.

To prove this hypothesis, we use plots which contain the number of written code
lines and commits during a three-month time window. When looking at the plots
for E1, the resignation of the founder and core developers, in Figure 6.1 the number
of commits drops drastically. The same is noticeable when looking at E2, the start
of Nextcloud, in Figure 6.2. But at the same time the sum of written lines of
code had a huge peak. Because that is an unexpected unproportional behaviour,
we looked closer at the commits done during this period. We found out that two
developers were involved in moving files from one place to another which caused
them to have over 550,000 changed lines of code. The extraction tool accumulates
the deleted lines and added lines even though the file was only moved from one place
to another. That way we can conclude that the graphics for the amount of lines of
code are not expressive. The events E1 and E2 are close to each other and thus
both Figure 6.1 and Figure 6.2 contain the misleading number of written code lines.

When looking at events E4 and E6 in Node.js, we have a completely different
behavior than expected. Instead of decreasing numbers in commits and lines of
code, we have increasing numbers (see Figure 6.3 and Figure 6.4). For E6, the
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Figure 6.1: Commit count and changed lines of code count for ownCloud E1.
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Figure 6.2: Commit count and changed lines of code count for ownCloud E2.

start of Ayo fork, we assume that the results might be plausible because the fork
was only a small one. When looking into the fork on GitHub we can see that the
project has only a few contributions and the lifetime of the project was very short
with approximately six weeks. That is why we conclude that this fork does not have
an impact on commit count and lines of code of Node.js. Whereas E4, the start
of io.js fork, which was actually a bigger fork at that time, also does not show the
expected behavior. To understand this behavior for E4, we had to look back in the
repository. In the next chapter, we noticed that the developer count for Node.js
stagnated for about two years before the event and the Node.js community got
shaken awake by the event. We will discuss this result in Section 6.1.5. As we have
contrary results for Hypothesis 1.1 for some events in Group 1, we have to reject
this hypothesis.
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Figure 6.3: Commit count and changed lines of code count for Node.js E4.
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Figure 6.4: Commit count and changed lines of code count for Node.js E6.

6.1.2 Hypothesis 1.2: Developer Count and Type

Hypothesis 1.2. In general, the projects will loose contributors. More than the
usual amount of developers which were previously identified as core developers will
not be identified as core in the future.

When looking at Figure 6.5 and Figure 6.6, for E1 and E2, we can see that there
is a drop in developer count after the event occurred. Before the event happened,
we have a developer count of over 60 and this number continuously sinks under 40
developers over the course of 9 months. So, we can register a loss of about 30% of
active developers. This result matches with the result from Hypothesis 1.1 for E1
and E2 where we already noticed a reduced commit count.

If we look for the developer numbers in Node.js (E4 and E6 ) in Figure 6.7 and
Figure 6.8, we have the opposite result than expected. As we got growing commit
numbers for those events in the previous section, it is natural to see a growth in
developer count as well. The extraordinary growth of developer count at E6 does
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Figure 6.5: Developer count for ownCloud E1.
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Figure 6.6: Developer count for ownCloud E2.

not look natural. The explanation for that might be visible in Figure 6.13. This
plot contains vertical lines for events which we observe at the specific date as well
as the release 9.x for ownCloud. The reason for the extreme growth of developer
numbers at E6 might therefore be caused by release 9.x which is almost at the same
date.

Furthermore, the hypothesis states that more core developers switch to an inac-
tive/peripheral state compared to the overall project lifetime. Table 6.1 contains
the average percentages for the ownCloud and Node.js repository for core devel-
opers becoming inactive or peripheral. Additionally, the table shows the percentages
for the events we are interested in this hypothesis. The values for the events are
created by examining the data six months before and after the event, whereas the
project values are calculated throughout multiple years. For an event with seven
three-month time windows where each time window has an overlap of 45 days, we
have six consecutive time windows. For all consecutive time windows, we calcu-
late the role transition percentages. Afterwards, we calculate the average over all
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Figure 6.7: Developer count for Node.js E4.
E

6
E

6
E

6
E

6
E

6

0

100

200

300

400

500

Apr Jul Oct Jan
Date

D
ev

el
op

er
 C

ou
nt

Type
Core
Peripheral

nodejs Developer Count E6 (Commit Based)

Figure 6.8: Developer count for Node.js E6.

consecutive time windows. To be able to compare the role transition percentages
of an event with the percentages of the complete project, we have to do the same
calculations for consecutive time windows for the complete lifetime of a project.

The values for E1 and E2 are exactly as we expected, where the percentage (5.2%
and 4.8%) of core developers becoming inactive is higher then for the complete
project (4.0%). For E1, it is even a 30% increase compared to the ownCloud
project. Surprisingly, the percentages for core developers becoming peripheral at
the events (12.4% and 8.9%) are smaller then for the average project (12.8%).

When looking at E4 and E6 for Node.js, we also have higher percentages of core
developers becoming inactive, than for the project itself. E6 is standing out with
16.7% compared to the overall project with 6.8%. The reason for that might be
the Node.js release 9.x which we discussed before. Figure 6.13 additionally covers
the developer roles in red (core) and blue (peripheral). When looking at the bars
for E6 and its neighbours, we can see a huge change in core developers joining and
leaving right after the release 9.x. When we look closer at the developer activity
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in Figure 6.9 for the time period of event E6 and two followup time windows, we
can detect a similar behaviour. The first plot at 2017-08-26 shows that almost
every core developer stays in core, which is the average percentage when looking at
Table 6.1. The amount of peripheral developers becoming core developers at that
time is higher than the average for the ownCloud project. Therefore, we can see a
higher amount of core developers (200) in plot two at 2017-10-12 and three at 2017-
11-27. At 2017-10-12, we can see a role transition of more than 50 core developers to
peripheral/inactive. The number is even higher at 2017-11-27 where more than 150
core developers become peripheral/inactive. This can only be explained by taking
release 9.x of ownCloud into account. 9.x is almost at the same date as E6 and
this event does not seem to have a big impact on the repository as we showed in the
previous sections. As we have contrary results for the trend of the developer count
for the events of Group 1, we have to reject Hypothesis 1.2.

Project/Event ∅ Core to Inactive ∅ Core to Peripheral

ownCloud 4.0% 12.8%
ownCloud E1 5.2% 12.4%
ownCloud E2 4.8% 8.9%
Node.js 6.8% 15.4%
Node.js E4 7.3% 17.1%
Node.js E6 16.7% 17.1%

Table 6.1: Developer role change for ownCloud and Node.js and events E1,E2,E4
and E6.

6.1.3 Hypothesis 1.3: Scale-Freeness

Hypothesis 1.3. If the repository was in a scale-free state before, it might loose it.

Figure 6.10 shows the scale-freeness of the constructed developer networks, for own-
Cloud and Node.js, at the appropriate dates. ownCloud became scale free
shortly after 2014. It started to loose its scale-freeness some months before E1 and
E2 were announced. When only looking at the plot, it seems that the events for
ownCloud were looming after the project started to loose its scale-freeness again.
ownCloud never reached continuous scale-freeness after the events. We know that
scale-freeness also depends on the developer count [JAM17]. When looking at Fig-
ure 6.13 for ownCloud, we can see that the developer count never recovered after
the events and therefore the developer network probably never reached scale-freeness
again.

Node.js, however, became scale-free immediately after event E4 occurred. With
event E4, we already have unexpected results for commit count, lines of code and
developer count. Therefore, it is not surprising that scale-freeness also behaves in
a different way than expected. As the developer count and developer contributions
started to increase after E4, it makes sense that the project gets into a scale-free
state as well. Regarding E6, Node.js never looses its scale-freeness. When we have
checked the trend of the developer count in the previous section, we already noticed
that E6 with its ayo fork does not have a huge impact on the project.
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Figure 6.9: Developer role changes for E6. The first plot at 2017-08-26 contains event
E6. A high amount of core developers (200) can be identified at 2017-10-12 and 2017-
11-27. At 2017-10-12 more than 50 core developers transition to peripheral/inactive.
More than 150 core developers become peripheral/inactive at 2017-11-27.

As a consequence, the scale-freeness state of a developer network depends highly on
the trend of developers leaving or joining the project. Developers joining the project
tend to lead the project into a scale-free state, as we can see clearly with event E4.
For this hypothesis we can conclude that it is not enough to just use the type of
event to predict the scale-freeness state of a project. Therefore Hypothesis 1.3 does
not hold.

6.1.4 Hypothesis 1.4: Developer Hierarchy

Hypothesis 1.4. The clustering coefficient will get higher and the node degree will
become smaller for core developers in the network hierarchy.

To check this hypothesis, we will take a look at hierarchy diagrams with the loga-
rithm of the clustering coefficient for each developer on the y-axis and the logarithm
of node degree on the x-axis.
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Figure 6.10: Scale-freeness for ownCloud and Node.js.

With Figure 6.11, we visualize the hierarchy of E1 six months before and six months
after the event date using overlapping three-month windows. When looking at the
diagrams, we can detect a decrease of developers overall. In this hypothesis, we
are interested in node degree and clustering coefficient of core developers. Those
are marked as blue triangles at the bottom right in the diagrams. For E1, we
can clearly see that the clustering coefficient for core developers becomes gradually
higher, whereas the node degree gets smaller for core developers. E2 for own-
Cloud follows the same pattern (see Figure A.1 in the appendix). The decreasing
node degree and increasing clustering coefficient shows that there is a decrease in
coordination done by core developers. These observations match our hypothesis.

In contrary, Figure 6.7 displays an increase in developer count at E4. Therefore,
Figure 6.12 shows that the clustering coefficient for core developers continuously
gets smaller and the node degree gets higher. Thus, the coordination work for
core developers increases. The difference in clustering coefficient and node degree
between core and peripheral developers is unexpected high for the second and third
time window and gets smaller at the event date (plot four). The hierarchy plot for
E6 does not contain any conspicuousness and the cause for changes in the hierarchy
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diagrams can not be distinguished between the event itself and the release 9.x which
are almost contemporaneous.

The evolution of node degree and clustering coefficient of core developers can not
simply be decided by the type of the event. And therefore this hypothesis does not
hold for every negative social event.
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Figure 6.11: Network hierarchy for E1. The clustering coefficient for core developers
becomes gradually higher and the node degree gets smaller.

6.1.5 Conclusion for Hypothesis 1

Hypothesis 1 covered the events which we categorized as negative social events.
Therefore, we predicted negative consequences for our count-based measurements,
as well as network stability in form of scale-freeness and network hierarchy. But we
learned that those negative events do not necessarily imply negative consequences.
In case of the events for ownCloud, our hypotheses met the expectations, whereas
Node.js with event E4 behaved completely in the opposite direction than expected.
We examined the past years of the projects as well and found out that Node.js was
standing still years before the actual event E4 happened. The perceived observations
lead us to the estimation that the Node.js community got shaken awake by the
event and the project started to thrive. ownCloud, on the other hand, had growing
developer numbers and even reached scale-freeness continuously before the actual
events happened.

Therefore, we assume that, by taking the past of the project into consideration, we
could have made better forecasts for the repository. Humans often do not act as
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Figure 6.12: Network hierarchy for E4. The clustering coefficient for core developers
continuously gets smaller and the node degree gets higher.

expected and therefore it might not even be enough to just take the past of the
repository into account. Hypothesis 1 does not hold for all social negative events.
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Figure 6.13: Developer count for Node.js and ownCloud.
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6.2 Evaluation for Positive Social Events (G2)

Hypothesis 2 contains statements about the development of the Keras and Node.js,
affected by positive social events. The event E5 is the cooperation between io.js
and Node.js. We split the event into E5.1 and E5.2 where E5.1 indicates the start
of the merge and E5.2 represents the end of the io.js and Node.js merge. The
event E10 for Keras is the announcement of the cooperation between Google
and TensorFlow.

6.2.1 Hypothesis 2.1: Lines of Code and Commit Count

Hypothesis 2.1. The lines of code and the commit count after the event will in-
crease.

Figure 6.14 and Figure 6.15 contain an overview over the commit count and lines
of code count for E5.1 and E5.2. Before the event E5.1, the commit count and
changed lines of code count were at their peak and started to follow a downtrend.
As expected, we can see a slow increase of commit count and changed lines of code
shortly after event E5.1. Figure 6.15 shows a steady increase in commit count and
changed lines of code count starting shortly before E5.2. The peak before the event
E5.1 can be explained by release 0.12.x at 2015-02-06.
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Figure 6.14: Commit count and changed lines of code count for Node.js E5.1.

Figure 6.16 displays the commit count and the changed lines of code for Keras six
months before and six months after the event and Figure 6.17 contains the commit
count over the whole lifetime of Keras. When looking at Figure 6.16, we can see a
peak in commit count and lines of code before the actual event. The reason for that
might be Keras release v 0.3.0 which was at 2015-12-01 shortly before the event.
The values slowly decrease after the event. When looking at the bigger picture in
Figure 6.17, we can see that the commit count stabilizes after some months.

Concluding for Hypothesis 2.1, for event group G2 we can say that both events had
major releases before the actual event and therefore it is hard to distinguish the
cause for the extraordinary change in commit count and lines of code. Therefore,
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Figure 6.15: Commit count and changed lines of code count for Node.js E5.2.
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Figure 6.16: Commit count and changed lines of code count for Keras E10.

our perceived count-based data for those events are not very representing. Even
though event E5 shows a slight increase, it is not enough to generally claim that
this hypotheses holds. Therefore, we reject Hypothesis 2.1.

6.2.2 Hypothesis 2.2: Developer Count and Type

Hypothesis 2.2. In general, the projects will get more contributors. There will be
more and new identified core developers.

To evaluate this hypothesis we will look at the contributor count first. We check the
developer count for our events of interest within a six month range before and after
the event. In Figure 6.18, we see a slight increase of developers after event E5.1.
The peak before the event can be explained with release 0.12.x. Figure 6.19 shows
a huge increase of developers after the merge with io.js is done (E5.2 ). This leads
to the conclusion that developers who switched to work on the io.js fork are now
coming back to the Node.js community.
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E
5.1

E
5.1

E
5.1

E
5.1

E
5.1

0

40

80

120

Jan Apr Jul Oct
Date

D
ev

el
op

er
 C

ou
nt

Type
Core
Peripheral

nodejs Developer Count E5.1 (Commit Based)

Figure 6.18: Developer count for Node.js E5.1.

Keras only shows a small increase of developers after the event E10 occurred (see
Figure 6.20). But when looking at the bigger picture in Figure 6.21 for the whole
Keras project, we can see a steadily increase in developer numbers over several
months.

The second part of this hypothesis states that there will be more and new identified
core developers. To show the role transition for current core developers to inactive
or peripheral, we created Table 6.2. In contrast to Hypothesis 1.2, we have lower
percentages for core developers becoming inactive during the events compared to
the whole project. This supports our statement that there will be more identified
core developers as the old ones tend to not get inactive. When looking at the bar
charts (see Figure 6.18, Figure 6.19, and Figure 6.20) where core developers are
marked red, we can definitely see an increase of core developers towards the end of
the x-axis.

E5.2 leads to an immediate increase of developers, whereas E10 only results into a
slight increase over a long period of time. When looking objectively at Hypothesis
2.2, we can conclude that the hypotheses holds. But as both events had a major
release before we cannot exclude after effects, caused by the releases, on our perceived
data.
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Figure 6.19: Developer count for Node.js E5.2.
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Figure 6.20: Developer count for Keras E10.

6.2.3 Hypothesis 2.3: Scale-Freeness

Hypothesis 2.3. If the developer network was not in a scale-free state, then it is
going to reach it.

To check this, we look at Figure 6.10 for Node.js and at Figure 6.22 for Keras,
which visualize the scale-freeness state of the developer networks for the whole life-
time of the projects. Node.js was in the scale-free state before the beginning of
the event E5 at E5.1. Node.js became scale-free after event E4 (io.js fork). It
lost the scale-freeness state about five months after E5.1 happened. It seems that
the project was in an uptrend after E4, but still was not well established. After the
merge was done at E5.2, the developer network became scale-free again and never
lost it ever since.

Figure 6.22 shows that the developer network for Keras became scale-free for several
months after the event E10. As there was a release for Keras right before the event,
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Figure 6.21: Developer count for Keras.

Project/Event ∅ Core to Inactive ∅ Core to Peripheral

Node.js 6.8% 15.4%
Node.js E5.1 1.6% 16.4%
Node.js E5.2 4.8% 16.2%
Keras 28.1% 14.1%
Keras E10 21.8% 16.2%

Table 6.2: Developer role change for Node.js and Keras and events E5.1,E5.2,
and E10.

it is not possible to distinguish if the release or event E10 is responsible for leading
the network into a scale free-state.

Because both developer networks for Node.js and Keras were immediately scale-
free after the events, we claim that this hypothesis holds.

6.2.4 Hypothesis 2.4: Developer Hierarchy

Hypothesis 2.4. The clustering coefficient will slowly decrease, whereas the node
degree will increase for core developers.

For evaluating this hypothesis, we look at the hierarchy plots for the two events
as we did in Section 6.1.4. Since we split event E5 into E5.1 and 5.2, we can
distinguish between the beginning and the end of the event. Therefore, we see that
in the first two hierarchy plots in Figure 6.23 before the actual event the clustering
coefficient for core developers is about 0.001. Afterwards, the clustering coefficient
for core developers starts to become smaller over time. There are also periods when
the clustering coefficient returns to be over 0.001. But that overall only happens
twice for E5.1 and E5.2 (Figure 6.24). A continual trend for the node degree of
core developers is not visible. The value is at almost 1000 for the most time in E5.1
and E5.2 Without taking the hypothesis into account and only look at the stability
of the network by applying a linear function through the dots in the diagram, we
can clearly see that the points in the coordinate system approach a stable linear
function especially when looking at the last plot in Figure 6.24.

For E10, Figure 6.25 shows a slight increase of the node degree for core developers
over the inspected year. At the beginning, the value for node degree was at about
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Figure 6.22: Scale-freeness for Keras.

500 and grew to almost 1000 during the event. A slight downward trend for the
clustering coefficient is visible. Thus, it looks like the coordination work of core
developers increases.

As we showed in Section 6.2.2, both events had only small changes in developer
numbers at the event dates. Therefore, the changes in the network hierarchy seem
to be very small. Hence, the results for those events are not enough to claim that
Hypothesis 2.4 always holds.

6.2.5 Conclusion for Hypothesis 2

When evaluating the results for each hypothesis, we can see that the events clearly
affect the scale-freeness and the developer count. Both events had a peak in de-
veloper numbers right before the event which probably were caused by previous
releases. Those peaks went down at the event date and started to increase steadily
for several months when we looked at commit-based classification for developers.
Also the amount of identified core developers increased for both events. The devel-
oper networks for the projects always became scale-free after the events, even though
Node.js lost it during the merge with io.js. Afterwards, it reached scale-freeness
again. Thus Hypothesis 2.2 and Hypothesis 2.3 hold. However, the commit count
and the changed lines of code are not very representative due to previous events like
release dates in our case. Also, we cannot see a clear trend in the hierarchy diagrams
for all events. Therefore, Hypothesis 2.1 and Hypothesis 2.4 do not hold. If we com-
pare Hypothesis 2 to Hypothesis 1, which covered negative social events, we can
clearly see that the effects of positive social events on the network and count-based
data tend to be positive.
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Figure 6.23: Network hierarchy for E5.1.
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Figure 6.24: Network hierarchy for E5.2. A continual trend for the node degree of
core developers is not visible.
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Figure 6.25: Network hierarchy for E10. The clustering coefficient for core devel-
opers becomes slightly smaller and the node degree gets continuously higher.
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6.3 Evaluation for Negative Organizational Events

(G3)

Hypothesis 3 contains statements about the development of Qt and Keras, affected
by negative organizational events.

6.3.1 Hypothesis 3.1: Lines of Code and Commit Count

Hypothesis 3.1. The lines of code and the commit count after the event will de-
crease.

By examining the commit count and changed lines of code count for event E8 in
repository Qt4 in Figure 6.26, we encounter unusual numbers. The commit count
six months before the event was 350 and it dropped to 200 shortly before the event.
It started to grow to approximately 300 afterwards. The reason for that behavior
might be release 5.0 of Qt which was at 2012-12-19, 4 months after the event. We
assume that developers pushed more commits before the release. The extraordinary
spike in changed lines of code after the event cannot be explained naturally. When
looking at the new repository Qt5 for Qt, which was under open governance, in
Figure 6.27, we can notice a downtrend in commit count and changed lines of code
from 6 months before until 6 months after the event. If we compare the Qt4 and
Qt5 repository, we notice that Qt5 has commit numbers between 1400 and 2400
for the inspected event period of E8, whereas Qt4 had its peak at 350 commits.
Thus we assume the Qt5 repository to be more expressive for the consequences of
E8.

Keras, on the other hand, also had releases shortly before and after the event
E11. Release 2.0.8 was at 2017-08-25 and release 2.0.9 at 2017-11-01. Therefore,
this might explain the up and down of the commit count and changed lines of code
during the investigated period in Figure 6.28.

Hypothesis 3.1 only holds for E8 and the new Qt5 repository. Thus the hypothesis
does not hold overall.

6.3.2 Hypothesis 3.2: Developer Count

Hypothesis 3.2. The amount of contributing developers will decrease.

When looking at the Qt5 repository for Qt, we can recognize an upwards trend in
the developer count several months before the event E8, visualized by Figure 6.31.
By looking closer at the surrounding three-month windows for E8 in Qt5, we can
see a slight drop in the developer count (see Figure 6.30). This behavior would
would match our hypothesis. In contrary to the Qt5 repository, the Qt4 repository
follows a downtrend in developer count several months before the actual event E8
(see Figure 6.31). We suspect that the decreasing developer numbers are part of
the reason for E8 (closing of development department) happening, but this is just
speculation based on the perceived results. An immediate drop of the developer
count after the event for Qt4 in Figure 6.29 is not recognizable.



6.3. Evaluation for Negative Organizational Events (G3) 47

E
8

E
8

E
8

200

250

300

350

Apr Jul Oct Jan
Date

C
om

m
it 

C
ou

nt

qt − E8

E
8

E
8

E
8

1e+05

2e+05

3e+05

4e+05

Apr Jul Oct Jan
Date

Li
ne

s 
of

 C
od

e 
C

ou
nt

qt − E8

Figure 6.26: Commit count and changed lines of code count for Qt E8 (Qt4).
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Figure 6.27: Commit count and changed lines of code count for Qt E8 (Qt5).

As well as the Qt4 repository of Qt (E8 ), Keras (E11 ) does not show imme-
diately decreasing developer numbers in the three-month windows after the event
(see Figure A.3 in the appendix). A reason for that might be a release shortly after
the event, which we have already discussed in Section 6.3.1. However, we can see a
decrease in developer numbers in the long term in Figure 6.21.

Hypothesis 3.2 only holds for E8 and the Qt5 repository. E11 and E8 (Qt4) show
different results than expected. Thus we have to reject Hypothesis 3.2.

6.3.3 Hypothesis 3.3: Scale-Freeness

Hypothesis 3.3. If the project was in a scale-free state, it will loose it and slowly
recover into a scale-free state.

To check the scale-freeness of Qt, we look at Figure 6.32, containing the information
for network scale-freeness for both Qt repositories. The network was in a scale-free
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state for a long time before the event and even several months after the event E8.
The project lost its scale-freeness in 2013, when looking at the Qt4 repository. We
can explain that by looking into the plot which contains the developer count for
the whole project in Figure 6.31. In 2013, the developer count of Qt drops under
50 and the projects looses its scale-freeness. As we already have discussed in the
previous section that we do not assume the event to be the reason for decreasing
developer numbers, we also assume that the event is not the reason for Qt to loose
scale-freeness in 2013. In contrary, the new Qt repository was in a scale-free state
months before the event and never lost its scale-freeness ever since.

Keras, on the other hand, achieved the scale-free state months before E11 and
never lost it since then (see Figure 6.22).

Summarizing the results, we reject Hypothesis 3.3.
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Figure 6.32: Scale-freeness for Qt. The first plot shows the old Qt repository.
The second one represents the new Qt repository.

6.3.4 Hypothesis 3.4: Developer Hierarchy

Hypothesis 3.4. The clustering coefficient for core developers will get higher, whereas
the node degree will get lower.
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Other than expected, the hierarchy networks for E8 show decreasing clustering
coefficient and increasing node degree values for core developers in the hierarchy
plots in Figure 6.33. The hierarchy plots do not show developers whose clustering
coefficient have a value of 0. We can clearly see an increase of peripheral developers
showing up in the hierarchy plot for the fourth and fifth time window. That means
that the overall clustering coefficient of developers exceeds 0 while the developer
count only slightly increases when looking at the hierarchy diagrams for the old
Qt repository (Figure 6.33). The last plot from the hierarchy diagrams of event E8
shows a smaller amount of peripheral developers. The reason for that might be that,
after closing the development department in Brisbane, the developers had time until
end of December 2012 to finish their open tasks on Qt [Nan12]. This leads us to the
assumption that after the department was closed and developers had to finish their
work within the next months affected the amount of required files the developers
had to edit. Thus, the values for clustering coefficient and node degree for core
developers do not match our expectations for the old Qt repository. When looking
at the hierarchy diagrams for the Qt5 repository, we can recognize a single core
developer with higher node degree and lower clustering coefficient after the event.
It seems that this one core developer, who shows up in the hierarchy network after
the event, has to handle most of the coordination work. But in general, the node
degree for developers decreases and the clustering coefficient increases.

Keras shows no striking changes to its hierarchy within six months before and six
months after the event E11 (Figure 6.34). A change in coordination effort of core
developers is not visible.

This hypothesis does not hold when considering our results.

6.3.5 Conclusion for Hypothesis 3

To conclude, we can say that perceived changes to the count-based data and the
network structure are not enough to claim that this hypothesis holds. Keras did
not seem to be affected at all by event E11. Also Qt was on a downtrend before
the event E8 occurred and therefore we are not able to distinguish if the event was
the reason. The new Qt repository matches our hypothesis more when only looking
at developer numbers and hierarchy plots. But in general, it is not enough to prove
that the hypothesis always holds. Thus, negative organizational change does not
necessary come with changes to the count-based information and network structure,
at least not in the short term we analyzed.
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Figure 6.33: Network hierarchy for E8. The first plot shows the old Qt repository.
The second one represents the new Qt repository. The hierarchy networks for
E8 (Qt4) show decreasing clustering coefficient and increasing node degree values
for core developers. The hiararchy networks for Qt5 show decreasing clustering
coefficients for core developers.
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Figure 6.34: Network hierarchy for E11. No striking changes are recognizable.
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6.4 Evaluation for Positive Organizational Events

(G4)

Hypothesis 4 contains statements about the development of ownCloud and Qt,
affected by positive organizational events.

6.4.1 Hypothesis 4.1: Lines of Code and Commit Count

Hypothesis 4.1. The lines of code and the commit count after the event will in-
crease.

When we look at the commit count and changed lines of code for E3 (new own-
Cloud CEO and finance investments) in Figure 6.35, we can see decreasing numbers
after the event and even before the event. The peak in lines of code can be explained
by previous commits which we discussed in Section 6.1.1 (moving of files). Against
our expectations we got decreasing numbers. This can be explained by the previous
events E1 and E2 (shortly before E3 ) which negatively affected the count based
data. Thus, we assume that E3 was a countermeasure against the downtrend. Even
though it was not effective in the near future, we can see a slight uptrend when
looking at the commit numbers for the whole ownCloud project in Figure A.4
some months after.
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Figure 6.35: Commit count and changed lines of code count for ownCloud E3.

When investigating the Qt events, we only inspect the new Qt repository (Qt5)
which officially started with event E7 and the introduction of an open governance
model. For Qt at events E7 (Figure 6.36) and E9 (Figure 6.37), we recognize a
steady uptrend in commit numbers before and after the events. The lines of code
for both events do not show a recognizable trend.

Conclusively, we can say that ownCloud with E3 has decreasing commit numbers
and changed lines of code before and after the event. Even though Qt matches our
hypothesis in terms of commit count, it is not enough to claim that this hypothesis
holds.
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Figure 6.36: Commit count and changed lines of code count for Qt E7.
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Figure 6.37: Commit count and changed lines of code count for Qt E9.

6.4.2 Hypothesis 4.2: Developer Count

Hypothesis 4.2. The amount of contributing developers will increase.

After evaluating Hypothesis 4.1, we already do not expect to see an immediate
increase in developer numbers for ownCloud. When checking E3 for ownCloud
in Figure 6.38, we can see the drop from 60 active developers six months before
the event to 20 developers six months after the event. As discussed in the previous
section, we assume events E1 and E2 to be the cause for it. Looking at the bigger
picture of ownCloud in Figure 6.13 shows that ownCloud regains developers
after more then six months have passed since the event.

With Figure 6.39 and Figure 6.40, we visualize the developer count for E7 and
E9 within a one-year range. E7 led to continually increasing developer numbers,
whereas the developer numbers six months before and six months after E9 do not
change a lot.
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Overall, we have the same conclusion as in the previous section: The plot for own-
Cloud (E3 ) displays decreasing numbers in the developer count shortly after the
event. An uptrend is noticeable when looking several months after the event (Fig-
ure 6.13). Hypothesis 4.2 holds for E7, but not for E9 when evaluating the Qt
events of Group 4. Thus, we have to reject Hypothesis 4.2.
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Figure 6.38: Developer count for ownCloud E3.
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Figure 6.39: Developer count for Qt E7.

6.4.3 Hypothesis 4.3: Scale-Freeness

Hypothesis 4.3. If the project was not in a scale-free state, it will gradually achieve
it.

Figure 6.10 and Figure 6.32 contain the scale free states for the ownCloud and Qt
project. The network for Qt became scale free shortly before E7 and never lost its
scale-freeness ever since. ownCloud, on the other hand, briefly was scale-free after
the event E3 for one time window but never gained its scale-freeness back. Hence,
the hypothesis does not hold.
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Figure 6.40: Developer count for Qt E9.

6.4.4 Hypothesis 4.4: Developer Hierarchy

Hypothesis 4.4. The clustering coefficient for core developers will decrease, whereas
the node degree will increase.

As we already have seen different results in the previous hypotheses for ownCloud
than expected, it is only natural that we will perceive different results in the hi-
erarchy diagrams than claimed with Hypothesis 4.4. When looking at Figure 6.41,
we can see that the clustering coefficient for core developers gradually increases and
the node degree decreases as well. This effect can also be explained by E1 and
E2, which were the reason for the downtrend. The decreasing node degree and in-
creasing clustering coefficient shows that there is a decrease in coordination done by
core developers. In Figure 6.42 for Qt, we can see an increase in developer count
towards several months after the event E7. A real trend for the clustering coefficient
and node degree for core developers is not recognizable. Even though, there are two
hierarchy diagrams showing an outlier core developer with increased node degree
and decreased clustering coefficient. For E9 we can see that the overall structure
changes towards developers having a higher node degree and a smaller clustering
coefficient. Thus, the coordination work increases overall.

The results for E3 do not support the hypothesis and thus the hypothesis does not
hold.

6.4.5 Conclusion for Hypothesis 4

Hypothesis 4 covered the events which we categorized as positive organizational
events. Therefore we predicted positive consequences for our count based measure-
ments, as well as network stability like we did for Hypothesis 2. Based on the devel-
oper count of ownCloud(Figure 6.13), we can see that E3 was probably triggered
by a previous downtrend. Especially the developer count was decreasing before the
actual event date. We only can see a small uptrend in developer count months after
the actual event. Especially the scale-freeness was never regained for ownCloud.
But this is not enough to claim that this hypothesis holds, even though the results
for Qt matches our hypotheses in most of the aspects.
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Figure 6.41: Network hierarchy for E3. The clustering coefficient for core developers
gradually increases and the node degree decreases.
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Figure 6.42: Network hierarchy for E7. A trend for the clustering coefficient and
node degree for core developers is not recognizable.
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Figure 6.43: Network hierarchy for E9. The overall structure changes towards
developers having a higher node degree and a smaller clustering coefficient.
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6.5 Evaluation of Releases

In this section, we discuss the effects of releases on the repositories. When we evalu-
ated the previous hypotheses, we often encountered different results than expected.
Sometimes we suggested that releases which occurred before had an impact on the
results. That is why we are going to examine major release dates for Owncloud,
Node.js, Qt, and Keras. For Qt, we used the Qt5 repository which came with
the switch to an open governance model, except for release 4.8 which was based on
the old Qt4 repository. We focus on the trend of developer count six months before
and six months after the release compared to the actual release date. Additionally,
we look if the project is in a scale-free state six months before and after the release
date. We mark projects as being scale-free if the projects are in a scale-free state
more than 50 percent of the time in the three-month windows six months before and
six months after the release.

Table 6.3 summarizes the information about the trend of developer count and scale-
freeness for the release six months before and six months after the release date. If we
take Node.js release 0.12.x at 2015-02-06 for example, we can see that the devel-
oper count increases by 37% towards the release date. We calculate this percentage
by accumulating the developer count for three time windows before the release. Af-
terwards, we calculate the average developer count for the three time windows and
compare the value with the developer count at the release time window. The devel-
oper count decrease by 33% towards six months after the release. We calculate this
value similar as we did for the previous one, except we use the three time windows
after the release date to calculate the average. The project was in a scale-free state
most of the time six months before the release and lost its scale-freeness for over
50% of the time windows six months after the release.

Evaluating the table, we can see that there is almost always an increase in developer
count before the release and a decrease afterwards for Owncloud. The same results
are visible for Node.js except for release 8.x, which shows an increase in developer
count after the release date. Also Node.js release 6.x shows a different trend,
but the values are almost zero percent. Qt, on the other hand, has almost always
decreasing developer numbers before a release and increasing numbers after a release.
The developer numbers for Keras at the releases are quite close to each other. But
release 2.0.8 shows a massive downtrend before the release date and release 1.0.0
shows an huge increase after the event.

When looking at the scale-freeness six months before and after the release dates we
can see that the networks almost always stay in the same state. There are only 5
out of 29 releases which show a change of network state. Three of them show the
change of a not scale-free state towards a scale-free state. Those three releases also
have increasing developer numbers before and after the release.

To conclude, we can say that the developer count is almost always affected by release
dates. Release 0.12.x for Node.js and 5.0 for Qt lead towards a none scale-free
state. When looking at the developer count for those releases, we can see huge
decreasing numbers. Overall, the scale-free state before and after a release stays the
same for almost every release we checked.
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62 6. Results

6.6 Threats to Validity

Internal Validity. We inspect repository data and developer networks over time.
Choosing three-month time windows does not necessarily imply reliable results.
However, we choose three-month time windows based on the experience of previous
work [MW11, JAM17]. Depending on developer productivity and participation of
each project, smaller or bigger time windows might be a better fit. Another threat
is that we cannot determine the exact date for an event and their consequences.
Consequences can show up days, months or even years before or after an event.
When investigating an event, we choose to analyze the commit data six months
before and six months after the event. A one year period for evaluating events does
not necessarily deliver expressive results. Choosing smaller or larger time periods
could lead to better results. However, by using overlapping time windows for the
events, we tried to get additional information to support our statements at the event
dates. Also developers having different GitHub accounts for their working space
for example can manipulate our perceived data. Therefore core developers could be
falsely classified as peripheral. Another threat might be bots doing cleaning com-
mits once in a while, which also can distort our results. Further, only analyzing
commit-based data without taking communication channels like mailing lists, chats,
GitHub comment sections, etc. into consideration can lead to wrong results. The
selection of events is also important. By choosing similar events or events without
impactful consequences, we can get misguided by our perceived results. Therefore,
we tried to select different event types and ordered them into different event groups
to soften the consequences.

External Validity. We examined events for four different open source software
projects which are all different in size and population. Only picking open source
projects is an external threat to validity. By choosing different sized projects and
projects with different publicity we try to soften the consequences. For example
Keras is mainly known by people working in the field of machine learning, whereas
ownCloud serves a broader audience. Thus, consequences can have different mag-
nitudes. Also, the contributor number for three-month time windows of our eval-
uated events, range from less than 50 to over 200 active developers. Unexpected
human behavior is also an external threat. We can not predict the human response
to events and thus we cannot always see expected changes to the data. Another
external threat to validity is to choose the correct active repository of a project for
mining. As we have seen with Qt, two different repositories were overlapping until
the development of one repository finally stopped.



7 Conclusion

With this thesis, we wanted to investigate consequences for open source software
projects caused by special events within the respective community. Therefore, we
chose four different open source projects and inspected different events occurring
to them. We ended up with 11 different events and ordered them into social or
organizational change. Additionally, we divided the events by their expected positive
or negative consequences for the community. We created an analyzing script for
building developer networks based on commit data, calculating count-based and
network-based metrics, and visualizing the results in form of expressive plots.

After identifying the events, we constructed hypotheses for each event group. Those
hypotheses contained assumptions towards the evolution of the repositories. The
hypotheses covered changes to count-based information and developer networks.

We found out that some social and organizational events show changes to developer
count, scale-freeness, node-degree and clustering coefficient of core developers. At
the same time, we found contrary results than we expected from certain events to
have. Thus, we assumed that we cannot predict if contributors react positive or
negative towards certain events. Human behavior and their decision making seem
to be a disturbing factor. Nevertheless, we found out that social events have a higher
impact on the perceived data and network then organizational ones.

With this thesis, we examined git data within six months before and six months
after an event. We primarily evaluated the results visually. A future approach
could be to analyze a complete repository and statistically find abnormal data or
network behavior at a specific time. Afterwards, the community and the media
can be checked in order to find social or organizational events or even releases at
that time window. Statistical analysis in combination with a visual approach might
deliver clearer results. Also taking communication channels like mailing lists, chats
and GitHub comment sections into account, when building the developer networks,
would lead to better results. Knowing the consequences of events beforehand, would
allow the management of open source software projects to act appropriately and to
minimize the negative consequences.
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Figure A.2: Network Hierarchy for E6.
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