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Abstract Program comprehension is an important human factor in software
engineering. To measure and evaluate program comprehension, researchers
typically conduct experiments. However, designing experiments requires con-
siderable effort, because confounding parameters need to be controlled for. Our
aim is to support researchers in identifying relevant confounding parameters
and select appropriate techniques to control their influence. To this end, we
conducted a literature survey of 13 journals and conferences over a time span
of 10 years. As result, we created a catalog of 39 confounding parameters, in-
cluding an overview of measurement and control techniques. With the catalog,
we give experimenters a tool to design reliable and valid experiments.

1 Introduction

Since the development of the first programmable computers around 1945 [46],
many languages, tools, and processes were developed to improve program com-
prehension [20]. Program comprehension, which describes the process of how
developers comprehend source code, is an important human factor in software
engineering: Prior studies found that maintenance developers spend the ma-
jority of their time with understanding source code [41,64,65]. Furthermore,
maintenance costs are the main cost factor for the development of a software
system [9]. Hence, if we can improve the comprehensibility of source code, we
can reduce time and cost of the entire software life cycle.
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The first step in improving program comprehension is to measure it reli-
ably. However, program comprehension is a complex internal cognitive process:
There are several models that describe program comprehension, such as top-
down or bottom-up models. Top-down models describe that developers build a
general hypothesis of a program’s purpose and refine this hypothesis by look-
ing at source code, using beacons (i.e., information in source code that give
hint about a program’s purpose) [11,56,63]. Bottom-up models describe that
developers look at source code statement by statement and group statements
to semantic chunks. These chunks are combined further, until developers can
state hypotheses about the purpose of a program [49,60]. Typically, devel-
opers switch between top-down and bottom-up comprehension [41,40]. They
use top-down comprehension where possible, because it is faster and requires
fewer cognitive resources [56]. Developers use bottom-up comprehension only
when necessary (i.e., when they have no knowledge of a program’s domain).
Thus, program comprehension is a complex internal cognitive process, and to
reliably measure it, researchers typically conduct controlled experiments [22].

The problem with controlled experiments is that confounding parameters
may bias the outcome (in our case, observed program comprehension) [27].
For example, program comprehension is influenced by the experience partici-
pants have, such that more experienced participants understand source code
differently than novice programmers. If researchers do not take into account
the difference in experience, they cannot be sure what they measure. Thus, it
is important to control the influence of confounding parameters. Furthermore,
to interpret the results of a controlled experiment, it is important to know how
researchers managed a confounding parameter. For example, if an experiment
was conducted with undergraduate students, the results of this experiment
may not be valid for programming experts. Without knowing these details,
experiments are difficult to interpret and replicate—we might even observe
contradicting results.

With this paper, we support researchers in producing valid, reliable, and
interpretable results. The contributions of this paper are twofold:

– A catalog of confounding parameters for program comprehension.
– An overview how confounding parameters are measured and controlled for.

First, with an extensive catalog of confounding parameters, researchers
do not have to identify confounding parameters, but can consult the catalog
and decide for each parameter whether it has an important influence or not
(see Table 12). Hence, this catalog serves as aide not to overlook potentially
relevant parameters.

Second, with an overview of well-established measurement and control tech-
niques based on literature, we support researchers in selecting appropriate
techniques for their studies (see Tables 10 and 11). In this way, the catalog
of confounding parameters goes beyond well-known books on experimentation
in software engineering (e.g., [69,36]), with a more specific focus on compre-
hension and more hands-on information regarding measurement and control
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techniques, based on what other researchers did. Thus, our work complements
standard books on empirical research.

With this paper, we do not address only those researchers who are expe-
rienced with empirical studies, but also software engineers who did not get in
touch with controlled experiments and want to evaluate how a new tool or
language construct affects the targeted developers. Thus, we include also an
overview of common control techniques, as well as parameters that are not
specific to comprehension experiments, but typical for all experiments with
human participants (such as motivation, selection, and learning effects).

To fulfill our goals, we conducted a literature survey of papers published
between 2001 and 2010 in the following journals and conferences:

– Empirical Software Engineering (ESE),
– Journal of Software: Evolution and Process (JSEP),
– Transactions on Software Engineering and Methodology (TOSEM),
– Transactions on Software Engineering (TSE),
– International Conference on Program Comprehension (ICPC)1,
– International Conference on Software Engineering (ICSE),
– International Conference on Software Maintenance (ICSM),
– International Symposium on Empirical Software Engineering and Measure-

ment (ESEM)2,
– Symposium on the Foundations of Software Engineering (FSE),
– Symposium on Visual Languages and Human-Centric Computing (VL-

HCC)3,
– Conference on Human Factors in Computing Systems (CHI),
– Cooperative and Human Aspects of Software Engineering (CHASE)4, and
– Working Conference on Reverse Engineering (WCRE).

We selected these journal and conferences, because they are the leading
platforms to publish results regarding (empirical) software engineering and
program comprehension. We included 872 (of 4935) papers in our initial selec-
tion and extracted 39 confounding parameters, such as programming experi-
ence, intelligence, and ordering effects.

We found that there is only little agreement on how to manage confounding
parameters. Instead, the discussion of confounding parameters often appears to
be haphazard. This makes interpreting results of experiments difficult, because
it is not clear whether and how all relevant confounding parameters were
considered and controlled for.

The remainder of this paper is structured as follows:

Section 2: Process of selection of papers and extraction of confounding
parameters.

1 ICPC was a workshop until 2005.
2 ESEM originated 2007 from merging the International Symposium on Empirical Soft-

ware Engineering (ISESE) and International Software Metrics Symposium (METRICS)
3 VLHCC was called Human-Centric Computing Languages and Environments until 2003.
4 CHASE first took place in 2008.
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Section 3: Overview of how confounding parameters are currently man-
aged in literature.
Section 4: Introduction to common control techniques for confounding
parameters.
Section 5: Detailed description of all extracted confounding parameters
and how they are measured and controlled for in literature.
Section 6: Threats to validity of our survey.
Section 7: Recommendations on how to manage confounding parameters
in program-comprehension experiments.
Section 8: Related work.
Section 9: Conclusion and future work.

2 Methodology

In this section, we discuss the selection of journals and conferences, the selec-
tion of papers, and the extraction of confounding parameters. This way, we
enable other researchers to extend our data with other journals, conferences,
and issues.

To collect confounding parameters, we need a representative selection of pa-
pers. To this end, we chose different journals and conferences. We selected ESE
as leading platform for empirical research in the field of software engineering.
We consider JSEP, TOSEM, and TSE as leading journals in software engi-
neering. ICPC is the leading conference for program-comprehension research.
ICSE and FSE are the leading conferences on software engineering. ICSM
is the leading conference regarding software maintenance. We chose ESEM
as platform in the empirical-software-engineering domain. Furthermore, CHI
and VLHCC are the leading conferences regarding human-computer interac-
tion, and CHASE is a recently established workshop in the context of human
factors. Finally, WCRE is one of the leading conferences regarding reverse
engineering. From each journal and conference, we considered all papers pub-
lished between 2001 and 2010. Hence, we have a representative set of journals
and conferences.

Since not all kinds of experiments are relevant for our survey, we give a
short overview of different types of experiments (see, e.g., Sjoberg et al. [62])
and outline which types are relevant. In general, a setting in which a treatment
is deliberately applied to a group of participants is called experiment, with the
following different characteristics:

– randomized experiment,
– quasi experiment,
– correlational study, and
– case study.

First, if participants are randomly assigned to treatment and control con-
dition(s), an experiment is referred to as randomized experiment. Second, in
a quasi experiment, participants are not assigned randomly to conditions, for
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Fig. 1: Approach to select papers that describe experiments with subjects.
Numbers denote the number of papers in the according step.

example, when groups are already present (which is often the case in studies
conducted in companies). Third, in a correlational study, size and direction of
relationships among variables are observed. Fourth, in case studies, only one
or few participants are observed and the outcome has a qualitative nature.

For our survey, we include all types of experiments except for correlational
studies that observe only existing data, because no human participants were
observed. For example, Bettenburg and others analyzed the commit data of an
Eclipse version six month before and after its release to identify how commit
comments help to predict bugs [6]. Since this experiment was not conducted
with human participants, we excluded it.

We also included experiments with a qualitative focus (including case stud-
ies and quasi experiments), although confounding parameters play a minor role
in these studies. For example, Ko and others conducted an exploratory study
to find out how developers seek and use relevant information [38]. In this study,
the goal was to generate hypotheses, so authors measured confounding param-
eters to get a more holistic view of developers’ behavior, but did not control for
all confounding parameters. Thus, in qualitative studies, relevant confounding
parameters also have to be considered and reported, although controlling for
them is not the primary concern.

To extract relevant papers from the selected journals and conferences, we
started with reading the abstract of a paper. If the abstract described an
experiment with human participants, we added the paper to our initial se-
lection; if not, we discarded it. If the abstract was inconclusive, we skimmed
through the paper for any information that indicates the conduct of an ex-
periment. Furthermore, we searched the paper with a fixed set of keywords:
(programming) experience, expert, expertise, professional, subject, and partic-
ipant. Those keywords are typical for comprehension experiments with human
participants. Based on skimming and the search result, we either added a pa-
per to our initial selection or discarded it. To have a better understanding of
our approach, we visualize it in Figure 1. As result of this selection process,
we have an initial set of 842 papers.

As next step, we read each paper of our initial selection completely. During
that process, we discarded some papers, because the described experiment
was too far away from program comprehension. Before discarding a paper, we
(the authors) discussed whether it is relevant until we reached inter-personal
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consensus. When in doubt, we included a paper to avoid omitting potentially
relevant parameters. We excluded 457 papers, so we have 385 papers in the
final selection. On the project’s website5, we have a catalog of all extracted
papers, including the ones we discarded. In Table 1, we show how many papers
we selected for the initial and final set.

As last step, we extracted confounding parameters. To this end, we in-
cluded variables that authors categorized as confounding (or extraneous) vari-
ables (for example, some authors listed these variables in a table or stated
Our confounding parameters are...). Furthermore, we included variables that
followed terms like To control for, To avoid bias due to, or A threat to validity
was caused by, because such a variable was treated as confounding variable.

We used an initial set of confounding parameters defined in the first authors
master’s thesis [20], also based on literature. Every time we encountered a new
confounding parameter, we revisited already analyzed papers.

The selection and extraction process was done by the two authors of this
paper and a research assistant. The second author and the assistant selected
the papers from disjoint sets of venues; the first author checked on random
samples of selected and not selected papers the correctness of the selection
process. We discussed disagreements until reaching interpersonal consensus.
The first author extracted confounding parameters, and the second author
checked the correctness of the extraction on random samples. We discuss the
validity of this approach in more detail in Section 6.

Next, we present an overview of how confounding parameters are currently
managed.

3 State of the Art

In this section, we present insights of how confounding parameters are managed
in literature. The main findings are:

– Only a fraction of identified confounding parameters are mentioned in each
paper.

– Most confounding parameters are reported in one location.
– Researchers use different ways to control for the same confounding param-

eter.

We discuss each of the findings in detail.

3.1 Number of Confounding Parameters

To give a fair impression of how many confounding parameters are described,
we distinguish the experiments in qualitative and quantitative experiments.
Qualitative experiments typically observe few participants, but collect and

5 http://www.infosun.fim.uni-passau.de/spl/janet/confounding/index.php
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Source 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Sum

ESE All 24 18 15 15 19 21 24 26 24 16 202
Extr. 2 9 5 8 10 7 7 4 7 3 62
Final 1 5 1 4 3 3 3 2 5 2 29

JSEP All 19 21 18 17 15 18 17 18 15 29 187
Extr. 4 4 3 5 1 2 2 3 1 5 30
Final 1 2 0 2 1 1 2 1 0 0 10

TOSEM All 11 15 13 10 12 12 15 21 13 13 135
Extr. 0 0 0 0 1 0 3 0 0 3 7
Final 0 0 0 0 0 0 2 0 0 0 2

TSE All 66 73 88 72 68 61 55 53 50 48 634
Extr. 5 6 6 5 5 3 2 5 3 5 45
Final 4 4 5 3 3 3 1 5 2 3 33

ICPC All 28 24 22 21 24 23 22 21 22 16 223
Extr. 2 3 3 8 8 3 4 5 4 3 43
Final 2 2 3 3 7 3 4 5 4 3 36

ICSE All 47 48 42 58 44 36 49 56 20 52 482
Extr. 8 10 8 1 11 12 9 8 9 12 88
Final 0 3 3 4 3 4 1 3 4 5 30

ICSM All 67 60 41 38 55 42 46 40 34 50 473
Extr. 7 10 4 5 8 11 9 4 5 5 68
Final 1 1 0 2 0 3 2 2 4 2 17

ESEM All - - - - - - 45 29 44 30 148
Extr. - - - - - - 12 3 11 8 34
Final - - - - - - 6 5 1 7 19

FSE All 29 17 42 25 32 25 63 31 39 34 337
Extr. 0 1 0 0 1 2 3 3 1 1 12
Final 0 1 0 0 0 2 2 3 1 0 9

VLHCC All 47 17 21 21 28 19 18 24 21 27 240
Extr. 11 11 6 11 9 10 8 7 9 12 94
Final 6 9 6 8 6 6 7 4 6 5 63

CHI All 69 61 75 93 93 119 144 158 204 230 1246
Extr. 17 16 16 19 22 24 22 35 52 47 270
Final 16 8 8 9 11 12 8 14 13 21 120

CHASE All - - - - - - - 28 22 18 68
Extr. - - - - - - - 11 9 8 28
Final - - - - - - - 2 1 3 6

WCRE All 24 33 35 28 22 24 27 32 31 29 285
Extr. 4 6 6 7 3 6 9 4 5 11 61
Final 0 1 1 2 1 1 1 0 1 3 11

All: All papers of the source in the according year. Extr.: Extracted papers in our initial
selection. Final: Papers in the final selection (after discarding non-relevant papers).

Table 1: Overview of all, included, and extracted papers by year and venue.
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analyze detailed information, such as think-aloud data or (screen-capture)
videos. In qualitative studies, controlling for confounding parameters is not
the primary concern, but rather getting a detailed insight in what participants
did.

Quantitative experiments recruit a larger number of participants and are
interested in quantitative information, such as response time, correctness, or
efficiency. In quantitative studies, controlling for confounding parameters is
more important than in qualitative, and, thus, typically more confounding
parameters are taken into account. Consequently, making statements about
how many confounding parameters are described independent of the kind of
study would bias the presentation of results.

In Figure 2, we give an overview of how many papers mentioned how many
parameters, separated by the kind of study. For example, of the qualitative
studies, 17 papers did not report any confounding parameter. For both qual-
itative and quantitative studies, only a fraction of confounding parameters is
mentioned in each paper. For qualitative experiments, the fraction of param-
eters is lower as for quantitative experiments. This is not surprising, because
qualitative experiments are less concerned with controlling for confounding
parameters.

However, most authors may have considered more parameters than they
actually described, but that space restrictions prohibit mentioning each pa-
rameter and how it was controlled for. This raises the question that, if not
all controlled parameters are mentioned in literature, a literature survey is
the right instrument to extract confounding parameters. We discuss this in
Section 6.

3.2 Reporting Confounding Parameters

We found that most confounding parameters are described at a distinct loca-
tion in the papers. Typically, experiment descriptions consist of the following
parts [34]:

– experimental design,
– analysis,
– interpretation, and
– threats to validity.

In experimental design, authors describe the setting of an experiment, includ-
ing material, participants, and means to control for confounding parameters.
In the analysis, the authors present the data analysis, for example, means,
standard deviations, and statistical tests. After the analysis, the results of the
experiment are interpreted, such that the results are set in relation to the
research questions or hypotheses. Finally, authors discuss the validity of the
experiments.

In Table 2, we give an overview in which parts a parameter was mentioned
first, separately for qualitative and quantitative experiments. N denotes the to-
tal amount of how often parameters were mentioned in each section; the mean
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Fig. 2: Number of parameters mentioned per paper.

denotes the average relative amount of parameters of all papers mentioned
in the according section. For both qualitative and quantitative experiments,
most parameters were discussed during the experimental design, the stage in
which means to manage confounding parameters are typically defined.

For qualitative experiments, only a small fraction of the parameters are
mentioned in the other parts of the experiment descriptions. For quantita-
tive experiments, about 17 % of the confounding parameters are described in
threats to validity. In this part, authors mostly describe confounding parame-
ters, how they could have threatened the validity of the experiments, and how
they controlled a parameter so that the threat to validity is minimized.
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Part N Mean

Experimental design 471 90.9 %
Analysis 12 2.3 %
Interpretation 15 2.9 %
Threats to validity 20 3.9 %
Total 518 100 %

(a) Qualitative experiments

Part N Mean

Experimental design 975 77.6 %
Analysis 42 3.3 %
Interpretation 28 2.2 %
Threats to validity 211 16.8 %
Total 1256 100 %

(b) Quantitative experiments

Table 2: Overview of how often a parameter was mentioned first in a part of
the experiment description.

Thus, the major part of confounding parameters is described in the exper-
imental design. Nevertheless, there is still room for improvement, such that
all parameters are reported in the experimental design, supporting the read-
ers of according papers in getting a quick overview of relevant confounding
parameters.

Furthermore, there is no systematic way to describe confounding parame-
ters. Although we often found terms like Our confounding parameters are... or
To control for, they were not used consistently. For example, authors described
that they measured programming experience or that they trained participants
to use a tool, but did not describe why they did it or what control technique
they applied. Experienced researchers can recognize this implicit mentioning of
a confounding parameter, but researchers or students who are unfamiliar with
empirical research might overlook it. Additionally, such implicit mentioning
makes it difficult to get a quick overview of an experimental design.

3.3 Controlling for Confounding Parameters

There are various ways to control the influence of a confounding parameter6.
For example, to control for programming experience, authors kept the level
of programming experience constant by recruiting only students or created
two groups with comparable level of programming experience. To create com-
parable groups, researchers had to measure programming experience, which
they realized (among others) by using the years a participant has been pro-
gramming, a participant’s level of education (e.g., undergraduate vs. graduate
level), self estimation, or supervisor estimation. In some cases, authors wrote
that they controlled for a parameter, but did not specify how.

The different means of controlling for confounding parameters can make
the comparison of different experiments difficult. For example, when comparing
programming experience based on years a participant has been programming,
and based on the level of education, it is likely that both measure different
things; an undergraduate student may have been programming for 20 years,

6 In Section 5, we discuss techniques and parameters in detail. Here, we give only an
overview.
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whereas a graduate student may have started programming when starting to
study. This gets worse when we do not know how a parameter was managed.
Thus, researchers might not be able to fully understand and replicate an ex-
periment.

To summarize, there is effort to control for confounding parameters and to
describe them consistently. However, reporting this effort is too unsystematic,
so it is difficult to evaluate the soundness of an experimental design. To address
the identified problems, we give recommendations in Section 7.

4 Techniques to Control for Confounding Parameters

In this section, we present common techniques to control for confounding pa-
rameters. This section is aimed at researchers who are inexperienced with
conducting experiments. Readers familiar with controlling for confounding pa-
rameters may skip this section.

Experimentation in psychology has a long history [70]. Hence, all con-
trol techniques are based on psychological research and have proved useful in
countless experiments. There are five typical ways to control for confounding
parameters, which we present in detail in this section:

1. randomization,
2. matching,
3. keep confounding parameter constant,
4. use confounding parameter as independent variable, and
5. analyze the influence of confounding parameters on results.

For better illustration, we describe the control techniques with the con-
founding parameter programming experience as example. It describes how fa-
miliar participants are with implementing source code (we go into more detail
in Section 5.1.2).

4.1 Randomization

Using randomization, a confounding parameter is randomly assigned to ex-
perimental groups, for example, by tossing a coin or rolling a dice. This way,
the influence of confounding parameters is assumed to spread evenly across
experimental groups, such that the influence is comparable in all groups [27].
For example, a sample of students should be split into two comparable groups
regarding programming experience. To this end, researchers toss a coin to as-
sign all participants to two groups. Since participants are randomly assigned
to groups, there is no systematic bias. That is, the coin toss does not assign
more experienced participants to one group and less experienced participants
to another group. Hence, both groups should be comparable, or homogeneous,
regarding programming experience.
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Participant Value Group

5 67 A
7 63 B
1 62 B

10 59 A
8 57 A
6 57 B
3 53 B
2 50 A
9 45 A
4 43 B

Table 3: Fictional programming-experience values and according group assign-
ments.

For randomization to be effective, the sample size needs to be large enough,
so that statistical errors can even out [2]. Unfortunately, large cannot be de-
fined as a fixed number. Assigning 30 participants to two experimental groups
seems reasonably large for creating 2 comparable groups, but assigning 30
participants to six experimental groups may be too small to ensure six ho-
mogeneous groups. Thus, the more experimental groups there are, the more
participants we need. In personal correspondence with other researchers, we
found that five participants per group are too few, but ten seem to be sufficient.

Randomization is the most convenient way to control for a confounding
parameter, because it does not require measuring a parameter. However, one
disadvantage is that researchers cannot draw any conclusions about the effect
of a confounding parameter on program comprehension. For that, it needs to
measured, which is required by the remaining control techniques.

4.2 Matching

If the sample size is too small, researchers can apply matching or balancing [27].
In this case, researchers measure a confounding parameter and assign partici-
pants to experimental groups, such that both groups have about the same size
and same level of a confounding parameter. To illustrate matching, we show
fictional values for programming experience of participants in Table 3. The
participants are ordered according to the quantified programming-experience
value. Now, we assign Participant 5 to Group A, Participant 7 to Group B,
Participant 1 to Group B, and Participant 10 to Group A. We repeat this
process until all participants are assigned to groups.

Matching ensures homogeneous groups according to a parameter. How-
ever, as a drawback, researchers have to measure a confounding parameter.
For example, for programming experience, researchers can ask participants to
estimate their experience or to implement a simple task and use the perfor-
mance as indicator for programming experience. But it is not clear how well
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this captures true programming experience. Thus, requires a valid and reliable
way to measure a parameter.

4.3 Keep Confounding Parameter Constant

When keeping a confounding parameter constant, there is exactly one level of
this parameter in an experimental design [20]. For example, to keep program-
ming experience constant, researchers can measure programming experience
and recruit participants only with a certain value. Alternatively, researchers
can recruit participants from a population of which they know that a parame-
ter has only one level. For instance, freshmen typically have one low, compara-
ble programming-experience level. Students who started programming before
they enrolled can be excluded. This way, researchers can minimize the effort of
measuring a parameter. However, the generalizability reduces, because the re-
sults are only applicable to the selected level of programming experience. Next,
we present a technique that allows researchers to maintain generalizability.

4.4 Use Confounding Parameter as Independent Variable

A confounding parameter can be included as independent variable in an ex-
perimental design [20]. This way, researchers can manipulate it and control its
influence. For example, researchers can recruit participants with high and low
programming experience, such that the results are applicable to people with
high and low experience. However, the experimental design becomes more
complex, because now there is one more independent variable; if the initial in-
dependent variable has two levels, and programming experience, also with two
levels, is included, there are four different experimental groups. Additionally,
there may be an interaction between both factors.

In addition to a more complex design, researchers also need to extend the
research hypotheses to include the confounding parameter. Furthermore, with
increasing number of experimental groups, more participants are necessary.
As a benefit, internal validity can be increased without decreasing external
validity at the same time.

4.5 Analyze the Influence of Confounding Parameter on Result

When participants cannot be assigned to experimental groups, researchers can
analyze the influence of a confounding parameter afterwards [55]. In this case,
researchers can measure a parameter and analyze its influence on the result
after conducting the experiment. This is often necessary when researchers re-
cruit participants from companies, because they cannot assign participants
to different companies. This technique is similar to using a parameter as in-
dependent variable, but it allows researchers to also analyze confounds that
emanated during the experiment (e.g., a system crash). To this end, there are
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Technique Sample
size

Requires
measurement

Effort Generalizability

Randomization large no low depends on sample
Matching any yes depends on parameter limited
Constant any depends on

parameter
depends on whether
measurement is needed

limited

Independent large depends on
parameter

high good

Analyzed
afterwards

any yes depends on parameter depends on param-
eter

Table 4: Benefits and drawbacks of control techniques.

different techniques, for example, an ANOVA to evaluate whether the com-
prehension of participants depends on the employing company, in addition to
or in interaction with the independent variable(s) [2]. However, an ANOVA
assumes that the data are normally distributed—otherwise, researchers need
to apply a non-parametric test, such as the Friedman test (if the experimen-
tal design is perfectly balanced and if there are repeated measures) [23] or a
permutation test [1].

These five techniques are the most common control techniques. There are
also other techniques that are specific for a confounding parameter. We de-
scribe these techniques when we explain a corresponding parameter.

In Table 4, we summarize the control techniques and their benefits and
drawbacks. For example, randomization requires a relatively large sample size,
does not require measuring a parameter, the effort is low, and the generaliz-
ability depends on the selected sample; if it consists only of students, the re-
sults are only applicable for students, but if researchers include several levels
of experience, the results also apply to more experienced programmers. Note
that the benefits and drawbacks also depend on how a technique is applied
and circumstances of experiments, so the benefits and drawbacks are only an
approximation.

5 Confounding Parameters

In this section, we present the confounding parameters we extracted. For a
better overview, we divide confounding parameters into two categories: indi-
vidual and experimental parameters. Individual parameters are related to the
person of the participants, such as programming experience or intelligence. Ex-
perimental parameters are related to the experimental setting, such as tasks or
source code. We found 16 individual and 23 experimental parameters, which
we discuss in detail.
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5.1 Individual Parameters

In Table 5, we summarize how often individual confounding parameters on
program comprehension are considered. We found 16 individual parameters
that are mentioned in literature. To have an understanding of the role of the
parameters, we describe each parameter, including how it influences the result,
and give an overview of how it can be measured and controlled for, which is all
based on the literature survey. Some parameters are specifically important for
program comprehension, which we explicitly discuss for according parameters.
In the appendix (Table 10), we present a summary of the measurement of
confounding parameters.
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Parameter Ran. Mat. Con. Ind. Ana. Dis. Not sp. Other

Individual background (Section 5.1.1)
Color blindness 0 0 3 0 0 1 0 0
Culture 0 0 2 0 0 3 0 3
Gender 1 6 5 5 12 5 0 34
Intelligence 0 0 4 0 1 0 1 2

Individual knowledge (Section 5.1.2)
Ability 9 11 8 6 18 4 7 7
Domain knowledge 1 1 22 3 4 8 3 2
Education 0 3 27 2 5 6 4 12
Familiarity with
study object

2 6 123 2 12 6 11 20

Familiarity with
tools

2 0 132 0 6 4 3 9

Programming expe-
rience

10 13 40 19 9 19 37 22

Reading time 0 0 1 0 2 1 0 0

Individual circumstances (Section 5.1.3)
Fatigue 1 8 1 0 2 3 0 17
Motivation 3 1 23 0 5 5 4 7
Treatment prefer-
ence

0 2 3 0 1 3 0 1

Ran.: Randomization; Mat.: Matching; Con.: Kept constant; Ind.: Used as indepen-
dent variable; Ana.: Analyzed afterwards; Dis.: A parameter was discussed; Not sp.: A
parameter was not specified; Other: Other control technique than mentioned

Table 6: Control techniques for individual confounding parameters.

For a better overview, we present a summary of how each parameter was
controlled for in Table 6 and divide individual parameters into the categories
individual background, individual knowledge, and individual circumstances.

5.1.1 Individual Background

Individual background describes parameters that have a fixed value for a par-
ticipant, that is, with which participants are born and that hardly change
during life time.

Color blindness describes the limited perception of certain colors, for exam-
ple, red and green [25]. When colors play a role in an experiment, for example,
when participants see source code with syntax highlighting or when the ef-
fectiveness of background colors is analyzed, color-blind participants might
respond slower than other participants or be unable to solve a task if they
cannot distinguish colors.

Color blindness was considered in four experiments. Jablonksi and Hou [32]
described the color-blindness of one participant as threat to validity. In other
experiments, it was kept constant by including only participants with normal
color vision. None of the authors mentioned how they determined color-blind
participants. To measure color blindness, the Ishihara test was developed [31].
When controlling for color blindness, researchers need to keep in mind that
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only a small fraction of people are color blind [25]. Thus, randomization may
not be suitable, because from 20 participants, the one or two potentially color
blind might easily be assigned to the same group.

Culture refers to the origin of participants. This can affect the outcome,
because different cultures (especially Western compared to Asian cultures)
often have different ways to solve a problem (e.g., [30]). Consequently, some
participants may be slower, but more thorough when completing a task or
hide their real opinion to not annoy experimenters.

In seven of the reviewed papers, culture was mentioned. Some mentioned
that by recruiting participants from the same company or class, culture was
kept constant. However, this assumption holds only partially, because often,
students have different background. Another way was to include a represen-
tative set of different cultural backgrounds to avoid the influence of culture
on results, or to measure culture of participants [43]. To avoid discriminating
against participants by excluding them, researchers can also let a participant
complete the experiment and then exclude the data set from the analysis.

Gender of participants might influence program comprehension, as several
studies show. For example, Beckwith and others found that females are reluc-
tant (compared to males) to accept new debugging features when working with
spreadsheets [4], but that proper tutorials can help females to accept new fea-
tures [28]. In another study, Sharafi and others found that female participants
are more careful when selecting and ruling out wrong identifiers [57]. Thus,
gender can influence how participants perform in comprehension experiments.

Gender was mentioned in numerous papers in literature. On one occa-
sion, authors used randomization [67]. Often, authors balanced gender among
groups, included it as independent variable, or analyzed it afterwards. As with
culture, researchers have to be careful not to discriminate against participants.

Intelligence7 has long tradition in psychology and many different definitions
and views exist. Unfortunately, generations of researchers did not come to an
agreement about one definition of intelligence. It can be defined as the ability
to solve problems, memorize material (e.g., using working-memory capacity),
recognize complex relationships, or combinations thereof [33,50,68]. Intelli-
gence can influence program comprehension, because higher problem-solving
skills and/or memory skills can enable participants to faster understand source
code.

In our literature review, authors rarely considered intelligence. When au-
thors did take it into account, they often focused on one facet of intelligence.
Most often, this facet was working memory. To keep it constant, such that the
working-memory capacity was not exceeded, material was either presented on
paper to participants (so they can look it up any time and do not need to
keep it in working memory), or the number of items (such as elements in UML
diagrams) was in the range 7 ± 2, which is the average8 working-memory ca-

7 There are voices that say intelligence is rather something learned than something inborn.
Thus, we could also classify it as individual knowledge. However, since our classification aims
at a better overview, we do not step into this discussion.

8 There are controversial discussion about the magical number seven [3].
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pacity [44]. However, authors rarely applied a test to confirm that the working-
memory capacity of participants was not exceeded. If working memory plays a
crucial role, researchers can also apply tests to measure it [47]. In two papers,
intelligence was specified not as working memory: Ko and Uttl applied a ver-
bal intelligence test as indicator for general intelligence [39], and Corbett and
Anderson used the math score of the SAT as indicator [14]. Thus, intelligence
has many facets.

5.1.2 Individual Knowledge

Individual knowledge describes parameters that are influenced by learning and
experience. These parameters change, but rather slowly over a period of weeks,
months, or years.

Ability as a general term describes skills or competence of participants.
The more and higher ability participants have (e.g., regarding implementing
code or using language constructs), the better they may comprehend source
code. Unfortunately, authors rarely specified what they mean with ability.
Based on the descriptions in the papers, ability can be summarized as the
skill level of participants regarding the study object, such as writing code
or UML modeling. Since we intend to have a broad overview of confounding
parameters, we keep this parameter without specifying it further.

Measuring ability often includes a further test or task in the experiment
(e.g., a short programming task), which increases the experiment time. One
often applied way was to use the grade of participants. Another way was to
let superiors estimate participants’ ability, or to let participants estimate their
own ability. There are also tests to measure ability in terms of programming
skills [5], but none of the papers mentioned such a test.

Domain knowledge describes how familiar participants are with the domain
of the study object, for example, databases. It influences whether they use top-
down or bottom-up comprehension. Usually, top-down comprehension is faster
than bottom-up comprehension, because developers can compare source code
with what is in their memory [56], and familiar identifier names give hints
about the purpose of a method or variable [11]. With bottom-up comprehen-
sion, a developer has to analyze each statement, which inherently takes more
time.

Domain knowledge was considered in 43 papers. To measure it, authors
either asked participants or assumed familiarity based on the courses partic-
ipants were enrolled in or already completed. In some cases, authors selected
uncommon domains, such as hydrology, and assumed that participants had no
knowledge about it. Domain knowledge has a strong influence on the compre-
hension process (fast top down vs. slow bottom-up comprehension), so assess-
ing it can reduce bias to the results.

Education describes the topics participants learned during their studies. It
does not capture the status of participants’ studies (e.g., freshman, sophomore,
graduate student). If students visited mostly programming courses, their skills
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are different from students who mostly visited database or graphical-user-
interface courses, in which programming is not the primary content.9

Authors often considered the education of participants. In most cases, au-
thors kept it constant by recruiting participants of the same course. In some
other cases, authors asked participants the courses they completed. Based on
the courses, authors assumed that participants learned specific topics. Edu-
cation can directly affect domain knowledge, because participants obtained
knowledge through the courses they completed. Thus, assessing relevant top-
ics of participants’ education can help to better understand the results of an
experiment.

Familiarity with study object/tools refers to how experienced participants
are with the evaluated concepts or tools, such as Oracle database or Eclipse.
Familiarity with the study object appears to be the same as domain knowledge.
However, looking closer, they slightly differ: Domain knowledge describes the
domain of a study object (e.g., databases), familiarity with the study object
the object itself (e.g., Oracle database as one concrete database system). If
participants are familiar with the study object or tools, they do not need as
much cognitive resources as unfamiliar participants, because learning some-
thing new requires an initial cognitive effort that decreases with increasing
familiarity [54]. Thus, participants who are familiar with the study object or
the tool might perform better. We summarize familiarity with the study object
and tools, because they are closely related.

Both parameters were often considered in our review. In most cases, au-
thors kept the influence constant. To assure a comparable level of familiarity,
participants were often trained or required to be familiar with a tool. To
measure familiarity, authors asked participants how familiar they are or con-
ducted a pretest. Familiarity with the study object/tools can influence results,
because familiar participants use certain features of a tool that makes a task
easier (e.g., using the feature Call Hierarchy of an IDE to see the call graph
of a variable). There are different options of controlling both parameters, for
example, recruiting only unfamiliar participants, train all participants, or de-
activate features that make tasks easier.

Programming experience describes the experience participants had so far
with writing and understanding source code. The more source code partici-
pants have seen and implemented, the better they can adapt to comprehending
source code, and the higher the chance is that they will be more efficient in
comprehension experiments [53,42].

Programming experience is the major confounding parameter in program-
comprehension experiments: The longer a participant has been programming,
the more insignificant other influences (e.g., intelligence, education, or abil-
ity) become. Not surprisingly, it was considered most often in our review (209
times). However, researchers often used their own definition of programming
experience, such as the years a participants has been programming, the educa-
tion level, self estimation, the size of completed projects, supervisor estimation,

9 The specific contents of courses depend on the country and specific university.
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or a pretest. Beyond that, many researchers did not specify how they defined
and measured programming experience, or did not control for it. To reliably
control its influence, researchers can use a validated instrument (e.g., [21]), in-
stead of using an ad hoc definition that differs between different experiments
and researcher groups.

Reading time refers to how fast participants can read. The faster they are,
the more they can read in a given time interval. Consequently, they may be
faster in understanding source code.

However, reading source code is only one part in the comprehension pro-
cess. Consequently, it was not often considered. In all cases where reading
time was considered, researchers used an eye tracker to measure it. Another
way is to let participants simply read a text and stop the time. There may
be special settings where reading time is relevant, for example, when numer-
ous comments are involved in the study, or when the readability of a new
programming language should be assessed.

5.1.3 Individual Circumstances

Parameters in this category describe how participants feel at the time of the
experiment. These parameters can change rapidly (i.e., within minutes).

Fatigue describes that participants get tired and lose concentration. This
occurs especially in long experiments, because humans can work concentrated
for about 90 minutes [35]. After that, attention decreases, which could affect
performance of participants, such that the error rate increases toward the end
of the experiment.

To avoid the influence of fatigue, researchers often had a short enough
session. In some studies, authors asked their participants afterwards whether
they felt fatigue with ongoing time, or assessed whether performance dropped
toward the end of a session. With different task orders, influence of fatigue can
also be reduced.

Motivation refers to how motivated participants are to take part in the
experiment. If participants are not motivated, it may affect their performance
negatively [45].

Most often, motivation was kept constant. To this end, most participants
took part voluntarily (in contrast to making participation mandatory to suc-
cessfully complete a course). Additionally, we found that authors rewarded
the best-performing participant(s). In one study, authors included the perfor-
mance in the experiment as part of a participant’s grade for a course to ensure
high motivation [58]. To measure motivation, authors asked participants to
estimate their motivation.

Treatment preference refers to whether participants prefer a certain treat-
ment, such as a new tool. This can affect performance, because participants
might need more time or are not willing to work with a tool if they do not like
it.

Treatment preference was not considered very often, and it does not appear
very relevant for program-comprehension experiments. However, if a new tool
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or technique is part of the evaluation, treatment preference should at least
be measured, because participant might like or dislike a tool or technique
just because it is new. To measure treatment preference, researchers can ask
participants afterwards about their opinion.

5.2 Experimental Parameters

Experimental parameters are related to the experiment and its setting. We
found 23 parameters, which we summarize in Table 7. We describe each pa-
rameter, explain how it can influence the result, present how it was measured
and controlled for in literature (summarized in Table 11 in the appendix).
If a parameter is specifically important for program-comprehension experi-
ments, we discuss this explicitly. In Table 8, we give a summary of how each
parameter was controlled for. For a better overview, we divide experimental
parameters into four categories: subject-related, technical, context-related, and
study-object-related.
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5.2.1 Subject-related parameters

Subject-related parameters are caused by participants and only emerge be-
cause participants take part in an experiment. In this way, they differ from
individual parameters, which are always present.

Evaluation apprehension refers to the fear of being evaluated. This may bias
responses of participants toward what they perceive as better. For example,
participants could judge tasks easier than they actually think to hide from
the experimenter that they had difficulties. Another problem might be that
participants cannot show their best performance, because they feel frightened
(which decreases their performance).

Evaluation apprehension was only rarely considered. To avoid its influ-
ence, researchers assured anonymity for participants or ensured participants
that their performance does not affect the grade for a course. Another way
is to encourage participants to answer honestly by clarifying that only honest
answers are of value.

The Hawthorne effect is closely related to evaluation apprehension. It de-
scribes that participants behave differently in experiments, because they are
being observed [51]. Like evaluation apprehension, we may observe different
behavior than we would have if we observed participants in a realistic envi-
ronment.

In most cases, authors avoided the Hawthorne effect by not revealing their
hypotheses to participants. Going one step farther, it is also possible not let
participants know that they take part in an experiment. However, both often
conflict with an informed consent that participants give before the experiment.
An ethics committee helps to ensure fair treatment of all participants. In
one experiment, authors measured the Hawthorne effect by comparing the
performance in a context-neutral task to performance in treatment tasks [18].

Process conformance means how well participants followed their instruc-
tions. If participants deviate from their instructions, for example, searching
the internet for solutions or given subsequent participants information about
the experiment, the results may be biased.

We found different ways to ensure process conformance. Most often, partic-
ipants were observed to assure process conformance. In one experiment with
several sessions, participants were not allowed to take any material home [10],
and in another experiment, data of participants who deviated from the pro-
tocol were deleted [24]. In an experiment with children, parents were allowed
to watch, but not to interfere [15]. Furthermore, three experiments used dif-
ferent tasks for participants seated next to each other. In some experiments,
it might be useful to allow participants to work at home. However, in this
case, researchers cannot monitor participants’ process conformance. In such
settings, it can help to encourage participants to follow the instructions (e.g.,
by stating that data are only useful when the protocol was followed), to ask
participants how well they followed the protocol, and/or to analyze the effect
of deviations afterwards.
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Parameter Ran. Mat. Con. Ind. Ana. Dis. Not sp. Other

Subject related (Section 5.2.1)
Evaluation appre-
hension

0 0 0 0 0 0 0 3

Hawthorne effect 0 0 1 0 0 8 0 25
Process conformance 0 3 5 0 10 8 0 29
Study-object cover-
age

0 0 5 1 1 1 0 2

Ties to persistent
memory

0 0 0 1 0 0 0 0

Time pressure 0 1 9 0 4 5 0 7
Visual effort 0 0 0 1 0 0 0 0

Technical (Section 5.2.2)
Data consistency 0 0 0 0 0 1 0 2
Instrumentation 0 0 5 0 2 15 0 4
Mono-method bias 0 0 0 0 0 0 0 3
Mono-operation bias 0 0 0 0 0 1 0 2
Technical problems 0 0 5 0 0 0 0 3

Context related (Section 5.2.3)
Learning effects 10 29 6 1 19 11 2 15
Mortality 0 0 0 0 0 5 0 0
Operationalization
of study object

0 0 0 0 0 1 0 0

Ordering 19 56 4 0 5 5 0 3
Rosenthal 0 0 0 0 0 9 0 29
Selection 5 4 1 0 2 13 1 3

Study-object related (Section 5.2.4)
Content of study ob-
ject

2 2 8 0 3 6 0 9

Language 2 0 81 1 3 9 6 11
Layout of study ob-
ject

1 7 9 8 3 8 1 7

Size of study object 1 4 6 1 4 5 2 78
Tasks 2 20 3 2 6 11 2 14

Ran.: Randomization; Mat.: Matching; Con.: Kept constant; Ind.: Used as indepen-
dent variable; Ana.: Analyzed afterwards; Dis.: A parameter was discussed; Not sp.: A
parameter was not specified; Other: Other control technique than mentioned

Table 8: Control techniques for experimental confounding parameters.

Study-object coverage describes how much of the study object was covered
by participants. If a participant solved half as much tasks as another par-
ticipant, it could bias the results, such that the slower participant was more
thorough.

Often, authors controlled for study-object coverage by excluding data of
participants who did not complete all tasks. In one experiment, authors com-
pared how the difference between groups changed (based on confidence inter-
vals) when participants who did not finish the task were excluded [48].

Ties to persistent memory refers to links of the experimental material to
persistent (or long-term) memory of participants. If source code has no ties
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to persistent memory and working memory becomes flooded (e.g., because of
long variable names or long method calls), comprehension may be impaired.

Ties to persistent memory was relevant in only one study [8]. It was mea-
sured in terms of the usage of identifiers: Identifiers often used in packages
were assumed to have ties to persistent memory, whereas program or domain
identifiers have no ties to persistent memory.

Time pressure means that participants feel they have to hurry to complete
the experiment in a given time interval. This can bias the performance, such
that participants make more errors when time is running out.

To avoid the influence of time pressure, authors often did not set a time
limit for a task. However, there are often time constraints, for example, when
an experiment replaces a regular lecture or exercise session or when an ex-
periment mimics time pressure of realistic industrial settings. In these cases,
authors analyzed the influence of time pressure afterwards or designed the ex-
perimental tasks such that participants can comfortably solve them within the
time limit. To measure time pressure, authors often asked after the experiment
whether participants experienced time pressure.

Visual effort describes the number and length of eye movements to find
a correct answer. The more effort a task has, the longer it takes to find the
correct answer.

Visual effort was relevant in only one experiment [59]. It was controlled for
by analyzing the eye movements of participants with an eye tracker.

5.2.2 Technical Parameters

Technical parameters are related to the experimental set up, such as the tools
that are used.

Data consistency refers to how consistent data of the experiment are. For
example, when paper-based answers of participants are digitalized, answers
can be forgotten or transferred wrongly. Inconsistent data can bias the results,
because researchers might analyze something different than they measured.

In our review, three papers controlled for data consistency. For example,
Biffl and others checked data digitalized from paper with two independent
reviewers [7]. Especially when transcribing paper-based data to a digital form,
data consistency may be compromised. In pilot studies, researchers can test
whether there are any systematic threats to data consistency.

Instrumentation refers to instruments used in the experiment, such as ques-
tionnaires, tasks, or eye trackers. The use of instruments can influence the
result, especially when instruments are not carefully designed or are unusual
for participants.

To avoid instrumentation effects, we found several ways: Authors con-
ducted pilot studies [29], evaluated the instruments based on design princi-
ples [17], or avoided the influence of instrumentation by using standard in-
struments, for example, to present speech [26]. Thus, to control for instrumen-
tation effects, researchers can use validated instruments, or, if there are none,
carefully design their own by consulting literature and/or experts.



Confounding Parameters on Program Comprehension 27

Mono-method bias means that only one measure is used to measure a
variable, for example, only response time of programming tasks to measure
program comprehension. If that measure is badly chosen, the results may be
biased. For example, when participants wanted to finish a task independent of
correctness, response time is not a good indicator.

In three papers, we found that authors controlled for mono-method bias
by using different measures for comprehension. For example, to measure pro-
gram comprehension, researchers used correctness and response time of tasks,
and/or an efficiency measure as combination of both.

Mono-operation bias is related to mono-method bias; it refers to an under-
representation of the evaluated construct, for example, when researchers use
only one task to measure comprehension. If that task is not representative,
the results might be biased. For example, a task can be designed such that it
confirms a hypothesis.

In our review, authors controlled for mono-operation bias by using different
tasks [66] or representative tasks. To ensure representativeness, we researchers
consult literature and/or domain experts.

Technical problems can occur during any experiment, for example, a com-
puter crash or missing questionnaires for participants. This may bias the re-
sults, because participants have to repeat a task on a computer or that answers
of a participants get lost.

In literature, the most common technical problem was a system crash, and
authors avoided its influence by excluding data of according participants.

5.2.3 Context-Related Parameters

Context-related parameters are typical problems of experiments, such as par-
ticipants who drop out or learn from experimental tasks.

Learning effects mean how participants learn during the session of an ex-
periment. This is especially problematic in within-subject designs, in which
participants experience more than one treatment level.

Authors considered learning effects very often. In most cases, authors used
a counter-balanced or between-subjects design, so that learning effects are
avoided or can be measured. Additionally, authors conducted a training before
the experiment, so participants learned mostly during the training, not during
the experiment. Furthermore, to analyze afterwards how learning affected the
results, authors compared the performance of participants in subsequent tasks.

Mortality occurs when participants do not complete all tasks. This is es-
pecially a problem in multi-session experiments, where participants have to
return for sessions. Mortality may influence the results, because participants
may not drop out randomly, but, for example, only low-skilled participants
because of frustration caused by the perceived difficulty of the experiment.

Only five papers discussed the effect of mortality on their result, but we
also found only few papers with multi-session experiments. If researchers need
multiple sessions, they can encourage participants to return, for example, by
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giving participants a reward in each session or in the last session if all other
sessions have been attended.

Operationalization of study object describes how the measurement of the
study object is defined. For example, to measure program comprehension,
researchers can use the correctness of solutions to tasks. An example for an
inappropriate measure is the number of files participants looked at. If the
operationalization is inappropriate, then not the study object, but something
else is measured, leading to biased results.

In our review, we found that the operationalization of study object was
discussed a few times. However, authors typically carefully operationalized the
study object without explicitly discussing whether their operationalization was
suitable. To this end, authors often used the literature and/or experts.

Ordering describes the influence of the order in which tasks or experimental
treatments are applied. If the solution of one task automatically leads to the
solution of subsequent tasks, but not the other way around, a different order
of these tasks leads to different results.

Most authors chose an appropriate experimental design (e.g., counter-
balanced, between-subjects) to avoid or measure the effect of ordering after-
wards. Another way was to randomize the order of tasks, so that, with a large
enough sample, ordering effects should be ruled out.

The Rosenthal effect occurs when experimenters influence consciously or
subconsciously the behavior of participants [52]. This can influence the result,
especially when researchers assess participants’ opinion about a new technique
or tool, such that participants rate it more positive.

In nearly all studies in which the Rosenthal effect was considered, authors
avoided its influence. To this end, authors were careful not to bias partic-
ipants, were objective (i.e., they did not develop the technique under eval-
uation), used standardized instructions (i.e., defined the specific wording of
what experimenters say to participants), left the experimenters blind regard-
ing hypotheses or experimental group of participants, or let several reviewers
evaluate the objectivity of material. Since it is difficult to measure whether and
how experimenters influenced participants, researchers can use means to avoid
the Rosenthal effect, for example, by using standardized sets of instructions.

Selection refers to how the participants for an experiment are selected. If
the sample is not representative, the conclusions are not applicable to the in-
tended population. For example, if researchers select students as participants,
they cannot apply the results to programming experts.

To control for selection bias, researchers have to ensure selecting a repre-
sentative sample, for example, by randomly recruiting participants from the
intended population. However, this is not feasible in most cases (e.g., we cannot
recruit all students who start to learn Java from all over the world). Typically,
authors recruited participants from one university or company (i.e., conve-
nient sampling), but took care to randomly select participants or to create
a representative sample. Additionally, authors communicated the selection of
participants as threat to validity.
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5.2.4 Study-Object-Related Parameters

Study-object-related parameters describe properties of the study object, such
as its size.

Content of study object describes what source code or models are about. If
the content between two groups is different, it may bias the results, because one
study object is more difficult to comprehend. For example, when comparing
the comprehensibility of object-oriented with imperative programming based
on two programs, researchers need to make sure that both programs differ only
in the paradigm, not the language or the functionality they are implementing.

In most cases, authors used the same or comparable content of study object
to avoid its influence. Furthermore, authors selected realistic task settings.
Since the influence of content of study object is difficult to measure directly,
authors relied on their own or expert estimation regarding comparability of
content. Another way is to use standardized material if possible.

Language refers to the underlying programming language of the exper-
iment. We could also summarize language under familiarity with the study
object or content of study object, but decided to keep it separate, because for
program comprehension, the underlying programming language has an impor-
tant influence. If participants work with an unfamiliar programming language,
their performance is different compared to when they work with a familiar lan-
guage, because they need additional cognitive resources for understanding the
unfamiliar language (which also counts for familiarity with study object/tools,
cf. Section 5.1.2).

The influence of language is especially important for program-comprehension
experiments. Consequently, many authors considered it. Most often, they kept
the influence of language constant by recruiting participants with a specified
skill level (e.g., at least three years of Java experience). In some cases, authors
used a short pretest to determine the language skill level. If uncommon fea-
tures of a language are relevant for the experiment, researchers can explicitly
assess whether participants are familiar with them.

Layout of study object describes how participants see the study object, such
as source code or a UML model. For example, source code can be formatted
according to different guidelines or not formatted consistently, or different
UML models can have different layouts. This may influence the comprehension
of participants, because they have to get used to the layouts.

For layout of study object, the same counts as for content of study object:
It is difficult to measure, so most authors avoided its influence by choosing
comparable layouts or selecting realistic layouts (e.g., standard formatting
styles). Several papers also included the layout as independent variable, so
that authors could determine its influence on the result.

Size of study object refers to how large an object is, for example, the number
of lines of source code or the number of elements in a UML model. The larger
an object is, the more time participants need to work with it. If treatment
and control object differ in their size, the results of the experiment are also
influenced by different sizes, not only different treatments.
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As for content and layout of study object, size should be comparable across
different treatments. To measure size, authors used lines of code, number of
files/classes, or number of elements in a UML model. However, many authors
only measured the size of study object, but did not describe whether and how
they controlled its influence. If researchers already determined the size of study
object, they can also analyze afterwards whether it influenced the results.

Task describes how tasks can differ, for example, in difficulty or complexity.
If the difficulty of tasks for different treatments is not the same, then the
difficulty would also have an effect on the outcome, besides the independent
variable.

To avoid the influence due to different tasks, authors often used matching
by choosing standardized or comparable tasks. If standardized tasks are avail-
able, researchers should use them, because they have already proven useful in
several experiments, and they increase comparability across different experi-
ments. Otherwise, consulting the literature and/or experts to create tasks also
helps to avoid its influence.

5.3 Concluding Remarks about Confounding Parameters

To summarize, there are numerous confounding parameters for program com-
prehension. There are no general measurement and control techniques for all
parameters, but depending on the circumstances of the experiment, the most
suitable techniques need to be chosen. To support researchers in this deci-
sion, we gave an overview of measurement and control techniques based on
comprehension experiments that we encountered in our literature review.

The categorization we used here serves as an overview and should not be
seen as absolute. For example, intelligence can be defined as something that
is learned rather than inborn. However, since the goal of the categories is to
have a better overview, we do not step into this discussion.

Furthermore, it might seem unsettling that some parameters, such as mono-
operation bias or operationalization of study object, are considered in only few
studies. However, authors may have controlled parameters more often than we
found in our review, but space restrictions may have prohibited authors to
mention all considered parameters. Thus, the actual number of how often
confounding parameters are controlled may be higher than we found.

Additionally, some parameters appear very similar. For example, domain
knowledge and familiarity the with study object seem to be the same at first
glance. However, looking closer, they slightly differ, such that domain knowl-
edge describes the domain of a study object (e.g., databases), and familiarity
with the study object the object itself (e.g., Oracle database as one concrete
database system). To have a broad overview and enable experimenters to look
at parameters from different points of view, we kept the parameters separate.
This way, we hope that experiments can better decide whether and how a
parameter is relevant.
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6 Threats to Validity

Like for every literature survey, the selection of journals, conferences, and ar-
ticles as well as the data extraction may be biased. First, we selected four
journals, one workshop, and eight conferences that are the leading publication
platform in their field. However, we could easily select more relevant venues.
To reduce this threat, we selected a broad spectrum and also included more
general sources in the area of software engineering, not only venues for empiri-
cal research. Additionally, we could have considered a larger time span, but 10
years is sufficiently large to get a solid starting point for an exhaustive catalog
of confounding parameters. In future work, we and others can consider papers
of additional venues and years to extend our catalog.

Second, the selection of articles and extraction of parameters may be bi-
ased. In our survey, we had two reviewers selecting the papers (of disjoint sets
of venues), and one reviewer extracting the confounding parameters. Due to re-
source constraints, we could not apply standard techniques, such as grounded
theory, card sorting, or having at least two reviewers evaluate the complete
selection and extraction process. To minimize bias, we checked the selection
and extraction of the other reviewer on random samples. That is, the review-
ers who selected the papers checked the extraction process, and the reviewer
who extracted the parameters checked the selection process. When we found
a different decision about the inclusion of a paper or parameter, we discussed
it until reaching interpersonal consensus. In future work, we and others can
increase the validity by letting independent reviewers conduct the selection
and extraction process and compute agreement measures, such as Cohen’s
Kappa [12].

Third, the list of keywords ((programming) experience, expert, expertise,
professional, subject, participant) may lead to incorrectly excluding a paper.
However, based on our expertise, these keywords are typical for experiments.
Additionally, we used these keywords in conjunction with skimming the pa-
per to minimize the number of falsely discarding a paper. Furthermore, we
excluded several papers of our initial selection, so we do not have irrelevant
papers in our final selection. Thus, we minimized the threat caused by the
selection of keywords.

Fourth, it is unlikely that we have extracted all confounding parameters
that might influence the results of program-comprehension experiments. Al-
though we had a broad selection of papers of 10 years from different journals
and conferences, there might be parameters missing. For example, the size of
the monitor on which the study object is presented might influence the result,
or the operating system, because a participant is used to a different one than
what is used in the experiment. Thus, our catalog can be extended. To min-
imize the number of missed parameters, we set the selection and extraction
criteria for papers and confounding parameters as broad as possible. Thus, our
catalog provides a good foundation for creating sound experimental designs.
Nevertheless, in future work, we and others can further reduce this threat by
conducting a survey with experienced empirical researchers about confound-
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ing parameters (mentioned and not mentioned in this paper) as well as their
relevance.

7 Recommendations

In this section, we give recommendations on how to manage confounding pa-
rameters, which count for both, qualitative and quantitative studies:

– Decide whether a confounding parameter is relevant for an experiment and
use appropriate measurement and control techniques.

– Describe all confounding parameters explicitly in the design part of a re-
port.

– Report whether and how confounding parameters are measured and con-
trolled for.

First, researchers have to decide whether a confounding parameter is rel-
evant and choose appropriate measurement and control techniques. To this
end, researchers can consult the catalog, including measurement techniques
(cf. Tables 10 and 11 in the appendix), and decide for each parameter whether
it is relevant or not and how it can be controlled for. Discussing the relevance
of a parameter and according measurement and control techniques in a group
of researchers can further reduce the risk of neglecting relevant parameters or
choosing inappropriate measurement or control techniques.

Having decided on each relevant parameter and according measurement
and control techniques, there is still a chance of missing something. For ex-
ample, if researchers keep the language constant by recruiting participants
with Java experience, some tasks might still require knowledge of specific Java
syntax (e.g., adding a leading zero to an int treats the number as octal). In
such a case, applying additional qualitative methods, such as a think-aloud
protocol [19], helps experimenters to better understand what is going on with
participants.

Second, we suggest to describe all confounding parameters in the design
part of a report and explicitly defining it as confounding parameter. For ex-
ample, Jedlitschka and others suggest reporting hypotheses and variables in
one section as part of the experiment planning [34]. We recommend listing
confounding parameters also in this section. This way, other researchers can
easily perceive which confounding parameters were considered as relevant.

Third, to describe whether and how researchers controlled for a confound-
ing parameter, we suggest a pattern similar to the one described in Table 9.
We illustrate this pattern with the parameters programming experience, the
Rosenthal effect, and ties to persistent memory.10 We mention each parameter,
provide an abbreviation to reduce the space we need to refer to it, describe
the control technique(s) and why we applied it, and describe how we mea-
sured it and why we measure it that way or ensured that it does not bias

10 For examples of all identified parameters for specific experiments, see the first author’s
PhD thesis [61].
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Parameter Abbr. Control technique Measured/Ensured
How? Why? How? Why?

Programming
experience

PE Matching PE major con-
found

Education
level

undergraduates
have less ex-
perience than
graduates

Rosenthal
effect

RE Standardized
instruc-
tions

Avoid it Not mea-
sured

Standardized
instructions to
avoid it

Ties to
persistent
memory

Ties None Not relevant - -

Abbr.: Abbreviation for parameter.

Table 9: Pattern to describe confounding parameters

our results. This way, other researchers can see at first glance how and why
a confounding parameter was measured and controlled for. This way, repli-
cability of experiments can be improved, because all relevant information for
confounding parameters is mentioned at one defined location.

We are aware that most reports on experiments have space restrictions. To
avoid incomplete descriptions of confounding parameters, a short description
of the most important parameters can be given in the report, and the complete
catalog of parameters and according measurement and control techniques can
be provided at a website or a technical report. This way, reports do not become
bloated, but all relevant information is available. We hope that this way, a more
standard way to manage confounding parameters will emerge, and we would
be happy to learn about the experience of empirical researchers who follow
these recommendations.

8 Related Work

Based on work in psychology, Wohlin and others provide a checklist of con-
founding parameters for software-engineering experiments, which contains gen-
eral confounding parameters for experiments in software engineering [69]. This
is a good starting point for experiments, and also helps researchers to not for-
get possibly relevant parameters. In contrast to our work, the catalog is not
based on a literature survey of comprehension experiments, but on standard
psychological literature [13]. Thus, this checklist applies for experiments in
software engineering in general, whereas our catalog is tailored to comprehen-
sion experiments and complements the catalog of Wohlin and others.

There is a lot of work on surveys about experiments in software engineer-
ing. For example, Sjøberg and others conducted a survey about the amount of
empirical research in software engineering [62]. They found that only a fraction
of the analyzed papers report on controlled experiments. Furthermore, the re-
porting of threats to validity (which are caused by confounding parameters)
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is often vague and unsystematic. Dyb̊a and others found that the statistical
power in software-engineering experiments is rather low and suggested, among
others, to improve validity, which in turn increases statistical power [16]. Kam-
penes and others analyzed the conduct of quasi experiments and found that
their design, analysis as well as reporting can be improved [37]. Similar to our
work, all studies showed that there is room for improvement when conducting
and reporting controlled experiments in software engineering. In contrast to
these studies, we focus on the aspect of confounding parameters, such that we
support researchers in managing them. In the long run, design and reporting
of empirical studies can be improved.

9 Conclusion

Experiments in software engineering become more and more important. How-
ever, designing experiments is tedious, because confounding parameters need
to be identified, measured, and controlled for, independent of the kind of study.
In this paper, we present a catalog of confounding parameters for comprehen-
sion experiments based on a literature survey, including applied measurement
and control techniques. So far, we identified 39 confounding parameters that
should be considered in comprehension experiments. With this catalog, we
give researchers a tool that helps them to create sound experimental designs,
which is necessary to obtain valid and reliable results.

In future work, there are several options to continue our work. First, our
catalog can be extended by considering other years and venues, not necessarily
restricted to the computer-science domain, but including other domains that
use empirical research. Second, since our catalog of confounding parameters
is not complete, we can conduct explorative studies to discover more relevant
confounding parameters. Additionally, we can ask experts in empirical research
about their opinion of relevant confounding parameters. This could also be
combined with a rating of the importance of each confounding parameter, so
that researchers can better decide whether a parameter may be relevant or
not.
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A Appendix

In Tables 10 and 11, we give a summary of how each parameter was measured in literature.

The checklist in Table 12 can help researchers to control the influence of confounding
parameters. Researchers can document how they measured and controlled for a parameter.
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Parameter Measurement

Individual background (Section 5.1.1)
Color blindness Ishihara test [31]; ask participants
Culture Ask participants (avoid discriminating against anyone)
Gender Ask participants (avoid discriminating against anyone)
Intelligence Intelligence tests, e.g., BIS [33], CFT [50], WMC test [47]

Individual knowledge (Section 5.1.2)
Ability Grades of courses; supervisor estimation; pretest
Domain knowledge Ask participants; assume knowledge based on courses,

pretest
Education Ask participants; assume knowledge based on courses
Familiarity with study object Ask participants; pretest
Familiarity with tools Ask participants; pretest
Programming experience Questionnaire, e.g., as is currently developed by us [21]
Reading time Eyetracker; measure time participants need to read a text

Individual circumstances (Section 5.1.3)
Fatigue Self estimation; performance (decreasing performance may

be indicator for fatigue)
Motivation Self estimation; performance with ongoing experiment

time
Treatment preference Self estimation

Table 10: Measurement techniques of individual confounding parameters.
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Parameter Abbr. Control technique Measured/Ensured
How? Why? How? Why?

Individual background
Color blindness
Culture
Gender
Intelligence

Individual knowledge
Ability
Domain knowledge
Education
Familiarity with study object
Familiarity with tools
Programming experience
Reading time

Individual circumstances
Fatigue
Motivation
Treatment preference

Subject related
Evaluation apprehension
Hawthorne effect
Process conformance
Study-object coverage
Ties to persistent memory
Time pressure
Visual effort

Technical
Data consistency
Instrumentation
Mono-method bias
Mono-operation bias
Technical problems

Context related
Learning effects
Mortality
Operationalization of study object
Ordering
Rosenthal
Selection

Study-object related
Content of study object
Language
Layout of study object
Size of study object
Tasks

Table 12: Checklist of confounding parameters.
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29. Güleşir, G., Berg, K., Bergmans, L., Akşit, M.: Experimental evaluation of a tool for
the verification and transformation of source code in event-driven systems. Empirical
Softw. Eng. 14(6), 720–777 (2009)

30. Hu, W., Lee, H., Zhang, Q., Liu, T., Geng, L., Seghier, M., Shakeshaft, C., Twomey, T.,
Green, D., Yang, Y., , Price, C.: Developmental Dyslexia in Chinese and English Pop-
ulations: Dissociating the Effect of Dyslexia from Language Differences. Brain 133(6),
1694–1706 (2010)

31. Ishihara, S.: Test for Colour-Blindness. Kanehara Shuppan Co. (1972)
32. Jablonski, P., Hou, D.: Aiding Software Maintenance with Copy-and-Paste Clone-

Awareness. In: Proc. Int’l Conf. Program Comprehension (ICPC), pp. 170–179. IEEE
CS (2010)
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