The Density of Classes of 1-Planar Graphs^{*}

Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Andreas Gleißner, Kathrin Hanauer, and Daniel Neuwirth

University of Passau, 94030 Passau, Germany {auerc,bachmaier,brandenb,gleissner,hanauer,neuwirth}@fim.uni-passau.de

The density of a graph G = (V, E) is the number of edges |E| as a function of the number of vertices n = |V|. It is an important graph parameter, and is often used to exclude a graph from a particular class. We survey the density of relevant subclasses of 1-planar graphs and establish some new and improved bounds. A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once.

We consider simple and connected graphs. A graph $G \in \mathcal{G}$ is maximal for a particular class of graphs \mathcal{G} if the addition of any edge e implies $G + e \notin \mathcal{G}$. Let $M(\mathcal{G}, n)$ and $m(\mathcal{G}, n)$ denote the maximum and minimum numbers of edges of a maximal *n*-vertex graph in \mathcal{G} . Graphs $G \in \mathcal{G}$ with density $M(\mathcal{G}, |G|)$ $(m(\mathcal{G}, |G|))$ are the densest (sparsest maximal) graphs of \mathcal{G} . Thus $M(\mathcal{G}, n)$ is an upper and $m(\mathcal{G}, n)$ a lower bound. It is well-known that $M(\mathcal{G}, n)$ and $m(\mathcal{G}, n)$ coincide for planar, bipartite planar, and outerplanar graphs with 3n - 6, 2n - 4, and 2n - 3, respectively. For 1-planar graphs the upper and lower bounds diverge. $M(\mathcal{G}, n) = 4n - 8$ was proved first of all by Bodendiek et al. [3] and was rediscovered several times. Surprisingly, there are much sparser maximal 1-planar graphs that are even sparser than maximum planar graphs. In [4] it was proved that $\frac{28}{13}n - \mathcal{O}(1) \leq m(\mathcal{G}, n) \leq \frac{45}{17}n - \mathcal{O}(1)$.

We consider the density of maximal graphs of subclasses of 1-planar graphs, with emphasis on sparse graphs. Our focus is on 3-connected [1], bipartite [7,8], and outer 1-planar [2] graphs. An *outer 1-planar* graph is drawn with all vertices in the outer face. Moreover, we restrict the drawings by fixed *rotation systems*, which specify the cyclic ordering of the edges at each vertex, and then may allow crossings of incident edges, which are generally excluded for 1-planarity.

Theorem 1. For the classes of graphs \mathcal{G} from Table 1, the stated upper bound on $M(\mathcal{G}, n)$ on the density is tight. The minimum density $m(\mathcal{G}, n)$ ranges between the functions in column "lower example" and "lower bound m".

3-connected. For 3-connected 1-planar graphs \mathcal{G} the upper bound is obvious. The lower bound $m(\mathcal{G}, n) = \frac{10}{3}n + \frac{20}{3}$ is tight. It improves the example of $3.625n + \mathcal{O}(1)$ from [6] and disproves their conjecture of $3.6n + \mathcal{O}(1)$.

A graph $G \in \mathcal{G}$ consists of non-planar K_4 s and a planar remainder, which is triangulated such that two adjacent triangles imply a K_4 . The removal of all pairs of crossing edges from G leaves a planar graph with t triangles and q quadrangles and the relation $t \leq q$, which together with Euler's formula yields the

 $^{^{\}star}$ Research partially supported by the German Science Foundation, DFG, Grant Br- 835/18-1

upper bound M lower example lower bound m

2-connected	4n - 8 [3]	$\frac{45}{17}n - \frac{84}{17}$ [4]	$\frac{28}{13}n - \frac{10}{3}$ [4]
3-connected	4n - 8 [3]	$\frac{10}{3}n - \frac{20}{3}$	$\frac{10}{3}n - \frac{20}{3}$
straight-line	4n - 9 [5]	$\frac{8}{3}n - \frac{11}{3}$	$\frac{28}{13}n - \frac{10}{3}$ [4]
fixed rotation, 2-connected	4n - 8 [3]	$\frac{7}{3}n - 3$ [4]	$\frac{21}{10}n - \frac{10}{3}$ [4]
fixed rotation, intersect incident	4n - 8 [3]	$\frac{3}{2}n+1$	$\frac{5}{4}n$
bipartite	3n - 8 [7]	n-1	n-1
bipartite, 2-connected	3n - 8 [7]	2n - 4	n
outer 1-planar	$\frac{5}{2}n - 4$	$\frac{11}{5}n - \frac{18}{5}$	$\frac{11}{5}n - \frac{18}{5}$
	` 1 (1 1	ć 1 .	

Table 1. Upper and lower bounds on the number of edges in maximal graphs

bound for $m(\mathcal{G}, n)$. The bound is achieved by a recursive construction of planar K_{4s} surrounded by non-planar K_{4s} surrounded by planar K_{4s} .

Outer 1-planar. A maximal outer 1-planar graph G is composed of planar K_{38} and non-planar K_{48} [2], such that two K_{38} are not adjacent. Removing the pairs of crossing edges from the K_{48} results in an outerplanar graph whose dual is a tree with vertices of degree 3 and 4. Each vertex of degree 3 adds one vertex and two edges, and each vertex of degree 4 adds two vertices and five edges to the density of G. Maximizing the degree-4 vertices yields $M(\mathcal{G}, n) = \frac{5}{2}n - 4$ and minimizing yields $m(\mathcal{G}, n) = \frac{11}{5}n - \frac{18}{5}$. Both bounds are tight.

References

- Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line drawings of 3connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, Springer (2013)
- Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reislhuber, J.: Recognizing outer 1-planar graphs in linear time. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, Springer (2013)
- Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale Graphen. Mathematische Nachrichten 117, 323–339 (1984)
- Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer (2013)
- Didimo, W.: Density of straight-line 1-planar graph drawings. Inform. Process. Lett. 113(7), 236–240 (2013)
- Hudák, D., Madaras, T., Suzuki, Y.: On properties of maximal 1-planar graphs. Discuss. Math. Graph Theory 32(4), 737–747 (2012)
- Karpov, D.V.: Upper bound on the number of edges of an almost planar bipartite graph. Tech. Rep. arXiv:1307.1013v1 [math.CO], Computing Research Repository (CoRR) (July 2013)
- Xu, C.: Algorithmen f
 ür die Dichte von Graphen. Master's thesis, University of Passau (2013)