
Cyclic Level Planarity Testing and Embedding
(Extended Abstract)

Christian Bachmaier, Wolfgang Brunner, and Christof König

University of Passau, Germany
{bachmaier|brunner|koenig}@fim.uni-passau.de

Abstract. In this paper we introduce cyclic level planar graphs, which
are a planar version of the recurrent hierarchies from Sugiyama et al. [8]
and the cyclic extension of level planar graphs, where the first level is the
successor of the last level. We study the testing and embedding problem
and solve it for strongly connected graphs in time O(|V | log |V |).

1 Introduction

Cyclic level planar graphs receive their motivation from two sources: level planar
graphs and recurrent hierarchies.

A level graph is a directed acyclic graph with a level assignment for each
node. Nodes on the same level are placed on a horizontal line and edges are
drawn downwards from the upper to the lower end node. Level planarity has
been studied intensively in recent years. Jünger and Leipert [6] completed this
series and established a linear time algorithm for the level planarity testing and
embedding problem. Bachmaier et al. [1] extended level planarity to radial level
planarity. Here the levels are concentric circles and the edges are directed from
inner to outer circles. Again there are linear time algorithms for the testing and
embedding problem. Radial level planar graphs can also be drawn on a cylinder
where each level is a circle on the surface.

Recurrent hierarchies were introduced by Sugiyama et al. [8] over 25 years
ago. A recurrent hierarchy is a level graph with additional edges from the last to
the first level. Here two possible drawings are natural: The first is a 2D drawing
where the levels are rays from a common center, and are sorted counterclock-
wise by their number, see Fig. 1. All nodes of one level are placed on different
positions on the corresponding ray and an edge e = (u, v) is drawn as a mono-
tone counterclockwise curve from u to v wrapping around the center at most
once. The second is a 3D drawing of a level graph on a cylinder, see Fig. 2. A
planar recurrent hierarchy is shown on the cover of the book by Kaufmann and
Wagner [7], in which it is stated that recurrent hierarchies are “unfortunately
[...] still not well studied”. This paper will improve this situation.

We consider cyclic k-level graphs with edges spanning many levels. First,
observe that every (undirected) planar graph with a given embedding and any
level assignment is a cyclic level planar graph, if the edges are arbitrary Jordan
curves. These curves can even be monotone, such that every edge goes either

5

3

7

4

6

8

1

2

g

f

m

j

k

i

l

b

h

e a

c

d

C
5

C
6

C
5

Fig. 1. 2D drawing of a cyclic 8-level graph G

1

3

4

2

a

b

c

j

i

d
C

5

C
6

Fig. 2. Drawing of G on a cylinder

clockwise or counterclockwise around the center in the 2D drawing. This draw-
ing can be obtained by a variation of the algorithm of de Fraysseix et al. [3],
wrapping the graph |V | times round the center and successively moving each
node counterclockwise to its level. Thus we limit the edges as described above.

Healy and Kuusik [4] have presented an algorithm for level planarity testing
and embedding using the vertex-exchange graph. For proper graphs the algorithm
finds an embedding in O(|V |3). Every non-proper graph can be made proper by
adding at most O(|V |2) dummy nodes on the edges which leads to a running
time of O(|V |6) for non-proper graphs. We claim that this algorithm can be used
for testing and embedding cyclic k-level graphs without major modifications as
the algorithm can handle edges from level k to level 1 as any other edge.

In this paper we improve this result and show that cyclic level planarity test-
ing and embedding can be solved in O(|V | log |V |) time for strongly connected
non-proper graphs.

2 Preliminaries

A cyclic k-level graph G = (V,E, φ) (k ≥ 2) is a directed graph without self-loops
with a given surjective level assignment of the nodes φ : V → {1, 2, . . . , k}. For
two nodes u, v ∈ V let span(u, v) := φ(v)−φ(u) if φ(u) < φ(v) and span(u, v) :=
φ(v) − φ(u) + k otherwise. For an edge e = (a, b) ∈ E we define span(e) :=
span(a, b). A graph is proper if for all edges e ∈ E span(e) = 1 holds. For a
simple path or simple cycle P we define span(P) :=

∑
e∈E(P) span(e). A drawing

is (cyclic level) plane if the edges do not cross except on common endpoints. A
cyclic k-level graph is (cyclic level) planar if such a drawing exists. The right
outer face is the face of the 2D drawing containing the center and the left outer
face is the unbounded face. A cyclic level planar embedding consists of two lists
N−(v) and N+(v) for each node v ∈ V which contain the end nodes of ingoing
and outgoing edges, respectively, which are both ordered from left to right.

Proposition 1 (Euler, [4]). Let G be a planar cyclic k-level graph. Then |E| ≤
3|V | − 6. If G is proper, |E| ≤ 2|V | − k. Both inequalities are tight.

3 Testing Strongly Connected Graphs

In this section we present our algorithm embedCyclicLevelPlanar(G) for cyclic
level planarity testing and embedding of strongly connected graphs. The algo-
rithm is quite technical; this seems to be inherent to level planarity and its
extensions. Algorithm 1 has some similarities to the planarity testing algorithm
by Hopcroft and Tarjan [5] and consists of three phases. The first phase (see
lines 1–2 and Sect. 3.1) searches for a simple cycle C0 in G and splits G \ C0
into its “connected” components C1, . . . , Cp which correspond to segments in [5].
The second phase (lines 3–12, Sect. 3.2) tries to find a cyclic level planar embed-
ding for each Ci, s.t. all nodes in V (Ci) ∩ V (C0) lie on the same border of the
embedding. If a component does not wrap around the center completely, a level
planarity test is applied. Otherwise the test is applied to each of its subcompo-
nents. The third phase (lines 13–23, Sect. 3.3) decides for each Ci whether it will
be embedded on the left or right side of C0.

Algorithm 1: embedCyclicLevelPlanar
Input: G: a cyclic k-level graph
Output: a cyclic level planar embedding H of G or abort
Let C0 be a simple cycle in G with embedding H // abort if span(C0) > k1
Let C := {C1, . . . , Cp} be the components of G sorted by increasing span2
foreach Ci ∈ C do3

if span(Ci) ≤ k then embedLevelPlanar(C′i) // and thus Ci, abort if it fails4
else5

initialize NEXT_PAIRS6
while NEXT_PAIRS 6= ∅ do7

(u, v) := remove(NEXT_PAIRS)8
Si := findSubcomponent(u, v) // abort if it fails9
embedLevelPlanar(S′i) // and thus Si, abort if it fails10
add Si to the left side of the embedding of Ci11
update NEXT_PAIRS12

build the set R by constructing a rigid component R for each virtual edge of C013
foreach Ci ∈ C do14

traverse the border of R for consecutive nodes in link(Ci) // abort if it fails15
update R16

foreach R ∈ R do17
traverse the tree of R formed by rigid components and for each node Rj with18
Ci = component(Rj) set di to the number of RIGHT entries on its path19

foreach Ci ∈ C do20
if di is uninitialized then embed Ci to the side of H where its link nodes are21
else if di is even then embed Ci to the left side of H22
else embed Ci to the right side of H23

return H24

3.1 Splitting the Graph

The first step of the algorithm is to find a simple cycle C0 in G. Such a cycle
exists as G is strongly connected. If span(C0) > k, the cycle C0 is not cyclic
level planar and the algorithm aborts. Otherwise span(C0) = k holds and C0
has exactly one possible embedding.

Definition 1. Let C0 be a simple cycle of G. Two edges e1, e2 ∈ E \ E(C0)
are part of the same component C if there exists an undirected path P con-
necting an end node of e1 to an end node of e2 s.t. V (P) ∩ V (C0) = ∅. C has
at most two levels with exactly one node of C0 and no other nodes of C on
them and no edges of C crossing these levels. If C has exactly two such levels,
one of the nodes on them has no ingoing edges and one no outgoing edges. We
call these nodes upper(C) and lower(C), respectively. If C has exactly one such
node, we call it upper(C) = lower(C). In both cases we call C open and de-
fine span(C) := span(upper(C), lower(C)). Let link(C) be the set V (C)∩ V (C0)
sorted from upper(C) to lower(C) by increasing level. If upper(C) = lower(C),
the first and the last element in link(C) is this node. If C has no such levels, we
call C closed and define span(C) :=∞ and link(C) as all nodes in V (C)∩V (C0)
sorted by increasing level with the (arbitrary) first and last node being the same.

Next all components C1, . . . , Cp are computed by a connectivity test which
can be done in time O(|V |). For each Ci we add a virtual edge for each pair
of consecutive nodes in link(Ci). Each virtual edge corresponds to a path in
C0. The virtual edges ensure that in the computed embedding of Ci all nodes
in link(Ci) are on the same side of the border. This is obviously necessary to
obtain a cyclic level planar embedding of C0∪Ci as Ci is connected. The virtual
edges are deleted after an embedding of Ci is found.

See Fig. 1 as an example. Let (a, b, c, d, e, f, g, h) be the cycle C0. There
are components C1, . . . , C6 with E(C1) = {(a, c)}, E(C2) = {(b, d)}, E(C3) =
{(d, k), (k, f)} and E(C4) = {(g, a)}. C5 and C6 consist of the dashed and dotted
edges, respectively. C1 through C5 are open components and C6 is a closed
component, upper(C5) = b, lower(C5) = h, link(C5) = [b, d, h] and span(C5) = 6.
For C6 span(C6) =∞ and link(C6) = [c, e, c] hold and upper(C6) and lower(C6)
are undefined. Without the edge (m, j) C6 would be an open component with
upper(C6) = lower(C6) = c and span(C6) = 8.

3.2 Embedding the Components

If C is an open component with span(C) < k, we set C ′ = C. If span(C) = k,
we construct C ′ by duplicating the level of upper(C) = lower(C) with upper(C ′)
receiving all outgoing and lower(C ′) all ingoing edges of the node upper(C) =
lower(C). After adding an edge (upper(C ′), lower(C ′)) the last phase of the lin-
ear time level planarity embedding algorithm of [6] is applied to the st-graph C ′.
In the remaining case C is a closed component. We decompose C into subcom-
ponents and apply the last phase of the algorithm of [6] to each subcomponent.
This decomposition is possible because G is strongly connected.

Definition 2. Let C be a closed component. The subcomponents S0, . . . , Sq are
an edge disjoint decomposition of C. S0 consists of the nodes in link(C) and the
virtual edges of C. Let Hj =

⋃j
i=0 Si (0 ≤ j ≤ q). We construct Sj (1 ≤ j ≤ q)

s.t. 1 ≤ |V (Sj)∩V (Hj−1)| ≤ 2. If |V (Sj)∩V (Hj−1)| = 2, we call the two nodes
upper(Sj) and lower(Sj). If |V (Sj) ∩ V (Hj−1)| = 1 holds, we call this node
upper(Sj) = lower(Sj). In both cases Sj consists of all edges lying on a path
P from upper(Sj) to lower(Sj) with span(P) = span(upper(Sj), lower(Sj)). Let
V ′(Sj) := V (Sj) \ {upper(Sj), lower(Sj)}. We call v ∈ V ′(Sj) externally active
if degSj (v) < degC(v) and Sj externally active if V ′(Sj) contains such a node.
We call a node v ∈ V (Hj−1) externally active if degHj−1(v) < degC(v).

1

1

3

2

4

5

1

6

11

7

1

2

3

4

56

7

8

S
0

S
1

S
2

S
3

S
4

Fig. 3. Embedding
a closed component

Á u()

vÁ v()

P
1

P
2

L

Á w()

u

P
1

0

C
0

w

Fig. 4. Aborting case
in findSubcomponent

1

3

2

4

5

6

7

8

9 a

R
5

a

R
3

R
2

f

R
4

R
1

h

c

l

C
5

d

b

ek

d

g

h

c

b

e

g

f

d

c

b

l

h

aa

Fig. 5. Arranging component C5

The closed component in Fig. 3 is split into the subcomponents S0, . . . , S4
with S0 consisting of the virtual edges (1, 2) and (2, 1). E(S1) = {(1, 3), (3, 2)}
and E(S2) = {(2, 4), (4, 1)} hold. S3 and S4 consist of the dashed and dotted
edges, respectively. upper(S3) = 3 and lower(S3) = 4 hold and S3 is externally
active because the nodes 6 and 7 are externally active. Thus 6 and 7 have to be
placed on the left side of the embedding of S3.

To compute a cyclic level planar embedding for a closed component C, we
start with an embedding of H0 for the cycle of virtual edges. We then repeat the
following steps as long as there are edges to embed:

1. Find two (not necessarily different) nodes u and v on the left border of the
embedding of Hj−1 with unembedded outgoing and ingoing nodes, respec-
tively s.t. no externally active nodes lie between u and v.

2. Find the subcomponent Sj with upper(Sj) = u and lower(Sj) = v.
3. Try to embed the subcomponent to the left side of Hj−1, s.t. all externally

active nodes appear on the left border.

We maintain a set NEXT_PAIRS of pairs of nodes to store the end nodes for
possible next subcomponents to embed. We initialize NEXT_PAIRS with those
virtual edges e = (u, v) ∈ E(C), where u and v have unembedded outgoing and
ingoing edges, respectively. We can now choose an arbitrary element (u, v) ∈
NEXT_PAIRS and determine whether there really are paths from u to v.

findSubcomponent(u, v) tries to find the subcomponent S with upper(S) = u
and lower(S) = v in time O(|E(S)| log |E(S)|) as follows: We examine untra-
versed paths from u downwards and from v upwards by taking edges alternately.
If the downwards phase finds a visited node, it starts again with the next highest
node with unvisited outgoing edges to which a path from u and v has been found
(thus priority queues and the logarithmic overhead are needed). The downwards
phase aborts the current path if it runs below the lowest node with unvisited
ingoing edges (at the latest v) or if no such node below the current path exists.
The upwards phase is symmetric. We ensure that the starting node of a path
of the downwards phase lies above the starting node of the upwards phase. If
one phase follows a path that will not belong to S, the running time can be ac-
counted to the path found by the other phase. If both phases follow such paths,
Lemma 2 shows that a crossing is then inevitable.

The next step is to find an embedding for the subcomponent S. If span(S) <
k, the subcomponent does not wrap around the center and we actually have the
problem of finding a level planar embedding for S′ = S. If span(S) = k, we create
a level planarity problem instance S′ by duplicating the level of upper(S) =
lower(S) and the node itself. One node (which we call upper(S′) from now on)
receives the outgoing edges and the other (lower(S′)) the ingoing edges. In both
cases we now have a level planarity problem instance with span(S)+1 levels. But
we also have to ensure that all externally active nodes of S′ lie on the left border
of the embedding. (We show in Lemma 1 that C is not cyclic level planar if such
an embedding does not exist.) To do so we add a node f to the level of lower(S′)
and connect all externally active nodes to f . We also add a node w below f and
lower(S′) and add the edges (f, w), (lower(S′), w) and (upper(S′), w) to obtain
an st-graph. Therefore, again the last phase of the embedding algorithm for level
planar graphs as described in [6] suffices. If the result is an embedding with all
externally active nodes lying on the right border, we flip the embedding. If the
level planarity testing algorithm fails, then S is not cyclic level planar and the
algorithm aborts. If it succeeds, we add the embedding of S to the left side of
the partial embedding of C.

As a last step we have to update the set NEXT_PAIRS. If the last so far
embedded subcomponent S was not externally active, we follow the left border
of the partial embedding of C from upper(S) upwards and search for the first
externally active node e1. Note that upper(S) itself can be externally active. If
we do not find such a node, the component has been embedded completely. We
also search from lower(S) downwards for the first externally active node e2. If
e1 has unembedded outgoing edges and e2 unembedded ingoing edges, we add
(e1, e2) to NEXT_PAIRS. Otherwise we add a short cut edge (e1, e2) to the left
border of the embedding to ensure that this path will not be traversed a second

time. Short cut edges are removed as the last step of this phase. If S is externally
active, the same search is performed twice: from upper(S) and from lower(S) in
each case upwards and downwards. Note that both searches can find the same
pair of nodes which is added to NEXT_PAIRS only once.

In Fig. 3 NEXT_PAIRS is initialized with {(1, 2), (2, 1)}. Let (1, 2) be the
first taken pair. After embedding S1 both searches fail and after S2 the pair (3, 4)
is added. After treating S3 both searches find the pair (6, 7) which is added once.

Definition 3. We call a planar embedding of a subgraph of C (cyclic level)
planarity preserving if it can be expanded to a planar embedding of C without
changing the relative order in the N− and N+ lists if C is cyclic level planar.

Lemma 1. For a closed component the algorithm constructs only planarity pre-
serving embeddings. In particular each partial embedding can be extended, s.t.
new subcomponents are only added to the left outer face with all externally ac-
tive nodes lying on the left side.

Proof. We give the proof by induction over the number of embedded subcom-
ponents j. If j = 0, the cycle of virtual edges has only one embedding. Suppose
that the algorithm has embedded the subgraph Hj−1 and is about to embed Sj .
We have to show now that the chosen embedding for Sj is either the only one
possible or does not influence the planarity preserving property.

Let L be the left border of Hj−1 strictly between upper(Sj) and lower(Sj).
The algorithm will embed Sj to the left of L. Let us assume for contradiction
that it is possible to embed (a part of) Sj to the right of L (and the left of S0).
With induction assumption Hj−1 is planarity preserving. Thus a face F in the
current embedding Hj−1 on the right side of L has to exist on which upper(Sj)
and lower(Sj) lie. Note that the left border of F has to belong completely to an
already embedded subcomponent Si (i < j). But then Sj would be a part of Si.
A contradiction. If upper(Sj) and lower(Sj) both lie on S0, then embedding Sj to
the right of S0 seems to be an option. But all subcomponents of one component
have to be embedded on the same side as a component is connected.

The second possibility of choice regards the subcomponent itself: The sub-
component Sj can have several different embeddings but only the position of the
externally active nodes are important. The algorithm places all these nodes on
the left side of the subcomponent. Theoretically it would be possible to place an
externally active node to the right side of the subcomponent or in the middle of
it. But in both cases the path from the externally active node to either the level
of upper(Sj) or lower(Sj) could then not be embedded in a planar way. ut

See Fig. 3 as an example: Embedding S1 or S2 to the right side of S0 is not
possible as the component is connected. Embedding (a part of) S3 to the right
side of L = {2} is not possible as no face between (S1, S2) and S0 exists to which
3 and 4 belong. The nodes 6 and 7 must lie on the left outer face to be able to
embed S4.

Lemma 2. If findSubcomponent(u, v) aborts while searching for a subcompo-
nent Sj of a component C, C is not cyclic level planar.

Proof. The subalgorithm aborts when it finds two disjoint paths P1 and P2, s.t.
P1 is a path from u downwards to level φ(v) but misses v and P2 is a path from
v upwards to level φ(u) but misses u. (This has to be the case if there is no path
from u to v with length span(u, v) at all.) Let L be the current left border of the
partial embedding of C. The only possible way to embed P1 and P2 in a cyclic
level planar way is to put one path to the left and one to the right of L. If v lies
on C0, P2 has to be embedded on the same side as the rest of the component as
the component is connected (see Fig. 4). The case for P1 is analogous.

We will now show that P1 has to be embedded on the left of L if u does
not lie on C0 (see Fig. 4). The proof for P2 is analogous. Let P ′1 be one shortest
extension of P1 to a node on L. If span(P ′1) > k, then P ′1 cannot be embedded
on the right of L obviously. Otherwise let w be the end node of P ′1. Assume
for contradiction that a face to the right of L exists to which u and w belong,
s.t. P ′1 fits into it. The left border of the face belongs completely to an already
embedded subcomponent Si (i < j). But then P ′1 would have been found by the
same call of findSubcomponent as Si. A contradiction. ut

3.3 Arranging the Components

This phase combines ideas from [2] and [5]. We have to decide which components
are embedded on the left side of C0 and which to the right side. Therefore we first
sort the components by increasing span. If there are several components with
the same span, then the components with exactly two link nodes are considered
last. The p components can be sorted by bucket sort in O(p+ k).

We add one component at a time to the left side of C0. Let Ci be the com-
ponent to be embedded next. To do so it can be necessary to flip some already
embedded components to the other side of C0. Ci and all components which
have overlapping spanned levels with Ci form a rigid component (see the data
structure below) and are flipped simultaneously from now on. Among these a
component Cj could be, s.t. Cj is embraced by the new component Ci in such a
way, that Cj could lie on both sides of C0. In this case we now decide on which
side Cj will lie relative to Ci, too, by choosing an arbitrary side.

Definition 4. A rigid component R is a recursive data structure consisting of a
main component called component(R) and all other already constructed rigid
components R1, . . . , Rr with overlapping levels with component(R). For each
Ri a flag oi ∈ {LEFT,RIGHT} is stored, which indicates on which side Ri
lies relative to component(R), which is assumed to lie on the left side of C0.
rigidComponents(R) = {(R1, o1), . . . , (Rr, or)} stores this information. R also
has two nodes upper(R) and lower(R), which are its upper and lower end nodes.
We define span(R) := span(upper(R), lower(R)). Furthermore, R stores four
pointers to the nodes under upper(R) and over lower(R) on either side of the bor-
der called border pointers and one pointer to the next rigid component next(R).

Each node on the border has pointers to the predecessor and successor node
on the border. Note that when traversing a border we can determine on which
side of which rigid component we are when we encounter a border pointer.

Definition 5. Let C1, . . . , Cp be all components sorted in the way described
above and let Ci be the component to be embedded next. We call a node v ∈ V (C0)
pertinent if v ∈ link(Ci). We call v ∈ V (C0) strongly externally active if the fol-
lowing conditions hold:

1. There exists a component Cj(j > i) s.t. v ∈ link(Cj).
2. The node v is not the upper end node of a rigid component.
3. If Ci is an open component, then v is strictly between φ(upper(C)) and

φ(lower(C)).

Note that all nodes satisfying the first condition have to be reachable from
one outer face after embedding Ci. But only nodes for which the second and
third condition hold can possibly be enclosed by Ci. A node can be pertinent
and strongly externally active at the same time. When embedding C5 in Fig. 1
the nodes b, d and h are pertinent and c and e are strongly externally active.

We do not embed a component into another one. Therefore, we have to make
sure that all strongly externally active nodes of C0 stay reachable from at least
one outer face. To embed a component Ci all pertinent nodes have to be reachable
from the same side. After embedding an open component no node of C0 between
the levels of upper(Ci) and lower(Ci) (both not included) is reachable from the
left side. After embedding a closed component no node of C0 is reachable from
the left side.

We now have to flip all Rj which have overlapping spanned levels with Ci
s. t. all pertinent nodes on the border of Rj lie on the left side and all strongly
externally active nodes on the border of Rj lie on the right side.

Just looking through both sides of the border for each such rigid component
could yield a quadratic running time. But for each R we examine, one side of the
border of R will be enclosed by the component Ci we want to embed and will
therefore never be traversed again. So we can always traverse the shorter of the
two sides of the border of R. Further, we do not really flip a rigid component,
but store how often it should be flipped only.

For each edge e = (u, v) ∈ E(C0) we initialize a rigid component R with
upper(R) = u, lower(R) = v. Let Ci be the component to be embedded next.
We have to find a path from upper(Ci) to lower(Ci) along the borders of the rigid
components on which all pertinent nodes lie. Additionally no strongly externally
active nodes may lie on this path.

We use a method searchOneSide(source, target) if we already know which side
of a rigid component we have to follow and searchBothSides(source, target) if we
do not. We then follow both borders alternately. We search for paths connecting
each consecutive pair of nodes (u, v) in link(Ci): We call searchOneSide(u, v) if
u lies on the border of a rigid component and searchBothSides(u, v) if u is the
upper end of a rigid component. If searchOneSide(u, v) finds a strongly externally
active node, the algorithm aborts (even if the node is v). If it finds the node v, a
path from u to v has been found. If we reach φ(v) or a level below without finding
v, we know we are on the wrong side of the border and the algorithm aborts.
If it finds the lower end node w of a rigid component, searchBothSides(w, v) is
called.

Due to performance restrictions in searchBothSides(u, v) we have to make
sure to completely traverse the side which will be enclosed only. We start taking
alternately one edge of the left and one of the right side of the rigid component
R whose upper end is u. If φ(v) is below φ(lower(R)), then we just have to
find one side which has no strongly externally active nodes on it. Thus, if we
reach the lower end of the rigid component R from one side, we take this side
and start searchBothSides(upper(next(R)), v). If we reach a strongly externally
active node, we only follow the other side from now on. If we encounter a strongly
externally active node on the other side as well, the algorithm aborts.

If φ(v) lies between φ(upper(R)) and φ(lower(R)), we additionally test the
following: If we find the node v from one side, we have found the path. Again,
if we miss v on one side, we know that v lies on the other side and we do not
follow this path any further.

If the algorithm did not abort, we have now found a path from upper(Ci)
to lower(Ci) on the sides of the rigid components. Due to the border point-
ers we know for each Ri which side we have used (except a special case dis-
cussed below). We can therefore test if upper(Ci) and lower(Ci) lie on differ-
ent sides of the same rigid component and abort if it is the case. We now
create a new rigid component R containing all visited Ri. Let Rlower be the
rigid component s.t. lower(Ci) is the lower end node of Rlower or lies on the
border of it. (We can identify Rlower if we encountered a border pointer). We
set lower(R) := lower(Rlower) and upper(R) for upper(Rupper) accordingly. We
set component(R) := Ci and next(R) := next(Rlower). For each Rj between
upper(R) and lower(R) we add (Rj , LEFT) to rigidComponents(R) if the left
side of Rj was used and (Rj , RIGHT), otherwise. At last we have to construct
the left and right border of R. The left border is the path from upper(R) to
upper(Ci) with the left border of Ci and the path from lower(Ci) to lower(R).
The right border is the path from upper(R) to lower(R) which was not used. To
build this path we do not have to run through this path completely. It suffices
to update the pointers at the connections between two (old) rigid components.
If we have to merge a rigid component with itself, we only maintain a pseudo
rigid component with two cyclic lists for the borders from there on.

One special case remains: Let Ci be the component to be embedded next
and all nodes in link(Ci) lie on the same side of the same rigid component and
no strongly externally active nodes lie between them. We then know that Ci can
be embedded. But we do not know to which side, as we have not encountered
a border pointer. So we do not construct a new rigid component for Ci, but
update the border only.

Lemma 3. If the search for the paths on the borders of the rigid components
aborts for a component Ci, Ci cannot be added in a planar way.

Proof. In this case the link nodes of Ci cannot be reached from the same side
and so Ci cannot be added in the current situation. We show that all decisions
the arranging algorithm makes are planarity preserving. Choosing an arbitrary
side of a rigid component if both sides are not strongly externally active cannot

have an influence on later components. In the chosen order of the components
embedding a component Ci to the inner side of an already embedded component
Cj is possible only if both are open and have the same upper and lower end nodes.
If Cj has more than 2 link nodes, Ci cannot be embedded on the inner side. Ci
having more than two link nodes and Cj having exactly two is not possible due
to our sorting. In the last case Ci and Cj have exactly two link nodes. This
cannot happen as then Ci could still be embedded on the outer side of Cj . ut

After all components have been processed, the rigidComponents lists form a
set of trees. For each R we count with d how often the value RIGHT is stored
on the path from the root of its tree to R. If d is odd, we know we have to embed
component(R) to the right otherwise to the left. In the end, we go through the
list of components and embed it to the calculated side. If we find a component
for which we do not know the side, we embed it to the side on which its link
nodes lie.

Figure 5 shows the situation of embedding C5: On the left the component
C5 is shown with bold virtual edges. In the middle we see the current rigid com-
ponents. The algorithm starts with searchOneSide(b, d) and finds d by using the
left side of R1. Then searchBothSides(d, h) is called and both sides of R2 are
searched. The right is not followed below e as e is strongly externally active. But
the left side can be used and searchBothSides(f, h) is called which will choose,
e. g., the left side of R3. The call of searchBothSides(g, h) will find h on the right
side. So we have found a path from b to h. In the new rigid component R5
we set rigidComponents(R5) = {(R1, LEFT), (R2, LEFT), (R3, LEFT), (R4,
RIGHT)}. R5 is shown on the right in Fig. 5. Now we embed C6 and search for
paths from c to e and from e to c. We obtain a pseudo rigid component.

4 Correctness and Running Time

Theorem 1. Let G be a strongly connected cyclic k-level graph. G is cyclic level
planar if and only if embedCyclicLevelPlanar(G) does not abort.

Proof. If embedCyclicLevelPlanar(G) does not abort, the returned embedding
H is cyclic level planar as due to the construction of the algorithm no crossing
can be inserted.

We will now show that in all cases in which embedCyclicLevelPlanar(G)
aborts, G is not cyclic level planar. The cases are:

– span(C0) > k: Such a (simple) cycle can obviously not be cyclic level planar.
– embedLevelPlanar(C ′i) fails for a component Ci: As C ′i is a subgraph of G in

which paths on C0 are replaced by virtual edges, G cannot be planar then.
– findSubcomponent(u, v) fails: see Lemma 2.
– embedLevelPlanar(S′) fails for a subcomponent S: In this case S does not

have a level planar embedding with all externally active nodes on the same
border which we have shown to be necessary in Lemma 1.

– searching the borders of the rigid components fails for a component Ci: see
Lemma 3. ut

Theorem 2. embedCyclicLevelPlanar(G) runs in time O(|V | log |V |).

Proof. Finding a cycle and splittingG into its components can be done inO(|V |).
Next we consider the embedding of a component Ci. If span(Ci) ≤ k, a

linear time level planarity embedding algorithm is applied. Otherwise the fol-
lowing holds: Maintaining the set NEXT_PAIRS can be done in linear time.
The method findSubcomponent runs in time O(|E(S)| log |E(S)|) for a sub-
component S. Finding an embedding for S is again done by a level planarity
algorithm. This yields a running time of O(|V (Ci)| log |V (Ci)|) for embedding a
component Ci. If findSubcomponent aborts, its running time is in O(|V | log |V |).

Deciding for each Ci to which side of C0 it will be embedded is possible
in O(|P |) with P being the path on the partial embedding of G which will be
enclosed by Ci. This and the arranging itself is therefore possible in O(|V |). ut

5 Conclusion

In this paper we claim that the problem of finding a planar embedding can be
solved in O(|V |3) for proper cyclic k-level graphs and in O(|V |6) for non-proper
graphs by an algorithm presented in [4]. Our main result is a new algorithm
which solves the testing and embedding problem for non-proper and strongly
connected graphs in time O(|V | log |V |).

The major open problem is to improve this algorithm to linear running time
and to find algorithms with (near) linear running time for a larger class of graphs.
Combining the problems for radial level planarity and cyclic level planarity would
yield drawings on a torus and could also be a topic for further research.

References

1. C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity testing and
embedding in linear time. Journal of Graph Algorithms and Applications, 9(1):53–
97, 2005.

2. J. Boyer and W. Myrvold. On the cutting edge: Simplified O(n) planarity by edge
addition. Journal of Graph Algorithms and Applications, 8(3):241–273, 2004.

3. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, 1990.

4. P. Healy and A. Kuusik. Algorithms for multi-level graph planarity testing and
layout. Theoretical Computer Science, 320(2–3):331–344, 2004.

5. J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM,
21(4):549–568, 1974.

6. M. Jünger and S. Leipert. Level planar embedding in linear time. Journal of Graph
Algorithms and Applications, 6(1):67–113, 2002.

7. M. Kaufmann and D. Wagner. Drawing Graphs, volume 2025 of LNCS. Springer,
2001.

8. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man, and Cybernetics,
11(2):109–125, 1981.

