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Grid Sifting: Leveling and Crossing Reduction
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Directed graphs are commonly drawn by the Sugiyama algorithm where first vertices are placed on distinct
hierarchical levels, and second the vertices on the same level are permuted to reduce the overall number of
crossings. Separating these two phases simplifies the algorithms but diminishes the quality of the result.

We introduce a combined leveling and crossing reduction algorithm based on sifting, which prioritizes few
crossings over few levels. It avoids type 2 conflicts, which are crossings of edges whose endpoints are dummy
vertices. This helps straightening long edges spanning many levels. The obtained running time is roughly
quadratic in the size of the input graph and independent of dummy vertices.
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1. INTRODUCTION
The Sugiyama framework [Sugiyama et al. 1981] is the standard drawing algorithm
for directed graphs. It displays them in a hierarchical manner and operates in four
phases: cycle removal (reverse appropriate edges to eliminate cycles), leveling (assign
vertices to levels which define the y-coordinates and introduce dummy vertices on long
edges), crossing reduction (permute the vertices on the levels), and coordinate assign-
ment (assign x-coordinates to the vertices according to some aesthetic criteria). Typical
applications are schedules, UML diagrams, and flow charts.

There are many different leveling and crossing reduction algorithms. Traditional
leveling methods minimize the number of levels by the longest path method [Kauf-
mann and Wagner 2001], by the Coffman/Graham algorithm with a predefined maxi-
mum number of vertices per level (width) [Coffman and Graham 1972], or by Gansner
et al.’s [1993] ILP minimizing the sum of the edge lengths. The common solution for
k-level crossing minimization is a reduction to the still NP-hard [Eades and Wormald
1994] one-sided 2-level crossing minimization problem, which is repeatedly solved
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Fig. 1. The K2,2 as typical pattern on two levels of an unavoidable crossing.

by some up and down sweeps [Sugiyama et al. 1981; Kaufmann and Wagner 2001].
Bastert and Matuszewski [Kaufmann and Wagner 2001] claim that the results of this
level-by-level sweep are far from optimum. “One can expect better results by consider-
ing all levels simultaneously, but k-level crossing minimization is a very hard problem”
[Kaufmann and Wagner 2001, p. 102].

An important feature of crossing reduction algorithms is the avoidance of type 2
conflicts, which are crossings of two edges between dummy vertices. Among others, the
standard fourth phase algorithm by Brandes and Köpf [2002] assumes the absence of
type 2 conflicts. Then, it aligns long edges vertically and so achieves a crucial aesthetic
criterion [Kaufmann and Wagner 2001] regarding pleasing hierarchical drawings.

Sifting was at first used for vertex minimization in ordered binary decision diagrams
[Rudell 1993] and was later on adapted to the one-sided 2-level crossing reduction
[Matuszewski et al. 1999]. The idea is to keep track of the number of crossings while
in a sifting step a vertex v on level i is moved along a fixed order of all the vertices Vi
on level i. Finally, v is placed at its locally optimal position. We call a single swap a
sifting swap, and we call the execution of a sifting step for every vertex in Vi a sifting
round.

Matuszewski et al. [1999] have extended sifting toward a global view. They sort all
vertices by their degree and sift them first in increasing and then in decreasing or-
der. This is no traditional level-by-level approach, although only crossings between
two pairs of neighboring levels are considered. Jünger et al. [1997] presented an exact
ILP approach for the NP-hard k-level crossing minimization that can be used in prac-
tice for small graphs. Moreover, metaheuristics have been suggested in literature, for
example, genetic algorithms [Utech et al. 1998; Kuntz et al. 2006], tabu search [La-
guna et al. 1997], or windows optimization [Eschbach et al. 2002]. We have presented
a global sifting algorithm [Bachmaier et al. 2011], which aligns long edges to blocks
and tries to find an apt position for each block as a whole.

Although these algorithms try to achieve a global view on the overall number of
crossings, they do not change the leveling. “Since level assignment and crossing reduc-
tion are realized as independent steps, the resulting drawing might have many un-
necessary crossings caused by an unfortunate level assignment” [Chimani et al. 2011,
p. 128]. A minimal and typical pattern for level graphs showing this phenomenon is
the complete bipartite graph K2,2. With two vertices placed on one level and two on an-
other level, there is one unavoidable crossing independent of the order of the vertices
on their respective levels (see Figure 1). If, however, the leveling is free, the crossing
can be resolved by placing one vertex on a third level. This basic example motivates
the idea of yielding less crossings by a different leveling. In general, more levels lead
to fewer crossings.

Recently, Chimani et al. [2010; 2011] presented a planarization approach to reduce
the number of crossings. They compute a planar upward embedding of the graph by
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adding dummy vertices where two edges would cross. This embedding is leveled re-
specting the given orders of the adjacency lists. Then, the number of at most O(∣V ∣)
levels is reduced by compacting the drawing. The algorithm needs O(∣E∣5) time and
still O(∣E∣3) = O(∣V ∣3) time for planar input graphs.

In this article we propose a new leveling and crossing reduction technique that com-
bines both phases in a natural way. We extend global sifting [Bachmaier et al. 2011]
to grid sifting such that the blocks are not only sifted “horizontally” on their levels
but also “vertically” on all suitable levels and prioritize the crossing reduction over the
leveling. The algorithm yields better results than traditional heuristics. It avoids type
2 conflicts and runs in roughly quadratic time in the size of the input graph.

2. PRELIMINARIES
We suppose that a directed graph without self-loops has passed through the cycle re-
moval phase and has been assigned an initial leveling. The outcome is a k-level graph
G = (V,E,φ), where φ∶V → {1,2, . . . , k} is a surjective level assignment of the ver-
tices with φ(u) < φ(v) for each edge (u, v) ∈ E. For an edge e = (u, v) ∈ E we define
span(e) ∶= φ(v) − φ(u). An edge e is short if span(e) = 1 and long otherwise. A graph is
proper if all edges are short.

The traditional approach is to make each level graph proper by adding span(e) − 1
dummy vertices for each edge e, which splits e in span(e) many short edges. Let G′ =
(V ′,E′, φ′) denote the proper version of G. As in Brandes and Köpf [2002], we call
short edges segments of e. The first and the last segments are the outer segments and
the others the inner segments. Inner segments connect two dummy vertices. For a
(level) embedded proper level graph, the vertices on each level are ordered from left to
right. In an embedded level graph, two segments are conflicting if they cross or share
a vertex. Conflicts are of type 0, 1, or 2 if they are induced by 0, 1, or 2 inner segments,
respectively.

Similarly to Brandes and Köpf [2002], a block either represents a vertex of V (i. e.,
a vertex block), or an edge of E (i. e., an edge block). Note that a block is an entity
of its own and is not treated as a set. The sets of vertex blocks, edge blocks, and all
blocks are called BV , BE , and B = BV

.∪ BE . More formally, BV ∶= {Bv ∣ v ∈ V } and
BE ∶= {Be ∣ e ∈ E }. Hence, the difference to Brandes and Köpf [2002] is that our
edge blocks do not “cover” the endvertices of the respective edge; these build discrete
vertex blocks. For each x ∈ V ∪E, denote by block(x) the block representing x. The set
F ∶= {(block(u),block(e)) ∈ BV ×BE ∶ e = (u, ⋅)}∪{(block(e),block(v)) ∈ BE×BV ∶ e = (⋅, v)}
models a relation between blocks induced by the incidence relation in G. G ∶= (B,F)
forms the directed block graph ofG. For an example, see Figure 2. For a long edge e ∈ E,
its edge block block(e) corresponds to the maximum connected subgraph of dummy
vertices in G′, that is, the inner segments of e. Such blocks are called active. Likewise,
blocks corresponding to short edges, which do not need any dummy vertices in G′, are
called inactive.1 Edges of the block graph that are incident to an active edge block
correspond to outer segments of G′. For a dummy vertex v′ in G′, let block(v′) be the
edge block corresponding to the subgraph containing v′.

Note that G′ and the notion of dummy vertices are only used to simplify defini-
tions and are never directly represented in the algorithm. As the grid sifting algorithm
modifies the level assignment φ of vertex blocks, edge spans as well as the number of
dummy vertices of G′ change over time. Hence, edge blocks switch between the active
and inactive state.

1Note that block graphs are also known as (bipartite) incidence or Levi graphs. However, we omit inactive
blocks and visualize the incidence relation between vertex blocks as simple (short) edges.
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(a) The edge (u, v) spans multiple levels such that
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(b) The edge (u, v) is short, which results in an in-
active edge block B.

Fig. 2. Example for the proper version G′ of a graph G and its block graph G = ({A,B,C,D,E},{(A,B),
(B,C), (A,D), (D,E)}) with two different levelings. The white circles are vertices of G, while the black are
dummy vertices of G′. Blocks are shown as rectangles.

Due to technical reasons explained later, most vertex blocks lie on even levels.
If an odd level number is not assigned to any vertex block, the level is nonexis-
tent. In G′, there is no need to create dummy vertices for that level number. Let
next+(l) (next−(l), respectively) be the next existent level after (before) level l. A
block is defined to use a level if a (dummy) vertex of the corresponding subgraph
in G′ is assigned to this level. Let levels(B) be the set of all levels used by block
B. We define φ(B) ∶= min levels(B) (φ(B) ∶= max levels(B), respectively) as the top-
most (bottommost) level used by B. For each vertex block B = block(v), φ(B) =
φ(B) = φ(B) ∶= φ(v) holds. An active edge block B = block((u, v)) uses the lev-
els φ(B) = next+(φ(u)),next+(next+(φ(u))), . . . ,next−(φ(v)) = φ(B). For inactive edge
blocks B, the set levels(B) is empty.

We introduce l-neighbors of (especially edge) blocks to address parts of these blocks
as if the dummy vertices were existent. If (u, v) is any segment in G′ and l = φ(u),
we call block(v) an l-neighbor of block(u) in direction “+”. Likewise we call block(u) an
l + 1-neighbor of block(v) in direction “−”. Note that if additionally block(u),block(v) ∈
BV , then, ignoring the inactive edge block in between, u is a φ(v)-neighbor of v and,
accordingly, v is a φ(u)-neighbor of u. For each block B, direction d ∈ {+,−}, and level
l ∈ levels(B), we define Nd(B, l) to be the set of all l-neighbors of B in direction d. For an
edge block B, Nd(B, l) contains exactly one element. Note that if φ(B) < l < φ(B), then
Nd(B, l) = {B}, so that an edge block can be its own l-neighbor. For the perspective
using dummy vertices, let v be the dummy vertex of an edge block B on level l. Then,
the l-neighbor of B in direction d is the block of the neighbor of v in direction d, which
is either B or an adjacent vertex block. For an example, see Figure 2. In Figure 2(a),
the edge (u, v) is long such that the proper version of the graph contains three dummy
vertices x, y, and z. They are represented by the edge block B. The 1-neighbors of A
in “+”-direction, N+(A,1), are B and D, since they contain x and w, the immediate
successors of u. y is the dummy vertex of B on level 3. It has an edge to the dummy
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Fig. 3. Example of a 4-level graph.

vertex z, which also belongs to B. Thus, the set of 3-neighbors of B in “+”-direction
consists of B itself, that is, N+(B,3) = {B}. In Figure 2(b), the edge (u, v) is short.
Thus, the edge block representing (u, v) disappears and is inactive. The proper graph
reflects this by u and v connected by an edge. Consequently, N+(A,1) = {C,D}. For
each vertex block B, we define Nd(B) ∶= Nd(B,φ(B)), as B uses only one level. Let
B be an arbitrarily ordered list of all blocks and let π∶B → {0, . . . , ∣B∣ − 1} assign each
block its current position in this order. Note that the drawing of a short edge (u, v)
is independent of π(block((u, v))), since block((u, v)) is inactive. In Figure 2(a), B =
{A,B,C,D,E} with π(C) < π(B) < π(A) < π(D) < π(E) = 4. The same ordering fits to
Figure 2(b). We call the pair E = (π,φ) a level embedding of the graph.

See Figure 3 for another example of a graph G with five vertices and six edges. In
Figure 4(a) each of its vertices is represented by a vertex block, and five active edge
blocks are shown. In contrast to Figure 2, we now do not use any dummy vertices
in the block graph G of G. The edge (2,3) is short in Figure 4(a), and hence its edge
block is inactive and not visualized. Levels 5 and 7 are nonexistent (dashed). Thus,
next+(4) = 6 and next−(8) = 6. Let J be the edge block of the edge (1,5). Then, levels(J) =
{3,4,6}, φ(J) = 3, φ(J) = 6,N+(J,3) = {J},N+(J,4) = {J}, and N+(J,6) = {block(5)} =
{H}. Furthermore, N+(D) = {B,F} in Figure 4(a) (ignoring the currently inactive edge
block L = block(2,3)) and N+(D) = {L,G} in Figure 4(c) (as level 3 is nonexistent,
F = block(2,4) is inactive).

3. GRID SIFTING
We extend our approach of global sifting [Bachmaier et al. 2011] and try to find opti-
mal positions for each (vertex) block on all levels. We use a two-dimensional grid on
which we place each vertex block (see Figure 4(a)). The edge blocks span the levels
between their incident vertex blocks and represent the dummy vertices of each edge.
Each block has a unique x-coordinate on the grid, which is given by the order of B. As
an initialization, we use an arbitrary leveling and a random permutation of B.

If a given ordering should only be improved in a postprocessing step, a straightfor-
ward initialization strategy is to topologically sort the blocks according to the orderings
on the levels from left to right in O(∣V ∣+ ∣E∣). Our experiments showed that a good ini-
tial ordering of the blocks leads to better results. However, these can also be achieved
by one or two additional sifting rounds.

Finding an optimal position for a vertex block basically consists of two nested loops.
The outer loop, called a vertical step, iterates over all levels the vertex can use without
reversing an incident edge. In the inner loop, called a horizontal step, all positions of
the vertex block on the current level are tested. In the end, the vertex block is placed
on the level and position causing the minimal number of crossings. See Algorithm 1 for
the entry to the detailed description. If there are several positions causing the same
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(a) The block graph of Figure 3 after normalization, that is, doubling the levels
with B on its top- and leftmost admissible position.
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(b) B on its top- and rightmost position.

Fig. 4. Extremal positions of vertex block B during its vertical step.

number of crossings, we place the vertex block at the level nearest to the middle level
and use the x-coordinate minimizing the horizontal edge lengths, which is omitted in
pseudocode. Edge blocks are sifted only horizontally, since their levels are determined
by the levels of their adjacent vertex blocks.

3.1. Vertical Sifting Step
In a vertical sifting step, we test a vertex block B ∈ B at each possible level. To improve
the result, we also try to place each vertex block between existing levels. Therefore, we
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(d) B on its bottom- and rightmost position.

Fig. 4. Extremal positions of vertex block B during its vertical step (cont.).

normalize (i. e., relabel) the existing levels to 2,4,6, . . . (line 1 in Algorithm 2) and then
test the vertex block for all level numbers.

To avoid reversing edges, the uppermost possible level lmin for a vertex block is one
level below its bottommost preceding vertex block (lines 2–5) or 1 if there is no such
block. Likewise, the lowermost possible level lmax is determined (lines 6–9). See Fig-
ure 4, where block B is tested with lmin = 3, lmax = 7 and old level 6. In practice, we
confine the number of tested levels above and below the old level of B (i. e., the level
radius) by a constant to improve the running time.

The algorithm counts only the relative differences between the tested levels, not
the total number of crossing. Thus, it first places B at the uppermost possible level
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ALGORITHM 1: GRID-SIFTING
Input: Block graph G = (B = BV ∪ BE ,F) with initial level assignment φ ∶ BV → Z, number ρ of

sifting rounds
Output: Block graph G with embedding E given by blocks ordered by values π(B) for each

B ∈ B and updated level assignment φ
1 initialize π ∶ B → {1, . . . , ∣B∣} with random permutation
2 E ← (φ,π)
3 for 1 ≤ i ≤ ρ do
4 foreach B ∈ BV do
5 E ← VERTICAL-STEP(G,E ,B)

6 return (G,E)

using VERTICAL-JUMP (line 10). All crossing numbers χ are relative to the number
of crossings produced by placing B at the leftmost position on this level. Then, step-by-
step, B is swapped downwards to lower levels with VERTICAL-SWAP (Algorithm 3)
and the locally calculated relative differences in crossing count ∆ are summed up in χ
(lines 14–19).

ALGORITHM 2: VERTICAL-STEP(G,E ,B)
Input: Block graph G = (B,F), embedding E = (φ,π) with k used levels,

vertex block B to sift
Output: Updated embedding E = (φ,π)

1 normalize level numbers φ to 2,4,6, . . . ,2k
2 if N−

(B) = ∅ then
3 lmin ← 1
4 else
5 lmin ←maxA∈N−(B) φ(N

−
(A,φ(A))[0]) + 1

6 if N+
(B) = ∅ then

7 lmax ← 2k + 1
8 else
9 lmax ←minC∈N+(B) φ(N

+
(C,φ(C))[0]) − 1

10 (E ,∆)← VERTICAL-JUMP(G,E ,B, lmin)

11 Ebest ← E

12 χbest ←∆
13 χ←∆
14 for l ← lmin + 1 to lmax do
15 (E ,∆)← VERTICAL-SWAP(G,E ,B, l)
16 χ← χ +∆
17 if χ < χbest then
18 Ebest ← E

19 χbest ← χ

20 return Ebest

3.2. Vertical Jump and Vertical Swap
In the vertical swap, we move a vertex block B from level l − 1 to level l (line 6 in
Algorithm 3). Then, we horizontally sift each of the active edge blocks incident to B
(lines 12–14) to resolve the crossings. See Figure 5 for an example of K2,2s. Afterward,
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Fig. 5. Resolving the crossing of a K2,2 during the vertical swap of block B.

we sift B itself horizontally (line 15) and return the best embedding E and the sum of
crossing changes ∆.

As φ(B) is modified, previously inactive edge blocks may become active. π(A) of such
an edge block A has previously been meaningless and may be outdated as A did not
correspond to any dummy vertex. To keep track of the number of crossings, we put
each edge block becoming active at the horizontal barycenter of its adjacent vertex
blocks. The injectivity of π is repaired by bucket-sort. In Figures 4(a) and 4(b) the edge
block block((2,3)) is inactive and block((3,5)) is active. In Figures 4(c) and 4(d) it is
the other way round.

Moving B to (from) an odd level number means effectively creating (deleting) that
level. Surprisingly, this changes the number of crossings even in subgraphs not con-
nected to B, as shown in Figure 6. Hence, a local update is not possible and we use
the efficient bilayer crossing counting algorithm by Barth et al. [2004] to count the
crossings between these levels. In Figure 6, the vertex block B is moved to level l = 5.
Hence, to update the number of crossings, we subtract the crossings between levels 2
and 4 as well as levels 4 and 6 before the swap (line 3) and add the crossings between
levels 2 and 4, levels 4 and 5, as well as levels 5 and 6 (line 9). Note that some of the
numbers of crossings after one vertical swap can be reused in the next one.

In contrast, the vertical jump does not count these changes, as all crossings are
relative to the current level lmin. Hence, only the lines 1, 6, 7, and 12–17 of Algorithm 3
are executed. One problem created by the vertical jump is that the edge blocks of B
might have completely new positions when B arrives at its old level. This impedes
optimizing the position of B near its old position. We avoid this by starting the vertical
step at the current level twice, swapping upward and downward. For simplicity, We
omit this detail in pseudocode.
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ALGORITHM 3: VERTICAL-SWAP(G,E ,B, l)
Input: Block graph G = (B,F), current embedding E = (φ,π),

vertex block B to sift on level l
Output: Updated embedding E = (φ,π), change in crossing number ∆

1 ∆← 0
2 if l is odd then
3 ∆←∆ − CROSSINGS(l − 3, l − 1) − CROSSINGS(l − 1, l + 1)
4 else
5 ∆←∆ − CROSSINGS(l − 2, l − 1) − CROSSINGS(l − 1, l) − CROSSINGS(l, l + 2)

6 φ(B)← l
7 update π by placing each edge block that becomes active at the barycenter of its adjacent vertex

blocks and bucket-sorting all blocks
8 if l is odd then
9 ∆←∆ + CROSSINGS(l − 3, l − 1) + CROSSINGS(l − 1, l) + CROSSINGS(l, l + 1)

10 else
11 ∆←∆ + CROSSINGS(l − 2, l) + CROSSINGS(l, l + 2)

12 foreach active edge block A ∈ N−
(B) ∪N+

(B) do
13 (E , δ)← HORIZONTAL-STEP(G,E ,A)

14 ∆←∆ + δ

15 (E , δ)← HORIZONTAL-STEP(G,E ,B)

16 ∆←∆ + δ
17 return (E ,∆)

3.3. Initialization of a Horizontal Sifting Step
As the level assignment φ does not change during a horizontal sifting step, the algo-
rithm basically equals the sifting step introduced in global sifting [Bachmaier et al.
2011].

To improve the performance of one horizontal sifting step [Baur and Brandes 2004],
it is necessary to keep the adjacency lists N−(B,φ(B)) and N+(B,φ(B)) of each block
B ∈ B sorted according to ascending positions of the neighboring blocks in B. We
store them as arrays for random access. Remember that we do not need to store the
l-neighbors for φ(A) < l < φ(A), as N ⋅(A, l) = {A}.

Additionally, we maintain two index arrays I−(B) and I+(B) of lengths ∣I−(B)∣ ∶=
∣N−(B,φ(B))∣ and ∣I+(B)∣ ∶= ∣N+(B,φ(B))∣, respectively. I−(B) stores the indices where
B is stored in each adjacent block A’s adjacency N−(A,φ(A)). More precisely, let A =
N+(B,φ(B))[i] be a φ(B)-neighbor of B in direction “−”. Then, I−(B)[i] holds the index
at which B is stored in N+(A,φ(A)). Symmetrically, I+(B) stores the indices at which
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B is stored in the adjacency N−(A,φ(A)) of each adjacent block A. See Figure 4(c) for
an example. The creation of the four arrays for each block (line 7 of Algorithm 4) can
be done in O(∣E∣) time by traversing B once. See Algorithm 5 for details.

3.4. Sorting and Updating the Adjacencies
With Algorithm 5, we build up the sorted adjacency of each block before each horizontal
step. We traverse each block B in the current order of B and add B to the next free
position j of the cleared adjacency array N+(A,φ(A)) (N−(C,φ(C))) of each incoming
φ(B)-neighbor A (outgoing φ(B)-neighbor C). Both values for I+(A) and I−(B) (I+(B)
and I−(C)) and their positions are only known after the second traversal of a segment
e. Thus, we cache the first array position j as an attribute p of e. Let v ∈ V ′ be a dummy
vertex of an edge block B with φ(v) = l. We explicitly do not update any outgoing l-
neighbor adjacency of v if φ(B) ≤ l < φ(B) and no incoming adjacency of v if φ(B) < l ≤
φ(B). For performance reasons, these vertices and arrays are only implicit and would
only contain one element N ⋅(B, l)[0] = B. Thus, associated values “I ⋅(B, l)” are not
needed in Algorithm 7. For B, only two arrays, I−(B) and I+(B), remain, representing
the position of B in its incident vertex blocks.

3.5. Horizontal Sifting Step
In a horizontal sifting step (Algorithm 4), all positions i in B are tested for a (vertex or
edge) block B ∈ B (lines 8–15) and the best embedding Ebest is returned. Similar to the
vertical step, we only compute the change in the number of crossings when swapping
A iteratively with its right neighbor (line 11). To be able to return the change in the
number of crossings (line 16), we store the relative number of crossings that B causes
at its old position p (lines 9, 10).

ALGORITHM 4: HORIZONTAL-STEP(G,E ,B)
Input: Block graph G = (B,F), embedding E = (φ,π), block B to sift
Output: Updated ordering π, change in crossing number ∆

1 p← π(B)

2 Ebest ← E

3 ∆best ←∞

4 ∆← 0
5 ∆old ← 0
6 place B at first position of B
7 SORT-ADJACENCIES (G, π)
8 for i← 1 to ∣B∣ − 1 do
9 if i = p then

10 ∆old ←∆

11 (E , δ)← HORIZONTAL-SWAP (G,E ,B, π−1(i + 1))
12 ∆←∆ + δ
13 if ∆ < ∆best then
14 Ebest ← E

15 ∆best ←∆

16 return (Ebest,∆best −∆old)
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ALGORITHM 5: SORT-ADJACENCIES(G, π)
Input: Block graph G = (B,F), ordering π
Output: Ordered sets N−

(B,φ(B)), N+
(B,φ(B)), I ⋅(B) for each block B ∈ B

1 for i← 0 to ∣B∣ − 1 do
2 π(B[i])← i

3 clear arrays N−
(B[i], φ(B[i])), N+

(B[i], φ(B[i])) and I ⋅(B[i])

4 foreach vertex block or active edge block B ∈ B do
5 foreach e = (A,B) ∈ F do
6 if A is an inactive edge block then
7 A← A′ with unique (A′,A) ∈ F

8 add B to the next free position j of N+
(A,φ(A))

9 if π(B) < π(A) then
10 p[e]← j // first traversal of e
11 else
12 I+(A)[j]← p[e]
13 I−(B)[p[e]]← j // second traversal of e

14 foreach e = (B,C) ∈ F do
15 if C is an inactive edge block then
16 C ← C′ with unique (C,C ′

) ∈ F

17 add B to the next free position j of N−
(C,φ(C))

18 if π(B) < π(C) then
19 p[e]← j // first traversal of e
20 else
21 I+(B)[p[e]]← j
22 I−(C)[j]← p[e] // second traversal of e

3.6. Horizontal Sifting Swap
The horizontal sifting swap is the actual computation of the change in the number
of crossings when a block A is swapped with its right neighbor B. Lemma 3.1 states
which segments are involved and Proposition 3.2 states how the number of crossings
changes on such a level. Both can also be found in Bachmaier et al. [2011].

Algorithm 6 shows the details of a horizontal sifting swap. First, the levels at which
(significant) swaps occur and the direction of the segments changing their crossings
are found (lines 7–11). For each entry (l, d) of the set L, the l-neighbors of A and B in
direction d are retrieved. Using the notion of G′, only the consecutive (dummy) vertices
in A and B on level l are swapped. The permutation of the neighboring level nextd(l)
remains unchanged. Thus, the computation of the change in the number of crossings
among segments between l and nextd(l) can be done as in Baur and Brandes [2004],
which we adapt to our notation (lines 16–31): The l-neighbors are traversed from left
to right. If an l-neighbor of A is found (line 21), the corresponding segment will cross
all remaining s− j incident/inner segments of B after the swap. If an l-neighbor of B is
found (line 24), the segment has crossed all remaining r−i incident/inner segments ofA
before the swap. Common neighbors present both cases at the same time (line 30). An
update of the adjacency after a swap (line 14) is only necessary ifA andB have common
l-neighbors. Algorithm 7 shows how this can be done in overallO(deg(A)+deg(B)) time
similarly to the function uswap.
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ALGORITHM 6: HORIZONTAL-SWAP(G,E ,A,B)
Input: Block graph G = (B,F), embedding E = (φ,π), consecutive blocks A,B
Output: Updated embedding E , change in crossing count

1 begin
2 π′ ← π
3 π′(A)← π(B)

4 π′(B)← π(A)

5 E ← (φ,π′)
6 if B ∈ BE ∧B is not active then return (E ,0)
7 L← ∅; ∆← 0 // L is duplicate free
8 if φ(A) ∈ levels(B) then L← L ∪ {(φ(A),−)}
9 if φ(A) ∈ levels(B) then L← L ∪ {(φ(A),+)}

10 if φ(B) ∈ levels(A) then L← L ∪ {(φ(B),−)}
11 if φ(B) ∈ levels(A) then L← L ∪ {(φ(B),+)}

12 foreach (l, d) ∈ L do
13 ∆←∆ + uswap(A,B, l, d)
14 UPDATE-ADJACENCIES(A,B, l, d)

15 return (E ,∆)

16 function uswap(A,B, l, d)∶ integer
17 let X0 ≺ ⋅ ⋅ ⋅ ≺Xr−1 ∈ Nd

(A, l) be the l-neighbors of A in direction d
18 let Y0 ≺ ⋅ ⋅ ⋅ ≺ Ys−1 ∈ Nd

(B, l) be the l-neighbors of B in direction d
19 c← 0; i← 0; j ← 0
20 while i < r and j < s do
21 if π(Xi) < π(Yj) then
22 c← c + (s − j)
23 i← i + 1
24 else if π(Xi) > π(Yj) then
25 c← c − (r − i)
26 j ← j + 1
27 else
28 c← c + (s − j) − (r − i)
29 i← i + 1
30 j ← j + 1

31 return c

LEMMA 3.1. Let B be the block list in the current order. Let B ∈ B be the successor of
A ∈ B. If swapping A and B changes the crossings between any two segments, then one
of them is an incident outer segment of A or B. The other segment is an incident outer
segment of the same kind (incoming or outgoing) of the other block or an inner segment
of the other block.

PROOF. Note that only segments between the same levels can cross. As type 2 con-
flicts are absent, at least one of the segments of a crossing is an outer segment. Let
(u, v), (w, z) ∈ E′ be two segments between the same levels with u ≠ w and v ≠ z. If the
two segments cross after swapping A and B but did not cross before (or vice versa), ei-
ther u and w or v and z were swapped. Therefore, one of the segments is adjacent to A
or is a part of A and the other is adjacent to B or is a part of B. If v and z were swapped
and thus u and w were not, φ(v) = φ(z) is the upper level of A or B, and thus one of
the crossing segments is an incoming outer segment of A or B. The other segment is
either an incoming outer segment or an inner segment of the other block. Note that it
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cannot be an outgoing outer segment of this block because then neither u and w nor v
and z would have been swapped. The other case of swapping u and w instead of v and
z is symmetric.

PROPOSITION 3.2. Let B be the block list in the current order. Let B ∈ B be the
successor of A ∈ B. Let i and j be the two levels framing the incoming outer segments
of A, the other three cases are symmetric. If there is a segment (u, v) between i and
j, which is either an incoming outer segment of B or an inner segment of B, then the
incoming segments of A starting at a block left of block(u) cross (u, v) after the swap
of A and B only, the segments starting at block(u) never cross (u, v), and the segments
starting right of block(u) cross (u, v) before the swap only. There are no other changes
of crossings due to Lemma 3.1.

After a horizontal swap of two blocks A and B, we adjust the adjacency arrays of
common neighbors with Algorithm 7.

ALGORITHM 7: UPDATE-ADJACENCIES(A,B, l, d)

Input: Consecutive blocks A,B ∈ B, level l, direction d Nd
(A, l), Id(A),Nd

(B, l), Id(B)

Output: Updated adjacencies of A and B and all common neighbors

1 let X0 ≺ ⋅ ⋅ ⋅ ≺Xr−1 ∈ Nd
(A, l) be the l-neighbors of A in direction d

2 let Y0 ≺ ⋅ ⋅ ⋅ ≺ Ys−1 ∈ Nd
(B, l) be the l-neighbors of B in direction d

3 i← 0; j ← 0
4 while i < r and j < s do
5 if π(Xi) < π(Yj) then
6 i← i + 1
7 else if π(Xi) > π(Yj) then
8 j ← j + 1
9 else

10 Z ←Xi // = Yj

11 swap entries at pos. Id(A)[i] and Id(B)[j] in N−d
(Z, l) and in I−d(Z)

12 Id(A)[i]← Id(A)[i] + 1

13 Id(B)[j]← Id(B)[j] − 1
14 i← i + 1
15 j ← j + 1

3.7. Time Complexity
THEOREM 3.3. One round of grid sifting (Algorithm 1) has a time complexity of

O(∣E∣2 + ∣E∣ ⋅ ∣V ∣ ⋅ log ∣V ∣) for a nonnecessarily proper level graph G = (V,E,φ).
PROOF. A horizontal sifting step of a block B needs O(∣E∣ ⋅deg(B)) time [Bachmaier

et al. 2011]. Hence, (horizontally) sifting an edge block takes O(∣E∣) time, as its degree
is 2. A vertical swap of vertex block B consists of counting the crossings between five
level pairs (O(∣E∣ ⋅ log ∣E∣), [Barth et al. 2004]), (de-)activating edge blocks (O(∣E∣)),
a horizontal sifting step for each incident edge block (O(∣E∣ ⋅ deg(B)) in total), and
the horizontal sifting step of B itself (O(∣E∣ ⋅ deg(B))). We fix the level radius (i. e.,
the number of tested levels in each direction) to a constant. Thus, we obtain the time
complexity O(∣E∣ ⋅ deg(B) + ∣E∣ ⋅ log ∣E∣) for a vertical step. A sifting round consists of a
vertical step of each vertex block and has time complexity O(∑B∈BV

(∣E∣ ⋅ deg(B) + ∣E∣ ⋅
log ∣E∣)) = O(∣E∣2 + ∣E∣ ⋅ ∣V ∣ ⋅ log ∣V ∣), since O(log ∣E∣) = O(log ∣V ∣).
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Fig. 7. Vertical compaction.

The time complexity is O(∣E∣2) for dense graphs with ∣E∣ ≥ ∣V ∣ log ∣V ∣. Our experi-
ments show that the counting of the crossings can be neglected in practice. The time
complexity increases to O(∣E∣2 ⋅ ∣V ∣ + ∣E∣ ⋅ ∣V ∣2 ⋅ log ∣V ∣) in total using an unfixed level
radius.

4. VERTICAL COMPACTION
Similarly to Chimani et al. [2011], we apply a postprocessing step to reduce the number
of levels without changing the crossing number. In the level embedding, we search for
distinct (nonnecessarily monotonic) cuts from the left to the right which consist solely
of dummy vertices (at most one of each edge block) and do not cross outer segments.
We delete these cuts (i. e., its vertices) and lift the subgraph below each cut by one
level. See Figure 7 for an example. Even our naı̈ve implementation needs less than 5%
of the overall running time in our benchmarks.

5. EXPERIMENTAL RESULTS
All of the following benchmarks ran on Intel Xeon 2.0 GHz cluster nodes each with
16GB main memory. The upward planarization layout (UPL) algorithm was a binary
C++ executable (provided by the authors of [Chimani et al. 2011]) and the other algo-
rithms were implemented in JAVA within Gravisto [Bachmaier et al. 2004]. All tests
in sum needed a (sequential) computation time of roughly 219 days.

5.1. Synthetic Benchmarks

For each density d = ∣E∣∣V ∣ ∈ {1.5,2.5, . . . ,10.5} and vertex number ∣V ∣ ∈ {20,40, . . . ,400}, we
generated 4 virtually random graphs with ∣V ∣ vertices and an edge set chosen from all
d ⋅ ∣V ∣-element subsets of the edge set of the complete graph [Rodionov and Choo 2004].
More specifically, we identified the vertices with numbers from 1 to ∣V ∣ and introduced
the set E′ containing all directed edges from lower numbered to higher numbered
vertices. Thus, (V,E′) is a complete directed acyclic graph. Then, we partitioned the
vertices into two sets V1

.∪V2, initially with V1 = {1} and V2 = V −V1. We then iteratively
chose a random edge e = (u, v) ∈ E′ with u ∈ V1 and v ∈ V2 and set E ← E ∪ {e},
E′ ← E′ − {e}, V1 ← V1 ∪ {v}, and V2 ← V2 − {v} until V2 = ∅. Thus, (V,E) is connected.
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Then, we iteratively chose a random edge e from the remaining edges in E′ and set
E′ ← E′ − {e} and E ← E ∪ {e}. In the latter step, whenever ∣E∣ = d ⋅ ∣V ∣, we stopped and
obtained the benchmark graph (V,E).2

We used the state of the art Coffman/Graham algorithm with level width 1, yielding
a virtually random injective initial leveling φ ∶ V → {1, . . . , ∣V ∣}, in order to give the al-
gorithms some freedom to place vertices. As a side effect, φ also imposes an ascending
topological ordering on the vertices. We compared the algorithms iterative one-sided
2-level barycenter (BC) [Kaufmann and Wagner 2001], global sifting (GlS) [Bachmaier
et al. 2011], upward planarization layout (UPL) [Chimani et al. 2011], and our grid sift-
ing algorithm with the level radii 3 (GrS3), 10 (GrS10) and unconfined (GrS*). GrS21
uses radius 21 but odd (i. e., new) levels only. Hence, GrS21 holds the invariant of hav-
ing only one vertex per level. Then, the new levels adjacent to the current level of each
vertex can be omitted as well, and GrS21 tests the same number of levels as GrS10.

We executed eight rounds for each grid sifting variant, since then there is no further
significant improvement in the number of crossings. We applied UPL 20 times on each
input to choose the best result. Clearly, BC and GlS are the fastest algorithms by
far, but they cannot change the leveling. To ensure that their results do not suffer
from saving running time, we execute (actually unreasonable) 400 sweeps and sifting
rounds, respectively.

As UPL is slower than our grid sifting algorithms (Figure 10), we could not test
UPL for graphs with a density greater than 4.5 and more than 200 vertices. The run-
ning time (Figure 8) of the grid sifting variants with restricted level radius are rather
comparable to GlS, whereas BC is always fastest.

Note the crossings of the lines GrS10, GrS21, and GlS in Figure 8(c), which, at first
glance, contradict the same asymptotic runtime ofO(∣E∣2). Compared to GrS10, GrS21
uses the double level radius, that is, it tries to place vertices at levels that are up to
double the distance of their original level, but it tests only odd levels. Consequently,
GrS10 and GrS21 perform the same number of horizontal steps in large graphs. Then,
GrS10 is slightly slower because of the different relative amount of runtime required
by counting the bilayer crossings. However, as in small graphs the number of actually
tested levels is effectively restricted by the total number of levels rather than the level
radius, GrS21 is faster than GrS10 for graphs with less than 80 vertices. A similar
argument applies to GlS, which corresponds to grid sifting with level radius 0, that is,
it omits vertical swaps. GrS21 is faster than GlS for small graphs by performing less
rounds, but it is slower once the number of actually tested levels converges to 21 as
the graph size increases. As there are no graphs with 20 vertices and a density of 10.5,
the benchmarks in Figure 8(c) start at 40.

Figure 9 shows the obtained quality of the algorithms in terms of crossings at dif-
ferent densities. As expected, the higher the level radius is chosen, the less crossings
remain. Compared to that, an increased number of rounds for GlS does not pay out.
BC is qualitatively inferior.

Figures 10–12 compare the performance of the algorithms with the density of the
graphs. Clearly, the values shown in Figure 10 are dominated by the running time
for the large instances. For a similar benchmark using graphs with a fixed number of
vertices, see Figure 13. As a further consequence of the absence graphs with 20 vertices

2The generators used are included within the source code of Gravisto [Bachmaier et al. 2004]. The
primary Java classes are org.graffiti.plugins.algorithms.sugiyama.gridsifting.benchmark.RandomPA
and RandomPA2, which contain further instructions for their usage. The employed graphs generated with a
random (but for reproducibility hard-coded) seed can be obtained from the Graph Archive [Bachmaier et al.
2012] under keyword “Grid Sifting”.
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Fig. 8. Random graphs: number of vertices vs. running times.
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Fig. 9. Random graphs: number of vertices vs. number of crossings.
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Fig. 10. Random graphs: density vs. running times.
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Fig. 11. Random graphs: density vs. number of crossings.
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Fig. 12. Random graphs: density vs. number of levels.

and a density of 10.5, the average vertex number of the tested graphs is higher for that
density. This causes the bend in the lines in Figure 12.
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Fig. 13. Random graphs with 100 vertices: density vs. running times.
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Fig. 14. Random graphs with 100 vertices: density vs. number of crossings.

In Figure 11, yet at a density of 2.5, all grid sifting variants give less crossings than
UPL, with throughout a lower number of levels (Figure 12). GrS21 is a good trade-
off between running time and result. The Wilcoxon signed rank test [Wilcoxon 1945]
indicates with a confidence of 99% that GrS21 yields 8.1% less crossings than UPL for
graphs with density 2.5, 13.1% for density 4.5, and 9.1% for density 10.5. Aggregating
all tested densities, GrS21 yields 11.8% less crossings than UPL. The number of levels
is in both algorithms rather high (Figure 12), which is a consequence of optimizing the
number of crossings first.

To further shed light on the performance of the algorithms at comparatively low
densities, we tested another set of random graphs. This time we fixed the number of
vertices of each graph to 100, following the style of benchmarks for random graphs
of Chimani et al. [2011]. We drew 10 instances each from all connected DAGs with
an exact density of d = ∣E∣

100
∈ {1.5,1.6, . . . ,2.4,2.5}. The tests clearly indicate that while

UPL wins at sparsest graphs, GrS21 dominates other approaches regarding runtime
(Figure 13) and crossings (Figure 14) for all densities above a certain threshold (about
2.18 in the very case of 100 vertices).
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Fig. 15. Rome graphs: number of vertices vs. running times.
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Fig. 16. Rome graphs: number of vertices vs. number of crossings.

5.2. Rome Graphs
Analogously to Chimani et al. [2011], we additionally compare the algorithms on the
widely used Rome graphs library [Di Battista et al. 1997] in Figures 15–17. The
set contains 11,528 instances with 10–100 vertices and 9–158 edges. Although these
graphs are originally undirected, we interpret them as directed by artificially directing
the edges according to the vertex order given in the input files from former to later ver-
tex definitions (see Chimani et al. [2011]). The remaining parameter set-up is identical
to Section 5.1.

As expected for the Rome graphs, which are, with an average density of about 1.3,
very sparse and almost planar, the planarization approach UPL results in fewer cross-
ings than grid sifting. However, grid sifting produces fewer levels. The running times
are comparable.

5.3. Example Drawings
As examples, we visualize the embeddings of two Rome graphs [Di Battista et al.
1997] computed by grid sifting. The edge directions are determined as described in
Section 5.2. For the fourth phase of the framework, that is, for computing real coordi-
nates, we employed the algorithm of Brandes and Köpf [2002].
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Fig. 17. Rome graphs: number of vertices vs. number of levels.

(a) grafo2379.35 with 35 ver-
tices and 45 edges on 17 levels
with 6 crossings.

(b) grafo4562.60 with 60 vertices and 79 edges on 19
levels with 27 crossings.

Fig. 18. Drawings of two Rome graphs produced by grid sifting.

6. SUMMARY
Combining the leveling and crossing reduction phases of the Sugiyama framework de-
livers fewer crossings. The planarization approach by Chimani et al. [2010; 2011] and
the presented two-dimensional grid sifting follow this idea. The latter delivers simi-
lar results regarding levels and crossings to the former, however, its time complexity
is roughly O(∣E∣2) instead of O(∣E∣5). We suggest using planarization for very sparse
and grid sifting for more dense graphs. While the basic strategy of moving vertices
across levels during the sifting is easy to perceive, in detail it turns out to be tricky to
maintain a decent time complexity. Therefore, we provided a comparatively extensive
description of the algorithm, which makes a straightforward implementation possi-
ble. Our implementation is available under the GPL within the Gravisto framework
[Bachmaier et al. 2004].
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