
Calibration in optical graph recognition

Christopher Auer, Christian Bachmaier, Franz J. Brandenburg,
Andreas Gleißner, Josef Reislhuber

University of Passau, 94030 Passau, Germany.
{auerc, bachmaier, brandenb, gleissner, reislhuber}@fim.uni-passau.de

Abstract Graph drawing is the process of transforming the topological structure of a graph
into a graphical representation. Primarily, it maps vertices to points and displays them
by icons, and it maps edges to Jordan curves connecting the endpoints. Optical graph
recognition (OGR) is the inverse and transforms the digital image of a drawn graph into
its topological structure. It consists of four phases: preprocessing, segmentation, topology
recognition, and postprocessing. OGR is based on established digital image processing
techniques. Its novelty is the topology recognition where the edges are recognized with
emphasis on the attachment to their vertices and on edge crossings. Our prototypical
implementation OGRup shows the effectiveness of the approach and produces a GraphML
file, which can be used for further algorithmic studies and graph drawing tools. It has been
tested both on hand made graph drawings and on drawings generated by graph drawing
algorithms. Here we report on experiments for the calibration of parameters, which are
critical for topology recognition.

Keywords: optical graph recognition, graph topology, inverse of graph drawing, calibration

1 Preliminaries
We consider undirected graphs G = (V,E) with sets of vertices V and edges E, their drawing
and their recognition. A drawing of G maps vertices to graphical objects like discs, rectangles, or
other shapes in the plane. The edges are mapped to Jordan curves connecting its endpoints. For
convenience, we speak of vertices and edges when they are elements of a graph, of its drawing,
and in a digital image of the drawing. A port is the point of an edge which meets the vertex.
Each edge has exactly two ports. Note that this is only true if an edge does not cross another
vertex. Otherwise, it is hard to recognize the graph correctly both by a human and by OGR. An
(edge-edge-) crossing is a region of points where two or more edges cross. Crossings pose the main
problems in optical graph recognition.

2 Optical Graph Recognition
OGR is divided into the four phases: preprocessing, segmentation, topology recognition, and
postprocessing. The input of the first phase is a drawing of a graph G as a digital image. The
output is a description of G in GraphML file format [2]. From an information theoretic point of
view, a digital image with a size of several MB is reduced to a GraphML file of only a few kB.

We briefly describe how each phase is realized in our prototypical implementation OGRup, see
Fig. 1. All phases but the topology recognition use standard image processing techniques. The
purpose of the preprocessing phase is to separate the pixels of the background from the pixels of
the drawn graph. Therefore, the image is binarized and then improved by a morphological noise
reduction method [3]. In a nutshell, segmentation identifies the vertices in the binary image. More
precisely, for each object pixel it determines whether it belongs to a vertex or to an edge. The



Figure 1: Graphical user interface of OGRup with a drawing of a graph and the recognized graph.

output is a ternary image with three colors for background, vertex and edge pixels. Note that,
depending on the shape of the vertices, different methods have to be applied.

Topology recognition is the particularity of our approach. It is divided into skeletonization,
edge classification and edge traversal. Skeletonization performs morphological thinning to obtain
a 4-connected skeleton. The edge classification subphase classifies the pixels of the skeleton based
on their 4-neighborhood and the pixels recognized as vertex pixels in the segmentation phase. The
outcome are edge pixels, crossing pixels, vertex pixels, port pixels and miscellaneous pixels.

The classification of pixels allows us to identify edge sections in the image. An edge section
entirely consists of edge pixels up to both endpoints. Every edge section is a 4-region. Based on
the two endpoints, we classify the sections in three categories as follows. In trivial sections both
endpoints are port pixels, e. g., edge section “1” in Fig. 2. In port sections one endpoint is a port
pixel and the other is a crossing pixel, e. g., edge sections “2”, “3”, “5”, and “6” in Fig. 2. Finally,
in crossing sections both endpoints are crossing pixels, e. g., section “4” in Fig. 2.

While experimenting with our edge classification approach [1] we observed that if two edges
cross, then the result was often a short intermediate crossing section like “4” in Fig. 2. This is
problematic for the subsequent edge traversal subphase. Our solution is to first detect crossing
sections like “4” in Fig. 2 and then to interpret them as part of a crossing. We choose a parameter
γ for the minimum size of a crossing section and interpret each smaller crossing section as part of
a single crossing. For a “good” graph recognition γ has to be chosen appropriately.

Trivial sections directly connect two vertices without interfering with any other edge. For every
trivial section we directly obtain an edge, e. g., section “1” in Fig. 2. In contrast, port and crossing
sections need a more elaborate treatment as these sections are caused by crossings. In the edge
traversal phase, we merge port and crossing sections “adequately” to edges. In Fig. 2, sections “2”,
“4” and “6” are merged to one edge as well as “3”, “4” and “5”. We start the traversal always at
a port section and traverse it until we find a pixel that is common to two or more edge sections.
At this point we determine the adjacent edge section which most probably belongs to the current
section using direction vectors. The direction vector of an edge section −→e is a two dimensional
vector, which defines the direction of e. An example is illustrated in Fig. 2, where we start at port



Figure 2: A binary image of a graph and the result of edge classification. An edge pixel is marked
with “A”, a vertex pixel with “B”, a port pixel with “C”, and a crossing pixel with “D”. The edge
sections are marked with numbers and v is a direction vector.

section “2”, reach crossing “D” and then compare the directions of port section “3” and crossing
section “4” with the direction of “2”. In this case “4” is chosen, since its direction is most similar
to the direction of “2”. It is important that the direction vector of an edge section does not take
the whole section into account. That is, direction vector

−→
2 is not computed from “C” to “D”, but

only from the immediate area around the crossing. This is necessary for graphs with non-straight
edges, where the edges are arbitrary Jordan curves. Hence, when approaching an edge crossing,
only the local direction must be used to determine the most likely subsequent edge section.

Continuing with the example from Fig. 2, we may determine an edge consisting of “2” followed
by “4”. Next both sections “5” and “6” are suitable follow-up sections if the direction vector of
“4” is considered. To resolve this, we additionally take the direction vector of the preceding edge
section (if existent) into account as indicated by direction vector “v” in Fig. 2. Let ei be the edge
section for which the subsequent section must be determined, −→pq the direction vector of ei, and e
the current edge of which ei is part of. If e consists of more than one edge section, we take the
predecessor ei−1 of ei in e, determine the direction vector of ei−1 denoted by −→rs, and compute the
direction vector of ei as −→pq′ = −→pq + α· −→rs with 0 ≤ α ≤ 1. The parameter α is called preceding
section weight. This parameter must be chosen appropriately. The reason for the α weighting is
to reduce the influence of −→rs on the final direction vector −→pq′. The relaxation is to reduce the
influence of prior edge sections to avoid unsolicited results. Due to this modification, section “6”
is chosen as the succeeding section of “4”, and since “6” is a port section, we have recognized an
edge of the graph consisting of “2”, “4” and “6”. In the same way, the edge consisting of “3”, “4”,
and “5” is recognized. With the edge consisting of “1” we now have recognized the topology of the
input with four vertices and three edges.

The postprocessing phase concludes OGR and includes procedures that use the topological
structure as input. Possible tasks are the assignment of coordinates to the vertices obtained in
the segmentation phase, adding support points with coordinates to the edges, the attachment of
labels recognized in the preprocessing phase, the recognition of edge directions, the assignment of
colors, and the transformation to file formats. In OGRup we assign coordinates to the recognized
vertices, add support points to each edge such that it resembles its counterpart from the original
image and transform the data into the GraphML file format.

For maximum flexibility we designed and implemented a general module system as a backbone
of the OGRup architecture. Basically, a module is an (isolated) subroutine with defined input
and output slots transforming the input to the output. Multiple modules can be connected such
that the input slot of a module is either bound to a constant value or fed by the output slot of
another module. The modules are assembled on a high level of abstraction. Thus, the architecture



admits multiple realizations of an OGR phase by different algorithms, a module decomposition into
replaceable subcomponents, and a supply of modules by data produced in earlier phases without
interfering with steps in between. The system automatically generates boilerplate-code for the
transfer of data between different modules, determines an execution order, and can parallelize
the execution of independent modules. The implementer of a specific module can focus on the
algorithmic aspects. Currently OGRup consists of 8 modules.

3 Experiments with OGRup

A screenshot of our prototype OGRup is shown in Figure 1. OGRup assumes that the vertices
are drawn as filled shapes, e. g., circles or rectangles, and have approximately the same size. The
edges are curves of a width significantly smaller than the diameter of the vertices. They should
be contiguous and should exactly end at the vertices.

If these conditions are met, then OGRup recognizes graphs very well with a rate of almost
100%, in particular if the drawings are plane or have “good” crossings [1]. Plane drawings have no
crossings at all and crossings of edges are “good” if edges cross at large angles and several edges
do not cross in a small region. This parallels recent empirical evaluations [4]. If the crossings
are not “good”, OGRup may erroneously swap the edges at a crossing as if they would touch or it
may classify such a region as a new vertex. Therefore, OGRup puts particular emphasis on these
situations with the parameter α for the weighting of the preceding section and the parameter γ
for the minimum size of a crossing section. As often in digital image processing approaches, the
results of OGRup depend on the careful adjustment of the relevant parameters. Here we have
stressed this point for a confidence rate by a majority decision.

Our test suite consists of 92272 drawn graphs, which are obtained from 11534 Rome1 graphs
(undirected graphs with 10 to 100 nodes), where each graph was drawn 8 times with a spring
embedder algorithm [5]. A spring embedder is a randomized algorithm where each run likely
produces a different drawing. Each drawn graph was checked 12 times by OGRup with different
values for α and γ. A majority decision was taken as the result of the graph recognition by
OGRup. This result was compared with the correct input graph up to graph isomorphism. Here
we achieved a correct recognition rate of 89.68%.

It seems that we have already found good default values for α and γ for this test suite, since
the majority decision rule has led to a recognition rate which is inferior to our standard test
with one run. There the recognition rate was 93.24% [1]. In all examples, the running time of
OGRup for the recognition of a single graph was less than 10 seconds, however, there is room for
improvements. The maximum resolution of the drawings was approximately 2600 × 2600 pixels
(or 360kB PNG images).

References
[1] Auer, C. and Bachmaier, C. and Brandenburg, F. J. and Gleißner, A. and Reislhuber, J.:

Optical Graph Recognition. In Proc. Graph Drawing 2012, LNCS (2013) to appear

[2] Brandes, U. and Eiglsperger, M. and Herman, I. and Himsolt, M. and Marshall, M. S.:
GraphML Progress Report: Structural Layer Proposal. In Proc. Graph Drawing 2001, LNCS
2265 (2002), 501–512

[3] Gonzalez, R. C. and Woods, R. E.: Digital Image Processing. Prentice Hall (2002)

[4] Huang, W. and Eades, P. and Hong, S.: Beyond Time and Error: A Cognitive Approach to
the Evaluation of Graph Drawings. In Proc. BELIV 2008, 3:1–3:8

[5] Kaufmann, M. and Wagner, D.: Drawing Graphs. LNCS 2025 (2001)

1http://www.graphdrawing.org/data.html


