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Abstract. We consider planar upward drawings of directed graphs on
arbitrary surfaces where the upward direction is defined by a vector field.
This generalizes earlier approaches using surfaces with a fixed embedding
in R3 and introduces new classes of planar upward drawable graphs, where
some of them even allow cycles. Our approach leads to a classification of
planar upward embeddability.

In particular, we show the coincidence of the classes of planar upward
drawable graphs on the sphere and on the standing cylinder. These
classes coincide with the classes of planar upward drawable graphs with
a homogeneous field on a cylinder and with a radial field in the plane.

A cyclic field in the plane introduces the new class RUP of upward
drawable graphs, which can be embedded on a rolling cylinder. We
establish strict inclusions for planar upward drawability on the plane, the
sphere, the rolling cylinder, and the torus, even for acyclic graphs. Finally,
upward drawability remains NP-hard for the standing cylinder and the
torus; for the cylinder this was left as an open problem by Limaye et al.

1 Introduction

Directed graphs are often used as a model for structural relations where the edges
express dependencies. Such graphs are often acyclic and are drawn as hierarchies
using the hierarchical approach introduced by Sugiyama et al. [22]. This drawing
style transforms the edge direction into a geometric direction: all edges point
upward. A graph is upward planar, for short UP, if it can be embedded into the
plane such that the curves of the edges are monotonically increasing in y-direction
with no crossing edges. UP is well-understood; see the comprehensive study in [5].
A graph is upward planar if and only if it is a subgraph of a planar st-graph.
The graphs from UP admit straight-line upward drawings, which may require
an area of exponential size, or upward polyline drawings on quadratic area using
O(n) many bends. An important result of Garg and Tamassia [10] states the
NP-completeness of the recognition problem: Is a directed graph in UP? On the
other hand, there are efficient polynomial time algorithms for upward planarity
tests, if the graphs are given with an embedding or have a single source or are
triconnected.
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There were some approaches to generalize upward planarity on other surfaces
using a fixed embedding of the surface in R3. Thomassen [23] studied graphs
with a single source and a single sink on a standing cylinder. Foldes et al. [9]
investigated ordered sets on the sphere and on a cylinder as a truncated sphere,
and Hashemi et al. [7, 12, 13] generalized results on planarity from the plane
to the sphere, including the NP-hardness of the recognition problem. They
characterized the graphs with a spherical upward drawing as the subgraphs of
the directed planar graphs with one source and one sink. Thus upward planarity
and upward sphericity are distinguished by the st-edge connecting the single
source and the single sink in the planar case. Dolati et al. [6, 8] studied upward
planarity on the lying and the standing torus, and Mohar and Rosenstiehl [19]
characterize toroidal maps with an upward orientation.

Planar upward drawings on the cylinder were also addressed from the view-
point of the circuit value problem (CVP) [11,16,24]. In these papers the above
papers were overseen, and the NP-hardness of upward cylindricality is stated as
an open problem [16]. We solve this by using the NP-hardness for upward spher-
ical and the coincidence of spherical and cylindrical upward planarity established
in this paper.

In our approach we use the model of the fundamental polygon to define
surfaces such as the plane, the cylinder and the torus. The plane is identified with
the manifold I × I, where I is the open interval from −1 to +1. The standing
and rolling cylinder are obtained by identifying a pair of opposite sides, and the
torus by a simultaneous identification of both pairs of opposite sides.

Upwardness is defined by a vector field and gives rise to the common (strict)
increasing and the weak non-decreasing case. A vector field assigns a two-
dimensional vector to each point (x, y) indicating the direction of the field.
The basic case is the null field N , which assigns the null vector (0, 0) everywhere.
Then an upward direction becomes vacuous, and weakly upward planar coincides
with planar. The homogeneous field H assigns the direction (0, 1) and thus de-
scribes upward in y-dimension as it is commonly used. In addition, we use the
cyclic, radial and antiparallel fields C,R and A, see Table 1.

Table 1. Typical fields

null homogeneous cyclic radial antiparallel

(x, y) 7→ (0, 0) (x, y) 7→ (0, 1) (x, y) 7→ (−y, x) (x, y) 7→ (x, y) (x, y) 7→ (0, sin(yπ))

We introduce a new class of planar upward drawings on the rolling cylinder
which is called RUP. Graphs of RUP may have cycles. It turns out that the
rolling cylinder is stronger than the standing cylinder even for acyclic graphs. The
graphs of RUP are related to planar recurrent hierarchies, which were introduced



by Sugiyama et al. [22] as a cyclic version of their hierarchical approach and were
recently studied in [4]. In recurrent hierarchies the levels are numbered from 0 to
k − 1. The edges are upward where the difference of the levels of the vertices is
computed modulo k. Hence, all cycles are unidirectional.

Another subclass of RUP are the graphs with a queue layout, see [1]. The
input-output behavior of a queue is represented by a graph such that the behavior
is legal if and only if the graph has a RUP embedding with all vertices placed
on a horizontal line.

Our contributions are a general approach towards planar upward embeddings
(Sect. 2). In Sect. 3 we unify the concepts on the sphere and establish a hierarchy
for the plane, sphere, rolling cylinder and torus. Finally, the NP-hardness of the
recognition problem is addressed.

2 Upward Embeddings with Vector Fields on Surfaces

Let G = (V,E) be a simple directed graph with a finite set of vertices V and
a finite set of directed edges E. A surface S is a two-dimensional differentiable
manifold [17,20]. An open interval from a to b is denoted by ]a, b[ and a closed
interval by [a, b]. 〈·, ·〉 denotes the standard scalar product in R2. For a map
f : A → B and a subset A′ ⊆ A denote the image of A′ under f by f [A′]. For
any point p = (p1, p2) define x(p) = p1 and y(p) = p2.

A drawing Γ (G) on S is a mapping where each vertex v ∈ V is mapped to
a unique point Γ (v) ∈ S, and each edge (u, v) ∈ E is mapped to a piecewise
continuously differentiable curve Γ (u, v) : [0, 1]→ S which starts at u and ends
at v and is disjoint to the other vertex points. Γ (u, v) does not self-intersect.
When it is clear from the context, we say that v ∈ V is placed at Γ (v) and we
do not distinguish between an edge e ∈ E and its curve Γ (e). Additionally, Γ
stands for the set of points in the drawing.

Two edges e1 6= e2 ∈ E cross if they have a common point apart from a
common endpoint. Γ (G) is called a plane drawing if it is crossing-free. Strict
upward planarity asks if a given graph admits a plane drawing where all edges
are drawn monotonically increasing in a common upward direction. In the weak
version the edges may be drawn monotonically non-decreasing. It is well-known
that this makes no difference on the plane.

As outlined in Sect. 1 most prior attempts towards planar upward embeddings
on the sphere, the cylinder, or the torus use a fixed embedding of the surface in
R3 and define upward in y-direction [6–8,11,13,16]. They describe the sphere and
the (standing) cylinder by Cartesian coordinates {(x, y, z) : x2 + y2 + z2 = 1}
and {(x, y, z) : x2 + z2 = 1,−1 ≤ y ≤ 1)}, respectively. These classes are called
spherical and cylindrical. An alternative approach was used by Mohar, Rosenstiehl
and Thomassen [19,23] embedding graphs on the flat torus represented by its
fundamental polygon. We generalize the idea by utilizing vector fields, i. e., a
drawing is upward if all edge curves “go with the flow”.

More formally, let F : S → R2 be a vector field on S. Let Cr(p) ( [0, 1] be
the preimage of the bends of the curve p. Cr(p) is the countable critical point



set of a piecewise continuously differentiable curve p : [0, 1]→ S. We say that p
(weakly) respects F if

∀
t∈[0,1]\Cr(p)

〈p′(t), F (p(t))〉 > 0 (resp. ≥ 0), (1)

where p′ is the first order derivative of p. Likewise, a drawing Γ (weakly) respects
F if Γ (e) (weakly) respects F for each edge e ∈ E. Then at each point of a
directed edge the angle between its tangent vector and the vector field is less (not
more) than π

2 . We call a graph (weakly) upward embeddable on S in respect to F
if it admits a plane drawing (weakly) respecting F . We say that G is a drawn
(weakly) upward on (S, F ). Note that (1) holds true independently of the norm
of F (·), i. e., only its direction is relevant.

The general definition allows for a plethora of combinations of surfaces and
vector fields. From a graph-theoretic point of view many of them are equivalent in
respect to upward embeddability. For reducing redundancy we consider mappings
between surfaces which shall preserve the upward embeddability and so obtain
equivalences.

Let S1 and S2 be smooth manifolds, i. e., locally similar to a linear space,
with vector fields F1 and F2, respectively. Let f : S1 → S2 be an injective smooth
mapping between the surfaces. In the following we derive a way to express whether
or not f also somehow “maps F1 to F2”. The technique is also known as the
pushforward of f [14]. Let z be any point in S1 and p : [0, 1]→ S1 be a smooth
curve (not necessarily representing an edge) tangent to F1 in z, i. e., p(0) = z
and p′(0) = F1(z). We derive how f acts on F1(z) by considering the derivative
of f(p) at 0,

(f ◦p)′(0) = (f ′ ◦p)(0) ·p′(0) = f ′(p(0)) ·p′(0) = (f ′(p(0))) ·F1(z) = f ′(z) ·F1(z) .

Due to the identification of the tangent space of S1 with R2 we can express f ′(z)
by the Jacobian Jf (z). From this we obtain the requirement for F1 and F2 of
being f-related [14]: For each z ∈ S1, Jf (z) · F1(z) = F2(f(z)), or equivalently,
F2(z) = Jf (f−1(z)) · F1(f−1(z)). As we are only interested in the direction
of vectors rather than their lengths, denote by u ' v if u = cv for some
positive real constant c. F1 and F2 are said to be f -related up to normalization if
F2(z) ' Jf (f−1(z)) ·F1(f−1(z)) for each z ∈ S1. We introduce a second property
to guarantee that upward embeddability is preserved.

Definition 1. Let S1 and S2 be smooth manifolds with vector fields F1 and F2,
respectively. We call a smooth injective homeomorphism f : S1 → S2 to be field
preserving from (S1, F1) to (S2, F2) if F1 and F2 are f -related up to normalization,
and for any smooth curve p : [0, 1]→ S1,

sgn〈p′(0), (F1 ◦ p)(0)〉 = sgn〈(f ◦ p)′(0), (F2 ◦ f ◦ p)(0)))〉 .

Rephrasing the above, f preserves the (non-)acuteness of the angle between a
tangent vector and the vector field at any point. This gives rise to the following
proposition.



Proposition 1. Let G be a simple directed graph and let S1 and S2 be differen-
tiable two-dimensional manifolds with vector fields F1 and F2, respectively. Let
S′1 be a subset of S1 such that in respect to F1, any graph upward embeddable on
S1 is also upward embeddable on S′1. If G is (weakly) upward embeddable on S1
in respect to F1 and there is a field-preserving map f from (S′1, F1) to (S2, F2),
then G is also (weakly) upward embeddable on S2 in respect to F2.

Proof. Assume G is upward embeddable on S1 in respect to F1. Let Γ be a plane
drawing of G on S′1 respecting F1. The drawing f [Γ ] of G on S2 is plane as f is
differentiable. It also respects F2 as f specifically preserves the acuteness of the
angles between the vector field and the tangents of the edge curves. ut

Note that the well-known conformal, i. e., angle-preserving, maps are just a
special case of the field-preserving maps if they relate F1 to F2 up to normalization.
Additionally, any composition of field-preserving maps is field-preserving in respect
to the corresponding manifolds and vector fields.

We define (S1, F1) ∼ (S2, F2) if and only if there are functions f and g such
that f is field-preserving from (S1, F1) to (S2, F2) and g is field-preserving from
(S2, F2) to (S1, F1). Proposition 1 allows us to speak of upward embeddability of
G in the equivalence class [S, F ]. We can define the directed simple graph classes

[[SF ]]s = {G : G is (strictly) upward embeddable on [S, F ]} and

[[SF ]]w = {G : G is weakly upward embeddable on [S, F ]} ,

where the subscripts indicate the strict or weak case. This class scheme enables
us to classify and generalize prior approaches of upward planarity. We restrict
ourselves to manifolds which are obtained from a square where optionally opposite
sides are identified. Thus any of the considered manifolds can be represented by
rectangular fundamental polygons [18]. Let I =]− 1, 1[ and derive I◦ from I by
identifying its boundaries −1 and 1. With a slight abuse of language we define
the following two-dimensional manifolds as the product manifolds of I and I◦
with their natural differentiable structure: The plane P = I × I, the standing
cylinder Cs = I◦× I, the rolling cylinder Cr = I × I◦, and the torus T = I◦× I◦.
See Table 2 for an illustration.

A point in each of the defined manifolds can be represented by a pair (x, y). A
vector field assigns a two-dimensional vector to each such pair (x, y) that defines
the direction of the field at (x, y). A basic case is the null field N , which assigns
the null vector (0, 0) everywhere. Then any direction of the edges weakly respects
the null field. Therefore, the graphs [[PN ]]w, i. e., upward embeddable in the plane
and weakly respecting the null field, are exactly the planar graphs in the usual
sense, denoted by P. Similarily, T = [[TN ]]w are the toroidal graphs.

Next we consider the homogeneous field H that maps each point to (0, 1). Then
the upward planar graphs UP are exactly captured by [[PH]]s. We additionally
investigate the following graph classes: SUP = [[CsH]]s, wSUP = [[CsH]]w,
RUP = [[CrH]]s, wRUP = [[CrH]]w, UT = [[TH]]s, and wUT = [[TH]]w, which
define (weakly) upward planarity on the standing and rolling cylinder, and on
the torus, respectively.



Table 2. Surfaces resulting from the cross products of I and I◦

×
I =]− 1, 1[ I◦

I =]− 1, 1[

P Cr

I◦
Cs

T

3 Classification of Upward Drawings

First we show that planar upward drawings on the sphere, the standing cylinder
and the plane with the radial field coincide both in the strict and in the weak
versions. Instead of proving that the spherical and cylindrical graph classes are
equal according to their graph-theoretical characterizations from [12, 15], our
proof makes use of the definitions from Sect. 2 by transforming the surfaces with
their endowed fields into each other.

Theorem 1. For a graph G the following statements are equivalent.

(i) G ∈ SUP (G ∈ wSUP)
(ii) G is (weakly) spherical

(iii) G is (weakly) cylindrical
(iv) G ∈ [[PR]]s (G ∈ [[PR]]w)

Proof. All of the following arguments apply to the weak and the strict case. We
first show (ii) ⇒ (i). Consider an upward drawing Γ of G on the sphere S1.
First assume that there is no vertex placed on the poles, i. e., with coordinates
(0, 1, 0) or (0,−1, 0). Let ymax be the maximum y-coordinate of vertices of G.
Note that there is no point of an edge above ymax as otherwise the upwardness is
violated. Analogously define ymin. Let S′1 = {(x, y, z) : x2 + y2 + z2 = 1, ymin <
y < ymax}, i. e., S′1 is the truncated sphere [9]. We use the angle-preserving
Mercator projection M [21] to map S′1 to the rectangle [x′min, x

′
max[×]y′min, y

′
max[

in the plane. Afterwards, we scale and translate M [Γ ] to obtain a drawing in the
fundamental polygon Cs by

f : (x, y) 7→
(

2x

x′max − x′min

,
2y

y′max − y′min

)
+ (∆x, ∆y) , (2)

where ∆x and ∆y are such that the scaled rectangle is centered at the origin.
Consider the tangent vector t at a point p on an edge curve in Γ on the

surface of S1 and the longitudinal vector l starting at p and pointing to the
north pole. As the edge curve is strictly monotonous in y-direction 〈t, l〉 > 0.



The same holds for the corresponding vectors t′ = (t′x, t
′
y) and l′ in M [Γ ] since

M preserves angles. Let t′′ = (t′′x, t
′′
y) and l′′ be the corresponding vectors in

(f ◦M)[Γ ]. Note that M maps longitudinals to vertical lines. Since, up to the
translation, f is a combination of scalings in x- and y-direction, we have that
l′′ = (0, 1) after a normalization. Although f is not angle-preserving, it does
not change the sign of the corresponding scalar product in (f ◦M)[Γ ] since
〈t′′, l′′〉 = t′′x · 0 + t′′y · 1 = 2

y′max−y′min
t′y = 2

y′max−y′min
〈t′, l′〉 > 0. Hence, the resulting

edge curves respect H and we have an upward drawing of G on (Cs, H).
If a vertex vN is placed at the north pole, then define ymax to be the maximum

y-coordinate of any vertex in V \vN and define S′1 as above. The mapping (f ◦M)
is applied to Γ ∩ S′1 to obtain Γ ′. Note that Γ ′ does not contain vN. In Γ ′ the
edges to vN are cut at the upper side of the fundamental polygon. We additionally
shrink Γ ′ in y-direction by g : (x, y) 7→ (x, 12y). Note that in g[Γ ′] all edges still
respect H. In g[Γ ′] we have obtained free space BN = [−1, 1[×] 12 , 1[ in Cs with
no points of g[Γ ′]. We place vN somewhere in BN, e.g., at (0, 34 ), and reconnect
all its incident edges by straight lines, which respect the homogeneous field. A
similar procedure is applied when a vertex is placed at the south pole. For the
converse direction, i. e., (i) ⇒ (ii), the proof is analogous by using the inverse of
the transformation (f ◦M).

For (i) ⇒ (iii), let Γ be a drawing of G ∈ [[CsH]]s. Intuitively, we bend
the fundamental polygon containing Γ such that the identified left and right
sides actually mend. More formally, apply the map f :]− 1, 1[2→ R3 : (x, y) 7→
(cosx, y, sinx) to Γ . As the y-coordinate is mapped onto itself and Γ respects
H pointing from bottom to top, all edges in f [Γ ] increase monotonically in
the y-direction of the cylinder axis. The case (iii) ⇒ (i) follows analogously, as
essentially the inverse of f can be used.

For (i) ⇒ (iv) consider the map

f : Cs → P : (x, y) 7→ y + 2

4
· (cos(πx), sin(πx)) . (3)

Intuitively, f transforms the lateral surface of the rolling cylinder to a ring in
the plane centered around the origin with inner radius 1

4 and outer radius 3
4 .

The bottom of the fundamental polygon Cs maps to the inner circular boundary
and the top to the outer circular boundary of the ring. f is a conformal map
and H is f -related to R, i. e., f preserves angles and maps H to R (see [2]) . By
Proposition 1 we can conclude that any graph in [[CsH]]s is also in [[PR]]s.

For (iv) ⇒ (i), the inverse f−1 of f can be used. However, some care has to
be taken if a vertex is placed at the origin (0, 0) of P. Then the same technique
as with the sphere applies here as well.

ut

Theorem 2. A graph G is embeddable in the plane respecting the cyclic field if
and only if G is embeddable on the rolling cylinder with the homogeneous field,
i. e., [[PC]]s = [[CrH]]s and [[PC]]w = [[CsH]]w.

Proof. The proof is analogous to the case (i) ⇔ (iv) in the proof of Theorem 1
except that for the functions f and g the coordinates x and y are swapped. ut



Hashemi et al. have shown that deciding if a graph has an upward drawing
on the sphere is NP-complete [13]. Limaye et al. [16] stated this problem as open
on the cylinder. Theorem 1 solves this problem.

Corollary 1. Upward planarity testing on the cylinder is NP-hard.

Longitudinal cycles are permitted in RUP, whereas SUP contains only
acyclic graphs. Thus, RUP is stronger than SUP. Even more, this is also true
if we consider only acyclic graphs.

Theorem 3. SUP ⊆ RUP, even for acyclic graphs.

Proof. Consider a graph G ∈ SUP along with its drawing Γ on Cs with the
homogeneous field. Then G is acyclic. To show that G ∈ RUP we give a step-
by-step transformation of Γ to a drawing on Cr which respects the homogeneous
field H.

First we straighten Γ into a polyline drawing, which is then transformed from
the standing onto the rolling cylinder while upward planarity is preserved. Cut Γ
at the y-coordinates of the vertices. Each cut defines a ring of points, which are
the x-coordinates of the vertices, and temporarily introduce a dummy vertex for
each crossing of an edge with the cut. A slice consists of the region of Γ between
two adjacent cuts. It has a lower and an upper ring of (dummy) vertices and a
planar upward routing of segments of edges between the rings. We process slices
iteratively from bottom to top. For a slice S take an edge segment connecting two
(dummy) vertices, say p1 on the lower ring and q1 on the upper ring. Now rotate
the upper ring such that p1 and q1 have the same x-coordinate. Replace each
edge segment from a (dummy) vertex p on the lower ring to a (dummy) vertex on
the upper ring by a straight line, such that the cyclic order of the incident edges
of each vertex is preserved. Since two curves did not cross before, they cannot
cross after the straightening, because the relative order of their endpoints on the
rings with respect to (p1, q1) is preserved. (One can make (p1, q1) the boundary
of the fundamental polygon.)

Now let Γ be the so obtained polyline drawing. In the remainder of the proof
we need that all edges that cross the vertical line x = −1 leave the fundamental
polygon to the right and enter it from the left, i. e., the x-value of the edge curves
immediately before their crossing is positive and negative immediately afterwards.
According to Lemma 5 of [3] by identifying all edges with inner segments a
polyline drawing on Cs can always be transformed such that this condition holds,
which we assume to hold for Γ as well.

Let f : Cs → Cr : (x, y) 7→ 1
2 (x, y) be the scaling which shrinks by 1

2
and consider the drawing f [Γ ] on Cr. Since the scalar product is linear and the
scaling factor 1

2 > 0, f [Γ ] still respects the homogeneous field H. For instance, the
drawing of Fig. 1(a) is scaled to the drawing in the dotted rectangle in Fig. 1(b).
It remains to show how to reconnect the formerly identical points on the left and
right boundary of f [Γ ] by field-respecting edges in Cr. Let y1 < y2 < . . . < yk
be the ascending y-coordinates of the points ri = ( 1

2 , yi) and li = (− 1
2 , yi) on

the right and left boundary in f [Γ ], respectively. Define points r′i = ( 3
4 −

yi
4 ,

1
2 )
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Fig. 1. Transformation from the standing to the rolling cylinder
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(b) Subgraph G′ on (Cs, H)
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(c) Subgraph G′′

Fig. 2. An acyclic graph G ∈ RUP but not in SUP

and l′i = (− 3
4 −

yi
4 ,−

1
2 ) with 1 ≤ i ≤ k. Connect ri to r′i by a straight-line

segment. Note that these segments do not intersect since yi < yj ⇔ x(r′i) > x(r′j)
for i 6= j. Analogously, connect all l′i to li by non-intersecting segments. As
− 1

2 < yi <
1
2 , all (directed) line-segments strictly follow H. Finally, connect all

r′i to l′i. These line-segments also strictly follow H and are non-intersecting since
x(r′i) < x(r′j)⇔ x(l′i) < x(l′j). The result of the whole process applied to Fig. 1(a)
is depicted in Fig. 1(b). ut

Proposition 2 ( [2] ). On the rolling cylinder with the homogeneous field, the
class of (strictly) upward embeddable graphs coincides with the class of weakly
upward embeddable graphs, i. e., [[CrH]]s = [[CrH]]w.

Forthcoming we shall establish proper inclusions among the main classes of
upward drawable graphs. For the plane and the sphere this has been proved at
several places and it comes from the distinction by the st-edge. The graph in
Fig. 2(c) serves as a counterexample.

The 2-wing graph displayed in Fig. 2(a) is an acyclic RUP graph which
is not planar upward drawable on the sphere or the standing cylinder. It is
3-connected and due to the upward drawing its embedding is unique. Let G′ be
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(a) G on (P, N)
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(b) G on (Cr, H)

Fig. 3. A planar graph G with G /∈ RUP

the subgraph of G induced by the vertices {1, 2, 3, 4, 5, 6} which are connected
by the path P = (1, 2, 3, 4, 5, 6). On (Cs, H) the vertices along P must be placed
with strictly increasing y-coordinate due to H. In Fig. 2(b) G′ is drawn on (Cs, H)
using the same embedding as in Fig. 2(a). The remaining vertices {7, 8, 9} of
G must all be placed above vertex 1, since there is path from 1 to 7, 8, and 9.
Due to the uniqueness of the embedding, the vertices {7, 8, 9} must be placed
within the shaded area in Fig. 2(b). This area is homeomorphic to the plane P.
Hence, if {7, 8, 9} could be placed within the shaded area without crossings, then
the subgraph G′′ of G induced by the vertices {1, 2, 3, 7, 8, 9} would have an
embedding on P respecting H, i. e., G′′ ∈ UP. However, G′′ is isomorphic to the
graph displayed in Fig. 2(c) which is known not to be in UP [5].

In wSUP latitudinal cycles are allowed and therefore wSUP properly con-
tains UP and SUP as the latter two only allow acyclic graphs. Also RUP allows
cycles, which implies similar proper inclusions.

The vertices of two cycles with one common vertex must have the same
y-coordinate on Cs with H. In contrast, this graph can easily be embedded on
Cr with H. Thus, SUP ( RUP. Further, K5 can be embedded on the torus
and, hence, P ( T. Finally, the wheel graph as shown in Fig. 3(a) shows that
upward planarity on a rolling cylinder is a proper restriction over planarity. As
special techniques apply, this is stated as our next lemma.

Lemma 1. RUP ( P

Proof. RUP ⊆ P since the rolling cylinder is a surface of genus 0. For the
proper inclusion consider the planar graph G depicted in Fig. 3(a). We show
that G /∈ RUP. G has a Hamiltonian cycle C = (1, 2, 3, 4, 5, 1). Note that any
cycle embedded on Cr with the homogeneous field wraps exactly once around
the cylinder, i. e., its winding number is 1. Its winding number is greater 0 since
otherwise its start and endpoint could not connect and it must be less than 2
since otherwise the edge curve would be self-intersecting. As all other edges in
Fig. 3(a) follow the direction of C and start and end at distinct vertices of C,
their winding number on Cr is 0. Consider the embedding of G on Cr displayed
in Fig. 3(b), where edge (3, 1) is drawn dotted. C divides Cr into a left- and a
right-hand region. To avoid a crossing between the edges (1, 4) and (2, 5), they
must lie in different regions, e. g., (1, 4) to the right and (2, 5) to the left of C.
Now consider the region R enclosed by the edges (1, 2), (2, 5), (4, 5), (1, 4), which



contains vertex 3. The curve of edge (3, 1) must start within R and, due to the
homogeneous field, must reach vertex 1 from below. Thus, the curve of edge (3, 1)
starts within R and ends outside of R, which always causes a crossing. ut

Theorem 4. Let DAG be the set of all acyclic graphs. The classes of graphs
are related as follows.

UP ( SUP ( RUP ∩DAG ( RUP ( UT
=

(
=

⊆

wUP wSUP wRUP wUT( (

P ( T

(4)

Finally, we classify the work of Dolati et al. [8] on upward drawings on the
lying and on the standing torus, where in each case the edges respect the south-
north direction. On the lying torus the south (north) pole is a ring consisting of
all y-minimal (y-maximal) points of the torus. This corresponds to our notion of
the antiparallel field (see Tab. 1) and the graph class [[TA]]s. On the standing
cylinder the south (north) pole is the single point with minimal (maximal) y-
coordinate. In our classification this is the radial field and the graph class [[TR]]s.
The authors showed that [[TA]]s ( [[TR]]s and state that the time complexity of
deciding whether or not a graph is in (one of) the two sets is unknown.

4 Complexity

Finally we address the recognition problems for upward drawability, which are
known to be NP-hard for the plane and sphere and, hence, the standing cylinder.
It is also NP-hard for the torus, and still remains open for the rolling cylinder.

Theorem 5. Deciding whether or not a graph G ∈ UT is NP-complete, even if
G is connected.

Proof. If the graph does not have to be connected, simply reduce from UP by
adding to G a suitably directed K7. Any embedding of the K7 must be two-cell, so
all remaining faces have genus 0. Thus G ∪K7 ∈ UT⇔ G ∈ UP. For connected
graphs reconstruct the NP-completeness proof of UP. The constructed graph
candidate for UP has a dedicated vertex v lying on the outside of the graph.
Add an edge e from any of the K7 vertices to v. Again, G ∪K7 ∈ UT ∪ {e} ∈
UT⇔ G ∈ UP. ut
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