
Grid Sifting:
Leveling and Crossing Reduction

Christian Bachmaier, Wolfgang Brunner, Andreas Gleißner

Department of Informatics and Mathematics, University of Passau
{bachmaier,brunner,gleissner}@fim.uni-passau.de

Technical Report, Number MIP-1103
Department of Informatics and Mathematics

University of Passau, Germany
February 2011

Grid Sifting: Leveling and Crossing Reduction?

Technical Report MIP-1103
February, 2011

Christian Bachmaier, Wolfgang Brunner, and Andreas Gleißner

University of Passau
94030 Passau, Germany

{bachmaier,brunner,gleissner}@fim.uni-passau.de

Abstract. Directed graphs are commonly drawn by the Sugiyama al-
gorithm where first vertices are placed on distinct hierarchical levels and
second the vertices on the same level are permuted to reduce the overall
number of crossings. Separating these two phases simplifies the algo-
rithms but diminishes the quality of the result.
We introduce a combined leveling and crossing reduction algorithm based
on sifting, which prioritizes few crossings over few levels. It avoids type
2 conflicts which help to straighten the edges, and has a running time,
which is roughly quadratic in the size of the input graph independent of
dummy vertices.

1 Introduction

The Sugiyama framework [16] is the standard drawing algorithm for directed
graphs. It displays them in a hierarchical manner and operates in four phases:
cycle removal (reverse appropriate edges to eliminate cycles), leveling (assign ver-
tices to levels which define the y-coordinates and introduce dummy vertices on
long edges), crossing reduction (permute the vertices on the levels), and coordi-
nate assignment (assign x-coordinates to the vertices according to some aesthetic
criteria). Typical applications are schedules, UML diagrams, and flow charts.

There are many different leveling and crossing reduction algorithms. Tra-
ditional leveling methods minimize the number of levels by the longest path
method [13], by the Coffman/Graham algorithm with a predefined maximum
width [8], or by Gansner et al.’s ILP minimizing the sum of the edge lengths [11].
The common solution for k-level crossing minimization is a reduction to the still
NP-hard [10] one-sided 2-level crossing minimization problem, which is repeat-
edly solved by some up and down sweeps [13, 16]. Bastert and Matuszewski
claim [13] that the results of this level-by-level sweep are far from optimum.
“One can expect better results by considering all levels simultaneously, but k-
level crossing minimization is a very hard problem” [13, page 102].

? Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/15-1.

Grid Sifting: Leveling and Crossing Reduction 3

An important feature of crossing reduction algorithms is the avoidance of type
2 conflicts, which are crossings of two edges between dummy vertices. Among
others, the standard fourth phase algorithm [5] by Brandes and Köpf assumes the
absence of type 2 conflicts. Then it aligns long edges vertically and so achieves
a crucial aesthetic criterion [13] regarding pleasing hierarchical drawings.

Sifting was at first used for vertex minimization in ordered binary decision
diagrams [15] and was later on adapted to the one-sided 2-level crossing reduction
[14]. The idea is to keep track of the number of crossings while in a sifting step
a vertex v on level i is moved along a fixed order of all the vertices Vi on level i.
Finally v is placed at its locally optimal position. We call a single swap a sifting
swap and the execution of a sifting step for every vertex in Vi a sifting round.

Matuszewski et al. [14] have extended sifting towards a global view. There
the vertices of all levels are sorted by their degree and are first sifted in increasing
order and then in decreasing order. Jünger et al. [12] presented an exact ILP
approach for the NP-hard k-level crossing minimization, which can be used
in practice for small graphs. Moreover, metaheuristics have been suggested in
literature, e. g., genetic algorithms, tabu search, or windows optimization. We
have presented a global sifting algorithm [1], which aligns long edges to blocks
and tries to find an apt position for each block as a whole.

Although these algorithms try to achieve a global view on the overall number
of crossings, they do not change the leveling. “Since level assignment and crossing
reduction are realized as independent steps, the resulting drawings may have
unnecessary crossings caused by an unfortunate level assignment” [7, p. 94]. A
minimal graph showing this phenomenon is the K2,2. With two vertices on level
1 and two on level 2 the graph has one crossing. With one vertex on a third level
the crossing can be eliminated. In general, more levels lead to fewer crossings.

Recently, Chimani et al. [6, 7] presented a planarization approach to reduce
the number of crossings. They compute a planar upward embedding of the graph
by adding dummy vertices where two edges would cross. This embedding is
leveled respecting the given orders of the adjacency lists. Then the number of at
most O(|V |) levels is reduced by compacting the drawing. The algorithm needs
O(|E|5) time and still O(|E|3) = O(|V |3) time for planar input graphs.

In this paper we propose a new leveling and crossing reduction technique
which combines both phases in a natural way. We extend global sifting [1] such
that the blocks are not only sifted “horizontally” on their levels but also “verti-
cally” on all suitable levels and prioritize the crossing reduction over the leveling.
The algorithm yields better results than traditional heuristics. It avoids type 2
conflicts and runs in roughly quadratic time in the size of the input graph.

2 Preliminaries

We suppose that a directed graph without self-loops has passed through the
cycle removal phase and has been assigned an initial leveling. The outcome is
a k-level graph G = (V,E, φ), where φ : V → {1, 2, . . . , k} is a surjective level
assignment of the vertices with φ(u) < φ(v) for each edge (u, v) ∈ E. For an

4 C. Bachmaier, W. Brunner, A. Gleißner

edge e = (u, v) ∈ E we define span(e) := φ(v) − φ(u). An edge e is short if
span(e) = 1 and long otherwise. A graph is proper if all edges are short.

The traditional approach is to make each level graph proper by adding
span(e) − 1 dummy vertices for each edge e, which split e in span(e) many
short edges. Let G′ = (V ′, E′, φ′) denote the proper version of G. As in [5], we
call short edges segments of e. The first and the last segments are the outer and
the others the inner segments. Inner segments connect two dummy vertices. For
a (level) embedded proper level graph, the vertices on each level are ordered from
left to right. In an embedded level graph two segments are conflicting if they
cross or share a vertex. Conflicts are of type 0, 1 or 2 if they are induced by 0,
1, or 2 inner segments, respectively.

Similarly to [5], a block either represents a vertex of V , i. e., a vertex block,
or an edge of E, i. e., an edge block. A block is an entity of its own and is
not treated as a set. The sets of vertex blocks, edge blocks, and all blocks are
called BV , BE , and B = BV

.
∪ BE . For each x ∈ V ∪ E denote by block(x)

the block representing x. The set F := {(block(u),block(e)) ∈ BV × BE : e =
(u, ·)} ∪ {(block(e),block(v)) ∈ BE × BV : e = (·, v)} models a relation between
blocks induced by the incidence relation in G. G := (B,F) forms the directed
block graph of G. For a long edge e, its edge block block(e) corresponds to the
maximum connected subgraph of dummy vertices in G′, i. e., the inner segments
of e. Such blocks are called active. Likewise, blocks corresponding to short edges,
which do not need any dummy vertices in G′, are called inactive. Edges of
the block graph that are incident to an active edge block correspond to outer
segments of G′. For a dummy vertex v′ in G′ let block(v′) be the edge block
corresponding to the subgraph containing v′.

Note that G′ and the notion of dummy vertices are only used to simplify
definitions and are never directly respresented in the algorithm. As the grid
sifting algorithm modifies the level assignment φ of vertex blocks, edge spans
as well as the number of dummy vertices of G′ change over time. Hence, edge
blocks switch between the active and inactive state.

Due to technical reasons explained later, most vertex blocks lie on even levels.
If an odd level number is not assigned to any vertex block, the level is nonexistent.
In G′ there is no need to create dummy vertices for that level number. Let
next+(l) (resp. next−(l)) be the next existent level after (before) level l. A block
is defined to use a level if a (dummy) vertex of the corresponding subgraph
in G′ is assigned to this level. Let levels(B) be the set of all levels used by
block B. We define φ(B) := min levels(B) (resp. φ(B) := max levels(B)) to be
the topmost (undermost) level used by B. For each vertex block B = block(v)
φ(B) = φ(B) = φ(B) := φ(v) holds. An active edge block B = block((u, v)) uses
the levels φ(B) = next+(φ(u)),next+(next+(φ(u))), . . . ,next−(φ(v)) = φ(B).
For inactive edge blocks B, the set levels(B) is empty.

We introduce l-neighbors of (especially edge) blocks to address parts of these
blocks as if the dummy vertices were existent. If (u, v) is any segment in G′

and l = φ(u), we call block(v) to be an l-neighbor of block(u) in direction +.
Likewise we call block(u) to be an l+1-neighbor of block(v) in direction −. Note

Grid Sifting: Leveling and Crossing Reduction 5

that if additionally block(u),block(v) ∈ BV , then they are l-neighbors of each
other ignoring the inactive edge block in between. For each block B, direction
d ∈ {+,−} and level l ∈ levels(B) we define Nd(B, l) to be the set of all l-
neighbors of B in direction d. For an edge block B, Nd(B, l) contains exactly
one element. Note that if φ(B) < l < φ(B), then Nd(B, l) = B, so that an edge
block can be its own l-neighbor. For the perspective using dummy vertices, let v
be the dummy vertex of an edge block B on level l. Then the l-neighbor of B in
direction d is the block of the neighbor of v in direction d, which is either B or an
adjacent vertex block. For each vertex block B we define Nd(B) := Nd(B,φ(B))
as B uses only one level. Let B be an arbitrarily ordered list of all blocks and
let π : B → {0, . . . , |B| − 1} assign each block its current position in this order.
Note that the drawing of a short edge (u, v) is independent of π(block((u, v))).
We call the pair E = (π, φ) a level embedding of the graph.

See Fig. 1(a) for an example of a graph with 5 vertices and 6 edges. Each
vertex is represented by a vertex block and 5 edge blocks are shown, which
are active. The edge (2, 3) is short and, hence, its edge block is inactive. The
levels 5 and 7 are nonexistent (dashed). Thus, next+(4) = 6 and next−(8) = 6.
Then levels(J) = {3, 4, 6}, φ(J) = 3, φ(J) = 6, N+(J, 3) = J,N+(J, 4) = J
and N+(J, 6) = block(5) = H. Furthermore, N+(D) = (B,F) in Fig. 1(a)
(ignoring the currently inactive edge block L = block(2, 3)) and N+(D) = (L,G)
in Fig. 1(c) (as level 3 is nonexistent, F = block(2, 4) is inactive).

3 Grid Sifting

We extend our approach of global sifting [1] and try to find optimal positions
for each (vertex) block on all levels. We use a two-dimensional grid which we
place each vertex block on, see Fig. 1(a). The edge blocks span the levels between
their incident vertex blocks and represent the dummy vertices of each edge. Each
block has a unique x-coordinate in the grid which is given by the order of B. As
an initialization we use an arbitrary leveling and a random permutation of B.

Finding an optimal position for a vertex block consists of two nested loops,
cf. Algorithm 1. The outer loop, called vertical step, iterates over all levels the
vertex can use without reversing an incident edge. In the inner loop, called
horizontal step, all positions of the vertex block on the current level are tested.
In the end, the vertex block is placed on the level and position causing the
minimal number of crossings. If there are several positions causing the same
number of crossings, we place the vertex block at the level nearest to the middle
level and use the x-coordinate minimizing the horizontal edge lengths, which is
omitted in pseudocode. Edge blocks are sifted horizontally only, as their levels
are determined by the levels of their adjacent vertex blocks.

3.1 Vertical Sifting Step

In a vertical sifting step we test a vertex block B ∈ B at each possible level.
To improve the result, we also try to place each vertex block between existing

6 C. Bachmaier, W. Brunner, A. Gleißner

2

3

4

5

6

7

8

C

E

F

J

K

3
B

1
A

2
D

4
G

5H

(a) Top left

2

3

4

5

6

7

8

C

E

F

J

K

3
B

1
A

2
D

4
G

5H

(b) Top right

2

3

4

5

6

7

8

L

J

K

3B

1
A

2
D

4
G

5H

N+(A, 2)

I+

G

0

J

0

N+(D, 2)

I+

L

0

G

1

N−(L, 4)

I−
D

0

N+(L, 6)

I+

B

0

A

0

D

1

N+(G, 4)

I+

K

0

N−(J, 4)

I−
A

1

H

1

N−(K, 6)

I−
G

0

H

2

N−(H, 8)

I−
B

0

J

0

K

0

N−(B, 7)

I−
L

0

N+(B, 7)

I+

H

0

(c) Bottom left

2

3

4

5

6

7

8

L

J

K

3
B

1
A

2
D

4
G

5
H

(d) Bottom right

Fig. 1. Extremal positions of vertex block B during its vertical step

levels. Therefore, we normalize, i. e., relabel the existing levels to 2, 4, 6, . . . (line
1 in Algorithm 2) and then test the vertex block for all level numbers.

To avoid reversing edges, the uppermost possible level lmin for a vertex block
is one level below its undermost preceding vertex block (line 2) or 1 if there is
no such block. Likewise, the undermost possible level lmax is determined (line
3). See Fig. 1, where block B is tested with lmin = 3 and lmax = 7. In practice,
we confine the number of tested levels above and below the old level of B, i. e.,
the level radius by a constant to improve the running time.

The algorithm does not count the total number of crossings, but only the
relative differences between the levels tested. Thus, it first places B at the up-
permost possible level using VERTICAL-JUMP (line 4). All crossing numbers
(χ) are relative to the number of crossings produced by placing B at the leftmost
position on this level. Then, step-by-step, B is swapped downwards to lower lev-
els with VERTICAL-SWAP (Algorithm 3) and the locally calculated relative
differences in crossing count ∆ are summed up in χ (lines 6–8).

Grid Sifting: Leveling and Crossing Reduction 7

Algorithm 1: GRID-SIFTING
Input: Block graph G = (B = BV ∪ BE ,F) with initial level assignment

φ : BV → Z, number ρ of sifting rounds
Output: Block graph G with embedding E given by blocks ordered by values

π(B) for each B ∈ B and updated level assignment φ

1 initialize π : B → {1, . . . , |B|} with random permutation
2 E ← (φ, π)
3 for 1 ≤ i ≤ ρ do
4 foreach B ∈ BV do E ← VERTICAL-STEP(G, E , B)

5 return (G, E)

Algorithm 2: VERTICAL-STEP(G, E , B)
Input: Block graph G = (B,F), embedding E = (φ, π) with k used levels,

vertex block B to sift
Output: Updated embedding E = (φ, π)

1 normalize level numbers φ to 2, 4, 6, . . . , 2k

2 if N−(B) = ∅ then lmin ← 1 else lmin ← maxA∈N−(B) φ(N
−(A, φ(A))) + 1

3 if N+(B) = ∅ then lmax ← 2k+1else lmax← minC∈N+(B) φ(N
+(C, φ(C)))− 1

4 (E ,∆)← VERTICAL-JUMP(G, E , B, lmin)
5 Ebest ← E ;χbest ← ∆;χ← ∆
6 for l← lmin + 1 to lmax do
7 (E ,∆)← VERTICAL-SWAP(G, E , B, l); χ← χ+∆
8 if χ < χbest then Ebest ← E ;χbest ← χ

9 return Ebest

3.2 Vertical Jump and Vertical Swap

In the vertical swap, we move a vertex block B from level l− 1 to level l (line 4
in Algorithm 3). Then we sift each of the edge blocks incident to B (lines 9–10)
and B itself horizontally (line 11) and return the best embedding E and the sum
of crossing changes ∆.

As φ(B) is modified, previously inactive edge blocks may become active.
π(A) of such an edge block A has previously been meaningless and may be out-
dated, as A did not correspond to any dummy vertex. To keep the number of
crossings, we put each edge block becoming active at the horizontal barycenter
of its adjacent vertex blocks. The injectivity of π is repaired by bucket-sort. In
Figs. 1(a) and (b) the edge block block((2, 3)) is inactive and block((3, 5)) is
active. In Figs. 1(c) and (d) it is the other way round.

Moving B to (from) an odd level number means effectively creating (deleting)
that level. Surprisingly, this changes the number of crossings even in subgraphs
not connected to B, as can be seen in Fig. 2. Hence, a local update is not possible
and we use the efficient bilayer crossing counting algorithm by Barth et al. [3] to
count the crossings between these levels. In Fig. 2 the vertex block B is moved to
level l = 5. Hence, to update the number of crossings we subtract the crossings

8 C. Bachmaier, W. Brunner, A. Gleißner

2

3

4

5

6

7

8

B

2

3

4

5

6

7

8

B

Fig. 2. Modifying φ(B) changes the crossing count

Algorithm 3: VERTICAL-SWAP(G, E , B, l)
Input: Block graph G = (B,F), current embedding E = (φ, π),

vertex block B to sift on level l
Output: Updated embedding E = (φ, π), change in crossing number ∆

1 ∆← 0
2 if l is odd then ∆← ∆− CROSSINGS(l − 3, l − 1)− CROSSINGS(l − 1, l + 1)
3 else ∆← ∆− CROSSINGS(l− 2, l− 1)− CROSSINGS(l− 1, l)− CROSSINGS(l, l+2)
4 φ(B)← l
5 update π by placing each edge block that becomes active at the barycenter of

its adjacent vertex blocks and bucket-sorting all blocks
6 if l is odd then
7 ∆← ∆+ CROSSINGS(l − 3, l − 1) + CROSSINGS(l − 1, l) + CROSSINGS(l, l + 1)
8 else ∆← ∆+ CROSSINGS(l − 2, l) + CROSSINGS(l, l + 2)
9 foreach active edge block A ∈ N−(B) ∪N+(B) do

10 (E , δ)← HORIZONTAL-STEP(G, E , A); ∆← ∆+ δ

11 (E , δ)← HORIZONTAL-STEP(G, E , B); ∆← ∆+ δ
12 return (E ,∆)

between levels 2 and 4 as well as 4 and 6 before the swap (line 2) and add the
crossings between 2 and 4, 4 and 5, as well as 5 and 6 (line 7). Note that some of
the numbers of crossings after one vertical swap can be reused in the next one.

In contrast, the vertical jump does not count these changes, as all crossings
are relative to the current level lmin. Hence, only the lines 1, 4, 5 and 9–12 of
Algorithm 3 are executed. One problem created by the vertical jump is that the
edge blocks of B might have completely new positions when B arrives at its old
level. This impedes optimizing the position of B near its old position. We avoid
this by starting the vertical step at the current level twice swapping upwards
and downwards. We omit this detail in pseudocode just for simplicity.

3.3 Initialization of a Horizontal Sifting Step

As the level assignment φ does not change during a horizontal sifting step, the
algorithm basically equals the sifting step introduced in global sifting [1].

To improve the performance of one horizontal sifting step [4], it is necessary
to keep the adjacency lists N−(B,φ(B)) and N+(B,φ(B)) of each block B ∈ B

Grid Sifting: Leveling and Crossing Reduction 9

Algorithm 4: HORIZONTAL-STEP(G, E , B)
Input: Block graph G = (B,F), embedding E = (φ, π), block B to sift
Output: Updated ordering π, change in crossing number ∆

1 p← π(B); Ebest ← E ;∆best ←∞;∆← 0;∆old ← 0
2 place B at first position of B and sort the adjacencies of all blocks
3 for i← 1 to |B| − 1 do
4 if i = p then ∆old ← ∆
5 (E , δ)← HORIZONTAL-SWAP (G, E , B, π−1(i+ 1)); ∆← ∆+ δ
6 if ∆ < ∆best then Ebest ← E ;∆best ← ∆

7 return (Ebest,∆best −∆old)

sorted according to ascending positions of the neighboring blocks in B. We store
them as arrays for random access.

Additionally, we store two index arrays I−(B) and I+(B) of lengths |I−(B)| :=
|N−(B,φ(B))| and |I+(B)| := |N+(B,φ(B))|, respectively. I−(B) stores the in-
dices where B is stored in each adjacent block A’s adjacency N+(A, φ(A)). More
precisely, let A = N−(B,φ(B))[i] be a φ(B)-neighbor of B in direction −. Then
I−(B)[i] holds the index at which B is stored in N+(A, φ(A)). Symmetrically,
I+(B) stores the indices at which B is stored in the adjacency N−(A, φ(A)) of
each adjacent block A. See Fig. 1(c) for an example. The creation of the four
arrays for each block (second part of line 2 of Algorithm 4) can be done in O(|E|)
time by traversing B once. See Algorithm 6 in Appendix C or [1] for details.

3.4 Horizontal Sifting Step

In a horizontal sifting step (Algorithm 4) all positions i in B are tested for
a (vertex or edge) block B ∈ B (lines 3–6) and the best embedding Ebest is
returned. Similarly to the vertical step, we only compute the change in the
number of crossings when swapping A iteratively with its right neighbor (line
5). To be able to return the change in the number of crossings (line 7) we store
the relative number of crossings that B causes at its old position p (line 4).

3.5 Horizontal Sifting Swap

The horizontal sifting swap is the actual computation of the change in the num-
ber of crossings when a block A is swapped with its right neighbor B. Lemma 1
states which segments are involved and Proposition 1 states how the number of
crossings changes on such a level. Both can be found in Appendix B and in [1].

Algorithm 5 shows the details of a horizontal sifting swap. First, the levels at
which (significant) swaps occur and the direction of the segments changing their
crossings are found (lines 4–8). For each entry (l, d) of the set L the l-neighbors of
A and B in direction d are retrieved. Using the notion of G′ only the consecutive
(dummy) vertices in A and B on level l are swapped. The permutation of the
neighboring level nextd(l) remains unchanged. Thus, the computation of the

10 C. Bachmaier, W. Brunner, A. Gleißner

Algorithm 5: HORIZONTAL-SWAP(G, E , A,B)
Input: Block graph G = (B,F), embedding E = (φ, π), consecutive blocks A,B
Output: Updated embedding E , change in crossing count

1 begin
2 π′ ← π;π′(A)← π(B);π′(B)← π(A); E ← (φ, π′)
3 if B ∈ BE ∧B is not active then return (E , 0)
4 L ← ∅;∆← 0

5 if φ(A) ∈ levels(B) then L ← L ∪ {(φ(A),−)}
6 if φ(A) ∈ levels(B) then L ← L ∪ {(φ(A),+)}
7 if φ(B) ∈ levels(A) then L ← L ∪ {(φ(B),−)}
8 if φ(B) ∈ levels(A) then L ← L ∪ {(φ(B),+)}
9 foreach (l, d) ∈ L do

10 ∆← ∆+ uswap(A,B, l, d)
11 UPDATE-ADJACENCIES(A,B, l, d)

12 return (E ,∆)

13 function uswap(A,B, l, d) : integer
14 let X0 ≺ · · · ≺ Xr−1 ∈ Nd(A, l) be the l-neighbors of A in direction d
15 let Y0 ≺ · · · ≺ Ys−1 ∈ Nd(B, l) be the l-neighbors of B in direction d
16 c← 0; i← 0; j ← 0
17 while i < r and j < s do
18 if π(Xi) < π(Yj) then c← c+ (s− j); i← i+ 1
19 else if π(Xi) > π(Yj) then c← c− (r − i); j ← j + 1
20 else c← c+ (s− j)− (r − i); i← i+ 1; j ← j + 1

21 return c

change in the number of crossings among segments between l and nextd(l) can
be done as in [4], which we adapt to our notation (lines 13–21): The l-neighbors
are traversed from left to right. If an l-neighbor of A is found (line 18) the
corresponding segment will cross all remaining s−j incident/inner segments of B
after the swap. If an l-neighbor of B is found (line 19) the segment has crossed all
remaining r−i incident/inner segments of A before the swap. Common neighbors
present both cases at the same time (line 20). An update of the adjacency after a
swap (line 11) is only necessary ifA andB have common l-neighbors. Algorithm 7
in Appendix C and [1] shows how this can be done in overall O(deg(A)+deg(B))
time similarly to the function uswap.

3.6 Time Complexity

Theorem 1. One round of grid sifting (Algorithm 1) has a time complexity of
O(|E|2+ |E| · |V | · log |V |) for a non-necessarily proper level graph G = (V,E, φ).

Proof. A horizontal sifting step of a block B needs O(|E| · deg(B)) time [1].
Hence, (horizontally) sifting an edge block takes O(|E|) time. A vertical swap

Grid Sifting: Leveling and Crossing Reduction 11

of vertex block B consists of counting the crossings between 5 levels (O(|E| ·
log |E|), [3]), (de-)activating edge blocks (O(|E|)), a horizontal sifting step for
each incident edge block (O(|E| · deg(B)) in total), and the horizontal sifting
step of B (O(|E| · deg(B))). We fix the level radius, i. e., the number of tested
levels in each direction, to a constant. Thus, we obtain the time complexity
O(|E| · deg(B) + |E| · log |E|) for a vertical step. A sifting round consists of
a vertical step of each vertex block and has time complexity O(

∑
B∈BV

(|E| ·
deg(B)+|E|·log |E|)) = O(|E|2+|E|·|V |·log |V |), since O(log |E|) = O(log |V |).

ut

The time complexity is O(|E|2) for dense graphs, i. e., |E| ≥ |V | log |V |. Our
experiments show that the counting of the crossings can be neglected in practice.
The time complexity raises to O(|E|2 · |V |+ |E| · |V |2 · log |V |) in total using an
unfixed level radius.

4 Vertical Compaction

Similarly to [7], we apply a postprocessing step to reduce the number of levels
without changing the crossing number. In the level embedding we search for dis-
tinct (non-necessarily monotonous) cuts from the left to the right which consist
solely of dummy vertices and do not cross outer segments. We delete these cuts,
i. e., its vertices, and lift the subgraph below each cut by one level. Even our
naive implementation needs less than 5% of the overall running time.

5 Experimental Results

For each |V | ∈ {25, 50, . . . , 400} we generated 10 random graphs with |V | ver-
tices and an edge set drawn from all 4|V |-element subsets of the edge set of the
complete graph. We use a random injective initial leveling φ : V → {1, . . . , |V |}
giving the algorithms some freedom to place vertices. We compared the algo-
rithms iterative one-sided 2-level barycenter (BC) [13], global sifting (GlS) [1],
upward planarization layout (UPL) [7], and our grid sifting algorithm with the
level radii 3 (GrS3), 10 (GrS10) and unconfined (GrS*). GS21 uses radius 21
but new levels only, such that it holds the invariant of having only one vertex
per level and tests the same number of levels as GrS10.

We execute 8 rounds for each grid sifting variant since then there is no further
significant improvement in the number of crossings. We apply UPL 20 times on
each input to choose the best result. Clearly, BC and GlS are the fastest algo-
rithms by far, but they cannot change the leveling. To ensure that their results
do not suffer from saving running time, we execute (actually unreasonable) 400
sweeps and sifting rounds. All benchmarks ran on an Intel Core 2.8 GHz ma-
chine, where UPL was a binary C executable and the other algorithms were
implemented in Java within Gravisto [2].

As UPL is slower than our grid sifting algorithms (Fig. 3), we could test UPL
only for graphs with up to 275 vertices. All grid sifting variants give less crossings

12 C. Bachmaier, W. Brunner, A. Gleißner

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

R
un

ni
ng

ti
m
e
in

se
co
nd

s

Graph size |V |

UPL
GrS*

GrS10
GrS21

GlS
GrS3
BC

Fig. 3. Running times of the algorithms

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50 100 150 200 250 300 350 400

C
ro
ss
in
gs

Graph size |V |

BC
UPL
GrS3
GlS

GrS10
GrS21
GrS*

Fig. 4. Number of crossings of the algorithms

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

L
ev
el

co
un

t

Graph size |V |

BC
GlS
UPL

GrS21
GrS*

GrS10
GrS3

Fig. 5. Number of levels of the algorithms

Grid Sifting: Leveling and Crossing Reduction 13

(Fig. 4) and levels (Fig. 5) than UPL. GrS21 is a good tradeoff between running
time and result. The Wilcoxon signed rank test [17] indicates with a confidence
of 99% that GrS21 yields 7.9% less crossings than UPL. The number of levels is
rather high, as we are optimizing the number of crossings first.

6 Summary

Combining the leveling and crossing reduction phases of the Sugiyama framework
delivers few crossings. The planarization approach by Chimani et al. [6,7] and the
presented two-dimensional grid sifting follow this idea. The latter delivers similar
results regarding levels and crossings to the former, however, its time complexity
is roughly O(|E|2) instead of O(|E|5). We suggest to use planarization for sparse
(see Appendix D) and grid sifting for more dense graphs. Our implementation
is available under the GPL in Gravisto [2].

References

1. C. Bachmaier, F. J. Brandenburg, W. Brunner, and F. Hübner. A global k-level
crossing reduction algorithm. In M. S. Rahman and S. Fujita, editors, WALCOM
2010, volume 5942 of LNCS, pages 70–81. Springer, 2010.

2. C. Bachmaier, F. J. Brandenburg, M. Forster, P. Holleis, and M. Raitner. Gravisto:
Graph visualization toolkit. In J. Pach, editor, GD 2004, volume 3383 of LNCS,
pages 502–503. Springer, 2004. http://gravisto.fim.uni-passau.de/.

3. W. Barth, P. Mutzel, and M. Jünger. Simple and efficient bilayer cross counting.
J. Graph Alg. App., 8(2):179–194, 2004.

4. M. Baur and U. Brandes. Crossing reduction in circular layout. In J. Hromkovic,
M. Nagl, and B. Westfechtel, editors, WG 2004, volume 3353 of LNCS, pages
332–343. Springer, 2004.

5. U. Brandes and B. Köpf. Fast and simple horizontal coordinate assignment. In
P. Mutzel, M. Jünger, and S. Leipert, editors, GD 2001, volume 2265 of LNCS,
pages 31–44. Springer, 2002.

6. M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free upward cross-
ing minimization. ACM J. Exp. Alg., 15:2.2.1–2.2.27, 2010.

7. M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Upward planarization
layout. In D. Eppstein and E. R. Gansner, editors, GD 2009, volume 5849 of LNCS,
pages 94–106. Springer, 2010.

8. E. G. Coffman Jr. and R. L. Graham. Optimal scheduling for two processor sys-
tems. Acta Informatica, 1(3):200–213, 1972.

9. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An ex-
perimental comparison of four graph drawing algorithms. Comput. Geom. Theory
Appl., 7(5–6):303–325, 1997. graphs available at http://www.graphdrawing.org/.

10. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(1):379–403, 1994.

11. E. R. Gansner, E. Koutsofios, S. North, and K.-P. Vo. A technique for drawing
directed graphs. IEEE Trans. Software Eng., 19(3):214–230, 1993.

12. M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach to the
multi-layer crossing minimization problem. In G. Di Battista, editor, GD 1997,
volume 1353 of LNCS, pages 13–24. Springer, 1997.

14 C. Bachmaier, W. Brunner, A. Gleißner

13. M. Kaufmann and D. Wagner. Drawing Graphs, volume 2025 of LNCS. Springer,
2001.

14. C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer straightline
crossing minimization. In J. Kratochvíl, editor, GD 1999, volume 1731 of LNCS,
pages 217–224. Springer, 1999.

15. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Proc. IEEE/ACM International Conference on Computer Aided Design, ICCAD
1993, pages 42–47. IEEE Computer Society Press, 1993.

16. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Syst., Man, Cybern., 11(2):109–125,
1981.

17. F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

Grid Sifting: Leveling and Crossing Reduction 15

A Example Drawings

Exemplarily, we visualize the embeddings of two Rome graphs [9] computed by
grid sifting. The edge directions are determined as described in Appendix D.
For the fourth phase of the framework, i. e., for computing real coordinates, we
applied the algorithm of Brandes and Köpf [5].

(a) grafo2379.35 with 35
vertices and 45 edges on
17 levels with 6 crossings

(b) grafo4562.60 with 60 vertices and 79 edges
on 19 levels with 27 crossings

Fig. 6. Drawings of two Rome graphs

B Details of Horizontal Swaps

In this section we use the perception of G′ with dummy vertices and segments
again.

Lemma 1. Let B be the block list in the current order. Let B ∈ B be the suc-
cessor of A ∈ B. If swapping A and B changes the crossings between any two
segments, then one of them is an incident outer segment of A or B. The other
segment is an incident outer segment of the same kind (incoming or outgoing)
of the other block or an inner segment of the other block.

Proof. Note that only segments between the same levels can cross. As type 2
conflicts are absent, at least one of the segments of a crossing is an outer segment.
Let (u, v), (w, z) ∈ E′ be two segments between the same levels with u 6= w and
v 6= z. If the two segments cross after swapping A and B, but did not cross
before (or vice versa) either u and w or v and z were swapped. Therefore, one
of the segments is adjacent to A or is a part of A and the other is adjacent
to B or is a part of B. If v and z were swapped and thus u and w were not,
φ(v) = φ(z) is the upper level of A or B and thus one of the crossing segments is
an incoming outer segment of A or B. The other segment is either an incoming

16 C. Bachmaier, W. Brunner, A. Gleißner

outer segment or an inner segment of the other block. Note that it cannot be an
outgoing outer segment of this block because then neither u and w nor v and z
would have been swapped. The other case of swapping u and w instead of v and
z is symmetric. ut

Proposition 1. Let B be the block list in the current order. Let B ∈ B be the
successor of A ∈ B. Let i and j be the two levels framing the incoming outer
segments of A, the other three cases are symmetric. If there is a segment (u, v)
between i and j which is either an incoming outer segment of B or an inner
segment of B, then the incoming segments of A starting at a block left of block(u)
cross (u, v) after the swap of A and B only, the segments starting at block(u)
never cross (u, v), and the segments starting right of block(u) cross (u, v) before
the swap only. There are no other changes of crossings due to Lemma 1.

C Algorithms

With Algorithm 6 we build up the sorted adjacency of each block before each hor-
izontal step. We traverse the blocks B in the current order of B and add B to the
next free position j of the cleared adjacency array N+(A, φ(A)) (N−(C, φ(C)))
of each incoming φ(B)-neighbor A (outgoing φ(B)-neighbor C). Both values for
I+(A) and I−(B) (I+(B) and I−(C)) and their positions are only known af-
ter the second traversal of a segment e. Thus, we cache the first array position
j as an attribute p of e. Let v ∈ V ′ be a dummy vertex of an edge block B
with φ(v) = l. We explicitly do not update any outgoing l-neighbor adjacency
of v if φ(B) ≤ l < φ(B) and no incoming adjacency of v if φ(B) < l ≤ φ(B).
These vertices and arrays are only implicit for performance reasons. They only
would contain one element N ·(B, l)[0] = B. Thus, associated values “I ·(B, l)”
are not needed in Algorithm 7. For B only two arrays I−(B) and I+(B) remain
representing the position of B in its incident vertex blocks.

After a horizontal swap of two blocks A and B we adjust the adjacency arrays
of common neighbors with Algorithm 7.

D Additional Benchmarks

Analogously to Chimani et al. [7], we additionally compare the algorithms on
the widely used Rome graphs library [9] in Figs. 7 to 9. The set contains 11528
instances with 10–100 vertices and 9–158 edges. Although these graphs are origi-
nally undirected, we interpret them as directed by artificially directing the edges
according to the vertex order given in the input files from former to later vertex
definitions, see [7]. The remaining parameter setup is identical to Sect. 5.

As the Rome graphs are very sparse and almost planar, the planarization
approach UPL results in fewer crossings than grid sifting. However, grid sifting
produces fewer levels. The running times are comparable.

Grid Sifting: Leveling and Crossing Reduction 17

Algorithm 6: SORT-ADJACENCIES(G, π)
Input: Block graph G = (B,F), ordering π
Output: Ordered sets N−(B,φ(B)), N+(B,φ(B)), I ·(B) for each block B ∈ B

1 for i← 0 to |B| − 1 do
2 π(B[i])← i; clear arrays N−(B[i], φ(B[i])), N+(B[i], φ(B[i])) and I ·(B[i])
3 foreach vertex block or active edge block B ∈ B do
4 foreach e = (A,B) ∈ F do
5 if A is an inactive edge block then A← A′ with unique (A′, A) ∈ F
6 add B to the next free position j of N+(A, φ(A))

7 if π(B) < π(A) then p[e]← j // first traversal of e
8 else I+(A)[j]← p[e]; I−(B)[p[e]]← j // second traversal of e

9 foreach e = (B,C) ∈ F do
10 if C is an inactive edge block then C ← C′ with unique (C,C′) ∈ F
11 add B to the next free position j of N−(C, φ(C))
12 if π(B) < π(C) then p[e]← j // first traversal of e
13 else I+(B)[p[e]]← j; I−(C)[j]← p[e] // second traversal of e

Algorithm 7: UPDATE-ADJACENCIES(A,B, l, d)
Input: Consecutive blocks A,B ∈ B, level l, direction d

Nd(A, l), Id(A), Nd(B, l), Id(B)
Output: Updated adjacencies of A and B and all common neighbors

1 let X0 ≺ · · · ≺ Xr−1 ∈ Nd(A, l) be the l-neighbors of A in direction d
2 let Y0 ≺ · · · ≺ Ys−1 ∈ Nd(B, l) be the l-neighbors of B in direction d
3 i← 0; j ← 0
4 while i < r and j < s do
5 if π(Xi) < π(Yj) then i← i+ 1
6 else if π(Xi) > π(Yj) then j ← j + 1
7 else
8 Z ← Xi // = Yj

9 swap entries at pos. Id(A)[i] and Id(B)[j] in N−d(Z, l) and in I−d(Z)

10 Id(A)[i]← Id(A)[i] + 1; Id(B)[j]← Id(B)[j]− 1
11 i← i+ 1; j ← j + 1

18 C. Bachmaier, W. Brunner, A. Gleißner

0

2

4

6

8

10

12

14

0 20 40 60 80 100

R
un

ni
ng

ti
m
e
in

se
co
nd

s

Graph size |V |

GrS*
GrS21
GrS10
UPL
GlS

GrS3
BC

Fig. 7. Running times of the algorithms

0

50

100

150

200

250

300

0 20 40 60 80 100

C
ro
ss
in
gs

Graph size |V |

BC
GlS

GrS3
GrS10
GrS21
GrS*
UPL

Fig. 8. Number of crossings of the algorithms

0

20

40

60

80

100

0 20 40 60 80 100

L
ev
el

co
un

t

Graph size |V |

BC
GlS
UPL
GrS3

GrS21
GrS10
GrS*

Fig. 9. Number of levels of the algorithms

