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A Radial Adaptation of the Sugiyama Framework
for Visualizing Hierarchical Information

Christian Bachmaier

Abstract— In radial drawings of hierarchical
graphs the vertices are placed on concentric circles
rather than on horizontal lines and the edges are
drawn as outwards monotone segments of spirals
rather than straight lines as it is both done in
the standard Sugiyama framework. This drawing
style is well suited for the visualisation of cen-
trality in social networks and similar concepts.
Radial drawings also allow a more flexible edge
routing than horizontal drawings, as edges can be
routed around the center in two directions. In
experimental results this reduces the number of
crossings by approximately 30 percent on average.
Few crossings are one of the major criteria for
human readability.

This paper is a detailed description of a complete
framework for visualizing hierarchical information
in a new radial fashion. Particularly, we briefly
cover extensions of the level assignment step to
benefit by the increasing perimeters of the circles,
present three heuristics for crossing reduction in
radial level drawings, and also show how to visual-
ize the results.

Index Terms— graph drawing, radial, crossing
reduction, Sugiyama framework, spiral segments

I. Introduction

H IERARCHICAL graph layout is the method of
choice for visualizing a general direction of flow,

e. g., data or information, in relational data. Thereby
vertices are usually drawn on parallel horizontal lines,
and edges are drawn as y-monotone polylines that
may bend when they intersect a level line. The stan-
dard drawing algorithm [1] for visualizing flow in
vertical direction consists of four phases: cycle removal
(reverses appropriate edges to eliminate cycles), level
assignment (assigns vertices to levels and introduces
dummy vertices to represent edge bends), crossing
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reduction (permutes vertices on the levels), and coor-
dinate assignment (assigns x-coordinates to vertices,
y-coordinates are implicit through the levels). See [2]
for an extended overview.

The novelty of this paper is that we draw the
level lines as concentric circles instead of as paral-
lel horizontal lines and thus visualize flow from the
center outwards. Further, in analogy to y-monotone
straight line edges used in horizontal level drawings,
we draw the edges as segments of spirals, unless they
are radially aligned, in which case they are drawn
as straight lines. This results in strictly monotone
curves from inner to outer levels and ensures that the
segments do not cross inner level lines or each other
unnecessarily. The apparent advantage of radial level
drawings is that level graphs can be drawn with fewer
edge crossings. It is also more likely that a graph can
be drawn without any crossings at all, since the set
of level planar graphs is a proper subset of the set of
radial level planar graphs [3]. Note that radial level
drawings are different from circular drawings [4]–[6]
where only one circle contains all vertices and do not
comply with radial drawings [7] where edges are drawn
straight line and level lines are not equidistant. Fur-
ther, in contrast to both, here “inner level edges” with
both end vertices on a common level are prohibited.
See Fig. 1 for an example.

Radial drawings are not new, for example see the
hierarchical graph drawings of [8], the ring diagrams
of [9], or the radial tree drawings of [10], which are
common for free trees. Radial level drawings are also
common, e. g., in the study of social networks [11],
[12]. There vertices model actors and edges represent
relations between the actors. The importance (central-
ity) of a vertex is expressed by its distance (closeness)
to the center, i. e., a position on a low level. Radial
level drawings are also well suited for level graphs
with an increasing number of vertices on higher levels.
For example, in a graph that shows which Web pages
are reachable from a given start page by following k
hyperlinks, higher levels are likely to contain many
vertices while there are only few vertices on the lower
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Fig. 1. Drawings of a level graph

levels. Other potential applications may be found in
[13], [14].

The paper is organized as follows: After some pre-
liminary definitions in the next section, we present a
complete framework in Sugiyama style to create radial
level drawings of hierarchical graphs. This is done
by introducing methods for radial level assignment in
Sect. III, radial crossing reduction in Sect. IV, and
radial coordinate assignment [15] in Sect. V. We omit
the cycle removal step since it does not differ from the
horizontal case and standard algorithms can be used.
See [2] for an overview on that topic. We conclude in
Sect. VI.

II. Preliminaries

A k-level graph G = (V,E, φ) is a directed acyclic
graph (DAG) with a level assignment φ : V →

{1, 2, . . . , k}, which partitions the vertex set into k ≤
|V | pairwise disjoint subsets V = V1

.
∪V2

.
∪· · ·

.
∪Vk, Vi =

φ−1(i), 1 ≤ i ≤ k, such that φ(u) < φ(v) for each edge
(u, v) ∈ E. Particularly, k = 1 implies that E = ∅. An
edge (u, v) is short if φ(v)− φ(u) = 1; otherwise it is
long and spans the levels φ(u)+1, . . . , φ(v)−1. A level
graph without long edges is proper. Any level graph
can be made proper by subdividing each long edge
(u, v) ∈ E by the introduction of new dummy vertices

vi ∈ Bi, i = φ(u) + 1, . . . , φ(v) − 1, φ(vi) = i. We
draw dummy vertices as small black circles, Fig. 6(a),
or edge bends, Fig. 1. The edges of a proper level graph
are also called (edge) segments. If both end vertices of
a segment are dummy vertices, it is called an inner
segment. Let N = |V ∪B|+ |B|+ |E| denote the size
of the proper level graph G = (V ∪B,E, φ) where V
contains the original vertices and B = B1

.
∪B2

.
∪ . . .

.
∪

Bk contains the dummy vertices with |B| ≤ k|E| ≤
|V ||E|.

An ordering of a proper level graph is a partial
order ≺ of V ∪ B such that u ≺ v or v ≺ u iff
φ(u) = φ(v). This is equivalent to a definition of
the vertex positions on level i as a bĳective function
πi : Vi ∪ Bi → {0, . . . , |Vi| + |Bi| − 1} with u ≺ v ⇔
πi(u) < πi(v) for any two vertices u, v ∈ Vi ∪ Bi. Let
π = (πi)1≤i≤k. We call an ordering of a level graph a
horizontal embedding. In case that an ordering admits
a drawing without edge crossings (except common
end points), it is called a level planar embedding.
Throughout the paper let N−(v) = {u | (u, v) ∈ E }
denote the predecessors of v ∈ V . A vertex is called
a source (sink), if there is no incoming (outgoing)
incident edge. Let sgn: R → {−1, 0, 1} denote the
signum function.

III. Radial Level Assignment

THE basic problem is the same as in horizontal
level drawings: In this phase a given DAG is to

be transformed into a level graph by assigning the
vertices to levels. Thus, any existing level assignment
algorithm for horizontal level drawings can directly
be used for radial level drawings. The optimization
criteria, however, slightly change: Radial level draw-
ings use k concentric circles to place the vertices of
the k levels. Contrary to the constant line lengths in
horizontal level drawings, the perimeters of the circles
grow longer with ascending level numbers: On an outer
circle, there is space for more vertices than on an
inner circle. Thus, we investigate how level assignment
methods can be extended to take advantage of this.

A straight-forward idea is to apply the longest path
level assignment method from outer to inner levels:
First, each sink of the graph is assigned to the highest
level. For the remaining vertices the level is recursively
defined by φ(v) = min{φ(w) | (v, w) ∈ E } − 1. This
puts each vertex on the outermost possible level while
minimizing the number of levels k. There is no explicit
balancing of level sizes, however.

For a better vertex distribution, an extension of
the Coffman/Graham algorithm [16] can be used that
explicitly takes into account the growing perimeter of
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the circles. Coffman and Graham compute a leveling
where the number of vertices per level is bounded
by a given constant W . We change this bound to
be a function w(i) which grows proportionally with
the index i of a level: w(i) = W · i. The first phase
of the algorithm remains unchanged, but we apply
it using the opposite edge direction: After remov-
ing transitive edges in linear time, an appropriate
numbering o : V → {0, . . . , |V | − 1} of the vertices
is computed: Initially, all vertices are unnumbered.
We consecutively choose one vertex at a time and
assign the next ascending number to it. The vertex
is chosen so that it has no unnumbered successors
and that the numbers of the successors are minimal
regarding a specific ordering of integer sets: a set of
vertex numbers is considered less than another one, if
the maximum is less. If the maximum of both sets is
equal, the next smaller value is compared, and so on.
In the second phase the algorithm places one vertex at
a time, starting with the vertex numbered with |V |−1
on level i = 1 and filling the levels from inner to outer
circles. In one step it places the next unleveled vertex
v ∈ V with maximum o(v) whose predecessors are
already leveled. If level i is full, i. e., if i contains w(i)
vertices, or if v has a predecessor u with φ(u) = i,
then a new level is started, i. e., i is increased by 1.
The level of v is then set to φ(v) = i.

As the last step of the level assignment phase the
level graph is made proper, because for drawing level
graphs it is necessary to know where long edges should
be routed, i. e., between which two vertices on a
spanned level. Thus all long edges are subdivided in
proper segments by new dummy vertices B in O(k|E|)
running time. In the following, we will only consider
proper level graphs.

IV. Radial Crossing Reduction

REGARDLESS of whether the leveling of a level
graph is given by the application or if it has been

computed by one of the algorithms in the previous
section, the next step towards a hierarchical drawing
is to compute an embedding. In horizontal hierarchical
drawings the embedding is fully defined by the vertex
ordering π. For radial embeddings it is also neces-
sary to know where the (w. l. o. g. counter-clockwise)
orderings start and end on each level. Therefore, we
introduce a ray that tags this borderline between the
vertices, cf. Fig. 1(b). The ray is a straight halfline
from the center to infinity between the vertices on each
level with extremal positions. Edges crossed by the ray
are called cut edges. In horizontal drawings of level
graphs a crossing between two edges only depends

1
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(a) Edge (1, 3) drawn counter-
clockwise and clockwise (dot-
ted)

1 2

3+

(b) ψ ((1, 2)) = +3

Fig. 2. Offsets of edges

on the orderings of the end vertices. In radial level
drawings, however, it is also necessary to consider the
direction in which the edges are wound around the
center, clockwise or counter-clockwise. Furthermore,
edges can also be wound around the center multiple
times. We call this the offset ψ : E → Z of an
edge. Thereby, |ψ(e)| counts the crossings of an edge
e ∈ E with the ray. If ψ(e) < 0 (ψ(e) > 0), e
is a clockwise (counter-clockwise) cut edge, i. e., the
sign of ψ(e) reflects the mathematical direction of
rotation, see Fig. 2. If ψ(e) = 0, then e is not a cut
edge and thus needs no direction information. Observe
that a cut edge cannot cross the ray clockwise and
counter-clockwise simultaneously. We define a radial
embedding E of a graph G = (V,E, φ)1 to consist of
the vertex ordering π and of the edge offsets ψ, i. e.,
E = (π, ψ).

Compared to horizontal drawings there is an ad-
ditional freedom in radial drawings without changing
the crossing number: rotation of a level i. A clockwise
rotation moves the vertex v with minimum position
on the ordered level φ(v) = i over the ray by setting
πi(v) to the maximum on i. The other values of
πi are updated accordingly. For an illustration see
Fig. 3, where v = 5. A counter-clockwise rotation is
defined symmetrically. Rotations do not modify the
“cyclic order”, i. e., the neighborhood of every vertex
on its radial level line is preserved. However, the
offsets of the edges incident to v must be updated.
If rotating clockwise, the offsets of incoming edges
of v are reduced by 1 and the offsets of outgoing
edges are increased by 1. The offset updates for
rotating counter-clockwise are symmetric. Depending
on the implementation, rotation needsO(deg(v)) resp.
O(|V |+ deg(v)) running time.

The most common technique for crossing reduction
in proper level graphs is to only consider two consecu-

1We need not to distinguish between original and dummy
vertices in this phase. Thus here V denotes both of them for
an easy notation.



4 IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 3, MAI/JUNE 2007

10 1

23

4

5

67

11
8

9

0

0

0
0

1+

1+
1-

1-

i

(a) Radial embedding

1

23

4

5

67

8

9

11

10

0

0

0

0

1+

1-

1+

1-

i

(b) Clockwise rotation
of level i

Fig. 3. Rotation

tive levels at a time in multiple top-down and bottom-
up passes. Starting with an arbitrary permutation of
the first level, subsequently the ordering of one level is
fixed, while the next one is reordered to minimize the
number of crossings in-between. This one-sided two-
level crossing reduction problem is NP-hard [17] and
well-studied. For radial level embeddings we follow the
same strategy and consider the radial one-sided two-
level crossing reduction problem. Given a 2-level graph
G = (V1

.
∪V2, E, φ) and an ordering π1 of the first level,

our objective is to compute an ordering of the second
level and offsets for the edges with few crossings.

A. Properties
Crossings between edges in radial embeddings de-

pend on their offsets and on the order of the end
vertices. There can be more than one crossing between
two edges, if they have very different offsets. We
denote the number of crossings between two edges
e1, e2 ∈ E in an embedding E by χE(e1, e2). Intu-
itively, this number is approximately equal to the
difference of the offsets |ψ(e2) − ψ(e1)|. The exact
formula is slightly different, however, with a small
shift depending on the vertex ordering, see Lemma 1.2
The (radial) crossing numbers of a radial embedding E
and of a level graph G = (V,E, φ) are then naturally
defined as χ(E) =

∑
{e1,e2}⊆E,e1 6=e2

χE(e1, e2) and
χ(G) = min{χ(E) | E is a radial embedding of G}.

Lemma 1: Let E = (π, ψ) be a radial embedding of
a 2-level graph G = (V1

.
∪ V2, E, φ). Then the number

of crossings between two edges e1 = (u1, v1) ∈ E and
e2 = (u2, v2) ∈ E is

χE(e1, e2) =

max
{

0,
∣∣ψ(e2)− ψ(e1) + b−a

2

∣∣+ |a|+|b|
2 − 1

}
,

2Although high offsets are never useful for a low number of
crossings, we nevertheless provide the general result, not only
to show that it also can be computed in constant time, but also
since it is an interesting problem in itself.

TABLE I
The crossing number in relation to δ = ψ(e2)− ψ(e1)

u1 v1 ψ(e2) u1 v1 ψ(e2)
vs. vs. vs. χE(e1, e2) vs. vs. vs. χE(e1, e2)
u2 v2 ψ(e1) u2 v2 ψ(e1)

≺ ≺ < |δ| � � > |δ|
≺ ≺ = 0 � � = 0
≺ ≺ > |δ| � � < |δ|
≺ = <

˛̨
δ − 1

2

˛̨
− 1

2
� = >

˛̨
δ + 1

2

˛̨
− 1

2
≺ = = 0 � = = 0
≺ = >

˛̨
δ − 1

2

˛̨
− 1

2
� = <

˛̨
δ + 1

2

˛̨
− 1

2
≺ � < |δ − 1| � ≺ > |δ|+ 1
≺ � = 1 � ≺ = 1
≺ � > |δ − 1| � ≺ < |δ|+ 1
= ≺ <

˛̨
δ − 1

2

˛̨
− 1

2
= � >

˛̨
δ − 1

2

˛̨
− 1

2
= ≺ = 0 = � = 0
= ≺ >

˛̨
δ − 1

2

˛̨
− 1

2
= � <

˛̨
δ − 1

2

˛̨
− 1

2
= = < |δ| − 1 = = > |δ| − 1
= = = 0

where a = sgn (π1(u2)− π1(u1)) and
b = sgn (π2(v2)− π2(v1)) .

Proof: In analogy to horizontal embeddings, edge
crossings do not depend on the exact position of the
end vertices, but only on the relative ordering (≺ , �,
or =) and on the edge offsets. We can assume w. l. o. g.
that ψ(e1) = 0, because in any embedding we can
rotate the whole second level multiple times without
changing π2 or the offset difference δ = ψ(e2)−ψ(e1).
This leads to 3 · 3 · 3 = 27 cases, which are straight-
forward to prove, see Tab. IV-A.

Corollary 1: Let E be a radial embedding of a 2-
level graph G = (V1

.
∪V2, E, φ). Swapping the position

of two vertices v, w ∈ V2 changes the number of
crossing between two edges (·, v), (·, w) ∈ E by at
most 1.

Before we show our radial crossing reduction algo-
rithms, we first discuss some more properties which
follow from radial level lines.

Lemma 2: Let G = (V1
.
∪V2, E, φ) be a 2-level graph

and let e1 = (u1, v) ∈ E and e2 = (u2, v) ∈ E be two
edges with a common target vertex v. Then in any
crossing minimal radial embedding E = (π, ψ) of G,
π1(u1) < π1(u2) implies ψ(e2)− ψ(e1) ∈ {0, 1}.

Proof: Assume that ψ(e2) − ψ(e1) 6∈ {0, 1}.
Then Lemma 1 implies χE(e1, e2) > 0. We choose
an arbitrary crossing between e1 and e2 and show
how the embedding can be modified to reduce the
number of crossings, see Fig. 4(a) for an illustration.
We exchange the routing of e1 and e2 between v and
the crossing: e1 is routed along the old course of e2
until it reaches the crossing. The routing from there
to u1 is not changed. We symmetrically do the same
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Fig. 4. Not all offset combinations for edges (·, v) ∈ E result
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with e2. In the new embedding e1 and e2 have one
crossing less and the number of crossings has not
changed otherwise, contradicting the assumption and
proving the lemma.

Because of this result, it is clear that only embed-
dings need to be considered, where there is a clear
parting between all edges incident to the same vertex
as in Fig. 4(b). The parting is that position of the
edge list of v that separates the two subsequences
with offsets ψ0 resp. ψ0 + 1. Otherwise unnecessary
crossings are generated between the incident edges,
see Fig. 4(c). We also only consider radial embeddings
with small edge offsets, because large offsets corre-
spond to very long edges which are difficult to follow.
Obviously, winding edges more than once around
the center can only increase its number of crossings.
Thus, only the offsets −1, 0, and 1 are used in our
algorithms.

Lemma 3: Radial one-sided two-level crossing mini-
mization is NP-hard.

Proof: We show the NP-hardness by reduction
from the horizontal one-sided two-level crossing min-
imization problem, which is known to be NP-hard
[17]. Given a 2-level graph G = (V1

.
∪ V2, E, φ) with a

fixed permutation π1 of the first level, we construct a
new 2-level graph G′ = (V ′

1

.
∪ V ′

2 , E
′, φ′) by adding a

barrier as follows: G is extended by |E|2 new vertices
x0, . . . , x|E|2−1 at the end of the first level π′1(xi) =
|V1|+ i, φ′(xi) = 1 and a new vertex y on the second
level φ′(y) = 2 that is connected to them by new edges
e0, . . . , e|E|2−1, ei = (xi, y).

Let E ′ = ((π′1, π
′
2), ψ) be a radial embedding of G′

that has a minimum number of crossings subject to
π′1. We can assume w. l. o. g. (because of rotation and
Lemma 2) that π′2(y) = |V2| and ψ(ei) = 0 for all
new edges. Then none of the new edges has a crossing
with any of the original edges, because this would lead
to |E|2 crossings, contradicting the minimality of the
embedding. Thus, there are no cut edges, and π2 =
π′2|V2 is a solution of the original horizontal one-sided

two-level crossing minimization problem.
As a consequence, we use heuristics for an efficient

solution of the problem. In the following, we present
three different approaches, extending some well-known
[2] horizontal one-sided two-level crossing reduction
methods, namely the barycenter, median, and sifting
heuristics.

B. Cartesian Barycenter Heuristic
In the horizontal barycenter crossing reduction

method for every vertex in V2 the average value of the
positions of its neighbors in V1 is computed. Afterward
V2 is sorted according to this values following the
rule of thumb “shorter edges have less crossings than
longer edges”. With some restrictions, this method
can be directly used to compute a radial embedding:
The horizontal vertex ordering defines a radial vertex
ordering, and all edge offsets are set to 0. This neglects
the additional freedom of radial edge routing, however,
and therefore introduces more crossings than neces-
sary. The result is especially bad for vertices whose
neighbors on the first level are far apart. If, for an
extreme example, a vertex is only adjacent to the first
and last vertex of the first level, its best position is
obviously near the ray, labeling one of the edges as a
cut edge. But the horizontal algorithm cannot do that,
and therefore produces an out-of-balance embedding.
Even worse, the result depends on the current position
of the ray.

One approach to improve that could be to rotate the
first level before computing the barycenter values to
an appropriate position, or maybe even use different
rotations for different vertices. We propose a simpler,
yet equally promising method. The basic idea stays
the same: each vertex should be close to the average
position of its neighbors. However, we use the terms
“average” and “position” in a geometric sense. We
assume the vertices of the first level V1 to be uni-
formly distributed on a unit circle, according to the
given ordering π1. This defines Cartesian coordinates
(x(u), y(u)) ∈ R2 for each u ∈ V1. Then we compute
for each v ∈ V2 the Cartesian barycenter3

bary(v) =

(∑
u∈N−(v) x(u)

|N−(v)|
,

∑
u∈N−(v) y(u)

|N−(v)|

)
of its predecessors N−(v) and sort the vertices circu-
larly around the origin, i. e., by the angles of bary(v)

3Note that the division by |N−(v)| can be omitted in an
implementation, because it does not change the polar angle of
bary(v).



6 IEEE TRANSCATIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 3, MAI/JUNE 2007

in polar coordinates,

β(v) = arctan
y (bary(v))
x (bary(v))

+ π ·H (−x (bary(v))) · sgn (y (bary(v))) ,

where H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0 is
the unit step function. Many programming languages
provide a specialized function atan2(x, y) for this
purpose.

After sorting, we distribute the vertices of the sec-
ond level uniformly on a concentric circle with radius
2 and choose for the offset of each edge one of −1,
0, or +1, whichever leads to the shortest edge in a
geometric sense. Obviously, this algorithm has the
same running time as its horizontal version:

Theorem 1: The running time of the Cartesian
barycenter heuristic is O(|E|+ |V | log |V |).

C. Cartesian Median Heuristic
The Cartesian median heuristic is similar to the

Cartesian barycenter heuristic. The only difference is
that we take component-wise the x and y median in-
stead of the component-wise barycenter. The running
time stays the same, since med(v) can be computed in
O(N−(v)), see [18]. The median values depend on the
underlying coordinate system (origin and rotation).
But since we use the same coordinates for all median
computations, this is no problem. Rotated coordinate
systems, however, might lead to different results.

D. Radial Sifting Heuristic
As a contrast to the fast and simple algorithms

described above, we also developed an extension of
the sifting heuristic, which is slower but generates
fewer crossings. Sifting was originally introduced as
a heuristic for vertex minimization in ordered binary
decision diagrams [19] and later adapted for the (hori-
zontal) one-sided crossing minimization problem [20].
The idea is to keep track of the objective function
while moving a vertex v ∈ V2 along a fixed order-
ing of all other vertices in V2. Then v is placed to
its locally optimal position. The method is thus an
extension of the greedy-switch heuristic [21], where
neighbors are only swapped if this does not increase
the number of crossings. For crossing reduction the
objective function is the number of crossings between
the edges incident to the vertex under consideration
and all other edges. Consecutively testing each vertex
v ∈ V2 on each position once is called a sifting round.

The efficient computation of crossing numbers in
sifting for horizontal embeddings is based on the

crossing matrix. Its entries correspond to the number
of crossings caused by pairs of vertices in a particular
relative ordering and can be computed as a prepro-
cessing step. Whenever a vertex is placed to a new
position, only a small number of updates is necessary.
For radial embeddings, however, the crossings matrix
cannot be computed in advance, because two vertices
cannot be said to be in a particular (linear) relative
order on radial levels.

Let E = (π, ψ) and E ′ = (π′, ψ) be two embeddings
of G, where E ′ is computed from E by swapping the
vertex v ∈ V2 and its successor w ∈ V2 according to
π2, i. e., π′2(w) = π2(v) and π′2(v) = π2(v) + 1. Since
swapping positions of v and w only affects crossings
of incident edges, the number of crossings in E ′ is
efficiently computed as

χ(E ′) = χ(E)− cE(v, w) + cE ′(v, w), where
cE(v, w) =

∑
u∈N−(v)

∑
x∈N−(w)

χE ((u, v), (x,w)) .

Unfortunately, we cannot directly transfer the ideas
of [4] for the efficient computation of that formula,
because in radial sifting the crossing numbers also
depend on the edge offsets, which are not constant in
our approach. A change in the offset of an edge may
affect all other edges. Therefore, the overall running
time of this part of the algorithm for one sifting round
is O(|E|2) instead of O(|V ||E|). The total running
time of the algorithm, however, is dominated by the
next step, anyway.

In addition to the position of vertex v, we also
have to compute the offsets of the incident edges.
As v moves along the second level circle in counter-
clockwise direction, we update the offsets accordingly.
Because of Lemma 2 we do not consider each possible
offset combination for each position of v. Intuitively,
the parting of the edges should move around the
first level circle in the same direction as v, but on
the opposite side of the circle. Otherwise, the edges
incident to v get longer and tend to increase the
number of crossings. Thus, we only decrease edge
offsets by 1, starting with ψ(e) = 1 for all incident
edges e, and we also do this one by one in the order
of the end vertices on level 1. The decision for which
offsets are updated at which position of v is made
subject to whether this leads to an improvement or
not. Note that the parting may move around level 1
twice, as offsets are decreased from 1 to −1.

Algorithm 1 shows one round of radial sifting. We
do not try the position |V2|−1, because it is equivalent
to position 0 modulo rotation.
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Algorithm 1: RADIAL-SIFTING
Input: Two level graph G = (V1

.
∪ V2, E, φ) with

radial embedding E = (π, ψ)
Output: Updated embedding E , i. e., positions π2

and offsets ψ
foreach v ∈ V2 with deg(v) > 0 do1

// put v to first position2
foreach w ∈ V2 with π2(w) < π2(v) do3

π2(w)← π2(w) + 14

π2(v)← 05

let {v = v0, . . . , v|V2|−1} ← V2 be ordered by π26
let Ev ← {e0, . . . , edeg(v)−1} be the edges7

(u, v) ∈ E ordered by π1(u)

// init offsets as 18
foreach ev ∈ Ev do ψ(ev)← 19

// init counters for pos, offset, parting, #cross.10
i∗ ← 0; j∗ ← j ← 0; l∗ ← l← 0; c∗ ← c← 011

// search best position for v12
for i← 0 to |V2| − 2 do13

repeat14
// try to improve part. by red. next offset15
c1 ←

∑
e∈E χE(el, e)16

ψ(el)← j17
c2 ←

∑
e∈E χE(el, e)18

// if successful, try again, else restore19
if c2 ≤ c1 then20

c← c− c1 + c221
l← l + 122

if l = deg(v) then23
j ← j − 124
l← 025

else ψ(el)← j + 126
until c1 < c227

// store best pos, offset, parting, #cross.28
if c < c∗ then i∗ ← i; j∗ ← j; l∗ ← l; c∗ ← c29

// swap v and vi+1 and update #cross.30
let Evi+1 be the set of edges (·, vi+1) ∈ E31

incident to vi+1

c← c−
∑

ev∈Ev

∑
evi+1∈Evi+1

χE(ev, evi+1)32
π2(vi+1)← i; π2(v)← i+ 133
c← c+

∑
ev∈Ev

∑
evi+1∈Evi+1

χE(ev, evi+1)34

// place v to best position35
foreach w ∈ V2 with π2(w) ≥ i∗ do36

π2(w)← π2(w) + 137

π2(v)← i∗38

// set best offsets for v’s incident edges39
for i← 0 to l∗ − 1 do ψ(ei)← j∗40
for i← l∗ to deg(v)− 1 do ψ(ei)← j∗ + 141

Theorem 2: Given a 2-level graph G = (V,E, φ),
the algorithm RADIAL-SIFTING runs in O(|V |2 ·|E|)
time.

Proof: For each node v ∈ V2 the content of the
repeat-until loop in lines 14–27 is executed O(|V | +
deg(v)) times: once per position, and additionally once
per shifted parting. It is thus executed O(|V |2 + |E|)
times in total. As the running times of lines 16 and 18
are O(|E|), the repeat-until loop contributes O(|V |2 ·
|E|+ |E|2) to the overall running time.

The only other relevant part are lines 32 and 34,
which are executed once for each pair (v, vi+1). Since
the summation needs O(deg(v) · deg(vi+1)), the total
running time of this part is O(|E|2) and is therefore
dominated by the above.

To allow a harmonic drawing of the computed em-
bedding in the next phase a final postprocessing which
rotates level 2 with respect to uniform edge lengths is
useful, e. g., see Fig. 5. Since our algorithm starts with
an offset of 1 for every edge and stops at the first best
parting among several others which are as good, a
straightforward drawing of the embedding is twisted
too much (in counter-clockwise direction). Thus the
sum of the absolute edge lengths can be reduced by
rotating level 2 with Algorithm 2: While assuming to
have a drawing with uniform vertex distribution on
both levels, we compute the average angle spanned by
the edges and rotate the whole level 2 by this amount.
However, this O(|E|) time postprocessing is only for
aesthetic reasons and does neither affect the number
of crossings nor the asymptotic running time.

E. Experimental Results
To analyse the performance of our heuristics, we

have implemented them in Java. Further, we have
realized the corresponding horizontal versions to com-
pare the resulting number of crossings with the radial
algorithms. We have tested the implementations using
a total number of 5000 random graphs: 50 graphs for
each combination of the following parameters: |V1| =
|V2| ∈ {20, 40, 60, 80, 100} and |E|/|V2| ∈ {1, . . . , 20}.

The experimental results in the Appendix show that
all radial heuristics generate fewer crossings than their
horizontal equivalents, experimentally by a factor of
0.7. This is a very encouraging result, since the run-
ning times of the radial algorithms (except sifting) are
similar, see Fig. 10. Like in the horizontal case [22],
Cartesian barycenter on average leaves slightly fewer
crossings than Cartesian median. Another similarity
is that radial sifting is the best among all three
radial heuristics, but also the slowest. Usually only few
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Fig. 5. Postprocessing to reduce absolute edge lengths

Algorithm 2: RADIAL-SIFTING-POSTPROCESS
Input: Radial embedding E = (π, ψ) of a two level

graph G = (V1

.
∪ V2, E, φ)

Output: Updated embedding E , i. e., positions π2

and offsets ψ
// init vertex distances and average angle1
ε1 ← 2π

|V1| ; ε2 ←
2π
|V2| ; δ ← 02

// compute average angle spanned by edges3
foreach e = (u, v) ∈ E do4

αu ← π1(u) · ε1; αv ← π2(v) · ε25
δ ← δ + (αu − αv) + 2π · ψ(e)6

δ ← δ
|E|7

// if necessary, rotate level 28
r ← b δ

ε2
+ 1

2c9
if r < 0 then10

for i← 1 to |r| do11
Counter-clockwise rotate level 212

else if r > 0 then13
for i← 1 to r do14

Clockwise rotate level 215

sifting rounds (3−5 for reasonable problem instances)
are necessary to reach a local optimum for all vertices
simultaneously, and the largest reduction of crossings
usually occurs in the first round. In our experiments
we further observed that the quality of radial sifting
does not depend much on the quality of the initial
embedding. However, a poor initialization increases
the number of sifting rounds needed and thus raises
the absolute running time.

V. Radial Coordinate Assignment

AS already mentioned, in radial level drawings
we draw the edge segments as segments of

a spiral, unless they are radially aligned, in which
case they are drawn as straight lines. This results in
strictly monotone curves from inner to outer levels
and ensures that segments do not cross inner level
lines or unnecessarily each other. This phase is usu-
ally constrained not to change the vertex orderings
computed previously, what is especially useful if the
input embedding is a planar embedding, e. g., as gen-
erated by [3]. Further, the drawing algorithm should
support commonly accepted criteria for readability
and aesthetics, like small area, good separation of
(dummy) vertices within a level, length and slope of
edges, straightness of long edges, and balancing of
edges incident to the same vertex. In our opinion edge
bends in radial level drawings tend to be even more
disturbing than in horizontal level drawings. Thus we
base our algorithm on the approach of Brandes/Köpf
[23] which guarantees at most two bends per edge.
Further it prioritizes vertical alignment, which helps
us to obtain radial alignment. The criterion of small
area in horizontal coordinate assignment, i. e., to ob-
tain small width, turns to uniform distribution of the
vertices on the radial levels. As a consequence, a user
parameter δ like in Sect. V-A is not needed. Since the
input embedding for this phase maintains the position
π(v) for every vertex v ∈ V ∪B, the position of the ray
is implicitly evident, i. e., on each level it lies between
the two vertices with extremal positions.

A. Horizontal Coordinate Assignment
There are several algorithms for horizontal coor-

dinate assignment [1], [24]–[31] using different ap-
proaches for the optimization of various objective
functions or iterative improvement techniques. Most
interesting is the Brandes/Köpf algorithm [23], which
generates at most two bends per edge and draws
every inner segment vertically if no two inner segments
cross. Further it minimizes the horizontal stretch of



BACHMAIER: A RADIAL ADAPTION OF THE SUGIYAMA FRAMEWORK 9

segments and also gives good results for the other
aesthetic criteria. The algorithm has O(N) running
time and is fast in practice. For level planar embed-
dings Eades et al. [32] presented an algorithm that
does not generate bends at all. However, it may need
exponential area.

Since the horizontal drawing algorithm of Bran-
des/Köpf [23] is the basis of our radial drawing al-
gorithm, we give an extended overview. It consists
of three basic steps: vertical alignment, horizontal
compaction, and balancing. The first two steps are
carried out four times. After that, the four results are
combined in the balancing step.

1) Vertical Alignment: The objective is to consecu-
tively align each vertex with its left upper, right upper,
left lower, and right lower median neighbor. Here and
in Sect. V-A.2 we describe the alignment to the left
upper median, the other three passes are analogous.

At the beginning all segments are removed from the
graph which do not lead to an upper median neighbor,
i. e., only candidates for vertical alignment are left,
see Fig. 6(b). Then two alignments are conflicting
if their corresponding edge segments cross or share
a vertex. These conflicts are classified according to
the number of involved inner edge segments. Type 2
conflicts, two crossing inner segments, are assumed to
have been avoided by the crossing reduction phase
and not to occur. For example this is automatically
ensured by the barycenter and median methods. For
sifting the absence of type 2 conflicts can be ensured
by weighting each inner segment crossing with |E|
instead of 1. Type 1 conflicts, a non-inner segment
crossing an inner segment, are resolved in favor of the
inner segment. That means, the non-inner segment is
removed from the graph. Finally, type 0 conflicts, two
crossing non-inner segments, are resolved greedily in
a leftmost fashion. That means, the right segment is
removed from the graph. At this point there are no
crossings left, see Fig. 6(c).

2) Horizontal Compaction: In the second step each
maximum set of vertically aligned vertices, i. e., each
connected component, is combined into a block, see
Fig. 6(d). Consider the block graph obtained by in-
troducing directed edges between each vertex and its
successor (if any) on its level and by contracting the
blocks into single vertices, see Fig. 6(e). A “horizontal”
longest path layering on the block graph determines
the x-coordinate of each block and thus of each con-
tained vertex. Thereby the given minimum separation
of the vertices δ is preserved.

The longest path layering leaves horizontal gaps
between the blocks. Thus a further horizontal com-

1

6

Fig. 7. Type 3 conflict

paction is possible: The block graph with expanded
blocks is partitioned into classes, see Fig. 6(f). The
first class is defined as the set of vertices which are
reachable from the top left vertex. Then the class
is removed from the block graph. This is repeated,
until every vertex is in a class. Within the classes the
graph is already compact. Now the algorithm places
the classes as close as possible except for minimum
separation δ. In Fig. 6(f) this already happened.
Fig. 6(g) shows the complete left upper layout.

3) Balancing: At this point we have four x-
coordinates for each vertex. The two left (right)
aligned assignments are shifted horizontally so that
their minimum (maximum) coordinate agrees with
the minimum (maximum) coordinate of the smallest
width layout. The resulting coordinate is the average
median4 of the four intermediate coordinates. After
reinserting all removed segments, the resulting draw-
ing is obtained, see Fig. 6(h).

B. Preprocessing

If an inner segment is a cut segment, i. e., if it
crosses the ray, then the maximum of two bends for
the corresponding long edge cannot be guaranteed, see
Fig. 7 for an example. We call this situation a type 3
conflict. A simple solution is to demand the absence
of inner cut segments in the input embedding, similar
as it is done with type 2 conflicts. A different, more
constructive and always doable approach described in
the following, is to eliminate the conflicts by changing
the position of the ray. This strategy changes the offset
of some edges and thus changes the embedding. But
this does not affect a later drawing.

Before we continue with the description of the elim-
ination algorithm, we discuss an important property
of radial level embeddings:

4If the median is not unique, the average median is defined
as the average of the two median values.
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Fig. 6. Stages of the Brandes/Köpf algorithm

Lemma 4: Let E′
i = { (u, v) | u ∈ Bi−1, v ∈ Bi } ⊆

E be the set of all inner segments between levels i−1
and i with 2 < i < k. Then for any two edges e1, e2 ∈
E′

i : |ψ(e1)− ψ(e2)| ≤ 1.
Proof: In the extreme case let e1, e2 ∈ E′

i for
2 < i < k be inner segments with ψ(e1) = max{ψ(e) |
e ∈ E′

i} and ψ(e2) = min{ψ(e) | e ∈ E′
i}. Now assume

that ψ(e1) > ψ(e2) + 1. As a consequence e1 and e2
cross. This is a type 2 conflict and contradicts the
absence of type 2 conflicts in the input embedding.

In a first step to eliminate type 3 conflicts we
consecutively unwind the levels in ascending order

from 3 to k−1 with Algorithm 3. Between levels 1 and
2 resp. k−1 and k there are no inner segments. Clearly,
level i is unwound by rotating the whole outer graph,
i. e., all levels ≥ i are rotated by multiples of 360
degrees. Please note that UNWIND-LEVEL updates
only offsets of edges between levels i − 1 and i. The
position of the ray, i. e., the ordering of the vertices,
remains the same.

Lemma 5: After unwinding for each inner segment
e ∈ E : ψ(e) ∈ {0,+1}.

Proof: Lemma 4 implies for each inner segment
e = (u, v) with φ(v) = i that ψ(e) ≤ 1. Additionally
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Algorithm 3: UNWIND-LEVEL
Input: Radial embedding E = (π, ψ) of a level graph

G = (V ∪B,E, φ) and level i with 2 < i < k
Output: Updated embedding E , i. e., offsets ψ of

inner segments entering level i
m← min{ψ(e) | e = (u, v) ∈ E, u ∈ Bi−1, v ∈ Bi}1
foreach segment e = (u, v) ∈ E with v ∈ Vi ∪Bi do2

ψ(e)← ψ(e)−m3

ψ(e) cannot be negative because we have subtracted
the minimum over all inner segments entering level i.
Since this argument holds for every level 2 < i < k,
the claim follows.

Lemma 6: After unwinding there are no two
dummy vertices v, v′ ∈ Bi on the same level i with
ψ
(
(u, v)

)
= 0, ψ

(
(u′, v′)

)
= +1, and v ≺ v′ for any

u, u′ ∈ Bi−1.
Proof: Follows directly from the absence of type

2 conflicts.
Now we use rotation as described in Sect. IV to

eliminate the remaining crossings of inner segments
with the ray. Please note that rotation of a single level
i is different from rotating levels during unwinding.
Here we do not rotate by (multiples of) 360 degrees in
general and do not rotate all levels ≥ i simultaneously.
Let B′

i ⊆ Bi be the set of dummy vertices incident to
an incoming inner segment e = (u, v) with ψ(e) = +1.
Let v = argmax{π(v) | v ∈ B′

i}. We rotate level
i clockwise until the ray enters the position after v,
i. e., until v is the last vertex on i and thus v =
argmax{π(v) | v ∈ Vi ∪ Bi}. We use the clockwise
direction, because according to Lemma 6 we do not
generate new type 3 conflicts this way. Finally, all
inner segments have an offset of 0. The overall running
time is O(N).

C. Intermediate Horizontal Layout
In the next step we generate a horizontal layout

of the radial level embedding with the Brandes/Köpf
algorithm. Therefore we ignore all cut segments. Re-
member that the embedding is free of type 3 conflicts.
Thus all inner segments of an edge are aligned verti-
cally. The resulting layout will later be transformed
into a concentric layout by concentrically connecting
the ends of the horizontal level lines with their be-
ginnings. Therefore, we must take into account that
circumferences of radial level lines grow with ascend-
ing level numbers. Thus we use a minimum vertex
separation distance δi = 1

i for each horizontal level
i, which is in each case indirectly proportional to i.

(a) Horizontal (b) Radial

Fig. 8. Overlap of the left and right contour

In this way we achieve a uniform minimum arc length
between two neighbor vertices on every radial level line
with the radial transformation described in the next
section, since we use the level numbers 1, 2, . . . , k as
radii.

D. Radial Layout
At this stage every vertex v ∈ V has Cartesian

coordinates
(
x(v), y(v) = φ(v)

)
∈ R × R. For the

transformation into a radial drawing we interpret
these coordinates as polar coordinates and trans-
form them with Eq. (1) into Cartesian coordinates(
xr(v), yr(v)

)
∈ R×R. The position of the ray denotes

0 degrees.

(
xr(v), yr(v)

)
=(

y(v) · cos
(

2π
z · x(v)

)
, y(v) · sin

(
2π
z · x(v)

)) (1)

The factor 2π
z normalizes the length of the horizon-

tal level lines to the circumferences of the radial level
lines. We set z = max

{
max{x(v′) | v′ ∈ Vi ∪ Bi} −

min{x(v′) | v′ ∈ Vi ∪ Bi} + δi | 1 ≤ i ≤ k
}

, i. e., z
is the largest horizontal distance between two vertices
on the same level i plus δi. The addend δi is necessary
to maintain the minimum distance between the first
and the last vertex, since they become neighbors
on the radial level line. Let iz be the level which
defines z. The normalization automatically realizes
the necessary overlap between the left and the right
contour of the horizontal layout when drawn radially,
see Fig. 8. Level iz is the widest level and thus iz
defines the maximum overlap of the contours.

After drawing the vertices, we draw the edges as
segments of a spiral. Each point p of a straight line
segment e = (u, v) is defined by Eq. (2) for 0 ≤ t ≤ 1.

(
x(p), y(p)

)
= (1− t)

(
x(u), y(u)

)
+ t
(
x(v), y(v)

)
(2)
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The coordinates of p can be transformed with
Eq. (1). But e can be a cut segment, which winds
multiple times clockwise or counter-clockwise around
the center. Therefore we rather use Eq. (3) which
simulates this behavior horizontally. Imagine |ψ(e)|+1
copies of the layout placed in a row, cf. Fig. 9. If
ψ(e) ≥ 0, then imagine e drawn as straight line from
u in the leftmost layout to v in the rightmost layout.
Otherwise, draw e from u in the rightmost layout to
v in the leftmost one. Any two neighboring layouts
of the row are separated by δiz

, i. e., the x-coordinate
of the leftmost vertex in the right layout is the x-
coordinate of the rightmost vertex of the left layout
plus δiz

.

(
x(p), y(p)

)
=(1− t)

(
x(u), y(u)

)
+ t
(
x(v) + ψ(e) · z, y(v)

) (3)

For all edges with offset 0 there is only one possible
direction without crossing the ray, i. e., there is only
one copy in the row. Equation (3) inserted in Eq. (1)
for drawing a spiral segment between u and v results
in the following equation:

(
xr(p), yr(p)

)
=
(
(1− t)y(u) + t · y(v)

)
·
(

cos
(

2π
z ·
(
(1− t)x(u) + t · (x(v) + ψ(e) · z)

))
,

sin
(

2π
z ·
(
(1− t)x(u) + t · (x(v) + ψ(e) · z)

)))
(4)

If t = 0.5, then p lies on a concentric circle with ra-
dius φ(u)+φ(v)

2 , because the radius of the spiral segment
grows proportional to the concentric distance between
p and φ(u). To obtain smooth edges, the number of
supporting points s : E → N needed for drawing edges
e = (u, v) with an approximating polyline or spline
depends on the edge length and a quality factor Q ≥ 1.

s(e) ∼ φ(v) ·
(∣∣2π

z · x(v)−
2π
z · x(u) + ψ(e) · 2π

∣∣) ·Q
∼ φ(v) ·

(∣∣x(v)−x(u)
z + ψ(e)

∣∣) ·Q
(5)

In the special case of |V1| = 1, e. g., in Fig. 7, it
is more aesthetic pleasing to place v ∈ V1 into the
concentric center, cf. Fig. 1(b). Thus we renumber the
levels by φ′(w) = φ(w) − 1 for all w ∈ V ∪ B − {v},
set xr(v) = yr(v) = 0, layout G′ = (V ∪B−{v}, E −
{ (v, w) | w ∈ V }, φ′), and draw each edge (v, w) as
a straight line. To get a readable picture in the case
|V1| > 1, Eades [10] suggests to set the diameter of
the first level to the radial distance between the radial

level lines. To achieve this with our algorithm, we use
0.5, 1.5, 2.5, . . . , k−1.5, k−0.5 as level numbers/radii.
An equivalent solution is to double the number of
levels k′ = 2k, to renumber the levels by φ′(v) =
2φ(v) − 1 for all v ∈ V ∪ B, to generate a drawing
of G′ = (V ∪B,E, φ′), and finally to zoom by a factor
of 1

2 .
Usually we draw on a canvas which has dimensions

a × b and has the origin in the upper left corner.
Thus for each vertex or supporting point p we do
the following: With the translation

(
xr(p), yr(p)

)
=(

xr(p)+ a
2 , yr(p)+ b

2

)
we move the origin to the center.

In order to use the entire drawing space, we scale the
layout by

(
x(p), y(p)

)
=
(
x(p), y(p)

)
· min{a,b}

2k .
Since the elimination of type 3 conflicts generates

no new crossings and Eqs. (1) and 4 are bĳective we do
not change the crossing number given by the embed-
ding. A radial level planar embedding is drawn planar.
Adopting the common assumption that drawing a line
(here an edge as a spiral segment with its supporting
points) needs O(1) time, we obtain an O(N) running
time.

VI. Conclusion

WE extended three well known crossing reduc-
tion techniques to radial level drawings. In

practice, all algorithms are fast enough to be applied
to reasonably large graphs. We showed by empirical
evidence, that using radial instead of horizontal level
lines reduces the number of crossings significantly.
Further we have presented a new linear time algorithm
for drawing level graphs (assigning coordinates) in a
radial fashion. To check its performance and to visu-
ally confirm the good quality of the resulting drawings
we realized a prototype as a plug-in for Gravisto [33]
in Java. For a given embedding, the coordinates of a
graph with N = 50, 000 can be computed in less than
50 seconds on a 1.8 GHz PC with 768 MB RAM. For
computing radial embeddings of graphs of this size
sifting is too slow and one should choose the faster but
qualitatively inferior barycenter or median method,
analogously to the recommendation for horizontal
embeddings.

Future research can address a more efficient sifting
algorithm. Also, there are some interesting problems
which we do not touch in this paper: Can the num-
ber of crossings χ(E) in a radial embedding E be
computed in O(χ(E)) time? Is χ(E) ≤ 3χ(G) (or
similar) for an embedding E computed by one-sided
Cartesian median heuristic on a 2-level graph G as it
is for horizontal median [17]? Are there efficient radial
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Fig. 9. Simulation of cut edges

extensions of other crossing reduction heuristics? A ra-
dial crossing reduction algorithm that already avoids
type 3 conflicts in this phase would be helpful, since
our elimination approach may create many crossings
of non-inner segments with the ray.
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Appendix
Crossing Reduction Benchmark Results
Figure 10 provides benchmarks comparing horizon-

tal barycenter (HB), horizontal median (HM), and
horizontal sifting (HS) crossing reduction heuristics
with their radial variants, i. e., Cartesian barycenter
(CB), Cartesian median (CM), and radial sifting (RS).
The diagrams show that radial sifting is the best
algorithm leaving dramatically fewer crossings than
the others, but it is also the slowest, and that radial
barycenter is the fastest. The same facts hold for the
corresponding horizontal algorithms, which is folklore.
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Fig. 10. Benchmarks


