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Global k-Level Crossing Reduction
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Abstract

Directed graphs are commonly drawn by a four phase framework in-
troduced by Sugiyama et al. in 1981. The vertices are placed on parallel
horizontal levels. The edge routing between consecutive levels is com-
puted by solving one-sided 2-level crossing minimization problems, which
are repeated in up and down sweeps over all levels. Crossing minimization
problems are generally NP-hard.

We introduce a global crossing reduction, which at any particular time
considers all crossings between all levels. Our approach is based on the sift-
ing technique. It yields an improvement of 5 – 10% in the number of cross-
ings over the level-by-level one-sided 2-level crossing reduction heuristics.
In addition, it avoids type 2 conflicts which are crossings between edges
whose endpoints are dummy vertices. This helps straightening long edges
spanning many levels. Finally, the global crossing reduction approach can
directly be extended to cyclic, radial, and clustered level graphs achieving
similar improvements. The running time is quadratic in the size of the
input graph, whereas the common level-by-level approaches are faster but
operate on larger graphs with many dummy vertices for long edges.
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1 Introduction

The four phase framework introduced by Sugiyama et al. [43] is the standard
algorithm for drawing directed graphs. It displays them in a hierarchical man-
ner and operates in four phases: cycle removal, leveling, crossing reduction, and
coordinate assignment. First, it reverses appropriate edges to eliminate cycles.
Then, it assigns vertices to levels, which are their y-coordinates, and introduces
dummy vertices splitting long edges at their crossings with spanned levels. This
results in a proper k-level graph. In the third phase the vertices are permuted
within the levels to reduce edge crossings. Finally, the x-coordinates are com-
puted such that all vertices have integral coordinates and the drawing meets
some aesthetic criteria such as few bends per edge. Typical applications for
such drawings are schedules, UML diagrams, and flow charts, where temporal
or causal dependencies are modeled by directed edges and are expressed by a
left to right or a downward direction, see [14,31,43].

In this paper we focus on the crossing reduction phase, where the vertices
on each level are rearranged to minimize the total number of crossings. The
common solution to this NP-hard k-level crossing minimization problem [25]
is a reduction to the one-sided 2-level crossing minimization problem, which is
solved repeatedly in several up and down sweeps [31, 43]. In a down sweep the
vertices Vi−1 in the upper level are fixed and the vertices Vi in the lower level are
reordered reducing the local number of edge crossings between the two levels. In
an up sweep the roles of the levels are switched. The one-sided 2-level crossing
minimization problem is NP-hard [19], even for forests of 4-stars [36]. However,
there are many heuristics for this problem [31]. Small instances can be solved
exactly by an ILP approach [30]. There are no reasonable approximations for
the k-level crossing minimization problem. The ratios from the one-sided 2-level
crossing minimization problem [19,37] do not translate to the general problem.

An important feature of crossing reduction algorithms is the absence of type
2 conflicts, which are crossings of two edges between dummy vertices. Among
others, our favored fourth phase algorithm of Brandes and Köpf [10] assumes
the absence of type 2 conflicts. It aligns long edges vertically and so meets an
important aesthetic criterion [31] for nice hierarchical drawings with at most
two bends per edge.

The barycenter and the median heuristic [31] are two common 2-level cross-
ing reductions. They place each vertex v ∈ Vi at the barycenter or median
position of its predecessors in Vi−1. Then, Vi is sorted by these values. So the
edges shall be short and induce few crossings. These techniques are simple, fast,
and avoid type 2 conflicts, but they often leave too many crossings.

In 2-level algorithms the number of crossings between levels Vi and Vi+1

and thus the total number of crossings can increase while permuting Vi for the
2-level crossing reduction between Vi−1 and Vi. So, such heuristics push the
crossings downwards or upwards until they are resolved at the extreme levels.
An immediate extension is the centered 3-level crossing reduction. Here, Vi is
permuted while keeping the orders of Vi−1 and Vi+1 fixed and considering the
crossings above and below level i. However, this introduces type 2 conflicts.
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(a) Optimal level-by-level order with 12 crossings
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(b) Optimal order with 10 crossings

Figure 1: Crossing reduction using an exact level-by-level sweep method has
been stuck in a local minimum

All these approaches suffer from a general problem: They have a local view
to the crossing minimization problem. So they tend to get stuck in a local
optimum. Bastert and Matuszewski claim [31] that the results of a level-by-level
sweep are far from optimum. “One can expect better results by considering all
levels simultaneously, but k-level crossing minimization is a very hard problem”
[31, page 102]. After empirical tests of several one-sided 2-level approaches
Stallmann et al. [42, page 32] drew the conclusion that “the most pressing issue
from a practical perspective is a generalization to k > 2 levels”. Our approach
addresses this gap. Fig. 1 shows an example, where even an optimal one-sided
2-level crossing reduction gets stuck in a local minimum. In the left component
of Fig. 1(a) an optimal top-down sweep swaps vertices 8 and 9, which reduces
the number of crossings by two. However, the subsequent bottom-up sweep will
undo this change. Since the right component is symmetric, the graph has 12
crossings independently of the direction of the final sweep. Our algorithm solves
this example with the optimal solution with 10 crossings as shown in Fig. 1(b).

Tutte’s algorithm [18] can be seen as a first approach with a global view,
but it does not address crossings directly. Its quality concerning the number of
crossings is open, as Eades and Sugiyama [18] state in Problem 8. Here, the
positions of the vertices on the extreme levels are fixed in any order. For the
vertices in the other levels the x-coordinate is chosen as the weighted average of
the x-positions of all its neighbors. This is modeled by a sparse system of linear
equations.
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Sifting is a modification of sorting by insertion and it has been used success-
fully for vertex minimization in ordered binary decision diagrams [40]. Later it
has been adapted to the one-sided 2-level crossing reduction problem [34]. The
idea is to keep track of the number of crossings while in a sifting step a vertex
v ∈ Vi is moved along a fixed order of the vertices in Vi. Finally, v is placed
at its locally best position. The method is an extension of the greedy-switch
heuristic [17], where v is swapped iteratively with its current successor. We
call a single swap a sifting swap and the execution of a sifting step for every
vertex in Vi a sifting round. In general, sifting leaves fewer crossings than the
simple one-sided 2-level heuristics at the expense of a higher running time and
potential type 2 conflicts [31].

Matuszewski et al. [34] have extended sifting towards a more global view,
which we call ordered k-level sifting to avoid confusion. There, the vertices
are sorted by their degree and are first sifted in increasing order and then in
decreasing order. For swapping two consecutive vertices v and w their incident
edges to and from neighbors on both adjacent levels are taken into account. The
heuristic does not sweep level-by-level but is still limited to a local view, since
long edges are not treated as a whole. Our centered 3-level sifting does the same
with the vertices ordered level-by-level. Both algorithms yield similar results.
Jünger et al. [29] have developed an exact ILP approach for the NP-hard k-
level crossing minimization, which can be used in practice for small graphs.
Moreover, metaheuristics have been proposed in the literature, such as genetic
algorithms [32,45], tabu search [33], or windows optimization [22]. These general
(stochastic) global search approaches usually compute good solutions with few
crossings at the expense of high running times.

In this paper we propose a new and global crossing reduction technique.
The algorithm yields better results than the common heuristics. It is directly
extendable to more general crossing reduction problems, avoids type 2 conflicts,
and runs in quadratic time in the size of the graph. This distinguishes our
approach from most 2-level approaches which extensively use dummy vertices,
whose number is up to O(k · |E|) ⊆ O(|V |3). Note that the edge bundling
technique of Eiglsperger et al. [21] groups dummy vertices horizontally in each
level. This improves the running time of the sweeping barycenter and median
heuristics to be independent of the number of dummy vertices. However, their
approach cannot be used for more advanced heuristics like sifting.

Recently, Chimani et al. [11, 12] presented an advanced approach based on
upward planarization which combines the leveling and the crossing reduction
phases of the hierarchical framework. Generally, from an algorithm and soft-
ware engineering perspective the subdivision of a complicated problem into dis-
joint phases as done in the hierarchical framework makes sense. However, for
obtaining global optima the phases cannot be treated independently, as is done
traditionally and also in this paper. For example, the number of crossings
clearly depends on the leveling. For a competitive extension of global sifting
which performs leveling and crossing reduction simultaneously see [7].

The remainder of the paper is organized as follows: After introducing some
notation and previous results in the next section, we present our new crossing
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reduction approach and analyze its complexity in Sect. 3. Then, in Sect. 4,
we show benchmarks which empirically compare our algorithm with established
strategies. Afterwards, we present some applications of the block concept on
related crossing optimization and reduction methods in Sect. 5. Finally, we
summarize the results and discuss some open problems in Sect. 6.

2 Preliminaries

We suppose that a directed graph without self-loops has passed the cycle removal
and leveling phases of the four phase framework. The outcome is a k-level graph
G = (V,E, φ), where φ : V → {1, 2, . . . , k} is a surjective level assignment of the
vertices with φ(u) < φ(v) for each edge (u, v) ∈ E. For an edge e = (u, v) ∈ E
we define its length as span(e) := φ(v)−φ(u). An edge e is short if span(e) = 1
and long otherwise. A graph is proper if all edges are short. Each level graph
can be made proper by adding span(e)−1 dummy vertices for each edge e which
split e in span(e) many short edges. Let G′ = (V ′, E′, φ′) denote the proper
version of G. As in [10] short edges are called segments of e. The first and
the last segments of an edge are the outer segments and the others the inner
segments. Inner segments connect two dummy vertices.

Consider the proper level graph G′. For a vertex v we denote the set of
neighbors from incoming and outgoing segments by N−(v) := {u ∈ V ′ | (u, v) ∈
E′ } and N+(v) := {w ∈ V ′ | (v, w) ∈ E′ }, respectively. G′ is ordered if the
vertices in each level as well as the sets N−(·) and N+(·) are ordered from left
to right. Each proper level graph can be made ordered by choosing an arbitrary
order for each level. This induces an order of the sets N−(·) and N+(·). Let
deg−(v) := |N−(v)| and deg+(v) := |N+(v)| denote the indegree and outdegree
of a vertex v and set deg(v) := deg−(v) + deg+(v). In an ordered level graph
two segments are in conflict if they cross or share a vertex. Conflicts are of type
0, 1, or 2 if they are induced by 0, 1, or 2 inner segments, respectively.

Next, we define blocks, which prevent dealing with dummy vertices. Thus,
the running time of our algorithm is measured in the size of the input graph and
is independent of the number of dummy vertices. A block is a single vertex of V
or a maximum connected subgraph of dummy vertices, i. e., the inner segments
of a long edge. The blocks represent the vertices of a graph related to G′, where
the edges are the outer segments. We will always denote (dummy) vertices
by lower case letters and blocks by upper case letters. For a block A define
x = upper(A) (y = lower(A)) to be the unique vertex x in A (y in A) with no
incoming (outgoing) segments in A. x and y always exist but may coincide.

LetN−(A) := N−(upper(A)), N+(A) := N+(lower(A)), deg(A) := |N−(A)|
+|N+(A)|, and let levels(A) be the set of level numbers which contain (dummy)
vertices of A. With block(v) we denote the block of the vertex v ∈ V ′. Let B
be an arbitrarily ordered list of all blocks and let π : B → {0, . . . , |B| − 1} as-
sign each block its current position in this order. We use the binary relation ≺
with A ≺ B ⇔ π(A) < π(B) for comparing blocks A,B ∈ B according to their
positions π.
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2.1 One-Sided 2-Level Sifting
In a sifting step the locally best position for a vertex is sought. Therefore,
all positions in its level are tested sequentially, where the cost criterion is the
number of crossings. For its computation we adapt the idea of Baur and Brandes
[8], which was introduced for circular crossing reduction.

Consider a sifting step for a 2-level graph G = (V1
.
∪V2, E, φ) with the vertex

orders πi : Vi → {1, . . . , |Vi|} in levels i ∈ {1, 2} with π1 fixed. To determine a
locally optimal position of a vertex v ∈ V2 it is sufficient to record the change in
the number of crossings while swapping v with its current consecutive successor
w ∈ V2. For this, only edges incident to v or w must be considered. After a
swap exactly those pairs of these edges cross which did not cross before. All
other crossings remain unchanged. Let χ(π2) be the number of crossings of an
order (π1, π2) of G and χπ2

(e, f) ∈ {0, 1} be the number of crossings between
two edges e, f ∈ E. Then, we obtain Lemma 1 by a direct adaption from [8],
which formalizes the change in the number of crossings per swap. At the end
of one step v is placed where the intermediary crossing counts reached their
minimum.

Lemma 1 (Bauer, Brandes) Let v, w ∈ V2 with π2(v) = π2(w) − 1 be con-
secutive vertices of a 2-level graph G = (V1

.
∪ V2, E, φ) in an order (π1, π2) and

let (π1, π
′
2) be the order with their positions swapped, then

χ(π′2) = χ(π2)− cπ2
(v, w) + cπ′2(v, w),

where cπ2
(v, w) =

∑
u∈N−(v)

∑
x∈N−(w)

χπ2
((u, v), (x,w)) .

3 Global Sifting
A major drawback of the established crossing reduction algorithms is their local
view. We present a new approach using ideas from [10] and [21], which avoids
type 2 conflicts. Eiglsperger et al. [21] have used a data structure similar to our
blocks and avoid type 2 conflicts. However, for crossing reduction they proceed
level-by-level in the traditional fashion. This improves only the running time
but not the quality of the result. We treat all dummy vertices of an edge and
each original vertex as a block and find the locally best position for the whole
block in one sifting step. This eliminates a problem of 2-level approaches which
lack this global view on crossings of long edges. In the initialization the list of
blocks B is sorted arbitrarily and each block A receives its position π(A) in B
(line 1 in Algorithm 1). At any time during the execution of the algorithm we
interpret π(A) as an x-coordinate of each vertex v in the block A and φ(v) as
its y-coordinate. This results in a drawing respecting the current order of B.
All vertices of a block get the same x-coordinate. Hence, the order is type 2
conflict free. These are important properties of Algorithm 1.

The main part of the algorithm is the sifting step (line 4). There, all positions
for a block A are tested and A is moved to the position with the fewest crossings.
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This is done for each block A ∈ B (line 3) and repeated a certain number of
times (line 2). Alternatively, one may repeat until the improvement is below a
given threshold. Our experiments have shown that ten rounds suffice to reach
such a situation. Finally, each vertex is set to the position of its block (line 5),
the vertices in each level are sorted according to these positions (line 6). Finally,
the graph is returned (line 7).

Algorithm 1: GLOBAL-SIFTING
Input: Proper k-level graph G′ = (V ′, E′, φ′), number ρ of sifting rounds
Output: Graph G′ with vertices ordered by values π(v) for each v ∈ V ′

1 create list B of all blocks in G′
2 for 1 ≤ i ≤ ρ do
3 foreach A ∈ B do
4 B ← SIFTING-STEP(G′, B, A)

5 foreach v ∈ V ′ do π(v)← π(block(v))
6 sort vertices in each level according to π
7 return G′

3.1 Building the Block List

The graph is partitioned into blocks. Each block A gets an arbitrary but unique
position π(A) in the block list B. As an example consider Fig. 2(a). The input
graph with 7 vertices has 6 dummy vertices, which are drawn as black circles.
The dummy vertices are combined into 3 blocks and each original vertex forms
its own block. The 10 resulting blocks are shown in Fig. 2(b) with an arbitrary
order π.

If a given order (without type 2 conflicts) shall only be improved by global
sifting in a postprocessing step, a straightforward initialization strategy is to
topologically sort the blocks according to the order in the levels from left to
right in O(|E′|). Our experiments have shown that a good initial order of the
blocks leads to better results. However, these can also be achieved by one or
two additional sifting rounds.

3.2 Initialization of a Sifting Step

To improve the performance of one sifting step [8] it is necessary to keep the adja-
cency listsN−(A) andN+(A) of each block A ∈ B sorted according to ascending
positions of the neighboring blocks in B. We store them in arrays for random
access. Additionally, we store two index arrays I−(A) = I−(upper(A)) and
I+(A) = I+(lower(A)) of lengths |I−(A)| := |N−(A)| and |I+(A)| := |N+(A)|,
respectively. As an inverted file I−(A) stores the indices where upper(A) is
stored in each adjacent block B’s adjacency array N+(B). More precisely, let
b = N−(A)[i] be a neighbor of upper(A) with B = block(b). Then, I−(A)[i]
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Figure 2: Blocks as sifting objects

holds the index where upper(A) is stored in N+(B) = N+(b). Symmetrically,
I+(A) stores the indices where lower(A) is stored in the adjacency N−(B)
of each adjacent block B. See Fig. 2(b) for an example and consider, e. g.,
block(11) in detail: N+(block(11))[0] = 7 indicates that vertex 7 is the first
neighbor (stored at position 0) of 11 connected by an outgoing edge. The
corresponding value I+(block(11))[0] = 2 indicates, that vertex 11 itself is
stored at position 2 in the incoming adjacency list of its neighbor block(7), i. e.,
N−(block(7))[2] = 11. N−(block(11))[0] = 5 stores the incoming adjacency 5
at its first (and only) position 0. The corresponding value I−(block(11))[0] = 1
indicates that 11 itself is stored at position 1 in the adjacency of its neighbor 5,
i. e., N+(block(5))[1] = 11. For each block the creation of the four arrays (line 2
of Algorithm 3) can be done in O(|E|) time as Algorithm 2 shows: Traverse the
blocks A in the current order of B and insert upper(A) (lower(A)) at the next
free position j of the cleared adjacency array N+(lower(B)) (N−(upper(B)))
of each incoming (outgoing) neighbor B. Both values for I+(B) and I−(A)
(I−(B) and I+(A)) and their positions are only known after the second traver-
sal of a segment s. Thus, we cache the first array position j as an attribute p
of s. Benchmarks [28] have shown that there is a considerable speed-up if only
those adjacencies are updated that are disarranged after a sifting step instead
of completely sorting all adjacency lists. The theoretical running time is not
affected by this improvement, however.

3.3 Sifting Step

In a sifting step by Algorithm 3 all positions p in B are tested for a block A ∈ B
(lines 5–8) and, then, A is moved to the position p∗ which has caused the least
number of crossings. Note that it is not necessary to count the crossings for each
position of A. As in [8] and in contrast to other sifting algorithms, which always
maintain the absolute number of crossings, we treat the number of crossings of
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Algorithm 2: SORT-ADJACENCIES
Input: Proper k-level graph G′ = (V ′, E′, φ′), ordered list B of blocks in

G′

Output: Ordered sets N ·(A) and I ·(A) for each block A ∈ B
1 for i← 0 to |B| − 1 do
2 π(B[i])← i
3 clear the arrays N−(B[i]), N+(B[i]), I−(B[i]), and I+(B[i])

4 foreach A ∈ B do
5 foreach s ∈ { (u, v) ∈ E′ | v = upper(A) } do
6 insert v at the next free position j of N+(u)
7 if π(A) < π(block(u)) then p[s]← j // first traversal of s
8 else I+(u)[j]← p[s]; I−(v)[p[s]]← j // second traversal of s

9 foreach s ∈ { (w, x) ∈ E′ | w = lower(A) } do
10 insert w at the next free position j of N−(x)
11 if π(A) < π(block(x)) then p[s]← j // first traversal of s
12 else I−(x)[j]← p[s]; I+(w)[p[s]]← j // second traversal of s

A as χ = 0 when A is placed to the first position. Thereafter, we only compute
the change in the number of crossings when A is iteratively swapped with its
right neighbor (line 6).

Algorithm 3: SIFTING-STEP
Input: Proper k-level graph G′ = (V ′, E′, φ′),

ordered list B of blocks in G′, block A ∈ B to sift
Output: Updated order of B

1 B′ ← A ≺ B[0] ≺ · · · ≺ B[|B| − 1] // new order B′ with A put to front
2 SORT-ADJACENCIES(G′, B′)
3 χ← 0; χ∗ ← 0 // current and best number of crossings
4 p∗ ← 0 // best block position
5 for p← 1 to |B′| − 1 do
6 χ← χ+ SIFTING-SWAP(A,B′[p])
7 if χ < χ∗ then
8 χ∗ ← χ; p∗ ← p

9 return B′[1] ≺ · · · ≺ B′[p∗] ≺ A ≺ B′[p∗ + 1] ≺ · · · ≺ B′[|B′| − 1]

3.4 Sifting Swap
The sifting swap computes the change in the number of crossings when a block
A is swapped with its right successor B in B. In contrast to one-sided crossing
reduction, our global approach takes the whole neighborhood of both blocks
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into account when it computes the change in the number of crossings. Lemma 2
states which segments are involved.

Lemma 2 Let B be the block list in the current order. Let B ∈ B be the
successor of A ∈ B. If swapping A and B changes the crossings between two
segments, then one of them is an incident outer segment of A or B and the other
segment is an incident outer segment of the same kind (incoming or outgoing)
or an inner segment of the other block.

Proof: Note that only segments between the same levels can cross. As no type
2 conflicts occur, at least one of the segments of a crossing has to be an outer
segment. Let (a, b) and (c, d) be two segments between the same levels with
a 6= c and b 6= d. If the two segments cross after swapping A and B and they
did not cross before (or vice versa) either a and c or b and d were swapped.
Therefore, one of the segments is adjacent to A or is a part of A and the other
is adjacent to B or is a part of B. If b and d were swapped and thus a and c
were not, φ(b) = φ(d) is the upper level of A or B and thus one of the crossing
segments is an incoming outer segment of A or B. The other segment is either
an incoming outer segment or an inner segment of the other block. Note that it
cannot be an outgoing outer segment of this block because then neither a and
c nor b and d would have been swapped. The other case of swapping a and c
instead of b and d is symmetric. Then, the second segment is either an outgoing
outer segment or an inner segment of the other block. �

The following fact is easily seen and the resulting changes in the number of
crossings are obvious.

Fact 1 Let B be the block list in the current order. Let B ∈ B be the successor
of A ∈ B. Let i and j be the two levels framing the incoming outer segments
of A (the other three cases are symmetric). If there is a segment (u, v) between
i and j which is either an incoming outer segment of B or an inner segment
of B, then the incoming segments of A starting at a block left of block(u) cross
(u, v) only after the swap of A and B, the segments starting at block(u) never
cross (u, v), and the segments starting right of block(u) cross (u, v) only before
the swap. There are no other changes among the crossings due to Lemma 2.

For an illustration consider Fig. 3. The incoming segment (u, v) of block
B starts at block C. Thus, all incoming segments of A starting at a block
left of C, namely (1, 2) and (6, 2), cross (u, v) only after the swap of A and B.
The segment connecting blocks C and A, i. e., (u, 2), never crosses (u, v) and the
incoming segments of A starting right of block C, namely (7, 2), cross (u, v) only
before the swap. The outgoing segment (2, 3) of A crosses the inner segment
(v, 8) of B only after the swap.

Algorithm 4 shows the details of a sifting swap. First, the levels at which
(significant) swaps occur and the direction of the segments changing their cross-
ings are found (lines 2–6). For each entry (l, d) of the set L the two vertices a
and b of A and B on level l are retrieved.
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Algorithm 4: SIFTING-SWAP
Input: Consecutive blocks A,B in the ordered blocklist B
Output: Change in crossing count

1 begin
2 L ← ∅; ∆← 0 // L is a set and, thus, duplicate free
3 if φ(upper(A)) ∈ levels(B) then L ← L ∪ {(φ(upper(A),−)}
4 if φ(lower(A)) ∈ levels(B) then L ← L ∪ {(φ(lower(A),+)}
5 if φ(upper(B)) ∈ levels(A) then L ← L ∪ {(φ(upper(B),−)}
6 if φ(lower(B)) ∈ levels(A) then L ← L ∪ {(φ(lower(B),+)}
7 foreach (l, d) ∈ L do
8 let a in A and b in B be the vertices with φ(a) = φ(b) = l

9 ∆← ∆ + USWAP(a, b,Nd(a), Nd(b))

10 UPDATE-ADJACENCY(a, b,Nd(a), Id(a), Nd(b), Id(b))

11 swap positions of A and B in B; π(A)← π(A) + 1; π(B)← π(B)− 1
12 return ∆
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When swapping A and B only a and b are swapped in their level and no order
changes in the level of their neighbors Nd(a) and Nd(b). Thus, the computation
of the change in the number of crossings can be done as in [8] and is described
in Algorithm 5: The neighbors are traversed from left to right. If a neighbor
of a is found (lines 5 and 6), its segment will cross all remaining s− j incident
segments of b after the swap. If a neighbor of b is found (lines 7 and 8), its
segment has crossed all remaining r− i incident segments of a before the swap.
Common neighbors present both cases at the same time (line 9).

Algorithm 5: USWAP
Input: Consecutive vertices a, b ∈ V , Nd(a), Nd(b) ∈ V
Output: Change in crossing count

1 let x0 ≺ · · · ≺ xr−1 ∈ Nd(a) be the neighbors of a in direction d
2 let y0 ≺ · · · ≺ ys−1 ∈ Nd(b) be the neighbors of b in direction d
3 c← 0; i← 0; j ← 0
4 while i < r and j < s do
5 if π(block(xi)) < π(block(yj)) then
6 c← c+ (s− j); i← i+ 1
7 else if π(block(xi)) > π(block(yj)) then
8 c← c− (r − i); j ← j + 1
9 else c← c+ (s− j)− (r − i); i← i+ 1; j ← j + 1

10 return c

An update of the adjacency after a swap (line 10) is necessary if a and b
have common neighbors. Algorithm 6 shows how this can be done in over-
all O(deg(A) + deg(B)) time similarly to the crossing counting function Algo-
rithm 5.

3.5 Time Complexity
Lemma 3 Let G = (V,E, φ) be a level graph. Then,

∑
B∈B deg(B) ≤ 4 · |E|.

Proof: Every edge e ∈ E contains at most two outer segments. Every outer
segment increases the degree of its two incident blocks by one each. �

Theorem 1 One round of global sifting (Algorithm 1) has a time complexity of
O(|E|2) for a non-necessarily proper level graph G = (V,E, φ).

Proof: Let B be the blocks of G. Swapping two blocks A,B ∈ B needs
O(deg(A) + deg(B)) time. Initializing a sifting step takes O(

∑
B∈B deg(B)) =

O(|E|) time. A sifting step of a blockA needsO(
∑
B∈B\{A}(deg(A)+deg(B))) =

O(|E| · deg(A)) time. Thus, a sifting round for each block A ∈ B has time com-
plexity O(

∑
A∈B(|E| · deg(A)) = O(|E|2). Since |V ′| ≤ k · |E| ∈ O(|E|2) (no

empty levels), traversing all (dummy) vertices in pre- and postprocessing has
no effect on the worst case time complexity. �
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Algorithm 6: UPDATE-ADJACENCIES
Input: Vertices a, b ∈ V ′, Nd(a), Id(a), Nd(b), Id(b)
Output: Updated adjacencies of a and b and all common neighbors

1 let x0 ≺ · · · ≺ xr−1 ∈ Nd(a) be the neighbors of a in direction d
2 let y0 ≺ · · · ≺ ys−1 ∈ Nd(b) be the neighbors of b in direction d
3 i← 0; j ← 0
4 while i < r and j < s do
5 if π(block(xi)) < π(block(yj)) then i← i+ 1
6 else if π(block(xi)) > π(block(yj)) then j ← j + 1
7 else
8 z ← xi // = yj
9 swap entries at pos. Id(a)[i] and Id(b)[j] in N−d(z) and in I−d(z)

10 Id(a)[i]← Id(a)[i] + 1; Id(b)[j]← Id(b)[j]− 1
11 i← i+ 1; j ← j + 1

4 Experimental Results

For the sake of completeness we have extended the barycenter and median cross-
ing reduction strategies to blocks as well. We iteratively take the π-positions
of the blocks in B and compute for each block the barycenter or median of its
adjacent blocks, respectively. Then, we sort B according to these values. The
following benchmarks show that both are fast, however, they are not compet-
itive with global sifting in the number of obtained crossings. One round of
global barycenter or global median has a time complexity of O(|E| log |E|) or of
O(|E|), respectively.

We have compared the practical performance of four level-by-level and four
global crossing reduction algorithms implemented in our graph tool Gravisto
[5]: iterative one-sided 2-level barycenter (B), median (M), sifting (S), iterative
centered 3-level sifting (3S), global barycenter (GB), global median (GM), global
sifting (GS), and ordered k-level sifting (OS). For each of the level-by-level
algorithms we run ten top-down and bottom-up sweeps and for each of the global
heuristics we performed ten rounds. We have tested 910 random graphs. For
each graph size from 1,000 to 10,000 vertices in steps of 100 we have generated
ten arbitrary graphs with an aspect ratio of the golden rectangle 1+

√
5

2 , i. e., the
maximum number of (dummy) vertices per level is about 1.6 times the number of
levels. The density of the proper edges is twice the number of vertices including
a proportion of 75% dummy vertices. Hence, there are five times as many (long)
edges as non-dummy vertices. To aggregate random initializations we applied
each algorithm twice to every concrete graph instance. All benchmarks were
run on a 2.83 GHz XEON workstation under Solaris and the Java 6.0 platform
of Oracle Corp.
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Figure 4: Benchmark: running times

We compare the different running times in Fig. 4. Although global sifting
is the slowest among them, it is feasible in practice. Clearly, its performance
on real-world graphs is not as dire as the worst case O(|E|2) time complexity
indicates at first glance.

Fig. 5 shows the quality of the heuristics in the number of crossings of the
resulting embeddings. The results of global sifting are about 5 to 10% better
than the ones of the established algorithms. In addition, type 2 conflicts are
avoided, which are quite high for the sifting algorithms as Fig. 6 indicates, and
which have an impact on the edge routing in the final phase of the four phase
framework. Both benefits justify the higher running time.

Fig. 7 depicts that the traditional approaches have a constant running time
on graphs with the same size but ascending proportions of dummy vertices.
For global sifting the running times become better with more dummy vertices.
Then, there are more long edges whose inner segments are treated as a whole.
This reflects that the time complexity O(|E|2) depends only on the number of
edges |E| and not on the number of segments |E′| of the proper graph.

In Fig. 8 we compare the results of the heuristics with the exact solution.
For a practically solvable ILP of the exact algorithm which will be described
in Sect. 5.1, the graphs must be small with |V ′| ≤ 35. Although permitted,
the optimum solutions do not contain any type 2 conflicts. The graphs seem
to be simply too small for that. Since we have a proportion of 30% dummy
vertices, the graphs are rather sparse. This may be the reason why barycenter
here outperforms two sifting algorithms. Global sifting is in parts 25% closer to
the optimum as all other tested methods. Fig. 5 supports the statement in [31]
that in general sifting is qualitatively the better choice.

Fig. 9 presents the influence of the number of sweeps or rounds in the num-
ber of crossings. Again, global barycenter and median perform very poorly.
Interestingly, the simple barycenter, median, and sifting heuristics seem to need
only one sweep. The remaining heuristics (OS, 3S, GS) improve their results
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Figure 9: Benchmark: number of sweeps or rounds on graphs with 2500
(dummy) vertices

over the first five sweeps or rounds. As tests with different sizes of graphs gave
similar diagrams, we conclude that at least ten rounds of global sifting should
be sufficient in practice.

We additionally have tested the algorithms on the widely used Rome graphs
[16] library in Fig. 10. The set contains 11528 instances with 10–100 vertices
and 9–158 edges. Although these graphs are originally undirected, we inter-
pret them as directed by artificially directing the edges according to the vertex
order given in the input files, see, e. g., [12, 20]. Furthermore, we have tested
the AT&T graphs [38], see Fig. 11. This benchmark set consists of 1155 di-
rected acyclic graphs with 10–96 vertices and 10–99 edges collected by Stephen
North. Since these graphs are rather inhomogeneous in the number of vertices,
we follow [15] and group the graphs by the number of edges to improve the read-
ability of the diagram. For both benchmarks we have done the leveling with
the Coffman/Graham algorithm [13], where we allowed a maximum number of√
|V | non-dummy vertices on the levels. Since the graphs are rather sparse

and contain many chains, we have marked all vertices with degree 2 as dummy
vertices in a preprocessing step. This helps to build reasonable blocks for global
sifting. In both benchmarks global sifting gives the best results of all algorithms
guaranteeing no type 2 conflicts.

In a nutshell, classic sifting is fast, leaves few type 2 conflicts, but many
crossings. Centered 3-level sifting is fast, leaves few crossings, but many type 2
conflicts. Global sifting leaves even fewer crossings without any type 2 conflicts,
but has the highest running time which is still feasible in practice. The mea-
surements reflect that the running time of global sifting is independent of the
number of dummy vertices. This parallels the edge bundling technique in [21].
Global sifting is a good choice for the trade-off between time and quality.
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5 Applications of the Global Crossing Reduction

In several related algorithms blocks for long edges can be used to improve their
performance and the quality of the resulting drawings by avoiding type 2 con-
flicts.

5.1 Optimal Crossing Reduction Using an ILP

Jünger et al. [29] introduced an ILP formulation for the exact crossing mini-
mization problem of k-level graphs. There, type 2 conflicts can be excluded
by adding additional constraints, which after a simplification result in a similar
ILP as in our approach. However, using variables for pairs of overlapping blocks
with common levels gives a more direct formulation which naturally excludes
type 2 conflicts. It uses fewer variables by avoiding the use of dummy vertices
for computing a solution of the ILP. However, for forming the equations the
graph must be proper.

Our ILP is built as follows: We start with an arbitrary but fixed order of
the list of blocks B. For any two blocks A and B with π(A) < π(B) and a
common level we define a boolean variable xAB . The value xAB = 1 denotes
that A is left of B and xAB = 0 that B is left of A in the final embedding. For
each triple of blocks A, B, and C with π(A) < π(B) < π(C) with at least one
common level, i. e., levels(A) ∩ levels(B) ∩ levels(C) 6= ∅, we add the condition
0 ≤ xAB + xBC − xAC ≤ 1 to exclude cyclic dependencies within a level.

Let s1 = (a, b) and s2 = (c, d) be segments between the same levels such that
at least one of them is an outer segment. Let A = block(a), B = block(b), C =
block(c), and D = block(d). Note that A = B or C = D holds if s1 or s2 is
an inner segment, respectively. W. l. o. g. let π(A) < π(C). We add a boolean
crossing variable cABCD which indicates whether or not s1 and s2 cross. If
π(B) < π(D), we add the constraint −cABCD ≤ xBD−xAC ≤ cABCD, otherwise
we add 1 − cABCD ≤ xDB − xAC ≤ 1 + cABCD. The objective function is to
minimize the sum of the values of all crossing variables. See (1) for the complete
ILP formulation for a proper k-level graph G′ = (V ′, E′, φ′) of G with I ⊂ E′

denoting the set of inner segments. Informally speaking, each element of the set
C denotes the up to four incident blocks of each pair of edges which may cross.

χopt = min
∑

(A,B,C,D)∈C

cABCD

C = { (A,B,C,D) ∈ B4 | ∃(a, b), (c, d) ∈ E′ :
(a, b) 6∈ I ∨ (c, d) 6∈ I,
φ(b) = φ(d),
A = block(a), B = block(b),
C = block(c), D = block(d),
π(A) < π(C) }

(1)
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subject to

−cABCD ≤ xBD − xAC ≤ cABCD for (A,B,C,D) ∈ C,
π(B) < π(D)

1− cABCD ≤ xDB − xAC
≤ 1 + cABCD for (A,B,C,D) ∈ C,

π(B) > π(D)
0 ≤ xAB + xBC − xAC ≤ 1 for A,B,C ∈ B,

π(A) < π(B) < π(C),
levels(A) ∩ levels(B)
∩ levels(C) 6= ∅

xAB ∈ {0, 1} for A,B ∈ B,
π(A) < π(B)

cABCD ∈ {0, 1} for (A,B,C,D) ∈ C

According to our experiments, this approach is usable for graphs with up to
forty vertices without further polyhedral studies. This is comparable with the
original approach in [29].

5.2 Level Planarity Testing Using the Vertex Exchange
Graph

Harrigan and Healy [27] introduced vertex exchange graphs as a data structure
for a simple level planarity test in O(|V ′|2) time, where V ′ ⊇ V is the set of
all vertices including dummy vertices. Using our blocks, it is straightforward
to improve the running time of the test from O(|V ′|2), i. e., O((|V | · k)2) worst
case, to O(|V |2) similarly to the ILP above: Each pair of overlapping blocks
builds one vertex in the vertex exchange graph. Similar techniques can be used
to reduce the number of 2-SAT clauses for testing level planarity or to minimize
crossings without type 2 conflicts [39].

5.3 Clustered Crossing Reduction
In a clustered level graph the vertices are grouped into subgraphs in a hierar-
chical way. The crossing reduction has to ensure that all (dummy) vertices of
a subgraph in the same level are consecutive and that all subgraphs spanning
several levels have a matching order in each level that avoids overlaps of disjoint
subgraphs, see [23, 24]. The treatment of directed clustered graphs is rather
complicated using a 2-level crossing reduction approach. With global sifting we
can address crossings directly. Instead of swapping a vertex with its right neigh-
bor in a sifting swap we swap all blocks of a subgraph with its right neighbor,
which itself is either a block or a subgraph, and determine the change in the
number of crossings. The time complexity stays the same as in the ordinary
global sifting algorithm. If the layout of the subgraphs themselves is not fixed,
then global sifting can be applied to the subgraphs as well, e. g., performing a
sifting round for every hierarchical layer.
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5.4 Cyclic and Radial Level Graphs

Level graphs can be generalized to cyclic and to radial level graphs. In cyclic
level graphs the set of levels is ordered in a cyclic way, i. e., the first level directly
succeeds the last. This corresponds to the recurrent hierarchies of Sugiyama et
al. [43]. Cyclic levels are normally drawn forming a star in 2D (see Fig. 12(a)).
These drawings explicitly visualize cycles in graphs [6], which is helpful, e. g.,
in scheduling [26, 41, 44] and in bioinformatics [35]. In radial level graphs each
level itself is ordered in a cyclic way, i. e., the first vertex in each level is the
right neighbor of the last vertex. The levels are drawn as concentric rings. See
Figs. 12 and 13 for example drawings. Global sifting can be extended to both
concepts and is the first crossing reduction technique avoiding type 2 conflicts
in each case.

For cyclic level graphs our global sifting can be used without any changes
and within the same time complexity. Note that one-sided 2-level algorithms
cannot be applied here, since each of them pushes most of the crossings to the
next level and these form a cycle. Even the absence of type 2 conflicts cannot
be guaranteed then, because the sweep has to stop at some level. There is no
possibility to push the crossings and the type 2 conflicts upwards or downwards
out of the drawings as it is in usual hierarchical level drawings. The conflicts
move like a wave front from level to level and they recur.

For leveling and coordinate assignment of cyclic level graphs see [2, 4]. The
ILP approach by Jünger et al. [29] can be used for exact cyclic k-level crossing
minimization straightforward by including additional constraints for the edges
between the last and the first level.

In a radial level graph the levels are concentric circles (see Fig. 13(a)). These
drawings visualize distance or importance, and are the common drawings of
social networks [9,46]. They map structural centrality of the graph to geometric
centrality. Crossing minimization in radial level graphs is NP-hard, even if
restricted to two levels with one side fixed [1]. Our global sifting approach
guarantees radially aligned long edges and can be used with minor modifications:
Each block of the block list B has its own angle. The order of B starts with
an arbitrary block. As in [1] we define an offset ψ : E → Z for each outer
segment. The absolute value |ψ(e)| counts the crossings of segment e with
an imaginary ray splitting the levels by a straight halfline from the concentric
center to infinity. If ψ(e) < 0 (ψ(e) > 0), e has clockwise (counter-clockwise)
direction from the source to the target. When sifting a block A ∈ B, we have
to update the partings, which are the two borders between the counterclockwise
and clockwise segments in the levels above and below A, see Fig. 13(b). Since
we can do this independently of each other and add the results of the change
in crossings to ∆ in Algorithm 4, we use the same technique as in [1]. We sift
a block from its current position in counterclockwise direction. Thus, for few
crossings the partings have to follow this direction in their levels. During the
swap the test whether or not changing the orientation of some of the first of the
(ordered) incident segments of A by incrementing their offsets, and thus putting
them last, leads to less crossings. However, counting the difference raises the



652 Bachmaier, Brandenburg, Brunner, Hübner Global Crossing Reduction

1

23

4

5 6

2

4

6

8

10

1

3

5

7

11

12

13

14

15

9

(a) Input

1

2

3

4

5 6

2

4

6

8

10

1

3

5

7

11

12

13

14

15

9

(b) Unique radii for the blocks

Figure 12: Global crossing reduction for a cyclic drawing
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Figure 12: Global crossing reduction for a cyclic drawing (cont.)
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overall running time to O(|E|3). The radial coordinate assignment phase in [1]
relies on the obtained absence of type 2 conflicts.

6 Discussion
We have presented an algorithm for the global crossing reduction problem of k-
level graphs. It produces high quality results with fewer crossings than common
approaches at the expense of a quadratic running time which is still feasible in
practice. Global crossing reduction was an open problem since the introduction
of the hierarchical framework [43] in 1981. For radial and cyclic level crossing
reduction our algorithm is the first which guarantees the absence of type 2 con-
flicts. Our approach simplifies and improves several other algorithms concerning
level planarity and crossing reduction.

6.1 Open Problems
The practical time complexity of the global sifting algorithm could be improved
by testing the positions of blocks which change a relative order on a level only.
Often blocks on disjoint levels are swapped which does not change any permu-
tation on any level. The worst case situation is having a level with only one
vertex v. The global sifting algorithm tests all O(|E|) positions for the block of
v although each of them yields the same permutation of the level of v. Each such
swap is computed in constant time. Nevertheless, avoiding unnecessary swaps
is desirable, although it will not improve the theoretical worst case complexity:
Consider a complete bipartite graph G = (V1 ∪V2, E) with the vertices of V1 on
level 1 and the vertices of V2 on level 3. Then, level 2 contains O(|E|) = O(|V |2)
dummy vertices. For each block representing a dummy vertex, O(|E|) positions
on level 2 have to be tested. Hence, having a time complexity of O(|E|2) when
avoiding unnecessary swaps is possible as well, even if O(|E|) = O(|V |2).

A conceptually rather simple approach to reduce the number of unnecessary
swaps is to stop a sifting step if all adjacent blocks of the current block A are left
of A already. Swapping A further to the right can only increase the number of
crossings then. Similarly, the first position to test for a block A can be directly
left of its leftmost adjacent block.

A first approach to applying the blocks to the radial crossing reduction
algorithm in [1] leads to a time complexity of O(|E|3). Further research is
needed to evaluate if a time complexity of O(|E|2) can be achieved in the radial
case as well.
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