
IBM
®

DB2
®

Universal Database

SQL Reference
Version 7

SC09-2974-00, SC09-2975-00

���

IBM
®

DB2
®

Universal Database

SQL Reference
Version 7

SC09-2974-00, SC09-2975-00

���

Before using this information and the product it supports, be sure to read the general information under
“Appendix S. Notices” on page 1447.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introduction 1
Who Should Use This Book 1
How To Use This Book. 1

How This Book is Structured. 1
How to Read the Syntax Diagrams 3
Conventions Used in This Manual 5

Error Conditions 5
Highlighting Conventions 5

Related Documentation for This Book 6

Chapter 2. Concepts 9
Relational Database 9
Structured Query Language (SQL) 9
Embedded SQL 10

Static SQL. 10
Dynamic SQL 10

DB2 Call Level Interface (CLI) & Open
Database Connectivity (ODBC). 10
Java Database Connectivity (JDBC) and
Embedded SQL for Java (SQLJ) Programs . . 11
Interactive SQL 12
Schemas 12

Controlling Use of Schemas 12
Tables 13
Views 14
Aliases 15
Indexes 15
Keys 15

Unique Keys 16
Primary Keys 16
Foreign Keys 16
Partitioning Keys 16

Constraints 16
Unique Constraints 17
Referential Constraints 17

Table Check Constraints 21
Triggers 21
Event Monitors 23
Queries 23
Table Expressions 23

Common Table Expressions 23
Packages 24
Catalog Views 24
Application Processes, Concurrency, and
Recovery 24

Isolation Level 27
Repeatable Read (RR) 28
Read Stability (RS) 28
Cursor Stability (CS) 29
Uncommitted Read (UR) 29
Comparison of Isolation Levels 29

Distributed Relational Database 29
Application Servers 30
CONNECT (Type 1) and CONNECT (Type
2) 31
Remote Unit of Work 31
Application-Directed Distributed Unit of
Work 35
Data Representation Considerations . . . 41

DB2 Federated Systems 41
The Federated Server, Federated Database,
and Data Sources 41
Tasks to Perform in a DB2 Federated
System 42
Wrappers and Wrapper Modules 43
Server Definitions and Server Options . . 44
User Mappings and User Options 46
Data Type Mappings 47
Function Mappings, Function Templates,
and Function Mapping Options 48
Nicknames and Column Options 48
Index Specifications 49
Distributed Requests 50
Compensation 51
Pass-Through 51

Character Conversion 52
Character Sets and Code Pages. 53
Code Page Attributes 54

Authorization and Privileges 55
Table Spaces and Other Storage Structures . . 58
Data Partitioning Across Multiple Partitions 59

Partitioning Maps 60
Table Collocation 61

Chapter 3. Language Elements 63
Characters 63

MBCS Considerations 64
Tokens 64

MBCS Considerations 65
Identifiers 65

© Copyright IBM Corp. 1993, 2000 iii

SQL Identifiers 65
Host Identifiers 66

Naming Conventions and Implicit Object
Name Qualifications 66
Aliases 71
Authorization IDs and authorization-names 72

Dynamic SQL Characteristics at run-time 73
Authorization IDs and Statement
Preparation 75

Data Types 75
Nulls 76
Large Objects (LOBs) 76
Character Strings 78
Graphic Strings 80
Binary String. 81
Numbers 81
Datetime Values. 82
DATALINK Values 85
User Defined Types 87

Promotion of Data Types. 90
Casting Between Data Types 91
Assignments and Comparisons. 94

Numeric Assignments. 95
String Assignments 96
Datetime Assignments 99
DATALINK Assignments. 99
User-defined Type Assignments 101
Reference Type Assignments 102
Numeric Comparisons 102
String Comparisons 102
Datetime Comparisons 106
User-defined Type Comparisons 106
Reference Type Comparisons 107

Rules for Result Data Types 107
Character Strings 108
Graphic Strings 109
Binary Large Object (BLOB) 109
Numeric 109
DATE 110
TIME 110
TIMESTAMP 110
DATALINK 110
User-defined Types 110
Nullable Attribute of Result 111

Rules for String Conversions 111
Partition Compatibility 114
Constants 115

Integer Constants 115
Floating-Point Constants 116
Decimal Constants 116

Character String Constants 116
Hexadecimal Constants 117
Graphic String Constants 117
Using Constants with User-defined Types 117

Special Registers 118
CURRENT DATE 118
CURRENT DEFAULT TRANSFORM
GROUP 118
CURRENT DEGREE 119
CURRENT EXPLAIN MODE 120
CURRENT EXPLAIN SNAPSHOT . . . 121
CURRENT NODE 122
CURRENT PATH 122
CURRENT QUERY OPTIMIZATION . . 123
CURRENT REFRESH AGE. 124
CURRENT SCHEMA 124
CURRENT SERVER 125
CURRENT TIME 125
CURRENT TIMESTAMP 125
CURRENT TIMEZONE 126
USER 126

Column Names 127
Qualified Column Names 127
Correlation Names 127
Column Name Qualifiers to Avoid
Ambiguity 130
Column Name Qualifiers in Correlated
References 132

References to Host Variables 135
Host Variables in Dynamic SQL 135
References to BLOB, CLOB, and DBCLOB
Host Variables 137
References to Locator Variables 138
References to BLOB, CLOB, and DBCLOB
File Reference Variables 138
References to Structured Type Host
Variables 141

Functions 142
External, SQL and Sourced User-Defined
Functions 143
Scalar, Column, Row and Table
User-Defined Functions 143
Function signatures 144
SQL Path 144
Function Resolution 144
Function Invocation 148

Methods 149
External and SQL User-Defined Methods 150
Method Signatures 150
Method Invocation 151

iv SQL Reference

Method Resolution 151
Method of Choosing the Best Fit 153
Example of Method Resolution 154
Method Invocation 154

Conservative Binding Semantics 155
Expressions 157

Without Operators 158
With the Concatenation Operator . . . 158
With Arithmetic Operators 161
Two Integer Operands 162
Integer and Decimal Operands 162
Two Decimal Operands 162
Decimal Arithmetic in SQL 163
Floating-Point Operands 163
User-defined Types as Operands 163
Scalar Fullselect 164
Datetime Operations and Durations. . . 164
Datetime Arithmetic in SQL 165
Precedence of Operations 170
CASE Expressions 171
CAST Specifications 173
Dereference Operations 176
OLAP Functions 177
Method Invocation 183
Subtype Treatment 184

Predicates 186
Basic Predicate 187
Quantified Predicate 188
BETWEEN Predicate 191
EXISTS Predicate 193
IN Predicate 194
LIKE Predicate 197
NULL Predicate 202
TYPE Predicate 203

Search Conditions. 205
Examples 207

Chapter 4. Functions 209
Column Functions 228

AVG 229
CORRELATION 231
COUNT 232
COUNT_BIG 234
COVARIANCE. 236
GROUPING 237
MAX 239
MIN 241
REGRESSION Functions 243
STDDEV 247
SUM 248

VARIANCE 249
Scalar Functions 250

ABS or ABSVAL 251
ACOS. 252
ASCII 253
ASIN 254
ATAN. 255
ATAN2 256
BIGINT 257
BLOB 258
CEILING or CEIL 259
CHAR 260
CHR 265
CLOB 266
COALESCE 267
CONCAT 268
COS 269
COT 270
DATE 271
DAY 273
DAYNAME 274
DAYOFWEEK 275
DAYOFWEEK_ISO 276
DAYOFYEAR 277
DAYS 278
DBCLOB. 279
DECIMAL 280
DEGREES 283
DEREF 284
DIFFERENCE 285
DIGITS 286
DLCOMMENT. 287
DLLINKTYPE 288
DLURLCOMPLETE 289
DLURLPATH 290
DLURLPATHONLY 291
DLURLSCHEME 292
DLURLSERVER 293
DLVALUE 294
DOUBLE. 296
EVENT_MON_STATE 298
EXP 299
FLOAT 300
FLOOR 301
GENERATE_UNIQUE 302
GRAPHIC 304
HEX 305
HOUR 307
INSERT 308
INTEGER 310

Contents v

JULIAN_DAY 311
LCASE or LOWER 312
LCASE (SYSFUN schema) 313
LEFT 314
LENGTH 315
LN. 317
LOCATE 318
LOG 319
LOG10 320
LONG_VARCHAR 321
LONG_VARGRAPHIC 322
LTRIM 323
LTRIM (SYSFUN schema) 324
MICROSECOND 325
MIDNIGHT_SECONDS 326
MINUTE. 327
MOD 328
MONTH 329
MONTHNAME 330
NODENUMBER 331
NULLIF 333
PARTITION. 334
POSSTR 336
POWER 338
QUARTER 339
RADIANS 340
RAISE_ERROR. 341
RAND 343
REAL 344
REPEAT 345
REPLACE 346
RIGHT 347
ROUND 348
RTRIM 349
RTRIM (SYSFUN schema) 350
SECOND 351
SIGN 352
SIN 353
SMALLINT 354
SOUNDEX 355
SPACE 356
SQRT 357
SUBSTR 358
TABLE_NAME. 362
TABLE_SCHEMA 364
TAN 366
TIME 367
TIMESTAMP 368
TIMESTAMP_ISO 370
TIMESTAMPDIFF. 371

TRANSLATE 373
TRUNCATE or TRUNC 376
TYPE_ID. 377
TYPE_NAME 378
TYPE_SCHEMA 379
UCASE or UPPER 380
VALUE 381
VARCHAR 382
VARGRAPHIC. 384
WEEK 386
WEEK_ISO 387
YEAR 388

Table Functions 389
SQLCACHE_SNAPSHOT 390

User-Defined Functions 391

Chapter 5. Queries 393
subselect 394

select-clause. 395
from-clause 400
table-reference 401
joined-table 405
where-clause 408
group-by-clause 409
having-clause 416

Examples of subselects 418
Examples of Joins 421
Examples of Grouping Sets, Cube, and
Rollup 425
fullselect 434

Examples of a fullselect 437
select-statement 439

common-table-expression 440
order-by-clause 443
update-clause 446
read-only-clause 447
fetch-first-clause 448
optimize-for-clause 449
Examples of a select-statement 450

Chapter 6. SQL Statements 453
How SQL Statements Are Invoked 457

Embedding a Statement in an Application
Program 458
Dynamic Preparation and Execution . . 459
Static Invocation of a select-statement . . 459
Dynamic Invocation of a select-statement 460
Interactive Invocation 460

SQL Return Codes 461
SQLCODE 461

vi SQL Reference

SQLSTATE 461
SQL Comments 463
ALTER BUFFERPOOL 464
ALTER NICKNAME 466
ALTER NODEGROUP 469
ALTER SERVER 473
ALTER TABLE 477
ALTER TABLESPACE 503
ALTER TYPE (Structured) 509
ALTER USER MAPPING 516
ALTER VIEW 518
BEGIN DECLARE SECTION 520
CALL 522
CLOSE 530
COMMENT ON 532
COMMIT 543
Compound SQL (Embedded) 545
CONNECT (Type 1) 550
CONNECT (Type 2) 558
CREATE ALIAS 566
CREATE BUFFERPOOL. 569
CREATE DISTINCT TYPE 572
CREATE EVENT MONITOR 579
CREATE FUNCTION 589
CREATE FUNCTION (External Scalar) . . . 590
CREATE FUNCTION (External Table) . . . 615
CREATE FUNCTION (OLE DB External
Table) 631
CREATE FUNCTION (Source or Template) 639
CREATE FUNCTION (SQL Scalar, Table or
Row) 649
CREATE FUNCTION MAPPING 657
CREATE INDEX 662
CREATE INDEX EXTENSION 669
CREATE METHOD 676
CREATE NICKNAME 681
CREATE NODEGROUP. 684
CREATE PROCEDURE 687
CREATE SCHEMA 704
CREATE SERVER 708
CREATE TABLE 712
CREATE TABLESPACE 764
CREATE TRANSFORM 774
CREATE TRIGGER 780
CREATE TYPE (Structured) 792
CREATE TYPE MAPPING 816
CREATE USER MAPPING 821
CREATE VIEW 823
CREATE WRAPPER 839
DECLARE CURSOR 841

DECLARE GLOBAL TEMPORARY TABLE 846
DELETE 855
DESCRIBE 860
DISCONNECT 865
DROP. 868
END DECLARE SECTION 894
EXECUTE 895
EXECUTE IMMEDIATE. 900
EXPLAIN 903
FETCH 908
FLUSH EVENT MONITOR 911
FREE LOCATOR 912
GRANT (Database Authorities) 913
GRANT (Index Privileges) 916
GRANT (Package Privileges) 918
GRANT (Schema Privileges) 921
GRANT (Server Privileges). 924
GRANT (Table, View, or Nickname
Privileges) 926
GRANT (Table Space Privileges) 934
INCLUDE 936
INSERT 938
LOCK TABLE 947
OPEN. 949
PREPARE 954
REFRESH TABLE 964
RELEASE (Connection) 965
RELEASE SAVEPOINT 967
RENAME TABLE 968
RENAME TABLESPACE 970
REVOKE (Database Authorities) 972
REVOKE (Index Privileges) 975
REVOKE (Package Privileges). 977
REVOKE (Schema Privileges) 980
REVOKE (Server Privileges) 982
REVOKE (Table, View, or Nickname
Privileges) 984
REVOKE (Table Space Privileges) 990
ROLLBACK. 992
SAVEPOINT 995
SELECT 997
SELECT INTO 998
SET CONNECTION 1000
SET CURRENT DEFAULT TRANSFORM
GROUP. 1002
SET CURRENT DEGREE 1004
SET CURRENT EXPLAIN MODE 1006
SET CURRENT EXPLAIN SNAPSHOT 1008
SET CURRENT PACKAGESET 1010
SET CURRENT QUERY OPTIMIZATION 1012

Contents vii

SET CURRENT REFRESH AGE 1015
SET EVENT MONITOR STATE 1017
SET INTEGRITY 1019
SET PASSTHRU 1029
SET PATH 1031
SET SCHEMA 1033
SET SERVER OPTION 1035
SET transition-variable 1037
SIGNAL SQLSTATE 1041
UPDATE 1043
VALUES 1053
VALUES INTO 1054
WHENEVER 1056

Chapter 7. SQL Procedures 1059
SQL Procedure Statement 1060
ALLOCATE CURSOR Statement 1062
Assignment Statement 1064
ASSOCIATE LOCATORS Statement . . . 1066
CASE Statement 1068
Compound Statement 1070
FOR Statement 1076
GET DIAGNOSTICS Statement 1078
GOTO Statement. 1080
IF Statement 1082
ITERATE Statement 1084
LEAVE Statement 1085
LOOP Statement 1086
REPEAT Statement 1088
RESIGNAL Statement 1090
RETURN Statement. 1093
SIGNAL Statement 1094
WHILE Statement 1097

Appendix A. SQL Limits 1099

Appendix B. SQL Communications
(SQLCA) 1107
Viewing the SQLCA Interactively 1107
SQLCA Field Descriptions 1107
Order of Error Reporting 1111
DB2 Enterprise - Extended Edition Usage of
the SQLCA. 1112

Appendix C. SQL Descriptor Area
(SQLDA) 1113
Field Descriptions 1113

Fields in the SQLDA Header 1115
Fields in an Occurrence of a Base
SQLVAR 1116

Fields in an Occurrence of a Secondary
SQLVAR 1118

Effect of DESCRIBE on the SQLDA . . . 1120
SQLTYPE and SQLLEN 1121

Unrecognized and Unsupported
SQLTYPES 1123
Packed Decimal Numbers. 1124
SQLLEN Field for Decimal 1125

Appendix D. Catalog Views 1127
Updatable Catalog Views 1128
‘Roadmap’ to Catalog Views 1128
‘Roadmap’ to Updatable Catalog Views 1130
SYSIBM.SYSDUMMY1 1131
SYSCAT.ATTRIBUTES 1132
SYSCAT.BUFFERPOOLNODES 1134
SYSCAT.BUFFERPOOLS 1135
SYSCAT.CASTFUNCTIONS 1136
SYSCAT.CHECKS 1137
SYSCAT.COLAUTH. 1138
SYSCAT.COLCHECKS 1139
SYSCAT.COLDIST 1140
SYSCAT.COLOPTIONS 1141
SYSCAT.COLUMNS 1142
SYSCAT.CONSTDEP 1147
SYSCAT.DATATYPES 1148
SYSCAT.DBAUTH 1150
SYSCAT.EVENTMONITORS 1152
SYSCAT.EVENTS 1154
SYSCAT.FULLHIERARCHIES 1155
SYSCAT.FUNCDEP 1156
SYSCAT.FUNCMAPOPTIONS 1157
SYSCAT.FUNCMAPPARMOPTIONS . . . 1158
SYSCAT.FUNCMAPPINGS 1159
SYSCAT.FUNCPARMS 1160
SYSCAT.FUNCTIONS 1162
SYSCAT.HIERARCHIES 1167
SYSCAT.INDEXAUTH 1168
SYSCAT.INDEXCOLUSE 1169
SYSCAT.INDEXDEP 1170
SYSCAT.INDEXES 1171
SYSCAT.INDEXOPTIONS 1174
SYSCAT.KEYCOLUSE 1175
SYSCAT.NAMEMAPPINGS 1176
SYSCAT.NODEGROUPDEF 1177
SYSCAT.NODEGROUPS 1178
SYSCAT.PACKAGEAUTH 1179
SYSCAT.PACKAGEDEP 1180
SYSCAT.PACKAGES 1181
SYSCAT.PARTITIONMAPS 1185

viii SQL Reference

SYSCAT.PASSTHRUAUTH 1186
SYSCAT.PROCEDURES 1187
SYSCAT.PROCOPTIONS 1190
SYSCAT.PROCPARMOPTIONS 1191
SYSCAT.PROCPARMS 1192
SYSCAT.REFERENCES. 1194
SYSCAT.REVTYPEMAPPINGS 1195
SYSCAT.SCHEMAAUTH 1197
SYSCAT.SCHEMATA 1198
SYSCAT.SERVEROPTIONS 1199
SYSCAT.SERVERS 1200
SYSCAT.STATEMENTS 1201
SYSCAT.TABAUTH 1202
SYSCAT.TABCONST 1204
SYSCAT.TABLES. 1205
SYSCAT.TABLESPACES 1209
SYSCAT.TABOPTIONS. 1210
SYSCAT.TBSPACEAUTH 1211
SYSCAT.TRIGDEP 1212
SYSCAT.TRIGGERS 1213
SYSCAT.TYPEMAPPINGS 1214
SYSCAT.USEROPTIONS 1216
SYSCAT.VIEWDEP 1217
SYSCAT.VIEWS 1218
SYSCAT.WRAPOPTIONS 1219
SYSCAT.WRAPPERS 1220
SYSSTAT.COLDIST 1221
SYSSTAT.COLUMNS 1222
SYSSTAT.FUNCTIONS. 1224
SYSSTAT.INDEXES 1226
SYSSTAT.TABLES 1229

Appendix E. Catalog Views For Use With
Structured Types 1231
‘Roadmap’ to Catalog Views 1232
OBJCAT.INDEXES 1234
OBJCAT.INDEXEXPLOITRULES 1237
OBJCAT.INDEXEXTENSIONDEP 1238
OBJCAT.INDEXEXTENSIONMETHODS 1239
OBJCAT.INDEXEXTENSIONPARMS . . . 1240
OBJCAT.INDEXEXTENSIONS 1241
OBJCAT.PREDICATESPECS 1242
OBJCAT.TRANSFORMS 1243

Appendix F. Federated Systems 1245
Server Types 1245
SQL Options for Federated Systems . . . 1246

Column Options 1247
Function Mapping Options 1248
Server Options 1249

User Options 1254
Default Data Type Mappings 1254

Default Type Mappings between DB2
and DB2 Universal Database for OS/390
(and DB2 for MVS/ESA) Data Sources . 1255
Default Type Mappings between DB2
and 2 Universal Database for AS/400
(and DB2 for OS/400) Data Sources . . 1255
Default Type Mappings between DB2
and Oracle Data Sources 1255
Default Type Mappings between DB2
and DB2 for VM and VSE (and SQL/DS)
Data Sources 1256

Pass-Through Facility Processing 1256
SQL Processing in Pass-Through
Sessions. 1256
Considerations and Restrictions. . . . 1257

Appendix G. Sample Database Tables 1259
The Sample Database 1260

To Create the Sample Database 1260
To Erase the Sample Database 1260
CL_SCHED Table 1260
DEPARTMENT Table 1261
EMPLOYEE Table 1261
EMP_ACT Table 1264
EMP_PHOTO Table. 1266
EMP_RESUME Table 1266
IN_TRAY Table 1267
ORG Table 1267
PROJECT Table 1268
SALES Table 1269
STAFF Table 1270
STAFFG Table 1271

Sample Files with BLOB and CLOB Data
Type 1272

Quintana Photo 1272
Quintana Resume 1272
Nicholls Photo 1273
Nicholls Resume 1274
Adamson Photo 1275
Adamson Resume 1275
Walker Photo 1276
Walker Resume 1277

Appendix H. Reserved Schema Names
and Reserved Words. 1279
Reserved Schemas 1279
Reserved Words 1279
IBM SQL Reserved Words 1281

Contents ix

ISO/ANS SQL92 Reserved Words 1283

Appendix I. Comparison of Isolation
Levels 1285

Appendix J. Interaction of Triggers and
Constraints 1287

Appendix K. Explain Tables and
Definitions 1291
EXPLAIN_ARGUMENT Table 1292
EXPLAIN_INSTANCE Table 1296
EXPLAIN_OBJECT Table 1298
EXPLAIN_OPERATOR Table 1300
EXPLAIN_PREDICATE Table 1302
EXPLAIN_STATEMENT Table 1305
EXPLAIN_STREAM Table 1307
ADVISE_INDEX Table 1309
ADVISE_WORKLOAD Table 1312
Table Definitions for Explain Tables . . . 1312

EXPLAIN_ARGUMENT Table Definition 1314
EXPLAIN_INSTANCE Table Definition 1315
EXPLAIN_OBJECT Table Definition . . 1316
EXPLAIN_OPERATOR Table Definition 1317
EXPLAIN_PREDICATE Table Definition 1318
EXPLAIN_STATEMENT Table Definition 1319
EXPLAIN_STREAM Table Definition 1320
ADVISE_INDEX Table Definition . . . 1321
ADVISE_WORKLOAD Table Definition 1323

Appendix L. Explain Register Values 1325

Appendix M. Recursion Example: Bill of
Materials 1329
Example 1: Single Level Explosion 1329
Example 2: Summarized Explosion . . . 1331
Example 3: Controlling Depth 1332

Appendix N. Exception Tables 1335
Rules for Creating an Exception Table . . 1335
Handling Rows in the Exception Tables 1337
Querying the Exception Tables 1338

Appendix O. Japanese and
Traditional-Chinese EUC Considerations. 1341

Language Elements 1341
Characters 1341
Tokens 1341
Identifiers 1341
Data Types. 1342
Assignments and Comparisons 1342
Rules for Result Data Types 1343
Rules for String Conversions. 1343
Constants 1344
Functions 1344
Expressions 1345
Predicates 1345

Functions 1346
LENGTH 1346
SUBSTR 1346
TRANSLATE 1346
VARGRAPHIC 1347

Statements 1347
CONNECT 1347
PREPARE 1347

Appendix P. BNF Specifications for
DATALINKs 1349

Appendix Q. Glossary 1353

Appendix R. Using the DB2 Library . . 1429
DB2 PDF Files and Printed Books 1429

DB2 Information 1429
Printing the PDF Books 1438
Ordering the Printed Books 1439

DB2 Online Documentation 1440
Accessing Online Help. 1440
Viewing Information Online 1442
Using DB2 Wizards 1444
Setting Up a Document Server 1445
Searching Information Online 1446

Appendix S. Notices 1447
Trademarks 1450

Index 1453

Contacting IBM. 1483
Product Information 1483

x SQL Reference

Chapter 1. Introduction

This introductory chapter:
v Identifies this book’s purpose and audience,
v Explains how to use the book and its structure,
v Explains the syntax diagram notation, the naming and highlighting

conventions used throughout the manual,
v Lists related documentation,
v Presents the product family overview.

Who Should Use This Book

This book is intended for anyone who wants to use the Structured Query
Language (SQL) to access a database. It is primarily for programmers and
database administrators, but it can also be used by general users using the
command line processor.

This book is a reference rather than a tutorial. It assumes that you will be
writing application programs and therefore presents the full functions of the
database manager.

How To Use This Book

This book defines the SQL language used by DB2 Universal Database Version
7. Use it as a reference manual for information on relational database
concepts, language elements, functions, the forms of queries, and the syntax
and semantics of the SQL statements. The appendixes can be used to find
limitations and information on important components.

How This Book is Structured
This reference manual is divided into two volumes. Volume 1 contains the
following sections:
v “Chapter 1. Introduction”, identifies the purpose, the audience, and the use

of the book.
v “Chapter 2. Concepts” on page 9, discusses the basic concepts of relational

databases and SQL.
v “Chapter 3. Language Elements” on page 63, describes the basic syntax of

SQL and the language elements that are common to many SQL statements.
v “Chapter 4. Functions” on page 209, contains syntax diagrams, semantic

descriptions, rules, and usage examples of SQL column and scalar
functions.

© Copyright IBM Corp. 1993, 2000 1

v “Chapter 5. Queries” on page 393, describes the various forms of a query.
v The appendixes included in Volume 1 contain the following information:

– “Appendix A. SQL Limits” on page 1099 contains the SQL limitations
– “Appendix B. SQL Communications (SQLCA)” on page 1107 contains the

SQLCA structure
– “Appendix C. SQL Descriptor Area (SQLDA)” on page 1113 contains the

SQLDA structure
– “Appendix D. Catalog Views” on page 1127 contains the catalog views

for the database
– “Appendix E. Catalog Views For Use With Structured Types” on

page 1231 contains the structured type catalog views for the database
– “Appendix F. Federated Systems” on page 1245 contains options and type

mappings for Federated Systems
– “Appendix G. Sample Database Tables” on page 1259 contains the sample

tables used for examples
– “Appendix H. Reserved Schema Names and Reserved Words” on

page 1279 contains the reserved schema names and the reserved words
for the IBM SQL and ISO/ANS SQL92 standards

– “Appendix I. Comparison of Isolation Levels” on page 1285 contains a
summary of the isolation levels.

– “Appendix J. Interaction of Triggers and Constraints” on page 1287
discusses the interaction of triggers and referential constraints.

– “Appendix K. Explain Tables and Definitions” on page 1291 contains the
Explain tables and how they are defined.

– “Appendix L. Explain Register Values” on page 1325 describes the
interaction of the CURRENT EXPLAIN MODE and CURRENT EXPLAIN
SNAPSHOT special register values with each other and the PREP and
BIND commands.

– “Appendix M. Recursion Example: Bill of Materials” on page 1329
contains an example of a recursive query.

– “Appendix N. Exception Tables” on page 1335 contains information on
user-created tables that are used with the SET INTEGRITY statement.

– “Appendix O. Japanese and Traditional-Chinese EUC Considerations” on
page 1341 lists considerations when using EUC character sets.

– “Appendix P. BNF Specifications for DATALINKs” on page 1349 contains
the BNF specifications for DATALINKs.

Volume 2 contains the following sections:
v “Chapter 6. SQL Statements” on page 453, contains syntax diagrams,

semantic descriptions, rules, and examples of all SQL statements.

2 SQL Reference

v “Chapter 7. SQL Procedures” on page 1059, contains syntax diagrams,
semantic descriptions, rules, and examples of SQL procedure statements.

How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined as
follows:

Read the syntax diagrams from left to right and top to bottom, following the
path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous
line.

The ──�� symbol indicates the end of a statement.

Required items appear on the horizontal line (the main path).

�� STATEMENT required item ��

Optional items appear below the main path.

�� STATEMENT
optional item

��

If an optional item appears above the main path, that item has no effect on
the execution of the statement and is used only for readability.

�� STATEMENT
optional item

��

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the
main path.

Chapter 1. Introduction 3

�� STATEMENT required choice1
required choice2

��

If choosing none of the items is an option, the entire stack appears below the
main path.

�� STATEMENT
optional choice1
optional choice2

��

If one of the items is the default, it will appear above the main path and the
remaining choices will be shown below.

�� STATEMENT
default choice

optional choice
optional choice

��

An arrow returning to the left, above the main line, indicates an item that can
be repeated. In this case, repeated items must be separated by one or more
blanks.

�� STATEMENT � repeatable item ��

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

�� STATEMENT �

,

repeatable item ��

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name).
They represent user-supplied names or values in the syntax.

4 SQL Reference

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sometimes a single variable represents a set of several parameters. For
example, in the following diagram, the variable parameter-block can be
replaced by any of the interpretations of the diagram that is headed
parameter-block:

�� STATEMENT parameter-block ��

parameter-block:

parameter1
parameter2 parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in
any sequence.

�� STATEMENT item1 * item2 * item3 * item4 ��

The above diagram shows that item2 and item3 may be specified in either
order. Both of the following are valid:
STATEMENT item1 item2 item3 item4
STATEMENT item1 item3 item2 item4

Conventions Used in This Manual

This section specifies some conventions which are used consistently
throughout this manual.

Error Conditions
An error condition is indicated within the text of the manual by listing the
SQLSTATE associated with the error in brackets. For example: A duplicate
signature raises an SQL error (SQLSTATE 42723).

Highlighting Conventions
The following conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are
predefined by the system.

Chapter 1. Introduction 5

Italics Indicates one of the following:
v Names or values (variables) that must be supplied by the user
v General emphasis
v The introduction of a new term
v A reference to another source of information.

Monospace Indicates one of the following:
v Files and directories
v Information that you are instructed to type at a command prompt

or in a window
v Examples of specific data values
v Examples of text similar to what may be displayed by the system
v Examples of system messages.

Related Documentation for This Book

The following publications may prove useful in preparing applications:
v Administration Guide

– Contains information required to design, implement, and maintain a
database to be accessed either locally or in a client/server environment.

v Application Development Guide

– Discusses the application development process and how to code,
compile, and execute application programs that use embedded SQL and
APIs to access the database.

v Spatial Extender User’s Guide and Reference

– Discusses how to write applications to create and use a geographic
information system (GIS). Creating and using a GIS involves supplying a
database with resources and then querying the data to obtain
information such as locations, distances, and distributions within areas.

v IBM SQL Reference

– This manual contains all the common elements of SQL that span across
IBM’s library of database products. It provides limits and rules that assist
in preparing portable programs using IBM databases. It provides a list of
SQL extensions and incompatibilities among the following standards and
products: SQL92E, XPG4-SQL, IBM-SQL and the IBM relational database
products.

v American National Standard X3.135-1992, Database Language SQL

– Contains the ANSI standard definition of SQL.
v ISO/IEC 9075:1992, Database Language SQL

– Contains the 1992 ISO standard definition of SQL.
v ISO/IEC 9075-2:1999, Database Language SQL -- Part 2: Foundation

(SQL/Foundation)

– Contains a large portion of the 1999 ISO standard definition of SQL.

6 SQL Reference

v ISO/IEC 9075-4:1999, Database Language SQL -- Part 4: Persistent Stored
Modules (SQL/PSM)

– Contains the 1999 ISO standard definition for SQL procedure control
statements.

v ISO/IEC 9075-5:1999, Database Language SQL -- Part 4: Host Language Bindings
(SQL/Bindings)

– Contains the 1999 ISO standard definition for host language bindings
and dynamic SQL.

Chapter 1. Introduction 7

8 SQL Reference

Chapter 2. Concepts

The chapter provides an overview of the concepts commonly used in the
Structured Query Language (SQL). The intent of the chapter is to provide a
high-level view of the concepts. The reference material that follows provides a
more detailed view.

Relational Database

A relational database is a database that can be perceived as a set of tables and
manipulated in accordance with the relational model of data. It contains a set
of objects used to store, manage, and access data. Examples of such objects are
tables, views, indexes, functions, triggers, and packages.

A partitioned relational database is a relational database where the data is
managed across multiple partitions (also called nodes). This partitioning of
data across partitions is transparent to users of most SQL statements.
However, some DDL statements take partition information into consideration
(e.g. CREATE NODEGROUP).

A federated database is a relational database where the data is stored in
multiple data sources (such as separate relational databases). The data appears
as if it were all in a single large database and can be accessed through
traditional SQL queries. Changes to the data can be explicitly directed to the
appropriate data source. See “DB2 Federated Systems” on page 41 for more
information.

Structured Query Language (SQL)

SQL is a standardized language for defining and manipulating data in a
relational database. In accordance with the relational model of data, the
database is perceived as a set of tables, relationships are represented by values
in tables, and data is retrieved by specifying a result table that can be derived
from one or more base tables.

SQL statements are executed by a database manager. One of the functions of
the database manager is to transform the specification of a result table into a
sequence of internal operations that optimize data retrieval. The
transformation occurs in two phases: preparation and binding.

All executable SQL statements must be prepared before they can be executed.
The result of preparation is the executable or operational form of the

© Copyright IBM Corp. 1993, 2000 9

statement. The method of preparing an SQL statement and the persistence of
its operational form distinguish static SQL from dynamic SQL.

Embedded SQL

Embedded SQL statements are SQL statements written within application
programming languages such as C and preprocessed by an SQL preprocessor
before the application program is compiled. There are two types of embedded
SQL: static and dynamic.

Static SQL
The source form of a static SQL statement is embedded within an application
program written in a host language such as COBOL. The statement is
prepared before the program is executed and the operational form of the
statement persists beyond the execution of the program.

A source program containing static SQL statements must be processed by an
SQL precompiler before it is compiled. The precompiler turns the SQL
statements into host language comments, and generates host language
statements to invoke the database manager. The syntax of the SQL statements
is checked during the precompile process.

The preparation of an SQL application program includes precompilation, the
binding of its static SQL statements to the target database, and compilation of
the modified source program. The steps are specified in the Application
Development Guide.

Dynamic SQL
Programs containing embedded dynamic SQL statements must be
precompiled like those containing static SQL, but unlike static SQL, the
dynamic SQL statements are constructed and prepared at run time. The SQL
statement text is prepared and executed using either the PREPARE and
EXECUTE statements, or the EXECUTE IMMEDIATE statement. The
statement can also be executed with the cursor operations if it is a SELECT
statement.

DB2 Call Level Interface (CLI) & Open Database Connectivity (ODBC)

The DB2 Call Level Interface is an application programming interface in
which functions are provided to application programs to process dynamic
SQL statements. CLI programs can also be compiled using an Open Database
Connectivity (ODBC) Software Developer’s Kit, available from Microsoft or
other vendors, enabling access to ODBC data sources. Unlike using embedded
SQL, no precompilation is required. Applications developed using this
interface may be executed on a variety of databases without being compiled
against each of the databases. Through the interface, applications use

10 SQL Reference

procedure calls at execution time to connect to databases, to issue SQL
statements, and to get returned data and status information.

The DB2 CLI interface provides many features not available in embedded
SQL. A few of these are:
v CLI provides function calls which support a consistent way to query and

retrieve database system catalog information across the DB2 family of
database management systems. This reduces the need to write database
server specific catalog queries.

v CLI provides the ability to scroll through a cursor:
– Forward by one or more rows
– Backward by one or more rows
– Forward from the first row by one or more rows
– Backward from the last row by one or more rows
– From a previously stored location in the cursor

v Stored procedures called from application programs written using CLI can
return result sets to those programs.

The CLI Guide and Reference describes the APIs supported with this interface.

Java Database Connectivity (JDBC) and Embedded SQL for Java (SQLJ)
Programs

DB2 Universal Database implements two standards-based Java programming
APIs: Java Database Connectivity (JDBC) and embedded SQL for Java (SQLJ).
Both can be used to create Java applications and applets that access DB2.

JDBC calls are translated to calls to DB2 CLI through Java native methods.
JDBC requests flow from the DB2 client through DB2 CLI to the DB2 server.
Static SQL cannot be used by JDBC.

SQLJ applications use JDBC as a foundation for such tasks as connecting to
databases and handling SQL errors, but can also contain embedded static SQL
statements in the SQLJ source files. An SQLJ source file has to be translated
with the SQLJ translator before the resulting Java source code can be
compiled.

For more information on JDBC and SQLJ applications, refer to the Application
Development Guide.

Chapter 2. Concepts 11

Interactive SQL

Interactive SQL statements are entered by a user through an interface like the
command line processor or the command center. These statements are
processed as dynamic SQL statements. For example, an interactive SELECT
statement can be processed dynamically using the DECLARE CURSOR,
PREPARE, DESCRIBE, OPEN, FETCH, and CLOSE statements.

The Command Reference lists the commands that can be issued using the
command line processor or similar facilities and products.

Schemas

A schema is a collection of named objects. Schemas provide a logical
classification of objects in the database. Some of the objects that a schema may
contain include tables, views, nicknames, triggers, functions and packages.

A schema is also an object in the database. It is explicitly created using the
CREATE SCHEMA statement with a user recorded as owner. It can also be
implicitly created when another object is created, provided the user has
IMPLICIT_SCHEMA authority.

A schema name is used as the high-order part of a two-part object name. An
object that is contained in a schema is assigned to the schema when the object
is created. The schema to which it is assigned is determined by the name of
the object if specifically qualified with a schema name or by the default
schema name if not qualified.

For example, a user with DBADM authority creates a schema called C for
user A.

CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in
schema C:

CREATE TABLE C.X (COL1 INT)

Controlling Use of Schemas
When a database is created, all users have IMPLICIT_SCHEMA authority. This
allows any user to create objects in any schema that does not already exist. An
implicitly created schema allows any user to create other objects in this
schema.1

1. The default privileges on an implicitly created schema provide upward compatibility with previous versions. Alias,
distinct type, function and trigger creation is extended to implicitly created schemas.

12 SQL Reference

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas are either
explicitly created using the CREATE SCHEMA statement or implicitly created
by users (such as those with DBADM authority) who are granted
IMPLICIT_SCHEMA authority. While revoking IMPLICIT_SCHEMA authority
from PUBLIC increases control over the use of schema names, it may result in
authorization errors in existing applications when they attempt to create
objects.

There are also privileges associated with a schema that control which users
have the privilege to create, alter and drop objects in the schema. A schema
owner is initially given all of these privileges on a schema with the ability to
grant them to others. An implicitly created schema is owned by the system
and all users are initially given the privilege to create objects in such a
schema. A user with DBADM or SYSADM authority can change the privileges
held by users on any schema. Therefore, access to create, alter and drop
objects in any schema (even one that is implicitly created) can be controlled.

Tables

Tables are logical structures maintained by the database manager. Tables are
made up of columns and rows. The rows are not necessarily ordered within a
table (order is determined by the application program). At the intersection of
every column and row is a specific data item called a value. A column is a set
of values of the same type or one of its subtypes. A row is a sequence of
values such that the nth value is a value of the nth column of the table.

A base table is created with the CREATE TABLE statement and is used to hold
persistent user data. A result table is a set of rows that the database manager
selects or generates from one or more base tables to satisfy a query.

A summary table is a table that is defined by a query that is also used to
determine the data in the table. Summary tables can be used to improve the
performance of queries. If the database manager determines that a portion of
a query could be resolved using a summary table, the query may be rewritten
by the database manager to use the summary table. This decision is based on
certain settings such as the CURRENT REFRESH AGE and CURRENT
QUERY OPTIMIZATION special registers.

A table can have the data type of each column defined separately, or have the
types for the columns based on the attributes of a user-defined structured
type. This is called a typed table. A user-defined structured type may be part of
a type hierarchy. A subtype is said to inherit attributes from its supertype.
Similarly, a typed table can be part of a table hierarchy. A subtable is said to
inherit columns from its supertable. Note that the term subtype applies to a
user-defined structured type and all user-defined structured types that are
below it in the type hierarchy. A proper subtype of a structured type T is a

Chapter 2. Concepts 13

structured type below T in the type hierarchy. Similarly the term subtable
applies to a typed table and all typed tables that are below it in the table
hierarchy. A proper subtable of a table T is a table below T in the table
hierarchy.

A declared temporary table is created with a DECLARE GLOBAL TEMPORARY
TABLE statement and is used to hold temporary data on behalf of a single
application. This table is dropped implicitly when the application disconnects
from the database.

Views

A view provides an alternative way of looking at the data in one or more
tables.

A view is a named specification of a result table. The specification is a
SELECT statement that is executed whenever the view is referenced in an SQL
statement. Thus, a view can be thought of as having columns and rows just
like a base table. For retrieval, all views can be used just like base tables.
Whether a view can be used in an insert, update, or delete operation depends
on its definition as explained in the description of CREATE VIEW. (See
“CREATE VIEW” on page 823 for more information.)

When the column of a view is directly derived from a column of a base table,
that column inherits any constraints that apply to the column of the base
table. For example, if a view includes a foreign key of its base table, INSERT
and UPDATE operations using that view are subject to the same referential
constraint as the base table. Also, if the base table of a view is a parent table,
DELETE and UPDATE operations using that view are subject to the same
rules as DELETE and UPDATE operations on the base table.

A view can have the data type of each column derived from the result table,
or have the types for the columns based on the attributes of a user-defined
structured type. This is called a typed view. Similar to a typed table, a typed
view can be part of a view hierarchy. A subview is said to inherit columns
from its superview. The term subview applies to a typed view and all typed
views that are below it in the view hierarchy. A proper subview of a view V is a
view below V in the typed view hierarchy.

A view may become inoperative, in which case it is no longer available for
SQL statements.

14 SQL Reference

Aliases

An alias is an alternate name for a table or view. It can be used to reference a
table or view in those cases where an existing table or view can be
referenced.2 Like tables and views, an alias may be created, dropped, and
have comments associated with it. Aliases can also be created for nicknames.
Unlike tables, aliases may refer to each other in a process called chaining.
Aliases are publicly referenced names so no special authority or privilege is
required to use an alias. Access to the tables and views referred to by the
alias, however, still require the appropriate authorization for the current
context.

In addition to table aliases, there are other types of aliases such as database
and network aliases.

Refer to “Aliases” on page 71 and “CREATE ALIAS” on page 566 for more
information about aliases.

Indexes

An index is an ordered set of pointers to rows of a base table. Each index is
based on the values of data in one or more table columns. An index is an
object that is separate from the data in the table. When an index is created,
the database manager builds this structure and maintains it automatically.

Indexes are used by the database manager to:
v Improve performance. In most cases, access to data is faster than without

an index.
An index cannot be created for a view. However, an index created for a
table on which a view is based may improve the performance of operations
on the view.

v Ensure uniqueness. A table with a unique index cannot have rows with
identical keys.

Keys

A key is a set of columns that can be used to identify or access a particular
row or rows. The key is identified in the description of a table, index, or
referential constraint. The same column can be part of more than one key.

A key composed of more than one column is called a composite key. In a table
with a composite key, the ordering of the columns within the composite key is

2. An alias cannot be used in all contexts. For example, it cannot be used in the check condition of a check constraint.
Also, an alias cannot reference a declared temporary table.

Chapter 2. Concepts 15

not constrained by their ordering within the table. The term value when used
with respect to a composite key denotes a composite value. Thus, a rule such
as “the value of the foreign key must be equal to the value of the primary
key” means that each component of the value of the foreign key must be
equal to the corresponding component of the value of the primary key.

Unique Keys
A unique key is a key that is constrained so that no two of its values are equal.
The columns of a unique key cannot contain null values. The constraint is
enforced by the database manager during the execution of any operation that
changes data values, such as INSERT or UPDATE. The mechanism used to
enforce the constraint is called a unique index. Thus, every unique key is a key
of a unique index. Such an index is also said to have the UNIQUE attribute.
See “Unique Constraints” on page 17 for a more detailed description.

Primary Keys
A primary key is a special case of a unique key. A table cannot have more than
one primary key. See “Unique Keys” for a more detailed description.

Foreign Keys
A foreign key is a key that is specified in the definition of a referential
constraint. See “Referential Constraints” on page 17 for a more detailed
description.

Partitioning Keys
A partitioning key is a key that is part of the definition of a table in a
partitioned database. The partitioning key is used to determine the partition
on which the row of data is stored. If a partitioning key is defined, unique
keys and primary keys must include the same columns as the partitioning key
(they may have more columns). A table cannot have more than one
partitioning key.

Constraints

A constraint is a rule that the database manager enforces.

There are three types of constraints:
v A unique constraint is a rule that forbids duplicate values in one or more

columns within a table. Unique and primary keys are the supported unique
constraints. For example, a unique constraint could be defined on the
supplier identifier in the supplier table to ensure that the same supplier
identifier is not given to two suppliers.

v A referential constraint is a logical rule about values in one or more columns
in one or more tables. For example, a set of tables shares information about
a corporation’s suppliers. Occasionally, a supplier’s name changes. A
referential constraint could be defined stating that the ID of the supplier in

16 SQL Reference

a table must match a supplier id in the supplier information. This constraint
prevents inserts, updates or deletes that would otherwise result in missing
supplier information.

v A table check constraint sets restrictions on data added to a specific table. For
example, it could define the salary level for an employee to never be less
than $20,000.00 when salary data is added or updated in a table containing
personnel information.

Referential and table check constraints may be turned on or off. Loading large
amounts of data into the database is typically a time to turn off checking the
enforcement of a constraint. The details of setting constraints on or off are
discussed in “SET INTEGRITY” on page 1019.

Unique Constraints
A unique constraint is the rule that the values of a key are valid only if they
are unique within the table. Unique constraints are optional and can be
defined in the CREATE TABLE or ALTER TABLE statement using the
PRIMARY KEY clause or the UNIQUE clause. The columns specified in a
unique constraint must be defined as NOT NULL. A unique index is used by
the database manager to enforce the uniqueness of the key during changes to
the columns of the unique constraint.

A table can have an arbitrary number of unique constraints, with at most one
unique constraint defined as a primary key. A table cannot have more than
one unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential
constraint is called the parent key.

When a unique constraint is defined in a CREATE TABLE statement, a unique
index is automatically created by the database manager and designated as a
primary or unique system-required index.

When a unique constraint is defined in an ALTER TABLE statement and an
index exists on the same columns, that index is designated as unique and
system-required. If such an index does not exist, the unique index is
automatically created by the database manager and designated as a primary
or unique system-required index.

Note that there is a distinction between defining a unique constraint and
creating a unique index. Although both enforce uniqueness, a unique index
allows nullable columns and generally cannot be used as a parent key.

Referential Constraints
Referential integrity is the state of a database in which all values of all foreign
keys are valid. A foreign key is a column or set of columns in a table whose

Chapter 2. Concepts 17

values are required to match at least one primary key or unique key value of
a row of its parent table. A referential constraint is the rule that the values of
the foreign key are valid only if:
v they appear as values of a parent key, or
v some component of the foreign key is null.

The table containing the parent key is called the parent table of the referential
constraint, and the table containing the foreign key is said to be a dependent of
that table.

Referential constraints are optional and can be defined in CREATE TABLE
statements and ALTER TABLE statements. Referential constraints are enforced
by the database manager during the execution of INSERT, UPDATE, DELETE,
ALTER TABLE ADD CONSTRAINT, and SET INTEGRITY statements. The
enforcement is effectively performed at the completion of the statement.

Referential constraints with a delete or update rule of RESTRICT are enforced
before all other referential constraints. Referential constraints with a delete or
update rule of NO ACTION behave like RESTRICT in most cases. However,
in certain SQL statements there can be a difference.

Note that referential integrity, check constraints and triggers can be combined
in execution. For further information on the combination of these elements,
see “Appendix J. Interaction of Triggers and Constraints” on page 1287.

The rules of referential integrity involve the following concepts and
terminology:

Parent key A primary key or unique key of a referential
constraint.

Parent row A row that has at least one dependent row.

Parent table A table that contains the parent key of a
referential constraint. A table can be a parent
in an arbitrary number of referential
constraints. A table which is the parent in a
referential constraint may also the dependent
of a referential constraint.

Dependent table A table that contains at least one referential
constraint in its definition. A table can be a
dependent in an arbitrary number of
referential constraints. A table which is the
dependent in a referential constraint may also
the parent of a referential constraint.

18 SQL Reference

Descendent table A table is a descendent of table T if it is a
dependent of T or a descendent of a
dependent of T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row p if it is a
dependent of p or a descendent of a
dependent of p.

Referential cycle A set of referential constraints such that each
table in the set is a descendent of itself.

Self-referencing row A row that is a parent of itself.

Self-referencing table A table that is a parent and a dependent in
the same referential constraint. The constraint
is called a self-referencing constraint.

Insert Rule
The insert rule of a referential constraint is that a non-null insert value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null.
This rule is implicit when a foreign key is specified.

Update Rule
The update rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION and RESTRICT. The
update rule applies when a row of the parent or a row of the dependent table
is updated.

In the case of a parent row, when a value in a column of the parent key is
updated:
v if any row in the dependent table matched the original value of the key, the

update is rejected when the update rule is RESTRICT
v if any row in the dependent table does not have a corresponding parent

key when the update statement is completed (excluding AFTER triggers),
the update is rejected when the update rule is NO ACTION.

In the case of a dependent row, the update rule that is implicit when a foreign
key is specified is NO ACTION. NO ACTION means that a non-null update
value of a foreign key must match some value of the parent key of the parent
table when the update statement is completed.

The value of a composite foreign key is null if any component of the value is
null.

Chapter 2. Concepts 19

Delete Rule
The delete rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, or
SET NULL. SET NULL can be specified only if some column of the foreign
key allows null values.

The delete rule of a referential constraint applies when a row of the parent
table is deleted. More precisely, the rule applies when a row of the parent
table is the object of a delete or propagated delete operation (defined below)
and that row has dependents in the dependent table of the referential
constraint. Let P denote the parent table, let D denote the dependent table,
and let p denote a parent row that is the object of a delete or propagated
delete operation. If the delete rule is:
v RESTRICT or NO ACTION, an error occurs and no rows are deleted
v CASCADE, the delete operation is propagated to the dependents of p in D
v SET NULL, each nullable column of the foreign key of each dependent of p

in D is set to null

Each referential constraint in which a table is a parent has its own delete rule,
and all applicable delete rules are used to determine the result of a delete
operation. Thus, a row cannot be deleted if it has dependents in a referential
constraint with a delete rule of RESTRICT or NO ACTION or the deletion
cascades to any of its descendents that are dependents in a referential
constraint with the delete rule of RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and may affect
rows of these tables:
v If table D is a dependent of P and the delete rule is RESTRICT or NO

ACTION, D is involved in the operation but is not affected by the
operation.

v If D is a dependent of P and the delete rule is SET NULL, D is involved in
the operation, and rows of D may be updated during the operation.

v If D is a dependent of P and the delete rule is CASCADE, D is involved in
the operation and rows of D may be deleted during the operation.
If rows of D are deleted, the delete operation on P is said to be propagated
to D. If D is also a parent table, the actions described in this list apply, in
turn, to the dependents of D.

Any table that may be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a
dependent of P, or a dependent of a table to which delete operations from P
cascade.

20 SQL Reference

Table Check Constraints

A table check constraint is a rule that specifies the values allowed in one or
more columns of every row of a table. They are optional and can be defined
using the SQL statements CREATE TABLE and ALTER TABLE. The
specification of table check constraints is a restricted form of a search
condition. One of the restrictions is that a column name in a table check
constraint on table T must identify a column of T.

A table can have an arbitrary number of table check constraints. They are
enforced when:
v a row is inserted into the table
v a row of the table is updated.

A table check constraint is enforced by applying its search condition to each
row that is inserted or updated. An error occurs if the result of the search
condition is false for any row.

When one or more table check constraints are defined in the ALTER TABLE
statement for a table with existing data, the existing data is checked against
the new condition before the ALTER TABLE statement succeeds. The table can
be placed in check pending state which will allow the ALTER TABLE statement
to succeed without checking the data. The SET INTEGRITY statement is used
to place the table into check pending state. It is also used to resume the
checking of each row against the constraint.

Triggers

A trigger defines a set of actions that are executed at, or triggered by, a delete,
insert, or update operation on a specified table. When such an SQL operation
is executed, the trigger is said to be activated.

Triggers can be used along with referential constraints and check constraints
to enforce data integrity rules. Triggers can also be used to cause updates to
other tables, automatically generate or transform values for inserted or
updated rows, or invoke functions to perform tasks such as issuing alerts.

Triggers are a useful mechanism to define and enforce transitional business
rules which are rules that involve different states of the data (for example,
salary cannot be increased by more than 10 percent). For rules that do not
involve more than one state of the data, check and referential integrity
constraints should be considered.

Using triggers places the logic to enforce the business rules in the database
and relieves the applications using the tables from having to enforce it.

Chapter 2. Concepts 21

Centralized logic enforced on all the tables means easier maintenance, since
no application program changes are required when the logic changes.

Triggers are optional and are defined using the CREATE TRIGGER statement.

There are a number of criteria that are defined when creating a trigger which
are used to determine when a trigger should be activated.
v The subject table defines the table for which the trigger is defined.
v The trigger event defines a specific SQL operation that modifies the subject

table. The operation could be delete, insert or update.
v The trigger activation time defines whether the trigger should be activated

before or after the trigger event is performed on the subject table.

The statement that causes a trigger to be activated will include a set of affected
rows. These are the rows of the subject table that are being deleted, inserted or
updated. The trigger granularity defines whether the actions of the trigger will
be performed once for the statement or once for each of the rows in the set of
affected rows.

The triggered action consists of an optional search condition and a set of SQL
statements that are executed whenever the trigger is activated. The SQL
statements are only executed if the search condition evaluates to true. When
the trigger activation time is before the trigger event, triggered actions can
include statements that select, set transition variables, and signal SQLSTATEs.
When the trigger activation time is after the trigger event, triggered actions
can include statements that select, update, insert, delete, and signal
SQLSTATEs.

The triggered action may refer to the values in the set of affected rows. This is
supported through the use of transition variables. Transition variables use the
names of the columns in the subject table qualified by a specified name that
identifies whether the reference is to the old value (prior to the update) or the
new value (after the update). The new value can also be changed using the
SET transition-variable statement in before update or insert triggers. Another
means of referring to the values in the set of affected rows is using transition
tables. Transition tables also use the names of the columns of the subject table
but have a name specified that allows the complete set of affected rows to be
treated as a table. Transition tables can only be used in after triggers; and
separate transition tables can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or
activation time. The order in which the triggers are activated is the same as
the order in which they were created. Thus, the most recently created trigger
will be the last trigger activated.

22 SQL Reference

The activation of a trigger may cause trigger cascading. This is the result of the
activation of one trigger that executes SQL statements that cause the activation
of other triggers or even the same trigger again. The triggered actions may
also cause updates as a result of the original modification, or as a result of
referential integrity delete rules which may result in the activation of
additional triggers. With trigger cascading, a significant chain of triggers and
referential integrity delete rules may be activated causing significant change to
the database as a result of a single delete, insert or update statement.

Event Monitors

An event monitor tracks specific data as the result of an event. For example,
starting the database might be an event that causes an event monitor to track
the number of users on the system by taking an hourly snapshot of
authorization IDs using the database.

Event monitors are activated or deactivated by a statement (SET EVENT
MONITOR STATE). A function (EVENT_MON_STATE) can be used to find
the current state of an event monitor; that is, if it is active or not active.

Queries

A query is a component of certain SQL statements that specifies a (temporary)
result table.

Table Expressions

A table expression creates a (temporary) result table from a simple query.
Clauses further refine the result table. For example, a table expression could
be a query that selects all the managers from several departments and further
specifies that they have over 15 years of working experience and are located
at the New York branch office.

Common Table Expressions
A common table expression is like a temporary view within a complex query,
and can be referenced in other places within the query; for example, in place
of a view, to avoid creating the view. Each use of a specific common table
expression within a complex query shares the same temporary view.

Recursive use of a common table expression within a query can be used to
support applications such as bill of materials (BOM), airline reservation
systems, and network planning. A set of examples from a BOM application is
contained in “Appendix M. Recursion Example: Bill of Materials” on
page 1329.

Chapter 2. Concepts 23

Packages

A package is an object that contains all the sections from a single source file. A
section is the compiled form of an SQL statement. While every section
corresponds to one statement, every statement does not necessarily have a
section. The sections created for static SQL can be thought of as the bound or
operational form of SQL statements. The sections created for dynamic SQL can
be thought of as placeholder control structures which are used at execution
time. Packages are produced during program preparation. See the Application
Development Guide for more information on packages.

Catalog Views

The database manager maintains a set of views and base tables that contain
information about the data under its control. These views and base tables are
collectively known as the catalog. They contain information about objects in
the database such as tables, views, indexes, packages and functions.

The catalog views are like any other database views. SQL statements can be
used to look at the data in the catalog views in the same way that data is
retrieved from any other view in the system. The database manager ensures
that the catalog contains accurate descriptions of the objects in the database at
all times. A set of updatable catalog views can be used to modify certain
values in the catalog (see “Updatable Catalog Views” on page 1128).

Statistical information is also contained in the catalog. The statistical
information is updated by utilities executed by an administrator, or through
update statements by appropriately authorized users.

The catalog views are listed in “Appendix D. Catalog Views” on page 1127.

Application Processes, Concurrency, and Recovery

All SQL programs execute as part of an application process or agent. An
application process involves the execution of one or more programs, and is
the unit to which the database manager allocates resources and locks.
Different application processes may involve the execution of different
programs, or different executions of the same program.

More than one application process may request access to the same data at the
same time. Locking is the mechanism used to maintain data integrity under
such conditions, preventing, for example, two application processes from
updating the same row of data simultaneously.

The database manager acquires locks in order to prevent uncommitted
changes made by one application process from being accidentally perceived

24 SQL Reference

by any other. The database manager releases all locks it has acquired and
retained on behalf of an application process when that process ends. However,
an application process can explicitly request that locks be released sooner. This
is done using a commit operation which releases locks acquired during the
unit of work and also commits database changes made during the unit of
work.

The database manager provides a means of backing out uncommitted changes
made by an application process. This might be necessary in the event of a
failure on the part of an application process, or in a deadlock or lock time-out
situation. An application process itself, however, can explicitly request that its
database changes be backed out. This operation is called rollback.

A unit of work is a recoverable sequence of operations within an application
process. A unit of work is initiated when an application process is started3. A
unit of work is also initiated when the previous unit of work is ended by
something other than the termination of the application process. A unit of
work is ended by a commit operation, a rollback operation, or the end of an
application process. A commit or rollback operation affects only the database
changes made within the unit of work it ends.

While these changes remain uncommitted, other application processes are
unable to perceive them and they can be backed out.4 Once committed, these
database changes are accessible by other application processes and can no
longer be backed out by a rollback.

Locks acquired by the database manager on behalf of an application process
are held until the end of a unit of work. The exceptions to this rule are cursor
stability isolation level, where the lock is released as the cursor moves from
row to row, and uncommitted read level, where locks are not obtained (see
“Isolation Level” on page 27).

The initiation and termination of a unit of work define points of consistency
within an application process. For example, a banking transaction might
involve the transfer of funds from one account to another.

3. DB2 CLI and embedded SQL support a connection mode called concurrent transactions which supports multiple
connections, each of which is an independent transaction. An application can have multiple concurrent connections
to the same database. Refer to the Application Development Guide for details on multiple thread database access.

4. Except for isolation level uncommitted read, described in “Uncommitted Read (UR)” on page 29.

Chapter 2. Concepts 25

Such a transaction would require that these funds be subtracted from the first
account, and added to the second.
Following the subtraction step, the data is inconsistent. Only after the funds

have been added to the second account is consistency reestablished. When
both steps are complete, the commit operation can be used to end the unit of
work, thereby making the changes available to other application processes.

If a failure occurs before the unit of work ends, the database manager will roll
back uncommitted changes to restore the data consistency that it assumes
existed when the unit of work was initiated.

Point of
consistency

New point of
consistency

Begin unit
of work

Commit
End unit of work

one unit of work

database updatesTIME LINE

Figure 1. Unit of Work with a Commit Statement

Point of
consistency

New point of
consistency

Begin unit
of work

Failure;
Begin rollback

Data is returned to
its initial state;

End unit of work

one unit of work

database
updates

back out
updatesTIME LINE

Figure 2. Unit of Work with a Rollback Statement

26 SQL Reference

Note: An application process is never prevented from performing operations
because of its own locks.5

Isolation Level

The isolation level associated with an application process defines the degree of
isolation of that application process from other concurrently executing
application processes. The isolation level of an application process, P, therefore
specifies:
v The degree to which rows read and updated by P are available to other

concurrently executing application processes
v The degree to which update activity of other concurrently executing

application processes can affect P.

The isolation level is specified as an attribute of a package and applies to the
application processes that use the package. The isolation level is specified in
the program preparation process. Depending on the type of lock, this limits or
prevents access to the data by concurrent application processes. For details on
different types and attributes of specific locks refer to the Administration Guide.
Declared temporary tables and the rows of declared temporary tables are not
locked at all because they are only accessible by the application that declared
the temporary tables. Thus, the following discussion on locking and isolation
levels does not apply to declared temporary tables.

The database manager supports three general categories of locks:

Share Limits concurrent application processes to
read-only operations on the data.

Update Limits concurrent application processes to
read-only operations on the data providing
these processes have not declared they might
update the row. The database manager
assumes the process looking at the row
presently may update the row.

Exclusive Prevents concurrent application processes
from accessing the data in any way except for
application processes with an isolation level of
uncommitted read, which can read but not
modify the data. (See “Uncommitted Read
(UR)” on page 29.)

5. If an application is using concurrent transactions, then the locks from one transaction may affect the operation of a
concurrent transaction. See the Application Development Guide for details.

Chapter 2. Concepts 27

Locking occurs at the base table row. The database manager, however, can
replace multiple row locks with a single table lock. This is called lock
escalation. An application process is guaranteed at least the minimum
requested lock level.

The DB2 Universal Database database manager supports four isolation levels.
Regardless of the isolation level, the database manager places exclusive locks
on every row that is inserted, updated, or deleted. Thus, all isolation levels
ensure that any row that is changed by this application process during a unit
of work is not changed by any other application processes until the unit of
work is complete. The isolation levels are:

Repeatable Read (RR)
Level RR ensures that:
v Any row read during a unit of work6 is not changed by other application

processes until the unit of work is complete.7

v Any row changed by another application process cannot be read until it is
committed by that application process.

RR does not allow phantom rows (see Read Stability) to be seen.

In addition to any exclusive locks, an application process running at level RR
acquires at least share locks on all the rows it references. Furthermore, the
locking is performed so that the application process is completely isolated
from the effects of concurrent application processes.

Read Stability (RS)
Like level RR, level RS ensures that:
v Any row read during a unit of work6 is not changed by other application

processes until the unit of work is complete8

v Any row changed by another application process cannot be read until it is
committed by that application process.

Unlike RR, RS does not completely isolate the application process from the
effects of concurrent application processes. At level RS, application processes
that issue the same query more than once might see additional rows. These
additional rows are called phantom rows.

6. The rows must be read in the same unit of work as the corresponding OPEN statement. See WITH HOLD in
“DECLARE CURSOR” on page 841.

7. Use of the optional WITH RELEASE clause on the CLOSE statement means that any guarantees against
non-repeatable read and phantoms no longer apply to any previously accessed rows if the cursor is reopened.

8. Use of the optional WITH RELEASE clause on the CLOSE statement means that any guarantees against
non-repeatable read no longer apply to any previously accessed rows if the cursor is reopened.

28 SQL Reference

For example, a phantom row can occur in the following situation:
1. Application process P1 reads the set of rows n that satisfy some search

condition.
2. Application process P2 then INSERTs one or more rows that satisfy the

search condition and COMMITs those INSERTs.
3. P1 reads the set of rows again with the same search condition and obtains

both the original rows and the rows inserted by P2.

In addition to any exclusive locks, an application process running at level RS
acquires at least share locks on all the qualifying rows.

Cursor Stability (CS)
Like the RR level:
v CS ensures that any row that was changed by another application process

cannot be read until it is committed by that application process.

Unlike the RR level:
v CS only ensures that the current row of every updatable cursor is not

changed by other application processes. Thus, the rows that were read
during a unit of work can be changed by other application processes.

In addition to any exclusive locks, an application process running at level CS
has at least a share lock for the current row of every cursor.

Uncommitted Read (UR)
For a SELECT INTO, FETCH with a read-only cursor, fullselect used in an
INSERT, row fullselect in an UPDATE, or scalar fullselect (wherever used),
level UR allows:
v Any row that is read during the unit of work to be changed by other

application processes.
v Any row that was changed by another application process to be read even

if the change has not been committed by that application process.

For other operations, the rules of level CS apply.

Comparison of Isolation Levels
A comparison of the four isolation levels can be found on “Appendix I.
Comparison of Isolation Levels” on page 1285.

Distributed Relational Database

A distributed relational database consists of a set of tables and other objects that
are spread across different but interconnected computer systems. Each
computer system has a relational database manager to manage the tables in its
environment. The database managers communicate and cooperate with each

Chapter 2. Concepts 29

other in a way that allows a given database manager to execute SQL
statements on another computer system.

Distributed relational databases are built on formal requester-server protocols
and functions. An application requester supports the application end of a
connection. It transforms a database request from the application into
communication protocols suitable for use in the distributed database network.
These requests are received and processed by an application server at the other
end of the connection. Working together, the application requester and
application server handle the communication and location considerations so
that the application is isolated from these considerations and can operate as if
it were accessing a local database. A simple distributed relational database
environment is illustrated in Figure 3.

For more information on Distributed Relational Database Architecture (DRDA)
communication protocols, see Distributed Relational Database Architecture
Reference SC26-4651.

Application Servers
An application process must be connected to the application server of a
database manager before SQL statements that reference tables or views can be
executed. A CONNECT statement establishes a connection between an
application process and its server.9 The server can change when a CONNECT
statement is executed.

The application server can be local to or remote from the environment where
the process is initiated. (An application server is present, even when not using
distributed relational databases.) This environment includes a local directory
that describes the application servers that can be identified in a CONNECT
statement. For a description of local directories, see the Administration Guide

9. DB2 CLI and embedded SQL support a connection mode called concurrent transactions which supports multiple
connections, each of which is an independent transaction. An application can have multiple concurrent connections
to the same database. Refer to the Application Development Guide for details on multiple thread database access.

ROCHESTER TORONTO

Program SQL
Package

Application Requester Application Server

Figure 3. A Distributed Relational Database Environment

30 SQL Reference

To execute a static SQL statement that references tables or views, the
application server uses the bound form of the statement. This bound
statement is taken from a package that the database manager previously
created through a bind operation.

For the most part, an application can use the statements and clauses that are
supported by the database manager of the application server to which it is
currently connected, even though that application might be running via the
application requester of a database manager that does not support some of
those statements and clauses.

For information about using an application server to submit queries in a
system of distributed data sources, see “Server Definitions and Server
Options” on page 44.

CONNECT (Type 1) and CONNECT (Type 2)
There are two types of CONNECT statements:
v CONNECT (Type 1) supports the single database per unit of work (Remote

Unit of Work) semantics. See “CONNECT (Type 1)” on page 550.
v CONNECT (Type 2) supports the multiple databases per unit of work

(Application-Directed Distributed Unit of Work) semantics. See “CONNECT
(Type 2)” on page 558.

Remote Unit of Work
The remote unit of work facility provides for the remote preparation and
execution of SQL statements. An application process at computer system A
can connect to an application server at computer system B and, within one or
more units of work, execute any number of static or dynamic SQL statements
that reference objects at B. After ending a unit of work at B, the application
process can connect to an application server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed with the
following restrictions:
v All objects referenced in a single SQL statement must be managed by the

same application server
v All of the SQL statements in a unit of work must be executed by the same

application server

Remote Unit of Work Connection Management
This section outlines the connection states that an application process may
enter.

Connection States:
An application process is in one of four states at any time:

Connectable and connected
Unconnectable and connected

Chapter 2. Concepts 31

Connectable and unconnected
Implicitly connectable (if implicit connect is available).

If implicit connect is available (see Figure 4 on page 34), the application
process is initially in the implicitly connectable state. If implicit connect is
not available (see Figure 5 on page 35), the application process is initially in
the connectable and unconnected state.

Availability of implicit connect is determined by installation options,
environment variables, and authentication settings. See the Quick
Beginnings for information on setting implicit connect on installation and
the Administration Guide for information on environment variables and
authentication settings.

The implicitly connectable state:
If implicit connect is available, this is the initial state of an application
process. The CONNECT RESET statement causes a transition to this state.
Issuing a COMMIT or ROLLBACK statement in the unconnectable and
connected state followed by a DISCONNECT statement in the connectable
and connected state also results in this state.

The connectable and connected state:
An application process is connected to an application server and
CONNECT statements can be executed.
If implicit connect is available:
– The application process enters this state when a CONNECT TO

statement or a CONNECT without operands statement is successfully
executed from the connectable and unconnected state.

– The application process may also enter this state from the implicitly
connectable state if any SQL statement other than CONNECT RESET,
DISCONNECT, SET CONNECTION, or RELEASE is issued.

Whether or not implicit connect is available, this state is entered when:
– A CONNECT TO statement is successfully executed from the

connectable and unconnected state.
– A COMMIT or ROLLBACK statement is successfully issued or a forced

rollback occurs from the unconnectable and connected state.

The unconnectable and connected state:
An application process is connected to an application server, but a
CONNECT TO statement cannot be successfully executed to change
application servers. The process enters this state from the connectable and
connected state when it executes any SQL statement other than the

32 SQL Reference

following statements: CONNECT TO, CONNECT with no operand,
CONNECT RESET, DISCONNECT, SET CONNECTION, RELEASE,
COMMIT or ROLLBACK.

The connectable and unconnected state:
An application process is not connected to an application server. The only
SQL statement that can be executed is CONNECT TO, otherwise an error
(SQLSTATE 08003) is raised.
Whether or not implicit connect is available:
– The application process enters this state if an error occurs when a

CONNECT TO statement is issued or an error occurs in a unit of work
which causes the loss of a connection and a rollback. An error caused
because the application process is not in the connectable state or the
server-name is not listed in the local directory does not cause a
transition to this state.

If implicit connect is not available:
– the CONNECT RESET and DISCONNECT statements cause a transition

to this state.

State Transitions are shown in the following diagrams.

Chapter 2. Concepts 33

Implicitly
Connectable

Connectable
and

Connected

Connectable
and

Unconnected

Unconnectable
and

Connected

Begin process

CONNECT
RESET

CONNECT
RESET

CONNECT TO,
COMMIT,

or ROLLBACK

Failure of
implicit connect

System failure
with rollback

ROLLBACK,
successful COMMIT,

or deadlock

CONNECT TO,
COMMIT, or
ROLLBACK

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,

COMMIT or ROLLBACK

CONNECT TO with system failure

Successful C
ONNECT TO

Figure 4. Connection State Transitions If Implicit Connect Is Available

34 SQL Reference

Additional Rules:
v It is not an error to execute consecutive CONNECT statements because

CONNECT itself does not remove the application process from the
connectable state.

v It is an error to execute consecutive CONNECT RESET statements.
v It is an error to execute any SQL statement other than CONNECT TO,

CONNECT RESET, CONNECT with no operand, SET CONNECTION,
RELEASE, COMMIT, or ROLLBACK, and then execute a CONNECT TO
statement. To avoid the error, a CONNECT RESET, DISCONNECT
(preceded by a COMMIT or ROLLBACK statement), COMMIT, or
ROLLBACK statement should be executed before executing the CONNECT
TO.

Application-Directed Distributed Unit of Work
The application-directed distributed unit of work facility also provides for the
remote preparation and execution of SQL statements in the same fashion as

Connectable
and

Unconnected

Unconnectable
and

Connected

Connectable
and

Connected

Begin process
CONNECT RESET

CONNECT
RESET

CONNECT
RESET

System failure
with rollback

CONNECT TO,
COMMIT or
ROLLBACK

Successful CONNECT TO

CONNECT TO
with system failure

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,

COMMIT or ROLLBACK

ROLLBACK,
successful COMMIT,

or deadlock

Figure 5. Connection State Transitions If Implicit Connect Is Not Available

Chapter 2. Concepts 35

remote unit of work. An application process at computer system A can
connect to an application server at computer system B by issuing a
CONNECT or SET CONNECTION statement. The application process can
then execute any number of static and dynamic SQL statements that reference
objects at B before ending the unit of work. All objects referenced in a single
SQL statement must be managed by the same application server. However,
unlike remote unit of work, any number of application servers can participate
in the same unit of work. A commit or rollback operation ends the unit of
work.

Application-Directed Distributed Unit of Work Connection Management
An application-directed distributed unit of work uses a Type 2 connection. A
Type 2 connection connects an application process to the identified application
server and establishes the rules for application-directed distributed unit of
work.

Overview of Application Process and Connection States
At any time a type 2 application process:
– Is always connectable
– Is in the connected state or unconnected state.
– Has a set of zero or more connections.

Each connection of an application process is uniquely identified by the
database alias of the application server of the connection.

At any time an individual connection has one of the following sets of
connection states:
– current and held
– current and release-pending
– dormant and held
– dormant and release-pending

Initial States and State Transitions: A type 2 application process is initially
in the unconnected state and does not have any connections.

A connection initially is in the current and held state.

The following diagram shows the state transitions:

36 SQL Reference

Application Process Connection States: A different application server can be
established by the explicit or implicit execution of a CONNECT statement. 10

The following rules apply:
v A context can not have more than one connection to the same application

server at the same time. See Administration Guide and Application
Development Guide for information on support of multiple connections to the
same DB2 Universal Database at the same time.

v When an application process executes a SET CONNECTION statement, the
specified location name must be an existing connection in the set of
connections of the application process.

10. Note that a Type 2 implicit connection is more restrictive than a Type 1. See “CONNECT (Type 2)” on page 558 for
details.

Current

Current

Dormant

Dormant

Held
Release-
pending

States of a Connection

States of a Connection

RELEASE

Successful CONNECT or
SET CONNECTION

specifying an
existing dormant connection

Successful CONNECT or
SET CONNECTION

specifying another connection

The current connection is intentionally ended,
or a failure occurs causing the loss

of the connection

Successful CONNECT or
SET CONNECTION

Begin
process

Figure 6. Application-Directed Distributed Unit of Work Connection and Application Process Connection State
Transitions

Chapter 2. Concepts 37

v When an application process executes a CONNECT statement, and the
SQLRULES(STD) option is in effect the specified server name must not be
an existing connection in the set of connections of the application process.
See “Options that Govern Distributed Unit of Work Semantics” on page 39
for a description of the SQLRULES option.

If an application process has a current connection, the application process is
in the connected state. The CURRENT SERVER special register contains the
name of the application server of the current connection. The application
process can execute SQL statements that refer to objects managed by that
application server.

An application process in the unconnected state enters the connected state
when it successfully executes a CONNECT or SET CONNECTION statement.
If there is no connection in the application but SQL statements are issued, an
implicit connect will be made provided the DB2DBDFT environment variable
has been defined with a default database.

If an application process does not have a current connection, the application
process is in the unconnected state. The only SQL statements that can be
executed are CONNECT, DISCONNECT ALL, DISCONNECT specifying a
database, SET CONNECTION, RELEASE, COMMIT and ROLLBACK.

An application process in the connected state enters the unconnected state when
its current connection is intentionally ended or the execution of an SQL
statement is unsuccessful because of a failure that causes a rollback operation
at the application server and loss of the connection. Connections are
intentionally ended either by the successful execution of a DISCONNECT
statement or by the successful execution of a commit operation when the
connection is in the release-pending state. Different options specified in the
DISCONNECT precompiler option affect intentionally ending a connection. If
set to AUTOMATIC, then all connections are ended. If set to CONDITIONAL,
then all connections that do not have open WITH HOLD cursors are ended.

States of a Connection: If an application process executes a CONNECT
statement and the server name is known to the application requester and is
not in the set of existing connections of the application process, then:
v the current connection is placed into the dormant state, and
v the server name is added to the set of connections, and
v the new connection is placed into both the current state and the held state.

If the server name is already in the set of existing connections of the
application process and the application is precompiled with the option
SQLRULES(STD), an error (SQLSTATE 08002) is raised.

38 SQL Reference

v Held and Release-pending States: The RELEASE statement controls whether
a connection is in the held or release-pending state. A release-pending state
means that a disconnect is to occur for the connection at the next successful
commit operation (a rollback has no effect on connections). A held state
means that a connection is not to be disconnected at the next operation. All
connections are initially in the held state and may be moved into the
release-pending state using the RELEASE statement. Once in the
release-pending state, a connection cannot be moved back to the held state.
A connection will remain in a release-pending state across unit of work
boundaries if a ROLLBACK statement is issued or if an unsuccessful
commit operation results in a rollback operation.
Even if a connection is not explicitly marked for release, it may still be
disconnected by a commit operation if the commit operation satisfies the
conditions of the DISCONNECT precompiler option.

v Current and Dormant States: Regardless of whether a connection is in the
held state or the release-pending state, a connection can also be in the current
state or dormant state. A current state means that the connection is the one
used for SQL statements that are executed while in this state. A dormant
state means that the connection is not current. The only SQL statements
which can flow on a dormant connection are COMMIT and ROLLBACK; or
DISCONNECT and RELEASE, which can specify either ALL (for all
connections) or a specific database name. The SET CONNECTION and
CONNECT statements change the connection for the named server into the
current state while any existing connections are either placed or remain in
the dormant state. At any point in time, only one connection can be in the
current state. When a dormant connection becomes current in the same unit
of work, the state of all locks, cursors, and prepared statements will remain
the same and reflect their last use when the connection was current.

When a Connection is Ended: When a connection is ended, all resources
that were acquired by the application process through the connection and all
resources that were used to create and maintain the connection are
de-allocated. For example, if the application process executes a RELEASE
statement, any open cursors will be closed when the connection is ended
during the next commit operation.

A connection can also be ended because of a communications failure. The
application process is placed in the unconnected state if the connection ended
was the current one.

All connections of an application process are ended when the process ends.

Options that Govern Distributed Unit of Work Semantics
The semantics of type 2 connection management are determined by a set of
precompiler options. These are summarized briefly below with the defaults

Chapter 2. Concepts 39

indicated by bold and underlined text. For details refer to the Command
Reference or Administrative API Reference manuals.
v CONNECT (1 | 2)

Specifies whether CONNECT statements are to be processed as type 1 or
type 2.

v SQLRULES (DB2 | STD)
Specifies whether type 2 CONNECTs should be processed according to the
DB2 rules which allow CONNECT to switch to a dormant connection, or
the SQL92 Standard (STD) rules which do not allow this.

v DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC)
Specifies what database connections are disconnected when a commit
operation occurs. They are either:
– those which had been explicitly marked for release by the SQL RELEASE

statement (EXPLICIT), or
– those that have no open WITH HOLD cursors as well as those marked

for release (CONDITIONAL) 11 , or
– all connections (AUTOMATIC).

v SYNCPOINT (ONEPHASE | TWOPHASE | NONE)
Specifies how commits or rollbacks are to be coordinated among multiple
database connections.

ONEPHASE Updates can only occur on one database in the unit of
work, all other databases are read-only. Any update
attempts to other databases raise an error (SQLSTATE
25000).

TWOPHASE A Transaction Manager (TM) will be used at run time to
coordinate two phase commits among those databases that
support this protocol.

NONE Does not use any TM to perform two phase commit and
does not enforce single updater, multiple reader. When a
COMMIT or ROLLBACK statement is executed, individual
COMMITs or ROLLBACKs are posted to all databases. If
one or more rollbacks fails an error (SQLSTATE 58005) is
raised. If one or more commits fails an error (SQLSTATE
40003) is raised.

Any of the above options can be overridden at run time using a special SET
CLIENT application programming interface (API). Their current settings can
be obtained using the special QUERY CLIENT API. Note that these are not

11. The CONDITIONAL option will not work properly with downlevel servers prior to Version 2. A disconnection
will occur in these cases regardless of the presence of WITH HOLD cursors

40 SQL Reference

SQL statements; they are APIs defined in the various host languages and in
the Command Line Processor. These are defined in the Command Reference and
Administrative API Reference manuals.

Data Representation Considerations
Different systems represent data in different ways. When data is moved from
one system to another, data conversion sometimes must be performed.
Products supporting DRDA will automatically perform any necessary
conversions at the receiving system. With numeric data, the information
needed to perform the conversion is the data type of the data and how that
data type is represented by the sending system. With character data,
additional information is needed to convert character strings. String
conversion depends on both the code page of the data and the operation that
is to be performed with that data. Character conversions are performed in
accordance with the IBM Character Data Representation Architecture (CDRA).
For more information on character conversion, refer to Character Data
Representation Architecture Reference SC09-1390.

DB2 Federated Systems

This section provides an overview of the elements of a DB2 federated system,
an overview of the tasks that administrators and users of the system perform,
and explanations of the concepts associated with these tasks.

The Federated Server, Federated Database, and Data Sources
A DB2 federated system is a distributed computing system that consists of:
v A DB2 server, called a federated server.

In a DB2 installation, any number of DB2 instances can be configured to
function as federated servers.

v Multiple data sources to which the federated server sends queries.
Each data source consists of an instance of a relational database
management system plus the database or databases that the instance
supports. The data sources in a DB2 federated system can include Oracle
instances and instances of the members of the DB2 family.
The data sources are semi-autonomous. For example, the federated server
can send queries to Oracle data sources at the same time that Oracle
applications can access these data sources. A DB2 federated system does not
monopolize or restrict access to Oracle or other data sources (beyond
integrity and locking constraints).

To end users and client applications, the data sources appear as a single
collective database. In actuality, users and applications interface with a
database, called the federated database, that is within the federated server. To
obtain data from data sources, they submit queries in DB2 SQL to the
federated database. DB2 then distributes the queries to the appropriate data
sources. DB2 also provides access plans for optimizing the queries (in some

Chapter 2. Concepts 41

cases, these plans call for processing the queries at the federated server rather
than at the data source). Finally, DB2 collects the requested data and passes it
to the users and applications.

Queries submitted from the federated server to data sources must be
read-only. To write to a data source (for example, to update a data source
table), users and applications must use the data source’s own SQL in a special
mode called pass-through.

Tasks to Perform in a DB2 Federated System
This section introduces concepts that are associated with tasks that users
perform to establish and use a federated system. (In this section and those
that follow, the term users refers to all types of personnel who work with
federated systems; for example, database administrators, application
programmers, and end users).

The following list of tasks identifies the types of users who typically perform
the tasks. Be aware that other types of users can also perform these tasks. For
example, the list indicates that DBAs typically create mappings between
authorizations to access the federated database and authorizations to access
data sources. But application programmers and end users can also perform
this task.

To establish and use a DB2 federated system:
1. The DBA designates a DB2 server as a federated server. Refer to the

Installation and Configuration Supplement for information about how this is
done.

2. Data sources are set up for access:
a. The DBA connects to the federated database.
b. The DBA creates a wrapper for each category of data source that is to

be included in the federated system. (Wrappers are mechanisms by
which the federated server interacts with data sources. Refer to
“Wrappers and Wrapper Modules” on page 43 for details.)

c. The DBA supplies the federated server with a description of each data
source. (The description is called a server definition. Refer to “Server
Definitions and Server Options” on page 44 for details.)

d. If a user’s authorization ID used to access the federated database
differs from the user’s authorization ID used to access a data source,
the DBA defines an association between the two authorization IDs.
(This association is called a user mapping. Refer to “User Mappings and
User Options” on page 46 for details.)

e. If a default mapping between a DB2 data type and a data source data
type does not meet user requirements, the DBA modifies the mapping
as needed. (A data type mapping is a defined association between two

42 SQL Reference

compatible data types—one supported by the federated database and
one supported by a data source. Refer to “Data Type Mappings” on
page 47 for details.)

f. If a default mapping between a DB2 function and a data source
function does not meet user requirements, the DBA modifies the
mapping as needed. (A function mapping is a defined association
between two compatible functions—one supported by the federated
database and one supported by a data source. Refer to “Function
Mappings, Function Templates, and Function Mapping Options” on
page 48 for details.)

g. DBAs and application programmers create nicknames for the data
source tables and views that are to be accessed. (A nickname is an
identifier by which the federated system references a data source table
or view. Refer to “Nicknames and Column Options” on page 48 for
details.)

h. Optional: If a data source table has no index, the DBA can provide the
federated server with the same sort of information that the definition
of an actual index would contain. If a data source table has an index
that the federated server is unaware of, the DBA can inform the server
of the index’s existence. In either case, the information that the DBA
supplies helps DB2 to optimize queries of table data. (This information
is called an index specification. Refer to “Index Specifications” on
page 49 for details.)

3. Application programmers and end users retrieve information from data
sources:
v Using DB2 SQL, application programmers and end users query tables

and views that are referenced by nicknames. (Queries directed to two or
more data sources are called distributed requests. Refer to “Distributed
Requests” on page 50 for details.)
In processing a query, the federated server can perform operations that
are supported by DB2 SQL but not by the data source’s SQL. (This
capability is called compensation. Refer to “Compensation” on page 51 for
details.)

v Application programmers and end users might occasionally submit
queries, DML statements, and DDL statements to data sources in the
data sources’ own SQL. The programmers and users can do this in
pass-through mode. (Refer to “Pass-Through” on page 51 for details.)

The following sections discuss the concepts mentioned in this task list in the
same order in which they appear in the list. Some of these sections also
introduce related concepts.

Wrappers and Wrapper Modules
A wrapper is the mechanism by which the federated server communicates
with, and retrieves data from, a data source. To implement a wrapper, the

Chapter 2. Concepts 43

server uses routines stored in a library called a wrapper module. These routines
allow the server to perform operations such as connecting to a data source
and retrieving data from it iteratively.

There are three wrappers:
v A wrapper with the default name of DRDA is used for all DB2 family data

sources.
v A wrapper with the default name of SQLNET is used for all Oracle data

sources supported by Oracle’s SQL*Net client software.
v A wrapper with the default name of NET8 is used for all Oracle data

sources supported by Oracle’s Net8 client software.

A wrapper is registered to the federated server with the CREATE WRAPPER
statement. Refer to “CREATE WRAPPER” on page 839 for details.

Server Definitions and Server Options
After the DBA registers a wrapper that allows the federated server to interact
with data sources, the DBA defines those data sources to the federated
database. This section:
v Describes the definition that the DBA provides
v Describes the SQL for specifying certain parameters, called server options,

that contain portions of a server definition
v Distinguishes different meanings of the term “server”.

Introduction to Server Definitions
In defining a data source to the federated database, the DBA supplies a name
for the data source as well as information that pertains to the data source.
This information includes the type and version of the RDBMS of which the
data source is an instance, and the RDBMS’s name for the data source. It also
includes metadata that is specific to the RDBMS. For example, a DB2 family
data source can have multiple databases, and the definition of such a data
source must specify which database the federated server can connect to. In
contrast, an Oracle data source has one database, and the federated server can
connect to the database without needing to know its name. The name is
therefore not included in the federated server’s definition of the data source.

The name and information that the DBA supplies is collectively called a server
definition. This term reflects the fact that data sources answer requests for
data and are therefore servers in their own right. Other terms reflect this fact
also. For example:
v Some of the information within a server definition is stored as server

options. Thus, the name for a data source is stored as a value of a server
option called NODE. For a DB2 family data source, the name of the
database to which the federated server connects is stored as a value of a
server option called DBNAME.

44 SQL Reference

v The SQL statements for creating and modifying a server definition are
called CREATE SERVER and ALTER SERVER, respectively.

SQL Statements for Setting Server Options
Values are assigned to server options through the CREATE SERVER, ALTER
SERVER, and SET SERVER OPTION statements.

The CREATE SERVER and ALTER SERVER statements set server options to
values that persist over successive connections to the data source. These
values are stored in the catalog. Consider this scenario: A federated system
DBA uses the CREATE SERVER statement to define a new Oracle data source
to the federated system. This data source’s database uses the same collating
sequence that the federated database uses. The DBA wants the optimizer to
know about this match, so that the optimizer can take advantage of it to
expedite performance. Accordingly, in the CREATE SERVER statement, the
DBA sets a server option called COLLATING_SEQUENCE to ‘Y’ (yes, the
collating sequences at the data source and federated database are the same).
The setting of ‘Y’ is recorded in the catalog, and it remains in effect while
users and applications access the Oracle data source.

Some months later, the Oracle DBA changes the Oracle data source’s collating
sequence. Therefore, the federated system DBA resets
COLLATING_SEQUENCE to ‘N’ (no, the data source’s collating sequence is
not the same as the federated database’s). The DBA uses the ALTER SERVER
statement to make this update. The catalog is updated also, and the new
setting remains in effect as users and applications continue to access the data
source.

The SET SERVER OPTION statement overrides a server option value
temporarily, for the duration of a single connection to the federated database.
The overriding value does not get stored in the catalog.

To illustrate: A server option called PLAN_HINTS can be set to a value that
enables DB2 to supply Oracle data sources with statement fragments, called
plan hints, that help Oracle optimizers to do their job. For example, plan hints
can help an optimizer to decide what index to use in accessing a table, or
what table join sequence to use in retrieving data for a result set.

For data sources ORACLE1 and ORACLE2, the PLAN_HINTS server option is
set to its default, ‘N’ (no, do not furnish these data sources with plan hints).
Then a programmer writes a distributed request for data from ORACLE1 and
ORACLE2; and the programmer expects that plan hints would help the
optimizers at these data sources to improve their strategies for accessing this
data. Accordingly, the programmer uses the SET SERVER OPTION statement
to override the ‘N’ with ‘Y’ (yes, furnish plan hints). The ‘Y’ stays in effect

Chapter 2. Concepts 45

only while the application that contains the request is connected to the
federated database; it does not get stored in the catalog.

Refer to “CREATE SERVER” on page 708, “ALTER SERVER” on page 473, and
“SET SERVER OPTION” on page 1035 for more information. Refer to “Server
Options” on page 1249 for descriptions of all server options and their settings.

Three Meanings for “Server”
In the terms server definition and server option, and in the SQL statements
discussed in the preceding section, the word server refers to data sources only.
It does not refer to the federated server, or to DB2 application servers.

The concepts of DB2 application servers and federated servers, however,
overlap. As indicated in “Distributed Relational Database” on page 29, an
application server is a database manager instance to which application
processes connect and submit requests. This is also true of a federated server;
thus, a federated server is a type of application server. But two main things
distinguish it from other application servers:
v It is configured to receive requests that are ultimately intended for data

sources; and it distributes these requests to the data sources.
v Like other application servers, a federated server uses DRDA

communication protocols to communicate with DB2 family instances.
Unlike other application servers, a federated server uses sqlnet and net8
communication protocols to communicate with Oracle instances.

User Mappings and User Options
The federated server can send the distributed request of an authorized user or
application to a data source under either of these conditions:
v The user or application uses the same user ID for both the federated

database and the data source. In addition, if the data source requires a
password, the user or application uses the same password for the federated
database and the data source.

v The user’s or application’s authorization to access the federated database
differs in some way from the user’s or application’s authorization to access
the data source. In addition, when the user or application requests access to
the data source, the federated database authorization is changed to the data
source authorization, so that the access can be granted. This change can
occur only if a defined association, called a user mapping, exists between
the two authorizations.

User mappings can be defined and modified with the CREATE USER
MAPPING and ALTER USER MAPPING statements. These statements include
parameters, called user options, to which values related to authorization are
assigned. For example, suppose that a user has the same ID, but different
passwords, for the federated database and a data source. For the user to
access the data source, it is necessary to map the passwords to one another.

46 SQL Reference

This can be done with a CREATE USER MAPPING statement in which the
password at the data source is assigned as a value to a user option called
REMOTE_PASSWORD.

Refer to “CREATE USER MAPPING” on page 821, “ALTER USER MAPPING”
on page 516, and Administration Guide for more information. Refer to “User

Options” on page 1254 for descriptions of the user options and their settings.

Data Type Mappings
For the federated server to retrieve data from columns of data source tables
and views, the columns’ data types at the data source must map to
corresponding data types that are already defined to the federated database.
DB2 supplies default mappings for most kinds of data types. For example, the
Oracle type FLOAT maps by default to the DB2 type DOUBLE, and the DB2
Universal Database for OS/390 type DATE maps by default to the DB2 type
DATE. There are no mappings for the data types that DB2 federated servers
do not support: LONG VARCHAR, LONG VARGRAPHIC, DATALINK, large
object (LOB) types, and user-defined types.

Refer to “Default Data Type Mappings” on page 1254 for listings of the default
data type mappings.

When values from a data source column are returned, they conform fully to
the DB2 type in the type mapping that applies to the column. If this mapping
is a default, the values also conform fully to the data source type in the
mapping. For example, when an Oracle table with a FLOAT column is
defined to the federated database, the default mapping of Oracle FLOAT to
DB2 DOUBLE will, unless it has been overridden, automatically apply to that
column. Consequently, the values returned from the column will conform
fully to both FLOAT and DOUBLE.

It is possible to change the format or length of values returned by changing
the DB2 type that the values must conform to. For example, the Oracle type
DATE is for time stamps. By default, it maps to the DB2 type TIMESTAMP.
Suppose that several Oracle table columns have a data type of DATE, and that
a user wants queries of these columns to yield times only. The user could then
map the Oracle type DATE to the DB2 type TIME, overriding the default.
That way, when the columns are queried, only the time portion of the time
stamps would be returned.

The CREATE TYPE MAPPING statement can be used to create a modified
data type mapping that applies to one or more data sources. The ALTER
NICKNAME statement can be used to modify a data type mapping for a
specific column of a specific table.

Chapter 2. Concepts 47

Refer to “CREATE TYPE MAPPING” on page 816, “ALTER NICKNAME” on
page 466 , and the Application Development Guide for more information.

Function Mappings, Function Templates, and Function Mapping Options
For the federated server to recognize a data source function, there needs to be
a mapping between this function and a corresponding DB2 function that
already exists at the server. DB2 supplies default mappings between existing
built-in data source functions and built-in DB2 functions. If a user wants to
use a data source function that the federated server does not recognize—for
example, a new built-in function or a user-defined function—then the user
must create a mapping between this function and a counterpart at the
federated database. If a counterpart does not exist, the user must create one
that meets the following requirements:
v If the data source function has input parameters, the counterpart must have

the same number of input parameters that the data source function has. If
the data source function has no input parameters, the counterpart cannot
have any.

v The counterpart’s data types for input parameters (if any) and returned
values must be compatible with the data source function’s corresponding
data types.

The counterpart can be either a complete function or a function template. A
function template is a partial function that has no executable code. It cannot be
invoked independently; its only purpose is to participate in a mapping with a
data source function, so that the data source function can be invoked from the
federated server.

Function mappings are created with the CREATE FUNCTION MAPPING
statement. This statement includes parameters, called function mapping options,
to which the user can assign values that pertain to the mapping being created
or to the data source function within the mapping. Such values, for example,
can include estimated statistics on the overhead that would be consumed
when the data source function is invoked. The optimizer uses these estimates
in developing strategies for invoking the function.

Refer to “CREATE FUNCTION (Source or Template)” on page 639 and
“CREATE FUNCTION MAPPING” on page 657 for details about creating
function templates and function mappings. Refer to “Function Mapping
Options” on page 1248 for descriptions of the function mapping options and
their values. Refer to the Application Development Guide for guidelines on
optimizing the invocation of data source functions.

Nicknames and Column Options
When a client application submits a distributed request to the federated
server, the server parcels out the request to the appropriate data sources. The
request does not need to specify these data sources. Instead, it references data

48 SQL Reference

source tables and views by nicknames, that map to the tables’ and views’
names at the data source. The mappings obviate the need to qualify the
nicknames by data source names. The locations of the tables and views are
transparent to the client application.

Nicknames are not alternate names for tables and views in the same way that
aliases are; they are pointers by which the federated server references these
objects. Nicknames are defined with the CREATE NICKNAME statement.
Refer to “CREATE NICKNAME” on page 681 for details.

When a nickname is created for a table or view, the catalog is populated with
metadata that the optimizer can use to facilitate access to the table or view.
For example, the catalog is supplied with the names of the DB2 data types to
which the data types of the table’s or view’s columns map. If the nickname is
for a table with an index, the catalog is supplied also with information related
to the index; for example, the name of each column in the index key.

After a nickname is created, the user can supply the catalog with more
metadata for the optimizer; for example, metadata that describes values in
certain columns of the table or view that the nickname references. The user
assigns this metadata to parameters called column options. To illustrate: If a
table column contains numeric strings only, the user can indicate this by
assigning the value ’Y’ to a column option called NUMERIC_STRING. As a
result, the optimizer can form strategies to have these strings sorted at the
data source, thereby saving the overhead of porting them to the federated
server and sorting them there. The savings is especially great when the
database that contains the values has a collating sequence that differs from the
federated database’s collating sequence.

Column options are defined with the ALTER NICKNAME statement. Refer to
“ALTER NICKNAME” on page 466 for more information about this statement.
Refer to “Column Options” on page 1247 for descriptions of the column
options and their settings.

Index Specifications
When a nickname is created for a data source table, the federated server
supplies the catalog with information about any indexes that a data source
table has. The optimizer uses this information to facilitate retrieval of the
table’s data. If the table has no indexes, the user can nevertheless supply
information that an index definition typically contains; for example, which
column or columns in the table to search in order to find information quickly.
The user would do this by running a CREATE INDEX statement that contains
the information and references the table’s nickname.

The user can supply the optimizer with similar information for tables that
have indexes of which the federated server is unaware. For example, suppose

Chapter 2. Concepts 49

that nickname NICK1 is created for a table that has no index but that acquires
one later, or that nickname NICK2 is created for a view over a table that has
an index. In these situations, the federated server would be unaware of the
indexes. But the user could use CREATE INDEX statements to inform the
server that the indexes exist. One statement would reference NICK1 and
contain information about the index of the table that NICK1 identifies. The
other would reference NICK2 and contain information about the index of the
base table that underlies the view that NICK2 identifies.

In cases such as those just described, the information in the CREATE INDEX
statement is cataloged as a set of metadata called an index specification. Be
aware that when the statement references a nickname, it produces only an
index specification, not an actual index. Refer to “CREATE INDEX” on
page 662 and the Administration Guide: Performance for more information.

Distributed Requests
A distributed request can use devices such as subqueries and join subselects
to specify what table or view columns are be accessed, and what data is to be
retrieved.

This section provides examples within the context of the following scenario: A
federated server is configured to access a DB2 Universal Database for OS/390
data source, a DB2 Universal Database for AS/400 data source, and an Oracle
data source. Stored in each data source is a table that contains employee
information. The federated server references these tables by nicknames that
refer to where the tables reside: UDB390_EMPLOYEES, AS400_EMPLOYEES,
and ORA_EMPLOYEES. In addition to its table of employee information, the
Oracle data source has a table that contains information about the countries
that the employees live in. The nickname for this second table is
ORA_COUNTRIES.

A Request with a Subquery
Table AS400_EMPLOYEES contains the phone numbers of employees who live
in Asia. It also contains the country codes associated with these phone
numbers, but it doesn’t list the countries that the codes represent. Table
ORA_COUNTRIES, however, does list both codes and countries. The
following query uses a subquery to find out the country code for China; and
it uses SELECT and WHERE clauses to list those employees in
AS400_EMPLOYEES whose phone numbers require this particular code.

SELECT NAME, TELEPHONE
FROM DJADMIN.AS400_EMPLOYEES
WHERE COUNTRY_CODE IN
(SELECT COUNTRY_CODE

FROM DJADMIN.ORA_COUNTRIES
WHERE COUNTRY_NAME = 'CHINA')

50 SQL Reference

When a distributed request such as the one above is compiled, the compiler’s
query rewrite facility transforms it into a form that can be optimized more
easily.

A Request for a Join
A relational join produces a result set that contains a combination of columns
retrieved from two or more tables. Conditions should always be specified to
limit the size of the result set’s rows.

The query below combines employee names and their corresponding country
names by comparing the country codes listed in two tables. Each table resides
in a different data source.

SELECT T1.NAME, T2.COUNTRY_NAME
FROM DJADMIN.UDB390_EMPLOYEES T1, DJADMIN.ORA_COUNTRIES T2
WHERE T1.COUNTRY_CODE = T2.COUNTRY_CODE

Compensation
Compensation is the processing of SQL statements for RDBMSs that do not
support those statements. Each type of RDBMS (DB2 Universal Database for
AS/400, DB2 Universal Database for OS/390, Oracle, and so on) supports a
subset of the international standard of SQL. In addition, some types support
SQL constructs that exceed this standard. The totality of SQL that a type of
RDBMS supports is called an SQL dialect. If an SQL construct is found in
DB2’s SQL dialect, but not in a data source’s dialect, the federated server can
implement this construct on behalf of the data source.

Example 1: DB2’s SQL includes the clause, common-table-expression. In this
clause, a name can be specified by which all FROM clauses in a fullselect can
reference a result set. The federated server will process a common-table-
expression for an Oracle database, even though Oracle’s SQL dialect does not
include common-table-expression.

Example 2: When connecting to a data source that does not support multiple
open cursors within an application, the federated server can simulate this
function by establishing separate, simultaneous connections to the data source.
Similarly, the federated server can simulate CURSOR WITH HOLD capability
for a data source that does not provide that function.

Compensation makes it possible to use DB2’s SQL dialect to make all queries
supported by the federated server. It is not necessary to use dialects specific to
RDBMSs other than DB2.

Pass-Through
Users can use the pass-through function to communicate with data sources in
the data sources’ own SQL dialect. In pass-through, users can submit not only
queries, but also DML and DDL statements. Refer to “SQL Processing in

Chapter 2. Concepts 51

Pass-Through Sessions” on page 1256 for information on how DB2 and data
sources manage the processing of statements submitted in pass-through
sessions.

The federated server provides the following SQL statements to manage
pass-through sessions:

SET PASSTHRU
Opens and terminates pass-through sessions.

GRANT (Server Privileges)
Grants a user, group, list of authorization IDs, or PUBLIC the
authority to initiate pass-through sessions to a specific data source.

REVOKE (Server Privileges)
Revokes the authority to initiate pass-through sessions.

There are certain restrictions on using pass-through. For example, in a
pass-through session, a cursor cannot be opened directly against a data source
object. Refer to “Considerations and Restrictions” on page 1257 for a complete
list of restrictions.

Character Conversion

A string is a sequence of bytes that may represent characters. Within a string,
all the characters are represented by a common coding representation. In some
cases, it might be necessary to convert these characters to a different coding
representation. The process of conversion is known as character conversion. 12

Character conversion can occur when an SQL statement is executed remotely.
Consider, for example, these two cases:
v The values of host variables sent from the application requester to the

application server
v The values of result columns sent from the application server to the

application requester.

In either case, the string could have a different representation at the sending
and receiving systems. Conversion can also occur during string operations on
the same system.

The following list defines some of the terms used when discussing character
conversion.

12. Character conversion, when required, is automatic and is transparent to the application when it is successful. A
knowledge of conversion is therefore unnecessary when all the strings involved in a statement’s execution are
represented in the same way. This is frequently the case for stand-alone installations and for networks within the
same country. Thus, for many readers, character conversion may be irrelevant.

52 SQL Reference

character set A defined set of characters. For example, the
following character set appears in several code
pages:
v 26 non-accented letters A through Z
v 26 non-accented letters a through z
v digits 0 through 9
v . , : ; ? () ' " / − _ & + % * = < >

code page A set of assignments of characters to code
points. In the ASCII encoding scheme for code
page 850, for example, "A" is assigned code
point X'41' and "B" is assigned code point
X'42'. Within a code page, each code point has
only one specific meaning. A code page is an
attribute of the database. When an application
program connects to the database, the
database manager determines the code page
of the application.

code point A unique bit pattern that represents a
character.

encoding scheme A set of rules used to represent character data.
For example:
v Single-Byte ASCII
v Single-Byte EBCDIC
v Double-Byte ASCII
v Mixed Single- and Double-Byte ASCII.

Character Sets and Code Pages
The following example shows how a typical character set might map to
different code points in two different code pages.

Chapter 2. Concepts 53

Even with the same encoding scheme, there are many different code pages,
and the same code point can represent a different character in different code
pages. Furthermore, a byte in a character string does not necessarily represent
a character from a single-byte character set (SBCS). Character strings are also
used for mixed and bit data. Mixed data is a mixture of single-byte,
double-byte, or multi-byte characters. Bit data (columns defined as FOR BIT
DATA or BLOBs, or binary strings) is not associated with any character set.

Code Page Attributes
The database manager determines code page attributes for all character strings
when an application is bound to a database. The potential code page
attributes are:

The Database Code Page The database code page stored in the database

FE

Ä

Ã

Á

Å

Â

À

Ö

®

5
8

2 3 4 50

0

1

1

2

3

4

5

E

F

%

/

0

1

2

3

4

5

@

A

B

C

D

E

N

0

>.

*

P

Q

R

S

T

U

code page: pp1 (ASCII)

character set ss1
(in code page pp1)

code point: 2F

0

1

2

3

4

5

E

F

FE0 1 A B

s

t

u

v

#

$

%

*

(

S

T

U

V

Â

C D

0

1

2

3

4

5

}

{ÁÀ ¢

! :

;

A

B

C

D

E

J

K

L

M

N

code page: pp2 (EBCDIC)

character set ss1
(in code page pp2)

"

Figure 7. Mapping A Character Set In Different Code Pages

54 SQL Reference

configuration files. This code page value is
determined when the database is created and
cannot be altered.

The Application Code Page The code page under which the application is
executed. Note that this is not necessarily the
same code page under which the application
was bound. (See the Application Development
Guide for further information on binding and
executing application programs.)

Code Page 0 This represents a string that is derived from
an expression that contains a FOR BIT DATA
or BLOB value.

String Code Page Attributes
Character string code page attributes are as follows:
v Columns may be in the database code page or code page 0 (if defined as

character FOR BIT DATA or BLOB).
v Constants and special registers (for example, USER, CURRENT SERVER)

are in the database code page. Note that constants are converted to the
database code page when an SQL statement is bound to the database.

v Input host variables are in the application code page.

A set of rules is used to determine the code page attributes for operations that
combine string objects, such as the results of scalar operations, concatenation,
or set operations. At execution time, code page attributes are used to
determine any requirements for code page conversions of strings.

For more details on character conversion, see:
v “Conversion Rules for String Assignments” on page 97 for rules on string

assignments
v “Rules for String Conversions” on page 111 for rules on conversions when

comparing or combining character strings.

Authorization and Privileges

An authorization allows a user or group to perform a general task such as
connecting to a database, creating tables, or administering a system. A privilege
gives a user or group the right to access one specific database object in a
specified way.

Chapter 2. Concepts 55

The database manager requires that a user be specifically authorized, either
implicitly or explicitly, 13 to use each database function needed by that user to
perform a specific task. Thus to create a table, a user must be authorized to
create tables; to alter a table, a user must be authorized to alter the table; and
so on.

The person or persons with administrative authority have the task of
controlling the database manager and are responsible for the safety and
integrity of the data. They control who will have access to the database
manager and to what extent each user has access.

The database manager provides two administrative authorities:

SYSADM
System administrator authority

DBADM
Database administrator authority

and two system control authorities:
SYSCTRL

System control authority
SYSMAINT

System maintenance authority

13. Explicit authorities or privileges are granted to the user (GRANTEETYPE of U). Implicit authorities or privileges
are granted to a group to which the user belongs (GRANTEETYPE of G).

SYSADM
(System Administrator)

DBADM
(Database Administrator)

Database Users with Privileges

SYSCTRL
(System Resource Administrator)

SYSMAINT
(System Maintenance Administrator)

Figure 8. Hierarchy of Authorities and Privileges

56 SQL Reference

SYSADM authority is the highest level of authority and has control over all
the resources created and maintained by the database manager. SYSADM
authority includes all the privileges of DBADM, SYSCTRL, and SYSMAINT,
and the authority to grant or revoke DBADM authorities.

DBADM authority is the administrative authority specific to a single database.
This authority includes privileges to create objects, issue database commands,
and access the data in any of its tables through SQL statements. DBADM
authority also includes the authority to grant or revoke CONTROL and
individual privileges.

SYSCTRL authority is the higher level of system control authority and applies
only to operations affecting system resources. It does not allow direct access to
data. This authority includes privileges to create, update, or drop a database;
quiesce an instance or database; and drop or create a table space.

SYSMAINT authority is the second level of system control authority. A user
with SYSMAINT authority can perform maintenance operations on all
databases associated with an instance. It does not allow direct access to data.
This authority includes privileges to update database configuration files,
backup a database or table space, restore an existing database, and monitor a
database.

Database authorities apply to those activities that an administrator has
allowed a user to perform within the database that do not apply to a specific
instance of a database object. For example, a user may be granted the
authority to create packages but not create tables.

Privileges apply to those activities that an administrator or object owner has
allowed a user to perform on database objects. Users with privileges can
create objects, though they face some constraints, unlike a user with an
authority like SYSADM or DBADM. For example, a user may have the
privilege to create a view on a table but not a trigger on the same table. Users
with privileges have access to the objects they own, and can pass on
privileges on their own objects to other users by using the GRANT statement.

CONTROL privilege allows the user to access a specific database object as
desired and to GRANT and REVOKE privileges to and from other users on
that object. DBADM authority is required to grant CONTROL privilege.

Individual privileges and database authorities allow a specific function but do
not include the right to grant the same privileges or authorities to other users.
The right to grant table, view or schema privileges to others can be extended
to other users using the WITH GRANT OPTION on the GRANT statement.

Chapter 2. Concepts 57

Table Spaces and Other Storage Structures

Storage structures contain the objects of the database. The basic storage
structures managed by the database manager are table spaces. A table space is
a storage structure containing tables, indexes, large objects, and data defined
with a LONG data type. There are two types of table spaces:

Database Managed Space (DMS) Table Space
A table space which has its space managed by the database manager.

System Managed Space (SMS) Table Space
A table space which has its space managed by the operating system.

All table spaces consist of containers. A container describes where objects, such
as some tables, are stored. For example, a subdirectory in a file system could
be a container.

For more information on table spaces and containers, see “CREATE
TABLESPACE” on page 764 or the Administration Guide.

Data that is read from table space containers is placed in an area of memory
called a buffer pool. A buffer pool is associated with a table space allowing
control over which data shares the same memory areas for data buffering. For
more information on buffer pools, see “CREATE BUFFERPOOL” on page 569
or the Administration Guide.

A partitioned database allows data to be spread across different database
partitions. The partitions included are determined by the nodegroup assigned
to the table space. A nodegroup is a group of one or more partitions that are
defined as part of the database. A table space includes one or more containers
for each partition in the nodegroup. A partitioning map is associated with each
nodegroup. The partitioning map is used by the database manager to
determine which partition from the nodegroup will store a given row of data.
For more information on nodegroups and data partitioning, see “Data
Partitioning Across Multiple Partitions” on page 59, “CREATE NODEGROUP”
on page 684 or the Administration Guide.

A table can also include columns that register links to data stored in external
files. The mechanism for this is the DATALINK data type. A DATALINK
value which is recorded in a regular table points to a file stored in an external
file server.

The DB2 Data Links Manager, which is installed on a fileserver, works in
conjunction with DB2 to provide the following optional functionality:
v Referential integrity to insure that files currently linked to DB2 are not

deleted or renamed.

58 SQL Reference

v Security to insure that only those with suitable SQL privileges on the
DATALINK column can read the files linked to that column.

v Coordinated backup and recovery of the file.

The DB2 Data Links Manager product comprises the following facilities:

Data Links File Manager
Registers all the files in a particular file server that are linked to DB2.

Data Links Filesystem Filter
Filters file system commands to insure that registered files are not deleted
or renamed. Optionally also filters commands to insure that proper access
authority exists.

For more information on DB2 Data Links Manager refer to Administration
Guide.

Data Partitioning Across Multiple Partitions

DB2 allows great flexibility in spreading data across multiple partitions
(nodes) of a partitioned database. Users can choose how to partition their data
by declaring partitioning keys and can determine which and how many
partitions their table data can be spread across by selecting the nodegroup
and table space in which the data should be stored. In addition, a partitioning
map (which can be user-updatable) specifies the mapping of partitioning key
values to partitions. This makes it possible for flexible workload
parallelization across a partitioned database for large tables, while allowing
smaller tables to be stored on one or a small number of partitions if the
application designer chooses. Each local partition may have local indexes on
the data it stores in order to provide high performance local data access.

A partitioned database supports a partitioned storage model, in which the
partitioning key is used to partition table data across a set of database
partitions. Index data is also partitioned with its corresponding tables, and
stored locally at each partition.

Before partitions can be used to store database data, they must be defined to
the database manager. Partitions are defined in a file called db2nodes.cfg. See
the Administration Guide for more details about defining partitions.

The partitioning key for a table in a table space on a partitioned nodegroup is
specified in the CREATE TABLE statement (or ALTER TABLE statement). If
not specified, a partitioning key for a table is created by default from the first
column of the primary key. If no primary key is specified, the default
partitioning key is the first column defined in that table that has a data type
other than a LONG or LOB data type. Partitioned tables must have at least

Chapter 2. Concepts 59

one column that is neither a LONG nor a LOB data type. A table in a table
space on a single-partition nodegroup will only have a partitioning key if it is
explicitly specified.

Hash partitioning is used to place a row on a partition as follows.
1. A hashing algorithm (partitioning function) is applied to all of the columns

of the partitioning key, which results in a partitioning map index being
generated.

2. This partitioning map index is used as an index into the partitioning map.
The partition number at that index in the partitioning map is the partition
where the row is stored.

3. Partitioning maps are associated with nodegroups, and tables are created
in table spaces which are on nodegroups.

DB2 supports partial declustering, which means that the table can be
partitioned across a subset of partitions in the system (that is, a nodegroup).
Tables do not have to be partitioned across all the partitions in the system.

Partitioning Maps
Each nodegroup is associated with a partitioning map, which is an array of
4 096 partition numbers. The partitioning map index produced by the
partitioning function for each row of a table is used as an index into the
partitioning map to determine partition on which a row is stored.

Figure 9 on page 61 shows how the row with the partitioning key value (c1,
c2, c3) is mapped to partitioning map index 2, which, in turn, references
partition p5.

Data Partitioning Across Multiple Partitions

60 SQL Reference

The partitioning map can be changed, allowing the data distribution to be
changed without modifying the partitioning key or the actual data. The new
partitioning map is specified as part of the REDISTRIBUTE NODEGROUP
command or API which uses it to redistribute the tables in the nodegroup. See
Command Reference or Administrative API Reference for further information.

Table Collocation
DB2 has the capability of recognizing when the data accessed for a join or
subquery is located at the same partition in the same nodegroup. When this
happens DB2 can choose to perform the join or subquery processing at the
partition where the data is stored, which often has significant performance
advantages. This situation is called table collocation. To be considered
collocated tables, the tables must:
v be in the same nodegroup (that is not being redistributed 14)
v have partitioning keys with the same number of columns
v have the corresponding columns of the partitioning key be partition

compatible (see “Partition Compatibility” on page 114).

OR
v be in a single partition nodegroup defined on the same partition.

14. While redistributing a nodegroup, tables in the nodegroup may be using different partitioning maps - they are not
collocated.

p0 p2 p5 p0 p2 p5 ... p0

0 1 3 4 52 4095...

Row

Partitioning Map

Nodegroup partitions are p0, p2, and p5

Note: Partition numbers start at 0.

(... c1, c2, c3 ...)

partitioning key

partitioning function maps (c1, c2, c3)
to partitioning map index 2

Figure 9. Data Distribution

Data Partitioning Across Multiple Partitions

Chapter 2. Concepts 61

Rows in collocated tables with the same partitioning key values will be
located on the same partition.

Data Partitioning Across Multiple Partitions

62 SQL Reference

Chapter 3. Language Elements

This chapter defines the basic syntax of SQL and language elements that are
common to many SQL statements.

Subject Page

Characters 63

Tokens 64

Identifiers 65

Naming Conventions and Implicit Object Name
Qualifications

66

Aliases 71

Authorization IDs and authorization-names 72

Data Types 75

Promotion of Data Types 90

Casting Between Data Types 91

Assignments and Comparisons 94

Rules for Result Data Types 107

Constants 115

Special Registers 118

Column Names 127

References to Host Variables 135

Functions 142

Methods 149

Conservative Binding Semantics 155

Expressions 157

Predicates 186

Search Conditions 205

Characters

The basic symbols of keywords and operators in the SQL language are
single-byte characters that are part of all IBM character sets. Characters of the
language are classified as letters, digits, or special characters.

© Copyright IBM Corp. 1993, 2000 63

A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through
z) letters plus the three characters ($, #, and @), which are included for
compatibility with host database products (for example, in code page 850, $ is
at X'24' # is at X'23', and @ is at X'40'). Letters also include the alphabetics
from the extended character sets. Extended character sets contain additional
alphabetic characters; for example, those with diacritical marks (u is an
example of a diacritical mark). The available characters depend on the code
page in use.

A digit is any of the characters 0 through 9.

A special character is any of the characters listed below:

blank − minus sign
" quotation mark or

double-quote
. period

% percent / slash
& ampersand : colon
' apostrophe or single

quote
; semicolon

(left parenthesis < less than
) right parenthesis = equals
* asterisk > greater than
+ plus sign ? question mark
, comma _ underline or

underscore
| vertical bar | caret
! exclamation mark

MBCS Considerations
All multi-byte characters are treated as letters, except for the double-byte
blank which is a special character.

Tokens

The basic syntactical units of the language are called tokens. A token is a
sequence of one or more characters. A token cannot contain blank characters,
unless it is a string constant or delimited identifier, which may contain blanks.
(These terms are defined later.)

Tokens are classified as ordinary or delimiter tokens:
v An ordinary token is a numeric constant, an ordinary identifier, a host

identifier, or a keyword.
Examples

1 .1 +2 SELECT E 3

Characters

64 SQL Reference

v A delimiter token is a string constant, a delimited identifier, an operator
symbol, or any of the special characters shown in the syntax diagrams. A
question mark is also a delimiter token when it serves as a parameter
marker, as explained under “PREPARE” on page 954.
Examples

, 'string' "fld1" = .

Spaces: A space is a sequence of one or more blank characters. Tokens other
than string constants and delimited identifiers must not include a space. Any
token may be followed by a space. Every ordinary token must be followed by
a space or a delimiter token if allowed by the syntax.

Comments: Static SQL statements may include host language comments or
SQL comments. Either type of comment may be specified wherever a space
may be specified, except within a delimiter token or between the keywords
EXEC and SQL. SQL comments are introduced by two consecutive hyphens
(--) and ended by the end of the line. For more information, see “SQL
Comments” on page 463.

Uppercase and Lowercase: Any token may include lowercase letters, but a
lowercase letter in an ordinary token is folded to uppercase, except for host
variables in the C language, which has case-sensitive identifiers. Delimiter
tokens are never folded to uppercase. Thus, the statement:

select * from EMPLOYEE where lastname = 'Smith';

is equivalent, after folding, to:
SELECT * FROM EMPLOYEE WHERE LASTNAME = 'Smith';

MBCS Considerations
Multi-byte alphabetic letters are not folded to uppercase. Single-byte
characters, a to z, are folded to uppercase.

Identifiers

An identifier is a token that is used to form a name. An identifier in an SQL
statement is either an SQL identifier or a host identifier.

SQL Identifiers
There are two types of SQL identifiers: ordinary and delimited

v An ordinary identifier is a letter followed by zero or more characters, each of
which is an uppercase letter, a digit, or the underscore character. An
ordinary identifier should not be identical to a reserved word (see
“Appendix H. Reserved Schema Names and Reserved Words” on page 1279
for information on reserved words).

Tokens

Chapter 3. Language Elements 65

v A delimited identifier is a sequence of one or more characters enclosed within
quotation marks (″). Two consecutive quotation marks are used to represent
one quotation mark within the delimited identifier. In this way an identifier
can include lowercase letters.

Examples of ordinary and delimited identifiers are:
WKLYSAL WKLY_SAL "WKLY_SAL" "WKLY SAL" "UNION" "wkly_sal"

Character conversions between identifiers created on a double-byte code page
but used by an application or database on a multi-byte code page may require
special consideration. After conversion to multi-byte, it is possible that such
identifiers may exceed the length limit for an identifier (see “Appendix O.
Japanese and Traditional-Chinese EUC Considerations” on page 1341 for
details).

Host Identifiers
A host identifier is a name declared in the host program. The rules for forming
a host identifier are the rules of the host language. A host identifier should
not be greater than 255 characters and should not begin with upper or lower
case spelling of ’SQL’ or ’DB2’.

Naming Conventions and Implicit Object Name Qualifications

The rules for forming a name depend on the type of the object designated by
the name. Database object names may be made up of a single identifier or
they may be schema qualified objects made up of two identifiers. Schema
qualified object names may be specified without the schema name. In such
cases, a schema name is implicit.

In dynamic SQL statements, a schema qualified object name implicitly uses
the CURRENT SCHEMA special register value as the qualifier for unqualified
object name references. By default it is set to the current authorization ID. See
“SET SCHEMA” on page 1033 for details. If the dynamic SQL statement is
from a package bound with the DYNAMICRULES BIND option, the
CURRENT SCHEMA special register is not used in qualification. In a
DYNAMICRULES BIND package, the package default qualifier is used as the
value for qualification of unqualified object references within dynamic SQL
statements.

In static SQL statements, the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified database object names. By default, it is
set to the package authorization ID. See the Command Reference for details.

The syntax diagrams use different terms for different types of names. The
following list defines these terms. For maximum length of various identifiers
refer to “Appendix A. SQL Limits” on page 1099.

Identifiers

66 SQL Reference

alias-name A schema qualified name that designates an
alias.

attribute-name An identifier that designates an attribute of a
structured data type.

authorization-name An identifier that designates a user or group.
Note the following restrictions on the
characters that can be used:
v Valid characters are A through Z, a through

z, 0 through 9, #, @, $ and _.
v The name must not begin with the

characters 'SYS', 'IBM' or 'SQL'.
v The name must not be: ADMINS, GUESTS,

LOCAL, PUBLIC, or USERS.
v A delimited authorization ID must not

contain lowercase letters.

bufferpool-name An identifier that designates a bufferpool.

column-name A qualified or unqualified name that
designates a column of a table or view. The
qualifier is a table-name, a view-name, a
nickname, or a correlation-name.

condition-name An identifier that designates a condition in an
SQL procedure.

constraint-name An identifier that designates a referential
constraint, primary key constraint, unique
constraint or a table check constraint.

correlation-name An identifier that designates a result table.

cursor-name An identifier that designates an SQL cursor.
For host compatibility, a hyphen character
may be used in the name.

data-source-name A identifier that designates a data source. This
identifier is the first of the three parts of
remote-object-name.

descriptor-name A colon followed by a host identifier that
designates an SQL descriptor area (SQLDA).
See “References to Host Variables” on
page 135 for a description of a host identifier.
Note that a descriptor-name never includes an
indicator variable.

distinct-type-name A qualified or unqualified name that

Naming Conventions

Chapter 3. Language Elements 67

designates a distinct type-name. An
unqualified distinct-type-name in an SQL
statement is implicitly qualified by the
database manager, depending on context.

event-monitor-name An identifier that designates an event monitor.

function-mapping-name An identifier that designates a function
mapping.

function-name A qualified or unqualified name that
designates a function. A unqualified
function-name in an SQL statement is
implicitly qualified by the database manager,
depending on context.

group-name An unqualified identifier that designates a
transform group defined for a structured type.

host-variable A sequence of tokens that designates a host
variable. A host variable includes at least one
host identifier, as explained in “References to
Host Variables” on page 135.

index-name A schema qualified name that designates an
index or an index specification.

label An identifier that designates a label in an SQL
procedure.

method-name An identifier that designates a method. The
schema context for a method is determined by
the schema of the subject type (or a supertype
of the subject type) of the method.

nickname A schema qualified name that designates a
federated server reference to a table or view.

nodegroup-name An identifier that designates a nodegroup.

package-name A schema qualified name that designates a
package.

parameter-name An identifier that names a parameter that can
be referenced in a procedure, user-defined
function, method, or index extension.

procedure-name A qualified or unqualified name that
designates a procedure. An unqualified
procedure-name in an SQL statement is
implicitly qualified by the database manager,
depending on context.

Naming Conventions

68 SQL Reference

remote-authorization-name An identifier that designates a data source
user. The rules for authorization names vary
from data source to data source.

remote-function-name A name that designates a function registered
to a data source database.

remote-object-name A three-part name that designates a data
source table or view and that identifies the
data source where the table or view resides.
The parts in this name are data-source-name,
remote-schema-name, and remote-table-name.

remote-schema-name A name that designates the schema that a data
source table or view belongs. This name is the
second of the three parts of
remote-object-name.

remote-table-name A name that designates a table or view at a
data source. This name is the third of the
three parts of remote-object-name.

remote-type-name A data type supported by a data source
database. Do not use the long form for system
built-in types (for example, use CHAR instead
of CHARACTER).

savepoint-name An identifier that designates a savepoint.

schema-name An identifier that provides a logical grouping
for SQL objects. A schema-name used as a
qualifier of the name of an object may be
implicitly determined:
v from the value of the CURRENT SCHEMA

special register
v from the value of the QUALIFIER

precompile/bind option
v based on a resolution algorithm that uses

the CURRENT PATH special register
v based on the schema name of another object

in the same SQL statement.

To avoid complications, it is recommended
that the schema name ″SESSION″ not be used
as a schema, except as the schema for declared
global temporary tables (which must use the
schema name ″SESSION″).

server-name An identifier that designates an application

Naming Conventions

Chapter 3. Language Elements 69

server. In a federated system, server-name also
designates the local name of a data source.

specific-name A qualified or unqualified name that
designates a specific name. An unqualified
specific-name in an SQL statement is
implicitly qualified by the database manager,
depending on context.

SQL-variable-name Defines the name of a local variable in an SQL
procedure statement. SQL-variable-names can
be used in other SQL statements where a
host-variable name is allowed. The name can
be qualified by the label of the compound
statement that declared the SQL variable.

statement-name An identifier that designates a prepared SQL
statement.

supertype-name A qualified or unqualified name that
designates the supertype of a type-name. An
unqualified supertype-name in an SQL
statement is implicitly qualified by the
database manager, depending on context.

table-name A schema qualified name that designates a
table.

tablespace-name An identifier that designates a table space.

trigger-name A schema qualified name that designates a
trigger.

type-mapping-name An identifier that designates a data type
mapping.

type-name A qualified or unqualified name that
designates a type-name. An unqualified
type-name in an SQL statement is implicitly
qualified by the database manager, depending
on context.

typed-table-name A schema qualified name that designates a
typed table.

typed-view-name A schema qualified name that designates a
typed view.

view-name A schema qualified name that designates a
view.

wrapper-name An identifier that designates a wrapper.

Naming Conventions

70 SQL Reference

Aliases

A table alias can be thought of as an alternative name for a table or view. A
table or view, therefore, can be referred to in an SQL statement by its name or
by a table alias.

An alias can be used wherever a table or view name can be used. An alias can
be created even though the object does not exist (though it must exist by the
time a statement referring to it is compiled). It can refer to another alias if no
circular or repetitive references are made along the chain of aliases. An alias
can only refer to a table, view, or alias within the same database. An alias
name cannot be used where a new table or view name is expected, such as in
the CREATE TABLE or CREATE VIEW statements; for example, if an alias
name of PERSONNEL is created then a subsequent statement such as
CREATE TABLE PERSONNEL... will cause an error.

The option of referring to a table or view by an alias is not explicitly shown in
the syntax diagrams or mentioned in the description of the SQL statement.

A new unqualified alias cannot have the same fully-qualified name as an
existing table, view, or alias.

The effect of using an alias in an SQL statement is similar to that of text
substitution. The alias, which must be defined when the SQL statement is
compiled, is replaced at statement compilation time by the qualified base table
or view name. For example, if PBIRD.SALES is an alias for
DSPN014.DIST4_SALES_148, then at compilation time:

SELECT * FROM PBIRD.SALES

effectively becomes
SELECT * FROM DSPN014.DIST4_SALES_148

In a federated system, the aforementioned uses and restrictions apply not only
to table aliases but also to aliases for nicknames. Thus, a nickname’s alias can
be used in lieu of the nickname in an SQL statement; an alias can be created
for a nickname that does not yet exist, provided that the nickname is created
before statements that reference the alias are compiled; an alias for a nickname
can refer to another alias for that nickname; and so on.

For syntax toleration of other relational database management system
applications, SYNONYM can be used in place of ALIAS in the CREATE
ALIAS and DROP ALIAS statements.

Refer to “CREATE ALIAS” on page 566 for more information about aliases.

Aliases

Chapter 3. Language Elements 71

Authorization IDs and authorization-names

An authorization ID is a character string that is obtained by the database
manager when a connection is established between the database manager and
either an application process or a program preparation process. It designates a
set of privileges. It may also designate a user or a group of users, but this
property is not controlled by the database manager.

Authorization IDs are used by the database manager to provide:
v Authorization checking of SQL statements
v Default value for the QUALIFIER precompile/bind option and the

CURRENT SCHEMA special register. Also, the authorization ID is included
in the default CURRENT PATH special register and FUNCPATH
precompile/bind option.

An authorization ID applies to every SQL statement. The authorization ID
that applies to a static SQL statement is the authorization ID that is used
during program binding. The authorization ID that applies to a dynamic SQL
statement is based on the DYNAMICRULES option supplied at bind time for
the package issuing the dynamic SQL statement. For a package bound with
DYNAMICRULES RUN, the authorization ID used is the authorization ID of
the user executing the package. For a package bound with DYNAMICRULES
BIND, the authorization ID used is the authorization ID of the package. This
is called the run-time authorization ID.

An authorization-name specified in an SQL statement should not be confused
with the authorization ID of the statement. An authorization-name is an
identifier that is used within various SQL statement. An authorization-name is
used in a CREATE SCHEMA statement to designate the owner of the schema.
An authorization-name is used in GRANT and REVOKE statements to
designate a target of the grant or revoke. Note that the premise of a grant of
privileges to X is that X or a member of the group X will subsequently be the
authorization ID of statements which require those privileges.

Examples:

v Assume SMITH is the userid and the authorization ID that the database
manager obtained when the connection was established with the
application process. The following statement is executed interactively:

GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Hence, in a dynamic SQL
statement the default value of the CURRENT SCHEMA special register and
in static SQL the default QUALIFIER precompile/bind option is SMITH.
Thus, the authority to execute the statement is checked against SMITH and

Authorization IDs and authorization-names

72 SQL Reference

SMITH is the table-name implicit qualifier based on qualification rules
described in “Naming Conventions and Implicit Object Name
Qualifications” on page 66.

KEENE is an authorization-name specified in the statement. KEENE is
given the SELECT privilege on SMITH.TDEPT.

v Assume SMITH has administrative authority and is the authorization ID of
the following dynamic SQL statements with no SET SCHEMA statement
issued during the session:

DROP TABLE TDEPT

Removes the SMITH.TDEPT table.
DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.
DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table. Note that KEENE.TDEPT and SMITH.TDEPT are
different tables.

CREATE SCHEMA PAYROLL AUTHORIZATION KEENE

KEENE is the authorization-name specified in the statement which creates a
schema called PAYROLL. KEENE is the owner of the schema PAYROLL and
is given CREATEIN, ALTERIN, and DROPIN privileges with the ability to
grant them to others.

Dynamic SQL Characteristics at run-time
The BIND and PRECOMPILE command option OWNER defines the
authorization ID of the package.

The BIND and PRECOMPILE command option QUALIFIER defines implicit
qualifier for unqualified objects contained in the package.

The BIND and PRECOMPILE command option DYNAMICRULES determines
whether dynamic SQL statements are processed at run time with run time
rules, DYNAMICRULES RUN, or with bind time rules, DYNAMICRULES
BIND. These rules indicate the setting of the value used as authorization ID
and for the setting of the value used for implicit qualification of unqualified
object references within dynamic SQL statements. The DYNAMICRULES
options have the effects described in the following tables:

Authorization IDs and authorization-names

Chapter 3. Language Elements 73

Table 1. Static SQL Characteristics affected by OWNER and QUALIFIER

Feature Only OWNER
Specified

Only QUALIFIER
Specified

QUALIFIER and
OWNER specified

Authorization ID
Used

ID of User specified
in the OWNER
option on the BIND
command

ID of User Binding
the Package

ID of User specified
in the OWNER
option on the BIND
command

Unqualified Object
Qualification Value
Used

ID of User specified
in the OWNER
option on the BIND
command

ID of User specified
in the QUALIFIER
option on the BIND
command

ID of User specified
in the QUALIFIER
option on the BIND
command

Table 2. Dynamic SQL Characteristics affected by DYNAMICRULES, OWNER and
QUALIFIER

Feature RUN BIND

Authorization ID Used ID of User Executing
Package

Authorization ID for the
package

Unqualified Object
Qualification Value Used

CURRENT SCHEMA
Special Register

Authorization ID for the
package

Considerations regarding the DYNAMICRULES option:
v The CURRENT SCHEMA special register will not be used to qualify

unqualified object references within dynamic SQL statements executed from
a package bound with DYNAMICRULES BIND. Instead, DB2 will use the
package default qualifier as is shown in the table. This is true even after
you issue the statement SET CURRENT SCHEMA in order to change the
CURRENT SCHEMA special register; the register value will be changed but
not used.

v The following dynamically prepared SQL statements can not be used within
a package bound with DYNAMICRULES BIND option: GRANT, REVOKE,
ALTER, CREATE, DROP, COMMENT ON, RENAME, SET INTEGRITY, SET
EVENT MONITOR STATE and queries that reference a nickname.

v If multiple packages are referenced during a single connection, dynamic
SQL will behave according to the BIND options for the package in which a
statement is bound.

v It is important to keep in mind that when binding a package with
DYNAMICRULES BIND, the binder of the package should not have any
authorities granted to them that you would not want the user of the
package to have since a dynamic statement will be using the authorization
ID of the package owner.

Dynamic SQL Characteristics at run-time

74 SQL Reference

Authorization IDs and Statement Preparation
If VALIDATE BIND is specified at BIND time, the privileges required to
manipulate tables and views must exist at bind time. If the privileges or the
referenced objects do not exist and SQLERROR NOPACKAGE is in effect, the
bind operation is unsuccessful. If SQLERROR CONTINUE is specified, then
the bind is successful and any statements in error are flagged. Any attempt to
execute a statement flagged as an error will result in an error in the
application.

If a package is bound with VALIDATE RUN, all normal BIND processing is
completed, but the privileges required to use the tables and views referenced
in the application need not exist at that time. If any privilege required for a
statement does not exist at bind time, an incremental bind is performed
whenever the statement is first executed within an application, and all
privileges required for the statement must exist. If any privilege does not
exist, execution of the statement is unsuccessful. When the authorization
check is performed at run time, it is performed using the package owner’s
authorization ID.

Data Types

For information about specifying the data types of columns, see “CREATE
TABLE” on page 712.

The smallest unit of data that can be manipulated in SQL is called a value.
How values are interpreted depends on the data type of their source. The
sources of values are:
v Constants
v Columns
v Host variables
v Functions
v Expressions
v Special registers.

DB2 supports a number of built-in datatypes, which are described in this
section. It also provides support for user-defined data types. See “User
Defined Types” on page 87 for a description of user-defined data types.

Figure 10 on page 76 illustrates the supported built-in data types.

Authorization IDs and Statement Preparation

Chapter 3. Language Elements 75

Nulls
All data types include the null value. The null value is a special value that is
distinct from all non-null values and thereby denotes the absence of a
(non-null) value. Although all data types include the null value, columns
defined as NOT NULL cannot contain null values.

Large Objects (LOBs)
The term large object and the generic acronym LOB are used to refer to any
BLOB, CLOB, or DBCLOB data type. LOB values are subject to the restrictions
that apply to LONG VARCHAR values as specified in “Restrictions Using
Varying-Length Character Strings” on page 79. For LOB strings, these
restrictions apply even when the length attribute of the string is 254 bytes or
less.

fixed
length

built-in
data
types

stringdatetime

floating
point

decimal

packed

DECIMAL

DATALINK

binary
integer

time timestamp date

16 bit 32 bit 64 bit

single
precision

double
precision

fixed
length

varying
length

varying
length

graphiccharacter
varying
length
binary

external
data

signed
numeric

exact approximate

SMALLINT BIGINTINTEGER

REAL DOUBLE

TIME

GRAPHIC

VARGRAPHICVARCHAR DBCLOBCLOB

CHAR

TIMESTAMP DATE

BLOB

Figure 10. Supported Built-in Data Types

Data Types

76 SQL Reference

Character Large Object (CLOB) Strings
A Character Large OBject (CLOB) is a varying-length string measured in bytes
that can be up to 2 gigabytes (2 147 483 647 bytes) long. A CLOB is used to
store large SBCS or mixed (SBCS and MBCS) character-based data such as
documents written with a single character set (and, therefore, has an SBCS or
mixed code page associated with it). Note that a CLOB is considered to be a
character string.

Double-Byte Character Large Object (DBCLOB) Strings
A Double-Byte Character Large OBject (DBCLOB) is a varying-length string of
double-byte characters that can be up to 1 073 741 823 characters long. A
DBCLOB is used to store large DBCS character based data such as documents
written with a single character set (and, therefore has a DBCS CCSID
associated with it). Note that a DBCLOB is considered to be a graphic string.

Binary Large Objects (BLOBs)
A Binary Large OBject (BLOB) is a varying-length string measured in bytes that
can be up to 2 gigabytes (2 147 483 647 bytes) long. A BLOB is primarily
intended to hold non-traditional data such as pictures, voice, and mixed
media. Another use is to hold structured data for exploitation by user-defined
types and user-defined functions. As with FOR BIT DATA character strings,
BLOB strings are not associated with a character set.

Manipulating Large Objects (LOBs) with Locators
Since LOB values can be very large, the transfer of these values from the
database server to client application program host variables can be time
consuming. However, it is also true that application programs typically
process LOB values a piece at a time, rather than as a whole. For those cases
where an application does not need (or want) the entire LOB value to be
stored in application memory, the application can reference a LOB value via a
large object locator (LOB locator).

A large object locator or LOB locator is a host variable with a value that
represents a single LOB value in the database server. LOB locators were
developed to provide users with a mechanism by which they could easily
manipulate very large objects in application programs without requiring them
to store the entire LOB value on the client machine where the application
program may be running.

For example, when selecting a LOB value, an application program could select
the entire LOB value and place it into an equally large host variable (which is
acceptable if the application program is going to process the entire LOB value
at once), or it could instead select the LOB value into a LOB locator. Then,
using the LOB locator, the application program can issue subsequent database
operations on the LOB value (such as applying the scalar functions SUBSTR,
CONCAT, VALUE, LENGTH, doing an assignment, searching the LOB with
LIKE or POSSTR, or applying UDFs against the LOB) by supplying the locator

Data Types

Chapter 3. Language Elements 77

value as input. The resulting output of the locator operation, for example the
amount of data assigned to a client host variable, would then typically be a
small subset of the input LOB value.

LOB locators may also represent more than just base values; they can also
represent the value associated with a LOB expression. For example, a LOB
locator might represent the value associated with:

SUBSTR(<lob 1> CONCAT <lob 2> CONCAT <lob 3>, <start>, <length>)

For normal host variables in an application program, when a null value is
selected into that host variable, the indicator variable is set to -1, signifying
that the value is null. In the case of LOB locators, however, the meaning of
indicator variables is slightly different. Since a locator host variable itself can
never be null, a negative indicator variable value indicates that the LOB value
represented by the LOB locator is null. The null information is kept local to
the client by virtue of the indicator variable value — the server does not track
null values with valid locators.

It is important to understand that a LOB locator represents a value, not a row
or location in the database. Once a value is selected into a locator, there is no
operation that one can perform on the original row or table that will affect the
value which is referenced by the locator. The value associated with a locator is
valid until the transaction ends, or until the locator is explicitly freed,
whichever comes first. Locators do not force extra copies of the data in order
to provide this function. Instead, the locator mechanism stores a description of
the base LOB value. The materialization of the LOB value (or expression, as
shown above) is deferred until it is actually assigned to some location —
either into a user buffer in the form of a host variable or into another record’s
field value in the database.

A LOB locator is only a mechanism used to refer to a LOB value during a
transaction; it does not persist beyond the transaction in which it was created.
Also, it is not a database type; it is never stored in the database and, as a
result, cannot participate in views or check constraints. However, since a
locator is a client representation of a LOB type, there are SQLTYPEs for LOB
locators so that they can be described within an SQLDA structure that is used
by FETCH, OPEN and EXECUTE statements.

Character Strings
A character string is a sequence of bytes. The length of the string is the number
of bytes in the sequence. If the length is zero, the value is called the empty
string. This value should not be confused with the null value.

Data Types

78 SQL Reference

Fixed-Length Character Strings
All values of a fixed-length string column have the same length, which is
determined by the length attribute of the column. The length attribute must
be between 1 and 254, inclusive.

Varying-Length Character Strings
Varying-length character strings are of three types: VARCHAR, LONG
VARCHAR, and CLOB.
v VARCHAR types are varying-length strings of up to 32 672 bytes.
v LONG VARCHAR types are varying-length strings of up to 32 700 bytes.
v CLOB types are varying-length strings of up to 2 gigabytes.

Restrictions Using Varying-Length Character Strings: Special restrictions
apply to an expression resulting in a varying-length string data type whose
maximum length is greater than 255 bytes; such expressions are not permitted
in:
v A SELECT list preceded by DISTINCT
v A GROUP BY clause
v An ORDER BY clause
v A column function with DISTINCT
v A subselect of a set operator other than UNION ALL.

In addition to the restrictions listed above, expressions resulting in LONG
VARCHAR, CLOB data types or structured type columns are not permitted in:
v A Basic, Quantified, BETWEEN, or IN predicate
v A column function
v VARGRAPHIC, TRANSLATE, and datetime scalar functions
v The pattern operand in a LIKE predicate or the search string operand in a

POSSTR function
v The string representation of a datetime value

The functions in the SYSFUN schema taking a VARCHAR as an argument
will not accept VARCHARs greater than 4 000 bytes long as an argument.
However, many of these functions also have an alternative signature accepting
a CLOB(1M). For these functions the user may explicitly cast the greater than
4 000 VARCHAR strings into CLOBs and then recast the result back into
VARCHARs of desired length.

NUL-Terminated Character Strings
NUL-terminated character strings found in C are handled differently,
depending on the standards level of the precompile option. See the C
language specific section in the Application Development Guide for more
information on the treatment of NUL-terminated character strings.

Data Types

Chapter 3. Language Elements 79

Character Subtypes
Each character string is further defined as one of:

Bit data Data that is not associated with a code page.

SBCS data Data in which every character is represented by a single byte.

Mixed data Data that may contain a mixture of characters from a
single-byte character set (SBCS) and a multi-byte character set
(MBCS).

SBCS and MBCS Considerations: SBCS data is supported only in a SBCS
database. Mixed data is only supported in an MBCS database.

Graphic Strings
A graphic string is a sequence of bytes which represents double-byte character
data. The length of the string is the number of double-byte characters in the
sequence. If the length is zero, the value is called the empty string. This value
should not be confused with the null value.

Graphic strings are not validated to ensure that their values contain only
double-byte character code points. 15 Rather, the database manager assumes
that double-byte character data is contained within graphic data fields. The
database manager checks that a graphic string value is an even number of
bytes in length.

A graphic string data type may be fixed length or varying length; the
semantics of fixed length and varying length are analogous to those defined
for character string data types.

Fixed-Length Graphic Strings
All values of a fixed-length graphic string column have the same length,
which is determined by the length attribute of the column. The length
attribute must be between 1 and 127, inclusive.

Varying-Length Graphic Strings
Varying-length graphic strings are of three types: VARGRAPHIC, LONG
VARGRAPHIC, and DBCLOB.
v VARGRAPHIC types are varying-length strings of up to 16 336 double-byte

characters.
v LONG VARGRAPHIC types are varying-length strings of up to 16 350

double-byte characters.
v DBCLOB types are varying-length strings of up to 1 073 741 823 double-byte

characters.

15. The exception to this rule is an application precompiled with the WCHARTYPE CONVERT option. In this case,
validation does occur. See “Programming in C and C++” in the Application Development Guide for details.

Data Types

80 SQL Reference

Special restrictions apply to an expression resulting in a varying-length
graphic string data type whose maximum length is greater than 127. Those
restrictions are the same as specified in “Restrictions Using Varying-Length
Character Strings” on page 79.

NUL-Terminated Graphic Strings
NUL-terminated graphic strings found in C are handled differently,
depending on the standards level of the precompile option. See the C
language specific section in the Application Development Guide for more
information on the treatment of NUL-terminated graphic strings.

This data type cannot be created in a table. It can only be used to insert data
into and retrieve data from the database.

Binary String
A binary string is a sequence of bytes. Unlike a character string which usually
contains text data, a binary string is used to hold non-traditional data such as
pictures. Note that character strings of the ’bit data’ subtype may be used for
similar purposes, but the two data types are not compatible. The BLOB scalar
function can be used to cast a character for bit string to a binary string. The
length of a binary string is the number of bytes. It is not associated with a
code page. Binary strings have the same restrictions as character strings (see
“Restrictions Using Varying-Length Character Strings” on page 79 for details).

Numbers
All numbers have a sign and a precision. The precision is the number of bits or
digits excluding the sign. The sign is considered positive if the value of a
number is zero.

Small Integer (SMALLINT)
A small integer is a two byte integer with a precision of 5 digits. The range of
small integers is -32 768 to 32 767.

Large Integer (INTEGER)
A large integer is a four byte integer with a precision of 10 digits. The range of
large integers is −2 147 483 648 to +2 147 483 647.

Big Integer (BIGINT)
A big integer is an eight byte integer with a precision of 19 digits. The range of
big integers is −9 223 372 036 854 775 808 to +9 223 372 036 854 775 807.

Single-Precision Floating-Point (REAL)
A single-precision floating-point number is a 32 bit approximation of a real
number. The number can be zero or can range from -3.402E+38 to -1.175E-37,
or from 1.175E-37 to 3.402E+38.

Data Types

Chapter 3. Language Elements 81

Double-Precision Floating-Point (DOUBLE or FLOAT)
A double-precision floating-point number is a 64 bit approximation of a real
number. The number can be zero or can range from -1.79769E+308 to
-2.225E-307, or from 2.225E-307 to 1.79769E+308.

Decimal (DECIMAL or NUMERIC)
A decimal value is a packed decimal number with an implicit decimal point.
The position of the decimal point is determined by the precision and the scale
of the number. The scale, which is the number of digits in the fractional part
of the number, cannot be negative or greater than the precision. The
maximum precision is 31 digits. For information on packed decimal
representation, see “Packed Decimal Numbers” on page 1124.

All values of a decimal column have the same precision and scale. The range
of a decimal variable or the numbers in a decimal column is −n to +n, where
the absolute value of n is the largest number that can be represented with the
applicable precision and scale. The maximum range is -10**31+1 to 10**31-1.

Datetime Values
The datetime data types are described below. Although datetime values can be
used in certain arithmetic and string operations and are compatible with
certain strings, they are neither strings nor numbers.

Date
A date is a three-part value (year, month, and day). The range of the year part
is 0001 to 9999. The range of the month part is 1 to 12. The range of the day
part is 1 to x, where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists
of 2 packed decimal digits. The first 2 bytes represent the year, the third byte
the month, and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which
is the appropriate length for a character string representation of the value.

Time
A time is a three-part value (hour, minute, and second) designating a time of
day under a 24-hour clock. The range of the hour part is 0 to 24; while the
range of the other parts is 0 to 59. If the hour is 24, the minute and second
specifications will be zero.

The internal representation of a time is a string of 3 bytes. Each byte is 2
packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is
the appropriate length for a character string representation of the value.

Data Types

82 SQL Reference

Timestamp
A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) that designates a date and time as defined above, except that
the time includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes, each of
which consists of 2 packed decimal digits. The first 4 bytes represent the date,
the next 3 bytes the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column, as described in the SQLDA, is 26 bytes,
which is the appropriate length for the character string representation of the
value.

String Representations of Datetime Values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in
an internal form that is transparent to the SQL user. Dates, times, and
timestamps can, however, also be represented by character strings, and these
representations directly concern the SQL user since there are no constants or
variables whose data types are DATE, TIME, or TIMESTAMP. Thus, to be
retrieved, a datetime value must be assigned to a character string variable.
Note that the CHAR function can be used to change a datetime value to a
string representation. The character string representation is normally the
default format of datetime values associated with the country code of the
database, unless overridden by specification of the DATETIME option when
the program is precompiled or bound to the database.

No matter what its length, a large object string or LONG VARCHAR cannot
be used as the string that represents a datetime value; otherwise an error is
raised (SQLSTATE 42884).

When a valid string representation of a datetime value is used in an operation
with an internal datetime value, the string representation is converted to the
internal form of the date, time, or timestamp before the operation is
performed. The following sections define the valid string representations of
datetime values.

Date Strings
A string representation of a date is a character string that starts with a digit
and has a length of at least 8 characters. Trailing blanks may be included;
leading zeros may be omitted from the month and day portions.

Valid string formats for dates are listed in Table 1. Each format is identified by
name and includes an associated abbreviation and an example of its use.

Data Types

Chapter 3. Language Elements 83

Table 3. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards
Organization

ISO yyyy-mm-dd 1991-10-27

IBM USA standard USA mm/dd/yyyy 10/27/1991

IBM European standard EUR dd.mm.yyyy 27.10.1991

Japanese Industrial Standard
Christian era

JIS yyyy-mm-dd 1991-10-27

Site-defined (see DB2 Data Links
Manager Quick Beginnings)

LOC Depends on
database
country code

—

Time Strings
A string representation of a time is a character string that starts with a digit
and has a length of at least 4 characters. Trailing blanks may be included; a
leading zero may be omitted from the hour part of the time and seconds may
be omitted entirely. If seconds are omitted, an implicit specification of 0
seconds is assumed. Thus, 13.30 is equivalent to 13.30.00.

Valid string formats for times are listed in Table 4. Each format is identified by
name and includes an associated abbreviation and an example of its use.

Table 4. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards
Organization2

ISO hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or
PM

1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese Industrial Standard
Christian Era

JIS hh:mm:ss 13:30:05

Site-defined (see DB2 Data Links
Manager Quick Beginnings)

LOC Depends on
database
country code

—

Notes:

1. In ISO, EUR and JIS format, .ss (or :ss) is optional.
2. The International Standards Organization recently changed the time format

so that it is identical with the Japanese Industrial Standard Christian Era.
Therefore, use JIS format if an application requires the current
International Standards Organization format.

Data Types

84 SQL Reference

3. In the case of the USA time string format, the minutes specification may
be omitted, indicating an implicit specification of 00 minutes. Thus 1 PM is
equivalent to 1:00 PM.

4. In the USA time format, the hour must not be greater than 12 and cannot
be 0 except for the special case of 00:00 AM. There is a single space before
the AM and PM. Using the ISO format of the 24-hour clock, the
correspondence between the USA format and the 24-hour clock is as
follows:

12:01 AM through 12:59 AM corresponds to 00.01.00 through 00.59.00.
01:00 AM through 11:59 AM corresponds to 01.00.00 through 11.59.00.
12:00 PM (noon) through 11:59 PM corresponds to 12.00.00 through
23.59.00.
12:00 AM (midnight) corresponds to 24.00.00 and 00:00 AM (midnight)
corresponds to 00.00.00.

Timestamp Strings
A string representation of a timestamp is a character string that starts with a
digit and has a length of at least 16 characters. The complete string
representation of a timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn.
Trailing blanks may be included. Leading zeros may be omitted from the
month, day, and hour part of the timestamp, and microseconds may be
truncated or entirely omitted. If any trailing zero digits are omitted in the
microseconds portion, an implicit specification of 0 is assumed for the missing
digits. Thus, 1991-3-2-8.30.00 is equivalent to 1991-03-02-08.30.00.000000.

SQL statements also support the ODBC string representation of a timestamp
as an input value only. The ODBC string representation of a timestamp has
the form yyyy-mm-dd hh:mm:ss.nnnnnn. See the CLI Guide and Reference for
more information on ODBC.

MBCS Considerations
Date, time and timestamp strings must contain only single-byte characters and
digits.

DATALINK Values
A DATALINK value is an encapsulated value that contains a logical reference
from the database to a file stored outside the database. The attributes of this
encapsulated value are as follows:

link type
The currently supported type of link is 'URL' (Uniform Resource Locator).

data location
The location of a file linked with a reference within DB2, in the form of a
URL. The allowed scheme names for this URL are:
v HTTP
v FILE

Data Types

Chapter 3. Language Elements 85

v UNC
v DFS

The other parts of the URL are:
v the file server name for the HTTP, FILE, and UNC schemes
v the cell name for the DFS scheme
v the full file path name within the file server or cell

See “Appendix P. BNF Specifications for DATALINKs” on page 1349 for
more information on exact BNF (Backus Naur form) specifications for
DATALINKs.

comment
Up to 254 bytes of descriptive information. This is intended for
application specific uses such as further or alternative identification of the
location of the data.

Leading and trailing blank characters are trimmed while parsing data location
attributes as URLs. Also, the scheme names ('http', 'file', 'unc', 'dfs') and host
are case-insensitive and are always stored in the database in uppercase. When
a DATALINK value is fetched from a database, an access token is embedded
within the URL attribute when appropriate. It is generated dynamically and is
not a permanent part of the DATALINK value stored in the database. For
more details, see the DATALINK related scalar functions, beginning with
“DLCOMMENT” on page 287.

It is possible for a DATALINK value to have only a comment attribute and an
empty data location attribute. Such a value may even be stored in a column
but, of course, no file will be linked to such a column. The total length of the
comment and the data location attribute of a DATALINK value is currently
limited to 200 bytes.

It should be noted that DATALINKs cannot be exchanged with a DRDA
server.

It is important to distinguish between these DATALINK references to files and
the LOB file reference variables described in the section entitled “References
to BLOB, CLOB, and DBCLOB Host Variables” on page 137. The similarity is
that they both contain a representation of a file. However:
v DATALINKs are retained in the database and both the links and the data in

the linked files can be considered as a natural extension of data in the
database.

v File reference variables exist temporarily on the client and they can be
considered as an alternative to a host program buffer.

Data Types

86 SQL Reference

Built-in scalar functions are provided to build a DATALINK value (DLVALUE)
and to extract the encapsulated values from a DATALINK value
(DLCOMMENT, DLLINKTYPE, DLURLCOMPLETE, DLURLPATH,
DLURLPATHONLY, DLURLSCHEME, DLURLSERVER).

User Defined Types

Distinct Types
A distinct type is a user-defined data type that shares its internal representation
with an existing type (its “source” type), but is considered to be a separate
and incompatible type for most operations. For example, one might want to
define a picture type, a text type, and an audio type, all of which have quite
different semantics, but which use the built-in data type BLOB for their
internal representation.

The following example illustrates the creation of a distinct type named
AUDIO:
CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB,
it is considered to be a separate type that is not comparable to a BLOB or to
any other type. This allows the creation of functions written specifically for
AUDIO and assures that these functions will not be applied to any other type
(pictures, text, etc.).

Distinct types are identified by qualified identifiers. If the schema name is not
used to qualify the distinct type name when used in other than the CREATE
DISTINCT TYPE, DROP DISTINCT TYPE, or COMMENT ON DISTINCT
TYPE statements, the SQL path is searched in sequence for the first schema
with a distinct type that matches. The SQL path is described in “CURRENT
PATH” on page 122.

Distinct types support strong typing by ensuring that only those functions
and operators explicitly defined on a distinct type can be applied to its
instances. For this reason, a distinct type does not automatically acquire the
functions and operators of its source type, since these may not be meaningful.
(For example, the LENGTH function of the AUDIO type might return the
length of its object in seconds rather than in bytes.)

Distinct types sourced on LONG VARCHAR, LONG VARGRAPHIC, LOB
types, or DATALINK are subject to the same restrictions as their source type.

However, certain functions and operators of the source type can be explicitly
specified to apply to the distinct type by defining user-defined functions that
are sourced on functions defined on the source type of the distinct type (see
“User-defined Type Comparisons” on page 106 for examples). The comparison

Data Types

Chapter 3. Language Elements 87

operators are automatically generated for user-defined distinct types, except
those using LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB,
DBCLOB, or DATALINK as the source type. In addition, functions are
generated to support casting from the source type to the distinct type and
from the distinct type to the source type.

Structured Types
A structured type is a user-defined data type that has a structure that is defined
in the database. It contains a sequence of named attributes, each of which has
a data type. A structured type also includes a set of method specifications.

A structured type may be used as the type of a table, view, or column. When
used as a type for a table or view, that table or view is known as a typed table
or typed view, respectively. For typed tables and typed views, the names and
data types of the attributes of the structured type become the names and data
types of the columns of this typed table or typed view. Rows of the typed
table or typed view can be thought of as a representation of instances of the
structured type. When used as a data type for a column, the column contains
values of that structured type (or values of any of that type’s subtypes, as
defined below). Methods are used to retrieve or manipulate attributes of a
structured column object.

Terminology: A supertype is a structured type for which other structured types,
called subtypes, have been defined. A subtype inherits all the attributes and
methods of its supertype and may have additional attributes and methods
defined. The set of structured types that are related to a common supertype is
called a type hierarchy and the type that does not have any supertype is called
the root type of the type hierarchy.

The term subtype applies to a user-defined structured type and all
user-defined structured types that are below it in the type hierarchy.
Therefore, a subtype of a structured type T is T and all structured types below
T in the hierarchy. A proper subtype of a structured type T is a structured type
below T in the type hierarchy.

There are restrictions on having recursive type definitions in a type hierarchy.
For this reason, it is necessary to develop a shorthand way of referring to the
specific type of recursive definitions that are allowed. The following
definitions are used:
v Directly uses: A type A is said to directly use another type B, if and only if

one of the following is true:
1. type A has an attribute of type B

2. type B is a subtype of A, or a supertype of A

v Indirectly uses: A type A is said to indirectly use a type B, if one of the
following is true:

Data Types

88 SQL Reference

1. type A directly uses type B

2. type A directly uses some type C, and type C indirectly uses type B

A type may not be defined so that one of its attribute types directly or
indirectly uses itself. If it is necessary to have such a configuration, consider
using a reference as the attribute. For example, with structured type attributes,
there cannot be an instance of ″employee″ with an attribute of ″manager″
when ″manager″ is of type ″employee″. There can, however, be an attribute of
″manager″ with a type of REF(employee).

A type cannot be dropped when certain other objects use the type, either
directly or indirectly. For example, a type cannot be dropped if a table or view
column makes a direct or indirect use of the type. See Table 27 on page 885 for
all objects that could restrict the dropping of types.

Structured type column values are subject to the restrictions that apply to
CLOB values as specified in “Restrictions Using Varying-Length Character
Strings” on page 79.

Reference (REF) Types
A reference type is a companion type to a structured type. Similar to a distinct
type, a reference type is a scalar type that shares a common representation
with one of the built-in data types. This same representation is shared for all
types in the type hierarchy. The reference type representation is defined when
the root type of a type hierarchy is created. When using a reference type, a
structured type is specified as a parameter of the type. This parameter is
called the target type of the reference.

The target of a reference is always a row in a typed table or view. When a
reference type is used, it may have a scope defined. The scope identifies a table
(called the target table) or view (called the target view) that contains the target
row of a reference value. The target table or view must have the same type as
the target type of the reference type. An instance of a scoped reference type
uniquely identifies a row in a typed table or typed view, called the target row.

Data Types

Chapter 3. Language Elements 89

Promotion of Data Types

Data types can be classified into groups of related data types. Within such
groups, a precedence order exists where one data type is considered to
precede another data type. This precedence is used to allow the promotion of
one data type to a data type later in the precedence ordering. For example,
the data type CHAR can be promoted to VARCHAR; INTEGER can be
promoted to DOUBLE PRECISION; but CLOB is NOT promotable to
VARCHAR.

Promotion of data types is used when:
v performing function resolution (see “Function Resolution” on page 144)
v casting user-defined types (see “Casting Between Data Types” on page 91)
v assigning user-defined types to built-in data types (see “User-defined Type

Assignments” on page 101).

Table 5 shows the precedence list (in order) for each data type and can be
used to determine the data types to which a given data type can be promoted.
The table shows that the best choice is always the same data type instead of
choosing to promote to another data type.

Table 5. Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)

CHAR CHAR, VARCHAR, LONG VARCHAR, CLOB

VARCHAR VARCHAR, LONG VARCHAR, CLOB

LONG
VARCHAR

LONG VARCHAR, CLOB

GRAPHIC GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DBCLOB

VARGRAPHIC VARGRAPHIC, LONG VARGRAPHIC, DBCLOB

LONG
VARGRAPHIC

LONG VARGRAPHIC, DBCLOB

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

SMALLINT SMALLINT, INTEGER, BIGINT, decimal, real, double

INTEGER INTEGER, BIGINT, decimal, real, double

BIGINT BIGINT, decimal, real, double

decimal decimal, real, double

real real, double

double double

Promotion of Data Types

90 SQL Reference

Table 5. Data Type Precedence Table (continued)

Data Type Data Type Precedence List (in best-to-worst order)

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

udt udt (same name) or a supertype of udt

REF(T) REF(S) (provided that S is a supertype of T)

Note:

The lower case types above are defined as follows:

decimal
= DECIMAL(p,s) or NUMERIC(p,s)

real = REAL or FLOAT(n) where n is not greater than 24

double = DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is greater
than 24

udt = a user-defined type

Shorter and longer form synonyms of the data types listed are considered to be the
same as the synonym listed.

Casting Between Data Types

There are many occasions where a value with a given data type needs to be
cast to a different data type or to the same data type with a different length,
precision or scale. Data type promotion (as defined in “Promotion of Data
Types” on page 90) is one example where the promotion of one data type to
another data type requires that the value is cast to the new data type. A data
type that can be cast to another data type is castable from the source data type
to the target data type.

Casting between data types can be done explicitly using the CAST
specification (see “CAST Specifications” on page 173) but may also occur
implicitly during assignments involving a user-defined types (see
“User-defined Type Assignments” on page 101). Also, when creating sourced
user-defined functions (see “CREATE FUNCTION” on page 589), the data
types of the parameters of the source function must be castable to the data
types of the function that is being created.

The supported casts between built-in data types are shown in Table 6 on
page 93.

Promotion of Data Types

Chapter 3. Language Elements 91

The following casts involving distinct types are supported:
v cast from distinct type DT to its source data type S

v cast from the source data type S of distinct type DT to distinct type DT

v cast from distinct type DT to the same distinct type DT

v cast from a data type A to distinct type DT where A is promotable to the
source data type S of distinct type DT (see “Promotion of Data Types” on
page 90)

v cast from an INTEGER to distinct type DT with a source data type
SMALLINT

v cast from a DOUBLE to distinct type DT with a source data type REAL
v cast from a VARCHAR to distinct type DT with a source data type CHAR
v cast from a VARGRAPHIC to distinct type DT with a source data type

GRAPHIC.

It is not possible to cast a structured type value to something else. A
structured type ST should not need to be cast to one of its supertypes, since
all methods on the supertypes of ST are applicable to ST. If the desired
operation is only applicable to a subtype of ST, then use the
subtype-treatment expression to treat ST as one of its subtypes. See “Subtype
Treatment” on page 184 for details.

When a user-defined data type involved in a cast is not qualified by a schema
name, the SQL path is used to find the first schema that includes the
user-defined data type by that name. The SQL path is described further in
“CURRENT PATH” on page 122.

The following casts involving reference types are supported:
v cast from reference type RT to its representation data type S

v cast from the representation data type S of reference type RT to reference
type RT

v cast from reference type RT with target type T to a reference type RS with
target type S where S is a supertype of T.

v cast from a data type A to reference type RT where A is promotable to the
representation data type S of reference type RT (see “Promotion of Data
Types” on page 90).

When the target type of a reference data type involved in a cast is not
qualified by a schema name, the SQL path is used to find the first schema that
includes the user-defined data type by that name. The SQL path is described
further in “CURRENT PATH” on page 122.

Casting Between Data Types

92 SQL Reference

Table 6. Supported Casts between Built-in Data Types

Target Data Type →

Source Data Type ↓

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G
V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

L
O
N
G
V
A
R
G

D
B
C
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

B
L
O
B

SMALLINT Y Y Y Y Y Y Y - - - - - - - - - - -

INTEGER Y Y Y Y Y Y Y - - - - - - - - - - -

BIGINT Y Y Y Y Y Y Y - - - - - - - - - - -

DECIMAL Y Y Y Y Y Y Y - - - - - - - - - - -

REAL Y Y Y Y Y Y - - - - - - - - - - - -

DOUBLE Y Y Y Y Y Y - - - - - - - - - - - -

CHAR Y Y Y Y - - Y Y Y Y - Y - - Y Y Y Y

VARCHAR Y Y Y Y - - Y Y Y Y - Y - - Y Y Y Y

LONG VARCHAR - - - - - - Y Y Y Y - - - - - - - Y

CLOB - - - - - - Y Y Y Y - - - - - - - Y

GRAPHIC - - - - - - - - - - Y Y Y Y - - - Y

VARGRAPHIC - - - - - - - - - - Y Y Y Y - - - Y

LONG VARG - - - - - - - - - - Y Y Y Y - - - Y

DBCLOB - - - - - - - - - - Y Y Y Y - - - Y

DATE - - - - - - Y Y - - - - - - Y - - -

TIME - - - - - - Y Y - - - - - - - Y - -

TIMESTAMP - - - - - - Y Y - - - - - - Y Y Y -

BLOB - - - - - - - - - - - - - - - - - Y

Notes

v See the description preceding the table for information on supported casts involving user-defined
types and reference types.

v Only a DATALINK type can be cast to a DATALINK type.

v It is not possible to cast a structured type value to anything else.

Casting Between Data Types

Chapter 3. Language Elements 93

Assignments and Comparisons

The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of INSERT, UPDATE, FETCH,
SELECT INTO, VALUES INTO and SET transition-variable statements.
Arguments of functions are also assigned when invoking a function.
Comparison operations are performed during the execution of statements that
include predicates and other language elements such as MAX, MIN,
DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands
involved must be compatible. The compatibility rule also applies to set
operations (see “Rules for Result Data Types” on page 107). The compatibility
matrix is as follows.

Table 7. Data Type Compatibility for Assignments and Comparisons

Operands Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

Date Time Time-
stamp

Binary
String

UDT

Binary
Integer

Yes Yes Yes No No No No No No 2

Decimal
Number

Yes Yes Yes No No No No No No 2

Floating
Point

Yes Yes Yes No No No No No No 2

Character
String

No No No Yes No 1 1 1 No 3 2

Graphic
String

No No No No Yes No No No No 2

Date No No No 1 No Yes No No No 2

Time No No No 1 No No Yes No No 2

Timestamp No No No 1 No No No Yes No 2

Binary
String

No No No No 3 No No No No Yes 2

UDT 2 2 2 2 2 2 2 2 2 Yes

Assignments and Comparisons

94 SQL Reference

Table 7. Data Type Compatibility for Assignments and Comparisons (continued)

Operands Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

Date Time Time-
stamp

Binary
String

UDT

Note:
1 The compatibility of datetime values and character strings is limited to assignment and

comparison:
v Datetime values can be assigned to character string columns and to character string variables

as explained in “Datetime Assignments” on page 99.
v A valid string representation of a date can be assigned to a date column or compared with a

date.
v A valid string representation of a time can be assigned to a time column or compared with a

time.
v A valid string representation of a timestamp can be assigned to a timestamp column or

compared with a timestamp.
2 A user-defined distinct type (UDDT) value is only comparable to a value defined with the same

UDDT. In general, assignments are supported between a distinct type value and its source data
type. A user-defined structured type is not comparable and can only be assigned to an operand
of the same structured type or one of its supertypes. For additional information see
“User-defined Type Assignments” on page 101.

3 Note that this means that character strings defined with the FOR BIT DATA attribute are also
not compatible with binary strings.

4 A DATALINK operand can only be assigned to another DATALINK operand. The DATALINK
value can only be assigned to a column if the column is defined with NO LINK CONTROL or
the file exists and is not already under file link control.

5 For information on assignment and comparison of reference types see “Reference Type
Assignments” on page 102 and “Reference Type Comparisons” on page 107.

A basic rule for assignment operations is that a null value cannot be assigned
to a column that cannot contain null values, nor to a host variable that does
not have an associated indicator variable. (See “References to Host Variables”
on page 135 for a discussion of indicator variables.)

Numeric Assignments
The basic rule for numeric assignments is that the whole part of a decimal or
integer number is never truncated. If the scale of the target number is less
than the scale of the assigned number the excess digits in the fractional part
of a decimal number are truncated.

Decimal or Integer to Floating-Point
Floating-point numbers are approximations of real numbers. Hence, when a
decimal or integer number is assigned to a floating-point column or variable,
the result may not be identical to the original number.

Assignments and Comparisons

Chapter 3. Language Elements 95

Floating-Point or Decimal to Integer
When a floating-point or decimal number is assigned to an integer column or
variable, the fractional part of the number is lost.

Decimal to Decimal
When a decimal number is assigned to a decimal column or variable, the
number is converted, if necessary, to the precision and the scale of the target.
The necessary number of leading zeros is appended or eliminated, and, in the
fractional part of the number, the necessary number of trailing zeros is
appended, or the necessary number of trailing digits is eliminated.

Integer to Decimal
When an integer is assigned to a decimal column or variable, the number is
converted first to a temporary decimal number and then, if necessary, to the
precision and scale of the target. The precision and scale of the temporary
decimal number is 5,0 for a small integer, or 11,0 for a large integer, or 19,0 for
a big integer.

Floating-Point to Decimal
When a floating-point number is converted to decimal, the number is first
converted to a temporary decimal number of precision 31, and then, if
necessary, truncated to the precision and scale of the target. In this conversion,
the number is rounded (using floating-point arithmetic) to a precision of 31
decimal digits. As a result, a number less than 0.5*10-31 is reduced to 0. The
scale is given the largest possible value that allows the whole part of the
number to be represented without loss of significance.

String Assignments
There are two types of assignments:
v storage assignment is when a value is assigned to a column or parameter of a

function
v retrieval assignment is when a value is assigned to a host variable.

The rules for string assignment differ based on the assignment type.

Storage Assignment
The basic rule is that the length of the string assigned to a column or function
parameter must not be greater than the length attribute of the column or the
function parameter. When the length of the string is greater than the length
attribute of the column or the function parameter, the following actions may
occur:
v the string is assigned with trailing blanks truncated (from all string types

except long strings) to fit the length attribute of the target column or
function parameter

v an error is returned (SQLSTATE 22001) when:
– non-blank characters would be truncated from other than a long string

Assignments and Comparisons

96 SQL Reference

– any character (or byte) would be truncated from a long string.

When a string is assigned to a fixed-length column and the length of the
string is less than the length attribute of the target, the string is padded to the
right with the necessary number of blanks. The pad character is always a
blank even for columns defined with the FOR BIT DATA attribute.

Retrieval Assignment
The length of a string assigned to a host variable may be longer than the
length attribute of the host variable. When a string is assigned to a host
variable and the length of the string is longer than the length attribute of the
variable, the string is truncated on the right by the necessary number of
characters (or bytes). When this occurs, a warning is returned (SQLSTATE
01004) and the value ’W’ is assigned to the SQLWARN1 field of the SQLCA.

Furthermore, if an indicator variable is provided, and the source of the value
is not a LOB, the indicator variable is set to the original length of the string.

When a character string is assigned to a fixed-length variable and the length
of the string is less than the length attribute of the target, the string is padded
to the right with the necessary number of blanks. The pad character is always
a blank even for strings defined with the FOR BIT DATA attribute.

Retrieval assignment of C NUL-terminated host variables is handled based on
options specified with the PREP or BIND command. See the section on
programming in C and C++ in the Application Development Guide for details.

Conversion Rules for String Assignments
A character string or graphic string assigned to a column or host variable is
first converted, if necessary, to the code page of the target. Character
conversion is necessary only if all of the following are true:
v The code pages are different.
v The string is neither null nor empty.
v Neither string has a code page value of 0 (FOR BIT DATA). 16

MBCS Considerations for Character String Assignments
There are several considerations when assigning character strings that could
contain both single and multi-byte characters. These considerations apply to
all character strings, including those defined as FOR BIT DATA.
v Blank padding is always done using the single-byte blank character (X'20').

16. When acting as a DRDA application server, input host variables are converted to the code page of the application
server, even if being assigned, compared or combined with a FOR BIT DATA column. If the SQLDA has been
modified to identify the input host variable as FOR BIT DATA, conversion is not performed.

Assignments and Comparisons

Chapter 3. Language Elements 97

v Blank truncation is always done based on the single-byte blank character
(X'20'). The double-byte blank character is treated as any other character
with respect to truncation.

v Assignment of a character string to a host variable may result in
fragmentation of MBCS characters if the target host variable is not large
enough to contain the entire source string. If an MBCS character is
fragmented, each byte of the MBCS character fragment in the target is set to
a single-byte blank character (X'20'), no further bytes are moved from the
source, and SQLWARN1 is set to ’W’ to indicate truncation. Note that the
same MBCS character fragment handling applies even when the character
string is defined as FOR BIT DATA.

DBCS Considerations for Graphic String Assignments
Graphic string assignments are processed in a manner analogous to that for
character strings. Graphic string data types are compatible only with other
graphic string data types, and never with numeric, character string, or
datetime data types.

If a graphic string value is assigned to a graphic string column, the length of
the value must not be greater than the length of the column.

If a graphic string value (the ’source’ string) is assigned to a fixed length
graphic string data type (the ’target’, which can be a column or host variable),
and the length of the source string is less than that of the target, the target
will contain a copy of the source string which has been padded on the right
with the necessary number of double-byte blank characters to create a value
whose length equals that of the target.

If a graphic string value is assigned to a graphic string host variable and the
length of the source string is greater than the length of the host variable, the
host variable will contain a copy of the source string which has been
truncated on the right by the necessary number of double-byte characters to
create a value whose length equals that of the host variable. (Note that for this
scenario, truncation need not be concerned with bisection of a double-byte
character; if bisection were to occur, either the source value or target host
variable would be an ill-defined graphic string data type.) The warning flag
SQLWARN1 in the SQLCA will be set to ’W’. The indicator variable, if
specified, will contain the original length (in double-byte characters) of the
source string. In the case of DBCLOB, however, the indicator variable does not
contain the original length.

Retrieval assignment of C NUL-terminated host variables (declared using
wchar_t) is handled based on options specified with the PREP or BIND
command. See the section on programming in C and C++ in the Application
Development Guide for details.

Assignments and Comparisons

98 SQL Reference

Datetime Assignments
The basic rule for datetime assignments is that a DATE, TIME, or
TIMESTAMP value may only be assigned to a column with a matching data
type (whether DATE, TIME, or TIMESTAMP) or to a fixed− or varying−length
character string variable or string column. The assignment must not be to a
LONG VARCHAR, BLOB, or CLOB variable or column.

When a datetime value is assigned to a character string variable or string
column, conversion to a string representation is automatic. Leading zeros are
not omitted from any part of the date, time, or timestamp. The required
length of the target will vary, depending on the format of the string
representation. If the length of the target is greater than required, and the
target is a fixed-length string, it is padded on the right with blanks. If the
length of the target is less than required, the result depends on the type of
datetime value involved, and on the type of target.

When the target is a host variable, the following rules apply:
v For a DATE: If the variable length is less than 10 bytes, an error occurs.
v For a TIME: If the USA format is used, the length of the variable must not

be less than 8; in other formats the length must not be less than 5.
If ISO or JIS formats are used, and if the length of the host variable is less
than 8, the seconds part of the time is omitted from the result and assigned
to the indicator variable, if provided. The SQLWARN1 field of the SQLCA
is set to indicate the omission.

v For a TIMESTAMP: If the host variable is less than 19 bytes, an error
occurs. If the length is less than 26, but greater than or equal to 19 bytes,
trailing digits of the microseconds part of the value are omitted. The
SQLWARN1 field of the SQLCA is set to indicate the omission.

For further information on string lengths for datetime values, see “Datetime
Values” on page 82.

DATALINK Assignments
The assignment of a value to a DATALINK column results in the
establishment of a link to a file unless the linkage attributes of the value are
empty or the column is defined with NO LINK CONTROL. In cases where a
linked value already exists in the column, that file is unlinked. Assigning a
null value where a linked value already exists also unlinks the file associated
with the old value.

If the application provides the same data location as already exists in the
column, the link is retained. There are two reasons that this might be done:
v the comment is being changed

Assignments and Comparisons

Chapter 3. Language Elements 99

v if the table is placed in Datalink Reconcile Not Possible (DRNP) state, the
links in the table can be reinstated by providing linkage attributes identical
to the ones in the column.

A DATALINK value may be assigned to a column in any of the following
ways:
v The DLVALUE scalar function can be used to create a new DATALINK

value and assign it to a column. Unless the value contains only a comment
or the URL is exactly the same, the act of assignment will link the file.

v A DATALINK value can be constructed in a CLI parameter using the CLI
function SQLBuildDataLink. This value can then be assigned to a column.
Unless the value contains only a comment or the URL is exactly the same,
the act of assignment will link the file.

When assigning a value to a DATALINK column, the following error
conditions return SQLSTATE 428D1:
v Data Location (URL) format is invalid (reason code 21).
v File server is not registered with this database (reason code 22).
v Invalid link type specified (reason code 23).
v Invalid length of comment or URL (reason code 27).

Note that the size of a URL parameter or function result is the same on
both input or output and is bound by the length of the DATALINK column.
However, in some cases the URL value returned has an access token
attached. In situations where this is possible, the output location must have
sufficient storage space for the access token and the length of the
DATALINK column. Hence, the actual length of the comment and URL in
its fully expanded form, including any default URL scheme or default
hostname, provided on input should be restricted to accomodate the output
storage space. If the restricted length is exceeded, this error is raised.

When the assignment is also creating a link, the following errors can occur:
v File server not currently available (SQLSTATE 57050).
v File does not exist (SQLSTATE 428D1, reason code 24).
v Referenced file cannot be accessed for linking (reason code 26).
v File already linked to another column (SQLSTATE 428D1, reason code 25).

Note that this error will be raised even if the link is to a different database.

In addition, when the assignment removes an existing link, the following
errors can occur:
v File server not currently available (SQLSTATE 57050).
v File with referential integrity control is not in a correct state according to

the Data Links File Manager (SQLSTATE 58004).

Assignments and Comparisons

100 SQL Reference

A DATALINK value may be retrieved from the database in either of the
following ways:
v Portions of a DATALINK value can be assigned to host variables by use of

scalar functions (such as DLLINKTYPE or DLURLPATH).

Note that usually no attempt is made to access the file server at retrieval
time.17 It is therefore possible that subsequent attempts to access the file
server through file system commands might fail.

When retrieving a DATALINK, the registry of file servers at the database
server is checked to confirm that the file server is still registered with the
database server (SQLSTATE 55022). In addition, a warning may be returned
when retrieving a DATALINK value because the table is in reconcile pending
or reconcile not possible state (SQLSTATE 01627).

User-defined Type Assignments
With user-defined types, different rules are applied for assignments to host
variables than are used for all other assignments.

Distinct Types: Assignment to host variables is done based on the source type
of the distinct type. That is, it follows the rule:
v A value of a distinct type on the right hand side of an assignment is

assignable to a host variable on the left hand side if and only if the source
type of this distinct type is assignable to this host variable.

If the target of the assignment is a column based on a distinct type, the source
data type must be castable to the target data type as described in “Casting
Between Data Types” on page 91 for user-defined types.

Structured Types: Assignment to and from host variables is based on the
declared type of the host variable. That is, it follows the rule:

A value of a structured type on the right hand side of an assignment is
assignable to a host variable on the left hand side if and only if the
declared type of the host variable is the structured type or a supertype of
the structured type.

If the target of the assignment is a column of a structured type, the source
data type must be the target data type or a subtype of the target data type.

17. It may be necessary to access the file server to determine the prefix name associated with a path. This can be
changed at the file server when the mount point of a file system is moved. First access of a file on a server will
cause the required values to be retrieved from the file server and cached at the database server for the subsequent
retrieval of DATALINK values for that file server. An error is returned if the file server cannot be accessed
(SQLSTATE 57050).

Assignments and Comparisons

Chapter 3. Language Elements 101

Reference Type Assignments
A reference type with a target type of T can be assigned to a reference type
column that is also a reference type with target type of S where S is a
supertype of T. If an assignment is made to a scoped reference column or
variable, no check is performed to ensure that the actual value being assigned
exists in the target table or view defined by the scope.

Assignment to host variables is done based on the representation type of the
reference type. That is, it follows the rule:
v A value of a reference type on the right hand side of an assignment is

assignable to a host variable on the left hand side if and only if the
representation type of this reference type is assignable to this host variable.

If the target of the assignment is a column, and the right hand side of the
assignment is a host variable, the host variable must be explicitly cast to the
reference type of the target column.

Numeric Comparisons
Numbers are compared algebraically; that is, with regard to sign. For
example, −2 is less than +1.

If one number is an integer and the other is decimal, the comparison is made
with a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is
made with a temporary copy of one of the numbers that has been extended
with trailing zeros so that its fractional part has the same number of digits as
the other number.

If one number is floating-point and the other is integer or decimal, the
comparison is made with a temporary copy of the other number, which has
been converted to double-precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

String Comparisons
Character strings are compared according to the collating sequence specified
when the database was created, except those with a FOR BIT DATA attribute
which are always compared according to their bit values.

When comparing character strings of unequal lengths, the comparison is
made using a logical copy of the shorter string which is padded on the right
with single-byte blanks sufficient to extend its length to that of the longer
string. This logical extension is done for all character strings including those
tagged as FOR BIT DATA.

Assignments and Comparisons

102 SQL Reference

Character strings (except character strings tagged as FOR BIT DATA) are
compared according to the collating sequence specified when the database
was created (see the Administration Guide for more information on collating
sequences specified at database creation time). For example, the default
collating sequence supplied by the database manager may give lowercase and
uppercase versions of the same character the same weight. The database
manager performs a two-pass comparison to ensure that only identical strings
are considered equal to each other. In the first pass, strings are compared
according to the database collating sequence. If the weights of the characters
in the strings are equal, a second ″tie-breaker″ pass is performed to compare
the strings on the basis of their actual code point values.

Two strings are equal if they are both empty or if all corresponding bytes are
equal. If either operand is null, the result is unknown.

Long strings and LOB strings are not supported in any comparison operations
that use the basic comparison operators (=, <>, <, >, <=, and >=). They are
supported in comparisons using the LIKE predicate and the POSSTR function.
See “LIKE Predicate” on page 197 and see “POSSTR” on page 336 for details.

Portions of long strings and LOB strings of up to 4 000 bytes can be compared
using the SUBSTR and VARCHAR scalar functions. For example, given the
columns:

MY_SHORT_CLOB CLOB(300)
MY_LONG_VAR LONG VARCHAR

then the following is valid:
WHERE VARCHAR(MY_SHORT_CLOB) > VARCHAR(SUBSTR(MY_LONG_VAR,1,300))

Examples:

For these examples, ’A’, ’Á’, ’a’, and ’á’, have the code point values X’41’,
X’C1’, X’61’, and X’E1’ respectively.

Consider a collating sequence where the characters ’A’, ’Á’, ’a’, ’á’ have
weights 136, 139, 135, and 138. Then the characters sort in the order of their
weights as follows:
’a’ < ’A’ < ’á’ < ’Á’

Now consider four DBCS characters D1, D2, D3, and D4 with code points
0xC141, 0xC161, 0xE141, and 0xE161, respectively. If these DBCS characters are
in CHAR columns, they sort as a sequence of bytes according to the collation
weights of those bytes. First bytes have weights of 138 and 139, therefore D3
and D4 come before D2 and D1; second bytes have weights of 135 and 136.
Hence, the order is as follows:

Assignments and Comparisons

Chapter 3. Language Elements 103

D4 < D3 < D2 < D1

However, if the values being compared have the FOR BIT DATA attribute, or
if these DBCS characters were stored in a GRAPHIC column, the collation
weights are ignored, and characters are compared according to their code
points as follows:
’A’ < ’a’ < ’Á’ < ’á’

The DBCS characters sort as sequence of bytes, in the order of code points as
follows:
D1 < D2 < D3 < D4

Now consider a collating sequence where the characters ’A’, ’Á’, ’a’, ’á’ have
(non-unique) weights 74, 75, 74, and 75. Considering collation weights alone
(first pass), ’a’ is equal to ’A’, and ’á’ is equal to ’Á’. The code points of the
characters are used to break the tie (second pass) as follows:
’A’ < ’a’ < ’Á’ < ’á’

DBCS characters in CHAR columns sort a sequence of bytes, according to
their weights (first pass) and then according to their code points to break the
tie (second pass). First bytes have equal weights, so the code points (0xC1 and
0xE1) break the tie. Therefore, characters D1 and D2 sort before characters D3
and D4. Then the second bytes are compared in similar way, and the final
result is as follows:
D1 < D2 < D3 < D4

Once again, if the data in CHAR columns have the FOR BIT DATA attribute,
or if the DBCS characters are stored in a GRAPHIC column, the collation
weights are ignored, and characters are compared according to their code
points:
D1 < D2 < D3 < D4

For this particular example, the result happens to be the same as when
collation weights were used, but obviously this is not always the case.

Conversion Rules for Comparison
When two strings are compared, one of the strings is first converted, if
necessary, to the code page set of the other string. For details, see “Rules for
String Conversions” on page 111.

Ordering of Results
Results that require sorting are ordered based on the string comparison rules
discussed in “String Comparisons” on page 102. The comparison is performed
at the database server. On returning results to the client application, code
page conversion may be performed. This subsequent code page conversion
does not affect the order of the server-determined result set.

Assignments and Comparisons

104 SQL Reference

MBCS Considerations for String Comparisons
Mixed SBCS/MBCS character strings are compared according to the collating
sequence specified when the database was created. For databases created with
default (SYSTEM) collation sequence, all single-byte ASCII characters are
sorted in correct order, but double-byte characters are not necessarily in code
point sequence. For databases created with IDENTITY sequence, all
double-byte characters are correctly sorted in their code point order, but
single-byte ASCII characters are sorted in their code point order as well. For
databases created with COMPATIBILITY sequence, a compromise order is
used that sorts properly for most double-byte characters, and is almost correct
for ASCII. This was the default collation table in DB2 Version 2.

Mixed character strings are compared byte-by-byte. This may result in
unusual results for multi-byte characters that occur in mixed strings, because
each byte is considered independently.

Example:

For this example, ’A’, ’B’, ’a’, and ’b’ double-byte characters have the code
point values X'8260', X'8261', X'8281', and X'8282', respectively.

Consider a collating sequence where the code points X'8260', X'8261', X'8281',
and X'8282' have weights 96, 65, 193, and 194. Then:

'B' < 'A' < 'a' < 'b'

and
'AB' < 'AA' < 'Aa' < 'Ab' < 'aB' < 'aA' < 'aa' < 'ab'

Graphic string comparisons are processed in a manner analogous to that for
character strings.

Graphic string comparisons are valid between all graphic string data types
except LONG VARGRAPHIC. LONG VARGRAPHIC and DBCLOB data types
are not allowed in a comparison operation.

For graphic strings, the collating sequence of the database is not used. Instead,
graphic strings are always compared based on the numeric (binary) values of
their corresponding bytes.

Using the previous example, if the literals were graphic strings, then:
'A' < 'B' < 'a' < 'b'

and
'AA' < 'AB' < 'Aa' < 'Ab' < 'aA' < 'aB' < 'aa' < 'ab'

Assignments and Comparisons

Chapter 3. Language Elements 105

When comparing graphic strings of unequal lengths, the comparison is made
using a logical copy of the shorter string which is padded on the right with
double-byte blank characters sufficient to extend its length to that of the
longer string.

Two graphic values are equal if they are both empty or if all corresponding
graphics are equal. If either operand is null, the result is unknown. If two
values are not equal, their relation is determined by a simple binary string
comparison.

As indicated in this section, comparing strings on a byte by byte basis can
produce unusual results; that is, a result that differs from what would be
expected in a character by character comparison. The examples shown here
assume the same MBCS code page, however, the situation can be further
complicated when using different multi-byte code pages with the same
national language. For example, consider the case of comparing a string from
a Japanese DBCS code page and a Japanese EUC code page.

Datetime Comparisons
A DATE, TIME, or TIMESTAMP value may be compared either with another
value of the same data type or with a string representation of that data type.
All comparisons are chronological, which means the farther a point in time is
from January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero
seconds is implied.

Comparisons involving TIMESTAMP values are chronological without regard
to representations that might be considered equivalent.

Example:
TIMESTAMP('1990-02-23-00.00.00') > '1990-02-22-24.00.00'

User-defined Type Comparisons
Values with a user-defined distinct type can only be compared with values of
exactly the same user-defined distinct type. The user-defined distinct type
must have been defined using the WITH COMPARISONS clause.

Example:

Given the following YOUTH distinct type and CAMP_DB2_ROSTER table:
CREATE DISTINCT TYPE YOUTH AS INTEGER WITH COMPARISONS

CREATE TABLE CAMP_DB2_ROSTER

Assignments and Comparisons

106 SQL Reference

(NAME VARCHAR(20),
ATTENDEE_NUMBER INTEGER NOT NULL,
AGE YOUTH,
HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid:
SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:
SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a
function or CAST specification to cast between the distinct type and the
source type. The following comparisons are all valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE INTEGER(AGE) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > YOUTH(ATTENDEE_NUMBER)

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

Values with a user-defined structured type cannot be compared with any
other value (the NULL predicate and the TYPE predicate can be used).

Reference Type Comparisons
Reference type values can be compared only if their target types have a
common supertype. The appropriate comparison function will only be found
if the schema name of the common supertype is included in the function path.
The comparison is performed using the representation type of the reference
types. The scope of the reference is not considered in the comparison.

Rules for Result Data Types

The data types of a result are determined by rules which are applied to the
operands in an operation. This section explains those rules.

These rules apply to:
v Corresponding columns in fullselects of set operations (UNION,

INTERSECT and EXCEPT)
v Result expressions of a CASE expression
v Arguments of the scalar function COALESCE (or VALUE)

Assignments and Comparisons

Chapter 3. Language Elements 107

v Expression values of the in list of an IN predicate
v Corresponding expressions of a multiple row VALUES clause.

These rules are applied subject to other restrictions on long strings for the
various operations.

The rules involving various data types follow. In some cases, a table is used to
show the possible result data types.

These tables identify the data type of the result, including the applicable
length or precision and scale. The result type is determined by considering the
operands. If there is more than one pair of operands, start by considering the
first pair. This gives a result type which is considered with the next operand
to determine the next result type, and so on. The last intermediate result type
and the last operand determine the result type for the operation. Processing of
operations is done from left to right so that the intermediate result types are
important when operations are repeated. For example, consider a situation
involving:

CHAR(2) UNION CHAR(4) UNION VARCHAR(3)

The first pair results in a type of CHAR(4). The result values always have 4
characters. The final result type is VARCHAR(4). Values in the result from the
first UNION operation will always have a length of 4.

Character Strings
Character strings are compatible with other character strings. Character strings
include data types CHAR, VARCHAR, LONG VARCHAR, and CLOB.

If one operand is... And the other operand
is...

The data type of the result is...

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

CHAR(x) VARCHAR(y) VARCHAR(z) where z = max(x,y)

VARCHAR(x) CHAR(y) or
VARCHAR(y)

VARCHAR(z) where z = max(x,y)

LONG VARCHAR CHAR(y),
VARCHAR(y), or
LONG VARCHAR

LONG VARCHAR

CLOB(x) CHAR(y),
VARCHAR(y), or
CLOB(y)

CLOB(z) where z = max(x,y)

CLOB(x) LONG VARCHAR CLOB(z) where z = max(x,32700)

The code page of the result character string will be derived based on the
“Rules for String Conversions” on page 111.

Rules for Result Data Types

108 SQL Reference

Graphic Strings
Graphic strings are compatible with other graphic strings. Graphic strings
include data types GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and
DBCLOB.

If one operand is... And the other operand
is...

The data type of the result is...

GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) GRAPHIC(y) OR
VARGRAPHIC(y)

VARGRAPHIC(z) where z =
max(x,y)

LONG VARGRAPHIC GRAPHIC(y),
VARGRAPHIC(y), or
LONG VARGRAPHIC

LONG VARGRAPHIC

DBCLOB(x) GRAPHIC(y),
VARGRAPHIC(y), or
DBCLOB(y)

DBCLOB(z) where z = max (x,y)

DBCLOB(x) LONG VARGRAPHIC DBCLOB(z) where z = max
(x,16350)

The code page of the result graphic string will be derived based on the “Rules
for String Conversions” on page 111.

Binary Large Object (BLOB)
A BLOB is compatible only with another BLOB and the result is a BLOB. The
BLOB scalar function should be used to cast from other types if they should
be treated as BLOB types (see “BLOB” on page 258). The length of the result
BLOB is the largest length of all the data types.

Numeric
Numeric types are compatible with other numeric types. Numeric types
include SMALLINT, INTEGER, BIGINT, DECIMAL, REAL and DOUBLE.

If one operand is... And the other operand
is...

The data type of the result is...

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

BIGINT BIGINT BIGINT

BIGINT INTEGER BIGINT

BIGINT SMALLINT BIGINT

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where
p = x+max(w-x,5)1

Rules for Result Data Types

Chapter 3. Language Elements 109

If one operand is... And the other operand
is...

The data type of the result is...

DECIMAL(w,x) INTEGER DECIMAL(p,x) where
p = x+max(w-x,11)1

DECIMAL(w,x) BIGINT DECIMAL(p,x) where
p = x+max(w-x,19)1

DECIMAL(w,x) DECIMAL(y,z) DECIMAL(p,s) where
p = max(x,z)+max(w-x,y-z)1s

= max(x,z)

REAL REAL REAL

REAL DECIMAL, BIGINT,
INTEGER, or
SMALLINT

DOUBLE

DOUBLE any numeric DOUBLE

Note: 1. Precision cannot exceed 31.

DATE
A date is compatible with another date, or any CHAR or VARCHAR
expression that contains a valid string representation of a date. The data type
of the result is DATE.

TIME
A time is compatible with another time, or any CHAR or VARCHAR
expression that contains a valid string representation of a time. The data type
of the result is TIME.

TIMESTAMP
A timestamp is compatible with another timestamp, or any CHAR or
VARCHAR expression that contains a valid string representation of a
timestamp. The data type of the result is TIMESTAMP.

DATALINK
A datalink is compatible with another datalink. The data type of the result is
DATALINK. The length of the result DATALINK is the largest length of all
the data types.

User-defined Types

Distinct Types
A user-defined distinct type is compatible only with the same user-defined
distinct type. The data type of the result is the user-defined distinct type.

Reference Types
A reference type is compatible with another reference type provided that their
target types have a common supertype. The data type of the result is a

Rules for Result Data Types

110 SQL Reference

reference type having the common supertype as the target type. If all
operands have the identical scope table, the result has that scope table.
Otherwise the result is unscoped.

Structured Types
A structured type is compatible with another structured type provided that
they have a common supertype. The static data type of the resulting
structured type column is the structured type that is the least common
supertype of either column.

For example, consider the following structured type hierarchy,
A
/ \
B C
/ \
D E
/ \
F G

Structured types of the static type E and F are compatible with the resulting
static type of B, which is the least common super type of E and F.

Nullable Attribute of Result
With the exception of INTERSECT and EXCEPT, the result allows nulls unless
both operands do not allow nulls.
v For INTERSECT, if either operand does not allow nulls the result does not

allow nulls (the intersection would never be null).
v For EXCEPT, if the first operand does not allow nulls the result does not

allow nulls (the result can only be values from the first operand).

Rules for String Conversions

The code page used to perform an operation is determined by rules which are
applied to the operands in that operation. This section explains those rules.

These rules apply to:
v Corresponding string columns in fullselects with set operations (UNION,

INTERSECT and EXCEPT)
v Operands of concatenation
v Operands of predicates (with the exception of LIKE)
v Result expressions of a CASE expression
v Arguments of the scalar function COALESCE (and VALUE)
v Expression values of the in list of an IN predicate
v Corresponding expressions of a multiple row VALUES clause.

Rules for Result Data Types

Chapter 3. Language Elements 111

In each case, the code page of the result is determined at bind time, and the
execution of the operation may involve conversion of strings to the code page
identified by that code page. A character that has no valid conversion is
mapped to the substitution character for the character set and SQLWARN10 is
set to ’W’ in the SQLCA.

The code page of the result is determined by the code pages of the operands.
The code pages of the first two operands determine an intermediate result
code page, this code page and the code page of the next operand determine a
new intermediate result code page (if applicable), and so on. The last
intermediate result code page and the code page of the last operand
determine the code page of the result string or column. For each pair of code
pages, the result is determined by the sequential application of the following
rules:
v If the code pages are equal, the result is that code page.
v If either code page is BIT DATA (code page 0), the result code page is BIT

DATA.
v Otherwise, the result code page is determined by Table 8. An entry of ’first’

in the table means the code page from the first operand is selected and an
entry of ’second’ means the code page from the second operand is selected.

Table 8. Selecting the Code Page of the Intermediate Result

First
Operand

Second Operand

Column
Value

Derived
Value Constant

Special
Register

Host
Variable

Column
Value first first first first first

Derived
Value second first first first first

Constant second second first first first

Special
Register second second first first first

Host
Variable second second second second first

An intermediate result is considered to be a derived value operand. An
expression that is not a single column value, constant, special register, or host
variable is also considered a derived value operand. There is an exception to
this if the expression is a CAST specification (or a call to a function that is
equivalent). In this case, the kind for the first operand is based on the first
argument of the CAST specification.

Rules for String Conversions

112 SQL Reference

View columns are considered to have the operand type of the object on which
they are ultimately based. For example, a view column defined on a table
column is considered to be a column value, whereas a view column based on
a string expression (for example, A CONCAT B) is considered to be a derived
value.

Conversions to the code page of the result are performed, if necessary, for:
v An operand of the concatenation operator
v The selected argument of the COALESCE (or VALUE) scalar function
v The selected result expression of the CASE expression
v The expressions of the in list of the IN predicate
v The corresponding expressions of a multiple row VALUES clause
v The corresponding columns involved in set operations.

Character conversion is necessary if all of the following are true:
v The code pages are different
v Neither string is BIT DATA
v The string is neither null nor empty
v The code page conversion selection table indicates that conversion is

necessary.

Examples

Example 1: Given the following:

Expression Type Code Page

COL_1 column 850

HV_2 host variable 437

When evaluating the predicate:
COL_1 CONCAT :HV_2

The result code page of the two operands is 850, since the dominant operand
is the column COL_1.

Example 2: Using the information from the previous example, when
evaluating the predicate:

COALESCE(COL_1, :HV_2:NULLIND,)

The result code page is 850. Therefore the result code page for the COALESCE
scalar function will be the code page 850.

Rules for String Conversions

Chapter 3. Language Elements 113

Partition Compatibility

Partition compatibility is defined between the base data types of corresponding
columns of partitioning keys. Partition compatible data types have the
property that two variables, one of each type, with the same value, are
mapped to the same partitioning map index by the same partitioning
function.

Table 9 shows the compatibility of data types in partitions.

Partition compatibility has the following characteristics:
v Internal formats are used for DATE, TIME, and TIMESTAMP. They are not

compatible with each other, and none are compatible with CHAR.
v Partition compatibility is not affected by columns with NOT NULL or FOR

BIT DATA definitions.
v NULL values of compatible data types are treated identically. Different

results might be produced for NULL values of non-compatible data types.
v Base datatype of the UDT is used to analyze partition compatibility.
v Decimals of the same value in the partitioning key are treated identically,

even if their scale and precision differ.
v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC or

VARGRAPHIC) are ignored by the system-provided hashing function.
v CHAR or VARCHAR of different lengths are compatible data types.
v REAL or DOUBLE values that are equal are treated identically even though

their precision differs.

Table 9. Partition Compatibilities

Operands Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

Date Time Time-
stamp

Distinct
Type

Structured
Type

Binary
Integer

Yes No No No No No No No 1 No

Decimal
Number

No Yes No No No No No No 1 No

Floating
Point

No No Yes No No No No No 1 No

Character
String3

No No No Yes2 No No No No 1 No

Graphic
String3

No No No No Yes No No No 1 No

Date No No No No No Yes No No 1 No

Time No No No No No No Yes No 1 No

TimestampNo No No No No No No Yes 1 No

Partition Compatibility

114 SQL Reference

Table 9. Partition Compatibilities (continued)

Operands Binary
Integer

Decimal
Number

Floating
Point

Character
String

Graphic
String

Date Time Time-
stamp

Distinct
Type

Structured
Type

Distinct
Type

1 1 1 1 1 1 1 1 1 No

Structured
Type3

No No No No No No No No No No

Note:
1 A user-defined distinct type (UDT) value is partition compatible with the source type of the

UDT or any other UDT with a partition compatible source type.
2 The FOR BIT DATA attribute does not affect the partition compatibility.
3 Note that user-defined structured types and data types LONG VARCHAR, LONG

VARGRAPHIC, CLOB, DBCLOB, and BLOB are not applicable for partition compatibility since
they are not supported in partitioning keys.

Constants

A constant (sometimes called a literal) specifies a value. Constants are classified
as string constants or numeric constants. Numeric constants are further
classified as integer, floating-point, or decimal.

All constants have the attribute NOT NULL.

A negative zero value in a numeric constant (-0) is the same value as a zero
without the sign (0).

Integer Constants
An integer constant specifies an integer as a signed or unsigned number with a
maximum of 19 digits that does not include a decimal point. The data type of
an integer constant is a large integer if its value is within the range of a large
integer. The data type of an integer constant is big integer if its value is
outside the range of large integer but within the range of a big integer. A
constant that is defined outside the range of big integer values is considered a
decimal constant.

Note that the smallest literal representation of a large integer constant is
-2 147 483 647 and not -2 147 483 648, which is the limit for integer values.
Similarly, the smallest literal representation of a big integer constant is
-9 223 372 036 854 775 807 and not -9 223 372 036 854 775 808 which is the limit
for big integer values.

Examples

Partition Compatibility

Chapter 3. Language Elements 115

64 -15 +100 32767 720176 12345678901

In syntax diagrams the term 'integer' is used for a large integer constant that
must not include a sign.

Floating-Point Constants
A floating-point constant specifies a floating-point number as two numbers
separated by an E. The first number may include a sign and a decimal point;
the second number may include a sign but not a decimal point. The data type
of a floating-point constant is double precision. The value of the constant is
the product of the first number and the power of 10 specified by the second
number; it must be within the range of floating-point numbers. The number
of characters in the constant must not exceed 30.

Examples
15E1 2.E5 2.2E-1 +5.E+2

Decimal Constants
A decimal constant is a signed or unsigned number that consists of no more
than 31 digits and either includes a decimal point or is not within the range of
binary integers. It must be in the range of decimal numbers. The precision is
the total number of digits (including leading and trailing zeros); the scale is
the number of digits to the right of the decimal point (including trailing
zeros).

Examples
25.5 1000. -15. +37589.3333333333

Character String Constants
A character string constant specifies a varying-length character string and
consists of a sequence of characters that starts and ends with an apostrophe
('). This form of string constant specifies the character string contained
between the string delimiters. The length of the character string must not be
greater than 32 672 bytes. Two consecutive string delimiters are used to
represent one string delimiter within the character string.

Examples
'12/14/1985'
'32'
'DON''T CHANGE'

Unequal Code Page Considerations
The constant value is always converted to the database code page when it is
bound to the database. It is considered to be in the database code page.
Therefore, if used in an expression that combines a constant with a FOR BIT
DATA column, of which the result is FOR BIT DATA, the constant value will
not be converted from its database code page representation when used.

Constants

116 SQL Reference

Hexadecimal Constants
A hexadecimal constant specifies a varying-length character string with the code
page of the application server.

The format of a hexadecimal string constant is an X followed by a sequence of
characters that starts and ends with an apostrophe (single quote). The
characters between the apostrophes must be an even number of hexadecimal
digits. The number of hexadecimal digits must not exceed 16 336, otherwise
an error is raised (SQLSTATE -54002). A hexadecimal digit represents 4 bits. It
is specified as a digit or any of the letters A through F (uppercase or
lowercase) where A represents the bit pattern ’1010’, B the bit pattern ’1011’,
etc. If a hexadecimal constant is improperly formatted (e.g. it contains an
invalid hexadecimal digit or an odd number of hexadecimal digits), an error is
raised (SQLSTATE 42606).

Examples
X'FFFF' representing the bit pattern '1111111111111111'

X'4672616E6B' representing the VARCHAR pattern of the ASCII string 'Frank'

Graphic String Constants
A graphic string constant specifies a varying-length graphic string and consists
of a sequence of double-byte characters that starts and ends with a single-byte
apostrophe (') and is preceded by a single-byte G or N. This form of string
constant specifies the graphic string contained between the string delimiters.
The length of the graphic string must be an even number of bytes and must
not be greater than 16 336 bytes.

Examples:
G'double-byte character string'
N'double-byte character string'

MBCS Considerations
The apostrophe must not appear as part of an MBCS character to be
considered a delimiter.

Using Constants with User-defined Types
User-defined types have strong typing. This means that a user-defined type is
only compatible with its own type. A constant, however, has a built-in type.
Therefore, an operation involving a user-defined type and a constant is only
possible if the user-defined type has been cast to the constant’s built-in type
or the constant has been cast to the user-defined type (see “CAST
Specifications” on page 173 for information on casting). For example, using the
table and distinct type in “User-defined Type Comparisons” on page 106, the
following comparisons with the constant 14 are valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(14 AS YOUTH)

Constants

Chapter 3. Language Elements 117

SELECT * FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > 14

The following comparison is not valid:
SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > 14

Special Registers

A special register is a storage area that is defined for an application process by
the database manager and is used to store information that can be referenced
in SQL statements. Special registers are in the database code page.

CURRENT DATE
The CURRENT DATE special register specifies a date that is based on a
reading of the time-of-day clock when the SQL statement is executed at the
application server. If this special register is used more than once within a
single SQL statement, or used with CURRENT TIME or CURRENT
TIMESTAMP within a single statement, all values are based on a single clock
reading.

In a federated system, CURRENT DATE can be used in a query intended for
data sources. When the query is processed, the date returned will be obtained
from the CURRENT DATE register at the federated server, not from the data
sources.

Example
Using the PROJECT table, set the project end date (PRENDATE) of the
MA2111 project (PROJNO) to the current date.

UPDATE PROJECT
SET PRENDATE = CURRENT DATE
WHERE PROJNO = 'MA2111'

CURRENT DEFAULT TRANSFORM GROUP
The CURRENT DEFAULT TRANSFORM GROUP special register specifies a
VARCHAR (18) value that identifies the name of the transform group used by
dynamic SQL statements for exchanging user-defined structured type values
with host programs. This special register does not specify the transform
groups used in static SQL statements or in the exchange of parameters and
results with external functions of methods.

Its value can be set by the SET CURRENT DEFAULT TRANSFORM GROUP
statement. If no value is set, the initial value of the special register is the
empty string (a VARCHAR with a zero length).

In a dynamic SQL statement (that is, one which interacts with host variables),
the name of the transform group used for exchanging values is the same as

Constants

118 SQL Reference

the value of this special register, unless this register contains the empty string.
If the register contains the empty string (no value was set by using a SET
CURRENT DEFAULT TRANSFORM GROUP statement), the DB2_PROGRAM
transform group is used for the transform. If the DB2_PROGRAM transform
group is not defined for the structured type subject, an error is raised at run
time (SQLSTATE 42741).

Example
Set the default transform group to MYSTRUCT1. The TO SQL and FROM SQL
functions defined in the MYSTRUCT1 transform are used to exchange
user-defined structured type variables with the host program.

SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

Retrieve the name of the default transform group assigned to this special
register.

VALUES (CURRENT DEFAULT TRANSFORM GROUP)

CURRENT DEGREE
The CURRENT DEGREE special register specifies the degree of intra-partition
parallelism for the execution of dynamic SQL statements. 18 The data type of
the register is CHAR(5). Valid values are ’ANY ’ or the string representation
of an integer between 1 and 32 767, inclusive.

If the value of CURRENT DEGREE represented as an integer is 1 when an
SQL statement is dynamically prepared, the execution of that statement will
not use intra-partition parallelism.

If the value of CURRENT DEGREE represented as an integer is greater than 1
and less than or equal to 32 767 when an SQL statement is dynamically
prepared, the execution of that statement can involve intra-partition
parallelism with the specified degree.

If the value of CURRENT DEGREE is ’ANY’ when an SQL statement is
dynamically prepared, the execution of that statement can involve
intra-partition parallelism using a degree determined by the database
manager.

The actual runtime degree of parallelism will be the lower of:
v Maximum query degree (max_querydegree) configuration parameter
v Application runtime degree
v SQL statement compilation degree

18. For static SQL, the DEGREE bind option provides the same control.

Special Registers

Chapter 3. Language Elements 119

If the intra_parallel database manager configuration parameter is set to NO,
the value of the CURRENT DEGREE special register will be ignored for the
purpose of optimization, and the statement will not use intra-partition
parallelism.

See the Administration Guide for a description of parallelism and a list of
restrictions.

The value can be changed by executing the SET CURRENT DEGREE
statement (see “SET CURRENT DEGREE” on page 1004 for information on
this statement).

The initial value of CURRENT DEGREE is determined by the dft_degree
database configuration parameter. See the Administration Guide for a
description of this configuration parameter.

CURRENT EXPLAIN MODE
The CURRENT EXPLAIN MODE special register holds a VARCHAR(254)
value which controls the behavior of the Explain facility with respect to
eligible dynamic SQL statements. This facility generates and inserts Explain
information into the Explain tables (for more information see the
Administration Guide). This information does not include the Explain snapshot.

The possible values are YES, NO, EXPLAIN, RECOMMEND INDEXES and
EVALUATE INDEXES. 19

YES Enables the explain facility and causes explain information for a
dynamic SQL statement to be captured when the statement is
compiled.

EXPLAIN
Enables the facility like YES, however, the dynamic statements are not
executed.

NO Disables the Explain facility.

RECOMMEND INDEXES
For each dynamic query, a set of indexes is recommended.
ADVISE_INDEX table is populated with the set of indexes.

EVALUATE INDEXES
Dynamic queries are explained as if the recommended indexes
existed. The indexes are picked up from ADVISE_INDEX table.

The initial value is NO.

19. For static SQL, the EXPLAIN bind option provides the same control. In the case of the PREP and BIND
commands, the EXPLAIN option values are: YES, NO and ALL.

Special Registers

120 SQL Reference

Its value can be changed by the SET CURRENT EXPLAIN MODE statement
(see “SET CURRENT EXPLAIN MODE” on page 1006 for information on this
statement).

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special register values interact when the Explain facility is invoked (see
Table 142 on page 1325 for details). The CURRENT EXPLAIN MODE special
register also interacts with the EXPLAIN bind option (see Table 143 on
page 1326 for details). The values RECOMMEND INDEXES and EVALUATE
INDEXES can only be set for the CURRENT EXPLAIN MODE register, and
must be set using the SET CURRENT EXPLAIN MODE statement.

Example: Set the host variable EXPL_MODE (VARCHAR(254)) to the value
currently in the CURRENT EXPLAIN MODE special register.

VALUES CURRENT EXPLAIN MODE
INTO :EXPL_MODE

CURRENT EXPLAIN SNAPSHOT
The CURRENT EXPLAIN SNAPSHOT special register holds a CHAR(8) value
which controls the behavior of the Explain snapshot facility. This facility
generates compressed information including access plan information, operator
costs, and bind-time statistics (for more information see the Administration
Guide).

Only the following statements consider the value of this register: DELETE,
INSERT, SELECT, SELECT INTO, UPDATE, VALUES or VALUES INTO.

The possible values are YES, NO, and EXPLAIN. 20

YES Enables the snapshot facility and takes a snapshot of the internal
representation of a dynamic SQL statement as the statement is
compiled.

EXPLAIN
Enables the facility like YES, however, the dynamic statements are not
executed.

NO Disables the Explain snapshot facility.

The initial value is NO.

Its value can be changed by the SET CURRENT EXPLAIN SNAPSHOT
statement (see “SET CURRENT EXPLAIN SNAPSHOT” on page 1008).

20. For static SQL, the EXPLSNAP bind option provides the same control. In the case of the PREP and BIND
commands, the EXPLSNAP option values are: YES, NO and ALL.

Special Registers

Chapter 3. Language Elements 121

The CURRENT EXPLAIN SNAPSHOT and CURRENT EXPLAIN MODE
special register values interact when the Explain facility is invoked (see
Table 142 on page 1325 for details). The CURRENT EXPLAIN SNAPSHOT
special register also interacts with the EXPLSNAP bind option (see Table 144
on page 1327 for details).

Example
Set the host variable EXPL_SNAP (char(8)) to the value currently in the
CURRENT EXPLAIN SNAPSHOT special register.

VALUES CURRENT EXPLAIN SNAPSHOT
INTO :EXPL_SNAP

CURRENT NODE
The CURRENT NODE special register specifies an INTEGER value that
identifies the coordinator node number (the partition to which an application
connects).

CURRENT NODE returns 0 if the database instance is not defined to support
partitioning (no db2nodes.cfg file21).

The CURRENT NODE can be changed by the CONNECT statement, but only
under certain conditions (see “CONNECT (Type 1)” on page 550).

Example
Set the host variable APPL_NODE (integer) to the number of the partition to
which the application is connected.

VALUES CURRENT NODE
INTO :APPL_NODE

CURRENT PATH
The CURRENT PATH special register specifies a VARCHAR(254) value that
identifies the SQL path to be used to resolve function references and data type
references that are used in dynamically prepared SQL statements.22 CURRENT
PATH is also used to resolve stored procedure references in CALL statements.
The initial value is the default value specified below. For static SQL, the
FUNCPATH bind option provides a SQL path that is used for function and
data type resolution (see the Command Reference for more information on the
FUNCPATH bind option).

21. For partitioned databases, the db2nodes.cfg file exists and contains partition (or node) definitions. For details refer
to the Administration Guide.

22. CURRENT FUNCTION PATH is a synonym for CURRENT PATH.

Special Registers

122 SQL Reference

The CURRENT PATH special register contains a list of one or more
schema-names, where the schema-names are enclosed in double quotes and
separated by commas (any quotes within the string are repeated as they are in
any delimited identifier).

For example, a SQL path specifying that the database manager is to first look
in the FERMAT, then XGRAPHIC, then SYSIBM schemas is returned in the
CURRENT PATH special register as:

"FERMAT","XGRAPHIC","SYSIBM"

The default value is ″SYSIBM″,″SYSFUN″,X where X is the value of the USER
special register delimited by double quotes.

Its value can be changed by the SET CURRENT FUNCTION PATH statement
(see “SET PATH” on page 1031). The schema SYSIBM does not need to be
specified. If it is not included in the SQL path, it is implicitly assumed as the
first schema. SYSIBM does not take any of the 254 characters if it is implicitly
assumed.

The use of the SQL path for function resolution is described in “Functions” on
page 142. A data type that is not qualified with a schema name will be
implicitly qualified with the schema name that is earliest in the SQL path and
contains a data type with the same unqualified name specified. There are
exceptions to this rule as described in the following statements: CREATE
DISTINCT TYPE, CREATE FUNCTION, COMMENT ON and DROP.

Example
Using the SYSCAT.VIEWS catalog view, find all views that were created with
the exact same setting as the current value of the CURRENT PATH special
register.

SELECT VIEWNAME, VIEWSCHEMA FROM SYSCAT.VIEWS
WHERE FUNC_PATH = CURRENT PATH

CURRENT QUERY OPTIMIZATION
The CURRENT QUERY OPTIMIZATION special register specifies an
INTEGER value that controls the class of query optimization performed by
the database manager when binding dynamic SQL statements. The
QUERYOPT bind option controls the class of query optimization for static
SQL statements (see the Command Reference for additional information on the
QUERYOPT bind option). The possible values range from 0 to 9. For example,
if the query optimization class is set to the minimal class of optimization (0),
then the value in the special register is 0. The default value is determined by
the dft_queryopt database configuration parameter.

Its value can be changed by the SET CURRENT QUERY OPTIMIZATION
statement (see “SET CURRENT QUERY OPTIMIZATION” on page 1012).

Special Registers

Chapter 3. Language Elements 123

Example
Using the SYSCAT.PACKAGES catalog view, find all plans that were bound
with the same setting as the current value of the CURRENT QUERY
OPTIMIZATION special register.

SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES
WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

CURRENT REFRESH AGE
The CURRENT REFRESH AGE special register specifies a timestamp duration
value with a data type of DECIMAL(20,6). This duration is the maximum
duration since a REFRESH TABLE statement has been processed on a
REFRESH DEFERRED summary table such that the summary table can be
used to optimize the processing of a query. If CURRENT REFRESH AGE has a
value of 99 999 999 999 999 (ANY), and QUERY OPTIMIZATION class is 5 or
more, REFRESH DEFERRED summary tables are considered to optimize the
processing of a dynamic SQL query. A summary table with the REFRESH
IMMEDIATE attribute and not in check pending state is assumed to have a
refresh age of zero.

Its value can be changed by the SET CURRENT REFRESH AGE statement (see
“SET CURRENT REFRESH AGE” on page 1015). Summary tables defined with
REFRESH DEFERRED are never considered by static embedded SQL queries.

The initial value of CURRENT REFRESH AGE is zero.

CURRENT SCHEMA
The CURRENT SCHEMA special register specifies a VARCHAR(128) value
that identifies the schema name used to qualify unqualified database object
references where applicable in dynamically prepared SQL statements. 23

The initial value of CURRENT SCHEMA is the authorization ID of the current
session user.

Its value can be changed by the SET SCHEMA statement (see “SET
SCHEMA” on page 1033).

The QUALIFIER bind option controls the schema name used to qualify
unqualified database object references where applicable for static SQL
statements (see Command Reference for more information).

Example
Set the schema for object qualification to ’D123’.

SET CURRENT SCHEMA = 'D123'

23. For compatibility with DB2 for OS/390, the special register CURRENT SQLID is treated as a synonym for
CURRENT SCHEMA.

Special Registers

124 SQL Reference

CURRENT SERVER
The CURRENT SERVER special register specifies a VARCHAR(18) value that
identifies the current application server. The actual name of the application
server (not an alias) is contained in the register.

The CURRENT SERVER can be changed by the CONNECT statement, but
only under certain conditions (see “CONNECT (Type 1)” on page 550).

Example
Set the host variable APPL_SERVE (VARCHAR(18)) to the name of the
application server to which the application is connected.

VALUES CURRENT SERVER
INTO :APPL_SERVE

CURRENT TIME
The CURRENT TIME special register specifies a time that is based on a
reading of the time-of-day clock when the SQL statement is executed at the
application server. If this special register is used more than once within a
single SQL statement, or used with CURRENT DATE or CURRENT
TIMESTAMP within a single statement, all values are based on a single clock
reading.

In a federated system, CURRENT TIME can be used in a query intended for
data sources. When the query is processed, the time returned will be obtained
from the CURRENT TIME register at the federated server, not from the data
sources.

Example
Using the CL_SCHED table, select all the classes (CLASS_CODE) that start
(STARTING) later today. Today’s classes have a value of 3 in the DAY column.

SELECT CLASS_CODE FROM CL_SCHED
WHERE STARTING > CURRENT TIME AND DAY = 3

CURRENT TIMESTAMP
The CURRENT TIMESTAMP special register specifies a timestamp that is
based on a reading of the time-of-day clock when the SQL statement is
executed at the application server. If this special register is used more than
once within a single SQL statement, or used with CURRENT DATE or
CURRENT TIME within a single statement, all values are based on a single
clock reading.

In a federated system, CURRENT TIMESTAMP can be used in a query
intended for data sources. When the query is processed, the timestamp
returned will be obtained from the CURRENT TIMESTAMP register at the
federated server, not from the data sources.

Special Registers

Chapter 3. Language Elements 125

Example
Insert a row into the IN_TRAY table. The value of the RECEIVED column
should be a timestamp that indicates when the row was inserted. The values
for the other three columns come from the host variables SRC (char(8)), SUB
(char(64)), and TXT (VARCHAR(200)).

INSERT INTO IN_TRAY
VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

CURRENT TIMEZONE
The CURRENT TIMEZONE special register specifies the difference between
UTC 24 and local time at the application server. The difference is represented
by a time duration (a decimal number in which the first two digits are the
number of hours, the next two digits are the number of minutes, and the last
two digits are the number of seconds). The number of hours is between -24
and 24 exclusive. Subtracting CURRENT TIMEZONE from a local time
converts that local time to UTC. The time is calculated from the operating
system time at the moment the SQL statement is executed. 25

The CURRENT TIMEZONE special register can be used wherever an
expression of the DECIMAL(6,0) data type is used, for example, in time and
timestamp arithmetic.

Example
Insert a record into the IN_TRAY table, using a UTC timestamp for the
RECEIVED column.

INSERT INTO IN_TRAY VALUES (
CURRENT TIMESTAMP - CURRENT TIMEZONE,
:source,
:subject,
:notetext)

USER
The USER special register specifies the run-time authorization ID passed to
the database manager when an application starts on a database. The data type
of the register is VARCHAR(128).

Example
Select all notes from the IN_TRAY table that the user placed there himself.

SELECT * FROM IN_TRAY
WHERE SOURCE = USER

24. Coordinated Universal Time, formerly known as GMT.

25. The CURRENT TIMEZONE value is determined from C runtime functions. See the Quick Beginnings for any
installation requirements regarding time zone.

Special Registers

126 SQL Reference

Column Names

The meaning of a column name depends on its context. A column name can be
used to:
v Declare the name of a column, as in a CREATE TABLE statement.
v Identify a column, as in a CREATE INDEX statement.
v Specify values of the column, as in the following contexts:

– In a column function, a column name specifies all values of the column
in the group or intermediate result table to which the function is applied.
(Groups and intermediate result tables are explained under “Chapter 5.
Queries” on page 393.) For example, MAX(SALARY) applies the function
MAX to all values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all
values in the intermediate result table to which the clause is applied. For
example, ORDER BY DEPT orders an intermediate result table by the
values of the column DEPT.

– In an expression, a search condition, or a scalar function, a column name
specifies a value for each row or group to which the construct is applied.
For example, when the search condition CODE = 20 is applied to some
row, the value specified by the column name CODE is the value of the
column CODE in that row.

v Temporarily rename a column, as in the correlation-clause of a table-reference
in a FROM clause.

Qualified Column Names
A qualifier for a column name may be a table, view, nickname, alias, or
correlation name.

Whether a column name may be qualified depends on its context:
v Depending on the form of the COMMENT ON statement, a single column

name may need to be qualified. Multiple column names must be
unqualified.

v Where the column name specifies values of the column, it may be qualified
at the user’s option.

v In all other contexts, a column name must not be qualified.

Where a qualifier is optional, it can serve two purposes. They are described
under “Column Name Qualifiers to Avoid Ambiguity” on page 130 and
“Column Name Qualifiers in Correlated References” on page 132.

Correlation Names
A correlation name can be defined in the FROM clause of a query and in the
first clause of an UPDATE or DELETE statement. For example, the clause
FROM X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

Column Names

Chapter 3. Language Elements 127

FROM X.MYTABLE Z

With Z defined as a correlation name for X.MYTABLE, only Z can be used to
qualify a reference to a column of that instance of X.MYTABLE in that
SELECT statement.

A correlation name is associated with a table, view, nickname, alias, nested
table expression or table function only within the context in which it is
defined. Hence, the same correlation name can be defined for different
purposes in different statements, or in different clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to
establish a correlated reference. It can also be used merely as a shorter name
for a table, view, nickname, or alias. In the case of a nested table expression or
table function, a correlation name is required to identify the result table. In the
example, Z might have been used merely to avoid having to enter
X.MYTABLE more than once.

If a correlation name is specified for a table, view, nickname, or alias name,
any qualified reference to a column of that instance of the table, view,
nickname, or alias must use the correlation name, rather than the table, view,
nickname, or alias name. For example, the reference to EMPLOYEE.PROJECT
in the following example is incorrect, because a correlation name has been
specified for EMPLOYEE:

Example

FROM EMPLOYEE E
WHERE EMPLOYEE.PROJECT='ABC' * incorrect*

The qualified reference to PROJECT should instead use the correlation name,
″E″, as shown below:

FROM EMPLOYEE E
WHERE E.PROJECT='ABC'

Names specified in a FROM clause are either exposed or non-exposed. A table,
view, nickname, or alias name is said to be exposed in the FROM clause if a
correlation name is not specified. A correlation name is always an exposed
name. For example, in the following FROM clause, a correlation name is
specified for EMPLOYEE but not for DEPARTMENT, so DEPARTMENT is an
exposed name, and EMPLOYEE is not:

FROM EMPLOYEE E, DEPARTMENT

A table, view, nickname, or alias name that is exposed in a FROM clause may
be the same as any other table name, view name or nickname exposed in that

Column Names

128 SQL Reference

FROM clause or any correlation name in the FROM clause. This may result in
ambiguous column name references which returns an error (SQLSTATE
42702).

The first two FROM clauses shown below are correct, because each one
contains no more than one reference to EMPLOYEE that is exposed:
1. Given the FROM clause:

FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of
the second instance of EMPLOYEE in the FROM clause. A qualified
reference to the first instance of EMPLOYEE must use the correlation
name “E1” (E1.PROJECT).

2. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of
the first instance of EMPLOYEE in the FROM clause. A qualified reference
to the second instance of EMPLOYEE must use the correlation name “E2”
(E2.PROJECT).

3. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE

the two exposed table names included in this clause (EMPLOYEE and
EMPLOYEE) are the same. This is allowed, but references to specific
column names would be ambiguous (SQLSTATE 42702).

4. Given the following statement:
SELECT *

FROM EMPLOYEE E1, EMPLOYEE E2 * incorrect *
WHERE EMPLOYEE.PROJECT = 'ABC'

the qualified reference EMPLOYEE.PROJECT is incorrect, because both
instances of EMPLOYEE in the FROM clause have correlation names.
Instead, references to PROJECT must be qualified with either correlation
name (E1.PROJECT or E2.PROJECT).

5. Given the FROM clause:
FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use
X.EMPLOYEE (X.EMPLOYEE.PROJECT). If X is the CURRENT SCHEMA
special register value in dynamic SQL or the QUALIFIER precompile/bind
option in static SQL, then the columns cannot be referenced since any such
reference would be ambiguous.

Column Names

Chapter 3. Language Elements 129

The use of a correlation name in the FROM clause also allows the option of
specifying a list of column names to be associated with the columns of the
result table. As with a correlation name, these listed column names become
the exposed names of the columns that must be used for references to the
columns throughout the query. If a column name list is specified, then the
column names of the underlying table become non-exposed.

Given the FROM clause:
FROM DEPARTMENT D (NUM,NAME,MGR,ANUM,LOC)

a qualified reference such as D.NUM denotes the first column of the
DEPARTMENT table that is defined in the table as DEPTNO. A reference to
D.DEPTNO using this FROM clause is incorrect since the column name
DEPTNO is a non-exposed column name.

Column Name Qualifiers to Avoid Ambiguity
In the context of a function, a GROUP BY clause, ORDER BY clause, an
expression, or a search condition, a column name refers to values of a column
in some table, view, nickname, nested table expression or table function. The
tables, views, nicknames, nested table expressions and table functions that
might contain the column are called the object tables of the context. Two or
more object tables might contain columns with the same name; one reason for
qualifying a column name is to designate the table from which the column
comes. Qualifiers for column names are also useful in SQL procedures to
distinguish column names from SQL variable names used in SQL statements.

A nested table expression or table function will consider table-references that
precede it in the FROM clause as object tables. The table-references that follow
are not considered as object tables.

Table Designators
A qualifier that designates a specific object table is called a table designator.
The clause that identifies the object tables also establishes the table
designators for them. For example, the object tables of an expression in a
SELECT clause are named in the FROM clause that follows it:

SELECT CORZ.COLA, OWNY.MYTABLE.COLA
FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:
v A name that follows a table, view, nickname, alias, nested table expression

or table function is both a correlation name and a table designator. Thus,
CORZ is a table designator. CORZ is used to qualify the first column name
in the select list.

v An exposed table, view name, nickname or alias is a table designator. Thus,
OWNY.MYTABLE is a table designator. OWNY.MYTABLE is used to qualify
the second column name in the select list.

Column Names

130 SQL Reference

Each table designator should be unique within a particular FROM clause to
avoid the possibility of ambiguous references to columns.

Avoiding Undefined or Ambiguous References
When a column name refers to values of a column, exactly one object table
must include a column with that name. The following situations are
considered errors:
v No object table contains a column with the specified name. The reference is

undefined.
v The column name is qualified by a table designator, but the table

designated does not include a column with the specified name. Again the
reference is undefined.

v The name is unqualified, and more than one object table includes a column
with that name. The reference is ambiguous.

v The column name is qualified by a table designator, but the table
designated is not unique in the FROM clause and both occurrences of the
designated table include the column. The reference is ambiguous.

v The column name is in a nested table expression which is not preceded by
the TABLE keyword or in a table function or nested table expression that is
the right operand of a right outer join or a full outer join and the column
name does not refer to a column of a table-reference within the nested table
expression’s fullselect. The reference is undefined.

Avoid ambiguous references by qualifying a column name with a uniquely
defined table designator. If the column is contained in several object tables
with different names, the table names can be used as designators. Ambiguous
references can also be avoided without the use of the table designator by
giving unique names to the columns of one of the object tables using the
column name list following the correlation name.

When qualifying a column with the exposed table name form of a table
designator, either the qualified or unqualified form of the exposed table name
may be used. However, the qualifier used and the table used must be the
same after fully qualifying the table name, view name or nickname and the
table designator.
1. If the authorization ID of the statement is CORPDATA:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE

is a valid statement.
2. If the authorization ID of the statement is REGION:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE * incorrect *

Column Names

Chapter 3. Language Elements 131

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE,
but the qualifier for WORKDEPT represents a different table,
CORPDATA.EMPLOYEE.

Column Name Qualifiers in Correlated References
A fullselect is a form of a query that may be used as a component of various
SQL statements. See “Chapter 5. Queries” on page 393 for more information
on fullselects. A fullselect used within a search condition of any statement is
called a subquery. A fullselect used to retrieve a single value as an expression
within a statement is called a scalar fullselect or scalar subquery. A fullselect
used in the FROM clause of a query is called a nested table expression.
Subqueries in search conditions, scalar subqueries and nested table
expressions are referred to as subqueries through the remainder of this topic.

A subquery may include subqueries of its own, and these may, in turn,
include subqueries. Thus an SQL statement may contain a hierarchy of
subqueries. Those elements of the hierarchy that contain subqueries are said
to be at a higher level than the subqueries they contain.

Every element of the hierarchy contains one or more table designators. A
subquery can reference not only the columns of the tables identified at its
own level in the hierarchy, but also the columns of the tables identified
previously in the hierarchy, back to the highest level of the hierarchy. A
reference to a column of a table identified at a higher level is called a
correlated reference.

For compatibility with existing standards for SQL, both qualified and
unqualified column names are allowed as correlated references. However, it is
good practice to qualify all column references used in subqueries; otherwise,
identical column names may lead to unintended results. For example, if a
table in a hierarchy is altered to contain the same column name as the
correlated reference and the statement is prepared again, the reference will
apply to the altered table.

When a column name in a subquery is qualified, each level of the hierarchy is
searched, starting at the same subquery as the qualified column name appears
and continuing to the higher levels of the hierarchy until a table designator
that matches the qualifier is found. Once found, it is verified that the table
contains the given column. If the table is found at a higher level than the level
containing column name, then it is a correlated reference to the level where
the table designator was found. A nested table expression must be preceded
with the optional TABLE keyword in order to search the hierarchy above the
fullselect of the nested table expression.

When the column name in a subquery is not qualified, the tables referenced at
each level of the hierarchy are searched, starting at the same subquery where

Column Names

132 SQL Reference

the column name appears and continuing to higher levels of the hierarchy,
until a match for the column name is found. If the column is found in a table
at a higher level than the level containing column name, then it is a correlated
reference to the level where the table containing the column was found. If the
column name is found in more than one table at a particular level, the
reference is ambiguous and considered an error.

In either case, T, used in the following example, refers to the table designator
that contains column C. A column name, T.C (where T represents either an
implicit or an explicit qualifier), is a correlated reference if, and only if, these
conditions are met:
v T.C is used in an expression of a subquery.
v T does not designate a table used in the from clause of the subquery.
v T designates a table used at a higher level of the hierarchy that contains the

subquery.

Since the same table, view or nickname can be identified at many levels,
unique correlation names are recommended as table designators. If T is used
to designate a table at more than one level (T is the table name itself or is a
duplicate correlation name), T.C refers to the level where T is used that most
directly contains the subquery that includes T.C. If a correlation to a higher
level is needed, a unique correlation name must be used.

The correlated reference T.C identifies a value of C in a row or group of T to
which two search conditions are being applied: condition 1 in the subquery,
and condition 2 at some higher level. If condition 2 is used in a WHERE
clause, the subquery is evaluated for each row to which condition 2 is
applied. If condition 2 is used in a HAVING clause, the subquery is evaluated
for each group to which condition 2 is applied. (For another discussion of the
evaluation of subqueries, see the descriptions of the WHERE and HAVING
clauses in “Chapter 5. Queries” on page 393.)

For example, in the following statement, the correlated reference
X.WORKDEPT (in the last line) refers to the value of WORKDEPT in table
EMPLOYEE at the level of the first FROM clause. (That clause establishes X as
a correlation name for EMPLOYEE.) The statement lists employees who make
less than the average salary for their department.

SELECT EMPNO, LASTNAME, WORKDEPT
FROM EMPLOYEE X
WHERE SALARY < (SELECT AVG(SALARY)

FROM EMPLOYEE
WHERE WORKDEPT = X.WORKDEPT)

The next example uses THIS as a correlation name. The statement deletes
rows for departments that have no employees.

Column Names

Chapter 3. Language Elements 133

DELETE FROM DEPARTMENT THIS
WHERE NOT EXISTS(SELECT *

FROM EMPLOYEE
WHERE WORKDEPT = THIS.DEPTNO)

Column Names

134 SQL Reference

References to Host Variables

A host variable is either:
v A variable in a host language such as a C variable, a C++ variable, a

COBOL data item, a FORTRAN variable, or a Java variable

or:
v A host language construct that was generated by an SQL precompiler from

a variable declared using SQL extensions

that is referenced in an SQL statement. Host variables are either directly
defined by statements in the host language or are indirectly defined using
SQL extensions.

A host variable in an SQL statement must identify a host variable described in
the program according to the rules for declaring host variables.

All host variables used in an SQL statement must be declared in an SQL
DECLARE section in all host languages except REXX (see the Application
Development Guide for more information on declaring host variables for SQL
statements in application programs). No variables may be declared outside an
SQL DECLARE section with names identical to variables declared inside an
SQL DECLARE section. An SQL DECLARE section begins with BEGIN
DECLARE SECTION and ends with END DECLARE SECTION.

The meta-variable host-variable, as used in the syntax diagrams, shows a
reference to a host variable. A host-variable in the VALUES INTO clause or
the INTO clause of a FETCH or a SELECT INTO statement, identifies a host
variable to which a value from a column of a row or an expression is
assigned. In all other contexts a host-variable specifies a value to be passed to
the database manager from the application program.

Host Variables in Dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host
variables. A parameter marker is a question mark (?) representing a position
in a dynamic SQL statement where the application will provide a value; that
is, where a host variable would be found if the statement string were a static
SQL statement. The following example shows a static SQL statement using
host variables:

INSERT INTO DEPARTMENT
VALUES (:hv_deptno, :hv_deptname, :hv_mgrno, :hv_admrdept)

This example shows a dynamic SQL statement using parameter markers:
INSERT INTO DEPARTMENT VALUES (?, ?, ?, ?)

References to Host Variables

Chapter 3. Language Elements 135

For more information on parameter markers, see “Parameter Markers” in
“PREPARE” on page 954.

The meta-variable host-variable in syntax diagrams can generally be expanded
to:

�� :host-identifier
INDICATOR

:host-identifier

��

Each host-identifier must be declared in the source program. The variable
designated by the second host-identifier must have a data type of small
integer.

The first host-identifier designates the main variable. Depending on the
operation, it either provides a value to the database manager or is provided a
value from the database manager. An input host variable provides a value in
the runtime application code page. An output host variable is provided a
value that, if necessary, is converted to the runtime application code page
when the data is copied to the output application variable. A given host
variable can serve as both an input and an output variable in the same
program.

The second host-identifier designates its indicator variable. The purposes of the
indicator variable are to:
v Specify the null value. A negative value of the indicator variable specifies

the null value. A value of -2 indicates a numeric conversion or arithmetic
expression error occurred in deriving the result

v Record the original length of a truncated string (if the source of the value is
not a large object type)

v Record the seconds portion of a time if the time is truncated on assignment
to a host variable.

For example, if :HV1:HV2 is used to specify an insert or update value, and if
HV2 is negative, the value specified is the null value. If HV2 is not negative
the value specified is the value of HV1.

Similarly, if :HV1:HV2 is specified in a VALUES INTO clause or in a FETCH
or SELECT INTO statement, and if the value returned is null, HV1 is not
changed and HV2 is set to a negative value. 26 If the value returned is not
null, that value is assigned to HV1 and HV2 is set to zero (unless the

26. If the database is configured with DFT_SQLMATHWARN yes (or was during binding of a static SQL statement),
then HV2 could be -2. If HV2 is -2, then a value for HV1 could not be returned because of an error converting to

References to Host Variables

136 SQL Reference

assignment to HV1 requires string truncation of a non-LOB string; in which
case HV2 is set to the original length of the string). If an assignment requires
truncation of the seconds part of a time, HV2 is set to the number of seconds.

If the second host identifier is omitted, the host-variable does not have an
indicator variable. The value specified by the host-variable reference :HV1 is
always the value of HV1, and null values cannot be assigned to the variable.
Thus, this form should not be used in an INTO clause unless the
corresponding column cannot contain null values. If this form is used and the
column contains nulls, the database manager will generate an error at run
time.

An SQL statement that references host variables must be within the scope of
the declaration of those host variables. For host variables referenced in the
SELECT statement of a cursor, that rule applies to the OPEN statement rather
than to the DECLARE CURSOR statement.

Example
Using the PROJECT table, set the host variable PNAME (VARCHAR(26)) to
the project name (PROJNAME), the host variable STAFF (dec(5,2)) to the mean
staffing level (PRSTAFF), and the host variable MAJPROJ (char(6)) to the
major project (MAJPROJ) for project (PROJNO) ‘IF1000’. Columns PRSTAFF
and MAJPROJ may contain null values, so provide indicator variables
STAFF_IND (smallint) and MAJPROJ_IND (smallint).
SELECT PROJNAME, PRSTAFF, MAJPROJ

INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND
FROM PROJECT
WHERE PROJNO = 'IF1000'

MBCS Considerations: Whether multi-byte characters can be used in a host
variable name depends on the host language.

References to BLOB, CLOB, and DBCLOB Host Variables
Regular BLOB, CLOB, and DBCLOB variables, LOB locator variables (see
“References to Locator Variables” on page 138), and LOB file reference
variables (see “References to BLOB, CLOB, and DBCLOB File Reference
Variables” on page 138) can be defined in all host languages. Where LOBs are
allowed, the term host-variable in a syntax diagram can refer to a regular host
variable, a locator variable, or a file reference variable. Since these are not
native data types, SQL extensions are used and the precompilers generate the
host language constructs necessary to represent each variable. In the case of
REXX, LOBs are mapped to strings.

the numeric type of HV1 or an error evaluating an arithmetic expression that is used to determine the value for
HV1. When accessing a database with a client version earlier than DB2 Universal Database Version 5, HV2 will be
-1 for arithmetic exceptions.

References to Host Variables

Chapter 3. Language Elements 137

It is sometimes possible to define a large enough variable to hold an entire
large object value. If this is true and if there is no performance benefit to be
gained by deferred transfer of data from the server, a locator is not needed.
However, since host language or space restrictions will often dictate against
storing an entire large object in temporary storage at one time and/or because
of performance benefit, a large object may be referenced via a locator and
portions of that object may be selected into or updated from host variables
that contain only a portion of the large object at one time.

As with all other host variables, a large object locator variable may have an
associated indicator variable. Indicator variables for large object locator host
variables behave in the same way as indicator variables for other data types.
When a null value is returned from the database, the indicator variable is set
and the locator host variable is unchanged. This means a locator can never
point to a null value.

References to Locator Variables
A locator variable is a host variable that contains the locator representing a LOB
value on the application server. (See “Manipulating Large Objects (LOBs) with
Locators” on page 77 for information on how locators can be used to
manipulate LOB values.)

A locator variable in an SQL statement must identify a locator variable
described in the program according to the rules for declaring locator variables.
This is always indirectly through an SQL statement.

The term locator variable, as used in the syntax diagrams, shows a reference
to a locator variable. The meta-variable locator-variable can be expanded to
include a host-identifier the same as that for host-variable.

When the indicator variable associated with a locator is null, the value of the
referenced LOB is null.

If a locator-variable that does not currently represent any value is referenced,
an error is raised (SQLSTATE 0F001).

At transaction commit, or any transaction termination, all locators acquired by
that transaction are released.

References to BLOB, CLOB, and DBCLOB File Reference Variables
BLOB, CLOB, and DBCLOB file reference variables are used for direct file
input and output for LOBs, and can be defined in all host languages. Since
these are not native data types, SQL extensions are used and the precompilers
generate the host language constructs necessary to represent each variable. In
the case of REXX, LOBs are mapped to strings.

References to Host Variables

138 SQL Reference

A file reference variable represents (rather than contains) the file, just as a
LOB locator represents, rather than contains, the LOB bytes. Database queries,
updates and inserts may use file reference variables to store or to retrieve
single column values.

A file reference variable has the following properties:

Data Type BLOB, CLOB, or DBCLOB. This property is
specified when the variable is declared.

Direction This must be specified by the application
program at run time (as part of the File
Options value). The direction is one of:
v Input (used as a source of data on an

EXECUTE statement, an OPEN statement,
an UPDATE statement, an INSERT
statement, or a DELETE statement).

v Output (used as the target of data on a
FETCH statement or a SELECT INTO
statement).

File name This must be specified by the application
program at run time. It is one of:
v The complete path name of the file (which

is advised).
v A relative file name. If a relative file name

is provided, it is appended to the current
path of the client process.

Within an application, a file should only be
referenced in one file reference variable.

File Name Length This must be specified by the application
program at run time. It is the length of the file
name (in bytes).

File Options An application must assign one of a number
of options to a file reference variable before it
makes use of that variable. Options are set by
an INTEGER value in a field in the file
reference variable structure. One of the
following values must be specified for each
file reference variable:
v Input (from client to server)

References to Host Variables

Chapter 3. Language Elements 139

SQL_FILE_READ 27

This is a regular file that
can be opened, read and
closed.

v Output (from server to client)

SQL_FILE_CREATE 28

Create a new file. If the file
already exists, it is an error.

SQL_FILE_OVERWRITE (Overwrite) 29

If an existing file with the
specified name exists, it is
overwritten; otherwise a
new file is created.

SQL_FILE_APPEND 30

If an existing file with the
specified name exists, the
output is appended to it;
otherwise a new file is
created.

Data Length
This is unused on input. On output,
the implementation sets the data
length to the length of the new data
written to the file. The length is in
bytes.

As with all other host variables, a file reference variable may have an
associated indicator variable.

Example of an Output File Reference Variable (in C)

v Given a declare section is coded as:
EXEC SQL BEGIN DECLARE SECTION

SQL TYPE IS CLOB_FILE hv_text_file;
char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

Following preprocessing this would be:

27. SQL-FILE-READ in COBOL, sql_file_read in FORTRAN, READ in REXX.

28. SQL-FILE-CREATE in COBOL, sql_file_create in FORTRAN, CREATE in REXX.

29. SQL-FILE-OVERWRITE in COBOL, sql_file_overwrite in FORTRAN, OVERWRITE in REXX.

30. SQL-FILE-APPEND in COBOL, sql_file_append in FORTRAN, APPEND in REXX.

References to Host Variables

140 SQL Reference

EXEC SQL BEGIN DECLARE SECTION
/* SQL TYPE IS CLOB_FILE hv_text_file; */
struct {

unsigned long name_length; // File Name Length
unsigned long data_length; // Data Length
unsigned long file_options; // File Options
char name[255]; // File Name

} hv_text_file;
char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

Then, the following code can be used to select from a CLOB column in the
database into a new file referenced by :hv_text_file.

strcpy(hv_text_file.name, "/u/gainer/papers/sigmod.94");
hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");
hv_text_file.file_options = SQL_FILE_CREATE;

EXEC SQL SELECT content INTO :hv_text_file from papers
WHERE TITLE = 'The Relational Theory behind Juggling';

Example of an Input File Reference Variable (in C)

v Given the same declare section as above, the following code can be used to
insert the data from a regular file referenced by :hv_text_file into a CLOB
column.

strcpy(hv_text_file.name, "/u/gainer/patents/chips.13");
hv_text_file.name_length = strlen("/u/gainer/patents/chips.13");
hv_text_file.file_options = SQL_FILE_READ:
strcpy(:hv_patent_title, "A Method for Pipelining Chip Consumption");

EXEC SQL INSERT INTO patents(title, text)
VALUES(:hv_patent_title, :hv_text_file);

References to Structured Type Host Variables
Structured type variables can be defined in all host languages except
FORTRAN, REXX, and Java. Since these are not native data types, SQL
extensions are used and the precompilers generate the host language
constructs necessary to represent each variable.

As with all other host variables, a structured type variable may have an
associated indicator variable. Indicator variables for structured type host
variables behave in the same way as indicator variables for other data types.
When a null value is returned from the database, the indicator variable is set
and the structured type host variable is unchanged.

The actual host variable for a structured type is defined as a built-in data
type. The built-in data type associated with the structured type must be
assignable:

References to Host Variables

Chapter 3. Language Elements 141

v from the result of the FROM SQL transform function for the structured type
as defined by the specified TRANSFORM GROUP option of the precompile
command; and

v to the parameter of the TO SQL transform function for the structured type
as defined by the specified TRANSFORM GROUP option of the precompile
command.

If using a parameter marker instead of a host variable, the appropriate
parameter type characteristics must be specified in the SQLDA. This requires
a ″doubled″ set of SQLVAR structures in the SQLDA, and the
SQLDATATYPE_NAME field of the secondary SQLVAR must be filled with
the schema and type name of the structured type. If the schema is omitted in
the SQLDA structure, an error results (SQLSTATE 07002). For additional
information on this topic, see “Appendix C. SQL Descriptor Area (SQLDA)”
on page 1113.

Example
Define the host variables hv_poly and hv_point (of type POLYGON, using
built-in type BLOB(1048576)) in a C program.

EXEC SQL BEGIN DECLARE SECTION;
static SQL

TYPE IS POLYGON AS BLOB(1M)
hv_poly, hv_point;

EXEC SQL END DECLARE SECTION;

Functions

A database function is a relationship between a set of input data values and a
set of result values. For example, the TIMESTAMP function can be passed
input data values of type DATE and TIME and the result is a TIMESTAMP.
Functions can either be built-in or user-defined.
v Built-in functions are provided with the database manager providing a

single result value and are identified as part of the SYSIBM schema.
Examples of such functions include column functions such as AVG,
operator functions such as ″+″, casting functions such as DECIMAL, and
others such as SUBSTR.

v User-defined functions are functions that are registered to a database in
SYSCAT.FUNCTIONS (using the CREATE FUNCTION statement).
User-defined functions are never part of the SYSIBM schema. One such set
of functions is provided with the database manager in a schema called
SYSFUN.

With user-defined functions, DB2 allows users and application developers to
extend the function of the database system by adding function definitions
provided by users or third party vendors to be applied in the database engine
itself. This allows higher performance than retrieving rows from the database

References to Host Variables

142 SQL Reference

and applying those functions on the retrieved data to further qualify or to
perform data reduction. Extending database functions also lets the database
exploit the same functions in the engine that an application uses, provides
more synergy between application and database, and contributes to higher
productivity for application developers because it is more object-oriented.

A complete list of functions in the SYSIBM and SYSFUN schemas is
documented in Table 15 on page 210.

External, SQL and Sourced User-Defined Functions
A user-defined function can be an external function, an SQL function, or a
sourced function. An external function is defined to the database with a reference
to an object code library and a function within that library that will be
executed when the function is invoked. External functions can not be column
functions. A sourced function is defined to the database with a reference to
another built-in or user-defined function that is already known to the
database. Sourced functions can be scalar functions or column functions. They
are very useful for supporting the use of existing functions with user-defined
types. An SQL function is defined to the database using only the SQL
RETURN statement. It can return either a scalar value, a row, or a table. SQL
functions cannot be column functions.

Scalar, Column, Row and Table User-Defined Functions
Each user-defined function is also categorized as a scalar, column or table
function.

A scalar function is one which returns a single-valued answer each time it is
called. For example, the built-in function SUBSTR() is a scalar function. Scalar
UDFs can be either external or sourced.

A column function is one which conceptually is passed a set of like values (a
column) and returns a single-valued answer. These are also sometimes called
aggregating functions in DB2. An example of a column function is the built-in
function AVG(). An external column UDF cannot be defined to DB2, but a
column UDF which is sourced upon one of the built-in column functions can
be defined. This is useful for distinct types. For example if there is a distinct
type SHOESIZE defined with base type INTEGER, a UDF AVG(SHOESIZE)
which is sourced on the built-in function AVG(INTEGER) could be defined,
and it would be a column function.

A row function is a function which returns one row of values. It may only be
used as a transform function, mapping attribute values of a structured type
into values in a row. A row function must be defined as an SQL function.

A table function is a function which returns a table to the SQL statement which
references it. It may only be referenced in the FROM clause of a SELECT. Such

Functions

Chapter 3. Language Elements 143

a function can be used to apply SQL language processing power to data
which is not DB2 data, or to convert such data into a DB2 table. It could, for
example, take a file and convert it to a table, sample data from the World
Wide Web and tabularize it, or access a Lotus Notes database and return
information about mail messages, such as the date, sender, and the text of the
message. This information can be joined with other tables in the database. A
table function can be defined as an external function or as an SQL function (a
table function cannot be a sourced function).

Function signatures
A function is identified by its schema, a function name, the number of
parameters and the data types of its parameters. This is called a function
signature which must be unique within the database. There can be more than
one function with the same name in a schema provided that the number of
parameters or the data types of the parameters are different. A function name
for which there are multiple function instances is called an overloaded function.
A function name can be overloaded within a schema, in which case there is
more than one function by that name in the schema (which of necessity have
different parameter types). A function name can also be overloaded in a SQL
path, in which case there is more than one function by that name in the path,
and these functions do not necessarily have different parameter types.

SQL Path
A function can be invoked by referring, in an allowable context, to the
qualified name (schema and function name) followed by the list of arguments
enclosed in parentheses. A function can also be invoked without the schema
name resulting in a choice of possible functions in different schemas with the
same or acceptable parameters. In this case, the SQL path is used to assist in
function resolution. The SQL path is a list of schemas that are searched to
identify a function with the same name, number of parameters and acceptable
data types. For static SQL statements, SQL path is specified using the
FUNCPATH bind option (see Command Reference for details). For dynamic SQL
statements, SQL path is the value of the CURRENT PATH special register (see
“CURRENT PATH” on page 122).

Function Resolution
Given a function invocation, the database manager must decide which of the
possible functions with the same name is the “best” fit. This includes
resolving functions from the built-in and user-defined functions.

An argument is a value passed to a function upon invocation. When a function
is invoked in SQL, it is passed a list of zero or more arguments. They are
positional in that the semantics of an argument are determined by its position
in the argument list. A parameter is a formal definition of an input to a
function. When a function is defined to the database, either internally (the
built-in functions) or by a user (user-defined functions), its parameters (zero
or more) are specified, the order of their definitions defining their positions

Functions

144 SQL Reference

and thus their semantics. Therefore, every parameter is a particular positional
input of a function. On invocation, an argument corresponds to a particular
parameter by virtue of its position in the list of arguments.

The database manager uses the name of the function given in the invocation,
the number and data types of the arguments, all the functions with the same
name in the SQL path, and the data types of their corresponding parameters
as the basis for deciding whether or not to select a function. The following are
the possible outcomes of the decision process:
1. A particular function is deemed to be the best fit. For example, given the

functions named RISK in the schema TEST with signatures defined as:
TEST.RISK(INTEGER)
TEST.RISK(DOUBLE)

a SQL path including the TEST schema and the following function
reference (where DB is a DOUBLE column):

SELECT ... RISK(DB) ...

then, the second RISK will be chosen.

The following function reference (where SI is a SMALLINT column):
SELECT ... RISK(SI) ...

would choose the first RISK, since SMALLINT can be promoted to
INTEGER and is a better match than DOUBLE which is further down the
precedence list (as shown in Table 5 on page 90).

When considering arguments that are structured types, the precedence list
includes the supertypes of the static type of the argument. The best fit is
the function defined with the supertype parameter closest in the
structured type hierarchy to the static type of the function argument.

2. No function is deemed to be an acceptable fit. For example, given the
same two functions in the previous case and the following function
reference (where C is a CHAR(5) column):

SELECT ... RISK(C) ...

the argument is inconsistent with the parameter of both RISK functions.
3. A particular function is selected based on the SQL path and the number

and data types of the arguments passed on invocation. For example, given
functions named RANDOM with signatures defined as:

TEST.RANDOM(INTEGER)
PROD.RANDOM(INTEGER)

and a SQL path of:
"TEST","PROD"

Functions

Chapter 3. Language Elements 145

Then the following function reference:
SELECT ... RANDOM(432) ...

will choose TEST.RANDOM since both RANDOM functions are equally
good matches (exact matches in this particular case) and both schemas are
in the path, but TEST precedes PROD in the SQL path.

Method of Choosing the Best Fit
A comparison of the data types of the arguments with the defined data types
of the parameters of the functions under consideration forms the basis for the
decision of which function in a group of like-named functions is the ″best fit″.
Note that the data type of the result of the function or the type of function
(column, scalar, or table) under consideration does not enter into this
determination.

Function resolution is done using the steps that follow.
1. First, find all functions from the catalog (SYSCAT.FUNCTIONS) and

built-in functions such that all of the following are true:
a. For invocations where the schema name was specified (i.e. qualified

references), then the schema name and the function name match the
invocation name.

b. For invocations where the schema name was not specified (i.e.
unqualified references), then the function name matches the invocation
name and has a schema name that matches one of the schemas in the
SQL path.

c. The number of defined parameters matches the invocation.
d. Each invocation argument matches the function’s corresponding

defined parameter in data type, or is “promotable” to it (see
“Promotion of Data Types” on page 90).

2. Next, consider each argument of the function invocation, from left to right.
For each argument, eliminate all functions that are not the best match for
that argument. The best match for a given argument is the first data type
appearing in the precedence list corresponding to the argument data type
in Table 5 on page 90 for which there exists a function with a parameter of
that data type. Lengths, precisions, scales and the ″FOR BIT DATA″
attribute are not considered in this comparison. For example, a
DECIMAL(9,1) argument is considered an exact match for a
DECIMAL(6,5) parameter, and a VARCHAR(19) argument is an exact
match for a VARCHAR(6) parameter.
The best match for a user-defined structured-type argument is itself; the
next best match is its immediate supertype, and so on for each supertype
of the argument. Note that only the static type (declared type) of the
structured-type argument is considered, not the dynamic type (most
specific type).

Functions

146 SQL Reference

3. If more than one candidate function remains after Step 2, then it has to be
the case (the way the algorithm works) that all the remaining candidate
functions have identical signatures but are in different schemas. Choose
the function whose schema is earliest in the user’s SQL path.

4. If there are no candidate functions remaining after step 2, an error is
returned (SQLSTATE 42884).

Function Path Considerations for Built-in Functions
Built-in functions reside in a special schema called SYSIBM. Additional
functions are available in the SYSFUN schema which are not considered
built-in functions since they are developed as user-defined functions and have
no special processing considerations. Users can not define additional functions
in SYSIBM or SYSFUN schemas (or in any schema whose name begins with
the letters “SYS”).

As already stated, the built-in functions participate in the function resolution
process exactly as do the user-defined functions. One difference between
built-in and user-defined functions, from a function resolution perspective, is
that the built-in function must always be considered by function resolution.
Therefore, omission of SYSIBM from the path results in an assumption for
function and data type resolution that SYSIBM is the first schema on the path.

For example, if a user’s SQL path is defined as:
"SHAREFUN","SYSIBM","SYSFUN"

and there is a LENGTH function defined in schema SHAREFUN with the
same number and types of arguments as SYSIBM.LENGTH, then an
unqualified reference to LENGTH in this user’s SQL statement will result in
selecting SHAREFUN.LENGTH. However, if the user’s SQL path is defined
as:

"SHAREFUN","SYSFUN"

and the same SHAREFUN.LENGTH function exists, then an unqualified
reference to LENGTH in this user’s SQL statement will result in selecting
SYSIBM.LENGTH since SYSIBM is implicitly first in the path because it was
not specified.

It is possible to minimize potential problems in this area by:
v never using the names of built-in functions for user-defined functions, or
v qualifying any references to these functions, if for some reason it is deemed

necessary to create a user-defined function with the same name as a built-in
function.

Example of Function Resolution
The following is an example of successful function resolution.

Functions

Chapter 3. Language Elements 147

There are seven FOO functions, in three different schemas, registered as (note
that not all required keywords appear):
CREATE FUNCTION AUGUSTUS.FOO (CHAR(5), INT, DOUBLE) SPECIFIC FOO_1 ...
CREATE FUNCTION AUGUSTUS.FOO (INT, INT, DOUBLE) SPECIFIC FOO_2 ...
CREATE FUNCTION AUGUSTUS.FOO (INT, INT, DOUBLE, INT) SPECIFIC FOO_3 ...
CREATE FUNCTION JULIUS.FOO (INT, DOUBLE, DOUBLE) SPECIFIC FOO_4 ...
CREATE FUNCTION JULIUS.FOO (INT, INT, DOUBLE) SPECIFIC FOO_5 ...
CREATE FUNCTION JULIUS.FOO (SMALLINT, INT, DOUBLE) SPECIFIC FOO_6 ...
CREATE FUNCTION NERO.FOO (INT, INT, DEC(7,2)) SPECIFIC FOO_7 ...

The function reference is as follows (where I1 and I2 are INTEGER columns,
and D is a DECIMAL column):

SELECT ... FOO(I1, I2, D) ...

Assume that the application making this reference has a SQL path established
as:

"JULIUS","AUGUSTUS","CAESAR"

Following through the algorithm...
FOO_7 is eliminated as a candidate, because the schema ″NERO″ is not
included in the SQL path.
FOO_3 is eliminated as a candidate, because it has the wrong number of
parameters. FOO_1 and FOO_6 are eliminated because in both cases the
first argument cannot be promoted to the data type of the first parameter.
Because there is more than one candidate remaining, the arguments are
then considered in order.
For the first argument, all remaining functions — FOO_2, FOO_4 and
FOO_5 are an exact match with the argument type. No functions can be
eliminated from consideration, therefore the next argument must be
examined.
For this second argument, FOO_2 and FOO_5 are exact matches while
FOO_4 is not, so it is eliminated from consideration. The next argument is
examined to determine some differentiation between FOO_2 and FOO_5.
On the third and last argument, neither FOO_2 nor FOO_5 match the
argument type exactly, but both are equally good.
There are two functions remaining, FOO_2 and FOO_5, with identical
parameter signatures. The final tie-breaker is to see which function’s
schema comes first in the SQL path, and on this basis FOO_5 is finally
chosen.

Function Invocation
Once the function is selected, there are still possible reasons why the use of
the function may not be permitted. Each function is defined to return a result
with a specific data type. If this result data type is not compatible with the
context in which the function is invoked, an error will occur. For example,
given functions named STEP defined, this time, with different data types as
the result:

Functions

148 SQL Reference

STEP(SMALLINT) returns CHAR(5)
STEP(DOUBLE) returns INTEGER

and the following function reference (where S is a SMALLINT column):
SELECT ... 3 + STEP(S) ...

then, because there is an exact match on argument type, the first STEP is
chosen. An error occurs on the statement because the result type is CHAR(5)
instead of a numeric type as required for an argument of the addition
operator.

A couple of other examples where this can happen are as follows, both of
which will result in an error on the statement:
1. The function was referenced in a FROM clause, but the function selected

by the function resolution step was a scalar or column function.
2. The reverse case, where the context calls for a scalar or column function,

and function resolution selects a table function.

In cases where the arguments of the function invocation were not an exact
match to the data types of the parameters of the selected function, the
arguments are converted to the data type of the parameter at execution using
the same rules as assignment to columns (see “Assignments and
Comparisons” on page 94). This includes the case where precision, scale, or
length differs between the argument and the parameter.

Methods

A database method of a structured type is a relationship between a set of
input data values and a set of result values, where the first input value (or
subject argument) has the same type, or is a subtype of the subject type (also
called the subject parameter), of the method. For example, a method called
CITY, of type ADDRESS, can be passed input data values of type VARCHAR
and the result is an ADDRESS (or a subtype of ADDRESS).

Methods are defined implicitly or explicitly, as part of the definition of a
user-defined structured type.

Implicitly defined methods are created for every structured type. Observer
methods are defined for each attribute of the structured type. Observer
methods allow applications to get the value of an attribute for an instance of
the type. Mutator methods are also defined for each attribute, allowing
applications to mutate the type instance by changing the value for an attribute
of a type instance. The CITY method described above is an example of a
mutator method for the type ADDRESS.

Functions

Chapter 3. Language Elements 149

Explicitly defined methods, or user-defined methods are methods that are
registered to a database in SYSCAT.FUNCTIONS, by using a combination of
CREATE TYPE (or ALTER TYPE ADD METHOD) and CREATE METHOD
statements. All methods defined for a structured type are defined in the same
schema as the type.

With user-defined methods for structured types, DB2 allows users and
application developers to extend the function of the database system. This is
accomplished by adding method definitions provided by users, or third party
vendors, to be applied to structured type instances in the database engine.
The added method definitions provide a higher level of performance as
opposed to retrieving rows from the database and applying functions on the
retrieved data. Defining database methods also enables the database to exploit
the same methods in the engine used by an application, providing a greater
degree of interaction efficiency between the application and database. This
results in higher productivity for application developers, because it is more
object-oriented.

External and SQL User-Defined Methods
A user-defined method can be either external or based on an SQL expression.
An external method is defined to the database with a reference to an object
code library and a function within that library that will be executed when the
method is invoked. A method based on an SQL expression returns the result
of the SQL expression when the method is invoked. Such methods do not
require any object code library, since they are written completely in SQL.

A user-defined method can return a single-valued answer each time it is
called. This value can be a structured type. A method can be defined as type
preserving (using SELF AS RESULT), to allow the dynamic type of the subject
argument to be returned as the returned type of the method. All implicitly
defined mutator methods are type preserving.

Method Signatures
A method is identified by its subject type, a method name, the number of
parameters and the data types of its parameters. This is called a method
signature, and it must be unique within the database.

There can be more than one method with the same name for a structured type
provided that:
v the number of parameters or the data types of the parameters are different
v the same signature does not exist for a subtype or supertype of the subject

type of the method
v the same function signature (using the subject type or any of its subtypes or

supertypes as the first parameter) does not exist.

Methods

150 SQL Reference

A method name which has multiple method instances is called an overloaded
method. A method name can be overloaded within a type, in which case there
is more than one method by that name for the type (all of which have
different parameter types). A method name can also be overloaded in the
subject type hierarchy, in which case there is more than one method by that
name in the type hierarchy, and these methods also must have different
parameter types.

Method Invocation
A method can be invoked by referring, in an allowable context, to the method
name preceded by both a reference to a structured type instance (the subject
argument), and the double dot operator. The list of arguments enclosed in
parentheses must follow. The method that is actually invoked is determined
based on the static type of the subject type, using the method resolution
described in the following section. Methods defined WITH FUNCTION
ACCESS can also be invoked using function invocation, in which case the
regular rules for function resolution are applied.

Method Resolution
Given a method invocation, the database manager must decide which of the
possible methods with the same name is the ″best″ fit. Functions (built-in or
user-defined) are not considered during method resolution.

An argument is a value passed to a method upon invocation. When a method
is invoked in SQL, it is passed the subject argument (of some structured type)
and a list of zero or more arguments. They are positional in that the semantics
of an argument are determined by its position in the argument list. The
subject argument is considered as the first argument. A parameter is a formal
definition of an input to a method.

When a method is defined to the database, either implicitly (system-generated
for a type) or by a user (user-defined methods), its parameters are specified
(with the subject parameter as the first parameter), and the order of their
definitions defines their positions and their semantics. Therefore, every
parameter is a particular positional input of a method. On invocation, an
argument corresponds to a particular parameter by virtue of its position in the
list of arguments.

The database manager uses the name of the method given in the invocation,
the number and data types of the arguments, all the methods with the same
name for the subject argument’s static type (and it’s supertypes), and the data
types of their corresponding parameters as the basis for deciding whether or
not to select a method.

The following are the possible outcomes of the decision process:

Methods

Chapter 3. Language Elements 151

1. A particular method is deemed to be the best fit. For example, given the
methods named RISK for the type SITE with signatures defined as:

PROXIMITY(INTEGER) FOR SITE
PROXIMITY(DOUBLE) FOR SITE

the following method invocation (where ST is a SITE column, DB is a
DOUBLE column):

SELECT ST..PROXIMITY(DB) ...

then, the second PROXIMITY will be chosen.

The following method invocation (where SI is a SMALLINT column):
SELECT ST..PROXIMITY(SI) ...

would choose the first PROXIMITY, since SMALLINT can be promoted to
INTEGER and is a better match than DOUBLE, which is further down the
precedence list.

When considering arguments that are structured types, the precedence list
includes the supertypes of the static type of the argument. The best fit is
the function defined with the supertype parameter that is closest in the
structured type hierarchy to the static type of the function argument.

2. No method is deemed to be an acceptable fit. For example, given the same
two functions in the previous case and the following function reference
(where C is a CHAR(5) column):

SELECT ST..PROXIMITY(C) ...

the argument is inconsistent with the parameter of both PROXIMITY
functions.

3. A particular method is selected based on the methods in the type
hierarchy and the number and data types of the arguments passed on
invocation. For example, given the methods named RISK for the types
SITE and DRILLSITE (a subtype of SITE) with signatures defined as:

RISK(INTEGER) FOR DRILLSITE
RISK(DOUBLE) FOR SITE

the following method invocation (where DRST is a DRILLSITE column,
DB is a DOUBLE column):

SELECT DRST..RISK(DB) ...

then, the second RISK will be chosen since DRILLSITE can be promoted to
SITE.

The following method reference (where SI is a SMALLINT column):
SELECT DRST..RISK(SI) ...

Methods

152 SQL Reference

would choose the first RISK, since SMALLINT can be promoted to
INTEGER, which is closer on the precedence list than DOUBLE, and
DRILLSITE is a better match than SITE, which is a supertype.

Methods within the same type hierarchy cannot have the same signatures,
considering the parameters other than the subject parameter.

Method of Choosing the Best Fit
Comparing the data types of the arguments with the defined data types of the
parameters of the method under consideration forms the basis for the decision
of which method in a group of like-named methods is the ″best fit″. Note that
the data type of the result of the method under consideration does not enter
into this determination.

Method resolution is done using the steps that follow.
1. First, find all methods from the catalog (SYSCAT.FUNCTIONS) such that

all of the following are true:
v the method name matches the invocation name, and the subject

parameter is the same type or is a supertype of the static type of the
subject argument

v the number of defined parameters matches the invocation
v each invocation argument matches the method’s corresponding defined

parameter in data type, or is ″promotable″ to it (see “Promotion of Data
Types” on page 90).

2. Next, consider each argument of the method invocation, from left to right.
The leftmost argument (and thus the first argument) is the implicit SELF
parameter. For example, a method defined for type ADDRESS_T has an
implicit first parameter of type ADDRESS_T.
For each argument, eliminate all functions that are not the best match for
that argument. The best match for a given argument is the first data type
appearing in the precedence list, corresponding to the argument data type
in Table 5 on page 90 for which there exists a function with a parameter of
that data type.
Lengths, precisions, scales and the ″FOR BIT DATA″ attribute are not
considered in this comparison. For example, a DECIMAL(9,1) argument is
considered an exact match for a DECIMAL(6,5) parameter, and a
VARCHAR(19) argument is an exact match for a VARCHAR(6) parameter.
The best match for a user-defined structured-type argument is itself; the
next best match is its immediate supertype, and so on for each supertype
of the argument. Notice that only the static type (declared type) of the
structured-type argument is considered, and not the dynamic type (most
specific type).

3. At most, one candidate method remains after Step 2. This is the method
that is chosen.

Methods

Chapter 3. Language Elements 153

4. If there are no candidate methods remaining after step 2, an error is
returned (SQLSTATE 42884).

Example of Method Resolution
The following is an example of successful method resolution.

There are seven FOO methods for three structured types defined in a
hierarchy of GOVERNOR as a subtype of EMPEROR as a subtype of
HEADOFSTATE, registered with signatures:

CREATE METHOD FOO (CHAR(5), INT, DOUBLE) FOR HEADOFSTATE SPECIFIC FOO_1 ...
CREATE METHOD FOO (INT, INT, DOUBLE) FOR HEADOFSTATE SPECIFIC FOO_2 ...
CREATE METHOD FOO (INT, INT, DOUBLE, INT) FOR HEADOFSTATE SPECIFIC FOO_3 ...
CREATE METHOD FOO (INT, DOUBLE, DOUBLE) FOR EMPEROR SPECIFIC FOO_4 ...
CREATE METHOD FOO (INT, INT, DOUBLE) FOR EMPEROR SPECIFIC FOO_5 ...
CREATE METHOD FOO (SMALLINT, INT, DOUBLE) FOR EMPEROR SPECIFIC FOO_6 ...
CREATE METHOD FOO (INT, INT, DEC(7,2)) FOR GOVERNOR SPECIFIC FOO_7 ...

The method reference is as follows (where I1 and I2 are INTEGER columns, D
is a DECIMAL column and E is an EMPEROR column):

SELECT E..FOO(I1, I2, D) ...

Following through the algorithm...
FOO_7 is eliminated as a candidate, because the type GOVERNOR is a
subtype of EMPEROR (not a supertype).
FOO_3 is eliminated as a candidate, because it has the wrong number of
parameters.
FOO_1 and FOO_6 are eliminated because, in both cases, the first
argument (not the subject argument) cannot be promoted to the data type
of the first parameter. Because there is more than one candidate remaining,
the arguments are then considered in order.
For the subject argument, FOO_2 is a supertype, while FOO_4 and FOO_5
match the subject argument.
For the first argument, the remaining methods, FOO_4 and FOO_5, are an
exact match with the argument type. No methods can be eliminated from
consideration, therefore the next argument must be examined.
For this second argument, FOO_5 is an exact match while FOO_4 is not, so
it is eliminated from consideration. This leaves FOO_5 as the method
chosen.

Method Invocation
Once the method is selected, there are still possible reasons why the use of the
method may not be permitted.

Each method is defined to return a result with a specific data type. If this
result data type is not compatible with the context in which the method is

Methods

154 SQL Reference

invoked, an error will occur. For example, assume that the following methods
named STEP are defined, each with a different data type as the result:

STEP(SMALLINT) FOR TYPEA RETURNS CHAR(5)
STEP(DOUBLE) FOR TYPEA RETURNS INTEGER

and the following method reference (where S is a SMALLINT column and TA
is an column of TYPEA):

SELECT 3 + TA..STEP(S) ...

then, because there is an exact match on argument type, the first STEP is
chosen. An error occurs on the statement, because the result type is CHAR(5)
instead of a numeric type as required for an argument of the addition
operator.

Note that when the selected method is a type preserving method:
v the static result type following function resolution is the same as the static

type of the subject argument of the method invocation
v the dynamic result type when the method is invoked is the same as the

dynamic type of the subject argument of the method invocation.

This may be a subtype of the result type specified in the type preserving
method definition, which in turn may be a supertype of the dynamic type
that is actually returned when the method is processed.

In cases where the arguments of the method invocation were not an exact
match to the data types of the parameters of the selected method, the
arguments are converted to the data type of the parameter at execution using
the same rules as assignment to columns (see “Assignments and
Comparisons” on page 94). This includes the case where precision, scale, or
length differs between the argument and the parameter, but excludes the case
where the dynamic type of the argument is a subtype of the parameter’s static
type.

Conservative Binding Semantics

There are situations within a database where the functions, methods and data
types are resolved when the statement is processed and the database manager
must be able to repeat this resolution. This is true in:
v static DML statements in packages,
v views,
v triggers,
v check constraints, and
v SQL routines.

Methods

Chapter 3. Language Elements 155

For static DML statements in packages, the function, method and data type
references are resolved during the bind operation. Function, method and data
type references in views, triggers, and check constraints are resolved when the
database object is created.

If function or method resolution is performed again on any function or
method references in these objects, it could change the behavior if a new
function or method has been added with a signature that is a better match but
the actual executable performs different operations. Similarly, if resolution is
performed again on any data type in these objects, it could change the
behavior if a new data type has been added with the same name in a different
schema that is also on the SQL path. In order to avoid this, where necessary,
the database manager applies the concept of conservative binding semantics.
This concept ensures that the function and data type references will be
resolved using the same SQL path as when it was bound. Furthermore, the
creation timestamp of functions 31, methods and data types considered during
resolution is not later than the time when the statement was bound 32. In this
way, only the functions and data types that were considered during function,
method and data type resolution when the statement was originally processed
will be considered. Hence, newly created functions, methods and data types
are not considered when conservative binding semantics are applied.

For static DML in packages, the packages can rebind either implicitly or by
explicitly issuing the REBIND command (or corresponding API) or the BIND
command (or corresponding API). The implicit rebind is always performed to
resolve functions, methods and data types with conservative binding
semantics. The REBIND command provides the choice to resolve with
conservative binding semantics (RESOLVE CONSERVATIVE option) or to
resolve considering any new functions, methods and data types (by default or
using the RESOLVE ANY option).

31. Built-in functions added starting with Version 6.1 have a creation timestamp that is based on the time of database
creation or migration.

32. For views, conservative binding also ensures that the columns of the view are the same as those that existed at the
time the view was created. For example, a view defined using the asterisk in the select list will not consider any
columns added to the underlying tables after the view was created.

Conservative Binding Semantics

156 SQL Reference

Expressions

An expression specifies a value. It can be a simple value, consisting of only a
constant or a column name, or it can be more complex. When repeatedly
using similar complex expressions, the usage of an SQL function may be
considered to encapsulate a common expression. See “CREATE FUNCTION
(SQL Scalar, Table or Row)” on page 649 for more information.

�� �

operator

function
+ (expression)
− constant

column-name
host-variable
special-register

(1)
(scalar-fullselect)

(2)
labeled-duration

(3)
case-expression

(4)
cast-specification

(5)
dereference-operation

(6)
OLAP-function

(7)
method-invocation

(8)
subtype-treatment

��

operator:

(9)
CONCAT
/
*
+
−

Notes:

1 See “Scalar Fullselect” on page 164 for more information.

2 See “Labeled Durations” on page 164 for more information.

3 See “CASE Expressions” on page 171 for more information.

4 See “CAST Specifications” on page 173 for more information.

Expressions

Chapter 3. Language Elements 157

5 See “Dereference Operations” on page 176 for more information.

6 See “OLAP Functions” on page 177 for more information.

7 See “Method Invocation” on page 183 for more information.

8 See “Subtype Treatment” on page 184 for more information.

9 || may be used as a synonym for CONCAT.

Without Operators
If no operators are used, the result of the expression is the specified value.

Examples: SALARY :SALARY 'SALARY' MAX(SALARY)

With the Concatenation Operator
The concatenation operator (CONCAT) links two string operands to form a
string expression.

The operands of concatenation must be compatible strings. Note that a binary
string cannot be concatenated with a character string, including character
strings defined as FOR BIT DATA (SQLSTATE 42884). For more information
on compatibility, refer to the compatibility matrix on page Table 7 on page 94.

If either operand can be null, the result can be null, and if either is null, the
result is the null value. Otherwise, the result consists of the first operand
string followed by the second. Note that no check is made for improperly
formed mixed data when doing concatenation.

The length of the result is the sum of the lengths of the operands.

The data type and length attribute of the result is determined from that of the
operands as shown in the following table:

Table 10. Data Type and Length of Concatenated Operands

Operands Combined
Length
Attributes

Result

CHAR(A) CHAR(B) <255 CHAR(A+B)

CHAR(A) CHAR(B) >254 VARCHAR(A+B)

CHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

CHAR(A) VARCHAR(B) >4000 LONG VARCHAR

CHAR(A) LONG VARCHAR - LONG VARCHAR

VARCHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

VARCHAR(A) VARCHAR(B) >4000 LONG VARCHAR

Expressions

158 SQL Reference

Table 10. Data Type and Length of Concatenated Operands (continued)

Operands Combined
Length
Attributes

Result

VARCHAR(A) LONG VARCHAR - LONG VARCHAR

LONG VARCHAR LONG VARCHAR - LONG VARCHAR

CLOB(A) CHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) VARCHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) LONG VARCHAR - CLOB(MIN(A+32K, 2G))

CLOB(A) CLOB(B) - CLOB(MIN(A+B, 2G))

GRAPHIC(A) GRAPHIC(B) <128 GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B) >127 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

GRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

VARGRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

VARGRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

VARGRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

LONG VARGRAPHIC LONG
VARGRAPHIC

- LONG VARGRAPHIC

DBCLOB(A) GRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) VARGRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) LONG VARGRAPHIC - DBCLOB(MIN(A+16K, 1G))

DBCLOB(A) DBCLOB(B) - DBCLOB(MIN(A+B, 1G))

BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2G))

Note that, for compatibility with previous versions, there is no automatic
escalation of results involving LONG data types to LOB data types. For

Expressions

Chapter 3. Language Elements 159

example, concatenation of a CHAR(200) value and a completely full LONG
VARCHAR value would result in an error rather than in a promotion to a
CLOB data type.

The code page of the result is considered a derived code page and is
determined by the code page of its operands as explained in “Rules for String
Conversions” on page 111.

One operand may be a parameter marker. If a parameter marker is used, then
the data type and length attributes of that operand are considered to be the
same as those for the non-parameter marker operand. The order of operations
must be considered to determine these attributes in cases with nested
concatenation.

Example 1: If FIRSTNME is Pierre and LASTNAME is Fermat, then the
following :
FIRSTNME CONCAT ' ' CONCAT LASTNAME

returns the value Pierre Fermat.

Example 2: Given:
v COLA defined as VARCHAR(5) with value 'AA'

v :host_var defined as a character host variable with length 5 and value
'BB '

v COLC defined as CHAR(5) with value 'CC'

v COLD defined as CHAR(5) with value 'DDDDD'

The value of: COLA CONCAT :host_var CONCAT COLC CONCAT COLD is:

'AABB CC DDDDD'

The data type is VARCHAR, the length attribute is 17 and the result code
page is the database code page.

Example 3: Given:
COLA is defined as CHAR(10)
COLB is defined as VARCHAR(5)

The parameter marker in the expression:
COLA CONCAT COLB CONCAT ?

is considered VARCHAR(15) since COLA CONCAT COLB is evaluated first giving
a result which is the first operand of the second CONCAT operation.

Expressions

160 SQL Reference

User-defined Types
A user-defined type cannot be used with the concatenation operator, even if it
is a distinct type with a source data type that is a string type. To concatenate,
create a function with the CONCAT operator as its source. For example, if
there were distinct types TITLE and TITLE_DESCRIPTION, both of which had
VARCHAR(25) data types, then the following user-defined function, ATTACH,
could be used to concatenate them.

CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternately, the concatenation operator could be overloaded using a
user-defined function to add the new data types.

CREATE FUNCTION CONCAT (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

With Arithmetic Operators
If arithmetic operators are used, the result of the expression is a value derived
from the application of the operators to the values of the operands.

If any operand can be null, or the database is configured with
DFT_SQLMATHWARN set to yes, the result can be null.

If any operand has the null value, the result of the expression is the null
value.

Arithmetic operators can be applied to signed numeric types and datetime
types (see “Datetime Arithmetic in SQL” on page 165). For example, USER+2
is invalid. Sourced functions can be defined for arithmetic operations on
distinct types with a source type that is a signed numeric type.

The prefix operator + (unary plus) does not change its operand. The prefix
operator − (unary minus) reverses the sign of a nonzero operand; and if the
data type of A is small integer, then the data type of −A is large integer. The
first character of the token following a prefix operator must not be a plus or
minus sign.

The infix operators +, −, *, and / specify addition, subtraction, multiplication,
and division, respectively. The value of the second operand of division must
not be zero. These operators can also be treated as functions. Thus, the
expression ″+″(a,b) is equivalent to the expression a+b. “operator” function.

Arithmetic Errors
If an arithmetic error such as zero divide or a numeric overflow occurs during
the processing of an expression, an error is returned and the SQL statement
processing the expression fails with an error (SQLSTATE 22003 or 22012).

Expressions

Chapter 3. Language Elements 161

A database can be configured (using DFT_SQLMATHWARN set to yes) so
that arithmetic errors return a null value for the expression, issue a warning
(SQLSTATE 01519 or 01564), and proceed with processing of the SQL
statement. When arithmetic errors are treated as nulls, there are implications
on the results of SQL statements. The following are some examples of these
implications.
v An arithmetic error that occurs in the expression that is the argument of a

column function causes the row to be ignored in the determining the result
of the column function. If the arithmetic error was an overflow, this may
significantly impact the result values.

v An arithmetic error that occurs in the expression of a predicate in a
WHERE clause can cause rows to not be included in the result.

v An arithmetic error that occurs in the expression of a predicate in a check
constraint results in the update or insert proceeding since the constraint is
not false.

If these types of impacts are not acceptable, additional steps should be taken
to handle the arithmetic error to produce acceptable results. Some examples
are:
v add a case expression to check for zero divide and set the desired value for

such a situation
v add additional predicates to handle nulls (like a check constraint on not

nullable columns could become:
check (c1*c2 is not null and c1*c2>5000)

to cause the constraint to be violated on an overflow).

Two Integer Operands
If both operands of an arithmetic operator are integers, the operation is
performed in binary and the result is a large integer unless either (or both)
operand is a big integer, in which case the result is a big integer. Any
remainder of division is lost. The result of an integer arithmetic operation
(including unary minus) must be within the range of the result type.

Integer and Decimal Operands
If one operand is an integer and the other is a decimal, the operation is
performed in decimal using a temporary copy of the integer which has been
converted to a decimal number with precision p and scale 0. p is 19 for a big
integer, 11 for a large integer and 5 for a small integer.

Two Decimal Operands
If both operands are decimal, the operation is performed in decimal. The
result of any decimal arithmetic operation is a decimal number with a
precision and scale that are dependent on the operation and the precision and
scale of the operands. If the operation is addition or subtraction and the
operands do not have the same scale, the operation is performed with a

Expressions

162 SQL Reference

temporary copy of one of the operands. The copy of the shorter operand is
extended with trailing zeros so that its fractional part has the same number of
digits as the longer operand.

The result of a decimal operation must not have a precision greater than 31.
The result of decimal addition, subtraction, and multiplication is derived from
a temporary result which may have a precision greater than 31. If the
precision of the temporary result is not greater than 31, the final result is the
same as the temporary result.

Decimal Arithmetic in SQL
The following formulas define the precision and scale of the result of decimal
operations in SQL. The symbols p and s denote the precision and scale of the
first operand, and the symbols p' and s' denote the precision and scale of the
second operand.

Addition and Subtraction
The precision is min(31,max(p-s,p’-s’) +max(s,s’)+1). The scale of the result of
addition and subtraction is max (s,s’).

Multiplication
The precision of the result of multiplication is min (31,p+p’) and the scale is
min(31,s+s’).

Division
The precision of the result of division is 31. The scale is 31-p+s-s'. The scale
must not be negative.

Floating-Point Operands
If either operand of an arithmetic operator is floating-point, the operation is
performed in floating-point, the operands having first been converted to
double-precision floating-point numbers, if necessary. Thus, if any element of
an expression is a floating-point number, the result of the expression is a
double-precision floating-point number.

An operation involving a floating-point number and an integer is performed
with a temporary copy of the integer which has been converted to
double-precision floating-point. An operation involving a floating-point
number and a decimal number is performed with a temporary copy of the
decimal number which has been converted to double-precision floating-point.
The result of a floating-point operation must be within the range of
floating-point numbers.

User-defined Types as Operands
A user-defined type cannot be used with arithmetic operators even if its
source data type is numeric. To perform an arithmetic operation, create a
function with the arithmetic operator as its source. For example, if there were

Expressions

Chapter 3. Language Elements 163

distinct types INCOME and EXPENSES, both of which had DECIMAL(8,2)
data types, then the following user-defined function, REVENUE, could be
used to subtract one from the other.

CREATE FUNCTION REVENUE (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a user-defined
function to subtract the new data types.

CREATE FUNCTION "-" (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Scalar Fullselect
A scalar fullselect as supported in an expression is a fullselect, enclosed in
parentheses, that returns a single row consisting of a single column value. If
the fullselect does not return a row, the result of the expression is the null
value. If the select list element is an expression that is simply a column name
or a dereference operation, the result column name is based on the name of
the column. See “fullselect” on page 434 for more information.

Datetime Operations and Durations
Datetime values can be incremented, decremented, and subtracted. These
operations may involve decimal numbers called durations. Following is a
definition of durations and a specification of the rules for datetime arithmetic.

A duration is a number representing an interval of time. There are four types
of durations:

Labeled Durations

labeled-duration:

function
(expression)
constant
column-name
host-variable

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

A labeled duration represents a specific unit of time as expressed by a number
(which can be the result of an expression) followed by one of the seven

Expressions

164 SQL Reference

duration keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES,
SECONDS, or MICROSECONDS.33 The number specified is converted as if it
were assigned to a DECIMAL(15,0) number. A labeled duration can only be
used as an operand of an arithmetic operator in which the other operand is a
value of data type DATE, TIME, or TIMESTAMP. Thus, the expression
HIREDATE + 2 MONTHS + 14 DAYS is valid, whereas the expression
HIREDATE + (2 MONTHS + 14 DAYS) is not. In both of these expressions,
the labeled durations are 2 MONTHS and 14 DAYS.

Date Duration
A date duration represents a number of years, months, and days, expressed as
a DECIMAL(8,0) number. To be properly interpreted, the number must have
the format yyyymmdd., where yyyy represents the number of years, mm the
number of months, and dd the number of days. 34 The result of subtracting
one date value from another, as in the expression HIREDATE − BRTHDATE,
is a date duration.

Time Duration
A time duration represents a number of hours, minutes, and seconds, expressed
as a DECIMAL(6,0) number. To be properly interpreted, the number must
have the format hhmmss., where hh represents the number of hours, mm the
number of minutes, and ss the number of seconds. 34 The result of subtracting
one time value from another is a time duration.

Timestamp duration
A timestamp duration represents a number of years, months, days, hours,
minutes, seconds, and microseconds, expressed as a DECIMAL(20,6) number.
To be properly interpreted, the number must have the format
yyyymmddhhmmss.zzzzzz, where yyyy, mm, dd, hh, mm, ss, and zzzzzz represent,
respectively, the number of years, months, days, hours, minutes, seconds, and
microseconds. The result of subtracting one timestamp value from another is a
timestamp duration.

Datetime Arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are
addition and subtraction. If a datetime value is the operand of addition, the
other operand must be a duration. The specific rules governing the use of the
addition operator with datetime values follow.
v If one operand is a date, the other operand must be a date duration or

labeled duration of YEARS, MONTHS, or DAYS.
v If one operand is a time, the other operand must be a time duration or a

labeled duration of HOURS, MINUTES, or SECONDS.

33. Note that the singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND, and MICROSECOND.

34. The period in the format indicates a DECIMAL data type.

Expressions

Chapter 3. Language Elements 165

v If one operand is a timestamp, the other operand must be a duration. Any
type of duration is valid.

v Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not
the same as those for addition because a datetime value cannot be subtracted
from a duration, and because the operation of subtracting two datetime values
is not the same as the operation of subtracting a duration from a datetime
value. The specific rules governing the use of the subtraction operator with
datetime values follow.
v If the first operand is a date, the second operand must be a date, a date

duration, a string representation of a date, or a labeled duration of YEARS,
MONTHS, or DAYS.

v If the second operand is a date, the first operand must be a date, or a string
representation of a date.

v If the first operand is a time, the second operand must be a time, a time
duration, a string representation of a time, or a labeled duration of HOURS,
MINUTES, or SECONDS.

v If the second operand is a time, the first operand must be a time, or string
representation of a time.

v If the first operand is a timestamp, the second operand must be a
timestamp, a string representation of a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a
timestamp or a string representation of a timestamp.

v Neither operand of the subtraction operator can be a parameter marker.

Date Arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting Dates: The result of subtracting one date (DATE2) from another
(DATE1) is a date duration that specifies the number of years, months, and
days between the two dates. The data type of the result is DECIMAL(8,0). If
DATE1 is greater than or equal to DATE2, DATE2 is subtracted from DATE1.
If DATE1 is less than DATE2, however, DATE1 is subtracted from DATE2, and
the sign of the result is made negative. The following procedural description
clarifies the steps involved in the operation result = DATE1 − DATE2.
If DAY(DATE2) <= DAY(DATE1)

then DAY(RESULT) = DAY(DATE1) − DAY(DATE2).

If DAY(DATE2) > DAY(DATE1)
then DAY(RESULT) = N + DAY(DATE1) − DAY(DATE2)

where N = the last day of MONTH(DATE2).
MONTH(DATE2) is then incremented by 1.

If MONTH(DATE2) <= MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

Expressions

166 SQL Reference

If MONTH(DATE2) > MONTH(DATE1)
then MONTH(RESULT) = 12 + MONTH(DATE1) − MONTH(DATE2).

YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATE1) − YEAR(DATE2).

For example, the result of DATE('3/15/2000') − '12/31/1999' is 00000215. (or, a
duration of 0 years, 2 months, and 15 days).

Incrementing and Decrementing Dates: The result of adding a duration to a
date, or of subtracting a duration from a date, is itself a date. (For the
purposes of this operation, a month denotes the equivalent of a calendar page.
Adding months to a date, then, is like turning the pages of a calendar, starting
with the page on which the date appears.) The result must fall between the
dates January 1, 0001 and December 31, 9999 inclusive.

If a duration of years is added or subtracted, only the year portion of the date
is affected. The month is unchanged, as is the day unless the result would be
February 29 of a non-leap-year. In this case, the day is changed to 28, and a
warning indicator in the SQLCA is set to indicate the adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless
the result would be invalid (September 31, for example). In this case, the day
is set to the last day of the month, and a warning indicator in the SQLCA is
set to indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day
portion of the date, and potentially the month and year.

Date durations, whether positive or negative, may also be added to and
subtracted from dates. As with labeled durations, the result is a valid date,
and a warning indicator is set in the SQLCA whenever an end-of-month
adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration
is subtracted from a date, the date is incremented by the specified number of
years, months, and days, in that order. Thus, DATE1 + X, where X is a
positive DECIMAL(8,0) number, is equivalent to the expression:
DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS.

When a positive date duration is subtracted from a date, or a negative date
duration is added to a date, the date is decremented by the specified number
of days, months, and years, in that order. Thus, DATE1 − X, where X is a
positive DECIMAL(8,0) number, is equivalent to the expression:
DATE1 − DAY(X) DAYS − MONTH(X) MONTHS − YEAR(X) YEARS.

Expressions

Chapter 3. Language Elements 167

When adding durations to dates, adding one month to a given date gives the
same date one month later unless that date does not exist in the later month.
In that case, the date is set to that of the last day of the later month. For
example, January 28 plus one month gives February 28; and one month added
to January 29, 30, or 31 results in either February 28 or, for a leap year,
February 29.

Note: If one or more months is added to a given date and then the same
number of months is subtracted from the result, the final date is not
necessarily the same as the original date.

Time Arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting Times: The result of subtracting one time (TIME2) from another
(TIME1) is a time duration that specifies the number of hours, minutes, and
seconds between the two times. The data type of the result is DECIMAL(6,0).

If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1.

If TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and
the sign of the result is made negative. The following procedural description
clarifies the steps involved in the operation result = TIME1 − TIME2.
If SECOND(TIME2) <= SECOND(TIME1)

then SECOND(RESULT) = SECOND(TIME1) − SECOND(TIME2).

If SECOND(TIME2) > SECOND(TIME1)
then SECOND(RESULT) = 60 + SECOND(TIME1) − SECOND(TIME2).

MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIME1)
then MINUTE(RESULT) = MINUTE(TIME1) − MINUTE(TIME2).

If MINUTE(TIME1) > MINUTE(TIME1)
then MINUTE(RESULT) = 60 + MINUTE(TIME1) − MINUTE(TIME2).

HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) − HOUR(TIME2).

For example, the result of TIME(’11:02:26’) − ’00:32:56’ is 102930. (a duration
of 10 hours, 29 minutes, and 30 seconds).

Incrementing and Decrementing Times: The result of adding a duration to a
time, or of subtracting a duration from a time, is itself a time. Any overflow
or underflow of hours is discarded, thereby ensuring that the result is always
a time. If a duration of hours is added or subtracted, only the hours portion
of the time is affected. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Expressions

168 SQL Reference

Adding or subtracting a duration of seconds will, of course, affect the seconds
portion of the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and
subtracted from times. The result is a time that has been incremented or
decremented by the specified number of hours, minutes, and seconds, in that
order. TIME1 + X, where “X” is a DECIMAL(6,0) number, is equivalent to the
expression:

TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Note: Although the time ’24:00:00’ is accepted as a valid time, it is never
returned as the result of time addition or subtraction, even if the
duration operand is zero (e.g. time(’24:00:00’)±0 seconds = ’00:00:00’).

Timestamp Arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting Timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years,
months, days, hours, minutes, seconds, and microseconds between the two
timestamps. The data type of the result is DECIMAL(20,6).

If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TS1 is less
than TS2, however, TS1 is subtracted from TS2 and the sign of the result is
made negative. The following procedural description clarifies the steps
involved in the operation result = TS1 − TS2:
If MICROSECOND(TS2) <= MICROSECOND(TS1)

then MICROSECOND(RESULT) = MICROSECOND(TS1) −
MICROSECOND(TS2).

If MICROSECOND(TS2) > MICROSECOND(TS1)
then MICROSECOND(RESULT) = 1000000 +

MICROSECOND(TS1) − MICROSECOND(TS2)
and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in
the rules for subtracting times.
If HOUR(TS2) <= HOUR(TS1)

then HOUR(RESULT) = HOUR(TS1) − HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)
then HOUR(RESULT) = 24 + HOUR(TS1) − HOUR(TS2)

and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified in the rules for
subtracting dates.

Incrementing and Decrementing Timestamps: The result of adding a
duration to a timestamp, or of subtracting a duration from a timestamp is

Expressions

Chapter 3. Language Elements 169

itself a timestamp. Date and time arithmetic is performed as previously
defined, except that an overflow or underflow of hours is carried into the date
part of the result, which must be within the range of valid dates.
Microseconds overflow into seconds.

Precedence of Operations
Expressions within parentheses and dereference operations are evaluated first
from left to right. 35 When the order of evaluation is not specified by
parentheses, prefix operators are applied before multiplication and division,
and multiplication and division are applied before addition and subtraction.
Operators at the same precedence level are applied from left to right.

35. Note that parentheses are also used in subselect statements, search conditions, and functions. However, they
should not be used to arbitrarily group sections within SQL statements.

1 4 32

1.10 * (Salary + Bonus) + Salary / :VAR3

Figure 11. Precedence of Operations

Expressions

170 SQL Reference

CASE Expressions

case-expression:

CASE searched-when-clause
simple-when-clause

ELSE NULL

ELSE result-expression
END

searched-when-clause:

� WHEN search-condition THEN result-expression
NULL

simple-when-clause:

�expression WHEN expression THEN result-expression
NULL

CASE expressions allow an expression to be selected based on the evaluation
of one or more conditions. In general, the value of the case-expression is the
value of the result-expression following the first (leftmost) case that evaluates to
true. If no case evaluates to true and the ELSE keyword is present then the
result is the value of the result-expression or NULL. If no case evaluates to true
and the ELSE keyword is not present then the result is NULL. Note that when
a case evaluates to unknown (because of NULLs), the case is not true and
hence is treated the same way as a case that evaluates to false.

If the CASE expression is in a VALUES clause, an IN predicate, a GROUP BY
clause, or an ORDER BY clause, the search-condition in a searched-when-clause
cannot be a quantified predicate, IN predicate using a fullselect, or an EXISTS
predicate (SQLSTATE 42625).

When using the simple-when-clause, the value of the expression prior to the first
WHEN keyword is tested for equality with the value of the expression
following the WHEN keyword. The data type of the expression prior to the
first WHEN keyword must therefore be comparable to the data types of each
expression following the WHEN keyword(s). The expression prior to the first
WHEN keyword in a simple-when-clause cannot include a function that is
variant or has an external action (SQLSTATE 42845).

Expressions

Chapter 3. Language Elements 171

A result-expression is an expression following the THEN or ELSE keywords.
There must be at least one result-expression in the CASE expression (NULL
cannot be specified for every case) (SQLSTATE 42625). All result-expressions
must have compatible data types (SQLSTATE 42804), where the attributes of
the result are determined based on the “Rules for Result Data Types” on
page 107.

Examples:
v If the first character of a department number is a division in the

organization, then a CASE expression can be used to list the full name of
the division to which each employee belongs:
SELECT EMPNO, LASTNAME,

CASE SUBSTR(WORKDEPT,1,1)
WHEN 'A' THEN 'Administration'
WHEN 'B' THEN 'Human Resources'
WHEN 'C' THEN 'Accounting'
WHEN 'D' THEN 'Design'
WHEN 'E' THEN 'Operations'
END

FROM EMPLOYEE;

v The number of years of education are used in the EMPLOYEE table to give
the education level. A CASE expression can be used to group these and to
show the level of education.
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,

CASE
WHEN EDLEVEL < 15 THEN 'SECONDARY'
WHEN EDLEVEL < 19 THEN 'COLLEGE'
ELSE 'POST GRADUATE'
END

FROM EMPLOYEE

v Another interesting example of CASE statement usage is in protecting from
division by 0 errors. For example, the following code finds the employees
who earn more than 25% of their income from commission, but who are not
fully paid on commission:
SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE
WHERE (CASE WHEN SALARY=0 THEN NULL

ELSE COMM/SALARY
END) > 0.25;

v The following CASE expressions are the same:
SELECT LASTNAME,
CASE
WHEN LASTNAME = 'Haas' THEN 'President'
...

SELECT LASTNAME,
CASE LASTNAME
WHEN 'Haas' THEN 'President'
...

Expressions

172 SQL Reference

There are two scalar functions, NULLIF and COALESCE, that are specialized
to handle a subset of the functionality provided by CASE. Table 11 shows the
equivalent expressions using CASE or these functions.

Table 11. Equivalent CASE Expressions

Expression Equivalent Expression

CASE WHEN e1=e2 THEN NULL ELSE e1 END NULLIF(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2
END

COALESCE(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE
COALESCE(e2,...,eN) END

COALESCE(e1,e2,...,eN)

CAST Specifications

cast-specification:

CAST (expression
NULL
parameter-marker

AS data-type �

�)
(1)

SCOPE typed-table-name
typed-view-name

Notes:

1 The SCOPE clause only applies to the REF data type.

The CAST specification returns the cast operand (the first operand) cast to the
type specified by the data type.

expression
If the cast operand is an expression (other than parameter marker or
NULL), the result is the argument value converted to the specified target
data type.

The supported casts are shown in Table 6 on page 93 where the first
column represents the data type of the cast operand (source data type)
and the data types across the top represent the target data type of the
CAST specification. If the cast is not supported an error will occur
(SQLSTATE 42846).

When casting character strings (other than CLOBs) to a character string
with a different length, a warning (SQLSTATE 01004) is returned if
truncation of other than trailing blanks occurs. When casting graphic
character strings (other than DBCLOBs) to a graphic character string with

Expressions

Chapter 3. Language Elements 173

a different length, a warning (SQLSTATE 01004) is returned if truncation
of other than trailing blanks occurs. For BLOB, CLOB and DBCLOB cast
operands, the warning is issued if any characters are truncated.

NULL
If the cast operand is the keyword NULL, the result is a null value that
has the specified data type.

parameter-marker
A parameter marker (specified as a question mark character) is normally
considered an expression, but is documented separately in this case
because it has a special meaning. If the cast operand is a parameter-marker,
the specified data type is considered a promise that the replacement will be
assignable to the specified data type (using store assignment for strings).
Such a parameter marker is considered a typed parameter marker. Typed
parameter markers will be treated like any other typed value for the
purpose of function resolution, DESCRIBE of a select list or for column
assignment.

data type
The name of an existing data type. If the type name is not qualified, the
SQL path is used to do data type resolution. A data type that has an
associated attributes like length or precision and scale should include
these attributes when specifying data type (CHAR defaults to a length of 1
and DECIMAL defaults to a precision of 5 and scale of 0 if not specified).
Restrictions on the supported data types are based on the specified cast
operand.
v For a cast operand that is an expression, see “Casting Between Data

Types” on page 91 for the target data types that are supported based on
the data type of the cast operand (source data type).

v For a cast operand that is the keyword NULL, any existing data type
can be used.

v For a cast operand that is a parameter marker, the target data type can
be any existing data type. If the data type is a user-defined distinct
type, the application using the parameter marker will use the source
data type of the user-defined distinct type. If the data type is a
user-defined structured type, the application using the parameter
marker will use the input parameter type of the TO SQL transform
function for the user-defined structured type.

SCOPE
When the data type is a reference type, a scope may be defined that
identifies the target table or target view of the reference.

typed-table-name
The name of a typed table. The table must already exist (SQLSTATE
42704). The cast must be to data-type REF(S), where S is the type of
typed-table-name (SQLSTATE 428DM).

Expressions

174 SQL Reference

typed-view-name
The name of a typed view. The view must exist or have the same
name as the view being created that includes the cast as part of the
view definition (SQLSTATE 42704). The cast must be to data-type
REF(S), where S is the type of typed-view-name (SQLSTATE 428DM).

When numeric data is cast to character the result data type is a fixed-length
character string (see “CHAR” on page 260). When character data is cast to
numeric, the result data type depends on the type of number specified. For
example, if cast to integer, it would become a large integer (see “INTEGER”
on page 310).

Examples:
v An application is only interested in the integer portion of the SALARY

(defined as decimal(9,2)) from the EMPLOYEE table. The following query,
including the employee number and the integer value of SALARY, could be
prepared.

SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE

v Assume the existence of a distinct type called T_AGE that is defined on
SMALLINT and used to create column AGE in PERSONNEL table. Also
assume the existence of a distinct type called R_YEAR that is defined on
INTEGER and used to create column RETIRE_YEAR in PERSONNEL table.
The following update statement could be prepared.

UPDATE PERSONNEL SET RETIRE_YEAR =?
WHERE AGE = CAST(? AS T_AGE)

The first parameter is an untyped parameter marker that would have a data
type of R_YEAR, although the application will use an integer for this
parameter marker. This does not require the explicit CAST specification
because it is an assignment.

The second parameter marker is a typed parameter marker that is cast as a
distinct type T_AGE. This satisfies the requirement that the comparison
must be performed with compatible data types. The application will use the
source data type (which is SMALLINT) for processing this parameter
marker.

Successful processing of this statement assumes that the function path
includes the schema name of the schema (or schemas) where the two
distinct types are defined.

Expressions

Chapter 3. Language Elements 175

Dereference Operations

dereference-operation:

scoped-ref-expression −> name1

�

()
,

expression

The scope of the scoped reference expression is a table or view called the
target table or view. The scoped reference expression identifies a target row.
The target row is the row in the target table or view (or in one of its subtables
or subviews) whose object identifier (OID) column value matches the
reference expression. See “CREATE TABLE” on page 712 for further
information about OID columns. The dereference operation can be used to
access a column of the target row, or to invoke a method, using the target row
as the subject of the method. The result of a dereference operation can always
be null. The dereference operation takes precedence over all other operators.

scoped-ref-expression
An expression that is a reference type that has a scope (SQLSTATE
428DT). If the expression is a host variable, parameter marker or other
unscoped reference type value, a CAST specification with a SCOPE clause
is required to give the reference a scope.

name1
Specifies an unqualified identifier.

If no parentheses follow name1, and name1 matches the name of an
attribute of the target type, then the value of the dereference operation is
the value of the named column in the target row. In this case, the data
type of the column (made nullable) determines the result type of the
dereference operation. If no target row exists whose object identifier
matches the reference expression, then the result of the dereference
operation is null. If the dereference operation is used in a select list and is
not included as part of an expression, name1 becomes the result column
name.

If parentheses follow name1, or if name1 does not match the name of an
attribute of the target type, then the dereference operation is treated as a
method invocation. The name of the invoked method is name1. The
subject of the method is the target row, considered as an instance of its
structured type. If no target row exists whose object identifier matches the
reference expression, the subject of the method is a null value of the target
type. The expressions inside parentheses, if any, provide the remaining
parameters of the method invocation. The normal process is used for

Expressions

176 SQL Reference

resolution of the method invocation. The result type of the selected
method (made nullable) determines the result type of the dereference
operation.

The authorization ID of the statement that uses a dereference operation must
have SELECT privilege on the target table of the scoped-ref-expression
(SQLSTATE 42501).

A dereference operation can never modify values in the database. If a
dereference operation is used to invoke a mutator method, the mutator
method modifies a copy of the target row and returns the copy, leaving the
database unchanged.

Examples:
v Assume the existence of an EMPLOYEE table that contains a column called

DEPTREF which is a reference type scoped to a typed table based on a type
that includes the attribute DEPTNAME. The values of DEPTREF in the
table EMPLOYEE should correspond to the OID column values in the target
table of DEPTREF column.

SELECT EMPNO, DEPTREF−>DEPTNAME
FROM EMPLOYEE

v Using the same tables as in the previous example, use a dereference
operation to invoke a method named BUDGET, with the target row as
subject parameter, and '1997' as an additional parameter.

SELECT EMPNO, DEPTREF−>BUDGET('1997')
AS DEPTBUDGET97
FROM EMPLOYEE

OLAP Functions

OLAP-function:

ranking-function
numbering-function
aggregation-function

ranking-function:

RANK ()
DENSE_RANK ()

OVER (
window-partition-clause

�

� window-order-clause)

Expressions

Chapter 3. Language Elements 177

numbering-function:

ROW_NUMBER () OVER (
window-partition-clause

�

�)
window-order-clause

aggregation-function:

column-function OVER (
window-partition-clause

�

�
window-order-clause

�

�
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

)
window-aggregation-group-clause

window-partition-clause:

�

,

PARTITION BY partitioning-expression

window-order-clause:

�

,
ASC

ORDER BY sort-key-expression
DESC

window-aggregation-group-clause:

ROWS
RANGE

group-start
group-between

group-start:

Expressions

178 SQL Reference

UNBOUNDED PRECEDING
unsigned-constant PRECEDING
CURRENT ROW

group-between:

BETWEEN group-bound1 AND group-bound2

group-bound1:

UNBOUNDED PRECEDING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-bound2:

UNBOUNDED FOLLOWING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

On-Line Analytical Processing (OLAP) functions provide the ability to return
ranking, row numbering and existing column function information as a scalar
value in a query result. An OLAP function can be included in expressions in a
select-list or the ORDER BY clause of a select-statement (SQLSTATE 42903).
An OLAP function cannot be used as an argument of a column function
(SQLSTATE 42607). The query result to which the OLAP function is applied is
the result table of the innermost subselect that includes the OLAP function.

When specifying an OLAP function, a window is specified that defines the
rows over which the function is applied, and in what order. When used with
a column function, the applicable rows can be further refined, relative to the
current row, as either a range or a number of rows preceding and following
the current row. For example, within a partition by month, an average can be
calculated over the previous three month period.

The ranking function computes the ordinal rank of a row within the window.
Rows that are not distinct with respect to the ordering within their window
are assigned the same rank. The results of ranking may be defined with or
without gaps in the numbers resulting from duplicate values.

Expressions

Chapter 3. Language Elements 179

If RANK is specified, the rank of a row is defined as 1 plus the number of
rows that strictly precede the row. Thus, if two or more rows are not distinct
with respect to the ordering, then there will be one or more gaps in the
sequential rank numbering.

If DENSE_RANK36 is specified, the rank of a row is defined as 1 plus the
number of rows preceding that are distinct with respect to the ordering.
Therefore, there will be no gaps in the sequential rank numbering.

The ROW_NUMBER37 function computes the sequential row number of the
row within the window defined by the ordering, starting with 1 for the first
row. If the ORDER BY clause is not specified in the window, the row numbers
are assigned to the rows in arbitrary order as returned by the subselect (not
according to any ORDER BY clause in the select-statement).

The data type of the result of RANK, DENSE_RANK or ROW_NUMBER is
BIGINT. The result cannot be null.

PARTITION BY (partitioning-expression,...)
Defines the partition within which the function is applied. A
partitioning-expression is an expression used in defining the partitioning of
the result set. Each column-name referenced in a partitioning-expression
must unambiguously reference a result set column of the OLAP function
subselect statement (SQLSTATE 42702 or 42703). The length of each
partitioning-expression must not be more than 255 bytes (SQLSTATE
42907). A partitioning-expression cannot include a scalar-fullselect
(SQLSTATE 42822) or any function that is not deterministic or has an
external action (SQLSTATE 42845).

ORDER BY (sort-key-expression,...)
Defines the ordering of rows within a partition that determine the value
of the OLAP function or the meaning of the ROW values in the
window-aggregation-group-clause (it does not define the ordering of the
query result set). A sort-key-expression is an expression used in defining the
ordering of the rows within a window partition. Each column-name
referenced in a sort-key-expression must unambiguously reference a
column of the result set of the subselect including the OLAP function
(SQLSTATE 42702 or 42703). The length of each sort-key-expression must
not be more than 255 bytes (SQLSTATE 42907). A sort-key-expression
cannot include a scalar fullselect (SQLSTATE 42822) or any function that is
not deterministic or has an external action (SQLSTATE 42845). This clause
is required for the RANK and DENSE_RANK functions (SQLSTATE
42601).

36. DENSE_RANK and DENSERANK are synonyms.

37. ROW_NUMBER and ROWNUMBER are synonyms.

Expressions

180 SQL Reference

ASC
Uses the values of the sort-key-expression in ascending order. Null
values are considered last in the order.

DESC
Uses the values of the sort-key-expression in descending order. Null
values are considered first in the order.

window-aggregation-group-clause
The aggregation group of a row R is a set of rows, defined relative to R in
the ordering of the rows of R’s partition. This clause specifies the
aggregation group.

ROWS
Indicates the aggregation group is defined by counting rows.

RANGE
Indicates the aggregation group is defined by an offset from a sort
key.

group-start
Specifies the starting point for the aggregation group. The aggregation
group end is the current row. Specification of the group-start clause is
equivalent to a group-between clause of the form ″BETWEEN
group-start AND CURRENT ROW″.

group-between
Specifies the aggregation group start and end based on either ROWS
or RANGE.

UNBOUNDED PRECEDING
Includes the entire partition preceding the current row. This can be
specified with either ROWS or RANGE. Also, this can be specified
with multiple sort-key-expressions in the window-order-clause.

UNBOUNDED FOLLOWING
Includes the entire partition following the current row. This can be
specified with either ROWS or RANGE. Also, this can be specified
with multiple sort-key-expressions in the window-order-clause.

CURRENT ROW
Specifies the start or end of the aggregation group as the current row.
This clause cannot be specified in group-bound2 if group-bound1
specifies value FOLLOWING.

value PRECEDING
Specifies either the range or number of rows preceding the current
row. If ROWS is specified, then value is a positive integer indicating a
number of rows. If RANGE is specified, then the data type of value
must be comparable to the type of the sort-key-expression of the
window-order-clause. There can only be one sort-key-expression, and

Expressions

Chapter 3. Language Elements 181

the data type of the sort-key-expression must allow subtraction. This
clause cannot be specified in group-bound2 if group-bound1 is
CURRENT ROW or value FOLLOWING.

value FOLLOWING
Specifies either the range or number of rows following the current
row. If ROWS is specified, then value is a positive integer indicating a
number of rows. If RANGE is specified, then the data type of value
must be comparable to the type of the sort-key-expression of the
window-order-clause. There can only be one sort-key-expression, and
the data type of the sort-key-expression must allow addition.

Examples:
v Display the ranking of employees, in order by surname, according to their

total salary (based on salary plus bonus) that have a total salary more than
$30,000.

SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY

FROM EMPLOYEE WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME

Note that if the result is to be ordered by the ranking, then replace ORDER
BY LASTNAME with:

ORDER BY RANK_SALARY

or
ORDER BY RANK() OVER (ORDER BY SALARY+BONUS DESC)

v Rank the departments according to their average total salary.
SELECT WORKDEPT, AVG(SALARY+BONUS) AS AVG_TOTAL_SALARY,

RANK() OVER (ORDER BY AVG(SALARY+BONUS) DESC) AS RANK_AVG_SAL
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY RANK_AVG_SAL

v Rank the employees within a department according to their education level.
Having multiple employees with the same rank in the department should
not increase the next ranking value.

SELECT WORKDEPT, EMPNO, LASTNAME, FIRSTNME, EDLEVEL
DENSE_RANK() OVER

(PARTITION BY WORKDEPT ORDER BY EDLEVEL DESC) AS RANK_EDLEVEL
FROM EMPLOYEE
ORDER BY WORKDEPT, LASTNAME

v Provide row numbers in the result of a query.
SELECT ROW_NUMBER() OVER (ORDER BY WORKDEPT, LASTNAME) AS NUMBER,

LASTNAME, SALARY
FROM EMPLOYEE
ORDER BY WORKDEPT, LASTNAME

v List the top five wage earners.

Expressions

182 SQL Reference

SELECT EMPNO, LASTNAME, FIRSTNME, TOTAL_SALARY, RANK_SALARY
FROM (SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,

RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
FROM EMPLOYEE) AS RANKED_EMPLOYEE

WHERE RANK_SALARY < 6
ORDER BY RANK_SALARY

Notice that a nested table expression was used to first compute the result,
including the rankings, before the rank could be used in the WHERE
clause. A common table expression could also have been used.

Method Invocation

method-invocation:

�

subject-expression..method-name
()

,

expression

Both system-generated observer and mutator methods, as well as user-defined
methods are invoked using the double-dot operator.

subject-expression
An expression with a static result type that is a user-defined structured
type.

method-name
The unqualified name of a method. The static type of subject-expression or
one of its supertypes must include a method with the specified name.

(expression,...)
The arguments of method-name are specified within parentheses. Empty
parentheses can be used to indicate that there are no arguments. The
method-name and the data types of the specified argument expressions are
used to resolve to the specific method, based on the static type of
subject-expression (see “Method Resolution” on page 151 for more
information).

The double-dot operator used for method invocation is a high precedence left
to right infix operator. For example, the following two expressions are
equivalent:

a..b..c + x..y..z

and
((a..b)..c) + ((x..y)..z)

Expressions

Chapter 3. Language Elements 183

If a method has no parameters other than its subject, it may be invoked with
or without parentheses. For example, the following two expressions are
equivalent:

point1..x

and
point1..x()

Null subjects in method calls are handled as follows:
1. If a system-generated mutator method is invoked with a null subject, an

error results (SQLSTATE 2202D)
2. If any method other than a system-generated mutator is invoked with a

null subject, the method is not executed, and its result is null. This rule
includes user-defined methods with SELF AS RESULT.

When a database object (a package, view, or trigger, for example) is created,
the best fit method that exists for each of its method invocations is found
using the rules specified in “Method Resolution” on page 151.

Note:

v Methods of types defined WITH FUNCTION ACCESS can also be
invoked using the regular function notation. Function resolution
considers all functions, as well as methods with function access as
candidate functions. However, functions cannot be invoked using
method invocation. Method resolution considers all methods and
does not consider functions as candidate methods. Failure to resolve
to an appropriate function or method results in an error (SQLSTATE
42884).

Examples:
v Use the double-dot operator to invoke a method called AREA. Assume the

existence of a table called RINGS, with a column CIRCLE_COL of
structured type CIRCLE. Also, assume that the method AREA has been
defined previously for the CIRCLE type as AREA() RETURNS DOUBLE.

SELECT CIRCLE_COL..AREA()
FROM RINGS

Subtype Treatment

subtype-treatment:

TREAT (expression AS data-type)

Expressions

184 SQL Reference

The subtype-treatment is used to cast a structured type expression into one of
its subtypes. The static type of expression must be a user-defined structured
type, and that type must be the same type as, or a supertype of, data-type. If
the type name in data-type is unqualified, the SQL path is used to resolve the
type reference. The static type of the result of subtype-treatment is data-type,
and the value of the subtype-treatment is the value of the expression. At run
time, if the dynamic type of the expression is not data-type or a subtype of
data-type, an error is returned (SQLSTATE 0D000).

Examples:
v If an application knows that all column object instances in a column

CIRCLE_COL have the dynamic type COLOREDCIRCLE, use the following
query to invoke the method RGB on such objects. Assume the existence of a
table called RINGS, with a column CIRCLE_COL of structured type
CIRCLE. Also, assume that COLOREDCIRCLE is a subtype of CIRCLE and
that the method RGB has been defined previously for COLOREDCIRCLE as
RGB() RETURNS DOUBLE.

SELECT TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()
FROM RINGS

At run-time, if there are instances of dynamic type CIRCLE, an error is
raised (SQLSTATE 0D000). This error can be avoided by using the TYPE
predicate in a CASE expression, as follows:

SELECT (CASE
WHEN CIRCLE_COL IS OF (COLOREDCIRCLE)

THEN TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()
ELSE NULL

END)
FROM RINGS

See “TYPE Predicate” on page 203 for more information.

Expressions

Chapter 3. Language Elements 185

Predicates

A predicate specifies a condition that is true, false, or unknown about a given
row or group.

The following rules apply to all types of predicates:
v All values specified in a predicate must be compatible.
v An expression used in a Basic, Quantified, IN, or BETWEEN predicate must

not result in a character string with a length attribute greater than 4 000, a
graphic string with a length attribute greater than 2 000, or a LOB string of
any size.

v The value of a host variable may be null (that is, the variable may have a
negative indicator variable).

v The code page conversion of operands of predicates involving two or more
operands, with the exception of LIKE, are done according to “Rules for
String Conversions” on page 111

v Use of a DATALINK value is limited to the NULL predicate.
v Use of a structured type value is limited to the NULL predicate and the

TYPE predicate.

A fullselect is a form of the SELECT statement which is described under
“Chapter 5. Queries” on page 393. A fullselect used in a predicate is also called
a subquery.

Predicates

186 SQL Reference

Basic Predicate

�� expression =
(1)

<>
<
>

(1)
<=

(1)
>=

expression ��

Notes:

1 Other comparison operators are also supported 38

A basic predicate compares two values.

If the value of either operand is null, the result of the predicate is unknown.
Otherwise the result is either true or false.

For values x and y:

Predicate Is True If and Only If...
x = y x is equal to y
x <> y x is not equal to y
x < y x is less than y
x > y x is greater than y
x >= y x is greater than or equal to y
x <= y x is less than or equal to y

Examples:
EMPNO='528671'
SALARY < 20000
PRSTAFF <> :VAR1
SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)

38. The following forms of the comparison operators are also supported in basic and quantified predicates; |=, |<, |>,
!=, !< and !>. In addition, in code pages 437, 819, and 850, the forms ¬=, ¬<, and ¬> are supported.

All these product-specific forms of the comparison operators are intended only to support existing SQL that uses
these operators, and are not recommended for use when writing new SQL statements.

Basic Predicate

Chapter 3. Language Elements 187

Quantified Predicate

��

�

expression1 = SOME (fullselect1)
(1) ANY

<> ALL
<
>
<=
>=

,

(expression2) = SOME (fullselect2)
ANY

��

Notes:

1 Other comparison operators are also supported 38.

A quantified predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the
number of expressions specified to the left of the predicate operator
(SQLSTATE 428C4). The fullselect may return any number of rows.

When ALL is specified:
v The result of the predicate is true if the fullselect returns no values or if the

specified relationship is true for every value returned by the fullselect.
v The result is false if the specified relationship is false for at least one value

returned by the fullselect.
v The result is unknown if the specified relationship is not false for any

values returned by the fullselect and at least one comparison is unknown
because of the null value.

When SOME or ANY is specified:
v The result of the predicate is true if the specified relationship is true for

each value of at least one row returned by the fullselect.
v The result is false if the fullselect returns no rows or if the specified

relationship is false for at least one value of every row returned by the
fullselect.

v The result is unknown if the specified relationship is not true for any of the
rows and at least one comparison is unknown because of a null value.

Examples: Use the following tables when referring to the following examples.

Quantified Predicate

188 SQL Reference

Example 1
SELECT COLA FROM TBLAB

WHERE COLA = ANY(SELECT COLX FROM TBLXY)

Results in 2,3. The subselect returns (2,3). COLA in rows 2 and 3 equals at
least one of these values.

Example 2
SELECT COLA FROM TBLAB

WHERE COLA > ANY(SELECT COLX FROM TBLXY)

Results in 3,4. The subselect returns (2,3). COLA in rows 3 and 4 is greater
than at least one of these values.

Example 3
SELECT COLA FROM TBLAB

WHERE COLA > ALL(SELECT COLX FROM TBLXY)

Results in 4. The subselect returns (2,3). COLA in row 4 is the only one that is
greater than both these values.

Example 4
SELECT COLA FROM TBLAB

WHERE COLA > ALL(SELECT COLX FROM TBLXY
WHERE COLX<0)

Results in 1,2,3,4, null. The subselect returns no values. Thus, the predicate is
true for all rows in TBLAB.

Example 5
SELECT * FROM TBLAB

WHERE (COLA,COLB+10) = SOME (SELECT COLX, COLY FROM TBLXY)

The subselect returns all entries from TBLXY. The predicate is true for the
subselect, hence the result is as follows:

TBL :AB TBL :XY
COLX

2
3

COLY

22
23

COLA

1
2
3
4
-

COLB

12
12
13
14
-

Figure 12.

Quantified Predicate

Chapter 3. Language Elements 189

COLA COLB
----------- -----------

2 12
3 13

Example 6
SELECT * FROM TBLAB

WHERE (COLA,COLB) = ANY (SELECT COLX,COLY-10 FROM TBLXY)

The subselect returns COLX and COLY-10 from TBLXY. The predicate is true
for the subselect, hence the result is as follows:
COLA COLB
----------- -----------

2 12
3 13

Quantified Predicate

190 SQL Reference

BETWEEN Predicate

�� expression
NOT

BETWEEN expression AND expression ��

The BETWEEN predicate compares a value with a range of values.

The BETWEEN predicate:
value1 BETWEEN value2 AND value3

is equivalent to the search condition:
value1 >= value2 AND value1 <= value3

The BETWEEN predicate:
value1 NOT BETWEEN value2 AND value3

is equivalent to the search condition:
NOT(value1 BETWEEN value2 AND value3); that is,
value1 < value2 OR value1 > value3.

The values for the expressions in the BETWEEN predicate can have different
code pages. The operands are converted as if the above equivalent search
conditions were specified.

The first operand (expression) cannot include a function that is variant or has
an external action (SQLSTATE 426804).

Given a mixture of datetime values and string representations of datetime
values, all values are converted to the data type of the datetime operand.

Examples:

Example 1
EMPLOYEE.SALARY BETWEEN 20000 AND 40000

Results in all salaries between $20,000.00 and $40,000.00.

Example 2
SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Assuming :HV1 is 5000, results in all salaries below $25,000.00 and above
$40,000.00.

Example 3

BETWEEN Predicate

Chapter 3. Language Elements 191

Given the following:

Table 12.
Expressions Type Code Page
HV_1 host variable 437
HV_2 host variable 437
Col_1 column 850

When evaluating the predicate:
:HV_1 BETWEEN :HV_2 AND COL_1

It will be interpreted as:
:HV_1 >= :HV_2

AND :HV_1 <= COL_1

The first occurrence of :HV_1 will remain in the application code page since it
is being compared to :HV_2 which will also remain in the application code
page. The second occurrence of :HV_1 will be converted to the database code
page since it is being compared to a column value.

BETWEEN Predicate

192 SQL Reference

EXISTS Predicate

�� EXISTS (fullselect) ��

The EXISTS predicate tests for the existence of certain rows.

The fullselect may specify any number of columns, and
v The result is true only if the number of rows specified by the fullselect is

not zero.
v The result is false only if the number of rows specified is zero
v The result cannot be unknown.

Example:
EXISTS (SELECT * FROM TEMPL WHERE SALARY < 10000)

EXISTS Predicate

Chapter 3. Language Elements 193

IN Predicate

��

�

�

expression1 IN (fullselect1)
NOT ,

(expression2)
expression2

,

(expression3) IN (fullselect2)
NOT

��

The IN predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the
number of expressions specified to the left of the IN keyword (SQLSTATE
428C4). The fullselect may return any number of rows.
v An IN predicate of the form:

expression IN expression

is equivalent to a basic predicate of the form:
expression = expression

v An IN predicate of the form:
expression IN (fullselect)

is equivalent to a quantified predicate of the form:
expression = ANY (fullselect)

v An IN predicate of the form:
expression NOT IN (fullselect)

is equivalent to a quantified predicate of the form:
expression <> ALL (fullselect)

v An IN predicate of the form:
expression IN (expressiona, expressionb, ..., expressionk)

is equivalent to:
expression = ANY (fullselect)

where fullselect in the values-clause form is:
VALUES (expressiona), (expressionb), ..., (expressionk)

v An IN predicate of the form:
(expressiona, expressionb,..., expressionk) IN (fullselect)

IN Predicate

194 SQL Reference

is equivalent to a quantified predicate of the form:
(expressiona, expressionb,..., expressionk) = ANY (fullselect)

The values for expression1 and expression2 or the column of fullselect1 in the IN
predicate must be compatible. Each expression3 value and its corresponding
column of fullselect2 in the IN predicate must be compatible. The “Rules for
Result Data Types” on page 107 can be used to determine the attributes of the
result used in the comparison.

The values for the expressions in the IN predicate (including corresponding
columns of a fullselect) can have different code pages. If a conversion is
necessary then the code page is determined by applying “Rules for String
Conversions” on page 111 to the IN list first and then to the predicate using
the derived code page for the IN list as the second operand.

Examples:

Example 1: The following evaluates to true if the value in the row under
evaluation in the DEPTNO column contains D01, B01, or C01:

DEPTNO IN ('D01', 'B01', 'C01')

Example 2: The following evaluates to true only if the EMPNO (employee
number) on the left side matches the EMPNO of an employee in department
E11:

EMPNO IN (SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = 'E11')

Example 3: Given the following information, this example evaluates to true if
the specific value in the row of the COL_1 column matches any of the values
in the list:

Table 13. IN Predicate example
Expressions Type Code Page
COL_1 column 850
HV_2 host variable 437
HV_3 host variable 437
CON_1 constant 850

When evaluating the predicate:
COL_1 IN (:HV_2, :HV_3, CON_4)

The two host variables will be converted to code page 850 based on the
“Rules for String Conversions” on page 111.

IN Predicate

Chapter 3. Language Elements 195

Example 4: The following evaluates to true if the specified year in EMENDATE
(the date an employee activity on a project ended) matches any of the values
specified in the list (the current year or the two previous years):

YEAR(EMENDATE) IN (YEAR(CURRENT DATE),
YEAR(CURRENT DATE - 1 YEAR),
YEAR(CURRENT DATE - 2 YEARS))

Example 5: The following evaluates to true if both ID and DEPT on the left
side match MANAGER and DEPTNUMB respectively for any row of the ORG
table.
(ID, DEPT) IN (SELECT MANAGER, DEPTNUMB FROM ORG)

IN Predicate

196 SQL Reference

LIKE Predicate

�� match-expression
NOT

LIKE pattern-expression �

�
ESCAPE escape-expression

��

The LIKE predicate searches for strings that have a certain pattern. The
pattern is specified by a string in which the underscore and percent sign may
have special meanings. Trailing blanks in a pattern are part of the pattern.

If the value of any of the arguments is null, the result of the LIKE predicate is
unknown.

The values for match-expression, pattern-expression, and escape-expression are
compatible string expressions. There are slight differences in the types of
string expressions supported for each of the arguments. The valid types of
expressions are listed under the description of each argument.

None of the expressions can yield a distinct type. However, it can be a
function that casts a distinct type to its source type.

match-expression
An expression that specifies the string that is to be examined to see if it
conforms to a certain pattern of characters.

The expression can be specified by any one of:
v a constant
v a special register
v a host variable (including a locator variable or a file reference variable)
v a scalar function
v a large object locator
v a column name
v an expression concatenating any of the above

pattern-expression
An expression that specifies the string that is to be matched.

The expression can be specified by any one of:
v a constant
v a special register
v a host variable
v a scalar function whose operands are any of the above

LIKE Predicate

Chapter 3. Language Elements 197

v an expression concatenating any of the above

with the restrictions that:
v No element in the expression can be of type LONG VARCHAR, CLOB,

LONG VARGRAPHIC or DBCLOB. In addition it cannot be a BLOB file
reference variable.

v The actual length of pattern-expression cannot be more than 32 672 bytes.

A simple description of the use of the LIKE pattern is that the pattern is
used to specify the conformance criteria for values in the match-expression
where:
v The underscore character (_) represents any single character.
v The percent sign (%) represents a string of zero or more characters.
v Any other character represents itself.

If the pattern-expression needs to include either the underscore or the
percent character, the escape-expression is used to specify a character to
precede either the underscore or percent character in the pattern.

A rigorous description of the use of the LIKE pattern follows. Note that
this description ignores the use of the escape-expression; its use is covered
later.
v Let m denote the value of match-expression and let p denote the value of

pattern-expression. The string p is interpreted as a sequence of the
minimum number of substring specifiers so each character of p is part
of exactly one substring specifier. A substring specifier is an underscore,
a percent sign, or any non-empty sequence of characters other than an
underscore or a percent sign.
The result of the predicate is unknown if m or p is the null value.
Otherwise, the result is either true or false. The result is true if m and p
are both empty strings or there exists a partitioning of m into substrings
such that:
– A substring of m is a sequence of zero or more contiguous characters

and each character of m is part of exactly one substring.
– If the nth substring specifier is an underscore, the nth substring of m

is any single character.
– If the nth substring specifier is a percent sign, the nth substring of m

is any sequence of zero or more characters.
– If the nth substring specifier is neither an underscore nor a percent

sign, the nth substring of m is equal to that substring specifier and
has the same length as that substring specifier.

– The number of substrings of m is the same as the number of
substring specifiers.

LIKE Predicate

198 SQL Reference

It follows that if p is an empty string and m is not an empty string, the
result is false. Similarly, it follows that if m is an empty string and p is
not an empty string, the result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT
(m LIKE p).

When the escape-expression is specified, the pattern-expression must not
contain the escape character identified by the escape-expression except
when immediately followed by the escape character, the underscore
character or the percent sign character (SQLSTATE 22025).

If the match-expression is a character string in an MBCS database then it
can contain mixed data. In this case, the pattern can include both SBCS
and MBCS characters. The special characters in the pattern are interpreted
as follows:
v An SBCS underscore refers to one SBCS character.
v A DBCS underscore refers to one MBCS character.
v A percent (either SBCS or DBCS) refers to a string of zero or more SBCS

or MBCS characters.

escape-expression
This optional argument is an expression that specifies a character to be
used to modify the special meaning of the underscore (_) and percent (%)
characters in the pattern-expression. This allows the LIKE predicate to be
used to match values that contain the actual percent and underscore
characters.

The expression can be specified by any one of:
v a constant
v a special register
v a host variable
v a scalar function whose operands are any of the above
v an expression concatenating any of the above

with the restrictions that:
v No element in the expression can be of type LONG VARCHAR, CLOB,

LONG VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB
file reference variable.

v The result of the expression must be one SBCS or DBCS character or a
binary string containing exactly 1 byte (SQLSTATE 22019).

When escape characters are present in the pattern string, an underscore,
percent sign, or escape character can represent a literal occurrence of itself.
This is true if the character in question is preceded by an odd number of
successive escape characters. It is not true otherwise.

LIKE Predicate

Chapter 3. Language Elements 199

In a pattern, a sequence of successive escape characters is treated as
follows:
v Let S be such a sequence, and suppose that S is not part of a larger

sequence of successive escape characters. Suppose also that S contains a
total of n characters. Then the rules governing S depend on the value of
n:
– If n is odd, S must be followed by an underscore or percent sign

(SQLSTATE 22025). S and the character that follows it represent
(n-1)/2 literal occurrences of the escape character followed by a
literal occurrence of the underscore or percent sign.

– If n is even, S represents n/2 literal occurrences of the escape
character. Unlike the case where n is odd, S could end the pattern. If
it does not end the pattern, it can be followed by any character
(except, of course, an escape character, which would violate the
assumption that S is not part of a larger sequence of successive
escape characters). If S is followed by an underscore or percent sign,
that character has its special meaning.

Following is a illustration of the effect of successive occurrences of the
escape character (which, in this case, is the back slash (\)).

Pattern string Actual Pattern

\% A percent sign

\\% A back slash followed by zero or more arbitrary characters

\\\% A back slash followed by a percent sign

The code page used in the comparison is based on the code page of the
match-expression value.
v The match-expression value is never converted.
v If the code page of pattern-expression is different from the code page of

match-expression, the value of pattern-expression is converted to the code page
of match-expression, unless either operand is defined as FOR BIT DATA (in
which case there is no conversion).

v If the code page of escape-expression is different from the code page of
match-expression, the value of escape-expression is converted to the code page
of match-expression, unless either operand is defined as FOR BIT DATA (in
which case there is no conversion).

Examples
v Search for the string ’SYSTEMS’ appearing anywhere within the

PROJNAME column in the PROJECT table.
SELECT PROJNAME FROM PROJECT
WHERE PROJECT.PROJNAME LIKE '%SYSTEMS%'

LIKE Predicate

200 SQL Reference

v Search for a string with a first character of ’J’ that is exactly two characters
long in the FIRSTNME column of the EMPLOYEE table.
SELECT FIRSTNME FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE 'J_'

v Search for a string of any length, with a first character of ’J’, in the
FIRSTNME column of the EMPLOYEE table.

SELECT FIRSTNME FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE 'J%'

v In the CORP_SERVERS table, search for a string in the LA_SERVERS
column that matches the value in the CURRENT SERVER special register.

SELECT LA_SERVERS FROM CORP_SERVERS
WHERE CORP_SERVERS.LA_SERVERS LIKE CURRENT SERVER

v Retrieve all strings that begin with the sequence of characters ’%_\’ in
column A of the table T.

SELECT A FROM T WHERE T.A LIKE
'\%_\\%' ESCAPE '\'

v Use the BLOB scalar function, to obtain a one byte escape character which
is compatible with the match and pattern data types (both BLOBs).

SELECT COLBLOB FROM TABLET
WHERE COLBLOB LIKE :pattern_var ESCAPE BLOB(X'OE')

LIKE Predicate

Chapter 3. Language Elements 201

NULL Predicate

�� expression IS
NOT

NULL ��

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the
expression is null, the result is true. If the value is not null, the result is false.
If NOT is specified, the result is reversed.

Examples:
PHONENO IS NULL

SALARY IS NOT NULL

NULL Predicate

202 SQL Reference

TYPE Predicate

�� expression IS OF
NOT

IS
OF DYNAMIC TYPE

NOT

�

� �

,

(typename)
ONLY

��

A TYPE predicate compares the type of an expression with one or more
user-defined structured types.

The dynamic type of an expression involving the dereferencing of a reference
type is the actual type of the referenced row from the target typed table or
view. This may differ from the target type of an expression involving the
reference which is called the static type of the expression.

If the value of expression is null, the result of the predicate is unknown. The
result of the predicate is true if the dynamic type of the expression is a subtype
of one of the structured types specified by typename, otherwise the result is
false. If ONLY precedes any typename the proper subtypes of that type are not
considered.

If typename is not qualified, it is resolved using the SQL path. Each typename
must identify a user-defined type that is in the type hierarchy of the static
type of expression (SQLSTATE 428DU).

The DEREF function should be used whenever the TYPE predicate has an
expression involving a reference type value. The static type for this form of
expression is the target type of the reference. See “DEREF” on page 284 for
more information about the DEREF function.

The syntax IS OF and OF DYNAMIC TYPE are equivalent alternatives for the
TYPE predicate. Similarly, IS NOT OF and NOT OF DYNAMIC TYPE are
equivalent alternatives.

Example:

A table hierarchy exists with root table EMPLOYEE of type EMP and subtable
MANAGER of type MGR. Another table, ACTIVITIES, includes a column
called WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE EMPLOYEE.

TYPE Predicate

Chapter 3. Language Elements 203

The following is a type predicate that evaluates to true when a row
corresponding to WHO_RESPONSIBLE is a manager:

DEREF (WHO_RESPONSIBLE) IS OF (MGR)

If a table contains a column EMPLOYEE of type EMP, EMPLOYEE may
contain values of type EMP as well as values of its subtypes like MGR. The
following predicate

EMPL IS OF (MGR)

returns true when EMPL is not null and is actually a manager.

TYPE Predicate

204 SQL Reference

Search Conditions

search-condition:

NOT
predicate

SELECTIVITY numeric-constant
(search-condition)

�

� �

AND predicate
OR NOT SELECTIVITY numeric-constant

(search-condition)

A search condition specifies a condition that is “true,” “false,” or “unknown”
about a given row.

The result of a search condition is derived by application of the specified
logical operators (AND, OR, NOT) to the result of each specified predicate. If
logical operators are not specified, the result of the search condition is the
result of the specified predicate.

AND and OR are defined in Table 14, in which P and Q are any predicates:

Table 14. Truth Tables for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of
evaluation is not specified by parentheses, NOT is applied before AND, and

Search Conditions

Chapter 3. Language Elements 205

AND is applied before OR. The order in which operators at the same
precedence level are evaluated is undefined to allow for optimization of
search conditions.

SELECTIVITY value
The SELECTIVITY clause is used to indicate to DB2 what the expected
selectivity percentage is for the predicate. SELECTIVITY can be specified
only when the predicate is a user-defined predicate.

A user-defined predicate is a predicate that consists of a user-defined
function invocation, in the context of a predicate specification that
matches the predicate specification on the PREDICATES clause of
CREATE FUNCTION. For example, if the function foo is defined with
PREDICATES WHEN=1..., then the following use of SELECTIVITY is
valid:

SELECT *
FROM STORES
WHERE foo(parm,parm) = 1 SELECTIVITY 0.004

The selectivity value must be a numeric literal value in the inclusive range
from 0 to 1 (SQLSTATE 42615). If SELECTIVITY is not specified, the
default value is 0.01 (that is, the user-defined predicate is expected to
filter out all but one percent of all the rows in the table). The
SELECTIVITY default can be changed for any given function by updating
its SELECTIVITY column in the SYSSTAT.FUNCTIONS view. An error will
be returned if the SELECTIVITY clause is specified for a non user-defined
predicate (SQLSTATE 428E5).

A user-defined function (UDF) can be applied as a user-defined predicate
and, hence, is potentially applicable for index exploitation if:

1

1

32

2 or 3 2 or 3

MAJPROJ = 'MA2100' DEPTNO = 'D11' DEPTNO = 'B03' DEPTNO = 'E11'AND OR OR

MAJPROJ = 'MA2100' (DEPTNO = 'D11' DEPTNO = 'B03') DEPTNO = 'E11'AND OR OR

Figure 13. Search Conditions Evaluation Order

Search Conditions

206 SQL Reference

v the predicate specification is present in the CREATE FUNCTION
statement

v the UDF is invoked in a WHERE clause being compared (syntactically)
in the same way as specified in the predicate specification

v there is no negation (NOT operator)

Examples
In the following query, the within UDF specification in the WHERE clause
satisfies all three conditions and is considered a user-defined predicate. (For
more information about the within and distance UDFs, see the Examples
section of “CREATE FUNCTION (External Scalar)” on page 590.)

SELECT *
FROM customers
WHERE within(location, :sanJose) = 1 SELECTIVITY 0.2

However, the presence of within in the following query is not
index-exploitable due to negation and is not considered a user-defined
predicate.

SELECT *
FROM customers
WHERE NOT(within(location, :sanJose) = 1) SELECTIVITY 0.3

In the next example, consider identifying customers and stores that are within
a certain distance of each other. The distance of one store to another is
computed by the radius of the city that the customers live in.

SELECT *
FROM customers, stores
WHERE distance(customers.loc, stores.loc) < CityRadius(stores.loc) SELECTIVITY 0.02

In the above query, the predicate in the WHERE clause is considered a
user-defined predicate. The result produced by CityRadius is used as a search
argument to the range producer function.

However, since the result produced by CityRadius is used as a range producer
function, the above user-defined predicate will not be able to make use of the
index extension defined on the stores.loc column. Therefore, the UDF will
make use of only the index defined on the customers.loc column.

Search Conditions

Chapter 3. Language Elements 207

Search Conditions

208 SQL Reference

Chapter 4. Functions

A function is an operation that is denoted by a function name followed by a
pair of parentheses enclosing the specification of arguments (there may be no
arguments).

Functions are classified as column functions, scalar functions, row functions or
table functions.
v The argument of a column function is a collection of like values. It returns a

single value (possibly null), and can be specified in an SQL statement
where an expression can be used. Additional restrictions apply to the use of
column functions as specified in “Column Functions” on page 228.

v The argument(s) of a scalar function are individual scalar values, which can
be of different types and have different meanings. It returns a single value
(possibly null), and can be specified in an SQL statement wherever an
expression can be used.

v The argument of a row function is a structured type. It returns a row of
built-in data types and can only be specified as a transform function for a
structured type.

v The argument(s) of a table function are individual scalar values, which can
be of different types and have different meanings. It returns a table to the
SQL statement, and can be specified only within the FROM clause of a
SELECT. Additional restrictions apply to the use of table functions as
specified in “from-clause” on page 400.

Table 15 on page 210 shows the functions that are supported. The ″Function
Name″ combined with the ″Schema″ give the fully qualified name of the
function. ″Description″ briefly describes what the function does. ″Input
Parameters″ gives the data type that is expected for each argument during
function invocation. Many of the functions include variations of the input
parameters allowing either different data types or different numbers of
arguments to be used. The combination of schema, function name and input
parameters make up a function signature. Each function signature may return
a value of a different type which is shown in the ″Returns″ columns.

There are some distinctions that should be understood about the input
parameter types. In some cases the type is specified as a specific built-in data
type and in other cases it will use a general variable like any-numeric-type.
When a specific data type is listed, this means that an exact match will only
occur with the specified data type. When a general variable is used, each of

© Copyright IBM Corp. 1993, 2000 209

the data types associated with that variable will result in an exact match. This
distinction impacts function selection as described in “Function Resolution” on
page 144.

There may be additional functions available because user-defined functions
may be created in different schemas using one of these function signatures as
a source (see “CREATE FUNCTION” on page 589 for details) or users may
create external functions using their own programs.

Note:

v Built-in functions are provided with the database manager, providing
a single result value, and they are identified as part of the SYSIBM
schema. Examples of such functions include column functions such
as AVG, operator functions such as ″+″, casting functions such as
DECIMAL, and others such as SUBSTR.

v User-defined functions are functions that are registered to a database
in SYSCAT.FUNCTIONS (using the CREATE FUNCTION statement).
User-defined functions are never part of the SYSIBM schema. One
such set of functions is provided with the database manager in a
schema called SYSFUN.

Table 15. Supported Functions

Function name Schema Description

Input Parameters Returns

ABS or ABSVAL

SYSFUN Returns the absolute value of the argument.

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

DOUBLE DOUBLE

ACOS
SYSFUN Returns the arccosine of the argument as an angle expressed in

radians.

DOUBLE DOUBLE

ASCII

SYSFUN Returns the ASCII code value of the leftmost character of the argument
as an integer.

CHAR INTEGER

VARCHAR(4000) INTEGER

CLOB(1M) INTEGER

ASIN
SYSFUN Returns the arcsine of the argument as an angle, expressed in radians.

DOUBLE DOUBLE

ATAN
SYSFUN Returns the arctangent of the argument as an angle, expressed in

radians.

DOUBLE DOUBLE

Functions

210 SQL Reference

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

ATAN2
SYSFUN Returns the arctangent of x and y coordinates, specified by the first and

second arguments respectively, as an angle, expressed in radians.

DOUBLE, DOUBLE DOUBLE

AVG
SYSIBM Returns the average of a set of numbers (column function).

numeric-type 4 numeric-type 1

BIGINT

SYSIBM Returns a 64 bit integer representation of a number or character string
in the form of an integer constant.

numeric-type BIGINT

VARCHAR BIGINT

BLOB

SYSIBM Casts from source type to BLOB, with optional length.

string-type BLOB

string-type, INTEGER BLOB

CEIL or CEILING

SYSFUN Returns the smallest integer greater than or equal to the argument.

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

DOUBLE DOUBLE

CHAR

SYSIBM Returns a string representation of the source type.

character-type CHAR

character-type, INTEGER CHAR(integer)

datetime-type CHAR

datetime-type, keyword 2 CHAR

SMALLINT CHAR(6)

INTEGER CHAR(11)

BIGINT CHAR(20)

DECIMAL CHAR(2+precision)

DECIMAL, VARCHAR CHAR(2+precision)

CHAR
SYSFUN Returns a character string representation of a floating-point number.

DOUBLE CHAR(24)

CHR

SYSFUN Returns the character that has the ASCII code value specified by the
argument. The value of the argument should be between 0 and 255;
otherwise, the return value is null.

INTEGER CHAR(1)

CLOB SYSIBM Casts from source type to CLOB, with optional length.

character-type CLOB

character-type, INTEGER CLOB

Functions

Chapter 4. Functions 211

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

COALESCE 3
SYSIBM Returns the first non-null argument in the set of arguments.

any-type, any-union-compatible-type, ... any-type

CONCAT or ||
SYSIBM Returns the concatenation of 2 string arguments.

string-type, compatible-string-type max string-type

CORRELATION or CORR
SYSIBM Returns the coefficient of correlation of a set of number pairs.

numeric-type, numeric-type DOUBLE

COS
SYSFUN Returns the cosine of the argument, where the argument is an angle

expressed in radians.

DOUBLE DOUBLE

COT
SYSFUN Returns the cotangent of the argument, where the argument is an angle

expressed in radians.

DOUBLE DOUBLE

COUNT
SYSIBM Returns the count of the number of rows in a set of rows or values

(column function).

any-builtin-type 4 INTEGER

COUNT_BIG

SYSIBM Returns the number of rows or values in a set of rows or values
(column function). Result can be greater than the maximum value of
integer.

any-builtin-type 4 DECIMAL(31,0)

COVARIANCE or COVAR
SYSIBM Returns the covariance of a set of number pairs.

numeric-type, numeric-type DOUBLE

DATE

SYSIBM Returns a date from a single input value.

DATE DATE

TIMESTAMP DATE

DOUBLE DATE

VARCHAR DATE

DAY

SYSIBM Returns the day part of a value.

VARCHAR INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

DAYNAME

SYSFUN Returns a mixed case character string containing the name of the day
(e.g. Friday) for the day portion of the argument based on what the
locale was when db2start was issued.

VARCHAR(26) VARCHAR(100)

DATE VARCHAR(100)

TIMESTAMP VARCHAR(100)

Functions

212 SQL Reference

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

DAYOFWEEK

SYSFUN Returns the day of the week in the argument as an integer value in the
range 1-7, where 1 represents Sunday.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DAYOFWEEK_ISO

SYSFUN Returns the day of the week in the argument as an integer value in the
range 1-7, where 1 represents Monday.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DAYOFYEAR

SYSFUN Returns the day of the year in the argument as an integer value in the
range 1-366.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DAYS

SYSIBM Returns an integer representation of a date.

VARCHAR INTEGER

TIMESTAMP INTEGER

DATE INTEGER

DBCLOB

SYSIBM Casts from source type to DBCLOB, with optional length.

graphic-type DBCLOB

graphic-type, INTEGER DBCLOB

DECIMAL or DEC

SYSIBM Returns decimal representation of a number, with optional precision
and scale.

numeric-type DECIMAL

numeric-type, INTEGER DECIMAL

numeric-type INTEGER, INTEGER DECIMAL

DECIMAL or DEC

SYSIBM Returns decimal representation of a character string, with optional
precision, scale, and decimal-character.

VARCHAR DECIMAL

VARCHAR, INTEGER DECIMAL

VARCHAR, INTEGER, INTEGER DECIMAL

VARCHAR, INTEGER, INTEGER, VARCHAR DECIMAL

DEGREES
SYSFUN Returns the number of degrees converted from the argument in

expressed in radians.

DOUBLE DOUBLE

Functions

Chapter 4. Functions 213

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

DEREF
SYSIBM Returns an instance of the target type of the reference type argument.

REF(any-structured-type) with defined scope any-structured-type (same as
input target type)

DIFFERENCE

SYSFUN Returns the difference between the sounds of the words in the two
argument strings as determined using the SOUNDEX function. A value
of 4 means the strings sound the same.

VARCHAR(4000), VARCHAR(4000) INTEGER

DIGITS
SYSIBM Returns the character string representation of a number.

DECIMAL CHAR

DLCOMMENT
SYSIBM Returns the comment attribute of a datalink value.

DATALINK VARCHAR(254)

DLLINKTYPE
SYSIBM Returns the link type attribute of a datalink value.

DATALINK VARCHAR(4)

DLURLCOMPLETE
SYSIBM Returns the complete URL (including access token) of a datalink value.

DATALINK VARCHAR

DLURLPATH
SYSIBM Returns the path and file name (including access token) of a datalink

value.

DATALINK VARCHAR

DLURLPATHONLY
SYSIBM Returns the path and file name (without any access token) of a

datalink value.

DATALINK VARCHAR

DLURLSCHEME
SYSIBM Returns the scheme from the URL attribute of a datalink value.

DATALINK VARCHAR

DLURLSERVER
SYSIBM Returns the server from the URL attribute of a datalink value.

DATALINK VARCHAR

DLVALUE

SYSIBM Builds a datalink value from a data-location argument, link type
argument and optional comment-string argument.

VARCHAR DATALINK

VARCHAR, VARCHAR DATALINK

VARCHAR, VARCHAR, VARCHAR DATALINK

DOUBLE or
DOUBLE_PRECISION

SYSIBM Returns the floating-point representation of a number.

numeric-type DOUBLE

DOUBLE

SYSFUN Returns the floating-point number corresponding to the character
string representation of a number. Leading and trailing blanks in
argument are ignored.

VARCHAR DOUBLE

EVENT_MON_STATE
SYSIBM Returns the operational state of particular event monitor.

VARCHAR INTEGER

Functions

214 SQL Reference

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

EXP
SYSFUN Returns the exponential function of the argument.

DOUBLE DOUBLE

FLOAT SYSIBM Same as DOUBLE.

FLOOR

SYSFUN Returns the largest integer less than or equal to the argument.

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

DOUBLE DOUBLE

GENERATE_UNIQUE
SYSIBM Returns a bit data character string that is unique compared to any

other execution of the same function.

no argument CHAR(13) FOR BIT DATA

GRAPHIC

SYSIBM Cast from source type to GRAPHIC, with optional length.

graphic-type GRAPHIC

graphic-type, INTEGER GRAPHIC

GROUPING

SYSIBM Used with grouping-sets and super-groups to indicate sub-total rows
generated by a grouping set (column function). The value returned is:

1 The value of the argument in the returned row is a null
value and the row was generated for a grouping set. This
generated row provides a sub-total for a grouping set.

0 otherwise.

any-type SMALLINT

HEX
SYSIBM Returns the hexadecimal representation of a value.

any-builtin-type VARCHAR

HOUR

SYSIBM Returns the hour part of a value.

VARCHAR INTEGER

TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

INSERT

SYSFUN Returns a string where argument3 bytes have been deleted from
argument1 beginning at argument2 and where argument4 has been
inserted into argument1 beginning at argument2.

VARCHAR(4000), INTEGER, INTEGER, VARCHAR(4000) VARCHAR(4000)

CLOB(1M), INTEGER, INTEGER, CLOB(1M) CLOB(1M)

BLOB(1M), INTEGER, INTEGER, BLOB(1M) BLOB(1M)

Functions

Chapter 4. Functions 215

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

INTEGER or INT

SYSIBM Returns the integer representation of a number.

numeric-type INTEGER

VARCHAR INTEGER

JULIAN_DAY

SYSFUN Returns an integer value representing the number of days from
January 1, 4712 B.C. (the start of the Julian date calendar) to the date
value specified in the argument.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

LCASE or LOWER

SYSIBM Returns a string in which all the characters have been converted to
lower case characters.

CHAR CHAR

VARCHAR VARCHAR

LCASE

SYSFUN Returns a string in which all the characters have been converted to
lower case characters. LCASE will only handle characters in the
invariant set. Therefore, LCASE(UCASE(string)) will not necessarily
return the same result as LCASE(string).

VARCHAR(4000) VARCHAR(4000)

CLOB(1M) CLOB(1M)

LEFT

SYSFUN Returns a string consisting of the leftmost argument2 bytes in
argument1.

VARCHAR(4000), INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

LENGTH
SYSIBM Returns the length of the operand in bytes (except for double byte

string types which return the length in characters).

any-builtin-type INTEGER

LN
SUSFUN Returns the natural logarithm of the argument (same as LOG).

DOUBLE DOUBLE

LOCATE

SYSFUN Returns the starting position of the first occurrence of argument1 within
argument2. If the optional third argument is specified, it indicates the
character position in argument2 at which the search is to begin. If
argument1 is not found within argument2, the value 0 is returned.

VARCHAR(4000), VARCHAR(4000) INTEGER

VARCHAR(4000), VARCHAR(4000), INTEGER INTEGER

CLOB(1M), CLOB(1M) INTEGER

CLOB(1M), CLOB(1M), INTEGER INTEGER

BLOB(1M), BLOB(1M) INTEGER

BLOB(1M), BLOB(1M), INTEGER INTEGER

Functions

216 SQL Reference

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

LOG
SYSFUN Returns the natural logarithm of the argument (same as LN).

DOUBLE DOUBLE

LOG10
Returns the base 10 logarithm of the argument.

DOUBLE DOUBLE

LONG_VARCHAR
SYSIBM Returns a long string.

character-type LONG VARCHAR

LONG_VARGRAPHIC
SYSIBM Casts from source type to LONG_VARGRAPHIC.

graphic-type LONG VARGRAPHIC

LTRIM

SYSIBM Returns the characters of the argument with leading blanks removed.

CHAR VARCHAR

VARCHAR VARCHAR

GRAPHIC VARGRAPHIC

VARGRAPHIC VARGRAPHIC

LTRIM

SYSFUN Returns the characters of the argument with leading blanks removed.

VARCHAR(4000) VARCHAR(4000)

CLOB(1M) CLOB(1M)

MAX
SYSIBM Returns the maximum value in a set of values (column function).

any-builtin-type 5 same as input type

MICROSECOND

SYSIBM Returns the microsecond (time-unit) part of a value.

VARCHAR INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

MIDNIGHT_SECONDS

SYSFUN Returns an integer value in the range 0 to 86 400 representing the
number of seconds between midnight and time value specified in the
argument.

VARCHAR(26) INTEGER

TIME INTEGER

TIMESTAMP INTEGER

MIN
SYSIBM Returns the minimum value in a set of values (column function).

any-builtin-type 5 same as input type

MINUTE

SYSIBM Returns the minute part of a value.

VARCHAR INTEGER

TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

Functions

Chapter 4. Functions 217

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

MOD

SYSFUN Returns the remainder (modulus) of argument1 divided by argument2.
The result is negative only if argument1 is negative.

SMALLINT, SMALLINT SMALLINT

INTEGER, INTEGER INTEGER

BIGINT, BIGINT BIGINT

MONTH

SYSIBM Returns the month part of a value.

VARCHAR INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

MONTHNAME

SYSFUN Returns a mixed case character string containing the name of month
(e.g. January) for the month portion of the argument that is a date or
timestamp, based on what the locale was when the database was
started.

VARCHAR(26) VARCHAR(100)

DATE VARCHAR(100)

TIMESTAMP VARCHAR(100)

NODENUMBER 3

SYSIBM Returns the node number of the row. The argument is a column name
within a table.

any-type INTEGER

NULLIF 3

SYSIBM Returns NULL if the arguments are equal, else returns the first
argument.

any-type 5, any-comparable-type5 any-type

PARTITION 3

SYSIBM Returns the partitioning map index (0 to 4095) of the row. The
argument is a column name within a table.

any-type INTEGER

POSSTR
SYSIBM Returns the position at which one string is contained in another.

string-type, compatible-string-type INTEGER

POWER

SYSFUN Returns the value of argument1 to the power of argument2.

INTEGER, INTEGER INTEGER

BIGINT, BIGINT BIGINT

DOUBLE, INTEGER DOUBLE

DOUBLE, DOUBLE DOUBLE

QUARTER

SYSFUN Returns an integer value in the range 1 to 4 representing the quarter of
the year for the date specified in the argument.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

Functions

218 SQL Reference

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

RADIANS
SYSFUN Returns the number of radians converted from argument which is

expressed in degrees.

DOUBLE DOUBLE

RAISE_ERROR3

SYSIBM Raises an error in the SQLCA. The sqlstate returned is indicated by
argument1. The second argument contains any text to be returned.

VARCHAR, VARCHAR any-type 6

RAND

SYSFUN Returns a random floating point value between 0 and 1 using the
argument as the optional seed value.

no argument required DOUBLE

INTEGER DOUBLE

REAL
SYSIBM Returns the single-precision floating-point representation of a number.

numeric-type REAL

REGR_AVGX
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

REGR_AVGY
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

REGR_COUNT
SYSIBM Returns the the number of non-null number pairs used to fit the

regression line.

numeric-type, numeric-type INTEGER

REGR_INTERCEPT or
REGR_ICPT

SYSIBM Returns the y-intercept of the regression line.

numeric-type, numeric-type DOUBLE

REGR_R2
SYSIBM Returns the coefficient of determination for the regression.

numeric-type, numeric-type DOUBE

REGR_SLOPE
SYSIBM Returns the slope of the line.

numeric-type, numeric-type DOUBLE

REGR_SXX
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

REGR_SXY
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

REGR_SYY
SYSIBM Returns quantities used to compute diagnostic statistics.

numeric-type, numeric-type DOUBLE

REPEAT

SYSFUN Returns a character string composed of argument1 repeated argument2
times.

VARCHAR(4000), INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

Functions

Chapter 4. Functions 219

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

REPLACE

SYSFUN Replaces all occurrences of argument2 in argument1 with argument3.

VARCHAR(4000), VARCHAR(4000), VARCHAR(4000) VARCHAR(4000)

CLOB(1M), CLOB(1M), CLOB(1M) CLOB(1M)

BLOB(1M), BLOB(1M), BLOB(1M) BLOB(1M)

RIGHT

SYSFUN Returns a string consisting of the rightmost argument2 bytes in
argument1.

VARCHAR(4000), INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

ROUND

SYSFUN Returns the first argument rounded to argument2 places right of the
decimal point. If argument2 is negative, argument1 is rounded to the
absolute value of argument2 places to the left of the decimal point.

INTEGER, INTEGER INTEGER

BIGINT, INTEGER BIGINT

DOUBLE, INTEGER DOUBLE

RTRIM

SYSIBM Returns the characters of the argument with trailing blanks removed.

CHAR VARCHAR

VARCHAR VARCHAR

GRAPHIC VARGRAPHIC

VARGRAPHIC VARGRAPHIC

RTRIM

SYSFUN Returns the characters of the argument with trailing blanks removed.

VARCHAR(4000) VARCHAR(4000)

CLOB(1M) CLOB(1M)

SECOND

SYSIBM Returns the second (time-unit) part of a value.

VARCHAR INTEGER

TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

SIGN

SYSFUN Returns an indicator of the sign of the argument. If the argument is
less than zero, -1 is returned. If argument equals zero, 0 is returned. If
argument is greater than zero, 1 is returned.

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

DOUBLE DOUBLE

Functions

220 SQL Reference

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

SIN
SYSFUN Returns the sine of the argument, where the argument is an angle

expressed in radians.

DOUBLE DOUBLE

SMALLINT

SYSIBM Returns the small integer representation of a number.

numeric-type SMALLINT

VARCHAR SMALLINT

SOUNDEX

SYSFUN Returns a 4 character code representing the sound of the words in the
argument. The result can be used to compare with the sound of other
strings. See also DIFFERENCE.

VARCHAR(4000) CHAR(4)

SPACE
SYSFUN Returns a character string consisting of argument1 blanks.

INTEGER VARCHAR(4000)

SQLCACHE_SNAPSHOT
SYSFUN Returns a table of the snapshot of the db2 dynamic SQL statement

cache.

Refer to “SQLCACHE_SNAPSHOT” on page 390.

SQRT
SYSFUN Returns the square root of the argument.

DOUBLE DOUBLE

STDDEV
SYSIBM Returns the standard deviation of a set of numbers (column function).

DOUBLE DOUBLE

SUBSTR

SYSIBM Returns a substring of a string argument1 starting at argument2 for
argument3 characters. If argument3 is not specified, the remainder of the
string is assumed.

string-type, INTEGER string-type

string-type, INTEGER, INTEGER string-type

SUM
SYSIBM Returns the sum of a set of numbers (column function).

numeric-type 4 max-numeric-type 1

TABLE_NAME

SYSIBM Returns an unqualified name of a table or view based on the object
name given in argument1 and the optional schema name given in
argument2. It is used to resolve aliases.

VARCHAR VARCHAR(128)

VARCHAR, VARCHAR VARCHAR(128)

TABLE_SCHEMA

SYSIBM Returns the schema name portion of the two part table or view name
given by the object name in argument1 and the optional schema name
in argument2. It is used to resolve aliases.

VARCHAR VARCHAR(128)

VARCHAR, VARCHAR VARCHAR(128)

TAN
SYSFUN Returns the tangent of the argument, where the argument is an angle

expressed in radians.

DOUBLE DOUBLE

Functions

Chapter 4. Functions 221

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

TIME

SYSIBM Returns a time from a value.

TIME TIME

TIMESTAMP TIME

VARCHAR TIME

TIMESTAMP

SYSIBM Returns a timestamp from a value or a pair of values.

TIMESTAMP TIMESTAMP

VARCHAR TIMESTAMP

VARCHAR, VARCHAR TIMESTAMP

VARCHAR, TIME TIMESTAMP

DATE, VARCHAR TIMESTAMP

DATE, TIME TIMESTAMP

TIMESTAMP_ISO

SYSFUN Returns a timestamp value based on a date, time, or timestamp
argument. If the argument is a date, it inserts zero for all the time
elements. If the argument is a time, it inserts the value of CURRENT
DATE for the date elements and zero for the fractional time element.

DATE TIMESTAMP

TIME TIMESTAMP

TIMESTAMP TIMESTAMP

VARCHAR(26) TIMESTAMP

TIMESTAMPDIFF

SYSFUN Returns an estimated number of intervals of type argument1 based on
the difference between two timestamps. The second argument is the
result of subtracting two timestamp types and converting the result to
CHAR. Valid values of interval (argument1) are:
1 Fractions of a second
2 Seconds
4 Minutes
8 Hours
16 Days
32 Weeks
64 Months
128 Quarters
256 Years

INTEGER, CHAR(22) INTEGER

Functions

222 SQL Reference

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

TRANSLATE

SYSIBM Returns a string in which one or more characters may have been
translated into other characters.

CHAR CHAR

VARCHAR VARCHAR

CHAR, VARCHAR, VARCHAR CHAR

VARCHAR, VARCHAR, VARCHAR VARCHAR

CHAR, VARCHAR, VARCHAR, VARCHAR CHAR

VARCHAR, VARCHAR, VARCHAR, VARCHAR VARCHAR

GRAPHIC, VARGRAPHIC, VARGRAPHIC GRAPHIC

VARGRAPHIC, VARGRAPHIC, VARGRAPHIC VARGRAPHIC

GRAPHIC, VARGRAPHIC, VARGRAPHIC,
VARGRAPHIC

GRAPHIC

VARGRAPHIC, VARGRAPHIC, VARGRAPHIC,
VARGRAPHIC

VARGRAPHIC

TRUNC or TRUNCATE

SYSFUN Returns argument1 truncated to argument2 places right of the decimal
point. If argument2 is negative, argument1 is truncated to the absolute
value of argument2 places to the left of the decimal point.

INTEGER, INTEGER INTEGER

BIGINT, INTEGER BIGINT

DOUBLE, INTEGER DOUBLE

TYPE_ID 3

SYSIBM Returns the internal data type identifier of the dynamic data type of
the argument. Note that the result of this function is not portable
across databases.

any-structured-type INTEGER

TYPE_NAME 3

SYSIBM Returns the unqualified name of the dynamic data type of the
argument.

any-structured-type VARCHAR(18)

TYPE_SCHEMA 3
SYSIBM Returns the schema name of the dynamic type of the argument.

any-structured-type VARCHAR(128)

UCASE or UPPER

SYSIBM Returns a string in which all the characters have been converted to
upper case characters.

CHAR CHAR

VARCHAR VARCHAR

UCASE
SYSFUN Returns a string in which all the characters have been converted to

upper case characters.

VARCHAR VARCHAR

VALUE 3 SYSIBM Same as COALESCE.

Functions

Chapter 4. Functions 223

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

VARCHAR

SYSIBM Returns a VARCHAR representation of the first argument. If a second
argument is present, it specifies the length of the result.

character-type VARCHAR

character-type, INTEGER VARCHAR

datetime-type VARCHAR

VARGRAPHIC

SYSIBM Returns a VARGRAPHIC representation of the first argument. If a
second argument is present, it specifies the length of the result.

graphic-type VARGRAPHIC

graphic-type, INTEGER VARGRAPHIC

VARCHAR VARGRAPHIC

VARIANCE or VAR
SYSIBM Returns the variance of a set of numbers (column function).

DOUBLE DOUBLE

WEEK

SYSFUN Returns the week of the year in of the argument as an integer value in
the range of 1-54.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

WEEK_ISO

SYSFUN Returns the week of the year in of the argument as an integer value in
the range of 1-53. The first day of a week is Monday. Week 1 is the
first week of the year to contain a Thursday.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

YEAR

SYSIBM Returns the year part of a value.

VARCHAR INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

“+”
SYSIBM Adds two numeric operands.

numeric-type, numeric-type max numeric-type

“+”
SYSIBM Unary plus operator.

numeric-type numeric-type

Functions

224 SQL Reference

Table 15. Supported Functions (continued)

Function name Schema Description

Input Parameters Returns

“+”

SYSIBM Datetime plus operator.

DATE, DECIMAL(8,0) DATE

TIME, DECIMAL(6,0) TIME

TIMESTAMP, DECIMAL(20,6) TIMESTAMP

DECIMAL(8,0), DATE DATE

DECIMAL(6,0), TIME TIME

DECIMAL(20,6), TIMESTAMP TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code datetime-type

“−”
SYSIBM Subtracts two numeric operands.

numeric-type, numeric-type max numeric-type

“−”
SYSIBM Unary minus operator.

numeric-type numeric-type 1

“−”

SYSIBM Datetime minus operator.

DATE, DATE DECIMAL(8,0)

TIME, TIME DECIMAL(6,0)

TIMESTAMP, TIMESTAMP DECIMAL(20,6)

DATE, VARCHAR DECIMAL(8,0)

TIME, VARCHAR DECIMAL(6,0)

TIMESTAMP, VARCHAR DECIMAL(20,6)

VARCHAR, DATE DECIMAL(8,0)

VARCHAR, TIME DECIMAL(6,0)

VARCHAR, TIMESTAMP DECIMAL(20,6)

DATE, DECIMAL(8,0) DATE

TIME, DECIMAL(6,0) TIME

TIMESTAMP, DECIMAL(20,6) TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code datetime-type

“*”
SYSIBM Multiplies two numeric operands.

numeric-type, numeric-type max numeric-type

“⁄”
SYSIBM Divides two numeric operands.

numeric-type, numeric-type max numeric-type

“\” SYSIBM Same as CONCAT.

Functions

Chapter 4. Functions 225

Notes
v References to string data types that are not qualified by a length should be assumed to support the maximum

length for the data type
v References to a DECIMAL data type without precision and scale should be assumed to allow any supported

precision and scale.

Key to Table
any-builtin-type Any data type that is not a distinct type.
any-type Any type defined to the database.
any-structured-type

Any user-defined structured type defined to the database.
any-comparable-type

Any type that is comparable with other argument types as defined in “Assignments and
Comparisons” on page 94.

any-union-compatible-type
Any type that is compatible with other argument types as defined in “Rules for Result Data
Types” on page 107.

character-type Any of the character string types: CHAR, VARCHAR, LONG VARCHAR, CLOB.
compatible-string-type

A string type that comes from the same grouping as the other argument (e.g. if one argument is
a character-type the other must also be a character-type).

datetime-type Any of the datetime types: DATE, TIME, TIMESTAMP.
graphic-type Any of the double byte character string types: GRAPHIC, VARGRAPHIC, LONG

VARGRAPHIC, DBCLOB.
labeled-duration-code

As a type this is a SMALLINT. If the function is invoked using the infix form of the plus or
minus operator, labeled-durations as defined in “Labeled Durations” on page 164 can be used.
For a source function that does not use the plus or minus operator character as the name, the
following values must be used for the labeled-duration-code argument when invoking the
function.
1 YEAR or YEARS
2 MONTH or MONTHS
3 DAY or DAYS
4 HOUR or HOURS
5 MINUTE or MINUTES
6 SECOND or SECONDS
7 MICROSECOND or MICROSECONDS

LOB-type Any of the large object types: BLOB, CLOB, DBCLOB.
max-numeric-type The maximum numeric type of the arguments where maximum is defined as the rightmost

numeric-type.
max-string-type The maximum string type of the arguments where maximum is defined as the rightmost

character-type or graphic-type. If arguments are BLOB, the max-string-type is BLOB.
numeric-type Any of the numeric types: SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE.
string-type Any type from character type, graphic-type or BLOB.

Functions

226 SQL Reference

Table Footnotes
1 When the input parameter is SMALLINT, the result type is INTEGER. When the input parameter is REAL,

the result type is DOUBLE.
2 Keywords allowed are ISO, USA, EUR, JIS, and LOCAL. This function signature is not supported as a

sourced function.
3 This function cannot be used as a source function.
4 The keyword ALL or DISTINCT may be used before the first parameter. If DISTINCT is specified, the use

of user-defined structured types, long string types or a DATALINK type is not supported.
5 The use of user-defined structured types, long string types or a DATALINK type is not supported.
6 The type returned by RAISE_ERROR depends upon the context of its use. RAISE_ERROR, if not cast to a

particular type, will return a type appropriate to its invocation within a CASE expression.

Functions

Chapter 4. Functions 227

Column Functions

The argument of a column function is a set of values derived from an
expression. The expression may include columns but cannot include a
scalar-fullselect or another column function (SQLSTATE 42607). The scope of
the set is a group or an intermediate result table as explained in “Chapter 5.
Queries” on page 393.

If a GROUP BY clause is specified in a query and the intermediate result from
the FROM, WHERE, GROUP BY and HAVING clauses is the empty set; then
the column functions are not applied, the result of the query is the empty set,
the SQLCODE is set to +100 and the SQLSTATE is set to ’02000’.

If a GROUP BY clause is not specified in a query and the intermediate result
is of the FROM, WHERE, and HAVING clauses is the empty set, then the
column functions are applied to the empty set.

For example, the result of the following SELECT statement is the number of
distinct values of JOBCODE for employees in department D01:

SELECT COUNT(DISTINCT JOBCODE)
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D01'

The keyword DISTINCT is not considered an argument of the function, but
rather a specification of an operation that is performed before the function is
applied. If DISTINCT is specified, duplicate values are eliminated. If ALL is
implicitly or explicitly specified, duplicate values are not eliminated.

Expressions can be used in column functions, for example:
SELECT MAX(BONUS + 1000)

INTO :TOP_SALESREP_BONUS
FROM EMPLOYEE
WHERE COMM > 5000

The column functions that follow are in the SYSIBM schema and may be
qualified with the schema name (for example, SYSIBM.COUNT(*)).

Column Functions

228 SQL Reference

AVG

�� AVG (
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The AVG function returns the average of a set of numbers.

The argument values must be numbers and their sum must be within the
range of the data type of the result. The result can be null.

The data type of the result is the same as the data type of the argument
values, except that:
v The result is a large integer if the argument values are small integers.
v The result is double-precision floating point if the argument values are

single-precision floating point.

If the data type of the argument values is decimal with precision p and scale
s, the precision of the result is 31 and the scale is 31-p+s.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, duplicate values
are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the average value of the set.

If the type of the result is integer, the fractional part of the average is lost.

Examples:
v Using the PROJECT table, set the host variable AVERAGE (decimal(5,2)) to

the average staffing level (PRSTAFF) of projects in department (DEPTNO)
’D11’.

SELECT AVG(PRSTAFF)
INTO :AVERAGE
FROM PROJECT
WHERE DEPTNO = 'D11'

Results in AVERAGE being set to 4.25 (that is 17/4) when using the sample
table.

AVG

Chapter 4. Functions 229

v Using the PROJECT table, set the host variable ANY_CALC (decimal(5,2))
to the average of each unique staffing level value (PRSTAFF) of projects in
department (DEPTNO) ’D11’.

SELECT AVG(DISTINCT PRSTAFF)
INTO :ANY_CALC
FROM PROJECT
WHERE DEPTNO = 'D11'

Results in ANY_CALC being set to 4.66 (that is 14/3) when using the
sample table.

AVG

230 SQL Reference

CORRELATION

�� CORRELATION
CORR

(expression1 , expression2) ��

The schema is SYSIBM.

The CORRELATION function returns the coefficient of correlation of a set of
number pairs.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null. When not null, the result is between 0 and 1.

The function is applied to the set of (expression1, expression2) pairs derived
from the argument values by the elimination of all pairs for which either
expression1 or expression2 is null.

If the function is applied to an empty set, or if either STDDEV(expression1) or
STDDEV(expression2) is equal to zero, the result is a null value. Otherwise, the
result is the correlation coefficient for the value pairs in the set. The result is
equivalent to the following expression:
COVARIANCE(expression1,expression2)/(STDDEV(expression1)*STDDEV(expression2))

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Example:
v Using the EMPLOYEE table, set the host variable CORRLN (double

precision floating point) to the correlation between salary and bonus for
those employees in department (WORKDEPT) ’A00’.

SELECT CORRELATION(SALARY, BONUS)
INTO :CORRLN
FROM EMPLOYEE
WHERE WORKDEPT = 'A00'

CORRLN is set to approximately 9.99853953399538E-001 when using the
sample table.

CORRELATION

Chapter 4. Functions 231

COUNT

�� COUNT (
ALL

expression
DISTINCT

*

) ��

The schema is SYSIBM.

The COUNT function returns the number of rows or values in a set of rows
or values.

If DISTINCT is used, the resulting data type of expression must not have a
length greater than 255 for a character column or 127 for a graphic column.
The data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The result of the function is a large integer. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows
in the set. A row that includes only NULL values is included in the count.

The argument of COUNT(DISTINCT expression) is a set of values. The
function is applied to the set of values derived from the argument values by
the elimination of null and duplicate values. The result is the number of
different non-null values in the set.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of
values. The function is applied to the set of values derived from the argument
values by the elimination of null values. The result is the number of non-null
values in the set, including duplicates.

Examples:
v Using the EMPLOYEE table, set the host variable FEMALE (int) to the

number of rows where the value of the SEX column is ’F’.
SELECT COUNT(*)

INTO :FEMALE
FROM EMPLOYEE
WHERE SEX = 'F'

Results in FEMALE being set to 13 when using the sample table.
v Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT (int)

to the number of departments (WORKDEPT) that have at least one female
as a member.

COUNT

232 SQL Reference

SELECT COUNT(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT
FROM EMPLOYEE
WHERE SEX = 'F'

Results in FEMALE_IN_DEPT being set to 5 when using the sample table.
(There is at least one female in departments A00, C01, D11, D21, and E11.)

COUNT

Chapter 4. Functions 233

COUNT_BIG

�� COUNT_BIG (
ALL

expression
DISTINCT

*

) ��

The schema is SYSIBM.

The COUNT_BIG function returns the number of rows or values in a set of
rows or values. It is similar to COUNT except that the result can be greater
than the maximum value of integer.

If DISTINCT is used, the resulting data type of expression must not have a
length greater than 255 for a character column or 127 for a graphic column.
The resulting data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The result of the function is a decimal with precision 31 and scale 0. The
result cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of
rows in the set. A row that includes only NULL values is included in the
count.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The
function is applied to the set of values derived from the argument values by
the elimination of null and duplicate values. The result is the number of
different non-null values in the set.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression) is a
set of values. The function is applied to the set of values derived from the
argument values by the elimination of null values. The result is the number of
non-null values in the set, including duplicates.

Examples:
v Refer to COUNT examples and substitute COUNT_BIG for occurrences of

COUNT. The results are the same except for the data type of the result.
v Some applications may require the use of COUNT but need to support

values larger than the largest integer. This can be achieved by use of
sourced user-defined functions and setting the SQL path. The following
series of statements shows how to create a sourced function to support
COUNT(*) based on COUNT_BIG and returning a decimal value with a

COUNT_BIG

234 SQL Reference

precision of 15. The SQL path is set such that the sourced function based on
COUNT_BIG is used in subsequent statements such as the query shown.
CREATE FUNCTION RICK.COUNT() RETURNS DECIMAL(15,0)

SOURCE SYSIBM.COUNT_BIG();
SET CURRENT FUNCTION PATH RICK, SYSTEM PATH;
SELECT COUNT(*) FROM EMPLOYEE;

Note how the sourced function is defined with no parameters to support
COUNT(*). This only works if you name the function COUNT and do not
qualify the function with the schema name when it is used. To get the same
effect as COUNT(*) with a name other than COUNT, invoke the function
with no parameters. Thus, if RICK.COUNT had been defined as
RICK.MYCOUNT instead, the query would have to be written as follows:

SELECT MYCOUNT() FROM EMPLOYEE;

If the count is taken on a specific column, the sourced function must specify
the type of the column. The following statements created a sourced function
that will take any CHAR column as a argument and use COUNT_BIG to
perform the counting.
CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE

SOURCE SYSIBM.COUNT_BIG(CHAR());
SELECT COUNT(DISTINCT WORKDEPT) FROM EMPLOYEE;

COUNT_BIG

Chapter 4. Functions 235

COVARIANCE

�� COVARIANCE
COVAR

(expression1 , expression2) ��

The schema is SYSIBM.

The COVARIANCE function returns the (population) covariance of a set of
number pairs.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of (expression1,expression2) pairs derived from
the argument values by the elimination of all pairs for which either expression1
or expression2 is null.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the covariance of the value pairs in the set. The result is
equivalent to the following:
1. Let avgexp1 be the result of AVG(expression1) and let avgexp2 be the result

of AVG(expression2).
2. The result of COVARIANCE(expression1, expression2) is AVG((expression1 -

avgexp1) * (expression2 - avgexp2)

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Example:
v Using the EMPLOYEE table, set the host variable COVARNCE (double

precision floating point) to the covariance between salary and bonus for
those employees in department (WORKDEPT) ’A00’.

SELECT COVARIANCE(SALARY, BONUS)
INTO :COVARNCE
FROM EMPLOYEE
WHERE WORKDEPT = 'A00'

COVARNCE is set to approximately 1.68888888888889E+006 when using the
sample table.

COVARIANCE

236 SQL Reference

GROUPING

�� GROUPING (expression) ��

The schema is SYSIBM.

Used in conjunction with grouping-sets and super-groups (see
“group-by-clause” on page 409 for details), the GROUPING function returns a
value which indicates whether or not a row returned in a GROUP BY answer
set is a row generated by a grouping set that excludes the column represented
by expression.

The argument can be of any type, but must be an item of a GROUP BY
clause.

The result of the function is a small integer. It is set to one of the following
values:

1 The value of expression in the returned row is a null value, and the
row was generated by the super-group. This generated row can be
used to provide sub-total values for the GROUP BY expression.

0 The value is other than the above.

Example:

The following query:

SELECT SALES_DATE,
SALES_PERSON,
SUM(SALES) AS UNITS_SOLD,
GROUPING(SALES_DATE) AS DATE_GROUP,
GROUPING(SALES_PERSON) AS SALES_GROUP

FROM SALES
GROUP BY CUBE (SALES_DATE, SALES_PERSON)
ORDER BY SALES_DATE, SALES_PERSON

results in:
SALES_DATE SALES_PERSON UNITS_SOLD DATE_GROUP SALES_GROUP
---------- --------------- ----------- ----------- -----------
12/31/1995 GOUNOT 1 0 0
12/31/1995 LEE 6 0 0
12/31/1995 LUCCHESSI 1 0 0
12/31/1995 - 8 0 1
03/29/1996 GOUNOT 11 0 0
03/29/1996 LEE 12 0 0
03/29/1996 LUCCHESSI 4 0 0
03/29/1996 - 27 0 1

GROUPING

Chapter 4. Functions 237

03/30/1996 GOUNOT 21 0 0
03/30/1996 LEE 21 0 0
03/30/1996 LUCCHESSI 4 0 0
03/30/1996 - 46 0 1
03/31/1996 GOUNOT 3 0 0
03/31/1996 LEE 27 0 0
03/31/1996 LUCCHESSI 1 0 0
03/31/1996 - 31 0 1
04/01/1996 GOUNOT 14 0 0
04/01/1996 LEE 25 0 0
04/01/1996 LUCCHESSI 4 0 0
04/01/1996 - 43 0 1
- GOUNOT 50 1 0
- LEE 91 1 0
- LUCCHESSI 14 1 0
- - 155 1 1

An application can recognize a SALES_DATE sub-total row by the fact that
the value of DATE_GROUP is 0 and the value of SALES_GROUP is 1. A
SALES_PERSON sub-total row can be recognized by the fact that the value of
DATE_GROUP is 1 and the value of SALES_GROUP is 0. A grand total row
can be recognized by the value 1 for both DATE_GROUP and SALES_GROUP.

GROUPING

238 SQL Reference

MAX

�� MAX (
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The MAX function returns the maximum value in a set of values.

The argument values can be of any built-in type other than a long string or
DATALINK.

If DISTINCT is used, the resulting data type of expression must not have a
length greater than 255 for a character column or 127 for a graphic column.
The resulting data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The data type, length and code page of the result are the same as the data
type, length and code page of the argument values. The result is considered to
be a derived value and can be null.

The function is applied to the set of values derived from the argument values
by the elimination of null values.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not
recommended. It is included for compatibility with other relational systems.

Examples:
v Using the EMPLOYEE table, set the host variable MAX_SALARY

(decimal(7,2)) to the maximum monthly salary (SALARY/12) value.
SELECT MAX(SALARY) / 12

INTO :MAX_SALARY
FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83 when using the sample table.
v Using the PROJECT table, set the host variable LAST_PROJ(char(24)) to the

project name (PROJNAME) that comes last in the collating sequence.
SELECT MAX(PROJNAME)

INTO :LAST_PROJ
FROM PROJECT

MAX

Chapter 4. Functions 239

Results in LAST_PROJ being set to ’WELD LINE PLANNING’ when using
the sample table.

v Similar to the previous example, set the host variable LAST_PROJ (char(40))
to the project name that comes last in the collating sequence when a project
name is concatenated with the host variable PROJSUPP. PROJSUPP is
'_Support'; it has a char(8) data type.

SELECT MAX(PROJNAME CONCAT PROJSUPP)
INTO :LAST_PROJ
FROM PROJECT

Results in LAST_PROJ being set to 'WELD LINE PLANNING_SUPPORT'
when using the sample table.

MAX

240 SQL Reference

MIN

�� MIN (
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The MIN function returns the minimum value in a set of values.

The argument values can be of any built-in type other than a long string or
DATALINK.

If DISTINCT is used, the resulting data type of expression must not have a
length greater than 255 for a character column or 127 for a graphic column.
The resulting data type of expression cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on any of
these types, or structured type (SQLSTATE 42907).

The data type, length, and code page of the result are the same as the data
type, length, and code page of the argument values. The result is considered
to be a derived value and can be null.

The function is applied to the set of values derived from the argument values
by the elimination of null values.

If this function is applied to an empty set, the result of the function is a null
value. Otherwise, the result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not
recommended. It is included for compatibility with other relational systems.

Examples:
v Using the EMPLOYEE table, set the host variable COMM_SPREAD

(decimal(7,2)) to the difference between the maximum and minimum
commission (COMM) for the members of department (WORKDEPT) ’D11’.

SELECT MAX(COMM) - MIN(COMM)
INTO :COMM_SPREAD
FROM EMPLOYEE
WHERE WORKDEPT = 'D11'

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462) when
using the sample table.

MIN

Chapter 4. Functions 241

v Using the PROJECT table, set the host variable (FIRST_FINISHED (char(10))
to the estimated ending date (PRENDATE) of the first project scheduled to
be completed.

SELECT MIN(PRENDATE)
INTO :FIRST_FINISHED
FROM PROJECT

Results in FIRST_FINISHED being set to ’1982-09-15’ when using the
sample table.

MIN

242 SQL Reference

REGRESSION Functions

�� REGR_AVGX
REGR_AVGY
REGR_COUNT

REGR_INTERCEPT
REGR_ICPT

REGR_R2
REGR_SLOPE
REGR_SXX
REGR_SXY
REGR_SYY

(expression1 , expression2) ��

The schema is SYSIBM.

The regression functions support the fitting of an ordinary-least-squares
regression line of the form y = a * x + b to a set of number pairs. The first
element of each pair (expression1) is interpreted as a value of the dependent
variable (i.e., a ″y value″). The second element of each pair (expression2) is
interpreted as a value of the independent variable (i.e., an ″x value″).

The function REGR_COUNT returns the number of non-null number pairs
used to fit the regression line (see below).

The function REGR_INTERCEPT (the short form is REGR_ICPT) returns the
y-intercept of the regression line (″b″ in the above equation)

The function REGR_R2 returns the coefficient of determination (also called
″R-squared″ or ″goodness-of-fit″) for the regression.

The function REGR_SLOPE returns the slope of the line (the parameter ″a″ in
the above equation).

The functions REGR_AVGX, REGR_AVGY, REGR_SXX, REGR_SYY, and
REGR_SXY return quantities that can be used to compute various diagnostic
statistics needed for the evaluation of the quality and statistical validity of the
regression model (see below).

The argument values must be numbers.

The data type of the result of REGR_COUNT is integer. For the remaining
functions, the data type of the result is double-precision floating point. The
result can be null. When not null, the result of REGR_R2 is between 0 and 1
and the result of both REGR_SXX and REGR_SYY is non-negative.

REGRESSION Functions

Chapter 4. Functions 243

Each function is applied to the set of (expression1, expression2) pairs derived
from the argument values by the elimination of all pairs for which either
expression1 or expression2 is null.

If the set is not empty and VARIANCE(expression2) is positive, REGR_COUNT
returns the number of non-null pairs in the set, and the remaining functions
return results that are defined as follows:
REGR_SLOPE(expression1,expression2) =
COVARIANCE(expression1,expression2)/VARIANCE(expression2)

REGR_INTERCEPT(expression1, expression2) =
AVG(expression1) - REGR_SLOPE(expression1, expression2) * AVG(expression2)

REGR_R2(expression1, expression2) =
POWER(CORRELATION(expression1, expression2), 2) if VARIANCE(expression1)>0
REGR_R2(expression1, expression2) = 1 if VARIANCE(expression1)=0

REGR_AVGX(expression1, expression2) = AVG(expression2)

REGR_AVGY(expression1, expression2) = AVG(expression1)

REGR_SXX(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression2)

REGR_SYY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression1)

REGR_SXY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * COVARIANCE(expression1, expression2)

If the set is not empty and VARIANCE(expression2) is equal to zero, then the
regression line either has infinite slope or is undefined. In this case, the
functions REGR_SLOPE, REGR_INTERCEPT, and REGR_R2 each return a null
value, and the remaining functions return values as defined above. If the set is
empty, REGR_COUNT returns zero and the remaining functions return a null
value.

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

The regression functions are all computed simultaneously during a single pass
through the data. In general, it is more efficient to use the regression functions
to compute the statistics needed for a regression analysis than to perform the
equivalent computations using ordinary column functions such as AVERAGE,
VARIANCE, COVARIANCE, and so forth.

The usual diagnostic statistics that accompany a linear-regression analysis can
be computed in terms of the above functions. For example:

Adjusted R2
1 - ((1 - REGR_R2) * ((REGR_COUNT - 1) / (REGR_COUNT - 2)))

REGRESSION Functions

244 SQL Reference

Standard error
SQRT((REGR_SYY-
(POWER(REGR_SXY,2)/REGR_SXX))/(REGR_COUNT-2))

Total sum of squares
REGR_SYY

Regression sum of squares
POWER(REGR_SXY,2) / REGR_SXX

Residual sum of squares
(Total sum of squares)-(Regression sum of squares)

t statistic for slope
REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)

t statistic for y-intercept
REGR_INTERCEPT/((Standard error) *
SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2)/REGR_SXX))

Example:
v Using the EMPLOYEE table, compute an ordinary-least-squares regression

line that expresses the bonus of an employee in department (WORKDEPT)
’A00’ as a linear function of the employee’s salary. Set the host variables
SLOPE, ICPT, RSQR (double precision floating point) to the slope, intercept,
and coefficient of determination of the regression line, respectively. Also set
the host variables AVGSAL and AVGBONUS to the average salary and
average bonus, respectively, of the employees in department ’A00’, and set
the host variable CNT (integer) to the number of employees in department
’A00’ for whom both salary and bonus data are available. Store the
remaining regression statistics in host variables SXX, SYY, and SXY.

SELECT REGR_SLOPE(BONUS,SALARY), REGR_INTERCEPT(BONUS,SALARY),
REGR_R2(BONUS,SALARY), REGR_COUNT(BONUS,SALARY),
REGR_AVGX(BONUS,SALARY), REGR_AVGY(BONUS,SALARY),
REGR_SXX(BONUS,SALARY), REGR_SYY(BONUS,SALARY),
REGR_SXY(BONUS,SALARY)
INTO :SLOPE, :ICPT,

:RSQR, :CNT,
:AVGSAL, :AVGBONUS,
:SXX, :SYY,
:SXY

FROM EMPLOYEE
WHERE WORKDEPT = 'A00'

When using the sample table, the host variables are set to the following
approximate values:
SLOPE: +1.71002671916749E-002
ICPT: +1.00871888623260E+002
RSQR: +9.99707928128685E-001

REGRESSION Functions

Chapter 4. Functions 245

CNT: 3
AVGSAL: +4.28333333333333E+004
AVGBONUS: +8.33333333333333E+002
SXX: +2.96291666666667E+008
SYY: +8.66666666666667E+004
SXY: +5.06666666666667E+006

REGRESSION Functions

246 SQL Reference

STDDEV

�� STDDEV (
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The STDDEV function returns the standard deviation of a set of numbers.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, duplicate values
are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Example:
v Using the EMPLOYEE table, set the host variable DEV (double precision

floating point) to the standard deviation of the salaries for those employees
in department (WORKDEPT) ’A00’.

SELECT STDDEV(SALARY)
INTO :DEV
FROM EMPLOYEE
WHERE WORKDEPT = 'A00'

Results in DEV being set to approximately 9938.00 when using the sample
table.

STDDEV

Chapter 4. Functions 247

SUM

�� SUM (
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The SUM function returns the sum of a set of numbers.

The argument values must be numbers (built-in types only) and their sum
must be within the range of the data type of the result.

The data type of the result is the same as the data type of the argument
values except that:
v The result is a large integer if the argument values are small integers.
v The result is double-precision floating point if the argument values are

single-precision floating point.

If the data type of the argument values is decimal, the precision of the result
is 31 and the scale is the same as the scale of the argument values. The result
can be null.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, duplicate values
are also eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the sum of the values in the set.

Example:
v Using the EMPLOYEE table, set the host variable JOB_BONUS

(decimal(9,2)) to the total bonus (BONUS) paid to clerks (JOB=’CLERK’).
SELECT SUM(BONUS)

INTO :JOB_BONUS
FROM EMPLOYEE
WHERE JOB = 'CLERK'

Results in JOB_BONUS being set to 2800 when using the sample table.

SUM

248 SQL Reference

VARIANCE

�� VARIANCE
VAR

(
ALL

DISTINCT
expression) ��

The schema is SYSIBM.

The VARIANCE function returns the variance of a set of numbers.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values
by the elimination of null values. If DISTINCT is specified, duplicate values
are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise,
the result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

Example:
v Using the EMPLOYEE table, set the host variable VARNCE (double

precision floating point) to the variance of the salaries for those employees
in department (WORKDEPT) ’A00’.

SELECT VARIANCE(SALARY)
INTO :VARNCE
FROM EMPLOYEE
WHERE WORKDEPT = 'A00'

Results in VARNCE being set to approximately 98763888.88 when using the
sample table.

VARIANCE

Chapter 4. Functions 249

Scalar Functions

A scalar function can be used wherever an expression can be used. However,
the restrictions that apply to the use of expressions and column functions also
apply when an expression or column function is used within a scalar function.
For example, the argument of a scalar function can be a column function only
if a column function is allowed in the context in which the scalar function is
used.

The restrictions on the use of column functions do not apply to scalar
functions because a scalar function is applied to a single value rather than a
set of values.

Example: The result of the following SELECT statement has as many rows as
there are employees in department D01:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BRTHDATE)
FROM EMPLOYEE
WHERE WORKDEPT = 'D01'

The scalar functions that follow may be qualified with the schema name (for
example, SYSIBM.CHAR(123)).

Scalar Functions

250 SQL Reference

ABS or ABSVAL

�� ABS
ABSVAL

(expression) ��

The schema is SYSFUN.

Returns the absolute value of the argument.

The argument can be of any built-in numeric data type. If it is of type
DECIMAL or REAL, it is converted to a double-precision floating-point
number for processing by the function.

The result of the function is:
v SMALLINT if the argument is SMALLINT
v INTEGER if the argument is INTEGER
v BIGINT if the argument is BIGINT
v DOUBLE if the argument is DOUBLE, DECIMAL or REAL 39.

The result can be null; if the argument is null, the result is the null value.

39. Also returns DOUBLE when the argument is the smallest value of BIGINT, −9 223 372 036 854 775 808.

ABS or ABSVAL

Chapter 4. Functions 251

ACOS

�� ACOS (expression) ��

The schema is SYSFUN.

Returns the arccosine of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

ACOS

252 SQL Reference

ASCII

�� ASCII (expression) ��

The schema is SYSFUN.

Returns the ASCII code value of the leftmost character of the argument as an
integer.

The argument can be of any built-in character string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB the maximum length is
1 048 576 bytes. LONG VARCHAR is converted to CLOB for processing by the
function.

The result of the function is always INTEGER.

The result can be null; if the argument is null, the result is the null value.

ASCII

Chapter 4. Functions 253

ASIN

�� ASIN (expression) ��

The schema is SYSFUN.

Returns the arcsine on the argument as an angle expressed in radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

ASIN

254 SQL Reference

ATAN

�� ATAN (expression) ��

The schema is SYSFUN.

Returns the arctangent of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

ATAN

Chapter 4. Functions 255

ATAN2

�� ATAN2 (expression , expression) ��

The schema is SYSFUN.

Returns the arctangent of x and y coordinates as an angle expressed in
radians. The x and y coordinates are specified by the first and second
arguments respectively.

The first and the second arguments can be of any built-in numeric data type.
Both are converted to a double-precision floating-point number for processing
by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if any argument is null, the result is the null value.

ATAN2

256 SQL Reference

BIGINT

�� BIGINT (numeric-expression
character-expression

) ��

The schema is SYSIBM.

The BIGINT function returns a 64 bit integer representation of a number or
character string in the form of an integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a big integer column or
variable. If the whole part of the argument is not within the range of
integers, an error occurs. The decimal part of the argument is truncated if
present.

character-expression
An expression that returns a character string value of length not greater
than the maximum length of a character constant. Leading and trailing
blanks are eliminated and the resulting string must conform to the rules
for forming an SQL integer constant (SQLSTATE 22018). The character
string cannot be a long string.

If the argument is a character-expression, the result is the same number that
would occur if the corresponding integer constant were assigned to a big
integer column or variable.

The result of the function is a big integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Examples:
v From ORDERS_HISTORY table, count the number of orders and return the

result as a big integer value.
SELECT BIGINT (COUNT_BIG(*))

FROM ORDERS_HISTORY

v Using the EMPLOYEE table, select the EMPNO column in big integer form
for further processing in the application.

SELECT BIGINT(EMPNO) FROM EMPLOYEE

BIGINT

Chapter 4. Functions 257

BLOB

�� BLOB (string-expression
, integer

) ��

The schema is SYSIBM.

The BLOB function returns a BLOB representation of a string of any type.

string-expression
A string-expression whose value can be a character string, graphic string, or
a binary string.

integer
An integer value specifying the length attribute of the resulting BLOB
data type. If integer is not specified, the length attribute of the result is the
same as the length of the input, except where the input is graphic. In this
case, the length attribute of the result is twice the length of the input.

The result of the function is a BLOB. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Given a table with a BLOB column named TOPOGRAPHIC_MAP and a

VARCHAR column named MAP_NAME, locate any maps that contain the
string ’Pellow Island’ and return a single binary string with the map name
concatenated in front of the actual map.

SELECT BLOB(MAP_NAME || ': ') || TOPOGRAPHIC_MAP
FROM ONTARIO_SERIES_4
WHERE TOPOGRAPIC_MAP LIKE BLOB('%Pellow Island%')

BLOB

258 SQL Reference

CEILING or CEIL

�� CEILING (expression)
CEIL

��

The schema is SYSFUN.

Returns the smallest integer value greater than or equal to the argument.

The argument can be of any built-in numeric type. If the argument is of type
DECIMAL or REAL, it is converted to a double-precision floating-point
number for processing by the function. If the argument is of type SMALLINT
or INTEGER, the argument value is returned.

The result of the function is:
v SMALLINT if the argument is SMALLINT
v INTEGER if the argument is INTEGER
v BIGINT if the argument is BIGINT
v DOUBLE if the argument is DECIMAL, REAL or DOUBLE. Decimal values

with more than 15 digits to the left of the decimal will not return the
desired integer value due to loss of precision in the conversion to DOUBLE.

The result can be null; if the argument is null, the result is the null value.

CEILING or CEIL

Chapter 4. Functions 259

CHAR
Datetime to Character:

�� CHAR (datetime-expression
, ISO

USA
EUR
JIS
LOCAL

) ��

Character to Character:

�� CHAR (character-expression
, integer

) ��

Integer to Character:

�� CHAR (integer-expression) ��

Decimal to Character:

�� CHAR (decimal-expression
, decimal-character

) ��

Floating-point to Character:

�� CHAR (floating-point-expression) ��

The schema is SYSIBM. However, the schema for CHAR(floating-point-
expression) is SYSFUN.

The CHAR function returns a character-string representation of a:
v Datetime value if the first argument is a date, time or timestamp
v Character string value if the first argument is any type of character string
v Integer number if the first argument is a SMALLINT, INTEGER or BIGINT
v Decimal number if the first argument is a decimal number
v Double-precision floating-point number if the first argument is a DOUBLE

or REAL.

CHAR

260 SQL Reference

The result of the function is a fixed-length character string. If the first
argument can be null, the result can be null. If the first argument is null, the
result is the null value.

Datetime to Character

datetime-expression
An expression that is one of the following three data types

date The result is the character string representation of the date
in the format specified by the second argument. The
length of the result is 10. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

time The result is the character string representation of the time
in the format specified by the second argument. The
length of the result is 8. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

timestamp
The second argument is not applicable and must not be
specified. SQLSTATE 42815 The result is the character
string representation of the timestamp. The length of the
result is 26.

The code page of the string is the code page of the database at the
application server.

Character to Character

character-expression
An expression that returns a value that is CHAR, VARCHAR,
LONG VARCHAR, or CLOB data type.

integer
the length attribute for the resulting fixed length character string.
The value must be between 0 and 254.

If the length of the character-expression is less than the length
attribute of the result, the result is padded with blanks up to the
length of the result. If the length of the character-expression is greater
than the length attribute of the result, truncation is performed. A
warning is returned (SQLSTATE 01004) unless the truncated characters
were all blanks and the character-expression was not a long string
(LONG VARCHAR or CLOB).

Integer to Character

CHAR

Chapter 4. Functions 261

integer-expression
An expression that returns a value that is an integer data type
(either SMALLINT, INTEGER or BIGINT).

The result is the character string representation of the argument in the
form of an SQL integer constant. The result consists of n characters
that are the significant digits that represent the value of the argument
with a preceding minus sign if the argument is negative. It is left
justified.
v If the first argument is a small integer:

The length of the result is 6. If the number of characters in the
result is less than 6, then the result is padded on the right with
blanks to length 6.

v If the first argument is a large integer:
The length of the result is 11. If the number of characters in the
result is less than 11, then the result is padded on the right with
blanks to length 11.

v If the first argument is a big integer:
The length of the result is 20. If the number of characters in the
result is less than 20, then the result is padded on the right with
blanks to length 20.

The code page of the string is the code page of the database at the
application server.

Decimal to Character

decimal-expression
An expression that returns a value that is a decimal data type. If a
different precision and scale is desired, the DECIMAL scalar
function can be used first to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit
the decimal digits in the result character string. The character
cannot be a digit, plus (’+’), minus (’-’) or blank. (SQLSTATE
42815). The default is the period (’.’) character

The result is the fixed-length character-string representation of the
argument. The result includes a decimal character and p digits, where
p is the precision of the decimal-expression with a preceding minus sign
if the argument is negative. The length of the result is 2+p, where p is
the precision of the decimal-expression. This means that a positive value
will always include one trailing blank.

CHAR

262 SQL Reference

The code page of the string is the code page of the database at the
application server.

Floating-point to Character

floating-point-expression
An expression that returns a value that is a floating-point data
type (DOUBLE or REAL).

The result is the fixed-length character-string representation of the
argument in the form of a floating-point constant. The length of the
result is 24. If the argument is negative, the first character of the result
is a minus sign. Otherwise, the first character is a digit. If the
argument value is zero, the result is 0E0. Otherwise, the result
includes the smallest number of characters that can represent the
value of the argument such that the mantissa consists of a single digit
other than zero followed by a period and a sequence of digits. If the
number of characters in the result is less than 24, then the result is
padded on the right with blanks to length 24.

The code page of the string is the code page of the database at the
application server.

Examples:
v Assume the column PRSTDATE has an internal value equivalent to

1988-12-25.
CHAR(PRSTDATE, USA)

Results in the value ‘12/25/1988’.
v Assume the column STARTING has an internal value equivalent to 17.12.30,

the host variable HOUR_DUR (decimal(6,0)) is a time duration with a value
of 050000. (that is, 5 hours).
CHAR(STARTING, USA)

Results in the value ’5:12 PM’.
CHAR(STARTING + :HOUR_DUR, USA)

Results in the value ’10:12 PM’.
v Assume the column RECEIVED (timestamp) has an internal value

equivalent to the combination of the PRSTDATE and STARTING columns.
CHAR(RECEIVED)

Results in the value ‘1988-12-25-17.12.30.000000’.

CHAR

Chapter 4. Functions 263

v Use the CHAR function to make the type fixed length character and reduce
the length of the displayed results to 10 characters for the LASTNAME
column (defined as VARCHAR(15)) of the EMPLOYEE table.

SELECT CHAR(LASTNAME,10) FROM EMPLOYEE

For rows having a LASTNAME with a length greater than 10 characters
(excluding trailing blanks), a warning that the value is truncated is
returned.

v Use the CHAR function to return the values for EDLEVEL (defined as
smallint) as a fixed length character string.

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value ’18 ’ (18
followed by four blanks).

v Assume that STAFF has a SALARY column defined as decimal with
precision of 9 and scale of 2. The current value is 18357.50 and it is to be
displayed with a comma as the decimal character (18357,50).

CHAR(SALARY, ',')

returns the value ’00018357,50 ’.
v Assume the same SALARY column subtracted from 20000.25 is to be

displayed with the default decimal character.
CHAR(20000.25 - SALARY)

returns the value ’-0001642.75’.
v Assume a host variable, SEASONS_TICKETS, has an integer data type and

a 10000 value.
CHAR(DECIMAL(:SEASONS_TICKETS,7,2))

Results in the character value ’10000.00 ’.
v Assume a host variable, DOUBLE_NUM has a double data type and a

value of -987.654321E-35.
CHAR(:DOUBLE_NUM)

Results in the character value of ’-9.87654321E-33 ’. Since the result
data type is CHAR(24), there are 9 trailing blanks in the result.

CHAR

264 SQL Reference

CHR

�� CHR (expression) ��

The schema is SYSFUN.

Returns the character that has the ASCII code value specified by the
argument.

The argument can be either INTEGER or SMALLINT. The value of the
argument should be between 0 and 255; otherwise, the return value is null.

The result of the function is CHAR(1). The result can be null; if the argument
is null, the result is the null value.

CHR

Chapter 4. Functions 265

CLOB

�� CLOB (character-string-expression
, integer

) ��

The schema is SYSIBM.

The CLOB function returns a CLOB representation of a character string type.

character-string-expression
An expression that returns a value that is a character string.

integer
An integer value specifying the length attribute of the resulting CLOB
data type. The value must be between 0 and 2 147 483 647. If integer is not
specified, the length of the result is the same as the length of the first
argument.

The result of the function is a CLOB. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

CLOB

266 SQL Reference

COALESCE

�� �
(1)

COALESCE (expression , expression) ��

Notes:

1 VALUE is a synonym for COALESCE.

The schema is SYSIBM.

COALESCE returns the first argument that is not null.

The arguments are evaluated in the order in which they are specified, and the
result of the function is the first argument that is not null. The result can be
null only if all the arguments can be null, and the result is null only if all the
arguments are null. The selected argument is converted, if necessary, to the
attributes of the result.

The arguments must be compatible. See “Rules for Result Data Types” on
page 107 for what data types are compatible and the attributes of the result.
They can be of either a built-in or user-defined data type. 40

Examples:
v When selecting all the values from all the rows in the DEPARTMENT table,

if the department manager (MGRNO) is missing (that is, null), then return a
value of ’ABSENT’.

SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, 'ABSENT'), ADMRDEPT
FROM DEPARTMENT

v When selecting the employee number (EMPNO) and salary (SALARY) from
all the rows in the EMPLOYEE table, if the salary is missing (that is, null),
then return a value of zero.

SELECT EMPNO, COALESCE(SALARY, 0)
FROM EMPLOYEE

40. This function may not be used as a source function when creating a user-defined function. Since it accepts any
compatible data types as arguments, it is not necessary to create additional signatures to support user-defined
distinct types.

COALESCE

Chapter 4. Functions 267

CONCAT

��
(1)

CONCAT (expression1 , expression2) ��

Notes:

1 || may be used as a synonym for CONCAT.

The schema is SYSIBM.

Returns the concatenation of two string arguments. The two arguments must
be compatible types.

The result of the function is a string. Its length is sum of the lengths of the
two arguments. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

See “With the Concatenation Operator” on page 158 for more information.

CONCAT

268 SQL Reference

COS

�� COS (expression) ��

The schema is SYSFUN.

Returns the cosine of the argument, where the argument is an angle expressed
in radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

COS

Chapter 4. Functions 269

COT

�� COT (expression) ��

The schema is SYSFUN.

Returns the cotangent of the argument, where the argument is an angle
expressed in radians.

The argument can be of any built-in numeric type. It is converted to a
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

COT

270 SQL Reference

DATE

�� DATE (expression) ��

The schema is SYSIBM.

The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or
equal to 3 652 059, a valid character string representation of a date or
timestamp, or a character string of length 7 that is neither a CLOB nor a
LONG VARCHAR.

If the argument is a character string of length 7, it must represent a valid date
in the form yyyynnn, where yyyy are digits denoting a year, and nnn are digits
between 001 and 366, denoting a day of that year.

The result of the function is a date. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, timestamp, or valid string representation of a date

or timestamp:
– The result is the date part of the value.

v If the argument is a number:
– The result is the date that is n-1 days after January 1, 0001, where n is

the integral part of the number.
v If the argument is a character string with a length of 7:

– The result is the date represented by the character string.

Examples:
v Assume that the column RECEIVED (timestamp) has an internal value

equivalent to ‘1988-12-25-17.12.30.000000’.
DATE(RECEIVED)

Results in an internal representation of ‘1988-12-25’.
v This example results in an internal representation of ‘1988-12-25’.

DATE('1988-12-25')

v This example results in an internal representation of ‘1988-12-25’.
DATE('25.12.1988')

v This example results in an internal representation of ‘0001-02-04’.

DATE

Chapter 4. Functions 271

DATE(35)

DATE

272 SQL Reference

DAY

�� DAY (expression) ��

The schema is SYSIBM.

The DAY function returns the day part of a value.

The argument must be a date, timestamp, date duration, timestamp duration,
or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, timestamp, or valid string representation of a date

or timestamp:
– The result is the day part of the value, which is an integer between 1

and 31.
v If the argument is a date duration or timestamp duration:

– The result is the day part of the value, which is an integer between −99
and 99. A nonzero result has the same sign as the argument.

Examples:
v Using the PROJECT table, set the host variable END_DAY (smallint) to the

day that the WELD LINE PLANNING project (PROJNAME) is scheduled to
stop (PRENDATE).

SELECT DAY(PRENDATE)
INTO :END_DAY
FROM PROJECT
WHERE PROJNAME = 'WELD LINE PLANNING'

Results in END_DAY being set to 15 when using the sample table.
v Assume that the column DATE1 (date) has an internal value equivalent to

2000-03-15 and the column DATE2 (date) has an internal value equivalent
to 1999-12-31.

DAY(DATE1 - DATE2)

Results in the value 15.

DAY

Chapter 4. Functions 273

DAYNAME

�� DAYNAME (expression) ��

The schema is SYSFUN.

Returns a mixed case character string containing the name of the day (e.g.
Friday) for the day portion of the argument based on the locale when the
database was started.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the
argument is null, the result is the null value.

DAYNAME

274 SQL Reference

DAYOFWEEK

�� DAYOFWEEK (expression) ��

The schema is SYSFUN.

Returns the day of the week in the argument as an integer value in the range
1-7, where 1 represents Sunday.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

DAYOFWEEK

Chapter 4. Functions 275

DAYOFWEEK_ISO

�� DAYOFWEEK_ISO (expression) ��

The schema is SYSFUN.

Returns the day of the week in the argument as an integer value in the range
1-7, where 1 represents Monday.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

DAYOFWEEK_ISO

276 SQL Reference

DAYOFYEAR

�� DAYOFYEAR (expression) ��

The schema is SYSFUN.

Returns the day of the year in the argument as an integer value in the range
1-366.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

DAYOFYEAR

Chapter 4. Functions 277

DAYS

�� DAYS (expression) ��

The schema is SYSIBM.

The DAYS function returns an integer representation of a date.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D,
where D is the date that would occur if the DATE function were applied to
the argument.

Examples:
v Using the PROJECT table, set the host variable EDUCATION_DAYS (int) to

the number of elapsed days (PRENDATE - PRSTDATE) estimated for the
project (PROJNO) ‘IF2000’.

SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)
INTO :EDUCATION_DAYS
FROM PROJECT
WHERE PROJNO = 'IF2000'

Results in EDUCATION_DAYS being set to 396 when using the sample
table.

v Using the PROJECT table, set the host variable TOTAL_DAYS (int) to the
sum of elapsed days (PRENDATE - PRSTDATE) estimated for all projects in
department (DEPTNO) ‘E21’.

SELECT SUM(DAYS(PRENDATE) − DAYS(PRSTDATE))
INTO :TOTAL_DAYS
FROM PROJECT
WHERE DEPTNO = 'E21'

Results in TOTAL_DAYS being set to 1584 when using the sample table.

DAYS

278 SQL Reference

DBCLOB

�� DBCLOB (graphic-expression
, integer

) ��

The schema is SYSIBM.

The DBCLOB function returns a DBCLOB representation of a graphic string
type.

graphic-expression
An expression that returns a value that is a graphic string.

integer
An integer value specifying the length attribute of the resulting DBCLOB
data type. The value must be between 0 and 1 073 741 823. If integer is not
specified, the length of the result is the same as the length of the first
argument.

The result of the function is a DBCLOB. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

DBCLOB

Chapter 4. Functions 279

DECIMAL
Numeric to Decimal:

�� DECIMAL
DEC

(numeric-expression �

�
, precision-integer

, scale-integer

) ��

Character to Decimal:

�� DECIMAL
DEC

(character-expression �

�
, precision-integer

, scale-integer
, decimal-character

) ��

The schema is SYSIBM.

The DECIMAL function returns a decimal representation of
v A number
v A character string representation of a decimal number
v A character string representation of a integer number.

The result of the function is a decimal number with precision of p and scale of
s, where p and s are the second and third arguments. If the first argument can
be null, the result can be null; if the first argument is null, the result is the
null value.

Numeric to Decimal

numeric-expression
An expression that returns a value of any numeric data type.

precision-integer
An integer constant with a value in the range of 1 to 31.

The default for the precision-integer depends on the data type of
the numeric-expression:
v 15 for floating-point and decimal
v 19 for big integer

DECIMAL

280 SQL Reference

v 11 for large integer
v 5 for small integer.

scale-integer
An integer constant in the range of 0 to the precision-integer value.
The default is zero.

The result is the same number that would occur if the first argument
were assigned to a decimal column or variable with a precision of p
and a scale of s, where p and s are the second and third arguments.
An error occurs if the number of significant decimal digits required to
represent the whole part of the number is greater than p-s.

Character to Decimal

character-expression
An expression that returns a value that is a character string with a
length not greater than the maximum length of a character
constant (4 000 bytes). It cannot have a CLOB or LONG
VARCHAR data type. Leading and trailing blanks are eliminated
from the string. The resulting substring must conform to the rules
for forming an SQL integer or decimal constant (SQLSTATE
22018).

The character-expression is converted to the database code page if
required to match the code page of the constant decimal-character.

precision-integer
An integer constant with a value in the range 1 to 31 that specifies
the precision of the result. If not specified, the default is 15.

scale-integer
An integer constant with a value in the range 0 to precision-integer
that specifies the scale of the result. If not specified, the default is
0.

decimal-character
Specifies the single byte character constant that is used to delimit
the decimal digits in character-expression from the whole part of the
number. The character cannot be a digit plus (’+’), minus (’-’) or
blank and can appear at most once in character-expression
(SQLSTATE 42815).

The result is a decimal number with precision p and scale s where p
and s are the second and third arguments. Digits are truncated from
the end if the number of digits right of the decimal character is
greater than the scale s. An error occurs if the number of significant
digits left of the decimal character (the whole part of the number) in
character-expression is greater than p-s (SQLSTATE 22003). The default

DECIMAL

Chapter 4. Functions 281

decimal character is not valid in the substring if the decimal-character
argument is specified (SQLSTATE 22018).

Examples:
v Use the DECIMAL function in order to force a DECIMAL data type (with a

precision of 5 and a scale of 2) to be returned in a select-list for the
EDLEVEL column (data type = SMALLINT) in the EMPLOYEE table. The
EMPNO column should also appear in the select list.

SELECT EMPNO, DECIMAL(EDLEVEL,5,2)
FROM EMPLOYEE

v Assume the host variable PERIOD is of type INTEGER. Then, in order to
use its value as a date duration it must be ″cast″ as decimal(8,0).

SELECTPRSTDATE + DECIMAL(:PERIOD,8)
FROM PROJECT

v Assume that updates to the SALARY column are input through a window
as a character string using comma as a decimal character (for example, the
user inputs 21400,50). Once validated by the application, it is assigned to
the host variable newsalary which is defined as CHAR(10).
UPDATE STAFF

SET SALARY = DECIMAL(:newsalary, 9, 2, ',')
WHERE ID = :empid;

The value of newsalary becomes 21400.50.
v Add the default decimal character (.) to a value.

DECIMAL('21400,50', 9, 2, '.')

This fails because a period (.) is specified as the decimal character but a
comma (,) appears in the first argument as a delimiter.

DECIMAL

282 SQL Reference

DEGREES

�� DEGREES (expression) ��

The schema is SYSFUN.

Returns the number of degrees converted from the argument expressed in
radians.

The argument can be of any built-in numeric type. It is converted to
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

DEGREES

Chapter 4. Functions 283

DEREF

�� DEREF (expression) ��

The schema is SYSIBM.

The DEREF function returns an instance of the target type of the argument.

The argument can be any value with a reference data type that has a defined
scope (SQLSTATE 428DT).

The static data type of the result is the target type of the argument. The
dynamic data type of the result is a subtype of the target type of the
argument. The result can be null. The result is the null value if expression is a
null value or if expression is a reference that has no matching OID in the target
table.

The result is an instance of the subtype of the target type of the reference. The
result is determined by finding the row of the target table or target view of
the reference that has an object identifier that matches the reference value. The
type of this row determines the dynamic type of the result. Since the type of
the result can be based on a row of a subtable or subview of the target table
or target view, the authorization ID of the statement must have SELECT
privilege on the target table and all of its subtables or the target view and all
of its subviews (SQLSTATE 42501).

Examples:

Assume that EMPLOYEE is a table of type EMP, and that its object identifier
column is named EMPID. Then the following query returns an object of type
EMP (or one of its subtypes), for each row of the EMPLOYEE table (and its
subtables). This query requires SELECT privilege on EMPLOYEE and all its
subtables.

SELECT DEREF(EMPID) FROM EMPLOYEE

For additional examples, see “TYPE_NAME” on page 378.

DEREF

284 SQL Reference

DIFFERENCE

�� DIFFERENCE (expression , expression) ��

The schema is SYSFUN.

Returns a value from 0 to 4 representing the difference between the sounds of
two strings based on applying the SOUNDEX function to the strings. A value
of 4 is the best possible sound match.

The arguments can be character strings that are either CHAR or VARCHAR
up to 4 000 bytes.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Example:
VALUES (DIFFERENCE('CONSTRAINT','CONSTANT'),SOUNDEX('CONSTRAINT'),

SOUNDEX('CONSTANT')),
(DIFFERENCE('CONSTRAINT','CONTRITE'),SOUNDEX('CONSTRAINT'),
SOUNDEX('CONTRITE'))

This example returns the following.
1 2 3
----------- ---- ----

4 C523 C523
2 C523 C536

In the first row, the words have the same result from SOUNDEX while in the
second row the words have only some similarity.

DIFFERENCE

Chapter 4. Functions 285

DIGITS

�� DIGITS (expression) ��

The schema is SYSIBM.

The DIGITS function returns a character-string representation of a number.

The argument must be an expression that returns a value of type SMALLINT,
INTEGER, BIGINT or DECIMAL.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a fixed-length character string representing the
absolute value of the argument without regard to its scale. The result does not
include a sign or a decimal character. Instead, it consists exclusively of digits,
including, if necessary, leading zeros to fill out the string. The length of the
string is:
v 5 if the argument is a small integer
v 10 if the argument is a large integer
v 19 if the argument is a big integer
v p if the argument is a decimal number with a precision of p.

Examples:
v Assume that a table called TABLEX contains an INTEGER column called

INTCOL containing 10-digit numbers. List all distinct four digit
combinations of the first four digits contained in column INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
FROM TABLEX

v Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of
its values is -6.28. Then, for this value:

DIGITS(COLUMNX)

returns the value '000628'.

The result is a string of length six (the precision of the column) with
leading zeros padding the string out to this length. Neither sign nor
decimal point appear in the result.

DIGITS

286 SQL Reference

DLCOMMENT

�� DLCOMMENT (datalink-expression) ��

The schema is SYSIBM.

The DLCOMMENT function returns the comment value, if it exists, from a
DATALINK value.

The argument must be an expression that results in a value with data type of
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Example:
v Prepare a statement to select the date, the description and the comment

from the link to the ARTICLES column from the HOCKEY_GOALS table.
The rows to be selected are those for goals scored by either of the Richard
brothers (Maurice or Henri).

stmtvar = "SELECT DATE_OF_GOAL, DESCRIPTION, DLCOMMENT(ARTICLES)
FROM HOCKEY_GOALS
WHERE BY_PLAYER = 'Maurice Richard'
OR BY_PLAYER = 'Henri Richard' ";

EXEC SQL PREPARE HOCKEY_STMT FROM :stmtvar;

v Given a DATALINK value that was inserted into column COLA of a row in
table TBLA using the scalar function:

DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','A comment')

then the following function operating on that value:
DLCOMMENT(COLA)

will return the value:
A comment

DLCOMMENT

Chapter 4. Functions 287

DLLINKTYPE

�� DLLINKTYPE (datalink-expression) ��

The schema is SYSIBM.

The DLLINKTYPE function returns the linktype value from a DATALINK
value.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(4). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','a comment')

then the following function operating on that value:
DLLINKTYPE(COLA)

will return the value:
URL

DLLINKTYPE

288 SQL Reference

DLURLCOMPLETE

�� DLURLCOMPLETE (datalink-expression) ��

The schema is SYSIBM.

The DLURLCOMPLETE function returns the data location attribute from a
DATALINK value with a link type of URL. When appropriate, the value
includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','a comment')

then the following function operating on that value:
DLURLCOMPLETE(COLA)

will return the value:
HTTP://DLFS.ALMADEN.IBM.COM/x/y/****************;a.b

(where **************** represents the access token)

DLURLCOMPLETE

Chapter 4. Functions 289

DLURLPATH

�� DLURLPATH (datalink-expression) ��

The schema is SYSIBM.

The DLURLPATH function returns the path and file name necessary to access
a file within a given server from a DATALINK value with a linktype of URL.
When appropriate, the value includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','a comment')

then the following function operating on that value:
DLURLPATH(COLA)

will return the value:
/x/y/****************;a.b

(where **************** represents the access token)

DLURLPATH

290 SQL Reference

DLURLPATHONLY

�� DLURLPATHONLY (datalink-expression) ��

The schema is SYSIBM.

The DLURLPATHONLY function returns the path and file name necessary to
access a file within a given server from a DATALINK value with a linktype of
URL. The value returned NEVER includes a file access token.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','a comment')

then the following function operating on that value:
DLURLPATHONLY(COLA)

will return the value:
/x/y/a.b

DLURLPATHONLY

Chapter 4. Functions 291

DLURLSCHEME

�� DLURLSCHEME (datalink-expression) ��

The schema is SYSIBM.

The DLURLSCHEME function returns the scheme from a DATALINK value
with a linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(20). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','a comment')

then the following function operating on that value:
DLURLSCHEME(COLA)

will return the value:
HTTP

DLURLSCHEME

292 SQL Reference

DLURLSERVER

�� DLURLSERVER (datalink-expression) ��

The schema is SYSIBM.

The DLURLSERVER function returns the file server from a DATALINK value
with a linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with data type
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a
zero length string.

Example:
v Given a DATALINK value that was inserted into column COLA of a row in

table TBLA using the scalar function:
DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','a comment')

then the following function operating on that value:
DLURLSERVER(COLA)

will return the value:
DLFS.ALMADEN.IBM.COM

DLURLSERVER

Chapter 4. Functions 293

DLVALUE

�� DLVALUE (data-location
, linktype-string

, comment-string

) ��

The schema is SYSIBM.

The DLVALUE function returns a DATALINK value. When the function is on
the right hand side of a SET clause in an UPDATE statement or is in a
VALUES clause in an INSERT statement, it usually also creates a link to a file.
However, if only a comment is specified (in which case the data-location is a
zero-length string), the DATALINK value is created with empty linkage
attributes so there is no file link.

data-location
If the link type is URL, then this is an expression that yields a varying
length character string containing a complete URL value.

linktype-string
An optional VARCHAR expression that specifies the link type of the
DATALINK value. The only valid value is ’URL’ (SQLSTATE 428D1).

comment-string
An optional VARCHAR(254) value that provides a comment or additional
location information.

The result of the function is a DATALINK value. If any argument of the
DLVALUE function can be null, the result can be null; If the data-location is
null, the result is the null value.

When defining a DATALINK value using this function, consider the
maximum length of the target of the value. For example, if a column is
defined as DATALINK(200), then the maximum length of the data-location plus
the comment is 200 bytes.

Example:
v Insert a row into the table. The URL values for the first two links are

contained in the variables named url_article and url_snapshot. The variable
named url_snapshot_comment contains a comment to accompany the
snapshot link. There is, as yet, no link for the movie, only a comment in the
variable named url_movie_comment.

EXEC SQL INSERT INTO HOCKEY_GOALS
VALUES('Maurice Richard',

'Montreal Canadien',
'?',
'Boston Bruins,

DLVALUE

294 SQL Reference

'1952-04-24',
'Winning goal in game 7 of Stanley Cup final',
DLVALUE(:url_article),
DLVALUE(:url_snapshot, 'URL', :url_snapshot_comment),
DLVALUE('', 'URL', :url_movie_comment));

DLVALUE

Chapter 4. Functions 295

DOUBLE
Numeric to Double:

�� DOUBLE (numeric-expression)
FLOAT
DOUBLE_PRECISION

��

Character String to Double:

�� DOUBLE (string-expression) ��

The schema is SYSIBM. However, the schema for DOUBLE(string-expression) is
SYSFUN.

The DOUBLE function returns a floating-point number corresponding to a:
v number if the argument is a numeric expression
v character string representation of a number if the argument is a string

expression.

Numeric to Double

numeric-expression
The argument is an expression that returns a value of any built-in
numeric data type.

The result of the function is a double-precision floating-point
number. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The result is the same number that would occur if the argument
were assigned to a double-precision floating-point column or
variable.

Character String to Double

string-expression
The argument can be of type CHAR or VARCHAR in the form of
a numeric constant. Leading and trailing blanks in argument are
ignored.

The result of the function is a double-precision floating-point
number. The result can be null; if the argument is null, the result
is the null value.

The result is the same number that would occur if the string was
considered a constant and assigned to a double-precision
floating-point column or variable.

DOUBLE

296 SQL Reference

Example:

Using the EMPLOYEE table, find the ratio of salary to commission for
employees whose commission is not zero. The columns involved (SALARY
and COMM) have DECIMAL data types. To eliminate the possibility of
out-of-range results, DOUBLE is applied to SALARY so that the division is
carried out in floating point:

SELECT EMPNO, DOUBLE(SALARY)/COMM
FROM EMPLOYEE
WHERE COMM > 0

DOUBLE

Chapter 4. Functions 297

EVENT_MON_STATE

�� EVENT_MON_STATE (string-expression) ��

The schema is SYSIBM.

The EVENT_MON_STATE function returns the current state of an event
monitor.

The argument is a string expression with a resulting type of CHAR or
VARCHAR and a value that is the name of an event monitor. If the named
event monitor does not exist in the SYSCAT.EVENTMONITORS catalog table,
SQLSTATE 42704 will be returned.

The result is an integer with one of the following values:
v

0 The event monitor is inactive.

1 The event monitor is active.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example:
v The following example selects all of the defined event monitors, and

indicates whether each is active or inactive:
SELECT EVMONNAME,

CASE
WHEN EVENT_MON_STATE(EVMONNAME) = 0 THEN 'Inactive'
WHEN EVENT_MON_STATE(EVMONNAME) = 1 THEN 'Active'

END
FROM SYSCAT.EVENTMONITORS

EVENT_MON_STATE

298 SQL Reference

EXP

�� EXP (expression) ��

The schema is SYSFUN.

Returns the exponential function of the argument.

The argument can be of any built-in numeric data type. It is converted to
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

EXP

Chapter 4. Functions 299

FLOAT

�� FLOAT (numeric-expression) ��

The schema is SYSIBM.

The FLOAT function returns a floating-point representation of a number.

FLOAT is a synonym for DOUBLE. See “DOUBLE” on page 296 for details.

FLOAT

300 SQL Reference

FLOOR

�� FLOOR (expression) ��

The schema is SYSFUN.

Returns the largest integer value less than or equal to the argument.

The argument can be of any built-in numeric type. If the argument is of type
DECIMAL or REAL, it is converted to a double-precision floating-point
number for processing by the function. If the argument is of type SMALLINT,
INTEGER or BIGINT the argument value is returned.

The result of the function is:
v SMALLINT if the argument is SMALLINT
v INTEGER if the argument is INTEGER
v BIGINT if the argument is BIGINT
v DOUBLE if the argument is DOUBLE, DECIMAL or REAL. Decimal values

with more than 15 digits to the left of the decimal will not return the
desired integer value due to loss of precision in the conversion to DOUBLE.

The result can be null; if the argument is null, the result is the null value.

FLOOR

Chapter 4. Functions 301

GENERATE_UNIQUE

�� GENERATE_UNIQUE () ��

The schema is SYSIBM.

The GENERATE_UNIQUE function returns a bit data character string 13 bytes
long (CHAR(13) FOR BIT DATA) that is unique compared to any other
execution of the same function.41 The function is defined as not-deterministic.

There are no arguments to this function (the empty parentheses must be
specified).

The result of the function is a unique value that includes the internal form of
the Universal Time, Coordinated (UTC) and the partition number where the
function was processed. The result cannot be null.

The result of this function can be used to provide unique values in a table.
Each successive value will be greater than the previous value, providing a
sequence that can be used within a table. The value includes the partition
number where the function executed so that a table partitioned across
multiple partitions also has unique values in some sequence. The sequence is
based on the time the function was executed.

This function differs from using the special register CURRENT TIMESTAMP
in that a unique value is generated for each row of a multiple row insert
statement or an insert statement with a fullselect.

The timestamp value that is part of the result of this function can be
determined using the TIMESTAMP scalar function with the result of
GENERATE_UNIQUE as an argument.

Examples:
v Create a table that includes a column that is unique for each row. Populate

this column using the GENERATE_UNIQUE function. Notice that the
UNIQUE_ID column has ″FOR BIT DATA″ specified to identify the column
as a bit data character string.
CREATE TABLE EMP_UPDATE
(UNIQUE_ID CHAR(13) FOR BIT DATA,
EMPNO CHAR(6),

41. The system clock is used to generate the internal Universal Time, Coordinated (UTC) timestamp along with the
partition number on which the function executes. Adjustments that move the actual system clock backward could
result in duplicate values.

GENERATE_UNIQUE

302 SQL Reference

TEXT VARCHAR(1000))

INSERT INTO EMP_UPDATE
VALUES (GENERATE_UNIQUE(), '000020', 'Update entry...'),

(GENERATE_UNIQUE(), '000050', 'Update entry...')

This table will have a unique identifier for each row provided that the
UNIQUE_ID column is always set using GENERATE_UNIQUE. This can be
done by introducing a trigger on the table.
CREATE TRIGGER EMP_UPDATE_UNIQUE
NO CASCADE BEFORE INSERT ON EMP_UPDATE
REFERENCING NEW AS NEW_UPD
FOR EACH ROW MODE DB2SQL
SET NEW_UPD.UNIQUE_ID = GENERATE_UNIQUE()

With this trigger defined, the previous INSERT statement could be issued
without the first column as follows.
INSERT INTO EMP_UPDATE (EMPNO, TEXT)

VALUES ('000020', 'Update entry 1...'),
('000050', 'Update entry 2...')

The timestamp (in UTC) for when a row was added to EMP_UPDATE can
be returned using:

SELECT TIMESTAMP (UNIQUE_ID), EMPNO, TEXT FROM EMP_UPDATE

Therefore, there is no need to have a timestamp column in the table to
record when a row is inserted.

GENERATE_UNIQUE

Chapter 4. Functions 303

GRAPHIC

�� GRAPHIC (graphic-expression
, integer

) ��

The schema is SYSIBM.

The GRAPHIC function returns a GRAPHIC representation of a graphic string
type.

graphic-expression
An expression that returns a value that is a graphic string.

integer
An integer value specifying the length attribute of the resulting GRAPHIC
data type. The value must be between 1 and 127. If integer is not specified,
the length of the result is the same as the length of the first argument.

The result of the function is a GRAPHIC. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

GRAPHIC

304 SQL Reference

HEX

�� HEX (expression) ��

The schema is SYSIBM.

The HEX function returns a hexadecimal representation of a value as a
character string.

The argument can be an expression that is a value of any built-in data type
with a maximum length of 16 336 bytes.

The result of the function is a character string. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The code page is the database code page.

The result is a string of hexadecimal digits. The first two represent the first
byte of the argument, the next two represent the second byte of the argument,
and so forth. If the argument is a datetime value or a numeric value the result
is the hexadecimal representation of the internal form of the argument. The
hexadecimal representation that is returned may be different depending on
the application server where the function is executed. Cases where differences
would be evident include:
v Character string arguments when the HEX function is performed on an

ASCII client with an EBCDIC server or on an EBCDIC client with an ASCII
server.

v Numeric arguments (in some cases) when the HEX function is performed
where client and server systems have different byte orderings for numeric
values.

The type and length of the result vary based on the type and length of
character string arguments.
v Character string

– Fixed length not greater than 127
- Result is a character string of fixed length twice the defined length of

the argument.
– Fixed length greater than 127

- Result is a character string of varying length twice the defined length
of the argument.

– Varying length

HEX

Chapter 4. Functions 305

- Result is a character string of varying length with maximum length
twice the defined maximum length of the argument.

v Graphic string
– Fixed length not greater than 63

- Result is a character string of fixed length four times the defined
length of the argument.

v Fixed length greater than 63
– Result is a character string of varying length four times the defined

length of the argument.
v Varying length

– Result is a character string of varying length with maximum length four
times the defined maximum length of the argument.

Examples:

Assume the use of a DB2 for AIX application server for the following
examples.
v Using the DEPARTMENT table set the host variable HEX_MGRNO

(char(12)) to the hexadecimal representation of the manager number
(MGRNO) for the ‘PLANNING’ department (DEPTNAME).

SELECT HEX(MGRNO)
INTO :HEX_MGRNO
FROM DEPARTMENT
WHERE DEPTNAME = 'PLANNING'

HEX_MGRNO will be set to ’303030303230’ when using the sample table
(character value is ’000020’).

v Suppose COL_1 is a column with a data type of char(1) and a value of 'B'.
The hexadecimal representation of the letter 'B' is X'42'. HEX(COL_1)
returns a two-character string '42'.

v Suppose COL_3 is a column with a data type of decimal(6,2) and a value of
40.1. An eight-character string '0004010C' is the result of applying the HEX
function to the internal representation of the decimal value, 40.1.

HEX

306 SQL Reference

HOUR

�� HOUR (expression) ��

The schema is SYSIBM.

The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, time duration, timestamp duration
or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, timestamp or valid string representation of a time

or timestamp:
– The result is the hour part of the value, which is an integer between 0

and 24.
v If the argument is a time duration or timestamp duration:

– The result is the hour part of the value, which is an integer between −99
and 99. A nonzero result has the same sign as the argument.

Example:

Using the CL_SCHED sample table, select all the classes that start in the
afternoon.

SELECT * FROM CL_SCHED
WHERE HOUR(STARTING) BETWEEN 12 AND 17

HOUR

Chapter 4. Functions 307

INSERT

�� INSERT (expression1 , expression2 , expression3 , expression4) ��

The schema is SYSFUN.

Returns a string where expression3 bytes have been deleted from expression1
beginning at expression2 and where expression4 has been inserted into
expression1 beginning at expression2. If the length of the result string exceeds
the maximum for the return type, an error occurs (SQLSTATE 38552).

The first argument is a character string or a binary string type. The second
and third arguments must be a numeric value with a data type of SMALLINT
or INTEGER. If the first argument is a character string, then the fourth
argument must also be a character string. If the first argument is a binary
string, then the fourth argument must be a binary string. For a VARCHAR the
maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. For the first and fourth arguments, CHAR
is converted to VARCHAR and LONG VARCHAR to CLOB(1M), for second
and third arguments SMALLINT is converted to INTEGER for processing by
the function.

The result is based on the argument types as follows:
v VARCHAR(4000) if both the first and fourth arguments are VARCHAR (not

exceeding 4 000 bytes) or CHAR
v CLOB(1M) if either the first or fourth argument is CLOB or LONG

VARCHAR
v BLOB(1M) if both first and fourth arguments are BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:
v Delete one character from the word ’DINING’ and insert ’VID’, both

beginning at the third character.
VALUES CHAR(INSERT('DINING', 3, 1, 'VID'), 10)

This example returns the following:
1

DIVIDING

As mentioned, the output of the INSERT function is VARCHAR(4000). For
the above example the function CHAR has been used to limit the output of

INSERT

308 SQL Reference

INSERT to 10 bytes. The starting location of a particular string can be found
using LOCATE. Refer to “LOCATE” on page 318 for more information.

INSERT

Chapter 4. Functions 309

INTEGER

�� INTEGER
INT

(numeric-expression
character-expression

) ��

The schema is SYSIBM.

The INTEGER function returns an integer representation of a number or
character string in the form of an integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a large integer column or
variable. If the whole part of the argument is not within the range of
integers, an error occurs. The decimal part of the argument is truncated if
present.

character-expression
An expression that returns a character string value of length not greater
than the maximum length of a character constant. Leading and trailing
blanks are eliminated and the resulting string must conform to the rules
for forming an SQL integer constant (SQLSTATE 22018). The character
string cannot be a long string.

If the argument is a character-expression, the result is the same number that
would occur if the corresponding integer constant were assigned to a
large integer column or variable.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Examples:
v Using the EMPLOYEE table, select a list containing salary (SALARY)

divided by education level (EDLEVEL). Truncate any decimal in the
calculation. The list should also contain the values used in the calculation
and employee number (EMPNO). The list should be in descending order of
the calculated value.

SELECT INTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE
ORDER BY 1 DESC

v Using the EMPLOYEE table, select the EMPNO column in integer form for
further processing in the application.

SELECT INTEGER(EMPNO) FROM EMPLOYEE

INTEGER

310 SQL Reference

JULIAN_DAY

�� JULIAN_DAY (expression) ��

The schema is SYSFUN.

Returns an integer value representing the number of days from January 1,4712
B.C. (the start of Julian date calendar) to the date value specified in the
argument.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

JULIAN_DAY

Chapter 4. Functions 311

LCASE or LOWER

�� LCASE (string-expression)
LOWER

��

The schema is SYSIBM. 42

The LCASE or LOWER function returns a string in which all the SBCS
characters have been converted to lowercase characters (that is, the characters
A-Z will be translated to the characters a-z, and characters with diacritical
marks will be translated to their lower case equivalents if they exist. For
example, in code page 850, É maps to é). Since not all characters are
translated, LCASE(UCASE(string-expression)) does not necessarily return the
same result as LCASE(string-expression).

The argument must be an expression whose value is a CHAR or VARCHAR
data type.

The result of the function has the same data type and length attribute of the
argument. If the argument can be null, the result can be null; if the argument
is null, the result is the null value.

Example: Ensure that the characters in the value of column JOB in the
EMPLOYEE table are returned in lowercase characters.
SELECT LCASE(JOB)

FROM EMPLOYEE WHERE EMPNO = ’000020’;

The result is the value ’manager’.

42. The SYSFUN version of this function continues to be available with support for LONG VARCHAR and CLOB
arguments. See “LCASE (SYSFUN schema)” on page 313 for a description.

LCASE or LOWER

312 SQL Reference

LCASE (SYSFUN schema)

�� LCASE (expression) ��

The schema is SYSFUN.

Returns a string in which all the characters A-Z have been converted to the
characters a-z (characters with diacritical marks are not converted). Note that
LCASE(UCASE(string)) will therefore not necessarily return the same result as
LCASE(string).

The argument can be of any built-in character string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB the maximum length is
1 048 576 bytes.

The result of the function is:
v VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)

or CHAR
v CLOB(1M) if the argument is CLOB or LONG VARCHAR

The result can be null; if the argument is null, the result is the null value.

LCASE (SYSFUN schema)

Chapter 4. Functions 313

LEFT

�� LEFT (expression1 , expression2) ��

The schema is SYSFUN.

Returns a string consisting of the leftmost expression2 bytes in expression1. The
expression1 value is effectively padded on the right with the necessary number
of blank characters so that the specified substring of expression1 always exists.

The first argument is a character string or binary string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. The second argument must be of
INTEGER or SMALLINT datatype.

The result of the function is:
v VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)

or CHAR
v CLOB(1M) if the argument is CLOB or LONG VARCHAR
v BLOB(1M) if the argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

LEFT

314 SQL Reference

LENGTH

�� LENGTH (expression) ��

The schema is SYSIBM.

The LENGTH function returns the length of a value.

The argument can be an expression that returns a value of any built-in data
type.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null
indicator byte of column arguments that allow null values. The length of
strings includes blanks but does not include the length control field of
varying-length strings. The length of a varying-length string is the actual
length, not the maximum length.

The length of a graphic string is the number of DBCS characters. The length
of all other values is the number of bytes used to represent the value:
v 2 for small integer
v 4 for large integer
v (p/2)+1 for decimal numbers with precision p

v The length of the string for binary strings
v The length of the string for character strings
v 4 for single-precision floating-point
v 8 for double-precision floating-point
v 4 for date
v 3 for time
v 10 for timestamp

Examples:
v Assume the host variable ADDRESS is a varying length character string

with a value of '895 Don Mills Road'.
LENGTH(:ADDRESS)

Returns the value 18.
v Assume that START_DATE is a column of type DATE.

LENGTH(START_DATE)

LENGTH

Chapter 4. Functions 315

Returns the value 4.
v This example returns the value 10.

LENGTH(CHAR(START_DATE, EUR))

LENGTH

316 SQL Reference

LN

�� LN (expression) ��

The schema is SYSFUN.

Returns the natural logarithm of the argument (same as LOG).

The argument can be of any built-in numeric data type. It is converted to
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

LN

Chapter 4. Functions 317

LOCATE

�� LOCATE (expression1 , expression2)
, expression3

��

The schema is SYSFUN.

Returns the starting position of the first occurrence of expression1 within
expression2. If the optional expression3 is specified, it indicates the character
position in expression2 at which the search is to begin. If expression1 is not
found within expression2, the value 0 is returned.

If the first argument is a character string, then the second argument must be a
character string. For a VARCHAR the maximum length is 4 000 bytes and for
a CLOB the maximum length is 1 048 576 bytes. If the first argument is a
binary string, then the second argument must be a binary string with a
maximum length of 1 048 576 bytes. The third argument must be is INTEGER
or SMALLINT.

The result of the function is INTEGER. The result can be null; if any argument
is null, the result is the null value.

Example:
v Find the location of the letter ’N’ (first occurrence) in the word ’DINING’.

VALUES LOCATE ('N', 'DINING')

This example returns the following:
1

3

LOCATE

318 SQL Reference

LOG

�� LOG (expression) ��

The schema is SYSFUN.

Returns the natural logarithm of the argument (same as LN).

The argument can be of any built-in numeric data type. It is converted to
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

LOG

Chapter 4. Functions 319

LOG10

�� LOG10 (expression) ��

The schema is SYSFUN.

Returns the base 10 logarithm of the argument.

The argument can be of any built-in numeric type. It is converted to
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

LOG10

320 SQL Reference

LONG_VARCHAR

�� LONG_VARCHAR (character-string-expression) ��

The schema is SYSIBM.

The LONG_VARCHAR function returns a LONG VARCHAR representation of
a character string data type.

character-string-expression
An expression that returns a value that is a character string with a
maximum length of 32 700 bytes.

The result of the function is a LONG VARCHAR. If the argument can be null,
the result can be null; if the argument is null, the result is the null value.

LONG_VARCHAR

Chapter 4. Functions 321

LONG_VARGRAPHIC

�� LONG_VARGRAPHIC (graphic-expression) ��

The schema is SYSIBM.

The LONG_VARGRAPHIC function returns a LONG VARGRAPHIC
representation of a double-byte character string.

graphic-expression
An expression that returns a value that is a graphic string with a maximum
length of 16 350 double byte characters.

The result of the function is a LONG VARGRAPHIC. If the argument can be
null, the result can be null; if the argument is null, the result is the null value.

LONG_VARGRAPHIC

322 SQL Reference

LTRIM

�� LTRIM (string-expression) ��

The schema is SYSIBM. 43

The LTRIM function removes blanks from the beginning of string-expression.

The argument can be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data
type.
v If the argument is a graphic string in a DBCS or EUC database, then the

leading double byte blanks are removed.
v If the argument is a graphic string in a Unicode database, then the leading

UCS-2 blanks are removed.
v Otherwise, the leading single byte blanks are removed.

The result data type of the function is:
v VARCHAR if the data type of string-expression is VARCHAR or CHAR
v VARGRAPHIC if the data type of string-expression is VARGRAPHIC or

GRAPHIC

The length parameter of the returned type is the same as the length parameter
of the argument data type.

The actual length of the result for character strings is the length of
string-expression minus the number of bytes removed for blank characters. The
actual length of the result for graphic strings is the length (in number of
double byte characters) of string-expression minus the number of double byte
blank characters removed. If all of the characters are removed, the result is an
empty, varying-length string (length is zero).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example: Assume that host variable HELLO is defined as CHAR(9) and has a
value of ’ Hello’.
VALUES LTRIM(:HELLO)

The result is ’Hello’.

43. The SYSFUN version of this function continues to be available with support for LONG VARCHAR and CLOB
arguments. See “LTRIM (SYSFUN schema)” on page 324 for a description.

LTRIM

Chapter 4. Functions 323

LTRIM (SYSFUN schema)

�� LTRIM (expression) ��

The schema is SYSFUN.

Returns the characters of the argument with leading blanks removed.

The argument can be of any built-in character string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB the maximum length is
1 048 576 bytes.

The result of the function is:
v VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)

or CHAR
v CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null value.

LTRIM (SYSFUN schema)

324 SQL Reference

MICROSECOND

�� MICROSECOND (expression) ��

The schema is SYSIBM.

The MICROSECOND function returns the microsecond part of a value.

The argument must be a timestamp, timestamp duration or a valid character
string representation of a timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a timestamp or a valid string representation of a

timestamp:
– The integer ranges from 0 through 999 999.

v If the argument is a duration:
– The result reflects the microsecond part of the value which is an integer

between −999 999 through 999 999. A nonzero result has the same sign as
the argument.

Example:
v Assume a table TABLEA contains two columns, TS1 and TS2, of type

TIMESTAMP. Select all rows in which the microseconds portion of TS1 is
not zero and the seconds portion of TS1 and TS2 are identical.

SELECT * FROM TABLEA
WHERE MICROSECOND(TS1) <> 0 AND
SECOND(TS1) = SECOND(TS2)

MICROSECOND

Chapter 4. Functions 325

MIDNIGHT_SECONDS

�� MIDNIGHT_SECONDS (expression) ��

The schema is SYSFUN.

Returns an integer value in the range 0 to 86 400 representing the number of
seconds between midnight and the time value specified in the argument.

The argument must be a time, timestamp, or a valid character string
representation of a time or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

Example:
v Find the number of seconds between midnight and 00:10:10, and midnight

and 13:10:10.
VALUES (MIDNIGHT_SECONDS('00:10:10'), MIDNIGHT_SECONDS('13:10:10'))

This example returns the following:
1 2
----------- -----------

610 47410

Since a minute is 60 seconds, there are 610 seconds between midnight and
the specified time. The same follows for the second example. There are 3600
seconds in an hour, and 60 seconds in a minute, resulting in 47410 seconds
between the specified time and midnight.

v Find the number of seconds between midnight and 24:00:00, and midnight
and 00:00:00.
VALUES (MIDNIGHT_SECONDS('24:00:00'), MIDNIGHT_SECONDS('00:00:00'))

This example returns the following:
1 2
----------- -----------

86400 0

Note that these two values represent the same point in time, but return
different MIDNIGHT_SECONDS values.

MIDNIGHT_SECONDS

326 SQL Reference

MINUTE

�� MINUTE (expression) ��

The schema is SYSIBM.

The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, time duration, timestamp duration
or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, timestamp or valid string representation of a time

or timestamp:
– The result is the minute part of the value, which is an integer between 0

and 59.
v If the argument is a time duration or timestamp duration:

– The result is the minute part of the value, which is an integer between
−99 and 99. A nonzero result has the same sign as the argument.

Example:
v Using the CL_SCHED sample table, select all classes with a duration less

than 50 minutes.
SELECT * FROM CL_SCHED

WHERE HOUR(ENDING - STARTING) = 0 AND
MINUTE(ENDING - STARTING) < 50

MINUTE

Chapter 4. Functions 327

MOD

�� MOD (expression , expression) ��

The schema is SYSFUN.

Returns the remainder of the first argument divided by the second argument.
The result is negative only if first argument is negative.

The result of the function is:
v SMALLINT if both arguments are SMALLINT
v INTEGER if one argument is INTEGER and the other is INTEGER or

SMALLINT
v BIGINT if one argument is BIGINT and the other argument is BIGINT,

INTEGER or SMALLINT.

The result can be null; if any argument is null, the result is the null value.

MOD

328 SQL Reference

MONTH

�� MONTH (expression) ��

The schema is SYSIBM.

The MONTH function returns the month part of a value.

The argument must be a date, timestamp, date duration, timestamp duration
or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, timestamp, or a valid string representation of a

date or timestamp:
– The result is the month part of the value, which is an integer between 1

and 12.
v If the argument is a date duration or timestamp duration:

– The result is the month part of the value, which is an integer between
−99 and 99. A nonzero result has the same sign as the argument.

Example:
v Select all rows from the EMPLOYEE table for people who were born

(BIRTHDATE) in DECEMBER.
SELECT * FROM EMPLOYEE

WHERE MONTH(BIRTHDATE) = 12

MONTH

Chapter 4. Functions 329

MONTHNAME

�� MONTHNAME (expression) ��

The schema is SYSFUN.

Returns a mixed case character string containing the name of month (e.g.
January) for the month portion of the argument, based on the locale when the
database was started.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the
argument is null, the result is the null value.

MONTHNAME

330 SQL Reference

NODENUMBER

�� NODENUMBER (column-name) ��

The schema is SYSIBM.

The NODENUMBER function returns the partition number of the row. For
example, if used in a SELECT clause, it returns the partition number for each
row of the table that was used to form the result of the SELECT statement.

The partition number returned on transition variables and tables is derived
from the current transition values of the partitioning key columns. For
example, in a before insert trigger, the function will return the projected
partition number given the current values of the new transition variables.
However, the values of the partitioning key columns may be modified by a
subsequent before insert trigger. Thus, the final partition number of the row
when it is inserted into the database may differ from the projected value.

The argument must be the qualified or unqualified name of a column of a
table. The column can have any data type. 44 If column-name references a
column of a view the expression in the view for the column must reference a
column of the underlying base table and the view must be deletable. A nested
or common table expression follows the same rules as a view. See “Notes” on
page 832 for the definition of a deletable view.

The specific row (and table) for which the partition number is returned by the
NODENUMBER function is determined from the context of the SQL statement
that uses the function.

The data type of the result is INTEGER and is never null. Since row-level
information is returned, the results are the same, regardless of which column
is specified for the table. If there is no db2nodes.cfg file, the result is 0.

The NODENUMBER function cannot be used on replicated tables, within
check constraints, or in the definition of generated columns (SQLSTATE
42881).

Examples:

44. This function may not be used as a source function when creating a user-defined function. Since it accepts any
data types as an argument, it is not necessary to create additional signatures to support user-defined distinct
types.

NODENUMBER

Chapter 4. Functions 331

v Count the number of rows where the row for an EMPLOYEE is on a
different partition from the employee’s department description in
DEPARTMENT.

SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPTNO=E.WORKDEPT
AND NODENUMBER(E.LASTNAME) <> NODENUMBER(D.DEPTNO)

v Join the EMPLOYEE and DEPARTMENT tables where the rows of the two
tables are on the same partition.

SELECT * FROM DEPARTMENT D, EMPLOYEE E
WHERE NODENUMBER(E.LASTNAME) = NODENUMBER(D.DEPTNO)

v Log the employee number and the projected partition number of the new
row into a table called EMPINSERTLOG1 for any insertion of employees by
creating a before trigger on the table EMPLOYEE.
CREATE TRIGGER EMPINSLOGTRIG1
BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AW NEWTABLE
FOR EACH MODE ROW MODE DB2SQL
INSERT INTO EMPINSERTLOG1
VALUES(NEWTABLE.EMPNO, NODENUMBER(NEWTABLE.EMPNO))

NODENUMBER

332 SQL Reference

NULLIF

�� NULLIF (expression , expression) ��

The schema is SYSIBM.

The NULLIF function returns a null value if the arguments are equal,
otherwise it returns the value of the first argument.

The arguments must be comparable (see “Assignments and Comparisons” on
page 94). They can be of either a built-in (other than a long string or
DATALINK) or distinct data type (other than based on a long string or
DATALINK). 45 The attributes of the result are the attributes of the first
argument.

The result of using NULLIF(e1,e2) is the same as using the expression
CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments
is NULL), CASE expressions consider this not true. Therefore, in this situation,
NULLIF returns the value of the first argument.

Example:
v Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data

types with the values 4500.00, 500.00, and 5000.00 respectively:
NULLIF (:PROFIT + :CASH , :LOSSES)

Returns a null value.

45. This function may not be used as a source function when creating a user-defined function. Since it accepts any
compatible data types as arguments, it is not necessary to create additional signatures to support user-defined
distinct types.

NULLIF

Chapter 4. Functions 333

PARTITION

�� PARTITION (column-name) ��

The schema is SYSIBM.

The PARTITION function returns the partitioning map index of the row
obtained by applying the partitioning function on the partitioning key value
of the row. For example, if used in a SELECT clause, it returns the partitioning
map index for each row of the table that was used to form the result of the
SELECT statement.

The partitioning map index returned on transition variables and tables is
derived from the current transition values of the partitioning key columns.
For example, in a before insert trigger, the function will return the projected
partitioning map index given the current values of the new transition
variables. However, the values of the partitioning key columns may be
modified by a subsequent before insert trigger. Thus, the final partitioning
map index of the row when it is inserted into the database may differ from
the projected value.

The argument must be the qualified or unqualified name of a column of a
table. The column can have any data type. 46 If column-name references a
column of a view the expression in the view for the column must reference a
column of the underlying base table and the view must be deletable. A nested
or common table expression follows the same rules as a view. See “Notes” on
page 832 for the definition of a deletable view.

The specific row (and table) for which the partitioning map index is returned
by the PARTITION function is determined from the context of the SQL
statement that uses the function.

The data type of the result is INTEGER in the range 0 to 4095. For a table
with no partitioning key, the result is always 0. A null value is never returned.
Since row-level information is returned, the results are the same, regardless of
which column is specified for the table.

The PARTITION function cannot be used on replicated tables, within check
constraints, or in the definition of generated columns (SQLSTATE 42881).

46. This function may not be used as a source function when creating a user-defined function. Since it accepts any
data type as an arguments, it is not necessary to create additional signatures to support user-defined distinct
types.

PARTITION

334 SQL Reference

Example:
v List the employee numbers (EMPNO) from the EMPLOYEE table for all

rows with a partitioning map index of 100.
SELECT EMPNO FROM EMPLOYEE

WHERE PARTITION(PHONENO) = 100

v Log the employee number and the projected partitioning map index of the
new row into a table called EMPINSERTLOG2 for any insertion of
employees by creating a before trigger on the table EMPLOYEE.
CREATE TRIGGER EMPINSLOGTRIG2
BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AW NEWTABLE
FOR EACH MODE ROW MODE DB2SQL
INSERT INTO EMPINSERTLOG2

VALUES(NEWTABLE.EMPNO, PARTITION(NEWTABLE.EMPNO))

PARTITION

Chapter 4. Functions 335

POSSTR

�� POSSTR (source-string , search-string) ��

The schema is SYSIBM.

The POSSTR function returns the starting position of the first occurrence of
one string (called the search-string) within another string (called the
source-string). Numbers for the search-string position start at 1 (not 0).

The result of the function is a large integer. If either of the arguments can be
null, the result can be null; if either of the arguments is null, the result is the
null value.

source-string
An expression that specifies the source string in which the search is to
take place.

The expression can be specified by any one of:
v a constant
v a special register
v a host variable (including a locator variable or a file reference variable)
v a scalar function
v a large object locator
v a column name
v an expression concatenating any of the above

search-string
An expression that specifies the string that is to be searched for.

The expression can be specified by any one of:
v a constant
v a special register
v a host variable
v a scalar function whose operands are any of the above
v an expression concatenating any of the above

with the restrictions that:
v No element in the expression can be of type LONG VARCHAR, CLOB,

LONG VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB
file reference variable.

v The actual length of search-string cannot be more than 4 000 bytes.

POSSTR

336 SQL Reference

Note that these rules are the same as those for the pattern-expression
described in “LIKE Predicate” on page 197.

Both search-string and source-string have zero or more contiguous positions. If
the strings are character or binary strings, a position is a byte. If the strings
are graphic strings, a position is a graphic (DBCS) character.

The POSSTR function accepts mixed data strings. However, POSSTR operates
on a strict byte-count basis, oblivious to changes between single and
multi-byte characters.

The following rules apply:
v The data types of source-string and search-string must be compatible,

otherwise an error is raised (SQLSTATE 42884).
– If source-string is a character string, then search-string must be a character

string, but not a CLOB or LONG VARCHAR, with an actual length of
32 672 bytes or less.

– If source-string is a graphic string, then search-string must be a graphic
string, but not a DBCLOB or LONG VARGRAPHIC, with an actual
length of 16 336 double-byte characters or less.

– If source-string is a binary string, then search-string must be a binary
string with an actual length of 32 672 bytes or less.

v If search-string has a length of zero, the result returned by the function is 1.
v Otherwise:

– If source-string has a length of zero, the result returned by the function is
zero.

– Otherwise:
- If the value of search-string is equal to an identical length substring of

contiguous positions from the value of source-string, then the result
returned by the function is the starting position of the first such
substring within the source-string value.

- Otherwise, the result returned by the function is 0.

Example
v Select RECEIVED and SUBJECT columns as well as the starting position of

the words ’GOOD BEER’ within the NOTE_TEXT column for all entries in
the IN_TRAY table that contain these words.
SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, 'GOOD BEER')
FROM IN_TRAY
WHERE POSSTR(NOTE_TEXT, 'GOOD BEER') <> 0

POSSTR

Chapter 4. Functions 337

POWER

�� POWER (expression1 , expression2) ��

The schema is SYSFUN.

Returns the value of expression1 to the power of expression2.

The arguments can be of any built-in numeric data type. DECIMAL and
REAL arguments are converted to double-precision floating-point number.

The result of the function is:
v INTEGER if both arguments are INTEGER or SMALLINT
v BIGINT if one argument is BIGINT and the other argument is BIGINT,

INTEGER or SMALLINT
v DOUBLE otherwise.

The result can be null; if any argument is null, the result is the null value.

POWER

338 SQL Reference

QUARTER

�� QUARTER (expression) ��

The schema is SYSFUN.

Returns an integer value in the range 1 to 4 representing the quarter of the
year for the date specified in the argument.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

QUARTER

Chapter 4. Functions 339

RADIANS

�� RADIANS (expression) ��

The schema is SYSFUN.

Returns the number of radians converted from argument which is expressed
in degrees.

The argument can be of any built-in numeric data types. It is converted to
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

RADIANS

340 SQL Reference

RAISE_ERROR

�� RAISE_ERROR (sqlstate , diagnostic-string) ��

The schema is SYSIBM.

The RAISE_ERROR function causes the statement that includes the function to
return an error with the specified SQLSTATE, SQLCODE -438 and
diagnostic-string. The RAISE_ERROR function always returns NULL with an
undefined data type.

sqlstate
A character string containing exactly 5 characters. It must be of type
CHAR defined with a length of 5 or type VARCHAR defined with a
length of 5 or greater. The sqlstate value must follow the rules for
application-defined SQLSTATEs as follows:
v Each character must be from the set of digits (’0’ through ’9’) or

non-accented upper case letters (’A’ through ’Z’)
v The SQLSTATE class (first two characters) cannot be ’00’, ’01’ or ’02’

since these are not error classes.
v If the SQLSTATE class (first two characters) starts with the character ’0’

through ’6’ or ’A’ through ’H’, then the subclass (last three characters)
must start with a letter in the range ’I’ through ’Z’

v If the SQLSTATE class (first two characters) starts with the character ’7’,
’8’, ’9’ or ’I’ though ’Z’, then the subclass (last three characters) can be
any of ’0’ through ’9’ or ’A’ through ’Z’.

If the SQLSTATE does not conform to these rules an error occurs
(SQLSTATE 428B3).

diagnostic-string
An expression of type CHAR or VARCHAR that returns a character string
of up to 70 bytes that describes the error condition. If the string is longer
than 70 bytes, it will be truncated.

In order to use this function in a context where Rules for Result Data Types
do not apply (such as alone in a select list), a cast specification must be used
to give the null returned value a data type. A CASE expression is where the
RAISE_ERROR function will be most useful.

Example:

List employee numbers and education levels as Post Graduate, Graduate and
Diploma. If an education level is greater than 20, raise an error.

RAISE_ERROR

Chapter 4. Functions 341

SELECT EMPNO,
CASE WHEN EDUCLVL < 16 THEN 'Diploma'

WHEN EDUCLVL < 18 THEN 'Graduate'
WHEN EDUCLVL < 21 THEN 'Post Graduate'
ELSE RAISE_ERROR('70001',

'EDUCLVL has a value greater than 20')
END

FROM EMPLOYEE

RAISE_ERROR

342 SQL Reference

RAND

�� RAND ()
expression

��

The schema is SYSFUN.

Returns a random floating point value between 0 and 1 using the argument as
the optional seed value. The function is defined as not-deterministic.

An argument is not required, but if it is specified it can be either INTEGER or
SMALLINT.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

RAND

Chapter 4. Functions 343

REAL

�� REAL (numeric-expression) ��

The schema is SYSIBM.

The REAL function returns a single-precision floating-point representation of a
number.

The argument is an expression that returns a value of any built-in numeric
data type.

The result of the function is a single-precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result
is the null value.

The result is the same number that would occur if the argument were
assigned to a single-precision floating-point column or variable.

Example:

Using the EMPLOYEE table, find the ratio of salary to commission for
employees whose commission is not zero. The columns involved (SALARY
and COMM) have DECIMAL data types. The result is desired in
single-precision floating point. Therefore, REAL is applied to SALARY so that
the division is carried out in floating point (actually double precision) and
then REAL is applied to the complete expression to return the result in
single-precision floating point.

SELECT EMPNO, REAL(REAL(SALARY)/COMM)
FROM EMPLOYEE
WHERE COMM > 0

REAL

344 SQL Reference

REPEAT

�� REPEAT (expression , expression) ��

The schema is SYSFUN.

Returns a character string composed of the first argument repeated the
number of times specified by the second argument.

The first argument is a character string or binary string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. The second argument can be SMALLINT
or INTEGER.

The result of the function is:
v VARCHAR(4000) if the first argument is VARCHAR (not exceeding 4 000

bytes) or CHAR
v CLOB(1M) if the first argument is CLOB or LONG VARCHAR
v BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:
v List the phrase ’REPEAT THIS’ five times.

VALUES CHAR(REPEAT('REPEAT THIS', 5), 60)

This example return the following:
1
--
REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS

As mentioned, the output of the REPEAT function is VARCHAR(4000). For
the above example the function CHAR has been used to limit the output of
REPEAT to 60 bytes.

REPEAT

Chapter 4. Functions 345

REPLACE

�� REPLACE (expression1 , expression2 , expression3) ��

The schema is SYSFUN.

Replaces all occurrences of expression2 in expression1 with expression3.

The first argument can be of any built-in character string or binary string
type. For a VARCHAR the maximum length is 4 000 bytes and for a CLOB or
a binary string the maximum length is 1 048 576 bytes. CHAR is converted to
VARCHAR and LONG VARCHAR is converted to CLOB(1M). The second
and third arguments are identical to the first argument.

The result of the function is:
v VARCHAR(4000) if the first, second and third arguments are VARCHAR or

CHAR
v CLOB(1M) if the first, second and third arguments are CLOB or LONG

VARCHAR
v BLOB(1M) if the first, second and third arguments are BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:
v Replace all occurrence of the letter ’N’ in the word ’DINING’ with ’VID’.

VALUES CHAR (REPLACE ('DINING', 'N', 'VID'), 10)

This example returns the following:
1

DIVIDIVIDG

As mentioned, the output of the REPLACE function is VARCHAR(4000).
For the above example the function CHAR has been used to limit the
output of REPLACE to 10 bytes.

REPLACE

346 SQL Reference

RIGHT

�� RIGHT (expression1 , expression2) ��

The schema is SYSFUN.

Returns a string consisting of the rightmost expression2 bytes in expression1.
The expression1 value is effectively padded on the right with the necessary
number of blank characters so that the specified substring of expression1
always exists.

The first argument is a character string or binary string type. For a VARCHAR
the maximum length is 4 000 bytes and for a CLOB or a binary string the
maximum length is 1 048 576 bytes. The second argument can be INTEGER or
SMALLINT.

The result of the function is:
v VARCHAR(4000) if the first argument is VARCHAR (not exceeding 4 000

bytes) or CHAR
v CLOB(1M) if the first argument is CLOB or LONG VARCHAR
v BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

RIGHT

Chapter 4. Functions 347

ROUND

�� ROUND (expression1 , expression2) ��

The schema is SYSFUN.

Returns the expression1 rounded to expression2 places right of the decimal
point. If expression2 is negative, expression1 is rounded to the absolute value of
expression2 places to the left of the decimal point.

The first argument can be of any built-in numeric data type. The second
argument can be INTEGER or SMALLINT. DECIMAL and REAL are
converted to double-precision floating-point number for processing by the
function.

The result of the function is:
v INTEGER if the first argument is INTEGER or SMALLINT
v BIGINT if the first argument is BIGINT
v DOUBLE if the first argument is DOUBLE, DECIMAL or REAL.

The result can be null; if any argument is null, the result is the null value.

Example:
v Display the number 873.726 rounded to 2, 1, 0, -1 and -2 decimal places

respectively.
VALUES (DECIMAL(ROUND(873.726,2),6,3), DECIMAL(ROUND(873.726,1),6,3),

DECIMAL(ROUND(873.726,0),6,3), DECIMAL(ROUND(873.726,-1),6,3),
DECIMAL(ROUND(873.726,-2),6,3))

The above example returns:
1 2 3 4 5
-------- -------- -------- -------- ---------
873.730 873.700 874.000 870.000 900.000

As mentioned, the output of the ROUND function is DOUBLE. For the
above example the function DECIMAL has been used to limit the output of
ROUND.

ROUND

348 SQL Reference

RTRIM

�� RTRIM (string-expression) ��

The schema is SYSIBM. 47

The RTRIM function removes blanks from the end of string-expression.

The argument can be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data
type.
v If the argument is a graphic string in a DBCS or EUC database, then the

trailing double byte blanks are removed.
v If the argument is a graphic string in a Unicode database, then the trailing

UCS-2 blanks are removed.
v Otherwise, the trailing single byte blanks are removed.

The result data type of the function is:
v VARCHAR if the data type of string-expression is VARCHAR or CHAR
v VARGRAPHIC if the data type of string-expression is VARGRAPHIC or

GRAPHIC

The length parameter of the returned type is the same as the length parameter
of the argument data type.

The actual length of the result for character strings is the length of
string-expression minus the number of bytes removed for blank characters. The
actual length of the result for graphic strings is the length (in number of
double byte characters) of string-expression minus the number of double byte
blank characters removed. If all of the characters are removed, the result is an
empty, varying-length string (length is zero).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example: Assume that host variable HELLO is defined as CHAR(9) and has a
value of ’Hello’.

VALUES RTRIM(:HELLO)

The result is ’Hello’.

47. The SYSFUN version of this function continues to be available with support for LONG VARCHAR and CLOB
arguments. See “RTRIM (SYSFUN schema)” on page 350 for a description.

RTRIM

Chapter 4. Functions 349

RTRIM (SYSFUN schema)

�� RTRIM (expression) ��

The schema is SYSFUN.

Returns the characters of the argument with trailing blanks removed.

The argument can be of any built-in character string data types. For a
VARCHAR the maximum length is 4 000 bytes and for a CLOB the maximum
length is 1 048 576 bytes.

The result of the function is:
v VARCHAR(4000) if the argument is VARCHAR (not exceeding 4 000 bytes)

or CHAR
v CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null value.

RTRIM (SYSFUN schema)

350 SQL Reference

SECOND

�� SECOND (expression) ��

The schema is SYSIBM.

The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, time duration, timestamp duration
or a valid character string representation of a time or timestamp that is
neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, timestamp or valid string representation of a time

or timestamp:
– The result is the seconds part of the value, which is an integer between 0

and 59.
v If the argument is a time duration or timestamp duration:

– The result is the seconds part of the value, which is an integer between
−99 and 99. A nonzero result has the same sign as the argument.

Examples:
v Assume that the host variable TIME_DUR (decimal(6,0)) has the value

153045.
SECOND(:TIME_DUR)

Returns the value 45.
v Assume that the column RECEIVED (timestamp) has an internal value

equivalent to 1988-12-25-17.12.30.000000.
SECOND(RECEIVED)

Returns the value 30.

SECOND

Chapter 4. Functions 351

SIGN

�� SIGN (expression) ��

The schema is SYSFUN.

Returns an indicator of the sign of the argument. If the argument is less than
zero, −1 is returned. If argument equals zero, 0 is returned. If argument is
greater than zero, 1 is returned.

The argument can be of any built-in numeric data types. DECIMAL and
REAL are converted to double-precision floating-point number for processing
by the function.

The result of the function is:
v SMALLINT if the argument is SMALLINT
v INTEGER if the argument is INTEGER
v BIGINT if the argument is BIGINT
v DOUBLE otherwise.

The result can be null; if the argument is null, the result is the null value.

SIGN

352 SQL Reference

SIN

�� SIN (expression) ��

The schema is SYSFUN.

Returns the sine of the argument, where the argument is an angle expressed
in radians.

The argument can be of any built-in numeric data types. It is converted to
double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The
result can be null; if the argument is null, the result is the null value.

SIN

Chapter 4. Functions 353

SMALLINT

�� SMALLINT (numeric-expression
character-expression

) ��

The schema is SYSIBM.

The SMALLINT function returns a small integer representation of a number
or character string in the form of a small integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a small integer column or
variable. If the whole part of the argument is not within the range of
small integers, an error occurs. The decimal part of the argument is
truncated if present.

character-expression
An expression that returns a character string value of length not greater
than the maximum length of a character constant. Leading and trailing
blanks are eliminated and the resulting string must conform to the rules
for forming an SQL integer constant (SQLSTATE 22018). However, the
value of the constant must be in the range of small integers (SQLSTATE
22003). The character string cannot be a long string.

If the argument is a character-expression, the result is the same number that
would occur if the corresponding integer constant were assigned to a
small integer column or variable.

The result of the function is a small integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

SMALLINT

354 SQL Reference

SOUNDEX

�� SOUNDEX (expression) ��

The schema is SYSFUN.

Returns a 4 character code representing the sound of the words in the
argument. The result can be used to compare with the sound of other strings.

The argument can be a character string that is either a CHAR or VARCHAR
not exceeding 4 000 bytes.

The result of the function is CHAR(4). The result can be null; if the argument
is null, the result is the null value.

The SOUNDEX function is useful for finding strings for which the sound is
known but the precise spelling is not. It makes assumptions about the way
that letters and combinations of letters sound that can help to search out
words with similar sounds. The comparison can be done directly or by
passing the strings as arguments to the DIFFERENCE function (see
“DIFFERENCE” on page 285).

Example:

Using the EMPLOYEE table, find the EMPNO and LASTNAME of the
employee with a surname that sounds like ’Loucesy’.
SELECT EMPNO, LASTNAME FROM EMPLOYEE

WHERE SOUNDEX(LASTNAME) = SOUNDEX('Loucesy')

This example returns the following:
EMPNO LASTNAME
------ ---------------
000110 LUCCHESSI

SOUNDEX

Chapter 4. Functions 355

SPACE

�� SPACE (expression) ��

The schema is SYSFUN.

Returns a character string consisting of blanks with length specified by the
second argument.

The argument can be SMALLINT or INTEGER.

The result of the function is VARCHAR(4000). The result can be null; if the
argument is null, the result is the null value.

SPACE

356 SQL Reference

SQRT

�� SQRT (expression) ��

The schema is SYSFUN.

Returns the square root of the argument.

The argument can be any built-in numeric data type. It has to be converted to
double-precision floating-point number for processing by the function.

The result of the function is double-precision floating-point number. The result
can be null; if the argument is null, the result is the null value.

SQRT

Chapter 4. Functions 357

SUBSTR

�� SUBSTR (string , start
, length

) ��

The schema is SYSIBM.

The SUBSTR function returns a substring of a string.

If string is a character string, the result of the function is a character string
represented in the code page of its first argument. If it is a binary string, the
result of the function is a binary string. If it is a graphic string, the result of
the function is a graphic string represented in the code page of its first
argument. If any argument of the SUBSTR function can be null, the result can
be null; if any argument is null, the result is the null value.

string
An expression that specifies the string from which the result is derived.

If string is either a character string or a binary string, a substring of string
is zero or more contiguous bytes of string. If string is a graphic string, a
substring of string is zero or more contiguous double-byte characters of
string.

start
An expression that specifies the position of the first byte of the result for a
character string or a binary string or the position of the first character of
the result for a graphic string. start must be an integer between 1 and the
length or maximum length of string, depending on whether string is
fixed-length or varying-length (SQLSTATE 22011, if out of range). It must
be specified as number of bytes in the context of the database code page
and not the application code page.

length
An expression that specifies the length of the result. If specified, length
must be a binary integer in the range 0 to n, where n equals (the length
attribute of string) − start + 1 (SQLSTATE 22011, if out of range).

If length is explicitly specified, string is effectively padded on the right
with the necessary number of blank characters (single-byte for character
strings; double-byte for graphic strings) so that the specified substring of
string always exists. The default for length is the number of bytes from the
byte specified by the start to the last byte of string in the case of character
string or binary string or the number of double-byte characters from the
character specified by the start to the last character of string in the case of
a graphic string. However, if string is a varying-length string with a length
less than start, the default is zero and the result is the empty string. It

SUBSTR

358 SQL Reference

must be specified as number of bytes in the context of the database code
page and not the application code page. (For example, the column NAME
with a data type of VARCHAR(18) and a value of 'MCKNIGHT' will yield
an empty string with SUBSTR(NAME,10)).

Table 16 shows that the result type and length of the SUBSTR function depend
on the type and attributes of its inputs.

Table 16. Data Type and Length of SUBSTR Result

String Argument Data
Type

Length Argument Result Data Type

CHAR(A) constant (l<255) CHAR(l)

CHAR(A) not specified but start argument is a
constant

CHAR(A-start+1)

CHAR(A) not a constant VARCHAR(A)

VARCHAR(A) constant (l<255) CHAR(l)

VARCHAR(A) constant (254<l<32673) VARCHAR(l)

VARCHAR(A) not a constant or not specified VARCHAR(A)

LONG VARCHAR constant (l<255) CHAR(l)

LONG VARCHAR constant (254<l<4001) VARCHAR(l)

LONG VARCHAR constant (l>4000) LONG VARCHAR

LONG VARCHAR not a constant or not specified LONG VARCHAR

CLOB(A) constant (l) CLOB(l)

CLOB(A) not a constant or not specified CLOB(A)

GRAPHIC(A) constant (l<128) GRAPHIC(l)

GRAPHIC(A) not specified but start argument is a
constant

GRAPHIC(A-start+1)

GRAPHIC(A) not a constant VARGRAPHIC(A)

VARGRAPHIC(A) constant (l<128) GRAPHIC(l)

VARGRAPHIC(A) constant (127<l<16337) VARGRAPHIC(l)

VARGRAPHIC(A) not a constant VARGRAPHIC(A)

SUBSTR

Chapter 4. Functions 359

Table 16. Data Type and Length of SUBSTR Result (continued)

String Argument Data
Type

Length Argument Result Data Type

LONG VARGRAPHIC constant (l<128) GRAPHIC(l)

LONG VARGRAPHIC constant (127<l<2001) VARGRAPHIC(l)

LONG VARGRAPHIC constant (l>2000) LONG VARGRAPHIC

LONG VARGRAPHIC not a constant or not specified LONG VARGRAPHIC

DBCLOB(A) constant (l) DBCLOB(l)

DBCLOB(A) not a constant or not specified DBCLOB(A)

BLOB(A) constant (l) BLOB(l)

BLOB(A) not a constant or not specified BLOB(A)

If string is a fixed-length string, omission of length is an implicit specification
of LENGTH(string) - start + 1. If string is a varying-length string, omission of
length is an implicit specification of zero or LENGTH(string) - start + 1,
whichever is greater.

Examples:
v Assume the host variable NAME (VARCHAR(50)) has a value of ’BLUE

JAY’ and the host variable SURNAME_POS (int) has a value of 6.
SUBSTR(:NAME, :SURNAME_POS):ehp2s

Returns the value 'JAY'
SUBSTR(:NAME, :SURNAME_POS,1)

Returns the value ’J’.
v Select all rows from the PROJECT table for which the project name

(PROJNAME) starts with the word ’OPERATION’.
SELECT * FROM PROJECT

WHERE SUBSTR(PROJNAME,1,10) = 'OPERATION '

The space at the end of the constant is necessary to preclude initial words
such as ’OPERATIONS’.

SUBSTR

360 SQL Reference

Notes:

1. In dynamic SQL, string, start, and length may be represented by a
parameter marker (?). If a parameter marker is used for string, the data
type of the operand will be VARCHAR, and the operand will be nullable.

2. Though not explicitly stated in the result definitions above, it follows from
these semantics that if string is a mixed single- and multi-byte character
string, the result may contain fragments of multi-byte characters,
depending upon the values of start and length. That is, the result could
possibly begin with the second byte of a double-byte character, and/or
end with the first byte of a double-byte character. The SUBSTR function
does not detect such fragments, nor provides any special processing
should they occur.

SUBSTR

Chapter 4. Functions 361

TABLE_NAME

�� TABLE_NAME (objectname)
, objectschema

��

The schema is SYSIBM.

The TABLE_NAME function returns an unqualified name of the object found
after any alias chains have been resolved. The specified objectname (and
objectschema) are used as the starting point of the resolution. If the starting
point does not refer to an alias, the unqualified name of the starting point is
returned. The resulting name may be of a table, view, or undefined object.

objectname
A character expression representing the unqualified name (usually of an
existing alias) to be resolved. objectname must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 129 characters.

objectschema
A character expression representing the schema used to qualify the
supplied objectname value before resolution. objectschema must have a data
type of CHAR or VARCHAR and a length greater than 0 and less than
129 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If objectname can
be null, the result can be null; if objectname is null, the result is the null value.
If objectschema is the null value, the default schema name is used. The result is
the character string representing an unqualified name. The result name could
represent one of the following:

table The value for objectname was either a table name (the input value is
returned) or an alias name that resolved to the table whose name is
returned.

view The value for objectname was either a view name (the input value is
returned) or an alias name that resolved to the view whose name is
returned.

undefined object

The value for objectname was either an undefined object (the input
value is returned) or an alias name that resolved to the undefined
object whose name is returned.

Therefore, if a non-null value is given to this function, a value is always
returned, even if no object with the result name exists.

TABLE_NAME

362 SQL Reference

Examples:

See the Examples section in “TABLE_SCHEMA” on page 364.

TABLE_NAME

Chapter 4. Functions 363

TABLE_SCHEMA

�� TABLE_SCHEMA (objectname
, objectschema

) ��

The schema is SYSIBM.

The TABLE_SCHEMA function returns the schema name of the object found
after any alias chains have been resolved. The specified objectname (and
objectschema) are used as the starting point of the resolution. If the starting
point does not refer to an alias, the schema name of the starting point is
returned. The resulting schema name may be of a table, view, or undefined
object.

objectname
A character expression representing the unqualified name (usually of an
existing alias) to be resolved. objectname must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 129 characters.

objectschema
A character expression representing the schema used to qualify the
supplied objectname value before resolution. objectschema must have a data
type of CHAR or VARCHAR and a length greater than 0 and less than
129 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If objectname can
be null, the result can be null; if objectname is null, the result is the null value.
If objectschema is the null value, the default schema name is used. The result is
the character string representing a schema name. The result schema could
represent the schema name for one of the following:

table The value for objectname was either a table name (the input or default
value of objectschema is returned) or an alias name that resolved to a
table for which the schema name is returned.

view The value for objectname was either a view name (the input or default
value of objectschema is returned) or an alias name that resolved to a
view for which the schema name is returned.

undefined object

The value for objectname was either an undefined object (the input or
default value of objectschema is returned) or an alias name that
resolved to an undefined object for which the schema name is
returned.

TABLE_SCHEMA

364 SQL Reference

Therefore, if a non-null objectname value is given to this function, a value is
always returned, even if the object name with the result schema name does
not exist. For example, TABLE_SCHEMA('DEPT', 'PEOPLE') returns 'PEOPLE ' if
the catalog entry is not found.

Examples:
v PBIRD tries to select the statistics for a given table from SYSCAT.TABLES

using an alias PBIRD.A1 defined on the table HEDGES.T1.
SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME ('A1')
AND TABSCHEMA = TABLE_SCHEMA ('A1')

The requested statistics for HEDGES.T1 are retrieved from the catalog.
v Select the statistics for an object called HEDGES.X1 from SYSCAT.TABLES

using HEDGES.X1. Use TABLE_NAME and TABLE_SCHEMA since it is not
known whether HEDGES.X1 is an alias or a table.

SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME ('X1','HEDGES')
AND TABSCHEMA = TABLE_SCHEMA ('X1','HEDGES')

Assuming that HEDGES.X1 is a table, the requested statistics for
HEDGES.X1 are retrieved from the catalog.

v Select the statistics for a given table from SYSCAT.TABLES using an alias
PBIRD.A2 defined on HEDGES.T2 where HEDGES.T2 does not exist.

SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME ('A2','PBIRD')
AND TABSCHEMA = TABLE_SCHEMA ('A2',PBIRD')

The statement returns 0 records as no matching entry is found in
SYSCAT.TABLES where TABNAME = ’T2’ and TABSCHEMA = ’HEDGES’.

v Select the qualified name of each entry in SYSCAT.TABLES along with the
final referenced name for any alias entry.

SELECT TABSCHEMA AS SCHEMA, TABNAME AS NAME,
TABLE_SCHEMA (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_SCHEMA,
TABLE_NAME (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_NAME
FROM SYSCAT.TABLES

The statement returns the qualified name for each object in the catalog and
the final referenced name (after alias has been resolved) for any alias
entries. For all non-alias entries, BASE_TABNAME and
BASE_TABSCHEMA are null so the REAL_SCHEMA and REAL_NAME
columns will contain nulls.

TABLE_SCHEMA

Chapter 4. Functions 365

TAN

�� TAN (expression) ��

The schema is SYSFUN.

Returns the tangent of the argument, where the argument is an angle
expressed in radians.

The argument can be any built-in numeric data type. It has to be converted to
double-precision floating-point number for processing by the function.

The result of the function is double-precision floating-point number. The result
can be null; if the argument is null, the result is the null value.

TAN

366 SQL Reference

TIME

�� TIME (expression) ��

The schema is SYSIBM.

The TIME function returns a time from a value.

The argument must be a time, timestamp, or a valid character string
representation of a time or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is a time. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time:

– The result is that time.
v If the argument is a timestamp:

– The result is the time part of the timestamp.
v If the argument is a character string:

– The result is the time represented by the character string.

Example:
v Select all notes from the IN_TRAY sample table that were received at least

one hour later in the day (any day) than the current time.
SELECT * FROM IN_TRAY

WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

TIME

Chapter 4. Functions 367

TIMESTAMP

�� TIMESTAMP (expression)
,expression

��

The schema is SYSIBM.

The TIMESTAMP function returns a timestamp from a value or a pair of
values.

The rules for the arguments depend on whether the second argument is
specified.
v If only one argument is specified:

– It must be a timestamp, a valid character string representation of a
timestamp, or a character string of length 14 that is neither a CLOB nor a
LONG VARCHAR.
A character string of length 14 must be a string of digits that represents a
valid date and time in the form yyyyxxddhhmmss, where yyyy is the year,
xx is the month, dd is the day, hh is the hour, mm is the minute, and ss is
the seconds.

v If both arguments are specified:
– The first argument must be a date or a valid character string

representation of a date and the second argument must be a time or a
valid string representation of a time.

The result of the function is a timestamp. If either argument can be null, the
result can be null; if either argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:
v If both arguments are specified:

– The result is a timestamp with the date specified by the first argument
and the time specified by the second argument. The microsecond part of
the timestamp is zero.

v If only one argument is specified and it is a timestamp:
– The result is that timestamp.

v If only one argument is specified and it is a character string:
– The result is the timestamp represented by that character string. If the

argument is a character string of length 14, the timestamp has a
microsecond part of zero.

Example:

TIMESTAMP

368 SQL Reference

v Assume the column START_DATE (date) has a value equivalent to
1988-12-25, and the column START_TIME (time) has a value equivalent to
17.12.30.

TIMESTAMP(START_DATE, START_TIME)

Returns the value ’1988-12-25-17.12.30.000000’.

TIMESTAMP

Chapter 4. Functions 369

TIMESTAMP_ISO

�� TIMESTAMP_ISO (expression) ��

The schema is SYSFUN.

Returns a timestamp value based on date, time or timestamp argument. If the
argument is a date, it inserts zero for all the time elements. If the argument is
a time, it inserts the value of CURRENT DATE for the date elements and zero
for the fractional time element.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is TIMESTAMP. The result can be null; if the
argument is null, the result is the null value.

TIMESTAMP_ISO

370 SQL Reference

TIMESTAMPDIFF

�� TIMESTAMPDIFF (expression , expression) ��

The schema is SYSFUN.

Returns an estimated number of intervals of the type defined by the first
argument, based on the difference between two timestamps.

The first argument can be either INTEGER or SMALLINT. Valid values of
interval (the first argument) are:

1 Fractions of a second

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

The second argument is the result of subtracting two timestamps types and
converting the result to CHAR(22).

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

The following assumptions may be used in estimating the difference:
v there are 365 days in a year
v there are 30 days in a month
v there are 24 hours in a day
v there are 60 minutes in an hour
v there are 60 seconds in a minute

These assumptions are used when converting the information in the second
argument, which is a timestamp duration, to the interval type specified in the
first argument. The returned estimate may vary by a number of days. For
example, if the number of days (interval 16) is requested for a difference in
timestamps for ’1997-03-01-00.00.00’ and ’1997-02-01-00.00.00’, the result is 30.

TIMESTAMPDIFF

Chapter 4. Functions 371

This is because the difference between the timestamps is 1 month so the
assumption of 30 days in a month applies.

TIMESTAMPDIFF

372 SQL Reference

TRANSLATE
character string expression:

�� TRANSLATE (char-string-exp �

�
, ’ ’

, to-string-exp , from-string-exp
, pad-char

) ��

graphic string expression:

�� TRANSLATE (graphic-string-exp , to-string-exp , from-string-exp �

�
, ’ ’

, pad-char
) ��

The schema is SYSIBM.

The TRANSLATE function returns a value in which one or more characters in
a string expression may have been translated into other characters.

The result of the function has the same data type and code page as the first
argument. The length attribute of the result is the same as that of the first
argument. If any specified expression can be NULL, the result can be NULL.
If any specified expression is NULL, the result will be NULL.

char-string-exp or graphic-string-exp
A string to be translated.

to-string-exp
Is a string of characters to which certain characters in the char-string-exp
will be translated.

If the to-string-exp is not present and the data type is not graphic, all
characters in the char-string-exp will be in monocase (that is, the characters
a-z will be translated to the characters A-Z, and characters with diacritical
marks will be translated to their upper case equivalents if they exist. For
example, in code page 850, é maps to É, but ÿ is not mapped since code
page 850 does not include Ÿ).

from-string-exp
Is a string of characters which, if found in the char-string-exp, will be
translated to the corresponding character in the to-string-exp. If the

TRANSLATE

Chapter 4. Functions 373

from-string-exp contains duplicate characters, the first one found will be
used, and the duplicates will be ignored. If the to-string-exp is longer than
the from-string-exp, the surplus characters will be ignored. If the
to-string-exp is present, the from-string-exp must also be present.

pad-char-exp
Is a single character that will be used to pad the to-string-exp if the
to-string-exp is shorter than the from-string-exp. The pad-char-exp must have
a length attribute of one, or an error is returned. If not present, it will be
taken to be a single-byte blank.

The arguments may be either strings of data type CHAR or VARCHAR, or
graphic strings of data type GRAPHIC or VARGRAPHIC. They may not have
data type LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or
DBCLOB.

With graphic-string-exp, only the pad-char-exp is optional (if not provided, it
will be taken to be the double-byte blank), and each argument, including the
pad character, must be of graphic data type.

The result is the string that occurs after translating all the characters in the
char-string-exp or graphic-string-exp that occur in the from-string-exp to the
corresponding character in the to-string-exp or, if no corresponding character
exists, to the pad character specified by the pad-char-exp.

The code page of the result of TRANSLATE is always the same as the code
page of the first operand, which is never converted. Each of the other
operands is converted to the code page of the first operand unless it or the
first operand is defined as FOR BIT DATA (in which case there is no
conversion).

If the arguments are of data type CHAR or VARCHAR, the corresponding
characters of the to-string-exp and the from-string-exp must have the same
number of bytes. For example, it is not valid to translate a single-byte
character to a multi-byte character or vice versa. An error will result if an
attempt is made to do this. The pad-char-exp must not be the first byte of a
valid multi-byte character, or SQLSTATE 42815 is returned. If the pad-char-exp
is not present, it will be taken to be a single-byte blank.

If only the char-string-exp is specified, single-byte characters will be
monocased and multi-byte characters will remain unchanged.

Examples:
v Assume the host variable SITE (VARCHAR(30)) has a value of ’Hanauma

Bay’.
TRANSLATE(:SITE)

TRANSLATE

374 SQL Reference

Returns the value ’HANAUMA BAY’.
TRANSLATE(:SITE 'j','B')

Returns the value ’Hanauma jay’.
TRANSLATE(:SITE,'ei','aa')

Returns the value ’Heneume Bey’.
TRANSLATE(:SITE,'bA','Bay','%')

Returns the value ’HAnAumA bA%’.
TRANSLATE(:SITE,'r','Bu')

Returns the value ’Hana ma ray’.

TRANSLATE

Chapter 4. Functions 375

TRUNCATE or TRUNC

�� TRUNCATE
TRUNC

(expression , expression) ��

The schema is SYSFUN.

Returns argument1 truncated to argument2 places right of decimal point. If
argument2 is negative, argument1 is truncated to the absolute value of
argument2 places to the left of the decimal point.

The first argument can be any built-in numeric data type. The second
argument has to be an INTEGER or SMALLINT. DECIMAL and REAL are
converted to double-precision floating-point number for processing by the
function.

The result of the function is:
v INTEGER if the first argument is INTEGER or SMALLINT
v BIGINT if the first argument is BIGINT
v DOUBLE if the first argument is DOUBLE, DECIMAL or DOUBLE.

The result can be null; if any argument is null, the result is the null value.

TRUNCATE or TRUNC

376 SQL Reference

TYPE_ID

�� TYPE_ID (expression) ��

The schema is SYSIBM.

The TYPE_ID function returns the internal type identifier of the dynamic data
type of the expression.

The argument must be a user-defined structured type. 48

The data type of the result of the function is INTEGER. If expression can be
null, the result can be null; if expression is null, the result is the null value.

The value returned by the TYPE_ID function is not portable across databases.
The value may be different, even though the type schema and type name of
the dynamic data type are the same. When coding for portability, use the
TYPE_SCHEMA and TYPE_NAME functions to determine the type schema
and type name.

Examples:
v A table hierarchy exists having root table EMPLOYEE of type EMP and

subtable MANAGER of type MGR. Another table ACTIVITIES includes a
column called WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE
EMPLOYEE. For each reference in ACTIVITIES, display the internal type
identifier of the row that corresponds to the reference.

SELECT TASK, WHO_RESPONSIBLE−>NAME,
TYPE_ID(DEREF(WHO_RESPONSIBLE))

FROM ACTIVITIES

The DEREF function is used to return the object corresponding to the row.

48. This function may not be used as a source function when creating a user-defined function. Since it accepts any
structured data type as an argument, it is not necessary to create additional signatures to support different
user-defined types.

TYPE_ID

Chapter 4. Functions 377

TYPE_NAME

�� TYPE_NAME (expression) ��

The schema is SYSIBM.

The TYPE_NAME function returns the unqualified name of the dynamic data
type of the expression.

The argument must be a user-defined structured type. 49

The data type of the result of the function is VARCHAR(18). If expression can
be null, the result can be null; if expression is null, the result is the null value.
Use the TYPE_SCHEMA function to determine the schema name of the type
name returned by TYPE_NAME.

Examples:
v A table hierarchy exists having root table EMPLOYEE of type EMP and

subtable MANAGER of type MGR. Another table ACTIVITIES includes a
column called WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE
EMPLOYEE. For each reference in ACTIVITIES, display the type of the row
that corresponds to the reference.

SELECT TASK, WHO_RESPONSIBLE−>NAME,
TYPE_NAME(DEREF(WHO_RESPONSIBLE)),
TYPE_SCHEMA(DEREF(WHO_RESPONSIBLE))

FROM ACTIVITIES

The DEREF function is used to return the object corresponding to the row.

49. This function may not be used as a source function when creating a user-defined function. Since it accepts any
structured data type as an argument, it is not necessary to create additional signatures to support different
user-defined types.

TYPE_NAME

378 SQL Reference

TYPE_SCHEMA

�� TYPE_SCHEMA (expression) ��

The schema is SYSIBM.

The TYPE_SCHEMA function returns the schema name of the dynamic data
type of the expression.

The argument must be a user-defined structured type. 50

The data type of the result of the function is VARCHAR(128). If expression can
be null, the result can be null; if expression is null, the result is the null value.
Use the TYPE_NAME function to determine the type name associated with
the schema name returned by TYPE_SCHEMA.

Examples:

See Examples section in “TYPE_NAME” on page 378.

50. This function may not be used as a source function when creating a user-defined function. Since it accepts any
structured data type as an argument, it is not necessary to create additional signatures to support different
user-defined types.

TYPE_SCHEMA

Chapter 4. Functions 379

UCASE or UPPER

�� UCASE (expression)
UPPER

��

The schema is SYSIBM.51

The UCASE or UPPER function is identical to the TRANSLATE function
except that only the first argument (char-string-exp) is specified. For more
information, see “TRANSLATE” on page 373.

51. The SYSFUN version of this function continues to be available for upward compatibility. See Version 5
documentation for a description.

UCASE or UPPER

380 SQL Reference

VALUE

�� VALUE (expression � ,expression) ��

The schema is SYSIBM.

The VALUE function returns the first argument that is not null.

VALUE is a synonym for COALESCE. See “COALESCE” on page 267 for
details.

VALUE

Chapter 4. Functions 381

VARCHAR
Character to Varchar:

�� VARCHAR (character-string-expression
, integer

) ��

Datetime to Varchar:

�� VARCHAR (datetime-expression) ��

Graphic to Varchar:

�� VARCHAR (graphic-string-expression)
, integer

��

The schema is SYSIBM.

The VARCHAR function returns a varying-length character string
representation of a character string, datetime value or graphic string (UCS-2
only).

The result of the function is a varying-length string (VARCHAR data type). If
the first argument can be null, the result can be null; if the first argument is
null, the result is the null value.

Graphic to Varchar is valid for a UCS-2 database only. For non-Unicode
databases, this is not allowed.

Character to Varchar

character-string-expression
An expression whose value must be of a character-string data type other
than LONG VARGRAPHIC and DBCLOB, with a maximum length of
32 672 bytes.

integer
The length attribute for the resulting varying-length character string. The
value must be between 0 and 32 672. If this argument is not specified, the
length of the result is the same as the length of the argument.

Datetime to Varchar

VARCHAR

382 SQL Reference

datetime-expression
An expression whose value must be of a date, time, or timestamp data
type.

Graphic to Varchar

graphic-string-expression
An expression whose value must be of a graphic-string data type other
than LONG VARGRAPHIC and DBCLOB, with a maximum length of
16 336 bytes.

integer
The length attribute for the resulting varying-length character string. The
value must be between 0 and 32 672. If this argument is not specified, the
length of the result is the same as the length of the argument.

Example:
v Using the EMPLOYEE table, set the host variable JOB_DESC

(VARCHAR(8)) to the VARCHAR equivalent of the job description (JOB
defined as CHAR(8)) for employee Delores Quintana.

SELECT VARCHAR(JOB)
INTO :JOB_DESC
FROM EMPLOYEE
WHERE LASTNAME = 'QUINTANA'

VARCHAR

Chapter 4. Functions 383

VARGRAPHIC
Character to Vargraphic:

�� VARGRAPHIC (character-string-expression) ��

Graphic to Vargraphic:

�� VARGRAPHIC (graphic-string-expression
, integer

) ��

The schema is SYSIBM.

The VARGRAPHIC function returns a graphic string representation of a:
v character string value, converting single byte characters to double byte

characters
v graphic string value, if the first argument is any type of graphic string.

The result of the function is a varying length graphic string (VARGRAPHIC
data type). If the first argument can be null, the result can be null; if the first
argument is null, the result is the null value.

Character to Vargraphic

character-string-expression
An expression whose value must be of a character string data type other
than LONG VARCHAR or CLOB, and whose maximum length must not
be greater than 16 336 bytes.

The length attribute of the result is equal to the length attribute of the
argument.

Let S denote the value of the character-string-expression. Each single-byte
character in S is converted to its equivalent double-byte representation or to
the double-byte substitution character in the result; each double-byte character
in S is mapped ’as-is’. If the first byte of a double-byte character appears as
the last byte of S, it is converted into the double-byte substitution character.
The sequential order of the characters in S is preserved.

The following are additional considerations for the conversion.
v For a Unicode database, this function converts the character-string from the

code page of the operand into UCS-2. Every character of the operand,

VARGRAPHIC

384 SQL Reference

including DBCS characters, is converted. If the second argument is given, it
specifies the desired length (number of UCS-2 characters) of the resulting
UCS-2 string.

v The conversion to double-byte code points by the VARGRAPHIC function
is based on the code page of the operand.

v Double-byte characters of the operand are not converted (see “Appendix O.
Japanese and Traditional-Chinese EUC Considerations” on page 1341 for
exception). All other characters are converted to their corresponding
double-byte depiction. If there is no corresponding double-byte depiction,
the double-byte substitution character for the code page is used.

v No warning or error code is generated if one or more double-byte
substitution characters are returned in the result.

Graphic to Vargraphic

graphic-string-expression
An expression that returns a value that is a graphic string.

integer
The length attribute for the resulting varying length graphic string. The
value must be between 0 and 16 336. If this argument is not specified, the
length of the result is the same as the length of the argument.

If the length of the graphic-string-expression is greater than the length attribute
of the result, truncation is performed and a warning is returned (SQLSTATE
01004) unless the truncated characters were all blanks and the
graphic-string-expression was not a long string (LONG VARGRAPHIC or
DBCLOB).

VARGRAPHIC

Chapter 4. Functions 385

WEEK

�� WEEK (expression) ��

The schema is SYSFUN.

Returns the week of the year of the argument as an integer value in range
1-54. The week starts with Sunday.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

WEEK

386 SQL Reference

WEEK_ISO

�� WEEK_ISO (expression) ��

The schema is SYSFUN.

Returns the week of the year of the argument as an integer value in range
1-53. The week starts with Monday. Week 1 is the first week of the year to
contain a Thursday, which is equivalent to the first week containing January
4.

The argument must be a date, timestamp, or a valid character string
representation of a date or timestamp that is neither a CLOB nor a LONG
VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument
is null, the result is the null value.

WEEK_ISO

Chapter 4. Functions 387

YEAR

�� YEAR (expression) ��

The schema is SYSIBM.

The YEAR function returns the year part of a value.

The argument must be a date, timestamp, date duration, timestamp duration
or a valid character string representation of a date or timestamp that is neither
a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:
v If the argument is a date, timestamp, or valid string representation of a date

or timestamp:
– The result is the year part of the value, which is an integer between 1

and 9 999.
v If the argument is a date duration or timestamp duration:

– The result is the year part of the value, which is an integer between
−9 999 and 9 999. A nonzero result has the same sign as the argument.

Examples:
v Select all the projects in the PROJECT table that are scheduled to start

(PRSTDATE) and end (PRENDATE) in the same calendar year.
SELECT * FROM PROJECT

WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

v Select all the projects in the PROJECT table that are scheduled to take less
than one year to complete.

SELECT * FROM PROJECT
WHERE YEAR(PRENDATE - PRSTDATE) < 1

YEAR

388 SQL Reference

Table Functions

A table function can be used only in the FROM clause of a statement.
However, expressions or column functions can not be used within a table
function.

Table functions returns columns of a table, resembling a table created by a
simple CREATE TABLE statement.

The table functions that follow may be qualified with the schema name.

Table Functions

Chapter 4. Functions 389

SQLCACHE_SNAPSHOT

�� SQLCACHE_SNAPSHOT () ��

The schema is SYSFUN.

The SQLCACHE_SNAPSHOT returns the results of a snapshot of the DB2
dynamic SQL statement cache.

The function does not take any arguments.

It returns a table as listed below. Refer to System Monitor Guide and Reference
for details on the columns.

Table 17. Column names and data types of the table returned by
SQLCACHE_SNAPSHOT table function

Column name Data type

NUM_EXECUTIONS INTEGER

NUM_COMPILATIONS INTEGER

PREP_TIME_WORST INTEGER

PREP_TIME_BEST INTEGER

INT_ROWS_DELETED INTEGER

INT_ROWS_INSERTED INTEGER

ROWS_READ INTEGER

INT_ROWS_UPDATED INTEGER

ROWS_WRITE INTEGER

STMT_SORTS INTEGER

TOTAL_EXEC_TIME_S INTEGER

TOTAL_EXEC_TIME_MS INTEGER

TOT_U_CPU_TIME_S INTEGER

TOT_U_CPU_TIME_MS INTEGER

TOT_S_CPU_TIME_S INTEGER

TOT_S_CPU_TIME_MS INTEGER

DB_NAME VARCHAR(8)

STMT_TEXT CLOB(64K)

SQLCACHE_SNAPSHOT

390 SQL Reference

User-Defined Functions

�� function-name (

�

,

expression

) ��

User-defined functions are extensions or additions to the existing built-in
functions of the SQL language. A user-defined function can be a scalar
function, which returns a single value each time it is called, a column
function, which is passed a set of like values and returns a single value for
the set, a row function, which returns one row, or a table function, which
returns a table. Note that a UDF can be a column function only when it is
sourced on an existing column function.

A user-defined scalar or column function registered with the database can be
referenced in the same contexts that any built-in function can appear.

A user-defined table function registered with the database can be referenced
only in the FROM clause of a SELECT, as described in “from-clause” on
page 400.

A user-defined row function can be referenced only implicitly when registered
as a transform function for a user-defined type.

A user-defined function is referenced by means of a qualified or unqualified
function name, followed by parentheses enclosing the function arguments (if
any).

Arguments of the function must correspond in number and position to the
parameters specified in the user-defined function as it was registered with the
database. In addition, the arguments must be of data types promotable to the
data types of the corresponding defined parameters. (see “CREATE
FUNCTION” on page 589).

The result of the function is as specified in the RETURNS clause specified
when the user-defined function was registered. The RETURNS clause
determines if a function is a table function or not.

If the RETURNS NULL ON NULL INPUT clause was specified (or defaulted
to) when the function was registered then, if any argument is null, the result
is null. For table functions, this is interpreted to mean a return table with no
rows (empty table).

User-Defined Functions

Chapter 4. Functions 391

There are a collection of user-defined functions provided in the SYSFUN
schema (see Table 15 on page 210).

Examples:
v Assume that a scalar function called ADDRESS was written to extract the

home address from a script format resume. The ADDRESS function expects
a CLOB argument and returns a VARCHAR(4000). The following example
illustrates the invocation of the ADDRESS function.

SELECT EMPNO, ADDRESS(RESUME) FROM EMP_RESUME
WHERE RESUME_FORMAT = 'SCRIPT'

v Assume a table T2 with a numeric column A and the ADDRESS function
described in the previous example. The following example illustrates an
attempt to invoke the ADDRESS function with an incorrect argument.

SELECT ADDRESS(A) FROM T2

An error (SQLSTATE 42884) is raised since there is no function with a
matching name and with a parameter promotable from the argument.

v Assume a table function WHO was written to return information about the
sessions on the server machine which were active at the time the statement
is executed. The following example illustrates the invocation of WHO in a
FROM clause (TABLE keyword with mandatory correlation variable).

SELECT ID, START_DATE, ORIG_MACHINE
FROM TABLE(WHO()) AS QQ
WHERE START_DATE LIKE 'MAY%'

The column names of the WHO() table are defined in the CREATE
FUNCTION statement.

User-Defined Functions

392 SQL Reference

Chapter 5. Queries

A query specifies a result table.

A query is a component of certain SQL statements. The three forms of a query
are:
v subselect
v fullselect
v select-statement.

There is another SQL statement that can be used to retrieve at most a single
row described under “SELECT INTO” on page 998.

Authorization

For each table or view referenced in the query, the authorization ID of the
statement must have at least one of the following:
v SYSADM or DBADM authority
v CONTROL privilege
v SELECT privilege.

Group privileges are not checked for queries contained in static SQL
statements.

For nicknames referenced in a query, there are no privileges at the federated
database to be considered. Authorization requirements of the data source for
the table or view referenced by the nickname are applied when the query is
processed. The authorization ID of the statement may be mapped to a
different remote authorization ID.

© Copyright IBM Corp. 1993, 2000 393

subselect

�� select-clause from-clause
where-clause

�

�
group-by-clause having-clause

��

The subselect is a component of the fullselect.

A subselect specifies a result table derived from the tables, views or
nicknames identified in the FROM clause. The derivation can be described as
a sequence of operations in which the result of each operation is input for the
next. (This is only a way of describing the subselect. The method used to
perform the derivation may be quite different from this description.)

The clauses of the subselect are processed in the following sequence:
1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause.

subselect

394 SQL Reference

select-clause

�� SELECT
ALL

DISTINCT

�

*
,

expression
AS

new-column-name
exposed-name.*

��

The SELECT clause specifies the columns of the final result table. The column
values are produced by the application of the select list to R. The select list is
the names or expressions specified in the SELECT clause, and R is the result
of the previous operation of the subselect. For example, if the only clauses
specified are SELECT, FROM, and WHERE, R is the result of that WHERE
clause.

ALL
Retains all rows of the final result table, and does not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result
table. If DISTINCT is used, no string column of the result table can have a
maximum length that is greater than 255 bytes, and no column can be a
LONG VARCHAR, LONG VARGRAPHIC, DATALINK, LOB type, distinct
type on any of these types, or structured type. DISTINCT may be used
more than once in a subselect. This includes SELECT DISTINCT, the use
of DISTINCT in a column function of the select list or HAVING clause,
and subqueries of the subselect.

Two rows are duplicates of one another only if each value in the first is
equal to the corresponding value of the second. For determining
duplicates, two null values are considered equal.

Select List Notation:

* Represents a list of names that identify the columns of table R. The first
name in the list identifies the first column of R, the second name identifies
the second column of R, and so on.

The list of names is established when the program containing the SELECT
clause is bound. Hence, * (the asterisk) does not identify any columns that
have been added to a table after the statement containing the table
reference has been bound.

expression
Specifies the values of a result column. May be any expression of the type
described in Chapter 3, but commonly the expressions used include

select-clause

Chapter 5. Queries 395

column names. Each column name used in the select list must
unambiguously identify a column of R.

new-column-name or AS new-column-name
Names or renames the result column. The name must not be qualified
and does not have to be unique. Subsequent usage of column-name is
limited as follows:
v A new-column-name specified in the AS clause can be used in the

order-by-clause, provided the name is unique.
v A new-column-name specified in the AS clause of the select list

cannot be used in any other clause within the subselect
(where-clause, group-by-clause or having-clause).

v A new-column-name specified in the AS clause cannot be used in
the update-clause.

v A new-column-name specified in the AS clause is known outside
the fullselect of nested table expressions, common table expressions
and CREATE VIEW.

name.*
Represents the list of names that identify the columns of the result table
identified by exposed-name. The exposed-name may be a table name, view
name, nickname, or correlation name, and must designate a table, view or
nickname named in the FROM clause. The first name in the list identifies
the first column of the table, view or nickname, the second name in the
list identifies the second column of the table, view or nickname, and so
on.

The list of names is established when the statement containing the
SELECT clause is bound. Therefore, * does not identify any columns that
have been added to a table after the statement has been bound.

The number of columns in the result of SELECT is the same as the
number of expressions in the operational form of the select list (that is, the
list established when the statement is prepared) and cannot exceed 500.

Limitations on String Columns
For limitations on the select list, see “Restrictions Using Varying-Length
Character Strings” on page 79.

Applying the Select List
Some of the results of applying the select list to R depend on whether or not
GROUP BY or HAVING is used. The results are described in two separate
lists:

If GROUP BY or HAVING is used:

v An expression X (not a column function) used in the select list must have a
GROUP BY clause with:

select-clause

396 SQL Reference

– a grouping-expression in which each column-name unambiguously
identifies a column of R (see “group-by-clause” on page 409) or

– each column of R referenced in X as a separate grouping-expression.
v The select list is applied to each group of R, and the result contains as

many rows as there are groups in R. When the select list is applied to a
group of R, that group is the source of the arguments of the column
functions in the select list.

If neither GROUP BY nor HAVING is used:

v Either the select list must not include any column functions, or each
column-name in the select list must be specified within a column function or
must be a correlated column reference.

v If the select does not include column functions, then the select list is
applied to each row of R and the result contains as many rows as there are
rows in R.

v If the select list is a list of column functions, then R is the source of the
arguments of the functions and the result of applying the select list is one
row.

In either case the nth column of the result contains the values specified by
applying the nth expression in the operational form of the select list.

Null attributes of result columns: Result columns do not allow null values if
they are derived from:
v A column that does not allow null values
v A constant
v The COUNT or COUNT_BIG function
v A host variable that does not have an indicator variable
v A scalar function or expression that does not include an operand that

allows nulls.

Result columns allow null values if they are derived from:
v Any column function except COUNT or COUNT_BIG
v A column that allows null values
v A scalar function or expression that includes an operand that allows nulls
v A NULLIF function with arguments containing equal values.
v A host variable that has an indicator variable.
v A result of a set operation if at least one of the corresponding items in the

select list is nullable.
v An arithmetic expression or view column that is derived from an arithmetic

expression and the database is configured with DFT_SQLMATHWARN set
to yes

select-clause

Chapter 5. Queries 397

v A dereference operation.

Names of result columns:

v If the AS clause is specified, the name of the result column is the name
specified on the AS clause.

v If the AS clause is not specified and the result column is derived from a
column, then the result column name is the unqualified name of that
column.

v If the AS clause is not specified and the result column is derived using a
dereference operation, then the result column name is the unqualified name
of the target column of the dereference operation.

v All other result column names are unnamed.52

Data types of result columns: Each column of the result of SELECT acquires
a data type from the expression from which it is derived.

When the expression is ... The data type of the result column is ...

the name of any numeric column the same as the data type of the column,
with the same precision and scale for
DECIMAL columns.

an integer constant INTEGER

a decimal constant DECIMAL, with the precision and scale of
the constant

a floating-point constant DOUBLE

the name of any numeric variable the same as the data type of the variable,
with the same precision and scale for
DECIMAL variables.

an expression For a description of data type attributes,
see “Expressions” on page 157.

any function (see Chapter 4 to determine the data type
of the result.)

a hexadecimal constant representing n
bytes

VARCHAR(n). The codepage is the
database codepage.

the name of any string column the same as the data type of the column,
with the same length attribute.

52. The system assigns temporary numbers (as character strings) to these columns.

select-clause

398 SQL Reference

When the expression is ... The data type of the result column is ...

the name of any string variable the same as the data type of the variable,
with the same length attribute. If the data
type of the variable is not identical to an
SQL data type (for example, a
NUL-terminated string in C), the result
column is a varying-length string.

a character string constant of length n VARCHAR(n)

a graphic string constant of length n VARGRAPHIC(n)

the name of a datetime column the same as the data type of the column.

the name of a user-defined type column the same as the data type of the column

the name of a reference type column the same as the data type of the column

select-clause

Chapter 5. Queries 399

from-clause

�� �

,

FROM table-reference ��

The FROM clause specifies an intermediate result table.

If one table-reference is specified, the intermediateresult table is simply the
result of that table-reference. If more than one table-reference is specified, the
intermediate result table consists of all possible combinations of the rows of
the specified table-references (the Cartesian product). Each row of the result is
a row from the first table-reference concatenated with a row from the second
table-reference, concatenated in turn with a row from the third, and so on.
The number of rows in the result is the product of the number of rows in all
the individual table-references.For a description of table-reference, see
“table-reference” on page 401.

from-clause

400 SQL Reference

table-reference

��

�

nickname
table-name correlation-clause
view-name
ONLY (table-name)
OUTER view-name

TABLE (function-name ()) correlation-clause
,

expression
(fullselect) correlation-clause

TABLE
joined-table

��

correlation-clause:

�

AS
correlation-name

,

(column-name)

Each table-name, view-name or nickname specified as a table-reference must
identify an existing table, view or nickname at the application server or the
table-name of a common table expression (see “common-table-expression” on
page 440) defined preceding the fullselect containing the table-reference. If the
table-name references a typed table, the name denotes the UNION ALL of the
table with all its subtables, with only the columns of the table-name. Similarly,
if the view-name references a typed view, the name denotes the UNION ALL
of the view with all its subviews, with only the columns of the view-name.

The use of ONLY(table-name) or ONLY(view-name) means that the rows of the
proper subtables or subviews are not included. If the table-name used with
ONLY does not have subtables, then ONLY(table-name) is equivalent to
specifying table-name. If the view-name used with ONLY does not have
subviews, then ONLY(view-name) is equivalent to specifying view-name.

The use of OUTER(table-name) or OUTER(view-name) represents a virtual table.
If the table-name or view-name used with OUTER does not have subtables or
subviews, then specifying OUTER is equivalent to not specifying OUTER.
OUTER(table-name) is derived from table-name as follows:
v The columns include the columns of table-name followed by the additional

columns introduced by each of its subtables (if any). The additional
columns are added on the right, traversing the subtable hierarchy in
depth-first order. Subtables that have a common parent are traversed in
creation order of their types.

table-reference

Chapter 5. Queries 401

v The rows include all the rows of table-name and all the rows of its subtables.
Null values are returned for columns that are not in the subtable for the
row.

The previous points also apply to OUTER(view-name), substituting view-name
for table-name and subview for subtable.

The use of ONLY or OUTER requires the SELECT privilege on every subtable
of table-name or subview of view-name.

Each function-name together with the types of its arguments, specified as a
table reference must resolve to an existing table function at the application
server.

A fullselect in parentheses followed by a correlation name is called a nested
table expression.

A joined-table specifies an intermediate result set that is the result of one or
more join operations. For more information, see “joined-table” on page 405.

The exposed names of all table references should be unique. An exposed
name is:
v A correlation-name,
v A table-name that is not followed by a correlation-name,
v A view-name that is not followed by a correlation-name,
v A nickname that is not followed by a correlation-name,
v An alias-name that is not followed by a correlation-name.

Each correlation-name is defined as a designator of the immediately preceding
table-name, view-name, nickname, function-name reference or nested table
expression. Any qualified reference to a column for a table, view, table
function or nested table expression must use the exposed name. If the same
table name, view or nickname name is specified twice, at least one
specification should be followed by a correlation-name. The correlation-name is
used to qualify references to the columns of the table, view or nickname.
When a correlation-name is specified, column-names can also be specified to give
names to the columns of the table-name, view-name, nickname, function-name
reference or nested table expression. For more information, see “Correlation
Names” on page 127.

In general, table functions and nested table expressions can be specified on
any from-clause. Columns from the table functions and nested table
expressions can be referenced in the select list and in the rest of the subselect
using the correlation name which must be specified. The scope of this

table-reference

402 SQL Reference

correlation name is the same as correlation names for other table, view or
nickname in the FROM clause. A nested table expression can be used:
v in place of a view to avoid creating the view (when general use of the view

is not required)
v when the desired result table is based on host variables.

Table Function References
In general, a table function together with its argument values can be
referenced in the FROM clause of a SELECT in exactly the same way as a
table or view. There are, however, some special considerations which apply.
v Table Function Column Names

Unless alternate column names are provided following the correlation-name,
the column names for the table function are those specified in the
RETURNS clause of the CREATE FUNCTION statement . This is analogous
to the names of the columns of a table, which are of course defined in the
CREATE TABLE statement. See “CREATE FUNCTION (External Table)” on
page 615 or “CREATE FUNCTION (SQL Scalar, Table or Row)” on page 649
for details about creating a table function.

v Table Function Resolution
The arguments specified in a table function reference, together with the
function name, are used by an algorithm called function resolution to
determine the exact function to be used. This is no different from what
happens with other functions (such as scalar functions), used in a
statement. Function resolution is covered in “Function Resolution” on
page 144.

v Table Function Arguments
As with scalar function arguments, table function arguments can in general
be any valid SQL expression. So the following examples are valid syntax:
Example 1: SELECT c1

FROM TABLE(tf1('Zachary')) AS z
WHERE c2 = 'FLORIDA';

Example 2: SELECT c1
FROM TABLE(tf2 (:hostvar1, CURRENT DATE)) AS z;

Example 3: SELECT c1
FROM t
WHERE c2 IN

(SELECT c3 FROM
TABLE(tf5(t.c4)) AS z -- correlated reference
) -- to previous FROM clause

Correlated References in table-references
Correlated references can be used in nested table expressions or as arguments
to table functions. The basic rule that applies for both these cases is that the
correlated reference must be from a table-reference at a higher level in the

table-reference

Chapter 5. Queries 403

hierarchy of subqueries. This hierarchy includes the table-references that have
already been resolved in the left-to-right processing of the FROM clause. For
nested table expressions, the TABLE keyword must appear before the
fullselect. So the following examples are valid syntax:

Example 1: SELECT t.c1, z.c5
FROM t, TABLE(tf3(t.c2)) AS z -- t precedes tf3 in FROM
WHERE t.c3 = z.c4; -- so t.c2 is known

Example 2: SELECT t.c1, z.c5
FROM t, TABLE(tf4(2 * t.c2)) AS z -- t precedes tf3 in FROM
WHERE t.c3 = z.c4; -- so t.c2 is known

Example 3: SELECT d.deptno, d.deptname,
empinfo.avgsal, empinfo.empcount

FROM department d,
TABLE (SELECT AVG(e.salary) AS avgsal,

COUNT(*) AS empcount
FROM employee e -- department precedes and
WHERE e.workdept=d.deptno -- TABLE is specified
) AS empinfo; -- so d.deptno is known

But the following examples are not valid:
Example 4: SELECT t.c1, z.c5

FROM TABLE(tf6(t.c2)) AS z, t -- cannot resolve t in t.c2!
WHERE t.c3 = z.c4; -- compare to Example 1 above.

Example 5: SELECT a.c1, b.c5
FROM TABLE(tf7a(b.c2)) AS a, TABLE(tf7b(a.c6)) AS b
WHERE a.c3 = b.c4; -- cannot resolve b in b.c2!

Example 6: SELECT d.deptno, d.deptname,
empinfo.avgsal, empinfo.empcount

FROM department d,
(SELECT AVG(e.salary) AS avgsal,

COUNT(*) AS empcount
FROM employee e -- department precedes but
WHERE e.workdept=d.deptno -- TABLE is not specified
) AS empinfo; -- so d.deptno is unknown

table-reference

404 SQL Reference

joined-table

��
INNER

table-reference JOIN table-reference ON join-condition
outer

(joined-table)

��

outer:

OUTER
LEFT
RIGHT
FULL

A joined table specifies an intermediate result table that is the result of either
an inner join or an outer join. The table is derived by applying one of the join
operators: INNER, LEFT OUTER, RIGHT OUTER, or FULL OUTER to its
operands.

Inner joins can be thought of as the cross product of the tables (combine each
row of the left table with every row of the right table), keeping only the rows
where the join-condition is true. The result table may be missing rows from
either or both of the joined tables. Outer joins include the inner join and
preserve these missing rows. There are three types of outer joins:
1. left outer join includes rows from the left table that were missing from the

inner join.
2. right outer join includes rows from the right table that were missing from

the inner join.
3. full outer join includes rows from both the left and right tables that were

missing from the inner join.

If a join-operator is not specified, INNER is implicit. The order in which
multiple joins are performed can affect the result. Joins can be nested within
other joins. The order of processing for joins is generally from left to right, but
based on the position of the required join-condition. Parentheses are
recommended to make the order of nested joins more readable. For example:

tb1 left join tb2 on tb1.c1=tb2.c1
right join tb3 left join tb4 on tb3.c1=tb4.c1

on tb1.c1=tb3.c1

is the same as:
(tb1 left join tb2 on tb1.c1=tb2.c1)

right join (tb3 left join tb4 on tb3.c1=tb4.c1)
on tb1.c1=tb3.c1

joined-table

Chapter 5. Queries 405

A joined table can be used in any context in which any form of the SELECT
statement is used. A view or a cursor is read-only if its SELECT statement
includes a joined table.

A join-condition is a search-condition except that:
v it cannot contain any subqueries, scalar or otherwise
v it cannot include any dereference operations or the DEREF function where

the reference value is other than the object identifier column.
v it cannot include an SQL function
v any column referenced in an expression of the join-condition must be a

column of one of the operand tables of the associated join (in the scope of
the same joined-table clause)

v any function referenced in an expression of the join-condition of a full outer
join must be deterministic and have no external action.

An error occurs if the join-condition does not comply with these rules
(SQLSTATE 42972).

Column references are resolved using the rules for resolution of column name
qualifiers. The same rules that apply to predicates apply to join-conditions (see
“Predicates” on page 186).

Join Operations
A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left
and right operand tables of the JOIN operator of the join-condition. For all
possible combinations of rows of T1 and T2, a row of T1 is paired with a row
of T2 if the join-condition is true. When a row of T1 is joined with a row of T2,
a row in the result consists of the values of that row of T1 concatenated with
the values of that row of T2. The execution might involve the generation of a
null row. The null row of a table consists of a null value for each column of
the table, regardless of whether the columns allow null values.

The following summarizes the result of the join operations:
v The result of T1 INNER JOIN T2 consists of their paired rows where the

join-condition is true.
v The result of T1 LEFT OUTER JOIN T2 consists of their paired rows where

the join-condition is true and, for each unpaired row of T1, the
concatenation of that row with the null row of T2. All columns derived
from T2 allow null values.

v The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows
where the join-condition is true and, for each unpaired row of T2, the
concatenation of that row with the null row of T1. All columns derived
from T1 allow null values.

joined-table

406 SQL Reference

v The result of T1 FULL OUTER JOIN T2 consists of their paired rows and,
for each unpaired row of T2, the concatenation of that row with the null
row of T1 and, for each unpaired row of T1, the concatenation of that row
with the null row of T2. All columns derived from T1 and T2 allow null
values.

Join Operations

Chapter 5. Queries 407

where-clause

�� WHERE search-condition ��

The WHERE clause specifies an intermediate result table that consists of those
rows of R for which the search-condition is true. R is the result of the FROM
clause of the subselect.

The search-condition must conform to the following rules:
v Each column-name must unambiguously identify a column of R or be a

correlated reference. A column-name is a correlated reference if it identifies a
column of a table-reference in an outer subselect.

v A column function must not be specified unless the WHERE clause is
specified in a subquery of a HAVING clause and the argument of the
function is a correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R,
and the results are used in the application of the search-condition to the given
row of R. A subquery is actually executed for each row of R only if it includes
a correlated reference. In fact, a subquery with no correlated references is
executed just once, whereas a subquery with a correlated reference may have
to be executed once for each row.

where-clause

408 SQL Reference

group-by-clause

�� �

,

GROUP BY grouping-expression
grouping-sets
super-groups

��

The GROUP BY clause specifies an intermediate result table that consists of a
grouping of the rows of R. R is the result of the previous clause of the
subselect.

In its simplest form, a GROUP BY clause contains a grouping expression. A
grouping expression is an expression used in defining the grouping of R. Each
column name included in grouping-expression must unambiguously identify a
column of R (SQLSTATE 42702 or 42703). The length attribute of each
grouping expression must not be more than 255 bytes (SQLSTATE 42907). A
grouping expression cannot include a scalar-fullselect (SQLSTATE 42822) or
any function that is variant or has an external action (SQLSTATE 42845).

More complex forms of the GROUP BY clause include grouping-sets and
super-groups. For a description of these forms, see “grouping-sets” on page 410
and “super-groups” on page 411, respectively.

The result of GROUP BY is a set of groups of rows. Each row in this result
represents the set of rows for which the grouping-expression is equal. For
grouping, all null values from a grouping-expression are considered equal.

A grouping-expression can be used in a search condition in a HAVING clause,
in an expression in a SELECT clause or in a sort-key-expression of an ORDER
BY clause (see “order-by-clause” on page 443 for details). In each case, the
reference specifies only one value for each group. For example, if the
grouping-expression is col1+col2, then an allowed expression in the select list
would be col1+col2+3. Associativity rules for expressions would disallow the
similar expression, 3+col1+col2, unless parentheses are used to ensure that the
corresponding expression is evaluated in the same order. Thus, 3+(col1+col2)
would also be allowed in the select list. If the concatenation operator is used,
the grouping-expression must be used exactly as the expression was specified in
the select list.

If the grouping-expression contains varying-length strings with trailing blanks,
the values in the group can differ in the number of trailing blanks and may
not all have the same length. In that case, a reference to the grouping-expression

group-by-clause

Chapter 5. Queries 409

still specifies only one value for each group, but the value for a group is
chosen arbitrarily from the available set of values. Thus, the actual length of
the result value is unpredictable.

As noted, there are some cases where the GROUP BY clause cannot refer
directly to a column that is specified in the SELECT clause as an expression
(scalar-fullselect, variant or external action functions). To group using such an
expression, use a nested table expression or a common table expression to first
provide a result table with the expression as a column of the result. For an
example using nested table expressions, see “Example A9” on page 419.

grouping-sets

�� �

�

,

GROUPING SETS (grouping-expression)
super-groups

,

(grouping-expression)
super-groups

��

A grouping-sets specification allows multiple grouping clauses to be specified
in a single statement. This can be thought of as the union of two or more
groups of rows into a single result set. It is logically equivalent to the union of
multiple subselects with the group by clause in each subselect corresponding
to one grouping set. A grouping set can be a single element or can be a list of
elements delimited by parentheses, where an element is either a
grouping-expression or a super-group. Using grouping-sets allows the groups
to be computed with a single pass over the base table.

The grouping-sets specification allows either a simple grouping-expression to be
used, or the more complex forms of super-groups. For a description of
super-groups, see “super-groups” on page 411.

Note that grouping sets are the fundamental building block for GROUP BY
operations. A simple group by with a single column can be considered a
grouping set with one element. For example:

GROUP BY a

is the same as
GROUP BY GROUPING SET((a))

and
GROUP BY a,b,c

group-by-clause

410 SQL Reference

is the same as
GROUP BY GROUPING SET((a,b,c))

Non-aggregation columns from the select list of the subselect that are
excluded from a grouping set will return a null for such columns for each row
generated for that grouping set. This reflects the fact that aggregation was
done without considering the values for those columns. See “GROUPING” on
page 237 for how to distinguish rows with nulls in actual data from rows with
nulls generated from grouping sets.

“Example C2” on page 426 through “Example C7” on page 430 illustrate the
use of grouping sets.

super-groups

��
(1)

ROLLUP (grouping-expression-list)
(2)

CUBE (grouping-expression-list)
grand-total

��

grouping-expression-list:

�

�

,

grouping-expression
,

(grouping-expression)

grand-total:

()

Notes:

1 Alternate specification when used alone in group-by-clause is:
grouping-expression-list WITH ROLLUP.

2 Alternate specification when used alone in group-by-clause is:
grouping-expression-list WITH CUBE.

ROLLUP (grouping-expression-list)
A ROLLUP grouping is an extension to the GROUP BY clause that
produces a result set that contains sub-total rows in addition to the

group-by-clause

Chapter 5. Queries 411

″regular″ grouped rows. Sub-total rows53are ″super-aggregate″ rows that
contain further aggregates whose values are derived by applying the same
column functions that were used to obtain the grouped rows.

A ROLLUP grouping is a series of grouping-sets. The general specification
of a ROLLUP with n elements
GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

is equivalent to
GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn)

(C1,C2,...,Cn-1)
...
(C1,C2)
(C1)
())

Notice that the n elements of the ROLLUP translate to n+1 grouping sets.

Note that the order in which the grouping-expressions is specified is
significant for ROLLUP. For example:
GROUP BY ROLLUP(a,b)

is equivalent to
GROUP BY GROUPING SETS((a,b)

(a)
())

while
GROUP BY ROLLUP(b,a)

is the same as
GROUP BY GROUPING SETS((b,a)

(b)
())

The ORDER BY clause is the only way to guarantee the order of the rows
in the result set. “Example C3” on page 426 illustrates the use of ROLLUP.

CUBE (grouping-expression-list)
A CUBE grouping is an extension to the GROUP BY clause that produces a
result set that contains all the rows of a ROLLUP aggregation and, in
addition, contains ″cross-tabulation″ rows. Cross-tabulation rows are
additional ″super-aggregate″ rows that are not part of an aggregation with
sub-totals.

53. These are called sub-total rows, because that is their most common use, however any column function can be used
for the aggregation. For instance, MAX and AVG are used in “Example C8” on page 432.

group-by-clause

412 SQL Reference

Like a ROLLUP, a CUBE grouping can also be thought of as a series of
grouping-sets. In the case of a CUBE, all permutations of the cubed
grouping-expression-list are computed along with the grand total. Therefore,
the n elements of a CUBE translate to 2**n (2 to the power n) grouping-sets.
For instance, a specification of

GROUP BY CUBE(a,b,c)

is equivalent to
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a,c)
(b,c)
(a)
(b)
(c)
())

Notice that the 3 elements of the CUBE translate to 8 grouping sets.

The order of specification of elements does not matter for CUBE. ’CUBE
(DayOfYear, Sales_Person)’ and ’CUBE (Sales_Person, DayOfYear)’ yield
the same result sets. The use of the word ’same’ applies to content of the
result set, not to its order. The ORDER BY clause is the only way to
guarantee the order of the rows in the result set. “Example C4” on
page 427 illustrates the use of CUBE.

grouping-expression-list
A grouping-expression-list is used within a CUBE or ROLLUP clause to
define the number of elements in the CUBE or ROLLUP operation. This is
controlled by using parentheses to delimit elements with multiple
grouping-expressions.

The rules for a grouping-expression are described in “group-by-clause” on
page 409. For example, suppose that a query is to return the total
expenses for the ROLLUP of City within a Province but not within a
County. However the clause:
GROUP BY ROLLUP(Province, County, City)

results in unwanted sub-total rows for the County. In the clause
GROUP BY ROLLUP(Province, (County, City))

the composite (County, City) forms one element in the ROLLUP and,
therefore, a query that uses this clause will yield the desired result. In
other words, the two element ROLLUP

GROUP BY ROLLUP(Province, (County, City))

generates

group-by-clause

Chapter 5. Queries 413

GROUP BY GROUPING SETS((Province, County, City)
(Province)
())

while the 3 element ROLLUP would generate
GROUP BY GROUPING SETS((Province, County, City)

(Province, County)
(Province)
())

“Example C2” on page 426 also utilizes composite column values.

grand-total
Both CUBE and ROLLUP return a row which is the overall (grand total)
aggregation. This may be separately specified with empty parentheses
within the GROUPING SET clause. It may also be specified directly in the
GROUP BY clause, although there is no effect on the result of the query.
“Example C4” on page 427 uses the grand-total syntax.

Combining Grouping Sets
This can be used to combine any of the types of GROUP BY clauses. When
simple grouping-expression fields are combined with other groups, they are
″appended″ to the beginning of the resulting grouping sets. When ROLLUP or
CUBE expressions are combined, they operate like ″multipliers″ on the
remaining expression, forming additional grouping set entries according to the
definition of either ROLLUP or CUBE.

For instance, combining grouping-expression elements acts as follows:
GROUP BY a, ROLLUP(b,c)

is equivalent to
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a))

Or similarly,
GROUP BY a, b, ROLLUP(c,d)

is equivalent to
GROUP BY GROUPING SETS((a,b,c,d)

(a,b,c)
(a,b))

Combining of ROLLUP elements acts as follows:
GROUP BY ROLLUP(a), ROLLUP(b,c)

is equivalent to

group-by-clause

414 SQL Reference

GROUP BY GROUPING SETS((a,b,c)
(a,b)
(a)
(b,c)
(b)
())

Similarly,
GROUP BY ROLLUP(a), CUBE(b,c)

is equivalent to
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a,c)
(a)
(b,c)
(b)
(c)
())

Combining of CUBE and ROLLUP elements acts as follows:
GROUP BY CUBE(a,b), ROLLUP(c,d)

is equivalent to
GROUP BY GROUPING SETS((a,b,c,d)

(a,b,c)
(a,b)
(a,c,d)
(a,c)
(a)
(b,c,d)
(b,c)
(b)
(c,d)
(c)
())

Like a simple grouping-expression, combining grouping sets also eliminates
duplicates within each grouping set. For instance,

GROUP BY a, ROLLUP(a,b)

is equivalent to
GROUP BY GROUPING SETS((a,b)

(a))

A more complete example of combining grouping sets is to construct a result
set that eliminates certain rows that would be returned for a full CUBE
aggregation.

group-by-clause

Chapter 5. Queries 415

For example, consider the following GROUP BY clause:
GROUP BY Region,

ROLLUP(Sales_Person, WEEK(Sales_Date)),
CUBE(YEAR(Sales_Date), MONTH (Sales_Date))

The column listed immediately to the right of GROUP BY is simply grouped,
those within the parenthesis following ROLLUP are rolled up, and those
within the parenthesis following CUBE are cubed. Thus, the above clause
results in a cube of MONTH within YEAR which is then rolled up within
WEEK within Sales_Person within the Region aggregation. It does not result
in any grand total row or any cross-tabulation rows on Region, Sales_Person
or WEEK(Sales_Date) so produces fewer rows than the clause:

GROUP BY ROLLUP (Region, Sales_Person, WEEK(Sales_Date),
YEAR(Sales_Date), MONTH(Sales_Date))

having-clause

�� HAVING search-condition ��

The HAVING clause specifies an intermediate result table that consists of
those groups of R for which the search-condition is true. R is the result of the
previous clause of the subselect. If this clause is not GROUP BY, R is
considered a single group with no grouping columns.

Each column-name in the search condition must do one of the following:
v Unambiguously identify a grouping column of R.
v Be specified within a column function.
v Be a correlated reference. A column-name is a correlated reference if it

identifies a column of a table-reference in an outer subselect.

A group of R to which the search condition is applied supplies the argument
for each column function in the search condition, except for any function
whose argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a group of R, and
the results used in applying the search condition. In actuality, the subquery is
executed for each group only if it contains a correlated reference. For an
illustration of the difference, see “Example A6” on page 418 and “Example
A7” on page 419.

A correlated reference to a group of R must either identify a grouping column
or be contained within a column function.

group-by-clause

416 SQL Reference

When HAVING is used without GROUP BY, the select list can only be a
column name within a column function, a correlated column reference, a
literal, or a special register.

having-clause

Chapter 5. Queries 417

Examples of subselects

Example A1: Select all columns and rows from the EMPLOYEE table.
SELECT * FROM EMPLOYEE

Example A2: Join the EMP_ACT and EMPLOYEE tables, select all the
columns from the EMP_ACT table and add the employee’s surname
(LASTNAME) from the EMPLOYEE table to each row of the result.

SELECT EMP_ACT.*, LASTNAME
FROM EMP_ACT, EMPLOYEE
WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO

Example A3: Join the EMPLOYEE and DEPARTMENT tables, select the
employee number (EMPNO), employee surname (LASTNAME), department
number (WORKDEPT in the EMPLOYEE table and DEPTNO in the
DEPARTMENT table) and department name (DEPTNAME) of all employees
who were born (BIRTHDATE) earlier than 1930.

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
FROM EMPLOYEE, DEPARTMENT
WHERE WORKDEPT = DEPTNO
AND YEAR(BIRTHDATE) < 1930

Example A4: Select the job (JOB) and the minimum and maximum salaries
(SALARY) for each group of rows with the same job code in the EMPLOYEE
table, but only for groups with more than one row and with a maximum
salary greater than or equal to 27000.
SELECT JOB, MIN(SALARY), MAX(SALARY)

FROM EMPLOYEE
GROUP BY JOB
HAVING COUNT(*) > 1
AND MAX(SALARY) >= 27000

Example A5: Select all the rows of EMP_ACT table for employees (EMPNO)
in department (WORKDEPT) ‘E11’. (Employee department numbers are
shown in the EMPLOYEE table.)

SELECT *
FROM EMP_ACT
WHERE EMPNO IN

(SELECT EMPNO
FROM EMPLOYEE
WHERE WORKDEPT = 'E11')

Example A6: From the EMPLOYEE table, select the department number
(WORKDEPT) and maximum departmental salary (SALARY) for all
departments whose maximum salary is less than the average salary for all
employees.

Examples of subselects

418 SQL Reference

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM EMPLOYEE)

The subquery in the HAVING clause would only be executed once in this
example.

Example A7: Using the EMPLOYEE table, select the department number
(WORKDEPT) and maximum departmental salary (SALARY) for all
departments whose maximum salary is less than the average salary in all
other departments.

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE EMP_COR
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM EMPLOYEE
WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to “Example A6” on page 418, the subquery in the HAVING clause
would need to be executed for each group.

Example A8: Determine the employee number and salary of sales
representatives along with the average salary and head count of their
departments.

This query must first create a nested table expression (DINFO) in order to get
the AVGSALARY and EMPCOUNT columns, as well as the DEPTNO column
that is used in the WHERE clause.
SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT
FROM EMPLOYEE THIS_EMP,

(SELECT OTHERS.WORKDEPT AS DEPTNO,
AVG(OTHERS.SALARY) AS AVGSALARY,
COUNT(*) AS EMPCOUNT

FROM EMPLOYEE OTHERS
GROUP BY OTHERS.WORKDEPT
) AS DINFO

WHERE THIS_EMP.JOB = 'SALESREP'
AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Using a nested table expression for this case saves the overhead of creating
the DINFO view as a regular view. During statement preparation, accessing
the catalog for the view is avoided and, because of the context of the rest of
the query, only the rows for the department of the sales representatives need
to be considered by the view.

Example A9: Display the average education level and salary for 5 random
groups of employees.

Examples of subselects

Chapter 5. Queries 419

This query requires the use of a nested table expression to set a random value
for each employee so that it can subsequently be used in the GROUP BY
clause.

SELECT RANDID , AVG(EDLEVEL), AVG(SALARY)
FROM (SELECT EDLEVEL, SALARY, INTEGER(RAND()*5) AS RANDID

FROM EMPLOYEE
) AS EMPRAND

GROUP BY RANDID

Examples of subselects

420 SQL Reference

Examples of Joins

Example B1: This example illustrates the results of the various joins using
tables J1 and J2. These tables contain rows as shown.

SELECT * FROM J1

W X
--- ------
A 11
B 12
C 13

SELECT * FROM J2

Y Z
--- ------
A 21
C 22
D 23

The following query does an inner join of J1 and J2 matching the first column
of both tables.

SELECT * FROM J1 INNER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
C 13 C 22

In this inner join example the row with column W=’C’ from J1 and the row
with column Y=’D’ from J2 are not included in the result because they do not
have a match in the other table. Note that the following alternative form of an
inner join query produces the same result.

SELECT * FROM J1, J2 WHERE W=Y

The following left outer join will get back the missing row from J1 with nulls
for the columns of J2. Every row from J1 is included.

SELECT * FROM J1 LEFT OUTER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
B 12 - -
C 13 C 22

The following right outer join will get back the missing row from J2 with
nulls for the columns of J1. Every row from J2 is included.

Examples of Joins

Chapter 5. Queries 421

SELECT * FROM J1 RIGHT OUTER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
C 13 C 22
- - D 23

The following full outer join will get back the missing rows from both J1 and
J2 with nulls where appropriate. Every row from both J1 and J2 is included.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
C 13 C 22
- - D 23
B 12 - -

Example B2: Using the tables J1 and J2 from the previous example, examine
what happens when and additional predicate is added to the search condition.

SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=13

W X Y Z
--- ------ --- ------
C 13 C 22

The additional condition caused the inner join to select only 1 row compared
to the inner join in “Example B1” on page 421.

Notice what the impact of this is on the full outer join.
SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=13

W X Y Z
--- ------ --- ------
- - A 21
C 13 C 22
- - D 23
A 11 - -
B 12 - -

The result now has 5 rows (compared to 4 without the additional predicate)
since there was only 1 row in the inner join and all rows of both tables must
be returned.

The following query illustrates that placing the same additional predicate in
WHERE clause has completely different results.

Examples of Joins

422 SQL Reference

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y
WHERE X=13

W X Y Z
--- ------ --- ------
C 13 C 22

The WHERE clause is applied after the intermediate result of the full outer
join. This intermediate result would be the same as the result of the full outer
join query in “Example B1” on page 421. The WHERE clause is applied to this
intermediate result and eliminates all but the row that has X=13. Choosing the
location of a predicate when performing outer joins can have significant
impact on the results. Consider what happens if the predicate was X=12
instead of X=13. The following inner join returns no rows.

SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=12

Hence, the full outer join would return 6 rows, 3 from J1 with nulls for the
columns of J2 and 3 from J2 with nulls for the columns of J1.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=12

W X Y Z
--- ------ --- ------
- - A 21
- - C 22
- - D 23
A 11 - -
B 12 - -
C 13 - -

If the additional predicate is in the WHERE clause instead, 1 row is returned.
SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

WHERE X=12

W X Y Z
--- ------ --- ------
B 12 - -

Example B3: List every department with the employee number and last name
of the manager, including departments without a manager.

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE

ON MGRNO = EMPNO

Example B4: List every employee number and last name with the employee
number and last name of their manager, including employees without a
manager.

Examples of Joins

Chapter 5. Queries 423

SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
FROM EMPLOYEE E LEFT OUTER JOIN

DEPARTMENT INNER JOIN EMPLOYEE M
ON MGRNO = M.EMPNO
ON E.WORKDEPT = DEPTNO

The inner join determines the last name for any manager identified in the
DEPARTMENT table and the left outer join guarantees that each employee is
listed even if a corresponding department is not found in DEPARTMENT.

Examples of Joins

424 SQL Reference

Examples of Grouping Sets, Cube, and Rollup

The queries in “Example C1” through “Example C4” on page 427 use a subset
of the rows in the SALES tables based on the predicate ’WEEK(SALES_DATE)
= 13’.

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SALES AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13

which results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 LUCCHESSI 3
13 6 LUCCHESSI 1
13 6 LEE 2
13 6 LEE 2
13 6 LEE 3
13 6 LEE 5
13 6 GOUNOT 3
13 6 GOUNOT 1
13 6 GOUNOT 7
13 7 LUCCHESSI 1
13 7 LUCCHESSI 2
13 7 LUCCHESSI 1
13 7 LEE 7
13 7 LEE 3
13 7 LEE 7
13 7 LEE 4
13 7 GOUNOT 2
13 7 GOUNOT 18
13 7 GOUNOT 1

Example C1: Here is a query with a basic GROUP BY clause over 3 columns:
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 GOUNOT 11
13 6 LEE 12
13 6 LUCCHESSI 4

Examples of Grouping Sets, Cube, and Rollup

Chapter 5. Queries 425

13 7 GOUNOT 21
13 7 LEE 21
13 7 LUCCHESSI 4

Example C2: Produce the result based on two different grouping sets of rows
from the SALES table.

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY GROUPING SETS ((WEEK(SALES_DATE), SALES_PERSON),

(DAYOFWEEK(SALES_DATE), SALES_PERSON))
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 - GOUNOT 32
13 - LEE 33
13 - LUCCHESSI 8
- 6 GOUNOT 11
- 6 LEE 12
- 6 LUCCHESSI 4
- 7 GOUNOT 21
- 7 LEE 21
- 7 LUCCHESSI 4

The rows with WEEK 13 are from the first grouping set and the other rows
are from the second grouping set.

Example C3: If you use the 3 distinct columns involved in the grouping sets
of “Example C2” and perform a ROLLUP, you can see grouping sets for
(WEEK,DAY_WEEK,SALES_PERSON), (WEEK, DAY_WEEK), (WEEK) and
grand total.
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 GOUNOT 11
13 6 LEE 12
13 6 LUCCHESSI 4
13 6 - 27
13 7 GOUNOT 21

Examples of Grouping Sets, Cube, and Rollup

426 SQL Reference

13 7 LEE 21
13 7 LUCCHESSI 4
13 7 - 46
13 - - 73
- - - 73

Example C4: If you run the same query as “Example C3” on page 426 only
replace ROLLUP with CUBE, you can see additional grouping sets for
(WEEK,SALES_PERSON), (DAY_WEEK,SALES_PERSON), (DAY_WEEK),
(SALES_PERSON) in the result.

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY CUBE (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 GOUNOT 11
13 6 LEE 12
13 6 LUCCHESSI 4
13 6 - 27
13 7 GOUNOT 21
13 7 LEE 21
13 7 LUCCHESSI 4
13 7 - 46
13 - GOUNOT 32
13 - LEE 33
13 - LUCCHESSI 8
13 - - 73
- 6 GOUNOT 11
- 6 LEE 12
- 6 LUCCHESSI 4
- 6 - 27
- 7 GOUNOT 21
- 7 LEE 21
- 7 LUCCHESSI 4
- 7 - 46
- - GOUNOT 32
- - LEE 33
- - LUCCHESSI 8
- - - 73

Example C5: Obtain a result set which includes a grand-total of selected rows
from the SALES table together with a group of rows aggregated by
SALES_PERSON and MONTH.

SELECT SALES_PERSON,
MONTH(SALES_DATE) AS MONTH,
SUM(SALES) AS UNITS_SOLD

Examples of Grouping Sets, Cube, and Rollup

Chapter 5. Queries 427

FROM SALES
GROUP BY GROUPING SETS ((SALES_PERSON, MONTH(SALES_DATE)),

()
)

ORDER BY SALES_PERSON, MONTH

This results in:
SALES_PERSON MONTH UNITS_SOLD
--------------- ----------- -----------
GOUNOT 3 35
GOUNOT 4 14
GOUNOT 12 1
LEE 3 60
LEE 4 25
LEE 12 6
LUCCHESSI 3 9
LUCCHESSI 4 4
LUCCHESSI 12 1
- - 155

Example C6: This example shows two simple ROLLUP queries followed by a
query which treats the two ROLLUPs as grouping sets in a single result set
and specifies row ordering for each column involved in the grouping sets.

Example C6-1:
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))
ORDER BY WEEK, DAY_WEEK

results in:
WEEK DAY_WEEK UNITS_SOLD
----------- ----------- -----------

13 6 27
13 7 46
13 - 73
14 1 31
14 2 43
14 - 74
53 1 8
53 - 8
- - 155

Example C6-2:

Examples of Grouping Sets, Cube, and Rollup

428 SQL Reference

SELECT MONTH(SALES_DATE) AS MONTH,
REGION,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY ROLLUP (MONTH(SALES_DATE), REGION);
ORDER BY MONTH, REGION

results in:
MONTH REGION UNITS_SOLD
----------- --------------- -----------

3 Manitoba 22
3 Ontario-North 8
3 Ontario-South 34
3 Quebec 40
3 - 104
4 Manitoba 17
4 Ontario-North 1
4 Ontario-South 14
4 Quebec 11
4 - 43
12 Manitoba 2
12 Ontario-South 4
12 Quebec 2
12 - 8
- - 155

Example C6-3:
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY GROUPING SETS (ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE)),

ROLLUP(MONTH(SALES_DATE), REGION))
ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:
WEEK DAY_WEEK MONTH REGION UNITS_SOLD
----------- ----------- ----------- --------------- -----------

13 6 - - 27
13 7 - - 46
13 - - - 73
14 1 - - 31
14 2 - - 43
14 - - - 74
53 1 - - 8
53 - - - 8
- - 3 Manitoba 22
- - 3 Ontario-North 8
- - 3 Ontario-South 34
- - 3 Quebec 40
- - 3 - 104

Examples of Grouping Sets, Cube, and Rollup

Chapter 5. Queries 429

- - 4 Manitoba 17
- - 4 Ontario-North 1
- - 4 Ontario-South 14
- - 4 Quebec 11
- - 4 - 43
- - 12 Manitoba 2
- - 12 Ontario-South 4
- - 12 Quebec 2
- - 12 - 8
- - - - 155
- - - - 155

Using the two ROLLUPs as grouping sets causes the result to include
duplicate rows. There are even two grand total rows.

Observe how the use of ORDER BY has affected the results:
v In the first grouped set, week 53 has been repositioned to the end.
v In the second grouped set, month 12 has now been positioned to the end

and the regions now appear in alphabetic order.
v Null values are sorted high.

Example C7: In queries that perform multiple ROLLUPs in a single pass (such
as “Example C6-3” on page 429) you may want to be able to indicate which
grouping set produced each row. The following steps demonstrate how to
provide a column (called GROUP) which indicates the origin of each row in
the result set. By origin, we mean which one of the two grouping sets
produced the row in the result set.

Step 1: Introduce a way of ″generating″ new data values, using a query which
selects from a VALUES clause (which is an alternate form of a fullselect). This
query shows how a table can be derived called ″X″ having 2 columns ″R1″
and ″R2″ and 1 row of data.
SELECT R1,R2
FROM (VALUES('GROUP 1','GROUP 2')) AS X(R1,R2);

results in:
R1 R2
------- -------
GROUP 1 GROUP 2

Step 2: Form the cross product of this table ″X″ with the SALES table. This
add columns ″R1″ and ″R2″ to every row.
SELECT R1, R2, WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION,
SALES AS UNITS_SOLD

FROM SALES,(VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)

Examples of Grouping Sets, Cube, and Rollup

430 SQL Reference

This add columns ″R1″ and ″R2″ to every row.

Step 3: Now we can combine these columns with the grouping sets to include
these columns in the rollup analysis.

SELECT R1, R2,
WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION, SUM(SALES) AS UNITS_SOLD

FROM SALES,(VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)
GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))),

(R2,ROLLUP(MONTH(SALES_DATE), REGION)))
ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:
R1 R2 WEEK DAY_WEEK MONTH REGION UNITS_SOLD
------- ------- -------- --------- --------- --------------- -----------
GROUP 1 - 13 6 - - 27
GROUP 1 - 13 7 - - 46
GROUP 1 - 13 - - - 73
GROUP 1 - 14 1 - - 31
GROUP 1 - 14 2 - - 43
GROUP 1 - 14 - - - 74
GROUP 1 - 53 1 - - 8
GROUP 1 - 53 - - - 8
- GROUP 2 - - 3 Manitoba 22
- GROUP 2 - - 3 Ontario-North 8
- GROUP 2 - - 3 Ontario-South 34
- GROUP 2 - - 3 Quebec 40
- GROUP 2 - - 3 - 104
- GROUP 2 - - 4 Manitoba 17
- GROUP 2 - - 4 Ontario-North 1
- GROUP 2 - - 4 Ontario-South 14
- GROUP 2 - - 4 Quebec 11
- GROUP 2 - - 4 - 43
- GROUP 2 - - 12 Manitoba 2
- GROUP 2 - - 12 Ontario-South 4
- GROUP 2 - - 12 Quebec 2
- GROUP 2 - - 12 - 8
- GROUP 2 - - - - 155
GROUP 1 - - - - - 155

Step 4: Notice that because R1 and R2 are used in different grouping sets,
whenever R1 is non-null in the result, R2 is null and whenever R2 is non-null
in the result, R1 is null. That means you can consolidate these columns into a
single column using the COALESCE function. You can also use this column in
the ORDER BY clause to keep the results of the two grouping sets together.

SELECT COALESCE(R1,R2) AS GROUP,
WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION, SUM(SALES) AS UNITS_SOLD

Examples of Grouping Sets, Cube, and Rollup

Chapter 5. Queries 431

FROM SALES,(VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)
GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))),

(R2,ROLLUP(MONTH(SALES_DATE), REGION)))
ORDER BY GROUP, WEEK, DAY_WEEK, MONTH, REGION;

results in:
GROUP WEEK DAY_WEEK MONTH REGION UNITS_SOLD
------- ----------- ----------- ----------- --------------- -----------
GROUP 1 13 6 - - 27
GROUP 1 13 7 - - 46
GROUP 1 13 - - - 73
GROUP 1 14 1 - - 31
GROUP 1 14 2 - - 43
GROUP 1 14 - - - 74
GROUP 1 53 1 - - 8
GROUP 1 53 - - - 8
GROUP 1 - - - - 155
GROUP 2 - - 3 Manitoba 22
GROUP 2 - - 3 Ontario-North 8
GROUP 2 - - 3 Ontario-South 34
GROUP 2 - - 3 Quebec 40
GROUP 2 - - 3 - 104
GROUP 2 - - 4 Manitoba 17
GROUP 2 - - 4 Ontario-North 1
GROUP 2 - - 4 Ontario-South 14
GROUP 2 - - 4 Quebec 11
GROUP 2 - - 4 - 43
GROUP 2 - - 12 Manitoba 2
GROUP 2 - - 12 Ontario-South 4
GROUP 2 - - 12 Quebec 2
GROUP 2 - - 12 - 8
GROUP 2 - - - - 155

Example C8: The following example illustrates the use of various column
functions when performing a CUBE. The example also makes use of cast
functions and rounding to produce a decimal result with reasonable precision
and scale.

SELECT MONTH(SALES_DATE) AS MONTH,
REGION,
SUM(SALES) AS UNITS_SOLD,
MAX(SALES) AS BEST_SALE,
CAST(ROUND(AVG(DECIMAL(SALES)),2) AS DECIMAL(5,2)) AS AVG_UNITS_SOLD

FROM SALES
GROUP BY CUBE(MONTH(SALES_DATE),REGION)
ORDER BY MONTH, REGION

This results in:
MONTH REGION UNITS_SOLD BEST_SALE AVG_UNITS_SOLD
----------- --------------- ----------- ----------- --------------

3 Manitoba 22 7 3.14
3 Ontario-North 8 3 2.67
3 Ontario-South 34 14 4.25

Examples of Grouping Sets, Cube, and Rollup

432 SQL Reference

3 Quebec 40 18 5.00
3 - 104 18 4.00
4 Manitoba 17 9 5.67
4 Ontario-North 1 1 1.00
4 Ontario-South 14 8 4.67
4 Quebec 11 8 5.50
4 - 43 9 4.78
12 Manitoba 2 2 2.00
12 Ontario-South 4 3 2.00
12 Quebec 2 1 1.00
12 - 8 3 1.60
- Manitoba 41 9 3.73
- Ontario-North 9 3 2.25
- Ontario-South 52 14 4.00
- Quebec 53 18 4.42
- - 155 18 3.87

Examples of Grouping Sets, Cube, and Rollup

Chapter 5. Queries 433

fullselect

�� subselect
(fullselect)

values-clause

�

UNION subselect
UNION ALL (fullselect)
EXCEPT values-clause
EXCEPT ALL
INTERSECT
INTERSECT ALL

��

values-clause:

VALUES �

,

values-row

values-row:

�

expression
NULL

,

(expression)
NULL

The fullselect is a component of the select-statement, the INSERT statement,
and the CREATE VIEW statement. It is also a component of certain predicates
which, in turn are components of a statement. A fullselect that is a component
of a predicate is called a subquery. A fullselect that is enclosed in parentheses is
sometimes called a subquery.

The set operators UNION, EXCEPT, and INTERSECT correspond to the
relational operators union, difference, and intersection.

A fullselect specifies a result table. If a set operator is not used, the result of
the fullselect is the result of the specified subselect or values-clause.

values-clause
Derives a result table by specifying the actual values, using expressions,
for each column of a row in the result table. Multiple rows may be
specified.

NULL can only be used with multiple values-rows and at least one row in
the same column must not be NULL (SQLSTATE 42826).

fullselect

434 SQL Reference

A values-row is specified by:
v A single expression for a single column result table or,
v n expressions (or NULL) separated by commas and enclosed in

parentheses, where n is the number of columns in the result table.

A multiple row VALUES clause must have the same number of
expressions in each values-row (SQLSTATE 42826).

The following are examples of values-clauses and their meaning.
VALUES (1),(2),(3) - 3 rows of 1 column
VALUES 1, 2, 3 - 3 rows of 1 column
VALUES (1, 2, 3) - 1 row of 3 columns
VALUES (1,21),(2,22),(3,23) - 3 rows of 2 columns

A values-clause that is composed of n values-rows, RE1 to REn, where n is
greater than 1, is equivalent to

RE1 UNION ALL RE2 ... UNION ALL REn

This means that the corresponding expressions of each values-row must be
comparable (SQLSTATE 42825) and the resulting data type is based on
“Rules for Result Data Types” on page 107.

UNION or UNION ALL
Derives a result table by combining two other result tables (R1 and R2). If
UNION ALL is specified, the result consists of all rows in R1 and R2. If
UNION is specified without the ALL option, the result is the set of all
rows in either R1 or R2, with the duplicate rows eliminated. In either case,
however, each row of the UNION table is either a row from R1 or a row
from R2.

EXCEPT or EXCEPT ALL
Derives a result table by combining two other result tables (R1 and R2). If
EXCEPT ALL is specified, the result consists of all rows that do not have a
corresponding row in R2, where duplicate rows are significant. If EXCEPT
is specified without the ALL option, the result consists of all rows that are
only in R1, with duplicate rows in the result of this operation eliminated.

INTERSECT or INTERSECT ALL
Derives a result table by combining two other result tables (R1 and R2). If
INTERSECT ALL is specified, the result consists of all rows that are in
both R1 and R2. If INTERSECT is specified without the ALL option, the
result consists of all rows that are in both R1 and R2, with the duplicate
rows eliminated.

The number of columns in the result tables R1 and R2 must be the same
(SQLSTATE 42826). If the ALL keyword is not specified, R1 and R2 must not
include any string columns declared larger than 255 bytes or having a data

fullselect

Chapter 5. Queries 435

type of LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB,
DATALINK, distinct type on any of these types, or structured type
(SQLSTATE 42907).

The columns of the result are named as follows:
v If the nth column of R1 and the nth column of R2 have the same result

column name, then the nth column of R has the result column name.
v If the nth column of R1 and the nth column of R2 have different result

column names, a name is generated. This name cannot be used as the
column name in an ORDER BY or UPDATE clause.

The generated name can be determined by performing a DESCRIBE of the
SQL statement and consulting the SQLNAME field.

Two rows are duplicates of one another if each value in the first is equal to
the corresponding value of the second. (For determining duplicates, two null
values are considered equal.)

When multiple operations are combined in an expression, operations within
parentheses are performed first. If there are no parentheses, the operations are
performed from left to right with the exception that all INTERSECT
operations are performed before UNION or EXCEPT operations.

In the following example, the values of tables R1 and R2 are shown on the
left. The other headings listed show the values as a result of various set
operations on R1 and R2.

R1 R2 UNION
ALL

UNION EXCEPT
ALL

EXCEPT INTER-
SECT
ALL

INTER-
SECT

1 1 1 1 1 2 1 1

1 1 1 2 2 5 1 3

1 3 1 3 2 3 4

2 3 1 4 2 4

2 3 1 5 4

2 3 2 5

3 4 2

4 2

4 3

5 3

3

fullselect

436 SQL Reference

R1 R2 UNION
ALL

UNION EXCEPT
ALL

EXCEPT INTER-
SECT
ALL

INTER-
SECT

3

3

4

4

4

5

For the rules on how the data types of the result columns are determined, see
“Rules for Result Data Types” on page 107.

For the rules on how conversions of string columns are handled, see “Rules
for String Conversions” on page 111.

Examples of a fullselect
Example 1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2: List the employee numbers (EMPNO) of all employees in the
EMPLOYEE table whose department number (WORKDEPT) either begins
with 'E' or who are assigned to projects in the EMP_ACT table whose project
number (PROJNO) equals 'MA2100', 'MA2110', or 'MA2112'.

SELECT EMPNO
FROM EMPLOYEE
WHERE WORKDEPT LIKE 'E%'

UNION
SELECT EMPNO

FROM EMP_ACT
WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

Example 3: Make the same query as in example 2, and, in addition, “tag” the
rows from the EMPLOYEE table with 'emp' and the rows from the EMP_ACT
table with 'emp_act'. Unlike the result from example 2, this query may return
the same EMPNO more than once, identifying which table it came from by
the associated “tag”.

SELECT EMPNO, 'emp'
FROM EMPLOYEE
WHERE WORKDEPT LIKE 'E%'

UNION
SELECT EMPNO, 'emp_act' FROM EMP_ACT

WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

fullselect

Chapter 5. Queries 437

Example 4: Make the same query as in example 2, only use UNION ALL so
that no duplicate rows are eliminated.

SELECT EMPNO
FROM EMPLOYEE
WHERE WORKDEPT LIKE 'E%'

UNION ALL
SELECT EMPNO

FROM EMP_ACT
WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

Example 5: Make the same query as in Example 3, only include an additional
two employees currently not in any table and tag these rows as ″new″.

SELECT EMPNO, 'emp'
FROM EMPLOYEE
WHEREWORKDEPTLIKE 'E%'

UNION
SELECT EMPNO, 'emp_act'

FROM EMP_ACT
WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

UNION
VALUES ('NEWAAA', 'new'), ('NEWBBB', 'new')

Example 6: This example of EXCEPT produces all rows that are in T1 but not
in T2.

(SELECT * FROM T1)
EXCEPT ALL
(SELECT * FROM T2)

If no NULL values are involved, this example returns the same results as
SELECT ALL *

FROM T1
WHERE NOT EXISTS (SELECT * FROM T2

WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

Example 7: This example of INTERSECT produces all rows that are in both
tables T1 and T2, removing duplicates.

(SELECT * FROM T1)
INTERSECT
(SELECT * FROM T2)

If no NULL values are involved, this example returns the same result as
SELECT DISTINCT * FROM T1

WHERE EXISTS (SELECT * FROM T2
WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

where C1, C2, and so on represent the columns of T1 and T2.

Examples of a fullselect

438 SQL Reference

select-statement

��

�

,

WITH common-table-expression

fullselect �

�
order-by-clause fetch-first-clause

*
read-only-clause

(1)
update-clause

�

� * *
optimize-for-clause

��

Notes:

1 The update-clause and the order-by-clause cannot both be specified in
the same select-statement.

The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement, or prepared and then referenced in a
DECLARE CURSOR statement. It can also be issued through the use of
dynamic SQL statements using the command line processor (or similar tools),
causing a result table to be displayed on the user’s screen. In either case, the
table specified by a select-statement is the result of the fullselect.

A select-statement that references a nickname cannot be specified directly in the
DECLARE CURSOR statement.

select-statement

Chapter 5. Queries 439

common-table-expression

��

�

table-name AS (fullselect)
,

(1)
()

column-name

��

Notes:

1 If a common table expression is recursive, or if the fullselect results in
duplicate column names, column names must be specified.

A common table expression permits defining a result table with a table-name that
can be specified as a table name in any FROM clause of the fullselect that
follows. Multiple common table expressions can be specified following the
single WITH keyword. Each common table expression specified can also be
referenced by name in the FROM clause of subsequent common table
expressions.

If a list of columns is specified, it must consist of as many names as there are
columns in the result table of the fullselect. Each column-name must be unique
and unqualified. If these column names are not specified, the names are
derived from the select list of the fullselect used to define the common table
expression.

The table-name of a common table expression must be different from any other
common table expression table-name in the same statement (SQLSTATE 42726).
If the common table expression is specified in an INSERT statement the
table-name cannot be the same as the table or view name that is the object of
the insert (SQLSTATE 42726). A common table expression table-name can be
specified as a table name in any FROM clause throughout the fullselect. A
table-name of a common table expression overrides any existing table, view or
alias (in the catalog) with the same qualified name.

If more than one common table expression is defined in the same statement,
cyclic references between the common table expressions are not permitted
(SQLSTATE 42835). A cyclic reference occurs when two common table
expressions dt1 and dt2 are created such that dt1 refers to dt2 and dt2 refers to
dt1.

The common table expression is also optional prior to the fullselect in the
CREATE VIEW and INSERT statements.

A common table expression can be used:

common-table-expression

440 SQL Reference

v In place of a view to avoid creating the view (when general use of the view
is not required and positioned updates or deletes are not used)

v To enable grouping by a column that is derived from a scalar subselect or
function that is not deterministic or has external action

v When the desired result table is based on host variables
v When the same result table needs to be shared in a fullselect

v When the result needs to be derived using recursion.

If a fullselect of a common table expression contains a reference to itself in a
FROM clause, the common table expression is a recursive common table
expression. Queries using recursion are useful in supporting applications such
as bill of materials (BOM), reservation systems, and network planning. For an
example, see “Appendix M. Recursion Example: Bill of Materials” on
page 1329.

The following must be true of a recursive common table expression:
v Each fullselect that is part of the recursion cycle must start with SELECT or

SELECT ALL. Use of SELECT DISTINCT is not allowed (SQLSTATE 42925).
Furthermore, the unions must use UNION ALL (SQLSTATE 42925).

v The column names must be specified following the table-name of the
common table expression (SQLSTATE 42908).

v The first fullselect of the first union (the initialization fullselect) must not
include a reference to any column of the common table expression in any
FROM clause (SQLSTATE 42836).

v If a column name of the common table expression is referred to in the
iterative fullselect, the data type, length, and code page for the column are
determined based on the initialization fullselect. The corresponding column
in the iterative fullselect must have the same data type and length as the
data type and length determined based on the initialization fullselect and
the code page must match (SQLSTATE 42825). However, for character string
types, the length of the two data types may differ. In this case, the column
in the iterative fullselect must have a length that would always be
assignable to the length determined from the initialization fullselect.

v Each fullselect that is part of the recursion cycle must not include any
column functions, group-by-clauses, or having-clauses (SQLSTATE 42836).
The FROM clauses of these fullselects can include at most one reference to a
common table expression that is part of a recursion cycle (SQLSTATE
42836).

v Subqueries (scalar or quantified) must not be part of any recursion cycles
(SQLSTATE 42836).

When developing recursive common table expressions, remember that an
infinite recursion cycle (loop) can be created. Check that recursion cycles will

common-table-expression

Chapter 5. Queries 441

terminate. This is especially important if the data involved is cyclic. A
recursive common table expression is expected to include a predicate that will
prevent an infinite loop. The recursive common table expression is expected to
include:
v In the iterative fullselect, an integer column incremented by a constant.
v A predicate in the where clause of the iterative fullselect in the form

″counter_col < constant″ or ″counter _col < :hostvar″.

A warning is issued if this syntax is not found in the recursive common table
expression (SQLSTATE 01605).

common-table-expression

442 SQL Reference

order-by-clause

�� ORDER BY �

,
ASC

sort-key
DESC

��

sort-key:

simple-column-name
simple-integer
sort-key-expression

The ORDER BY clause specifies an ordering of the rows of the result table. If
a single sort specification (one sort-key with associated direction) is identified,
the rows are ordered by the values of that sort specification. If more than one
sort specification is identified, the rows are ordered by the values of the first
identified sort specification, then by the values of the second identified sort
specification, and so on. The length attribute of each sort-key must not be more
than 255 characters for a character column or 127 characters for a graphic
column (SQLSTATE 42907), and cannot have a data type of LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK,
distinct type on any of these types, or structured type (SQLSTATE 42907).

A named column in the select list may be identified by a sort-key that is a
simple-integer or a simple-column-name. An unnamed column in the select list
must be identified by an simple-integer or, in some cases, by a
sort-key-expression that matches the expression in the select list (see details of
sort-key-expression). A column is unnamed if the AS clause is not specified and
it is derived from a constant, an expression with operators, or a function.54

Ordering is performed in accordance with the comparison rules described in
Chapter 3. The null value is higher than all other values. If the ORDER BY
clause does not completely order the rows, rows with duplicate values of all
identified columns are displayed in an arbitrary order.

simple-column-name
Usually identifies a column of the result table. In this case,
simple-column-name must be the column name of a named column in the
select list.

54. The rules for determining the name of result columns for a fullselect that involves set operators (UNION,
INTERSECT, or EXCEPT) can be found in “fullselect” on page 434.

order-by-clause

Chapter 5. Queries 443

The simple-column-name may also identify a column name of a table, view
or nested table identified in the FROM clause if the query is a subselect.
An error occurs if the subselect:
v specifies DISTINCT in the select-clause (SQLSTATE 42822)
v produces a grouped result and the simple-column-name is not a

grouping-expression (SQLSTATE 42803).

Determining which column is used for ordering the result is described
under ″Column name in sort keys″ (see “Notes”).

simple-integer
Must be greater than 0 and not greater than the number of columns in the
result table (SQLSTATE 42805). The integer n identifies the nth column of
the result table.

sort-key-expression
An expression that is not simply a column name or an unsigned integer
constant. The query to which ordering is applied must be a subselect to
use this form of sort-key. The sort-key-expression cannot include a
correlated scalar-fullselect (SQLSTATE 42703) or a function with an
external action (SQLSTATE 42845).

Any column-name within a sort-key-expression must conform to the rules
described under ″Column names in sort keys″ (see “Notes”).

There are a number of special cases that further restrict the expressions
that can be specified.
v DISTINCT is specified in the SELECT clause of the subselect

(SQLSTATE 42822).
The sort-key-expression must match exactly with an expression in the
select list of the subselect (scalar-fullselects are never matched).

v The subselect is grouped (SQLSTATE 42803).
The sort-key-expression can:
– be an expression in the select list of the subselect,
– include a grouping-expression from the GROUP BY clause of the

subselect
– include a column function, constant or host variable.

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

Notes
v Column names in sort keys:

– The column name is qualified.

order-by-clause

444 SQL Reference

The query must be a subselect (SQLSTATE 42877). The column name
must unambiguously identify a column of some table, view or nested
table in the FROM clause of the subselect (SQLSTATE 42702). The value
of the column is used to compute the value of the sort specification.

– The column name is unqualified.
- The query is a subselect.

If the column name is identical to the name of more than one column
of the result table, the column name must unambiguously identify a
column of some table, view or nested table in the FROM clause of the
ordering subselect (SQLSTATE 42702). If the column name is identical
to one column, that column is used to compute the value of the sort
specification. If the column name is not identical to a column of the
result table, then it must unambiguously identify a column of some
table, view or nested table in the FROM clause of the fullselect in the
select-statement (SQLSTATE 42702).

- The query is not a subselect (it includes set operations such as union,
except or intersect).
The column name must not be identical to the name of more than one
column of the result table (SQLSTATE 42702). The column name must
be identical to exactly one column of the result table (SQLSTATE
42707) and this column is used to compute the value of the sort
specification.

See “Column Name Qualifiers to Avoid Ambiguity” on page 130 for
more information on qualified column names.

v Limits: The use of a sort-key-expression or a simple-column-name where the
column is not in the select list may result in the addition of the column or
expression to the temporary table used for sorting. This may result in
reaching the limit of the number of columns in a table or the limit on the
size of a row in a table. Exceeding these limits will result in an error if a
temporary table is required to perform the sorting operation.

order-by-clause

Chapter 5. Queries 445

update-clause

�� FOR UPDATE

�

,

OF column-name

��

The FOR UPDATE clause identifies the columns that can be updated in a
subsequent Positioned UPDATE statement. Each column-name must be
unqualified and must identify a column of the table or view identified in the
first FROM clause of the fullselect. If the FOR UPDATE clause is specified
without column names, all updatable columns of the table or view identified
in the first FROM clause of the fullselect are included.

The FOR UPDATE clause cannot be used if one of the following is true:
v The cursor associated with the select-statement is not deletable (see “Notes”

on page 843).
v One of the selected columns is a non-updatable column of a catalog table

and the FOR UPDATE clause has not been used to exclude that column.

update-clause

446 SQL Reference

read-only-clause

�� FOR READ
FETCH

ONLY ��

The FOR READ ONLY clause indicates that the result table is read-only and
therefore the cursor cannot be referred to in Positioned UPDATE and DELETE
statements. FOR FETCH ONLY has the same meaning.

Some result tables are read-only by nature. (For example, a table based on a
read-only view.) FOR READ ONLY can still be specified for such tables, but
the specification has no effect.

For result tables in which updates and deletes are allowed, specifying FOR
READ ONLY (or FOR FETCH ONLY) can possibly improve the performance
of FETCH operations by allowing the database manager to do blocking and
avoid exclusive locks. For example, in programs that contain dynamic SQL
statements without the FOR READ ONLY or ORDER BY clause, the database
manager might open cursors as if the FOR UPDATE clause was specified. It is
recommended, therefore, that the FOR READ ONLY clause be used to
improve performance except in cases where queries will be used in a
Positioned UPDATE or DELETE statements.

A read-only result table must not be referred to in a Positioned UPDATE or
DELETE statement, whether it is read-only by nature or specified as FOR
READ ONLY (FOR FETCH ONLY). See “DECLARE CURSOR” on page 841 for
more information about read-only and updatable cursors.

read-only-clause

Chapter 5. Queries 447

fetch-first-clause

��
1

FETCH FIRST
integer

ROW
ROWS

ONLY ��

The fetch-first-clause sets a maximum number of rows that can be retrieved. It
lets the database manager know that the application does not want to retrieve
more than integer rows, regardless of how many rows there might be in the
result table when this clause is not specified. An attempt to fetch beyond
integer rows is handled the same way as normal end of data (SQLSTATE
02000). The value of integer must be a positive integer (not zero).

Limiting the result table to the first integer rows can improve performance.
The database manager will cease processing the query once it has determined
the first integer rows. If both the fetch-first-clause and the optimize-for-clause are
specified, the lower of the integer values from these clauses will be used to
influence the communications buffer size. The values are considered
independently for optimization purposes.

Specification of the fetch-first-clause in a select-statement makes the cursor not
deletable (read-only). This clause cannot be specified with the FOR UPDATE
clause.

fetch-first-clause

448 SQL Reference

optimize-for-clause

�� OPTIMIZE FOR integer ROWS
ROW

��

The OPTIMIZE FOR clause requests special processing of the select statement.
If the clause is omitted, it is assumed that all rows of the result table will be
retrieved; if it is specified, it is assumed that the number of rows retrieved
will probably not exceed n where n is the value for integer. The value of n
must be a positive integer. Use of the OPTIMIZE FOR clause influences query
optimization based on the assumption that n rows will be retrieved. In
addition, for cursors that are blocked, this clause will influence the number of
rows that will be returned in each block (that is, no more than n rows will be
returned in each block). If both the fetch-first-clause and the optimize-for-clause
are specified, the lower of the integer values from these clauses will be used
to influence the communications buffer size. The values are considered
independently for optimization purposes.

This clause does not limit the number of rows that can be fetched or affect the
result in any other way than performance. Using OPTIMIZE FOR n ROWS
can improve the performance if no more than n rows are retrieved, but may
degrade performance if more than n rows are retrieved.

If the value of n multiplied by the size of the row, exceeds the size of the
communication buffer 55 the OPTIMIZE FOR clause will have no impact on
the data buffers.

55. The size of the communication buffer is defined by the RQRIOBLK or the ASLHEAPSZ configuration parameter.
See the Administration Guide for details.

optimize-for-clause

Chapter 5. Queries 449

Examples of a select-statement
Example 1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2: Select the project name (PROJNAME), start date (PRSTDATE), and
end date (PRENDATE) from the PROJECT table. Order the result table by the
end date with the most recent dates appearing first.

SELECT PROJNAME, PRSTDATE, PRENDATE
FROM PROJECT
ORDER BY PRENDATE DESC

Example 3: Select the department number (WORKDEPT) and average
departmental salary (SALARY) for all departments in the EMPLOYEE table.
Arrange the result table in ascending order by average departmental salary.

SELECT WORKDEPT, AVG(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY 2

Example 4: Declare a cursor named UP_CUR to be used in a C program to
update the start date (PRSTDATE) and the end date (PRENDATE) columns in
the PROJECT table. The program must receive both of these values together
with the project number (PROJNO) value for each row.

EXEC SQL DECLARE UP_CUR CURSOR FOR
SELECT PROJNO, PRSTDATE, PRENDATE

FROM PROJECT
FOR UPDATE OF PRSTDATE, PRENDATE;

Example 5: This example names the expression SAL+BONUS+COMM as
TOTAL_PAY

SELECT SALARY+BONUS+COMM AS TOTAL_PAY
FROM EMPLOYEE
ORDER BY TOTAL_PAY

Example 6: Determine the employee number and salary of sales
representatives along with the average salary and head count of their
departments. Also, list the average salary of the department with the highest
average salary.

Using a common table expression for this case saves the overhead of creating
the DINFO view as a regular view. During statement preparation, accessing
the catalog for the view is avoided and, because of the context of the rest of
the fullselect, only the rows for the department of the sales representatives
need to be considered by the view.
WITH

DINFO (DEPTNO, AVGSALARY, EMPCOUNT) AS
(SELECT OTHERS.WORKDEPT, AVG(OTHERS.SALARY), COUNT(*)

Examples of a select-statement

450 SQL Reference

FROM EMPLOYEE OTHERS
GROUP BY OTHERS.WORKDEPT

),
DINFOMAX AS

(SELECT MAX(AVGSALARY) AS AVGMAX FROM DINFO)
SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY,

DINFO.AVGSALARY, DINFO.EMPCOUNT, DINFOMAX.AVGMAX
FROM EMPLOYEE THIS_EMP, DINFO, DINFOMAX
WHERE THIS_EMP.JOB = 'SALESREP'
AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Examples of a select-statement

Chapter 5. Queries 451

Examples of a select-statement

452 SQL Reference

Chapter 6. SQL Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and
examples of the use of the SQL statements.

Table 18. SQL Statements

SQL Statement Function Page

ALTER BUFFERPOOL Changes the definition of a buffer pool. 464

ALTER NICKNAME Changes the definition of a nickname. 466

ALTER NODEGROUP Changes the definition of a nodegroup. 469

ALTER SERVER Changes the definition of a server. 473

ALTER TABLE Changes the definition of a table. 477

ALTER TABLESPACE Changes the definition of a table space. 503

ALTER TYPE (Structured) Changes the definition of a structured type. 509

ALTER USER MAPPING Changes the definition of a user authorization mapping. 516

ALTER VIEW Changes the definition of a view by altering a reference type
column to add a scope.

518

BEGIN DECLARE SECTION Marks the beginning of a host variable declaration section. 520

CALL Calls a stored procedure. 522

CLOSE Closes a cursor. 530

COMMENT ON Replaces or adds a comment to the description of an object. 532

COMMIT Terminates a unit of work and commits the database changes
made by that unit of work.

543

Compound SQL (Embedded) Combines one or more other SQL statements into an
executable block.

545

CONNECT (Type 1) Connects to an application server according to the rules for
remote unit of work.

550

CONNECT (Type 2) Connects to an application server according to the rules for
application-directed distributed unit of work.

558

CREATE ALIAS Defines an alias for a table, view, or another alias. 566

CREATE BUFFERPOOL Creates a new buffer pool. 569

CREATE DISTINCT TYPE Defines a distinct data type. 572

CREATE EVENT MONITOR Specifies events in the database to monitor. 579

CREATE FUNCTION Registers a user-defined function. 589

© Copyright IBM Corp. 1993, 2000 453

Table 18. SQL Statements (continued)

SQL Statement Function Page

CREATE FUNCTION (External
Scalar)

Registers a user-defined external scalar function. 590

CREATE FUNCTION (External
Table)

Registers a user-defined external table function. 615

CREATE FUNCTION (OLE DB
External Table)

Registers a user-defined OLE DB external table function. 631

CREATE FUNCTION (Source
or Template)

Registers a user-defined sourced function. 639

CREATE FUNCTION (SQL
Scalar, Table or Row)

Registers and defines a user-defined SQL function. 649

CREATE FUNCTION
MAPPING

Defines a function mapping. 657

CREATE INDEX Defines an index on a table. 662

CREATE INDEX EXTENSION Defines an extension object for use with indexes on tables with
structured or distinct type columns.

669

CREATE METHOD Associates a method body with a previously defined method
specification.

676

CREATE NICKNAME Defines a nickname. 681

CREATE NODEGROUP Defines a nodegroup. 684

CREATE PROCEDURE Registers a stored procedure. 687

CREATE SCHEMA Defines a schema. 704

CREATE SERVER Defines a data source to a federated database. 708

CREATE TABLE Defines a table. 712

CREATE TABLESPACE Defines a table space. 764

CREATE TRANSFORM Defines transformation functions. 774

CREATE TRIGGER Defines a trigger. 780

CREATE TYPE (Structured) Defines a structured data type. 792

CREATE TYPE MAPPING Defines a mapping between data types. 816

CREATE USER MAPPING Defines a mapping between user authorizations. 821

CREATE VIEW Defines a view of one or more table, view or nickname. 823

CREATE WRAPPER Registers a wrapper. 839

DECLARE CURSOR Defines an SQL cursor. 841

DECLARE GLOBAL
TEMPORARY TABLE

Defines the Global Temporary Table. 846

DELETE Deletes one or more rows from a table. 855

454 SQL Reference

Table 18. SQL Statements (continued)

SQL Statement Function Page

DESCRIBE Describes the result columns of a prepared SELECT statement. 860

DISCONNECT Terminates one or more connections when there is no active
unit of work.

865

DROP Deletes objects in the database. 868

END DECLARE SECTION Marks the end of a host variable declaration section. 894

EXECUTE Executes a prepared SQL statement. 895

EXECUTE IMMEDIATE Prepares and executes an SQL statement. 900

EXPLAIN Captures information about the chosen access plan. 903

FETCH Assigns values of a row to host variables. 908

FLUSH EVENT MONITOR Writes out the active internal buffer of an event monitor. 911

FREE LOCATOR Removes the association between a locator variable and its
value.

912

GRANT (Database Authorities) Grants authorities on the entire database. 913

GRANT (Index Privileges) Grants the CONTROL privilege on indexes in the database. 916

GRANT (Package Privileges) Grants privileges on packages in the database. 918

GRANT (Schema Privileges) Grants privileges on a schema. 921

GRANT (Server Privileges) Grants privileges to query a specific data source. 924

GRANT (Table, View, or
Nickname Privileges)

Grants privileges on tables, views and nicknames. 926

GRANT (Table Space
Privileges)

Grants privileges on a tablespace. 934

INCLUDE Inserts code or declarations into a source program. 936

INSERT Inserts one or more rows into a table. 938

LOCK TABLE Either prevents concurrent processes from changing a table or
prevents concurrent processes from using a table.

947

OPEN Prepares a cursor that will be used to retrieve values when the
FETCH statement is issued.

949

PREPARE Prepares an SQL statement (with optional parameters) for
execution.

954

REFRESH TABLE Refreshes the data in a summary table. 964

RELEASE (Connection) Places one or more connections in the release-pending state. 965

RELEASE SAVEPOINT Releases a savepoint within a transaction. 967

RENAME TABLE Renames an existing table. 968

RENAME TABLESPACE Renames an existing tablespace. 970

Chapter 6. SQL Statements 455

Table 18. SQL Statements (continued)

SQL Statement Function Page

REVOKE (Database
Authorities)

Revokes authorities from the entire database. 972

REVOKE (Index Privileges) Revokes the CONTROL privilege on given indexes. 975

REVOKE (Package Privileges) Revokes privileges from given packages in the database. 977

REVOKE (Schema Privileges) Revokes privileges on a schema. 980

REVOKE (Server Privileges) Revokes privileges to query a specific data source. 982

REVOKE (Table, View, or
Nickname Privileges)

Revokes privileges from given tables, views or nicknames. 984

REVOKE (Table Space
Privileges)

Revokes the USE privilege on a given table space. 990

ROLLBACK Terminates a unit of work and backs out the database changes
made by that unit of work.

992

SAVEPOINT Sets a savepoint within a transaction. 995

SELECT INTO Specifies a result table of no more than one row and assigns
the values to host variables.

998

SET CONNECTION Changes the state of a connection from dormant to current,
making the specified location the current server.

1000

SET CURRENT DEFAULT
TRANSFORM GROUP

Changes the value of the CURRENT DEFAULT TRANSFORM
GROUP special register.

1002

SET CURRENT DEGREE Changes the value of the CURRENT DEGREE special register. 1004

SET CURRENT EXPLAIN
MODE

Changes the value of the CURRENT EXPLAIN MODE special
register.

1006

SET CURRENT EXPLAIN
SNAPSHOT

Changes the value of the CURRENT EXPLAIN SNAPSHOT
special register.

1008

SET CURRENT PACKAGESET Sets the schema name for package selection. 1010

SET CURRENT QUERY
OPTIMIZATION

Changes the value of the CURRENT QUERY OPTIMIZATION
special register.

1012

SET CURRENT REFRESH
AGE

Changes the value of the CURRENT REFRESH AGE special
register.

1015

SET EVENT MONITOR STATE Activates or deactivates an event monitor. 1017

SET INTEGRITY Sets the check pending state and checks data for constraint
violations.

1019

SET PASSTHRU Opens a session for submitting a data source’s native SQL
directly to the data source.

1029

SET PATH Changes the value of the CURRENT PATH special register. 1031

SET SCHEMA Changes the value of the CURRENT SCHEMA special register. 1033

456 SQL Reference

Table 18. SQL Statements (continued)

SQL Statement Function Page

SET SERVER OPTION Sets server option settings. 1035

SET transition-variable Assigns values to NEW transition variables. 1037

SIGNAL SQLSTATE Signals an error. 1041

UPDATE Updates the values of one or more columns in one or more
rows of a table.

1043

VALUES INTO Specifies a result table of no more than one row and assigns
the values to host variables.

1054

WHENEVER Defines actions to be taken on the basis of SQL return codes. 1056

How SQL Statements Are Invoked

The SQL statements described in this chapter are classified as executable or
nonexecutable. The Invocation section in the description of each statement
indicates whether or not the statement is executable.

An executable statement can be invoked in four ways:
v Embedded in an application program
v Embedded in an SQL procedure.
v Dynamically prepared and executed
v Issued interactively

Note: Statements embedded in REXX are prepared and executed dynamically.

Depending on the statement, some or all of these methods can be used. The
Invocation section in the description of each statement tells which methods can
be used.

A nonexecutable statement can only be embedded in an application program.

In addition to the statements described in this chapter, there is one more SQL
statement construct: the select-statement. (See “select-statement” on page 439.) It
is not included in this chapter because it is used differently from other
statements.

A select-statement can be invoked in three ways:
v Included in DECLARE CURSOR and implicitly executed by OPEN, FETCH

and CLOSE
v Dynamically prepared, referenced in DECLARE CURSOR, and implicitly

executed by OPEN, FETCH and CLOSE

Chapter 6. SQL Statements 457

v Issued interactively.

The first two methods are called, respectively, the static and the dynamic
invocation of select-statement.

The different methods of invoking an SQL statement are discussed below in
more detail. For each method, the discussion includes the mechanism of
execution, interaction with host variables, and testing whether or not the
execution was successful.

Embedding a Statement in an Application Program
SQL statements can be included in a source program that will be submitted to
the precompiler. Such statements are said to be embedded in the program. An
embedded statement can be placed anywhere in the program where a host
language statement is allowed. Each embedded statement must be preceded
by the keywords EXEC and SQL.

Executable statements
An executable statement embedded in an application program is executed
every time a statement of the host language would be executed if specified in
the same place. Thus, a statement within a loop is executed every time the
loop is executed, and a statement within a conditional construct is executed
only when the condition is satisfied.

An embedded statement can contain references to host variables. A host
variable referenced in this way can be used in two ways:
v As input (the current value of the host variable is used in the execution of

the statement)
v As output (the variable is assigned a new value as a result of executing the

statement).

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input. The treatment of other references is described individually for
each statement.

All executable statements should be followed by a test of an SQL return code.
Alternatively, the WHENEVER statement (which is itself nonexecutable) can
be used to change the flow of control immediately after the execution of an
embedded statement.

All objects referenced in DML statements must exist when the statements are
bound to a DB2 Universal Database.

458 SQL Reference

Nonexecutable statements
An embedded nonexecutable statement is processed only by the precompiler.
The precompiler reports any errors encountered in the statement. The
statement is never processed during program execution. Therefore, such
statements should not be followed by a test of an SQL return code.

Embedding a Statement in an SQL Procedure
Statements can be included in the SQL-procedure-body portion of the
CREATE PROCEDURE statement. Such statements are said to be embedded in
the SQL procedure. Statements that can be embedded in an SQL procedure are
specified in “SQL Procedure Statement” on page 1060. Unlike statements
embedded in an application, there is no need for any keywords preceding the
SQL statement. Whenever an SQL statement description refers to a
host-variable, an SQL-variable can be used when the statement is embedded in
an SQL procedure.

Dynamic Preparation and Execution
An application program can dynamically build an SQL statement in the form
of a character string placed in a host variable. In general, the statement is
built from some data available to the program (for example, input from a
workstation). The statement (other than a select-statement) so constructed can
be prepared for execution by means of the (embedded) statement PREPARE
and executed by means of the (embedded) statement EXECUTE. Alternatively,
the (embedded) statement EXECUTE IMMEDIATE can be used to prepare and
execute a statement in one step.

A statement that is going to be dynamically prepared must not contain
references to host variables. It can instead contain parameter markers. (See
“PREPARE” on page 954 for rules concerning the parameter markers.) When
the prepared statement is executed, the parameter markers are effectively
replaced by current values of the host variables specified in the EXECUTE
statement. (See “EXECUTE” on page 895 for rules concerning this
replacement.) Once prepared, a statement can be executed several times with
different values of host variables. Parameter markers are not allowed in
EXECUTE IMMEDIATE.

The successful or unsuccessful execution of the statement is indicated by the
setting of an SQL return code in the SQLCA after the EXECUTE (or EXECUTE
IMMEDIATE) statement. The SQL return code should be checked as described
above. See “SQL Return Codes” on page 461 for more information.

Static Invocation of a select-statement
A select-statement can be included as a part of the (nonexecutable) statement
DECLARE CURSOR. Such a statement is executed every time the cursor is
opened by means of the (embedded) statement OPEN. After the cursor is
open, the result table can be retrieved one row at a time by successive
executions of the FETCH statement.

Chapter 6. SQL Statements 459

Used in this way, the select-statement can contain references to host variables.
These references are effectively replaced by the values that the variables have
at the moment of executing OPEN.

Dynamic Invocation of a select-statement
An application program can dynamically build a select-statement in the form of
a character string placed in a host variable. In general, the statement is built
from some data available to the program (for example, a query obtained from
a workstation). The statement so constructed can be prepared for execution by
means of the (embedded) statement PREPARE, and referenced by a
(nonexecutable) statement DECLARE CURSOR. The statement is then
executed every time the cursor is opened by means of the (embedded)
statement OPEN. After the cursor is open, the result table can be retrieved one
row at a time by successive executions of the FETCH statement.

Used in this way, the select-statement must not contain references to host
variables. It can contain parameter markers instead. (See “PREPARE” on
page 954 for rules concerning the parameter markers.) The parameter markers
are effectively replaced by the values of the host variables specified in the
OPEN statement. (See “OPEN” on page 949 for rules concerning this
replacement.)

Interactive Invocation
A capability for entering SQL statements from a workstation is part of the
architecture of the database manager. A statement entered in this way is said
to be issued interactively.

A statement issued interactively must be an executable statement that does
not contain parameter markers or references to host variables, because these
make sense only in the context of an application program.

460 SQL Reference

SQL Return Codes

An application program containing executable SQL statements can use either
the SQLCODE or SQLSTATE values to handle return codes from SQL
statements. There are two ways in which an application can get access to
these values.
v Include a structure named SQLCA. An SQLCA is provided automatically in

REXX. In other languages, an SQLCA can be obtained by using the
INCLUDE SQLCA statement.
The SQLCA includes an integer variable named SQLCODE and a character
string variable named SQLSTATE.

v When LANGLEVEL SQL92E is specified as a precompile option, a variable
SQLCODE or SQLSTATE may be declared in the SQL declare section of the
program. If neither of these variables is declared in the SQL declare section,
it is assumed that a variable SQLCODE is declared elsewhere in the
program. When using LANGLEVEL SQL92E, the program should not have
an INCLUDE SQLCA statement.

Occasionally, warning conditions are mentioned in addition to error
conditions with respect to return codes. A warning SQLCODE is a positive
value and a warning SQLSTATE has the first two characters set to ’01’.

SQLCODE
An SQLCODE is set by the database manager after each SQL statement is
executed. All database managers conform to the ISO/ANSI SQL standard, as
follows:
v If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.
v If SQLCODE = 100, “no data” was found. For example, a FETCH statement

returned no data, because the cursor was positioned after the last row of
the result table.

v If SQLCODE > 0 and not = 100, execution was successful with a warning
v If SQLCODE = 0 and SQLWARN0 = 'W', execution was successful,

however, one or more warning indicators were set. Refer to “Appendix B.
SQL Communications (SQLCA)” on page 1107 for more details.

v If SQLCODE < 0, execution was not successful.

The meaning of SQLCODE values other than 0 and 100 is product-specific.
See the Message Reference for the product-specific meanings.

SQLSTATE
SQLSTATE is also set by the database manager after execution of each SQL
statement. Thus, application programs can check the execution of SQL
statements by testing SQLSTATE instead of SQLCODE.

Chapter 6. SQL Statements 461

SQLSTATE provides application programs with common codes for common
error conditions. Furthermore, SQLSTATE is designed so that application
programs can test for specific errors or classes of errors. The coding scheme is
the same for all IBM database managers and is based on the ISO/ANSI SQL92
standard. For a complete list of the possible values of SQLSTATE, see the
Message Reference.

462 SQL Reference

SQL Comments

Static SQL statements can include host language or SQL comments. SQL
comments are introduced by two hyphens.

These rules apply to the use of SQL comments:
v The two hyphens must be on the same line, not separated by a space.
v Comments can be started wherever a space is valid (except within a

delimiter token or between 'EXEC' and 'SQL').
v Comments are terminated by the end of the line.
v Comments are not allowed within statements that are dynamically prepared

(using PREPARE or EXECUTE IMMEDIATE).
v In COBOL, the hyphens must be preceded by a space.

Example: This example shows how to include comments in an SQL statement
within a C program:

EXEC SQL
CREATE VIEW PRJ_MAXPER -- projects with most support personnel

AS SELECT PROJNO, PROJNAME -- number and name of project
FROM PROJECT
WHEREDEPTNO = 'E21' -- systems support dept code
AND PRSTAFF > 1;

Chapter 6. SQL Statements 463

ALTER BUFFERPOOL
The ALTER BUFFERPOOL statement is used to do the following:
v modify the size of the buffer pool on all partitions (or nodes) or on a single

partition
v turn on or off the use of extended storage
v add this buffer pool definition to a new nodegroup.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.
However, if the bind option DYNAMICRULES BIND applies, the statement
cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM
authority.

Syntax

�� ALTER BUFFERPOOL bufferpool-name �

� SIZE number-of-pages
NODE node-number
NOT EXTENDED STORAGE
EXTENDED STORAGE

ADD NODEGROUP nodegroup-name

��

Description

bufferpool-name
Names the buffer pool. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). It must be a buffer pool described in the
catalog.

NODE node-number
Specifies the partition on which size of the buffer pool is modified. The
partition must be in one of the nodegroups for the buffer pool (SQLSTATE
42729). If this clause is not specified, then the size of the buffer pool is
modified on all partitions on which the buffer pool exists that used the
default size for the buffer pool (did not have a size specified in the
except-on-nodes-clause of the CREATE buffer pool statement).

ALTER BUFFERPOOL

464 SQL Reference

SIZE number-of-pages
The size of the buffer pool specified as the number of pages. 56

EXTENDED STORAGE
If the extended storage configuration is turned on 57, pages that are being
migrated out of this buffer pool, will be cached in the extended storage.

NOT EXTENDED STORAGE
Even if the extended storage configuration is turned on, pages that are
being migrated out of this buffer pool, will NOT be cached in the
extended storage.

ADD NODEGROUP nodegroup-name
Adds this nodegroup to the list of nodegroups to which the buffer pool
definition is applicable. For any partition in the nodegroup that does not
already have the bufferpool defined, the bufferpool is created on the
partition using the default size specified for the bufferpool. Table spaces
in nodegroup-name may specify this buffer pool. The nodegroup must
currently exist in the database (SQLSTATE 42704).

Notes
v Although the buffer pool definition is transactional and the changes to the

buffer pool definition will be reflected in the catalog tables on commit, no
changes to the actual buffer pool will take effect until the next time the
database is started. The current attributes of the buffer pool will exist until
then, and there will not be any impact to the buffer pool in the interim.
Tables created in table spaces of new nodegroups will use the default buffer
pool.

v There should be enough real memory on the machine for the total of all the
buffer pools, as well as for the rest of the database manager and application
requirements.

56. The size can be specified with a value of (-1) which will indicate that the buffer pool size should be taken from
the BUFFPAGE database configuration parameter.

57. Extended storage configuration is turned on by setting the database configuration parameters
NUM_ESTORE_SEGS and ESTORE_SEG_SIZE to non-zero values. See Administration Guide for details.

ALTER BUFFERPOOL

Chapter 6. SQL Statements 465

ALTER NICKNAME
The ALTER NICKNAME statement modifies the federated database’s
representation of a data source table or view by:
v Changing the local names of the table’s or view’s columns
v Changing the local data types of these columns
v Adding, changing, or deleting options for these columns

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v ALTER privilege on the nickname specified in the statement
v CONTROL privilege on the nickname specified in the statement
v ALTERIN privilege on the schema, if the schema name of the nickname

exists
v Definer of the nickname as recorded in the DEFINER column of the catalog

view for the nickname

Syntax

�� ALTER NICKNAME nickname �

� � �

,
COLUMN

ALTER column-name LOCAL NAME column-name
LOCAL TYPE data-type

(1)
federated-column-options

��

federated-column-options:

�

,
ADD

OPTIONS (column-option-name string-constant)
SET

DROP column-option-name

ALTER NICKNAME

466 SQL Reference

Notes:

1 If the user needs to specify the federated-column-options clause in
addition to the LOCAL NAME parameter, the LOCAL TYPE parameter,
or both, the user must specify the federated-column-options clause last.

Description

nickname
Identifies the nickname for the data source table or view that contains the
column specified after the COLUMN keyword. It must be a nickname
described in the catalog.

ALTER COLUMN column-name
Names the column to be altered. The column-name is the federated server’s
current name for the column of the table or view at the data source. The
column-name must identify an existing column of the data source table or
view referenced by nickname.

LOCAL NAME column-name
Is the new name by which the federated server is to reference the column
identified by the ALTER COLUMN column-name parameter. This new
name must be a valid DB2 identifier.

LOCAL TYPE data-type
Maps the specified column’s data type to a local data type other than the
one that it maps to now. The new type is denoted by data-type.

The data-type cannot be LONG VARCHAR, LONG VARGRAPHIC,
DATALINK, a large object (LOB) data type, or a user-defined type.

OPTIONS
Indicates what column options are to be enabled, reset, or dropped for the
column specified after the COLUMN keyword. Refer to “Column
Options” on page 1247 for descriptions of column-option-names and their
settings.

ADD
Enables a column option.

SET
Changes the setting of a column option.

column-option-name
Names a column option that is to be enabled or reset.

string-constant
Specifies the setting for column-option-name as a character string
constant.

DROP column-option-name
Drops a column option.

ALTER NICKNAME

Chapter 6. SQL Statements 467

Rules
v If a view has been created on a nickname, the ALTER NICKNAME

statement cannot be used to change the local names or data types for the
columns in the table or view that the nickname references (SQLSTATE
42601). The statement can be used, however, to enable, reset, or drop
column options for these columns.

Notes
v If ALTER NICKNAME is used to change the local name for a column in a

table or view that a nickname references, queries of the column must
reference it by its new name.

v A column option cannot be specified more than once in the same ALTER
NICKNAME statement (SQLSTATE 42853). When a column option is
enabled, reset, or dropped, any other column options that are in use are not
affected.

v When the local specification of a column’s data type is changed, the
database manager invalidates any statistics (HIGH2KEY, LOW2KEY, and so
on) gathered for that column.

v The ALTER NICKNAME statement cannot be processed within a unit of
work (UOW) if the nickname referenced in this statement is already
referenced by a SELECT statement in the same UOW (SQLSTATE 55007).

Examples
Example 1: The nickname NICK1 references a DB2 Universal Database for
AS/400 table called T1. Also, COL1 is the local name that references this
table’s first column, C1. Change the local name for C1 to NEWCOL.

ALTER NICKNAME NICK1
ALTER COLUMN COL1
LOCAL NAME NEWCOL

Example 2: The nickname EMPLOYEE references a DB2 Universal Database for
OS/390 table called EMP. Also, SALARY is the local name that references
EMP_SAL, one of this table’s columns. The column’s data type, FLOAT, maps
to the local data type, DOUBLE. Change the mapping so that FLOAT maps to
DECIMAL (10, 5).

ALTER NICKNAME EMPLOYEE
ALTER COLUMN SALARY
LOCAL TYPE DECIMAL(10,5)

Example 3: Indicate that in an Oracle table, a column with the data type of
VARCHAR doesn’t have trailing blanks. The nickname for the table is NICK2,
and the local name for the column is COL1.

ALTER NICKNAME NICK2
ALTER COLUMN COL1
OPTIONS (ADD VARCHAR_NO_TRAILING_BLANKS 'Y')

ALTER NICKNAME

468 SQL Reference

ALTER NODEGROUP
The ALTER NODEGROUP statement is used to:
v add one or more partitions or nodes to a nodegroup
v drop one or more partitions from a nodegroup.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.
However, if the bind option DYNAMICRULES BIND applies, the statement
cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM
authority.

Syntax

�� ALTER NODEGROUP nodegroup-name �

� �

,

ADD NODE nodes-clause
NODES LIKE NODE node-number

WITHOUT TABLESPACES
DROP NODE nodes-clause

NODES

��

nodes-clause:

(�

,

node-number1
TO node-number2

)

Description

nodegroup-name
Names the nodegroup. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). It must be a nodegroup described in the
catalog. IBMCATGROUP and IBMTEMPGROUP cannot be specified
(SQLSTATE 42832).

ADD NODE
Specifies the specific partition or partitions to add to the nodegroup.
NODES is a synonym for NODE. Any specified partition must not already
be defined in the nodegroup (SQLSTATE 42728).

ALTER NODEGROUP

Chapter 6. SQL Statements 469

DROP NODE
Specifies the specific partition or partitions to drop from the nodegroup.
NODES is a synonym for NODE. Any specified partition must already be
defined in the nodegroup (SQLSTATE 42729).

nodes-clause
Specifies the partition or partitions to be added or dropped.

node-number1
Specify a specific partition number.

TO node-number2
Specify a range of partition numbers. The value of node-number2 must
be greater than or equal to the value of node-number1 (SQLSTATE
428A9).

LIKE NODE node-number
Specifies that the containers for the existing table spaces in the nodegroup
will be the same as the containers on the specified node-number. The
partition specified must be a partition that existed in the nodegroup prior
to this statement and is not included in a DROP NODE clause of the same
statement.

WITHOUT TABLESPACES
Specifies that the default table spaces are not created on the newly added
partition or partitions. The ALTER TABLESPACE using the FOR NODE
clause must be used to define containers for use with the table spaces that
are defined on this nodegroup. If this option is not specified, the default
containers are specified on newly added partitions for each table space
defined on the nodegroup.

Rules
v Each partition or node specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729). See “Data Partitioning Across
Multiple Partitions” on page 59 for information about this file.

v Each node-number listed in the ON NODES clause must be for a unique
partition (SQLSTATE 42728).

v A valid partition number is between 0 and 999 inclusive (SQLSTATE 42729).
v A partition cannot appear in both the ADD and DROP clauses (SQLSTATE

42728).
v There must be at least one partition remaining in the nodegroup. The last

partition cannot be dropped from a nodegroup (SQLSTATE 428C0).
v If neither the LIKE NODE clause nor the WITHOUT TABLESPACES clause

is specified when adding a partition, the default is to use the lowest
partition number of the existing partitions in the nodegroup (say it is 2)
and proceed as if LIKE NODE 2 had been specified. For an existing
partition to be used as the default it must have containers defined for all

ALTER NODEGROUP

470 SQL Reference

the table spaces in the nodegroup (column IN_USE of
SYSCAT.NODEGROUPDEF is not ’T’).

Notes
v When a partition or node is added to a nodegroup, a catalog entry is made

for the partition (see SYSCAT.NODEGROUPDEF). The partitioning map is
changed immediately to include the new partition along with an indicator
(IN_USE) that the partition is in the partitioning map if either:
– no table spaces are defined in the nodegroup or
– no tables are defined in the table spaces defined in the nodegroup and

the WITHOUT TABLESPACES clause was not specified.

The partitioning map is not changed and the indicator (IN_USE) is set to
indicate that the partition is not included in the partitioning map if either:
– tables exist in table spaces in the nodegroup or
– table spaces exist in the nodegroup and the WITHOUT TABLESPACES

clause was specified.

To change the partitioning map, the REDISTRIBUTE NODEGROUP
command must be used. This redistributes any data, changes the
partitioning map, and changes the indicator. Table space containers need to
be added before attempting to redistribute data if the WITHOUT
TABLESPACES clause was specified.

v When a partition is dropped from a nodegroup, the catalog entry for the
partition (see SYSCAT.NODEGROUPDEF) is updated. If there are no tables
defined in the table spaces defined in the nodegroup, the partitioning map
is changed immediately to exclude the dropped partition and the entry for
the partition in the nodegroup is dropped. If tables exist, the partitioning
map is not changed and the indicator (IN_USE) is set to indicate that the
partition is waiting to be dropped. The REDISTRIBUTE NODEGROUP
command must be used to redistribute the data and drop the entry for the
partition from the nodegroup.

Example
Assume that you have a six-partition database that has the following
partitions: 0, 1, 2, 5, 7, and 8. Two partitions are added to the system with
partition numbers 3 and 6.
v Assume that you want to add both partitions or nodes 3 and 6 to a

nodegroup called MAXGROUP and have the table space containers like
those on partition 2. The statement is as follows:
ALTER NODEGROUP MAXGROUP
ADD NODES (3,6) LIKE NODE 2

v Assume that you want to drop partition 1 and add partition 6 to nodegroup
MEDGROUP. You will define the table space containers separately for
partition 6 using ALTER TABLESPACE. The statement is as follows:

ALTER NODEGROUP

Chapter 6. SQL Statements 471

ALTER NODEGROUP MEDGROUP
ADD NODE(6) WITHOUT TABLESPACES
DROP NODE(1)

ALTER NODEGROUP

472 SQL Reference

ALTER SERVER
The ALTER SERVER statement58 is used to:
v Modify the definition of a specific data source, or the definition of a

category of data sources
v Make changes in the configuration of a specific data source, or the

configuration of a category of data sources—changes that will persist over
multiple connections to the federated database.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must include either SYSADM or
DBADM authority on the federated database.

Syntax

�� ALTER SERVER �

� server-name
VERSION server-version

TYPE server-type
VERSION server-version

WRAPPER wrapper-name

�

� �

,
ADD

OPTIONS (server-option-name string-constant)
SET

DROP server-option-name

��

58. In this statement, the word SERVER and the parameter names that start with server- refer only to data sources in a
federated system. They do not refer to the federated server in such a system, or to DRDA application servers. For
information about federated systems, see “DB2 Federated Systems” on page 41. For information about DRDA
application servers, see “Distributed Relational Database” on page 29.

ALTER SERVER

Chapter 6. SQL Statements 473

server-version:

version
. release

. mod
version-string-constant

Description

server-name
Identifies the federated server’s name for the data source to which the
changes being requested are to apply. The data source must be one that is
described in the catalog.

VERSION
After server-name, VERSION and its parameter specify a new version of
the data source that server-name denotes.

version
Specifies the version number. version must be an integer.

release
Specifies the number of the release of the version denoted by version.
release must be an integer.

mod
Specifies the number of the modification of the release denoted by
release. mod must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, ‘8i’); or it can
be the concatenated values of version, release, and, if applicable, mod
(for example, ‘8.0.3’).

TYPE server-type
Specifies the type of data source to which the changes being requested are
to apply. The server type must be one that is listed in the catalog.

VERSION
After server-type, VERSION and its parameter specify the version of the
data sources for which server options are to be enabled, reset, or dropped.

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to
interact with data sources of the type and version denoted by server-type
and server-version. The wrapper must be listed in the catalog.

OPTIONS
Indicates what server options are to be enabled, reset, or dropped for the
data source denoted by server-name, or for the category of data sources

ALTER SERVER

474 SQL Reference

denoted by server-type and its associated parameters. Refer to “Server
Options” on page 1249 for descriptions of server-option-names and their
settings.

ADD
Enables a server option.

SET
Changes the setting of a server option.

server-option-name
Names a server option that is to be enabled or reset.

string-constant
Specifies the setting for server-option-name as a character string
constant.

DROP server-option-name
Drops a server option.

Notes
v This statement does not support the DBNAME and NODE server options

(SQLSTATE 428EE).
v A server option cannot be specified more than once in the same ALTER

SERVER statement (SQLSTATE 42853). When a server option is enabled,
reset, or dropped, any other server options that are in use are not affected.

v An ALTER SERVER statement within a given unit of work (UOW) cannot
be processed under either of the following conditions:
– The statement references a single data source, and the UOW already

includes a SELECT statement that references a nickname for a table or
view within this data source (SQLSTATE 55007).

– The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes a
SELECT statement that references a nickname for a table or view within
one of these data sources (SQLSTATE 55007).

v If the server option is set to one value for a type of data source, and set to
another value for an instance of the type, the second value overrides the
first one for the instance. For example, assume that PLAN_HINTS is set to
‘Y’ for server type ORACLE, and to ‘N’ for an Oracle data source named
DELPHI. This configuration causes plan hints to be enabled at all Oracle
data sources except DELPHI.

Examples
Example 1: Ensure that when authorization IDs are sent to your Oracle 8.0.3
data sources, the case of the IDs will remain unchanged. Also, assume that
these data sources have started to run on an upgraded CPU that’s half as fast
as your local CPU. Inform the optimizer of this statistic.

ALTER SERVER

Chapter 6. SQL Statements 475

ALTER SERVER
TYPE ORACLE
VERSION 8.0.3
OPTIONS

(ADD FOLD_ID 'N',
SET CPU_RATIO '2.0')

Example 2: Indicate that a DB2 Universal Database for AS/400 Version 3.0 data
source called SUNDIAL has been upgraded to Version 3.1.

ALTER SERVER SUNDIAL
VERSION 3.1

ALTER SERVER

476 SQL Reference

ALTER TABLE
The ALTER TABLE statement modifies existing tables by:
v Adding one or more columns to a table
v Adding or dropping a primary key
v Adding or dropping one or more unique or referential constraints
v Adding or dropping one or more check constraint definitions
v Altering the length of a VARCHAR column
v Altering a reference type column to add a scope
v Altering the generation expression of a generated column
v Adding or dropping a partitioning key
v Changing table attributes such as the data capture option, pctfree, lock size,

or append mode.
v Setting the table to not logged initially state.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v ALTER privilege on the table to be altered
v CONTROL privilege on the table to be altered
v ALTERIN privilege on the schema of the table
v SYSADM or DBADM authority.

To create or drop a foreign key, the privileges held by the authorization ID of
the statement must include one of the following on the parent table:
v REFERENCES privilege on the table
v REFERENCES privilege on each column of the specified parent key
v CONTROL privilege on the table
v SYSADM or DBADM authority.

To drop a primary key or unique constraint of table T, the privileges held by
the authorization ID of the statement must include at least one of the
following on every table that is a dependent of this parent key of T:
v ALTER privilege on the table
v CONTROL privilege on the table
v ALTERIN privilege on the schema of the table

ALTER TABLE

Chapter 6. SQL Statements 477

v SYSADM or DBADM authority.

To alter a table to become a summary table (using a fullselect), the privileges
held by the authorization ID of the statement must include at least one of the
following:
v CONTROL on the table
v SYSADM or DBADM authority;

and at least one of the following, on each table or view identified in the
fullselect:
v SELECT and ALTER privilege on the table or view
v CONTROL privilege on the table or view
v SELECT privilege on the table or view and ALTERIN privilege on the

schema of the table or view
v SYSADM or DBADM authority.

To alter a table so that it is no longer a summary table, the privileges held by
the authorization ID of the statement must include at least one of the
following, on each table or view identified in the fullselect used to define the
summary table:
v ALTER privilege on the table or view
v CONTROL privilege on the table or view
v ALTERIN privilege on the schema of the table or view
v SYSADM or DBADM authority

Syntax

�� ALTER TABLE table-name �

ALTER TABLE

478 SQL Reference

� �
(1) COLUMN

ADD column-definition
unique-constraint
referential-constraint
check-constraint
partitioning-key-definition

COLUMN
ALTER column-alteration
DROP PRIMARY KEY

FOREIGN KEY constraint-name
UNIQUE
CHECK
CONSTRAINT

PARTITIONING KEY
DATA CAPTURE NONE

CHANGES
INCLUDE LONGVAR COLUMNS

ACTIVATE NOT LOGGED INITIALLY
WITH EMPTY TABLE

PCTFREE integer
LOCKSIZE ROW

TABLE
APPEND ON

OFF
CARDINALITY

VOLATILE
NOT VOLATILE

SET SUMMARY AS DEFINITION ONLY
summary-table-definition

��

summary-table-definition:

(fullselect) refreshable-table-options

refreshable-table-options:

DATA INITIALLY DEFERRED �

�
ENABLE QUERY OPTIMIZATION

REFRESH DEFERRED
IMMEDIATE DISABLE QUERY OPTIMIZATION

column-alteration:

ALTER TABLE

Chapter 6. SQL Statements 479

column-name SET DATA TYPE VARCHAR (integer)
CHARACTER VARYING
CHAR VARYING

EXPRESSION AS (generation-expression)
ADD SCOPE typed-table-name

typed-view-name

Notes:

1 For compatibility with Version 1, the ADD keyword is optional for:
v unnamed PRIMARY KEY constraints
v unnamed referential constraints
v referential constraints whose name follows the phrase FOREIGN KEY.

column-definition:

column-name
(1)

data-type
column-options

column-options:

�

NOT NULL
(2)

lob-options
(3)

datalink-options
(4)

SCOPE typed-table-name2
typed-view-name2

PRIMARY KEY
(5) UNIQUE

CONSTRAINT constraint-name references-clause
CHECK (check-condition)

generated-column-spec

Notes:

1 If the first column-option chosen is the generated-column-spec, then the
data-type can be omitted and computed by the generation-expression.

2 The lob-options clause only applies to large object types (BLOB, CLOB
and DBCLOB) and distinct types based on large object types.

ALTER TABLE

480 SQL Reference

3 The datalink-options clause only applies to the DATALINK type
and distinct types based on the DATALINK type.

4 The SCOPE clause only applies to the REF type.

5 For compatibility with Version 1, the CONSTRAINT keyword may be
omitted in a column-definition defining a references-clause.

generated-column-spec:

default-clause
GENERATED ALWAYS AS (generation-expression)

default-clause:

WITH
DEFAULT

constant
datetime-special-register
USER
NULL
cast-function (constant)

datetime-special-register
USER

lob-options:

LOGGED
*

NOT LOGGED

NOT COMPACT
* *

COMPACT

datalink-options:

LINKTYPE URL
NO LINK CONTROL

FILE LINK CONTROL file-link-options
MODE DB2OPTIONS

file-link-options:

* INTEGRITY ALL * READ PERMISSION FS
DB

�

ALTER TABLE

Chapter 6. SQL Statements 481

� * WRITE PERMISSION FS
BLOCKED

* RECOVERY NO
YES

�

� * ON UNLINK RESTORE *
DELETE

references-clause:

REFERENCES table-name

�

,

(column-name)

rule-clause

rule-clause:

ON DELETE NO ACTION ON UPDATE NO ACTION
* * *

ON DELETE RESTRICT ON UPDATE RESTRICT
CASCADE
SET NULL

unique-constraint:

CONSTRAINT constraint-name
UNIQUE
PRIMARY KEY

�

,

(column-name)

referential-constraint:

(1)
CONSTRAINT constraint-name

�

,

FOREIGN KEY (column-name) �

� references-clause

check-constraint:

CONSTRAINT constraint-name
CHECK (check-condition)

ALTER TABLE

482 SQL Reference

partitioning-key-definition:

PARTITIONING KEY �

,

(column-name)
USING HASHING

Notes:

1 For compatibility with Version 1, constraint-name may be specified
following FOREIGN KEY (without the CONSTRAINT keyword).

Description

table-name
Identifies the table to be changed. It must be a table described in the
catalog and must not be a view or a catalog table. If table-name identifies a
summary table, alterations are limited to setting the summary table to
definition only, activating not logged initially, changing pctfree, locksize,
append, or volatile. The table-name cannot be a nickname (SQLSTATE
42809) or a declared temporary table (SQLSTATE 42995).

SET SUMMARY AS
Allows alteration of the properties of a summary table.

DEFINITION ONLY
Change a summary table so that it is no longer considered a summary
table. The table specified by table-name must be defined as a summary
table that is not replicated (SQLSTATE 428EW). The definition of the
columns of table-name is not changed but the table can no longer be
used for query optimization and the REFRESH TABLE statement can
no longer be used.

summary-table-definition
Changes a regular table to a summary table for use during query
optimization. The table specified by table-name must not:
v be previously defined as a summary table
v be a typed table
v have any constraints, unique indexes, or triggers defined
v be referenced in the definition of another summary table.

If table-name does not meet these criteria, an error is returned
(SQLSTATE 428EW).

fullselect
Defines the query in which the table is based. The columns of the
existing table must:
v have the same number of columns
v have exactly the same data types

ALTER TABLE

Chapter 6. SQL Statements 483

v have the same column names in the same ordinal positions

as the result columns of fullselect (SQLSTATE 428EW). For details
about specifying the fullselect for a summary table, see “CREATE
TABLE” on page 712. One additional restriction is that table-name
cannot be directly or indirectly referenced in the fullselect.

refreshable-table-options
Lists the refreshable options for altering a summary table.

DATA INITIALLY DEFERRED
The data in the table must be validated using the REFRESH
TABLE or SET INTEGRITY statement.

REFRESH
Indicates how the data in the table is maintained.

DEFERRED
The data in the table can be refreshed at any time using
the REFRESH TABLE statement. The data in the table only
reflects the result of the query as a snapshot at the time
the REFRESH TABLE statement is processed. Summary
tables defined with this attribute do not allow INSERT,
UPDATE, or DELETE statements (SQLSTATE 42807).

IMMEDIATE
The changes made to the underlying tables as part of a
DELETE, INSERT, or UPDATE are cascaded to the
summary table. In this case, the content of the table, at
any point-in-time, is the same as if the specified subselect
is processed. Summary tables defined with this attribute
do not allow INSERT, UPDATE, or DELETE statements
(SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION
The summary table can be used for query optimization.

DISABLE QUERY OPTIMIZATION
The summary table will not be used for query optimization.
The table can still be queried directly.

ADD column-definition
Adds a column to the table. The table must not be a typed table
(SQLSTATE 428DH). If the table has existing rows, every value of the
newly added column'' is its default value. The new column is the last
column of the table. That is, if initially there are n columns, the added
column is column n+1. The value of n cannot be greater than 499.

Adding the new column must not make the total byte count of all
columns exceed the maximum record size as specified in Table 34 on
page 1105. See “Notes” on page 753 for more information.

ALTER TABLE

484 SQL Reference

column-name
Is the name of the column to be added to the table. The name cannot
be qualified. Existing column names in the table cannot be used
(SQLSTATE 42711).

data-type
Is one of the data types listed under “CREATE TABLE” on page 712.

NOT NULL
Prevents the column from containing null values. The default-clause
must also be specified (SQLSTATE 42601).

lob-options
Specifies options for LOB data types. See lob-options in “CREATE
TABLE” on page 712.

datalink-options
Specifies options for DATALINK data types. See datalink-options in
“CREATE TABLE” on page 712.

SCOPE
Specify a scope for a reference type column.

typed-table-name2
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name2 (SQLSTATE
428DM). No checking is done of the default value for column-name
to ensure that the value actually references an existing row in
typed-table-name2.

typed-view-name2
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name2 (SQLSTATE
428DM). No checking is done of the default value for column-name
to ensure that the values actually references an existing row in
typed-view-name2.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint
that was already specified within the same ALTER TABLE statement,
or as the name of any other existing constraint on the table
(SQLSTATE 42710).

If the constraint name is not specified by the user, an 18-character
identifier unique within the identifiers of the existing constraints
defined on the table, is generated59 by the system.

59. The identifier is formed of ″SQL″ followed by a sequence of 15 numeric characters generated by a
timestamp-based function.

ALTER TABLE

Chapter 6. SQL Statements 485

When used with a PRIMARY KEY or UNIQUE constraint, the
constraint-name may be used as the name of an index that is created to
support the constraint. See “Notes” on page 497 for details on index
names associated with unique constraints.

PRIMARY KEY
This provides a shorthand method of defining a primary key
composed of a single column. Thus, if PRIMARY KEY is specified in
the definition of column C, the effect is the same as if the PRIMARY
KEY(C) clause were specified as a separate clause. The column cannot
contain null values, so the NOT NULL attribute must also be specified
(SQLSTATE 42831).

See PRIMARY KEY within the description of the unique-constraint
below.

UNIQUE
This provides a shorthand method of defining a unique key composed
of a single column. Thus, if UNIQUE is specified in the definition of
column C, the effect is the same as if the UNIQUE(C) clause were
specified as a separate clause.

See UNIQUE within the description of the unique-constraint below.

references-clause
This provides a shorthand method of defining a foreign key composed
of a single column. Thus, if a references-clause is specified in the
definition of column C, the effect is the same as if that
references-clause were specified as part of a FOREIGN KEY clause in
which C is the only identified column.

See references-clause in “CREATE TABLE” on page 712.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint that
applies to a single column. See check-condition in “CREATE TABLE” on
page 712.

generate-column-spec
See “CREATE TABLE” on page 712 for details on column-generation.

default-clause
Specifies a default value for the column.

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not supplied on
INSERT or is specified as DEFAULT on INSERT or UPDATE. If a
specific default value is not specified following the DEFAULT

ALTER TABLE

486 SQL Reference

keyword, the default value depends on the data type of the column as
shown in Table 19. If a column is defined as a DATALINK or
structured type, then a DEFAULT clause cannot be specified.

If a column is defined using a distinct type, then the default value of
the column is the default value of the source data type cast to the
distinct type.

Table 19. Default Values (when no value specified)

Data Type Default Value

Numeric 0

Fixed-length character string Blanks

Varying-length character string A string of length 0

Fixed-length graphic string Double-byte blanks

Varying-length graphic string A string of length 0

Date For existing rows, a date corresponding to
January 1, 0001. For added rows, the
current date.

Time For existing rows, a time corresponding to
0 hours, 0 minutes, and 0 seconds. For
added rows, the current time.

Timestamp For existing rows, a date corresponding to
January 1, 0001, and a time corresponding
to 0 hours, 0 minutes, 0 seconds and 0
microseconds. For added rows, the current
timestamp.

Binary string (blob) A string of length 0

Omission of DEFAULT from a column-definition results in the use of
the null value as the default for the column.

Specific types of values that can be specified with the DEFAULT
keyword are as follows.

constant
Specifies the constant as the default value for the column. The
specified constant must:
v represent a value that could be assigned to the column in

accordance with the rules of assignment as described in
Chapter 3

v not be a floating-point constant unless the column is defined
with a floating-point data type

ALTER TABLE

Chapter 6. SQL Statements 487

v not have non-zero digits beyond the scale of the column data
type if the constant is a decimal constant (for example, 1.234
cannot be the default for a DECIMAL(5,2) column)

v be expressed with no more than 254 characters including the
quote characters, any introducer character such as the X for a
hexadecimal constant, and characters from the fully qualified
function name and parentheses when the constant is the
argument of a cast-function.

datetime-special-register
Specifies the value of the datetime special register (CURRENT
DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the time
of INSERT or UPDATE as the default for the column. The data
type of the column must be the data type that corresponds to the
special register specified (for example, data type must be DATE
when CURRENT DATE is specified). For existing rows, the value
is the current date, current time or current timestamp when the
ALTER TABLE statement is processed.

USER
Specifies the value of the USER special register at the time of
INSERT or UPDATE as the default for the column. If USER is
specified, the data type of the column must be a character string
with a length not less than the length attribute of USER. For
existing rows, the value is the authorization ID of the ALTER
TABLE statement.

NULL
Specifies NULL as the default for the column. If NOT NULL was
specified, DEFAULT NULL must not be specified within the same
column definition.

cast-function
This form of a default value can only be used with columns
defined as a distinct type, BLOB or datetime (DATE, TIME or
TIMESTAMP) data type. For distinct type, with the exception of
distinct types based on BLOB or datetime types, the name of the
function must match the name of the distinct type for the column.
If qualified with a schema name, it must be the same as the
schema name for the distinct type. If not qualified, the schema
name from function resolution must be the same as the schema
name for the distinct type. For a distinct type based on a datetime
type, where the default value is a constant, a function must be
used and the name of the function must match the name of the
source type of the distinct type with an implicit or explicit schema
name of SYSIBM. For other datetime columns, the corresponding
datetime function may also be used. For a BLOB or a distinct type

ALTER TABLE

488 SQL Reference

based on BLOB, a function must be used and the name of the
function must be BLOB with an implicit or explicit schema name
of SYSIBM.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of the
distinct type or for the data type if not a distinct type. If the
cast-function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP. The source type of the distinct type of the
column must be the data type that corresponds to the
specified special register.

USER
Specifies the USER special register. The data type of the
source type of the distinct type of the column must be a string
data type with a length of at least 8 bytes. If the cast-function
is BLOB, the length attribute must be at least 8 bytes.

If the value specified is not valid, an error (SQLSTATE 42894) is
raised.

ADD unique-constraint
Defines a unique or primary key constraint. A primary key or unique
constraint cannot be added to a table that is a subtable (SQLSTATE
429B3). If the table is a supertable at the top of the hierarchy, the
constraint applies to the table and all its subtables.

CONSTRAINT constraint-name
Names the primary key or unique constraint. For more information,
see constraint-name in “CREATE TABLE” on page 712.

UNIQUE (column-name...,)
Defines a unique key composed of the identified columns. The
identified columns must be defined as NOT NULL. Each column-name
must identify a column of the table and the same column must not be
identified more than once. The name cannot be qualified. The number
of identified columns must not exceed 16 and the sum of their stored
lengths must not exceed 1024 (refer to “Byte Counts” on page 757 for
the column stored lengths). The length of any individual column must
not exceed 255 bytes. No LOB, LONG VARCHAR, LONG
VARGRAPHIC, DATALINK, distinct type on any of these types, or
structured type column may be used as part of a unique key (even if
the length attribute of the column is small enough to fit within the
255 byte limit) (SQLSTATE 42962). The set of columns in the unique
key cannot be the same as the set of columns of the primary key or

ALTER TABLE

Chapter 6. SQL Statements 489

another unique key (SQLSTATE 01543).60 Any existing values in the
set of identified columns must be unique (SQLSTATE 23515).

A check is performed to determine if an existing index matches the
unique key definition (ignoring any INCLUDE columns in the index).
An index definition matches if it identifies the same set of columns
without regard to the order of the columns or the direction
(ASC/DESC) specifications. If a matching index definition is found,
the description of the index is changed to indicate that it is required
by the system and it is changed to unique (after ensuring uniqueness)
if it was a non-unique index. If the table has more than one matching
index, an existing unique index is selected (the selection is arbitrary).
If no matching index is found, a unique index will automatically be
created for the columns, as described in CREATE TABLE. See “Notes”
on page 497 for details on index names associated with unique

constraints.

PRIMARY KEY ...(column-name,)
Defines a primary key composed of the identified columns. Each
column-name must identify a column of the table, and the same
column must not be identified more than once. The name cannot be
qualified. The number of identified columns must not exceed 16 and
the sum of their stored lengths must not exceed 1024 (refer to “Byte
Counts” on page 757 for the stored lengths). The length of any
individual column must not exceed 255 bytes. The table must not
have a primary key and the identified columns must be defined as
NOT NULL. No LOB, LONG VARCHAR, LONG VARGRAPHIC,
DATALINK, distinct type on any of these types, or structured type
column may be used as part of a primary key (even if the length
attribute of the column is small enough to fit within the 255 byte
limit) (SQLSTATE 42962). The set of columns in the primary key
cannot be the same as the set of columns of a unique key (SQLSTATE
01543).60 Any existing values in the set of identified columns must be
unique (SQLSTATE 23515).

A check is performed to determine if an existing index matches the
primary key definition (ignoring any INCLUDE columns in the
index). An index definition matches if it identifies the same set of
columns without regard to the order of the columns or the direction
(ASC/DESC) specifications. If a matching index definition is found,
the description of the index is changed to indicate that it is the
primary index, as required by the system, and it is changed to unique
(after ensuring uniqueness) if it was a non-unique index. If the table
has more than one matching index, an existing unique index is
selected (the selection is arbitrary). If no matching index is found, a

60. If LANGLEVEL is SQL92E or MIA then an error is returned, SQLSTATE 42891.

ALTER TABLE

490 SQL Reference

unique index will automatically be created for the columns, as
described in CREATE TABLE. See “Notes” on page 497 for details on
index names associated with unique constraints.

Only one primary key can be defined on a table.

ADD referential-constraint
Defines a referential constraint. See referential-constraint in “CREATE
TABLE” on page 712.

ADD check-constraint
Defines a check constraint. See check-constraint in “CREATE TABLE” on
page 712.

ADD partitioning-key-definition
Defines a partitioning key. The table must be defined in a table space on a
single-partition nodegroup and must not already have a partitioning key.
If a partitioning key already exists for the table, the existing key must be
dropped before adding the new partitioning key.

A partitioning key cannot be added to a table that is a subtable
(SQLSTATE 428DH).

PARTITIONING KEY (column-name...)
Defines a partitioning key using the specified columns. Each
column-name must identify a column of the table, and the same
column must not be identified more than once. The name cannot be
qualified. A column cannot be used as part of a partitioning key if the
data type of the column is a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type on
any of these types, or structured type.

USING HASHING
Specifies the use of the hashing function as the partitioning method
for data distribution. This is the only partitioning method supported.

ALTER column-alteration
Alters the characteristics of a column.

column-name
Is the name of the column to be altered in the table. The column-name
must identify an existing column of the table (SQLSTATE 42703). The
name cannot be qualified.

SET DATA TYPE VARCHAR (integer)
Increases the length of an existing VARCHAR column. CHARACTER
VARYING or CHAR VARYING can be used as synonyms for the
VARCHAR keyword. The data type of column-name must be
VARCHAR and the current maximum length defined for the column

ALTER TABLE

Chapter 6. SQL Statements 491

must not be greater than the value for integer (SQLSTATE 42837). The
value for integer may range up to 32672. The table must not be a
typed table (SQLSTATE 428DH).

Altering the column must not make the total byte count of all
columns exceed the maximum record size as specified in Table 34 on
page 1105 (SQLSTATE 54010). See “Notes” on page 753 for more
information. If the column is used in a unique constraint or an index,
the new length must not be greater than 255 bytes and must not cause
the sum of the stored lengths for the unique constraint or index to
exceed 1024 (SQLSTATE 54008) (refer to “Byte Counts” on page 757
for the stored lengths).

SET EXPRESSION AS (generation-expression)
Changes the expression for the column to the specified
generation-expression. SET EXPRESSION AS requires the table to be put
in check pending state using the SET INTEGRITY statement. After the
ALTER TABLE statement, the SET INTEGRITY statement must be
used to update and check all the values in that column against the
new expression. The column must already be defined as a generated
column based on an expression (SQLSTATE 42837). The
generation-expression must conform to the same rules that apply
when defining a generated column. The result data type of the
generation-expression must be assignable to the data type of the
column (SQLSTATE 42821).

ADD SCOPE
Add a scope to an existing reference type column that does not
already have a scope defined (SQLSTATE 428DK). If the table being
altered is a typed table, the column must not be inherited from a
supertable (SQLSTATE 428DJ). Refer to “ALTER TYPE (Structured)”
on page 509 for examples.

typed-table-name
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE
428DM). No checking is done of any existing values in
column-name to ensure that the values actually reference existing
rows in typed-table-name.

typed-view-name
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name (SQLSTATE
428DM). No checking is done of any existing values in
column-name to ensure that the values actually reference existing
rows in typed-view-name.

ALTER TABLE

492 SQL Reference

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints
dependent on this primary key. The table must have a primary key.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint. For information on implications of
dropping a referential constraint see “Notes” on page 497.

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all
referential constraints dependent on this unique constraint. The
constraint-name must identify an existing UNIQUE constraint. For
information on implications of dropping a unique constraint, see “Notes”
on page 497.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint, referential constraint, primary key or unique
constraint defined on the table. For information on implications of
dropping a constraint, see “Notes” on page 497.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must
identify an existing check constraint defined on the table.

DROP PARTITIONING KEY
Drops the partitioning key. The table must have a partitioning key and
must be in a table space defined on a single-partition nodegroup.

DATA CAPTURE
Indicates whether extra information for data replication is to be written to
the log.

If the table is a typed table, then this option is not supported (SQLSTATE
428DH for root tables or 428DR for other subtables).

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this table
will be written to the log. This option is required if this table will be
replicated and the Capture program is used to capture changes for
this table from the log.

If the table is defined to allow data on a partition other than the
catalog partition (multiple partition nodegroup or nodegroup with
partition other than the catalog partition), then this option is not
supported (SQLSTATE 42997).

ALTER TABLE

Chapter 6. SQL Statements 493

If the schema name (implicit or explicit) of the table is longer than 18
bytes, then this option is not supported (SQLSTATE 42997).

Further information about using replication can be found in the
Administration Guide and the Replication Guide and Reference.

INCLUDE LONGVAR COLUMNS
Allows data replication utilities to capture changes made to
LONG VARCHAR or LONG VARGRAPHIC columns. The clause
may be specified for tables that do not have any LONG
VARCHAR or LONG VARGRAPHIC columns since it is possible
to ALTER the table to include such columns.

ACTIVATE NOT LOGGED INITIALLY
Activates the NOT LOGGED INITIALLY attribute of the table for this
current unit of work. The table must have been originally created with the
NOT LOGGED INITIALLY attribute (SQLSTATE 429AA).

Any changes made to the table by an INSERT, DELETE, UPDATE,
CREATE INDEX, DROP INDEX, or ALTER TABLE in the same unit of
work after the table is altered by this statement are not logged. Any
changes made to the system catalog by the ALTER statement in which the
NOT LOGGED INITIALLY attribute is activated are logged. Any
subsequent changes made in the same unit of work to the system catalog
information are logged.

At the completion of the current unit of work, the NOT LOGGED
INITIALLY attribute is deactivated and all operations that are done on the
table in subsequent units of work are logged.

If using this feature to avoid locks on the catalog tables while inserting
data, it is important that only this clause be specified on the ALTER
TABLE statement. Use of any other clause in the ALTER TABLE statement
will result in catalog locks. If no other clauses are specified for the ALTER
TABLE statement, then only a SHARE lock will be acquired on the system
catalog tables. This can greatly reduce the possibility of concurrency
conflicts for the duration of time between when this statement is executed
and when the unit of work in which it was executed is ended.

If the table is a typed table, this option is only supported on the root table
of the typed table hierarchy (SQLSTATE 428DR).

For more information on the NOT LOGGED INITIALLY attribute, see the
description of this attribute in “CREATE TABLE” on page 712.

Note: If a table has been altered by activating the NOT LOGGED
INITIALLY attribute within a unit of work, a rollback to savepoint
request will be converted to a rollback to unit of work request
(SQLSTATE 40506). An error in any operation in the unit of work in
which the NOT LOGGED INITIALLY attribute is active will result

ALTER TABLE

494 SQL Reference

in the entire unit of work being rolled back (SQLSTATE 40506).
Furthermore, the table for which the NOT LOGGED INITIALLY
attribute was activated is marked inaccessible after the rollback
has occurred and can only be dropped. Therefore, the opportunity
for errors within the unit of work in which the NOT LOGGED
INITIALLY attribute is activated should be minimized.

WITH EMPTY TABLE
Causes all data currently in table to be removed. Once the data has
been removed, it cannot be recovered except through use of the
RESTORE facility. If the unit of work in which this Alter statement
was issued is rolled back, the table data will NOT be returned to its
original state.

When this action is requested, no DELETE triggers defined on the
affected table are fired. Any indexes that exist on the table are also
emptied.

PCTFREE integer
Indicates what percentage of each page to leave as free space during load
or reorganization. The value of integer can range from 0 to 99. The first
row on each page is added without restriction. When additional rows are
added, at least integer percent of free space is left on each page. The
PCTFREE value is considered only by the LOAD and REORGANIZE
TABLE utilities. If the table is a typed table, this option is only supported
on the root table of the typed table hierarchy (SQLSTATE 428DR).

LOCKSIZE
Indicates the size (granularity) of locks used when the table is accessed.
Use of this option in the table definition will not prevent normal lock
escalation from occurring. If the table is a typed table, this option is only
supported on the root table of the typed table hierarchy (SQLSTATE
428DR).

ROW
Indicates the use of row locks. This is the default lock size when a
table is created.

TABLE
Indicates the use of table locks. This means that the appropriate share
or exclusive lock is acquired on the table and intent locks (except
intent none) are not used. Use of this value may improve the
performance of queries by limiting the number of locks that need to
be acquired. However, concurrency is also reduced since all locks are
held over the complete table.

Further information about locking can be found in the Administration
Guide.

ALTER TABLE

Chapter 6. SQL Statements 495

APPEND
Indicates whether data is appended to the end of the table data or placed
where free space is available in data pages. If the table is a typed table,
this option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

ON
Indicates that table data will be appended and information about free
space on pages will not be kept. The table must not have a clustered
index (SQLSTATE 428CA).

OFF
Indicates that table data will be placed where there is available space.
This is the default when a table is created.

The table should be reorganized after setting APPEND OFF since the
information about available free space is not accurate and may result
in poor performance during insert.

VOLATILE
This indicates to the optimizer that the cardinality of table table-name can
vary significantly at run time, from empty to quite large. To access
table-name the optimizer will use an index scan rather than a table scan,
regardless of the statistics, if that index is index-only (all columns
referenced are in the index) or that index is able to apply a predicate in
the index scan. If the table is a typed table, this option is only supported
on the root table of the typed table hierarchy (SQLSTATE 428DR).

NOT VOLATILE
This indicates to the optimizer that the cardinality of table-name is not
volatile. Access Plans to this table will continue to be based on the
existing statistics and on the optimization level in place.

CARDINALITY
An optional key word to indicate that it is the number of rows in the
table that is volatile and not the table itself.

Rules
v A partitioning key column of a table cannot be updated (SQLSTATE 42997).
v Any unique or primary key constraint defined on the table must be a

superset of the partitioning key, if there is one (SQLSTATE 42997).
v A nullable column of a partitioning key cannot be included as a foreign key

column when the relationship is defined with ON DELETE SET NULL
(SQLSTATE 42997).

v A column can only be referenced in one ADD or ALTER COLUMN clause
in a single ALTER TABLE statement (SQLSTATE 42711).

v A column length cannot be altered if the table has any summary tables that
are dependent on the table (SQLSTATE 42997).

ALTER TABLE

496 SQL Reference

v Before adding a generated column, the table must be set into the
check-pending state, using the SET INTEGRITY statement (SQLSTATE
55019).

Notes
v Altering a table to a summary table will put the table in check-pending

state. If the table is defined as REFRESH IMMEDIATE, the table must be
taken out of check-pending state before INSERT, DELETE, or UPDATE
commands can be invoked on the table referenced by the fullselect. The
table can be taken out of check-pending state by using REFRESH TABLE or
SET INTEGRITY, with the IMMEDIATE CHECKED option, to completely
refresh the data in the table based on the fullselect. If the data in the table
accurately reflects the result of the fullselect, the IMMEDIATE
UNCHECKED option of SET INTEGRITY can be used to take the table out
of check-pending state.

v Altering a table to change it to a REFRESH IMMEDIATE summary table
will cause any packages with INSERT, DELETE, or UPDATE usage on the
table referenced by the fullselect to be invalidated.

v Altering a table to change from a summary table to a regular table
(DEFINITION ONLY) will cause any packages dependent on the table to be
invalidated.

v ADD column clauses are processed prior to all other clauses. Other clauses
are processed in the order that they are specified.

v Any columns added via ALTER TABLE will not automatically be added to
any existing view of the table.

v When an index is automatically created for a unique or primary key
constraint, the database manager will try to use the specified constraint
name as the index name with a schema name that matches the schema
name of the table. If this matches an existing index name or no name for
the constraint was specified, the index is created in the SYSIBM schema
with a system-generated name formed of ″SQL″ followed by a sequence of
15 numeric characters generated by a timestamp based function.

v Any table that may be involved in a DELETE operation on table T is said to
be delete-connected to T. Thus, a table is delete-connected to T if it is a
dependent of T or it is a dependent of a table in which deletes from T
cascade.

v A package has an insert (update/delete) usage on table T if records are
inserted into (updated in/deleted from) T either directly by a statement in
the package, or indirectly through constraints or triggers executed by the
package on behalf of one of its statements. Similarly, a package has an
update usage on a column if the column is modified directly by a statement
in the package, or indirectly through constraints or triggers executed by the
package on behalf of one of its statements.

ALTER TABLE

Chapter 6. SQL Statements 497

v Any changes to primary key, unique keys, or foreign keys may have the
following effect on packages, indexes, and other foreign keys.
– If a primary key or unique key is added:

- There is no effect on packages, foreign keys, or existing unique keys.61

– If a primary key or unique key is dropped:
- The index is dropped if it was automatically created for the constraint.

Any packages dependent on the index are invalidated.
- The index is set back to non-unique if it was converted to unique for

the constraint and it is no longer system-required. Any packages
dependent on the index are invalidated.

- The index is set to no longer system required if it was an existing
unique index used for the constraint. There is no effect on packages.

- All dependent foreign keys are dropped. Further action is taken for
each dependent foreign key, as specified in the next item.

– If a foreign key is added or dropped:
- All packages with an insert usage on the object table are invalidated.
- All packages with an update usage on at least one column in the

foreign key are invalidated.
- All packages with a delete usage on the parent table are invalidated.
- All packages with an update usage on at least one column in the

parent key are invalidated.
v Adding a column to a table will result in invalidation of all packages with

insert usage on the altered table. If the added column is the first
user-defined structured type column in the table, packages with DELETE
usage on the altered table will also be invalidated.

v Adding a check or referential constraint to a table that already exists and
that is not in check pending state (see “SET INTEGRITY” on page 1019) will
cause the existing rows in the table to be immediately evaluated against the
constraint. If the verification fails, an error (SQLSTATE 23512) is raised. If a
table is in check pending state, adding a check or referential constraint will
not immediately lead to the enforcement of the constraint. Instead, the
corresponding constraint type flags used in the check pending operation
will be updated. To begin enforcing the constraint, the SET INTEGRITY
statement will need to be issued.

v Adding or dropping a check constraint will result in invalidation of all
packages with either an insert usage on the object table or an update usage
on at least one of the columns involved in the constraint.

61. If the primary or unique key uses an existing unique index that was created in a previous version and has not
been converted to support deferred uniqueness, then the index is converted and packages with update usage on
the associated table are invalidated.

ALTER TABLE

498 SQL Reference

v Adding a partitioning key will result in invalidation of all packages with an
update usage on at least one of the columns of the partitioning key.

v A partitioning key that was defined by default as the first column of the
primary key is not affected by dropping the primary key and adding a
different primary key.

v Altering a column to increase the length will invalidate all packages that
reference the table (directly or indirectly through a referential constraint or
trigger) with the altered column.

v Altering a column to increase the length will regenerate views (except
typed views) that are dependent on the table. If an error occurs while
regenerating a view, an error is returned (SQLSTATE 56098). Any typed
views that are dependent on the table are marked inoperative.

v Altering a column to increase the length may cause errors (SQLSTATE
54010) in processing triggers when a statement that would involve the
trigger is prepared or bound. This may occur when row length based on
the sum of the lengths of the transition variables and transition table
columns is too long. If such a trigger were dropped a subsequent attempt to
create it would result in an error (SQLSTATE 54040).

v VARCHAR and VARGRAPHIC columns that have been altered to be
greater than 4000 and 2000 respectively should not be used as input
parameters in functions in the SYSFUN schema (SQLSTATE 22001).

v Changing the LOCKSIZE for a table will result in invalidation of all
packages that have a dependency on the altered table. Further information
about locking can be found in the Administration Guide.

v The ACTIVATE NOT LOGGED INITIALLY clause can not be used when
DATALINK columns with the FILE LINK CONTROL attribute are being
added to the table (SQLSTATE 42613).

v Changing VOLATILE or NOT VOLATILE CARDINALITY will result in
invalidation of all packages that have a dependency on the altered table.

v Replication customers should take caution when increasing the length of
VARCHAR columns. The change data table associated with an application
table might already be at or near the DB2 rowsize limit. The change data
table should be altered before the application table, or the two should be
altered within the same unit of work, to ensure that the alteration can be
completed for both tables. Consideration should be given for copies, which
may also be at or near the rowsize limit, or reside on platforms which lack
the feature to increase the length of an existing column.
If the change data table is not altered before the Capture program processes
log records with the increased VARCHAR column length, the Capture
program will likely fail. If a copy containing the VARCHAR column is not
altered before the subscription maintaining the copy runs, the subscription
will likely fail.

ALTER TABLE

Chapter 6. SQL Statements 499

Examples
Example 1: Add a new column named RATING, which is one character long,
to the DEPARTMENT table.

ALTER TABLE DEPARTMENT
ADD RATING CHAR(1)

Example 2: Add a new column named SITE_NOTES to the PROJECT table.
Create SITE_NOTES as a varying-length column with a maximum length of
1000 characters. The values of the column do not have an associated character
set and therefore should not be translated.

ALTER TABLE PROJECT
ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA

Example 3: Assume a table called EQUIPMENT exists defined with the
following columns:

Column Name Data Type
EQUIP_NO INT
EQUIP_DESC VARCHAR(50)
LOCATION VARCHAR(50)
EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner
(EQUIP_OWNER) must be a department number (DEPTNO) that is present in
the DEPARTMENT table. DEPTNO is the primary key of the DEPARTMENT
table. If a department is removed from the DEPARTMENT table, the owner
(EQUIP_OWNER) values for all equipment owned by that department should
become unassigned (or set to null). Give the constraint the name DEPTQUIP.

ALTER TABLE EQUIPMENT
ADD CONSTRAINT DEPTQUIP
FOREIGN KEY (EQUIP_OWNER)

REFERENCES DEPARTMENT
ON DELETE SET NULL

Also, an additional column is needed to allow the recording of the quantity
associated with this equipment record. Unless otherwise specified, the
EQUIP_QTY column should have a value of 1 and must never be null.

ALTER TABLE EQUIPMENT
ADD COLUMN EQUIP_QTY
SMALLINT NOT NULL DEFAULT 1

Example 4: Alter table EMPLOYEE. Add the check constraint named
REVENUE defined so that each employee must make a total of salary and
commission greater than $30,000.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE
CHECK (SALARY + COMM > 30000)

ALTER TABLE

500 SQL Reference

Example 5: Alter table EMPLOYEE. Drop the constraint REVENUE which was
previously defined.

ALTER TABLE EMPLOYEE
DROP CONSTRAINT REVENUE

Example 6: Alter a table to log SQL changes in the default format.
ALTER TABLE SALARY1

DATA CAPTURE NONE

Example 7: Alter a table to log SQL changes in an expanded format.
ALTER TABLE SALARY2

DATA CAPTURE CHANGES

Example 8: Alter the EMPLOYEE table to add 4 new columns with default
values.

ALTER TABLE EMPLOYEE
ADD COLUMN HEIGHT MEASURE DEFAULT MEASURE(1)
ADD COLUMN BIRTHDAY BIRTHDATE DEFAULT DATE('01-01-1850')
ADD COLUMN FLAGS BLOB(1M) DEFAULT BLOB(X'01')
ADD COLUMN PHOTO PICTURE DEFAULT BLOB(X'00')

The default values use various function names when specifying the default.
Since MEASURE is a distinct type based on INTEGER, the MEASURE
function is used. The HEIGHT column default could have been specified
without the function since the source type of MEASURE is not BLOB or a
datetime data type. Since BIRTHDATE is a distinct type based on DATE, the
DATE function is used (BIRTHDATE cannot be used here). For the FLAGS
and PHOTO columns the default is specified using the BLOB function even
though PHOTO is a distinct type. To specify a default for BIRTHDAY, FLAGS
and PHOTO columns, a function must be used because the type is a BLOB or
a distinct type sourced on a BLOB or datetime data type.

Example 9: Assume that you have a table called CUSTOMERS that is defined
with the following columns:

Column Name Data Type
BRANCH_NO SMALLINT
CUSTOMER_NO DECIMAL(7)
CUSTOMER_NAME VARCHAR(50)

In this table, the primary key is made up of the BRANCH_NO and
CUSTOMER_NO columns. You want to partition the table, so you need to
create a partitioning key for the table. The table must be defined in a table
space on a single-node nodegroup. The primary key must be a superset of the
partitioning columns: at least one of the columns of the primary key must be
used as the partitioning key. Assume that you want to make BRANCH_NO
the partitioning key. You would do this with the following statement:

ALTER TABLE

Chapter 6. SQL Statements 501

ALTER TABLE CUSTOMERS
ADD PARTITIONING KEY (BRANCH_NO)

ALTER TABLE

502 SQL Reference

ALTER TABLESPACE
The ALTER TABLESPACE statement is used to modify an existing tablespace
in the following ways.
v Add a container to a DMS tablespace (that is, one created with the

MANAGED BY DATABASE option).
v Increase the size of a container in the DMS tablespace (that is, one created

with the MANAGED BY DATABASE option)
v Add a container to a SMS tablespace on a partition (or node) that currently

has no containers.
v Modify the PREFETCHSIZE setting for a tablespace.
v Modify the BUFFERPOOL used for tables in the tablespace.
v Modify the OVERHEAD setting for a tablespace.
v Modify the TRANSFERRATE setting for a tablespace.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.
However, if the bind option DYNAMICRULES BIND applies, the statement
cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM
authority.

Syntax

�� ALTER TABLESPACE tablespace-name �

� � ADD database-container-clause
on-nodes-clause

system-container-clause on-nodes-clause
(1)

EXTEND database-container-clause
RESIZE all-containers-clause on-nodes-clause

PREFETCHSIZE number-of-pages
integer K

M
G

BUFFERPOOL bufferpool-name
OVERHEAD number-of-milliseconds
TRANSFERRATE number-of-milliseconds
DROPPED TABLE RECOVERY ON

OFF
SWITCH ONLINE

��

ALTER TABLESPACE

Chapter 6. SQL Statements 503

database-container-clause:

�

,

(FILE ’ container-string ’ number-of-pages)
DEVICE integer K

M
G

system-container-clause:

�

,

(’ container-string ’)

on-nodes-clause:

ON NODE
NODES

(�

,

node-number1
TO node-number2

)

all-containers-clause:

CONTAINERS
(ALL number-of-pages)

integer K
M
G

Notes:

1 ADD, EXTEND, and RESIZE clauses cannot be specified in the same
statement.

Description

tablespace-name
Names the tablespace. This is a one-part name. It is a long SQL identifier
(either ordinary or delimited).

ADD
ADD specifies that a new container is to be added to the tablespace.

EXTEND
EXTEND specifies that existing containers are being increased in size. The

ALTER TABLESPACE

504 SQL Reference

size specified is the size by which the existing container is increased. If
the all-containers-clause is specified, then all containers in the tablespace
will increase by this size.

RESIZE
RESIZE specifies that the size of existing containers is being changed
(container sizes can only be increased). The size specified is the new size
for the container. If the all-containers-clause is specified, then all containers
in the tablespace will be changed to this size.

database-container-clause
Adds one or more containers to a DMS tablespace. The tablespace must
identify a DMS tablespace that already exists at the application server. See
the description of container-clause on page 767.

system-container-clause
Adds one or more containers to an SMS tablespace on the specified
partitions or nodes. The tablespace must identify an SMS tablespace that
already exists at the application server. There must not be any containers
on the specified partitions for the tablespace. (SQLSTATE 42921). See the
description of system-containers on page 767.

on-nodes-clause
Specifies the partition or partitions for the added containers. See the
description of on-nodes-clause on page 769.

all-containers-clause
Extends or resizes all of the containers in a DMS tablespace. The
tablespace must identify a DMS tablespace that already exists at the
application server.

PREFETCHSIZE number-of-pages
Specifies the number of PAGESIZE pages that will be read from the
tablespace when data prefetching is being performed. The prefetch size
value can also be specified as an integer value followed by K (for
kilobytes), M (for megabytes), or G (for gigabytes). If specified in this way,
the floor of the number of bytes divided by the pagesize is used to
determine the number of pages value for prefetch size. Prefetching reads
in data needed by a query prior to it being referenced by the query, so
that the query need not wait for I/O to be performed.

BUFFERPOOL bufferpool-name
The name of the buffer pool used for tables in this tablespace. The buffer
pool must currently exist in the database (SQLSTATE 42704). The
nodegroup of the tablespace must be defined for the bufferpool
(SQLSTATE 42735).

OVERHEAD number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the
I/O controller overhead and disk seek and latency time, in milliseconds.

ALTER TABLESPACE

Chapter 6. SQL Statements 505

The number should be an average for all containers that belong to the
tablespace, if not the same for all containers. This value is used to
determine the cost of I/O during query optimization.

TRANSFERRATE number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the
time to read one page (4K or 8K) into memory, in milliseconds. The
number should be an average for all containers that belong to the
tablespace, if not the same for all containers. This value is used to
determine the cost of I/O during query optimization.

DROPPED TABLE RECOVERY
Dropped tables in the specified tablespace may be recovered using the
RECOVER DROPPED TABLE ON option of the ROLLFORWARD
command.

SWITCH ONLINE
tablespaces in OFFLINE state are brought online if the containers have
become accessible. If the containers are not accessible an error is returned
(SQLSTATE 57048).

Notes
v Guidance on choosing optimal values for the PREFETCHSIZE,

OVERHEAD, and TRANSFERRATE parameters, and information on
rebalancing is provided in the Administration Guide.

v Once the new container has been added and the transaction is committed,
the contents of the tablespace are automatically rebalanced across the
containers. Access to the tablespace is not restricted during the rebalancing.

v If the tablespace is in OFFLINE state and the containers have become
accessible, the user can disconnect all applications and connect to the
database again to bring the tablespace out of OFFLINE state. Alternatively,
SWITCH ONLINE option can bring the tablespace up (out of OFFLINE)
while the rest of the database is still up and being used.

v If adding more than one container to a tablespace, it is recommended that
they be added in the same statement so that the cost of rebalancing is
incurred only once. An attempt to add containers to the same tablespace in
separate ALTER TABLESPACE statements within a single transaction will
result in an error (SQLSTATE 55041).

v A tablespace cannot have container sizes changed and have new containers
added in the same ALTER TABLESPACE statement (SQLSTATE 429BC).
When changing the size of more than one container, the EXTEND clause
and the RESIZE clause cannot be used simultaneously in one statement
(SQLSTATE 429BC).

v RESIZE can not be used to decrease container sizes. Any attempt to specify
a smaller size for a container will raise an error (SQLSTATE 560B0).

ALTER TABLESPACE

506 SQL Reference

v Any attempts to extend or resize containers that do not exist will raise an
error (SQLSTATE 428B2).

v When extending or resizing a container, the container type must match the
type that was used when the container was created (SQLSTATE 428B2).

v Once a container has been extended or resized, and the transaction is
committed, the contents of the tablespace are automatically rebalanced
across the containers. Access to the table space is not restricted during the
rebalance.

v If extending multiple containers in a tablespace, it is recommended that the
containers be changed in the same statement, so the cost of rebalancing is
incurred only once. This is also true for resizing multiple containers. An
attempt to change container sizes in the same tablespace, using separate
ALTER TABLESPACE statements but within a single transaction, will raise
an error (SQLSTATE 55041).

v In a partitioned database if more than one partition resides on the same
physical node, then the same device or specific path cannot be specified for
such partitions (SQLSTATE 42730). For this environment, either specify a
unique container-string for each partition or use a relative path name.

v Although the tablespace definition is transactional and the changes to the
tablespace definition are reflected in the catalog tables on commit, the
buffer pool with the new definition cannot be used until the next time the
database is started. The buffer pool in use, when the ALTER TABLESPACE
statement was issued, will continue to be used in the interim.

Examples
Example 1: Add a device to the PAYROLL table space.

ALTER TABLESPACE PAYROLL
ADD (DEVICE '/dev/rhdisk9' 10000)

Example 2: Change the prefetch size and I/O overhead for the
ACCOUNTING table space.

ALTER TABLESPACE ACCOUNTING
PREFETCHSIZE 64
OVERHEAD 19.3

Example 3: Create a tablespace TS1, then resize the containers so that all of
the containers have 2000 pages (three different ALTER TABLESPACES which
will accomplish this resizing are provided).

CREATE TABLESPACE TS1
MANAGED BY DATABASE
USING (FILE '/conts/cont0' 1000,

DEVICE '/dev/rcont1' 500,
FILE 'cont2' 700)

ALTER TABLESPACE

Chapter 6. SQL Statements 507

ALTER TABLESPACE TS1
RESIZE (FILE '/conts/cont0' 2000,

DEVICE '/dev/rcont1' 2000,
FILE 'cont2' 2000)

OR
ALTER TABLESPACE TS1

RESIZE (ALL 2000)

OR
ALTER TABLESPACE TS1

EXTEND (FILE '/conts/cont0' 1000,
DEVICE '/dev/rcont1' 1500,
FILE 'cont2' 1300)

Example 4: Extend all of the containers in the DATA_TS tablespace by 1000
pages.

ALTER TABLESPACE DATA_TS
EXTEND (ALL 1000)

Example 5: Resize all of the containers in the INDEX_TS tablespace to 100
megabytes (MB).

ALTER TABLESPACE INDEX_TS
RESIZE (ALL 100 M)

ALTER TABLESPACE

508 SQL Reference

ALTER TYPE (Structured)
The ALTER TYPE statement is used to add or drop attributes or method
specifications of a user-defined structured type.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include as
least one of the following:
v SYSADM or DBADM authority
v ALTERIN privilege on the schema of the type.
v definer of the type as recorded in the DEFINER column of

SYSCAT.DATATYPES

Syntax

�� ALTER TYPE type-name �

� �

�

,
(1)

ADD ATTRIBUTE attribute-definition
RESTRICT

DROP ATTRIBUTE attribute-name
ADD method-specification

RESTRICT
DROP METHOD method-name

METHOD method-name ()
,

data-type
SPECIFIC METHOD specific-name

��

Notes:

1 If both attributes and methods are added or dropped, all
attribute specifications must occur before all method specifications

Description

type-name
Identifies the structured type to be changed. It must be an existing type
defined in the catalog (SQLSTATE 42704) and the type must be a
structured type (SQLSTATE 428DP). In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an

ALTER TYPE (Structured)

Chapter 6. SQL Statements 509

unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names.

ADD ATTRIBUTE
Adds an attribute after the last attribute of the existing structured type.

attribute-definition
For a detailed description of attribute-definition, please see “CREATE
TYPE (Structured)” on page 792.

attribute-name
Specifies a name for the attribute. The name cannot be the same
as any other attribute of this structured type (including inherited
attributes) or any subtype of this structured type (SQLSTATE
42711).

A number of names used as keywords in predicates are reserved
for system use, and may not be used as an attribute-name
(SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND,
OR, BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS,
SIMILAR, MATCH and the comparison operators.

data-type 1
Specifies the data type of the attribute. It is one of the data types
listed under CREATE TABLE, other than LONG VARCHAR,
LONG VARGRAPHIC, or a distinct type based on LONG
VARCHAR or LONG VARGRAPHIC (SQLSTATE 42601). The data
type must identify an existing data type (SQLSTATE 42704). If
data-type is specified without a schema name, the type is resolved
by searching the schemas on the SQL path. The description of
various data types is given in “CREATE TABLE” on page 712. If
the attribute data type is a reference type, the target type of the
reference must be a structured type that exists (SQLSTATE 42704).

A structured type defined with an attribute of type DATALINK
can only be effectively used as the data type for a typed table or
type view (SQLSTATE 01641).

To prevent type definitions that, at runtime, would permit an
instance of the type to directly, or indirectly, contain another
instance of the same type or one of its subtypes, there is a
restriction that a type may not be defined such that one of its
attribute types directly or indirectly uses itself (SQLSTATE 428EP).
See “Structured Types” on page 88 for more information.

lob-options
Specifies the options associated with LOB types (or distinct types
based on LOB types). For a detailed description of lob-options, see
“CREATE TABLE” on page 712.

ALTER TYPE (Structured)

510 SQL Reference

datalink-options
Specifies the options associated with DATALINK types (or distinct
types based on DATALINK types). For a detailed descriptions of
datalink-options, see “CREATE TABLE” on page 712.

Note that if no options are specified for a DATALINK type, or
distinct type sourced on DATALINK, LINKTYPE URL and NO
LINK CONTROL options are the defaults.

DROP ATTRIBUTE
Drops an attribute of the existing structured type.

attribute-name
The name of the attribute. The attribute must exist as an attribute of
the type (SQLSTATE 42703).

RESTRICT
Enforces the rule that no attribute can be dropped if type-name is used
as the type of an existing table, view, column, attribute nested inside
the type of a column, or an index extension.

ADD method-specification
Adds a method specification to the type identified by the type-name. The
method cannot be used until a separate CREATE METHOD statement is
used to give the method a body. For more information about
method-specification, see “CREATE TYPE (Structured)” on page 792.

DROP METHOD
Identifies an instance of a method that is to be dropped. The specified
method must not have an existing method body (SQLSTATE 428ER). Use
the DROP METHOD statement to drop the method body before using
ALTER TYPE DROP METHOD.

The specified method must be a method that is described in the catalog
(SQLSTATE 42704). Methods implicitly generated by the CREATE TYPE
statement (such as mutators and observers) cannot be dropped
(SQLSTATE 42917).

There are several ways available to identify the method specification to be
dropped:

METHOD method-name
Identifies the particular method, and is valid only if there is exactly
one method instance with name method-name and subject type
type-name. The method thus identified may have any number of
parameters. If no method by this name exists for the type type-name,
an error is raised (SQLSTATE 42704). If there is more than one method
with the name method-name for the named data type, an error is raised
(SQLSTATE 42854).

ALTER TYPE (Structured)

Chapter 6. SQL Statements 511

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method
to be dropped. The method selection algorithm is not used.

method-name
The name of the method to be dropped for the specific type. The
name must be an unqualified identifier.

(data-type,...)
Must match the data types that were specified in the
corresponding positions of the method-specification when the
method was defined. The number of data types and the logical
concatenation of the data types is used to identify the specific
method instance which is to be dropped.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead, an empty set of parentheses
may be coded to indicate that these attributes are to be ignored
when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision or scale is coded, the value must
exactly match that specified in the CREATE TYPE statement.

A data type of FLOAT(n) does not need to match the defined
value for n, since 0<n<25 means REAL and 24<n<54 means
DOUBLE. Matching occurs based on whether the type is REAL or
DOUBLE.

If no method with the specified signature exists for the named
data type, an error is raised (SQLSTATE 42883).

SPECIFIC METHOD specific-name
Identifies the particular method that is to be dropped, using the
specific name either given or defaulted to when the method was
defined. If specific-name is an unqualified name, the method is
implicitly qualified with the schema of the data type specified for
type-name. The specific-name must identify a method for the type
type-name; otherwise an error is raised (SQLSTATE 42704).

RESTRICT
Indicates that the specified method is restricted from having an
existing method body. Use the DROP METHOD statement to drop the
method body before using ALTER TYPE DROP METHOD.

Rules
v Adding or dropping an attribute is not allowed for type type-name

(SQLSTATE 55043) if either:

ALTER TYPE (Structured)

512 SQL Reference

– the type or one of its subtypes is the type of an existing table or view or
– there exists a column of a table whose type directly or indirectly uses

type-name. The terms directly uses and indirectly uses are defined in
“Structured Types” on page 88

– the type or one of its subtypes is used in an index extension.
v A type may not be altered by adding attributes so that the total number of

attributes for the type, or any of its subtypes, exceeds 4082 (SQLSTATE
54050).

v ADD ATTRIBUTE option:
– ADD ATTRIBUTE generates observer and mutator methods for the new

attribute. These methods are similar to those generated when a
structured type is created, as described in “CREATE TYPE (Structured)”
on page 792. If these methods conflict with or override any existing

methods or functions, the ALTER TYPE statement fails (SQLSTATE
42745).

– If the INLINE LENGTH for the type (or any of its subtypes) was
explicitly specified by the user with a value less than 292, and the
attributes added cause the specified inline length to be less than the size
of the result of the constructor function for the altered type (32 bytes
plus 10 bytes per attribute), then an error results (SQLSTATE 42611).

v DROP ATTRIBUTE option:
– An attribute that is inherited from an existing supertype cannot be

dropped (SQLSTATE 428DJ).
– DROP ATTRIBUTE drops the mutator and observer methods of the

dropped attributes, and checks dependencies on those dropped methods.

Notes
v When a type is altered by adding or dropping an attribute, all packages are

invalidated that depend on functions or methods that use this type or a
subtype of this type as a parameter or a result.

v When an attribute is added to or dropped from a structured type:
– If the INLINE LENGTH of the type was calculated by the system when

the type was created, the INLINE LENGTH values are automatically
modified for the altered type, and all of its subtypes to account for the
change. The INLINE LENGTH values are also automatically (recursively)
modified for all structured types where the INLINE LENGTH was
calculated by the system and the type includes an attribute of any type
with a changed INLINE LENGTH.

– If the INLINE LENGTH of any type affected by adding or dropping
attributes was explicitly specified by a user, then the INLINE LENGTH
for that particular type is not changed. Special care must be taken for
explicitly specified inline lengths. If it is likely that a type will have
attributes added later on, then the inline length, for any uses of that type

ALTER TYPE (Structured)

Chapter 6. SQL Statements 513

or one of its subtypes in a column definition, should be large enough to
account for the possible increase in length of the instantiated object.

– If new attributes are to be made visible to application programs, existing
transform functions must be modified to match the new structure of the
data type.

Examples
Example 1: The ALTER TYPE statement can be used to permit a cycle of
mutually referencing types and tables. Consider mutually referencing tables
named EMPLOYEE and DEPARTMENT.

The following sequence would allow the types and tables to be created.
CREATE TYPE DEPT ...
CREATE TYPE EMP ... (including attribute named DEPTREF of type REF(DEPT))
ALTER TYPE DEPT ADD ATTRIBUTE MANAGER REF(EMP)
CREATE TABLE DEPARTMENT OF DEPT ...
CREATE TABLE EMPLOYEE OF EMP (DEPTREF WITH OPTIONS SCOPE DEPARTMENT)
ALTER TABLE DEPARTMENT ALTER COLUMN MANAGER ADD SCOPE EMPLOYEE

The following sequence would allow these tables and types to be dropped.
DROP TABLE EMPLOYEE (the MANAGER column in DEPARTMENT becomes unscoped)
DROP TABLE DEPARTMENT
ALTER TYPE DEPT DROP ATTRIBUTE MANAGER
DROP TYPE EMP
DROP TYPE DEPT

Example 2: The ALTER TYPE statement can be used to create a type with an
attribute that references a subtype.

CREATE TYPE EMP ...
CREATE TYPE MGR UNDER EMP ...
ALTER TYPE EMP ADD ATTRIBUTE MANAGER REF(MGR)

Example 3: The ALTER TYPE statement can be used to add an attribute. The
following statement adds the SPECIAL attribute to the EMP type. Because the
inline length was not specified on the original CREATE TYPE statement, DB2
recalculates the inline length by adding 13 (10 bytes for the new attribute +
attribute length + 2 bytes for a non-LOB attribute).

ALTER TYPE EMP ...
ADD ATTRIBUTE SPECIAL CHAR(1)

Example 4: The ALTER TYPE statement can be used to add a method
associated with a type. The following statement adds a method called
BONUS.

ALTER TYPE EMP ...
ADD METHOD BONUS (RATE DOUBLE)

RETURNS INTEGER

ALTER TYPE (Structured)

514 SQL Reference

LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC

Note that the BONUS method cannot be used until a CREATE METHOD
statement is issued to create the method body. If it is assumed that type EMP
includes an attribute called SALARY, then the following is an example of a
method body definition.

CREATE METHOD BONUS(RATE DOUBLE) FOR EMP
RETURN CAST(SELF.SALARY * RATE AS INTEGER)

See “CREATE METHOD” on page 676 for a description of this statement.

ALTER TYPE (Structured)

Chapter 6. SQL Statements 515

ALTER USER MAPPING
The ALTER USER MAPPING statement is used to change the authorization
ID or password that is used at a data source for a specified federated server
authorization ID.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
If the authorization ID of the statement is different than the authorization
name that is mapped to the data source, then the authorization ID of the
statement must include SYSADM or DBADM authority. Otherwise, if the
authorization ID and the authorization name match, then no privileges or
authorities are required.

Syntax

�� ALTER USER MAPPING FOR authorization-name
USER

SERVER server-name �

� �

,
ADD

OPTIONS (user-option-name string-constant)
SET

DROP user-option-name

��

Description

authorization-name
Specifies the authorization name under which a user or application
connects to a federated database.

USER
The value in the special register USER. When USER is specified, then the
authorization ID of the ALTER USER MAPPING statement will be
mapped to the data source authorization ID that is specified in the
REMOTE_AUTHID user option.

SERVER server-name
Identifies the data source accessible under the remote authorization ID
that maps to the local authorization ID that’s denoted by
authorization-name or referenced by USER.

OPTIONS
Indicates what user options are to be enabled, reset, or dropped for the

ALTER USER MAPPING

516 SQL Reference

mapping that is being altered. Refer to “User Options” on page 1254 for
descriptions of user-option-names and their settings.

ADD
Enables a user option.

SET
Changes the setting of a user option.

user-option-name
Names a user option that is to be enabled or reset.

string-constant
Specifies the setting for user-option-name as a character string constant.

DROP user-option-name
Drops a user option.

Notes
v A user option cannot be specified more than once in the same ALTER USER

MAPPING statement (SQLSTATE 42853). When a user option is enabled,
reset, or dropped, any other user options that are in use are not affected.

v A user mapping cannot be altered in a given unit of work (UOW) if the
UOW already includes a SELECT statement that references a nickname for
a table or view at the data source that is to be included in the mapping.

Examples
Example 1: Jim uses a local database to connect to an Oracle data source called
ORACLE1. He accesses the local database under the authorization ID
KLEEWEIN; KLEEWEIN maps to CORONA, the authorization ID under
which he accesses ORACLE1. Jim is going to start accessing ORACLE1 under
a new ID, JIMK. So KLEEWEIN now needs to map to JIMK.

ALTER USER MAPPING FOR KLEEWEIN
SERVER ORACLE1
OPTIONS (SET REMOTE_AUTHID 'JIMK')

Example 2: Mary uses a federated database to connect to a DB2 Universal
Database for OS/390 data source called DORADO. She uses one authorization
ID to access DB2 and another to access DORADO, and she has created a
mapping between these two IDs. She has been using the same password with
both IDs, but now decides to use a separate password, ZNYQ, with the ID for
DORADO. Accordingly, she needs to map her federated database password to
ZNYQ.

ALTER USER MAPPING FOR MARY
SERVER DORADO
OPTIONS (ADD REMOTE_PASSWORD 'ZNYQ')

ALTER USER MAPPING

Chapter 6. SQL Statements 517

ALTER VIEW
The ALTER VIEW statement modifies an existing view by altering a reference
type column to add a scope.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v ALTERIN privilege on the schema of the view
v Definer of the view to be altered
v CONTROL privilege on the view to be altered.

Syntax

�� ALTER VIEW view-name �

� �
COLUMN

ALTER column-name ADD SCOPE typed-table-name
typed-view-name

��

Description

view-name
Identifies the view to be changed. It must be a view described in the
catalog.

ALTER COLUMN column-name
Is the name of the column to be altered in the view. The column-name
must identify an existing column of the view (SQLSTATE 42703). The
name cannot be qualified.

ADD SCOPE
Add a scope to an existing reference type column that does not already
have a scope defined (SQLSTATE 428DK). The column must not be
inherited from a superview (SQLSTATE 428DJ).

typed-table-name
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE 428DM).

ALTER VIEW

518 SQL Reference

No checking is done of any existing values in column-name to ensure
that the values actually reference existing rows in typed-table-name.

typed-view-name
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name (SQLSTATE 428DM).
No checking is done of any existing values in column-name to ensure
that the values actually reference existing rows in typed-view-name.

ALTER VIEW

Chapter 6. SQL Statements 519

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of a host
variable declare section.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in REXX.

Authorization
None required.

Syntax

�� BEGIN DECLARE SECTION ��

Description
The BEGIN DECLARE SECTION statement may be coded in the application
program wherever variable declarations can appear in accordance with the
rules of the host language. It is used to indicate the beginning of a host
variable declaration section. A host variable section ends with an END
DECLARE SECTION statement (see “END DECLARE SECTION” on
page 894).

Rules
v The BEGIN DECLARE SECTION and the END DECLARE SECTION

statements must be paired and may not be nested.
v SQL statements cannot be included within the declare section.
v Variables referenced in SQL statements must be declared in a declare

section in all host languages other than REXX. Furthermore, the section
must appear before the first reference to the variable. Generally, host
variables are not declared in REXX with the exception of LOB locators and
file reference variables. In this case, they are not declared within a BEGIN
DECLARE SECTION.

v Variables declared outside a declare section must not have the same name
as variables declared within a declare section.

v LOB data types must have their data type and length preceded with the
SQL TYPE IS keywords.

Examples
Example 1: Define the host variables hv_smint (smallint), hv_vchar24
(varchar(24)), hv_double (double), hv_blob_50k (blob(51200)), hv_struct (of
structured type ″struct_type″ as blob(10240)) in a C program.

EXEC SQL BEGIN DECLARE SECTION;
short hv_smint;
struct {

BEGIN DECLARE SECTION

520 SQL Reference

short hv_vchar24_len;
char hv_vchar24_value[24];
} hv_vchar24;

double hv_double;
SQL TYPE IS BLOB(50K) hv_blob_50k;
SQL TYPE IS struct_type AS BLOB(10k) hv_struct;

EXEC SQL END DECLARE SECTION;

Example 2: Define the host variables HV-SMINT (smallint), HV-VCHAR24
(varchar(24)), HV-DEC72 (dec(7,2)), and HV-BLOB-50k (blob(51200)) in a
COBOL program.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 HV-SMINT PIC S9(4) COMP-4.
01 HV-VCHAR24.

49 HV-VCHAR24-LENGTH PIC S9(4) COMP-4.
49 HV-VCHAR24-VALUE PIC X(24).

01 HV-DEC72 PIC S9(5)V9(2) COMP-3.
01 HV-BLOB-50K USAGE SQL TYPE IS BLOB(50K).

EXEC SQL END DECLARE SECTION END-EXEC.

Example 3: Define the host variables HVSMINT (smallint), HVVCHAR24
(char(24)), HVDOUBLE (double), and HVBLOB50k (blob(51200)) in a Fortran
program.

EXEC SQL BEGIN DECLARE SECTION
INTEGER*2 HVSMINT
CHARACTER*24 HVVCHAR24
REAL*8 HVDOUBLE
SQL TYPE IS BLOB(50K) HVBLOB50K

EXEC SQL END DECLARE SECTION

Note: In Fortran, if the expected value is greater than 254 characters, then a
CLOB host variable should be used.

Example 4: Define the host variables HVSMINT (smallint), HVBLOB50K
(blob(51200)), and HVCLOBLOC (a CLOB locator) in a REXX program.

DECLARE :HVCLOBLOC LANGUAGE TYPE CLOB LOCATOR
call sqlexec 'FETCH c1 INTO :HVSMINT, :HVBLOB50K'

Note that the variables HVSMINT and HVBLOB50K were implicitly defined
by using them in the FETCH statement.

BEGIN DECLARE SECTION

Chapter 6. SQL Statements 521

CALL
Invokes a procedure stored at the location of a database. A stored procedure,
for example, executes at the location of the database, and returns data to the
client application.

Programs using the SQL CALL statement are designed to run in two parts,
one on the client and the other on the server. The server procedure at the
database runs within the same transaction as the client application. If the
client application and stored procedure are on the same partition, the stored
procedure is executed locally.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. However, the
procedure name may be specified via a host variable and this, coupled with
the use of the USING DESCRIPTOR clause, allows both the procedure name
and the parameter list to be provided at run time; thus achieving the same
effect as a dynamically prepared statement.

Authorization
The authorization rules vary according to the server at which the procedure is
stored.

DB2 Universal Database:
The privileges held by the authorization ID of the CALL statement at
run time statement must include at least one of the following:
v EXECUTE privilege for the package associated with the stored

procedure
v CONTROL privilege for the package associated with the stored

procedure
v SYSADM or DBADM authority

DB2 Universal Database for OS/390:
The privileges held by the authorization ID of the CALL statement at
bind time must include at least one of the following:
v EXECUTE privilege for the package associated with the stored

procedure
v Ownership of the package associated with the stored procedure
v PACKADM authority for the package’s collection
v SYSADM authority

DB2 for AS/400:
The privileges held by the authorization ID of the CALL statement at
bind time must include at least one of the following:
v If the stored procedure is written in REXX:

CALL

522 SQL Reference

– The system authorities *OBJOPR and *READ on the source file
associated with the procedure

– The system authority *EXECUTE on the library containing the
source file and the system authority *USE to the CL command

v If the stored procedure is not written in REXX:
– The system authority *EXECUTE on both the program associated

with the procedure and on the library containing that program
v Administrative authority

Syntax

�� CALL procedure-name
host-variable

�

()
,

(1)
host-variable

USING DESCRIPTOR descriptor-name

��

Notes:

1 Stored procedures located at DB2 Universal Database for OS/390 and
DB2 Universal Database for AS/400 servers and invoked by DB2
Universal Database for OS/390 or DB2 Universal Database for AS/400
clients support additional sources for procedure arguments (for example
constant values). However, if the stored procedure is located on a DB2
Universal Database or the procedure is invoked from a DB2 Universal
Database client, all arguments must be provided via host variables.

Description

procedure-name or host-variable
Identifies the procedure to call. The procedure name may be specified
either directly or within a host variable. The procedure identified must
exist at the current server (SQLSTATE 42724).

If procedure-name is specified it must be an ordinary identifier not greater
than 254 bytes. Since this can only be an ordinary identifier, it cannot
contain blanks or special characters and the value is converted to upper
case. Thus, if it is necessary to use lower case names, blanks or special
characters, the name must be specified via a host-variable.

If host-variable is specified, it must be a character-string variable with a
length attribute that is not greater than 254 bytes, and it must not include
an indicator variable. Note that the value is not converted to upper case.
procedure-name must be left-justified.

The procedure name can take one of several forms. The forms supported
vary according to the server at which the procedure is stored.

CALL

Chapter 6. SQL Statements 523

DB2 Universal Database:

procedure-name The name (with no extension) of the procedure to
execute. The procedure invoked is determined as
follows.
1. The procedure-name is used both as the name of

the stored procedure library and the function
name within that library. For example, if
procedure-name is proclib, the DB2 server will
load the stored procedure library named
proclib and execute the function routine
proclib() within that library.
In UNIX-based systems, the DB2 server finds
the stored procedure library in the default
directory sqllib/function. Unfenced stored
procedures are in the
sqllib/function/unfenced directory.
In OS/2, the location of the stored procedures
is specified by the LIBPATH variable in the
CONFIG.SYS file. Unfenced stored procedures
are in the sqllib\dll\unfenced directory.

2. If the library or function could not be found,
the procedure-name is used to search the
defined procedures (in
SYSCAT.PROCEDURES) for a matching
procedure. A matching procedure is
determined using the steps that follow.
a. Find the procedures from the catalog

(SYSCAT.PROCEDURES) where the
PROCNAME matches the procedure-name
specified and the PROCSCHEMA is a
schema name in the SQL path (CURRENT
PATH special register). If the schema name
is explicitly specified, the SQL path is
ignored and only procedures with the
specified schema name are considered.

b. Next, eliminate any of these procedures
that do not have the same number of
parameters as the number of arguments
specified in the CALL statement.

c. Chose the remaining procedure that is
earliest in the SQL path.

CALL

524 SQL Reference

d. If there are no remaining procedures after
step 2, an error is returned (SQLSTATE
42884).

Once the procedure is selected, DB2 will
invoke the procedure defined by the external
name.

procedure-library!function-name
The exclamation character (!), acts as a delimiter
between the library name and the function name
of the stored procedure. For example, if
proclib!func was specified, then proclib would
be loaded into memory and the function func
from that library would be executed. This allows
multiple functions to be placed in the same stored
procedure library.

The stored procedure library is located in the
directories or specified in the LIBPATH variable,
as described in procedure-name.

absolute-path!function-name
The absolute-path specifies the complete path to the
stored procedure library.

In a UNIX-based system, for example, if
/u/terry/proclib!func was specified, then the
stored procedure library proclib would be
obtained from the directory /u/terry and the
function func from that library would be executed.

In OS/2, if d:\terry\proclib!func was specified,
then it would cause the database manager to load
the func.dll file from the d:\terry\proclib
directory.

In all these cases, the total length of the procedure name including
its implicit or explicit full path must not be longer than 254 bytes.

DB2 Universal Database for OS/390 (V4.1 or later) server:
An implicit or explicit three part name. The parts are as follows.

high order: The location name of the server where the
procedure is stored.

middle: SYSPROC

middle: Some value in the PROCEDURE column of the
SYSIBM.SYSPROCEDURES catalog table.

CALL

Chapter 6. SQL Statements 525

DB2 for OS/400 (V3.1 or later) server:
The external program name is assumed to be the same as the
procedure-name.

For portability, procedure-name should be specified as a single token no
larger than 8 bytes.

(host-variable,...)
Each specification of host-variable is a parameter of the CALL. The nth
parameter of the CALL corresponds to the nth parameter of the server’s
stored procedure.

Each host-variable is assumed to be used for exchanging data in both
directions between client and server. In order to avoid sending
unnecessary data between client and server, the client application should
provide an indicator variable with each parameter and set the indicator to
-1 if the parameter is not used to transmit data to the stored procedure.
The stored procedure should set the indicator variable to -128 for any
parameter that is not used to return data to the client application.

If the server is DB2 Universal Database the parameters must have
matching data types in both the client and server program. 62

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host
variables. The nth SQLVAR element corresponds to the nth parameter of
the server’s stored procedure.

Before the CALL statement is processed, the application must set the
following fields in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables. The

following fields of each Base SQLVAR element passed must be
initialized:
– SQLTYPE
– SQLLEN
– SQLDATA

62. DB2 Universal Database for OS/390 and DB2 Universal Database for AS/400 servers support conversions between
compatible data types when invoking their stored procedures. For example, if the client program uses the
INTEGER data type and the stored procedure expects FLOAT, the server will convert the INTEGER value to
FLOAT before invoking the procedure.

CALL

526 SQL Reference

– SQLIND

The following fields of each Secondary SQLVAR element passed must
be initialized:
– LEN.SQLLONGLEN
– SQLDATALEN
– SQLDATATYPE_NAME

Each SQLDA is assumed to be used for exchanging data in both directions
between client and server. In order to avoid sending unnecessary data
between client and server, the client application should set the SQLIND
field to -1 if the parameter is not used to transmit data to the stored
procedure. The stored procedure should set the SQLIND field -128 for any
parameter that is not used to return data to the client application.

Notes
v Use of Large Object (LOB) data types:

If the client and server application needs to specify LOB data from an
SQLDA, allocate double the number of SQLVAR entries.
LOB data types are supported by stored procedures starting with DB2
Version 2. The LOB data types are not supported by all down level clients
or servers.

v Retrieving the RETURN_STATUS from an SQL procedure:
If an SQL procedure successfully issues a RETURN statement with a status
value, this value is returned in the first SQLERRD field of the SQLCA. If
the CALL statement is issued in an SQL procedure, use the GET
DIAGNOSTICS statement to retrieve the RETURN_STATUS value. The
value is −1 if the SQLSTATE indicates an error.

v Returning Result Sets from Stored Procedures:
If the client application program is written using CLI, result sets can be
returned directly to the client application. The stored procedure indicates
that a result set is to be returned by declaring a cursor on that result set,
opening a cursor on the result set, and leaving the cursor open when
exiting the procedure.
At the end of a procedure that is invoked via CLI:
– For every cursor that has been left open, a result set is returned to the

application.
– If more than one cursor is left open, the result sets are returned in the

order in which their cursors were opened.
– Only unread rows are passed back. For example, if the result set of a

cursor has 500 rows, and 150 of those rows have been read by the stored
procedure at the time the stored procedure is terminated, then rows 151
through 500 will be returned to the stored procedure.

CALL

Chapter 6. SQL Statements 527

For additional information refer to the Application Development Guide and
the CLI Guide and Reference.

v Inter-operability between the CALL statement and the DARI API:
In general, the CALL statement will not work with existing DARI
procedures. See the Application Development Guide for details.

v Handling of special registers:
The settings of the special registers of the caller are inherited by the stored
procedure on invocation and restored upon return to the caller. Special
registers may be changed within a stored procedure, but these changes do
not effect the caller. This is not true for legacy stored procedures (those
defined with parameter style DB2DARI or found in the default library),
where the changes made to special registers in a procedure become the
settings for the caller.

Examples
Example 1:

In C, invoke a procedure called TEAMWINS in the ACHIEVE library passing
it a parameter stored in the host variable HV_ARGUMENT.

strcpy(HV_PROCNAME, "ACHIEVE!TEAMWINS");
CALL :HV_PROCNAME (:HV_ARGUMENT);

Example 2:

In C, invoke a procedure called :SALARY_PROC using the SQLDA named
INOUT_SQLDA.

struct sqlda *INOUT_SQLDA;

/* Setup code for SQLDA variables goes here */

CALL :SALARY_PROC
USING DESCRIPTOR :*INOUT_SQLDA;

Example 3:

A Java stored procedure is defined in the database using the following
statement:

CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)

EXTERNAL NAME 'parts!onhand'
LANGUAGE JAVA PARAMETER STYLE DB2GENERAL;

A Java application calls this stored procedure using the following code
fragment:

CALL

528 SQL Reference

...
CallableStatement stpCall ;

String sql = "CALL PARTS_ON_HAND (?,?,?)" ;

stpCall = con.prepareCall(sql) ; /* con is the connection */

stpCall.setInt(1, variable1) ;
stpCall.setBigDecimal(2, variable2) ;
stpCall.setInt(3, variable3) ;

stpCall.registerOutParameter(2, Types.DECIMAL, 2) ;
stpCall.registerOutParameter(3, Types.INTEGER) ;

stpCall.execute() ;

variable2 = stpCall.getBigDecimal(2) ;
variable3 = stpCall.getInt(3) ;
...

This application code fragment will invoke the Java method onhand in class
parts since the procedure-name specified on the CALL statement is found in
the database and has the external name ’parts!onhand’.

CALL

Chapter 6. SQL Statements 529

CLOSE
The CLOSE statement closes a cursor. If a result table was created when the
cursor was opened, that table is destroyed.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that cannot be dynamically
prepared.

Authorization
None required. See “DECLARE CURSOR” on page 841 for the authorization
required to use a cursor.

Syntax

�� CLOSE cursor-name
WITH RELEASE

��

Description

cursor-name
Identifies the cursor to be closed. The cursor-name must identify a declared
cursor as explained in the DECLARE CURSOR statement. When the
CLOSE statement is executed, the cursor must be in the open state.

WITH RELEASE
The release of all read locks that have been held for the cursor is
attempted. Note that not all of the read locks are necessarily released;
these locks may be held for other operations or activities.

Notes
v At the end of a unit of work, all cursors that belong to an application

process and that were declared without the WITH HOLD option are
implicitly closed.

v CLOSE does not cause a commit or rollback operation.
v The WITH RELEASE clause has no effect for cursors that are operating

under isolation levels CS or UR. When specified for cursors that are
operating under isolation levels RS or RR, WITH RELEASE terminates
some of the guarantees of those isolation levels. Specifically, if the cursor is
opened again, an RS cursor may experience the ’nonrepeatable read’
phenomenon and an RR cursor may experience either the ’nonrepeatable
read’ or ’phantom’ phenomenon. Refer to “Appendix I. Comparison of
Isolation Levels” on page 1285 for more details.
If a cursor that was originally either RR or RS is reopened after being
closed using the WITH RELEASE clause, then new read locks will be
acquired.

CLOSE

530 SQL Reference

v Special rules apply to cursors within a stored procedure that have not been
closed before returning to the calling program. See “Notes” on page 527 for
more information.

Example
A cursor is used to fetch one row at a time into the C program variables dnum,
dname, and mnum. Finally, the cursor is closed. If the cursor is reopened, it is
again located at the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM TDEPT
WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN C1;

while (SQLCODE==0) { .
EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

.

.
}

EXEC SQL CLOSE C1;

CLOSE

Chapter 6. SQL Statements 531

COMMENT ON
The COMMENT ON statement adds or replaces comments in the catalog
descriptions of various objects.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges that must be held by the authorization ID of the COMMENT
ON statement must include one of the following:
v SYSADM or DBADM
v definer of the object (underlying table for column or constraint) as recorded

in the DEFINER column of the catalog view for the object (OWNER column
for a schema)

v ALTERIN privilege on the schema (applicable only to objects allowing more
than one-part names)

v CONTROL privilege on the object (applicable to index, package, table and
view objects only)

v ALTER privilege on the object (applicable to table objects only)

Note that for table space or nodegroup the authorization ID must have
SYSADM or SYSCTRL authority.

Syntax

�� COMMENT ON �

�

�

objects IS string-constant
,

table-name (column-name IS string-constant)
view-name

��

objects:

COMMENT ON

532 SQL Reference

�

�

ALIAS alias-name
COLUMN table-name.column-name

view-name.column-name
CONSTRAINT table-name.constraint-name
FUNCTION function-name

()
,

data-type
SPECIFIC FUNCTION specific-name
FUNCTION MAPPING function-mapping-name

(1)
INDEX index-name
NICKNAME nickname
NODEGROUP nodegroup-name
PACKAGE package-name
PROCEDURE procedure-name

()
,

data-type
SPECIFIC PROCEDURE specific-name
SCHEMA schema-name
SERVER server-name
SERVER OPTION server-option-name FOR remote-server
TABLE table-name

view-name
TABLESPACE tablespace-name
TRIGGER trigger-name

TYPE type-name
(2)

DISTINCT
TYPE MAPPING type-mapping-name
WRAPPER wrapper-name

remote-server:

SERVER server-name
TYPE server-type

VERSION server-version
WRAPPER wrapper-name

server-version:

version
. release

. mod
version-string-constant

COMMENT ON

Chapter 6. SQL Statements 533

Notes:

1 Index-name can be the name of either an index or an index specification.

2 The keyword DATA can be used as a synonym for DISTINCT.

Description

ALIAS alias-name
Indicates a comment will be added or replaced for an alias. The alias-name
must identify an alias that is described in the catalog (SQLSTATE 42704).
The comment replaces the value of the REMARKS column of the
SYSCAT.TABLES catalog view for the row that describes the alias.

COLUMN table-name.column-name or view-name.column-name
Indicates a comment will be added or replaced for a column. The
table-name.column-name or view-name.column-name combination must
identify a column and table combination that is described in the catalog
(SQLSTATE 42704). The comment replaces the value of the REMARKS
column of the SYSCAT.COLUMNS catalog view for the row that describes
the column.

A comment cannot be made on a column of an inoperative view.
(SQLSTATE 51024).

CONSTRAINT table-name.constraint-name
Indicates a comment will be added or replaced for a constraint. The
table-name.constraint-name combination must identify a constraint and the
table that it constrains; they must be described in the catalog (SQLSTATE
42704). The comment replaces the value of the REMARKS column of the
SYSCAT.TABCONST catalog view for the row that describes the
constraint.

FUNCTION
Indicates a comment will be added or replaced for a function. The
function instance specified must be a user-defined function or function
template described in the catalog.

There are several different ways available to identify the function instance:

FUNCTION function-name
Identifies the particular function, and is valid only if there is exactly
one function with the function-name. The function thus identified may
have any number of parameters defined for it. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a
qualifier for an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier
for unqualified object names. If no function by this name exists in the
named or implied schema, an error (SQLSTATE 42704) is raised. If
there is more than one specific instance of the function in the named
or implied schema, an error (SQLSTATE 42854) is raised.

COMMENT ON

534 SQL Reference

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function
to be commented upon. The function selection algorithm is not used.

function-name
Gives the function name of the function to be commented upon.
In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In
static SQL statements the QUALIFIER precompile/bind option
implicitly specifies the qualifier for unqualified object names.

(data-type,...)
Must match the data types that were specified on the CREATE
FUNCTION statement in the corresponding position. The number
of data types, and the logical concatenation of the data types is
used to identify the specific function for which to add or replace
the comment.

If the data-type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses
may be coded to indicate that these attributes are to be ignored
when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must
exactly match that specified in the CREATE FUNCTION
statement.

A type of FLOAT(n) does not need to match the defined value for
n since 0 <n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.

(Note that the FOR BIT DATA attribute is not considered part of
the signature for matching purposes. So, for example, a CHAR
FOR BIT DATA specified in the signature would match a function
defined with CHAR only, and vice versa.)

If no function with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Indicates that comments will be added or replaced for a function (see
FUNCTION for other methods of identifying a function). Identifies the
particular user-defined function that is to be commented upon, using

COMMENT ON

Chapter 6. SQL Statements 535

the specific name either specified or defaulted to at function creation
time. In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static
SQL statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The specific-name
must identify a specific function instance in the named or implied
schema; otherwise, an error (SQLSTATE 42704) is raised.

It is not possible to comment on a function that is either in the SYSIBM
schema or the SYSFUN schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the
SYSCAT.FUNCTIONS catalog view for the row that describes the
function.

FUNCTION MAPPING function-mapping-name
Indicates a comment will be added or replaced for a function mapping.
The function-mapping-name must identify a function mapping that is
described in the catalog (SQLSTATE 42704). The comment replaces the
value for the REMARKS column of the SYSCAT.FUNCMAPPINGS catalog
view for the row that describes the function mapping.

INDEX index-name
Indicates a comment will be added or replaced for an index or index
specification. The index-name must identify either a distinct index or an
index specification that is described in the catalog (SQLSTATE 42704). The
comment replaces the value for the REMARKS column of the
SYSCAT.INDEXES catalog view for the row that describes the index or
index specification.

NICKNAME nickname
Indicates a comment will be added or replaced for a nickname. The
nickname must be a nickname that is described in the catalog (SQLSTATE
42704). The comment replaces the value for the REMARKS column of the
SYSCAT.TABLES catalog view for the row that describes the nickname.

NODEGROUP nodegroup-name
Indicates a comment will be added or replaced for a nodegroup. The
nodegroup-name must identify a distinct nodegroup that is described in the
catalog (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.NODEGROUPS catalog view for the
row that describes the nodegroup.

PACKAGE package-name
Indicates a comment will be added or replaced for a package. The
package-name must identify a distinct package that is described in the

COMMENT ON

536 SQL Reference

catalog (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.PACKAGES catalog view for the row
that describes the package.

PROCEDURE
Indicates a comment will be added or replaced for a procedure. The
procedure instance specified must be a stored procedure described in the
catalog.

There are several different ways available to identify the procedure
instance:

PROCEDURE procedure-name
Identifies the particular procedure, and is valid only if there is exactly
one procedure with the procedure-name in the schema. The procedure
thus identified may have any number of parameters defined for it. In
dynamic SQL statements, the CURRENT SCHEMA special register is
used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. If no procedure by
this name exists in the named or implied schema, an error (SQLSTATE
42704) is raised. If there is more than one specific instance of the
procedure in the named or implied schema, an error (SQLSTATE
42854) is raised.

PROCEDURE procedure-name (data-type,...)
This is used to provide the procedure signature, which uniquely
identifies the procedure to be commented upon.

procedure-name
Gives the procedure name of the procedure to be commented
upon. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object
name. In static SQL statements the QUALIFIER precompile/bind
option implicitly specifies the qualifier for unqualified object
names.

(data-type,...)
Must match the data types that were specified on the CREATE
PROCEDURE statement in the corresponding position. The
number of data types, and the logical concatenation of the data
types is used to identify the specific procedure for which to add
or replace the comment.

If the data-type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses

COMMENT ON

Chapter 6. SQL Statements 537

may be coded to indicate that these attributes are to be ignored
when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must
exactly match that specified in the CREATE PROCEDURE
statement.

A type of FLOAT(n) does not need to match the defined value for
n since 0<n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Indicates that comments will be added or replaced for a procedure
(see PROCEDURE for other methods of identifying a procedure).
Identifies the particular stored procedure that is to be commented
upon, using the specific name either specified or defaulted to at
procedure creation time. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names. The specific-name must identify a specific
procedure instance in the named or implied schema; otherwise, an
error (SQLSTATE 42704) is raised.

The comment replaces the value of the REMARKS column of the
SYSCAT.PROCEDURES catalog view for the row that describes the
procedure.

SCHEMA schema-name
Indicates a comment will be added or replaced for a schema. The
schema-name must identify a schema that is described in the catalog
(SQLSTATE 42704). The comment replaces the value of the REMARKS
column of the SYSCAT.SCHEMATA catalog view for the row that
describes the schema.

SERVER server-name
Indicates a comment will be added or replaced for a data source. The
server-name must identify a data source that is described in the catalog
(SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.SERVERS catalog view for the row that describes
the data source.

COMMENT ON

538 SQL Reference

SERVER OPTION server-option-name FOR remote-server
Indicates a comment will be added or replaced for a server option.

server-option-name
Identifies a server option. This option must be one that is described in
the catalog (SQLSTATE 42704). The comment replaces the value for
the REMARKS column of the SYSCAT.SERVEROPTIONS catalog view
for the row that describes the server option.

remote-server
Describes the data source to which the server-option applies.

SERVER server-name
Names the data source to which the server-option applies. The
server-name must identify a data source that is described in the
catalog.

TYPE server-type
Specifies the type of data source—for example, DB2 Universal
Database for OS/390 or Oracle—to which the server-option applies.
The server-type can be specified in either lower- or uppercase; it
will be stored in uppercase in the catalog.

VERSION
Specifies the version of the data source identified by server-name.

version
Specifies the version number. version must be an integer.

release
Specifies the number of the release of the version denoted by
version. release must be an integer.

mod
Specifies the number of the modification of the release
denoted by release. mod must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, ‘8i’);
or it can be the concatenated values of version, release, and, if
applicable, mod (for example, ‘8.0.3’).

WRAPPER wrapper-name
Identifies the wrapper that is used to access the data source
referenced by server-name.

TABLE table-name or view-name
Indicates a comment will be added or replaced for a table or view. The
table-name or view-name must identify a table or view (not an alias or
nickname) that is described in the catalog (SQLSTATE 42704) and must

COMMENT ON

Chapter 6. SQL Statements 539

not identify a declared temporary table (SQLSTATE 42995). The comment
replaces the value for the REMARKS column of the SYSCAT.TABLES
catalog view for the row that describes the table or view.

TABLESPACE tablespace-name
Indicates a comment will be added or replaced for a table space. The
tablespace-name must identify a distinct table space that is described in the
catalog (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.TABLESPACES catalog view for the
row that describes the tablespace.

TRIGGER trigger-name
Indicates a comment will be added or replaced for a trigger. The
trigger-name must identify a distinct trigger that is described in the catalog
(SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.TRIGGERS catalog view for the row that describes
the trigger.

TYPE type-name
Indicates a comment will be added or replaced for a user-defined type.
The type-name must identify a user-defined type that is described in the
catalog (SQLSTATE 42704). If DISTINCT is specified, type-name must
identify a distinct type that is described in the catalog (SQLSTATE 42704).
The comment replaces the value of the REMARKS column of the
SYSCAT.DATATYPES catalog view for the row that describes the
user-defined type.

In dynamic SQL statements, the CURRENT SCHEMA special register is
used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies
the qualifier for unqualified object names.

TYPE MAPPING type-mapping-name
Indicates a comment will be added or replaced for a user-defined data
type mapping. The type-mapping-name must identify a data type mapping
that is described in the catalog (SQLSTATE 42704). The comment replaces
the value for the REMARKS column of the SYSCAT.TYPEMAPPINGS
catalog view for the row that describes the mapping.

WRAPPER wrapper-name
Indicates a comment will be added or replaced for a wrapper. The
wrapper-name must identify a wrapper that is described in the catalog
(SQLSTATE 42704). The comment replaces the value for the REMARKS
column of the SYSCAT.WRAPPERS catalog view for the row that
describes the wrapper.

COMMENT ON

540 SQL Reference

IS string-constant
Specifies the comment to be added or replaced. The string-constant can be
any character string constant of up to 254 bytes. (Carriage return and line
feed each count as 1 byte.)

table-name|view-name ({ column-name IS string-constant } ...)
This form of the COMMENT ON statement provides the ability to specify
comments for multiple columns of a table or view. The column names
must not be qualified, each name must identify a column of the specified
table or view, and the table or view must be described in the catalog. The
table-name cannot be a declared temporary table (SQLSTATE 42995).

A comment cannot be made on a column of an inoperative view
(SQLSTATE 51024).

Examples
Example 1: Add a comment for the EMPLOYEE table.

COMMENT ON TABLE EMPLOYEE
IS 'Reflects first quarter reorganization'

Example 2: Add a comment for the EMP_VIEW1 view.
COMMENT ON TABLE EMP_VIEW1
IS 'View of the EMPLOYEE table without salary information'

Example 3: Add a comment for the EDLEVEL column of the EMPLOYEE
table.

COMMENT ON COLUMN EMPLOYEE.EDLEVEL
IS 'highest grade level passed in school'

Example 4: Add comments for two different columns of the EMPLOYEE table.
COMMENT ON EMPLOYEE

(WORKDEPT IS 'see DEPARTMENT table for names',
EDLEVEL IS 'highest grade level passed in school')

Example 5: Pellow wants to comment on the CENTRE function, which he
created in his PELLOW schema, using the signature to identify the specific
function to be commented on.

COMMENT ON FUNCTION CENTRE (INT,FLOAT)
IS 'Frank''s CENTRE fctn, uses Chebychev method'

Example 6: McBride wants to comment on another CENTRE function, which
she created in the PELLOW schema, using the specific name to identify the
function instance to be commented on:

COMMENT ON SPECIFIC FUNCTION PELLOW.FOCUS92 IS
'Louise''s most triumphant CENTRE function, uses the
Brownian fuzzy-focus technique'

COMMENT ON

Chapter 6. SQL Statements 541

Example 7: Comment on the function ATOMIC_WEIGHT in the CHEM
schema, where it is known that there is only one function with that name:

COMMENT ON FUNCTION CHEM.ATOMIC_WEIGHT
IS 'takes atomic nbr, gives atomic weight'

Example 8: Eigler wants to comment on the SEARCH procedure, which he
created in his EIGLER schema, using the signature to identify the specific
procedure to be commented on.

COMMENT ON PROCEDURE SEARCH (CHAR,INT)
IS 'Frank''s mass search and replace algorithm'

Example 9: Macdonald wants to comment on another SEARCH function,
which he created in the EIGLER schema, using the specific name to identify
the procedure instance to be commented on:

COMMENT ON SPECIFIC PROCEDURE EIGLER.DESTROY IS
'Patrick''s mass search and destroy algorithm'

Example 10: Comment on the procedure OSMOSIS in the BIOLOGY schema,
where it is known that there is only one procedure with that name:

COMMENT ON PROCEDURE BIOLOGY.OSMOSIS
IS 'Calculations modelling osmosis'

Example 11: Comment on an index specification named INDEXSPEC.
COMMENT ON INDEX INDEXSPEC

IS 'An index specification that indicates to the optimizer
that the table referenced by nickname NICK1 has an index.'

Example 12: Comment on the wrapper whose default name is NET8.
COMMENT ON WRAPPER NET8

IS 'The wrapper for data sources associated with
Oracle's Net8 client software.'

COMMENT ON

542 SQL Reference

COMMIT
The COMMIT statement terminates a unit of work and commits the database
changes that were made by that unit of work.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization
None required.

Syntax

�� COMMIT
WORK

��

Description
The unit of work in which the COMMIT statement is executed is terminated
and a new unit of work is initiated. All changes made by the following
statements executed during the unit of work are committed: ALTER,
COMMENT ON, CREATE, DELETE, DROP, GRANT, INSERT, LOCK TABLE,
REVOKE, SET INTEGRITY, SET transition-variable, and UPDATE.

The following statements, however, are not under transaction control and
changes made by them are independent of issuing the COMMIT statement:
v SET CONNECTION,
v SET CURRENT DEFAULT TRANSFORM GROUP
v SET CURRENT DEGREE,
v SET CURRENT EXPLAIN MODE,
v SET CURRENT EXPLAIN SNAPSHOT,
v SET CURRENT PACKAGESET,
v SET CURRENT QUERY OPTIMIZATION,
v SET CURRENT REFRESH AGE,
v SET EVENT MONITOR STATE,
v SET PASSTHRU,
v SET PATH,
v SET SCHEMA,
v SET SERVER OPTION.

All locks acquired by the unit of work subsequent to its initiation are released,
except necessary locks for open cursors that are declared WITH HOLD.All
open cursors not defined WITH HOLD are closed. Open cursors defined

COMMIT

Chapter 6. SQL Statements 543

WITH HOLD remain open, and the cursor is positioned before the next
logical row of the result table.63All LOB locators are freed. Note that this is
true even when the locators are associated with LOB values retrieved via a
cursor that has the WITH HOLD property.

All savepoints set within the transaction are released.

Notes
v It is strongly recommended that each application process explicitly ends its

unit of work before terminating. If the application program ends normally
without a COMMIT or ROLLBACK statement then the database manager
attempts a commit or rollback depending on the application environment.
Refer to Application Development Guide for implicitly ending a transaction in
different application environments.

v See “EXECUTE” on page 895 for information on the impact of COMMIT on
cached dynamic SQL statements.

v See “DECLARE GLOBAL TEMPORARY TABLE” on page 846 for
information on potential impacts of COMMIT on declared temporary tables.

Example
Commit alterations to the database made since the last commit point.

COMMIT WORK

63. A FETCH must be performed before a Positioned UPDATE or DELETE statement is issued.

COMMIT

544 SQL Reference

Compound SQL (Embedded)
Combines one or more other SQL statements (sub-statements) into an
executable block. Please see “Chapter 7. SQL Procedures” on page 1059 for
Compound SQL statements within SQL procedures.

Invocation
This statement can only be embedded in an application program. The entire
Compound SQL statement construct is an executable statement that cannot be
dynamically prepared. The statement is not supported in REXX.

Authorization
None for the Compound SQL statement itself. The authorization ID of the
Compound SQL statement must have the appropriate authorization on all the
individual statements that are contained within the Compound SQL
statement.

Syntax

�� BEGIN COMPOUND ATOMIC
NOT ATOMIC

STATIC �

�
STOP AFTER FIRST host-variable STATEMENTS

�

sql-statement ;
�

� END COMPOUND ��

Description

ATOMIC
Specifies that, if any of the sub-statements within the Compound SQL
statement fail, then all changes made to the database by any of the
sub-statements, including changes made by successful sub-statements, are
undone.

NOT ATOMIC
Specifies that, regardless of the failure of any sub-statements, the
Compound SQL statement will not undo any changes made to the
database by the other sub-statements.

STATIC
Specifies that input variables for all sub-statements retain their original
value. For example, if

SELECT ... INTO :abc ...

Compound SQL (Embedded)

Chapter 6. SQL Statements 545

is followed by:
UPDATE T1 SET C1 = 5 WHERE C2 = :abc

the UPDATE statement will use the value that :abc had at the start of the
execution of the Compound SQL statement, not the value that follows the
SELECT INTO.

If the same variable is set by more than one sub-statement, the value of
that variable following the Compound SQL statement is the value set by
the last sub-statement.

Note: Non-static behavior is not supported. This means that the
sub-statements should be viewed as executing non-sequentially and
sub-statements should not have interdependencies.

STOP AFTER FIRST
Specifies that only a certain number of sub-statements will be executed.

host-variable
A small integer that specifies the number of sub-statements to be
executed.

STATEMENTS
Completes the STOP AFTER FIRST host-variable clause.

sql-statement
All executable statements except the following can be contained within an
embedded static compound SQL statement:

CALL OPEN
CLOSE PREPARE
CONNECT RELEASE (Connection)
Compound SQL RELEASE SAVEPOINT
DESCRIBE ROLLBACK
DISCONNECT SAVEPOINT
EXECUTE IMMEDIATE SET CONNECTION
FETCH

If a COMMIT statement is included, it must be the last sub-statement. If
COMMIT is in this position, it will be issued even if the STOP AFTER
FIRST host-variable STATEMENTS clause indicates that not all of the
sub-statements are to executed. For example, suppose COMMIT is the last
sub-statement in a compound SQL block of 100 sub-statements. If the
STOP AFTER FIRST STATEMENTS clause indicates that only 50
sub-statements are to be executed, then COMMIT will be the 51st
sub-statement.

Compound SQL (Embedded)

546 SQL Reference

An error will be returned if COMMIT is included when using CONNECT
TYPE 2 or running in an XA distributed transaction processing
environment (SQLSTATE 25000).

Rules
v DB2 Connect does not support SELECT statements selecting LOB columns

in a compound SQL block.
v No host language code is allowed within a Compound SQL statement; that

is, no host language code is allowed between the sub-statements that make
up the Compound SQL statement.

v Only NOT ATOMIC Compound SQL statements will be accepted by DB2
Connect.

v Compound SQL statements cannot be nested.
v An Atomic Compound SQL statement cannot be issued inside a savepoint

(SQLSTATE 3B002).

Notes
One SQLCA is returned for the entire Compound SQL statement. Most of the
information in that SQLCA reflects the values set by the application server
when it processed the last sub-statement. For instance:
v The SQLCODE and SQLSTATE are normally those for the last

sub-statement (the exception is described in the next point).
v If a 'no data found' warning (SQLSTATE '02000') is returned, then that

warning is given precedence over any other warning in order that a
WHENEVER NOT FOUND exception can be acted upon.64

v The SQLWARN indicators are an accumulation of the indicators set for all
sub-statements.

If one or more errors occurred during NOT ATOMIC Compound SQL
execution and none of these are of a serious nature, the SQLERRMC will
contain information on up to a maximum of seven of these errors. The first
token of the SQLERRMC will indicate the total number of errors that
occurred. The remaining tokens will each contain the ordinal position and the
SQLSTATE of the failing sub-statement within the Compound SQL statement.
The format is a character string of the form:

nnnXsssccccc

64. This means that the SQLCODE, SQLERRML, SQLERRMC, and SQLERRP fields in the SQLCA that is eventually
returned to the application are those from the sub-statement that triggered the 'no data found'. If there is more
than one 'no data found' warning within the Compound SQL statement, the fields for the last sub-statement will
be the fields returned.

Compound SQL (Embedded)

Chapter 6. SQL Statements 547

with the substring starting with X repeating up to six more times and the
string elements defined as follows.

nnn The total number of statements that produced errors. 65 This field is
left-justified and padded with blanks.

X The token separator X'FF'.

sss The ordinal position of the statement that caused the error. 65 For
example, if the first statement failed, this field would contain the
number one left-justified ('1 ').

ccccc The SQLSTATE of the error.

The second SQLERRD field contains the number of statements that failed
(returned negative SQLCODEs).

The third SQLERRD field in the SQLCA is an accumulation of the number of
rows affected by all sub-statements.

The fourth SQLERRD field in the SQLCA is a count of the number of
successful sub-statements. If, for example, the third sub-statement in a
Compound SQL statement failed, the fourth SQLERRD field would be set to
2, indicating that 2 sub-statements were successfully processed before the
error was encountered.

The fifth SQLERRD field in the SQLCA is an accumulation of the number of
rows updated or deleted due to the enforcement of referential integrity
constraints for all sub-statements that triggered such constraint activity.

Examples
Example 1: In a C program, issue a Compound SQL statement that updates
both the ACCOUNTS and TELLERS tables. If there is an error in any of the
statements, undo the effect of all statements (ATOMIC). If there are no errors,
commit the current unit of work.

EXEC SQL BEGIN COMPOUND ATOMIC STATIC
UPDATE ACCOUNTS SET ABALANCE = ABALANCE + :delta

WHERE AID = :aid;
UPDATE TELLERS SET TBALANCE = TBALANCE + :delta

WHERE TID = :tid;
INSERT INTO TELLERS (TID, BID, TBALANCE) VALUES (:i, :branch_id, 0);
COMMIT;

END COMPOUND;

65. If the number would exceed 999, counting restarts at zero.

Compound SQL (Embedded)

548 SQL Reference

Example 2: In a C program, insert 10 rows of data into the database. Assume
the host variable :nbr contains the value 10 and S1 is a prepared INSERT
statement. Further, assume that all the inserts should be attempted regardless
of errors (NOT ATOMIC).

EXEC SQL BEGIN COMPOUND NOT ATOMIC STATIC STOP AFTER FIRST :nbr STATEMENTS
EXECUTE S1 USING DESCRIPTOR :*sqlda0;
EXECUTE S1 USING DESCRIPTOR :*sqlda1;
EXECUTE S1 USING DESCRIPTOR :*sqlda2;
EXECUTE S1 USING DESCRIPTOR :*sqlda3;
EXECUTE S1 USING DESCRIPTOR :*sqlda4;
EXECUTE S1 USING DESCRIPTOR :*sqlda5;
EXECUTE S1 USING DESCRIPTOR :*sqlda6;
EXECUTE S1 USING DESCRIPTOR :*sqlda7;
EXECUTE S1 USING DESCRIPTOR :*sqlda8;
EXECUTE S1 USING DESCRIPTOR :*sqlda9;

END COMPOUND;

Compound SQL (Embedded)

Chapter 6. SQL Statements 549

CONNECT (Type 1)
The CONNECT (Type 1) statement connects an application process to the
identified application server according to the rules for remote unit of work.

An application process can only be connected to one application server at a
time. This is called the current server. A default application server may be
established when the application requester is initialized. If implicit connect is
available and an application process is started, it is implicitly connected to the
default application server. The application process can explicitly connect to a
different application server by issuing a CONNECT TO statement. A
connection lasts until a CONNECT RESET statement or a DISCONNECT
statement is issued or until another CONNECT TO statement changes the
application server.

See “Remote Unit of Work Connection Management” on page 31 for concepts
and additional details on connection states. See “Options that Govern
Distributed Unit of Work Semantics” on page 39 for the precompiler options
that determine the framework for CONNECT behavior.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded
within an application program. It is an executable statement that cannot be
dynamically prepared.

Authorization
The authorization ID of the statement must be authorized to connect to the
identified application server. Depending on the authentication setting for the
database, the authorization check may be performed by either the client or the
server. For a partitioned database, the user and group definitions must be
identical across partitions or nodes. Refer to the AUTHENTICATION database
manager configuration parameter in the Administration Guide for information
about the authentication setting.

Syntax

�� CONNECT �

�
TO server-name

host-variable lock-block authorization
RESET

(1)
authorization

��

CONNECT (Type 1)

550 SQL Reference

authorization:

USER authorization-name
host-variable

USING password
host-variable

�

�
NEW password CONFIRM password

host-variable

lock-block:

IN SHARE MODE

IN EXCLUSIVE MODE
ON SINGLE NODE

Notes:

1 This form is only valid if implicit connect is enabled.

Description

CONNECT (with no operand)
Returns information about the current server. The information is returned
in the SQLERRP field of the SQLCA as described in “Successful
Connection”.

If a connection state exists, the authorization ID and database alias are
placed in the SQLERRMC field of the SQLCA. If the authorization ID is
longer than 8 bytes, it will be truncated to 8 bytes, and the truncation will
be flagged in the SQLWARN0 and SQLWARN1 fields of the SQLCA, with
'W' and 'A', respectively. If the database configuration parameter
DYN_QUERY_MGMT is enabled, then the SQLWARN0 and SQLWARN7
fields of the SQLCA will be flagged with 'W' and 'E', respectively.

If no connection exists and implicit connect is possible, then an attempt to
make an implicit connection is made. If implicit connect is not available,
this attempt results in an error (no existing connection). If no connection,
then the SQLERRMC field is blank.

The country code and code page of the application server are placed in
the SQLERRMC field (as they are with a successful CONNECT TO
statement).

This form of CONNECT:
v Does not require the application process to be in the connectable state.
v If connected, does not change the connection state.

CONNECT (Type 1)

Chapter 6. SQL Statements 551

v If unconnected and implicit connect is available, a connection to the
default application server is made. In this case, the country code and
code page of the application server are placed in the SQLERRMC field,
like a successful CONNECT TO statement.

v If unconnected and implicit connect is not available, the application
process remains unconnected.

v Does not close cursors.

TO server-name or host-variable
Identifies the application server by the specified server-name or a
host-variable which contains the server-name.

If a host-variable is specified, it must be a character string variable with a
length attribute that is not greater than 8, and it must not include an
indicator variable. The server-name that is contained within the host-variable
must be left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application
server. It must be listed in the application requester’s local directory.

Note: DB2 for MVS supports a 16 byte location-name and both SQL/DS
and DB2/400 support a 18 byte target database name. DB2 Version
7 only supports the use of 8 byte database-alias name on the SQL
CONNECT statement. However, the database-alias name can be
mapped to an 18 byte database name through the Database
Connection Service Directory.

When the CONNECT TO statement is executed, the application process
must be in the connectable state (see “Remote Unit of Work Connection
Management” on page 31 for information about connection states with
Type 1 CONNECT).

Successful Connection:

If the CONNECT TO statement is successful:
v All open cursors are closed, all prepared statements are destroyed, and

all locks are released from the previous application server.
v The application process is disconnected from its previous application

server, if any, and connected to the identified application server.
v The actual name of the application server (not an alias) is placed in the

CURRENT SERVER special register.
v Information about the application server is placed in the SQLERRP field

of the SQLCA. If the application server is an IBM product, the
information has the form pppvvrrm, where:
– ppp identifies the product as follows:

CONNECT (Type 1)

552 SQL Reference

- DSN for DB2 for MVS
- ARI for SQL/DS
- QSQ for DB2/400
- SQL for DB2 Universal Database

– vv is a two-digit version identifier such as '02'
– rr is a two-digit release identifier such as '01'
– m is a one-digit modification level identifier such as '0'.

For example, if the application server is Version 1 Release 1 of DB2 for
OS/2, the value of SQLERRP is 'SQL01010'. 66

v The SQLERRMC field of the SQLCA is set to contain the following
values (separated by X’FF’)
1. the country code of the application server (or blanks if using

DDCS),
2. the code page of the application server (or CCSID if using DDCS),
3. the authorization ID (up to first 8 bytes only),
4. the database alias,
5. the platform type of the application server. Currently identified

values are:

Token Server

QAS DB2 Universal Database for
AS/400

QDB2 DB2 Universal Database for
OS/390

QDB2/2 DB2 Universal Database for OS/2

QDB2/6000 DB2 Universal Database for AIX

QDB2/HPUX DB2 Universal Database for HP-UX

QDB2/LINUX DB2 Universal Database for Linux

QDB2/NT DB2 Universal Database for
Windows NT

QDB2/PTX DB2 Universal Database for
NUMA-Q

QDB2/SCO DB2 Universal Database for SCO
UnixWare

66. This release of DB2 Universal Database Version 7 is 'SQL07010'.

CONNECT (Type 1)

Chapter 6. SQL Statements 553

QDB2/SNI DB2 Universal Database for
Siemens Nixdorf

QDB2/SUN DB2 Universal Database for Solaris
Operating System

QDB2/Windows 95 DB2 Universal Database for
Windows 95 or Windows 98

QSQLDS/VM DB2 Server for VM

QSQLDS/VSE DB2 Server for VSE
6. The agent ID. It identifies the agent executing within the database

manager on behalf of the application. This field is the same as the
agent_id element returned by the database monitor.

7. The agent index. It identifies the index of the agent and is used for
service.

8. Partition number. For a non-partitioned database, this is always 0,
if present.

9. The code page of the application client.
10. Number of partitions in a partitioned database. If the database

cannot be partitioned, the value is 0 (zero). Token is present only
with Version 5 or later.

v The SQLERRD(1) field of the SQLCA indicates the maximum expected
difference in length of mixed character data (CHAR data types) when
converted to the database code page from the application code page. A
value of 0 or 1 indicates no expansion; a value greater than 1 indicates
a possible expansion in length; a negative value indicates a possible
contraction. 67

v The SQLERRD(2) field of the SQLCA indicates the maximum expected
difference in length of mixed character data (CHAR data types) when
converted to the application code page from the database code page. A
value of 0 or 1 indicates no expansion; a value greater than 1 indicates
a possible expansion in length; a negative value indicates a possible
contraction. 67

v The SQLERRD(3) field of the SQLCA indicates whether or not the
database on the connection is updatable. A database is initially
updatable, but is changed to read-only if a unit of work determines the
authorization ID cannot perform updates. The value is one of:
– 1 - updatable
– 2 - read-only

67. See the “Character Conversion Expansion Factor” section of the “Programming in Complex Environments”
chapter in the Application Development Guide for details.

CONNECT (Type 1)

554 SQL Reference

v The SQLERRD(4) field of the SQLCA returns certain characteristics of
the connection. The value is one of:
0 - N/A (only possible if running from a down-level client which is

one phase commit and is an updater).
1 - one-phase commit.
2 - one-phase commit; read-only (only applicable to connections to

DRDA1 databases in TP Monitor environment).
3 - two-phase commit.

v The SQLERRD(5) field of the SQLCA returns the authentication type of
the connection. The value is one of:
0 - Authenticated on the server.
1 - Authenticated on the client.
2 - Authenticated using DB2 Connect.
3 - Authenticated using Distributed Computing Environment

security services.
255 - Authentication not specified.

See ″Controlling Database Access″ in the Administration Guide for details
on authentication types.

v The SQLERRD(6) field of the SQLCA returns the partition number of
the partition to which the connection was made if the database is
partitioned. Otherwise, a value of 0 is returned.

v The SQLWARN1 field in the SQLCA will be set to 'A' if the
authorization ID of the successful connection is longer than 8 bytes.
This indicates that truncation has occurred. The SQLWARN0 field in the
SQLCA will be set to 'W' to indicate this warning.

v The SQLWARN7 field in the SQLCA will be set to 'E' if the database
configuration parameter DYN_QUERY_MGMT for the database is
enabled. The SQLWARN0 field in the SQLCA will be set to 'W' to
indicate this warning.

Unsuccessful Connection:

If the CONNECT TO statement is unsuccessful:
v The SQLERRP field of the SQLCA is set to the name of the module at

the application requester that detected the error. Note that the first three
characters of the module name identifies the product. For example, if
the application requester is on the OS/2 database manager, the first
three characters are 'SQL'.

v If the CONNECT TO statement is unsuccessful because the application
process is not in the connectable state, the connection state of the
application process is unchanged.

CONNECT (Type 1)

Chapter 6. SQL Statements 555

v If the CONNECT TO statement is unsuccessful because the server-name
is not listed in the local directory, an error message (SQLSTATE 08001)
is issued and the connection state of the application process remains
unchanged:
– If the application requester was not connected to an application

server then the application process remains unconnected.
– If the application requester was already connected to an application

server, the application process remains connected to that application
server. Any further statements are executed at that application server.

v If the CONNECT TO statement is unsuccessful for any other reason, the
application process is placed into the unconnected state.

IN SHARE MODE
Allows other concurrent connections to the database and prevents other
users from connecting to the database in exclusive mode.

IN EXCLUSIVE MODE 68

Prevents concurrent application processes from executing any operations
at the application server, unless they have the same authorization ID as
the user holding the exclusive lock.

ON SINGLE NODE
Specifies that the coordinator partition is connected in exclusive mode
and all other partitions are connected in share mode. This option is
only effective in a partitioned database.

RESET
Disconnects the application process from the current server. A commit
operation is performed. If implicit connect is available, the application
process remains unconnected until an SQL statement is issued.

USER authorization-name/host-variable
Identifies the userid trying to connect to the application server. If a
host-variable is specified, it must be a character string variable with a
length attribute that is not greater than 8, and it must not include an
indicator variable. The userid that is contained within the host-variable
must be left justified and must not be delimited by quotation marks.

USING password/host-variable
Identifies the password of the userid trying to connect to the application
server. Password or host-variable may be up to 18 characters. If a host
variable is specified, it must be a character string variable with a length
attribute not greater than 18 and it must not include an indicator variable.

NEW password/host-variable CONFIRM password
Identifies the new password that should be assigned to the userid

68. This option is not supported by DDCS.

CONNECT (Type 1)

556 SQL Reference

identified by the USER option. Password or host-variable may be up to 18
characters. If a host variable is specified, it must be a character string
variable with a length attribute not greater than 18 and it must not
include an indicator variable. The system on which the password will be
changed depends on how user authentication is set up.

Notes
v It is good practice for the first SQL statement executed by an application

process to be the CONNECT TO statement.
v If a CONNECT TO statement is issued to the current application server

with a different userid and password then the conversation is deallocated
and reallocated. All cursors are closed by the database manager (with the
loss of the cursor position if the WITH HOLD option was used).

v If a CONNECT TO statement is issued to the current application server
with the same userid and password then the conversation is not deallocated
and reallocated. Cursors, in this case, are not closed.

v To use DB2 Universal Database Enterprise - Extended Edition, the user or
application must connect to one of the partitions listed in the db2nodes.cfg
file (see “Data Partitioning Across Multiple Partitions” on page 59 for
information about this file). You should try to ensure that not all users use
the same partition as the coordinator partition.

Examples

Example 1: In a C program, connect to the application server TOROLAB3,
where TOROLAB3 is a database alias of the same name, with the userid
FERMAT and the password THEOREM.

EXEC SQL CONNECT TO TOROLAB3 USER FERMAT USING THEOREM;

Example 2: In a C program, connect to an application server whose database
alias is stored in the host variable APP_SERVER (varchar(8)). Following a
successful connection, copy the 3 character product identifier of the
application server to the variable PRODUCT (char(3)).

EXEC SQL CONNECT TO :APP_SERVER;
if (strncmp(SQLSTATE,'00000',5))

strncpy(PRODUCT,sqlca.sqlerrp,3);

CONNECT (Type 1)

Chapter 6. SQL Statements 557

CONNECT (Type 2)
The CONNECT (Type 2) statement connects an application process to the
identified application server and establishes the rules for application-directed
distributed unit of work. This server is then the current server for the process.

See “Application-Directed Distributed Unit of Work” on page 35 for concepts
and additional details.

Most aspects of a CONNECT (Type 1) statement also apply to a CONNECT
(Type 2) statement. Rather than repeating that material here, this section
describes only those elements of Type 2 that differ from Type 1.

Invocation
The invocation is the same as “Invocation” on page 550.

Authorization
The authorization is the same as “Authorization” on page 550.

Syntax
The syntax is the same as “Syntax” on page 550. The selection between Type 1
and Type 2 is determined by precompiler options. See “Options that Govern
Distributed Unit of Work Semantics” on page 39 for an overview of these
options. Further details are provided in the Command Reference and
Administrative API Reference manuals.

Description

TO server-name/host-variable
The rules for coding the name of the server are the same as for Type 1.

If the SQLRULES(STD) option is in effect, the server-name must not
identify an existing connection of the application process, otherwise an
error (SQLSTATE 08002) is raised.

If the SQLRULES(DB2) option is in effect and the server-name identifies an
existing connection of the application process, that connection is made
current and the old connection is placed into the dormant state. That is,
the effect of the CONNECT statement in this situation is the same as that
of a SET CONNECTION statement.

See “Options that Govern Distributed Unit of Work Semantics” on page 39
for information about the specification of SQLRULES.

Successful Connection

If the CONNECT TO statement is successful:
v A connection to the application server is either created (or made

non-dormant) and placed into the current and held states.

CONNECT (Type 2)

558 SQL Reference

v If the CONNECT TO is directed to a different server than the current
server, then the current connection is placed into the dormant state.

v The CURRENT SERVER special register and the SQLCA are updated in
the same way as for Type 1 CONNECT; see page 552.

Unsuccessful Connection

If the CONNECT TO statement is unsuccessful:
v No matter what the reason for failure, the connection state of the

application process and the states of its connections are unchanged.
v As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the

SQLCA is set to the name of the module at the application requester or
server that detected the error.

CONNECT (with no operand), IN SHARE/EXCLUSIVE MODE, USER, and

USING
If a connection exists, Type 2 behaves like a Type 1. The authorization ID
and database alias are placed in the SQLERRMC field of the SQLCA. If a
connection does not exist, no attempt to make an implicit connection is
made and the SQLERRP and SQLERRMC fields return a blank.
(Applications can check if a current connection exists by checking these
fields.)

A CONNECT with no operand that includes USER and USING can still
connect an application process to a database using the DB2DBDFT
environment variable. This method is equivalent to a Type 2 CONNECT
RESET, but permits the use of a userid and password.

RESET
Equivalent to an explicit connect to the default database if it is available.
If a default database is not available, the connection state of the
application process and the states of its connections are unchanged.

Availability of a default database is determined by installation options,
environment variables, and authentication settings. See the Quick
Beginnings for information on setting implicit connect on installation and
environment variables, and the Administration Guide for information on
authentication settings.

Rules
v As outlined in “Options that Govern Distributed Unit of Work Semantics”

on page 39 a set of connection options governs the semantics of connection
management. Default values are assigned to every preprocessed source file.
An application can consist of multiple source files precompiled with
different connection options.

CONNECT (Type 2)

Chapter 6. SQL Statements 559

Unless a SET CLIENT command or API has been executed first, the
connection options used when preprocessing the source file containing the
first SQL statement executed at run-time become the effective connection
options.
If a CONNECT statement from a source file preprocessed with different
connection options is subsequently executed without the execution of any
intervening SET CLIENT command or API, an error (SQLSTATE 08001) is
raised. Note that once a SET CLIENT command or API has been executed,
the connection options used when preprocessing all source files in the
application are ignored.
Example 1 on page 563 illustrates these rules.

v Although the CONNECT TO statement can be used to establish or switch
connections, CONNECT TO with the USER/USING clause will only be
accepted when there is no current or dormant connection to the named
server. The connection must be released before issuing a connection to the
same server with the USER/USING clause, otherwise it will be rejected
(SQLSTATE 51022). Release the connection by issuing a DISCONNECT
statement or a RELEASE statement followed by a COMMIT statement.

Notes
v Implicit connect is supported for the first SQL statement in an application

with Type 2 connections. In order to execute SQL statements on the default
database, first the CONNECT RESET or the CONNECT USER/USING
statement must be used to establish the connection. The CONNECT
statement with no operands will display information about the current
connection if there is one, but will not connect to the default database if
there is no current connection.

Comparing Type 1 and Type 2 CONNECT Statements:

The semantics of the CONNECT statement are determined by the CONNECT
precompiler option or the SET CLIENT API (see “Options that Govern
Distributed Unit of Work Semantics” on page 39). CONNECT Type 1 or
CONNECT Type 2 can be specified and the CONNECT statements in those
programs are known as Type 1 and Type 2 CONNECT statements
respectively. Their semantics are described below:

Use of CONNECT TO:

Type 1 Type 2

Each unit of work can only establish
connection to one application server.

Each unit of work can establish connection
to multiple application servers.

The current unit of work must be
committed or rolled back before allowing
a connection to another application server.

The current unit of work need not be
committed or rolled back before
connecting to another application server.

CONNECT (Type 2)

560 SQL Reference

Type 1 Type 2

The CONNECT statement establishes the
current connection. Subsequent SQL
requests are forwarded to this connection
until changed by another CONNECT.

Same as Type 1 CONNECT if establishing
the first connection. If switching to a
dormant connection and SQLRULES is set
to STD, then the SET CONNECTION
statement must be used instead.

Connecting to the current connection is
valid and does not change the current
connection.

Same as Type 1 CONNECT if the
SQLRULES precompiler option is set to
DB2. If SQLRULES is set to STD, then the
SET CONNECTION statement must be
used instead.

Connecting to another application server
disconnects the current connection. The
new connection becomes the current
connection. Only one connection is
maintained in a unit of work.

Connecting to another application server
puts the current connection into the
dormant state. The new connection becomes
the current connection. Multiple
connections can be maintained in a unit of
work.

If the CONNECT is for an application
server on a dormant connection, it
becomes the current connection.

Connecting to a dormant connection using
CONNECT is only allowed if
SQLRULES(DB2) was specified. If
SQLRULES(STD) was specified, then the
SET CONNECTION statement must be
used instead.

SET CONNECTION statement is
supported for Type 1 connections, but the
only valid target is the current connection.

SET CONNECTION statement is
supported for Type 2 connections to
change the state of a connection from
dormant to current.

Use of CONNECT...USER...USING:

Type 1 Type 2

Connecting with the USER...USING
clauses disconnects the current connection
and establishes a new connection with the
given authorization name and password.

Connecting with the USER/USING clause
will only be accepted when there is no
current or dormant connection to the same
named server.

CONNECT (Type 2)

Chapter 6. SQL Statements 561

Use of Implicit CONNECT, CONNECT RESET, and Disconnecting:

Type 1 Type 2

CONNECT RESET can be used to
disconnect the current connection.

CONNECT RESET is equivalent to
connecting to the default application
server explicitly if one has been defined in
the system.

Connections can be disconnected by the
application at a successful COMMIT. Prior
to the commit, use the RELEASE
statement to mark a connection as
release-pending. All such connections will
be disconnected at the next COMMIT.

An alternative is to use the precompiler
options DISCONNECT(EXPLICIT),
DISCONNECT(CONDITIONAL),
DISCONNECT(AUTOMATIC), or the
DISCONNECT statement instead of the
RELEASE statement.

After using CONNECT RESET to
disconnect the current connection, if the
next SQL statement is not a CONNECT
statement, then it will perform an implicit
connect to the default application server if
one has been defined in the system.

CONNECT RESET is equivalent to an
explicit connect to the default application
server if one has been defined in the
system.

It is an error to issue consecutive
CONNECT RESETs.

It is an error to issue consecutive
CONNECT RESETs ONLY if
SQLRULES(STD) was specified because
this option disallows the use of
CONNECT to existing connection.

CONNECT RESET also implicitly commits
the current unit of work.

CONNECT RESET does not commit the
current unit of work.

If an existing connection is disconnected
by the system for whatever reasons, then
subsequent non-CONNECT SQL
statements to this database will receive an
SQLSTATE of 08003.

If an existing connection is disconnected
by the system, COMMIT, ROLLBACK,
and SET CONNECTION statements are
still permitted.

The unit of work will be implicitly
committed when the application process
terminates successfully.

Same as Type 1.

All connections (only one) are
disconnected when the application process
terminates.

All connections (current, dormant, and
those marked for release pending) are
disconnected when the application process
terminates.

CONNECT (Type 2)

562 SQL Reference

CONNECT Failures:

Type 1 Type 2

Regardless of whether there is a current
connection when a CONNECT fails (with
an error other than server-name not
defined in the local directory), the
application process is placed in the
unconnected state. Subsequent
non-CONNECT statements receive an
SQLSTATE of 08003.

If there is a current connection when a
CONNECT fails, the current connection is
unaffected.

If there was no current connection when
the CONNECT fails, then the program is
then in an unconnected state. Subsequent
non-CONNECT statements receive an
SQLSTATE of 08003.

Examples
Example 1: This example illustrates the use of multiple source programs
(shown in the boxes), some preprocessed with different connection options
(shown above the code) and one of which contains a SET CLIENT API call.

PGM1: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)
...
exec sql CONNECT TO OTTAWA;
exec sql SELECT col1 INTO :hv1
FROM tbl1;
...

PGM2: CONNECT(2) SQLRULES(STD) DISCONNECT(AUTOMATIC)
...
exec sql CONNECT TO QUEBEC;
exec sql SELECT col1 INTO :hv1
FROM tbl2;
...

PGM3: CONNECT(2) SQLRULES(STD) DISCONNECT(EXPLICIT)
...
SET CLIENT CONNECT 2 SQLRULES DB2 DISCONNECT EXPLICIT 1

exec sql CONNECT TO LONDON;
exec sql SELECT col1 INTO

:hv1 FROM tbl3;
...

1 Note: not the actual syntax of the SET CLIENT API

PGM4: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)
...
exec sql CONNECT TO REGINA;
exec sql SELECT col1 INTO

:hv1 FROM tbl4;
...

CONNECT (Type 2)

Chapter 6. SQL Statements 563

If the application executes PGM1 then PGM2:
v connect to OTTAWA runs: connect=2, sqlrules=DB2,

disconnect=CONDITIONAL
v connect to QUEBEC fails with SQLSTATE 08001 because both SQLRULES

and DISCONNECT are different.

If the application executes PGM1 then PGM3:
v connect to OTTAWA runs: connect=2, sqlrules=DB2,

disconnect=CONDITIONAL
v connect to LONDON runs: connect=2, sqlrules=DB2, disconnect=EXPLICIT

This is OK because the SET CLIENT API is run before the second CONNECT
statement.

If the application executes PGM1 then PGM4:
v connect to OTTAWA runs: connect=2, sqlrules=DB2,

disconnect=CONDITIONAL
v connect to REGINA runs: connect=2, sqlrules=DB2,

disconnect=CONDITIONAL

This is OK because the preprocessor options for PGM1 are the same as those
for PGM4.

Example 2:

This example shows the interrelationships of the CONNECT (Type 2), SET
CONNECTION, RELEASE, and DISCONNECT statements. S0, S1, S2, and S3
represent four servers.

Sequence Statement Current
Server

Dormant
Connections

Release
Pending

0 No statement None None None

1. SELECT * FROM TBLA S0 (default) None None

2 CONNECT TO S1 SELECT
* FROM TBLB

S1 S1 S0 S0 None None

3 CONNECT TO S2 UPDATE
TBLC SET ...

S2 S2 S0, S1 S0, S1 None None

4 CONNECT TO S3 SELECT
* FROM TBLD

S3 S3 S0, S1, S2 S0,
S1, S2

None None

5 SET CONNECTION S2 S2 S0, S1, S3 None

6 RELEASE S3 S2 S0, S1 S3

7 COMMIT S2 S0, S1 None

8 SELECT * FROM TBLE S2 S0, S1 None

CONNECT (Type 2)

564 SQL Reference

Sequence Statement Current
Server

Dormant
Connections

Release
Pending

9 DISCONNECT S1 SELECT *
FROM TBLF

S2 S2 S0 S0 None None

CONNECT (Type 2)

Chapter 6. SQL Statements 565

CREATE ALIAS
The CREATE ALIAS statement defines an alias for a table, view, nickname, or
another alias.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include as
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the alias does not exist
v CREATEIN privilege on the schema, if the schema name of the alias refers

to an existing schema.

To use the referenced object via the alias, the same privileges are required on
that object as would be necessary if the object itself were used.

Syntax

�� CREATE ALIAS
(1)

SYNONYM

alias-name FOR table-name
view-name
nickname
alias-name2

��

Notes:

1 CREATE SYNONYM is accepted as an alternative for CREATE ALIAS
for syntax toleration of existing CREATE SYNONYM statements of other
SQL implementations.

Description

alias-name
Names the alias. The name must not identify a table, view, nickname, or
alias that exists in the current database.

If a two-part name is specified, the schema name cannot begin with ″SYS″
(SQLSTATE 42939).

The rules for defining an alias name are the same as those used for
defining a table name.

CREATE ALIAS

566 SQL Reference

FOR table-name, view-name, nickname, or alias-name2
Identifies the table, view, nickname, or alias for which alias-name is
defined. If another alias name is supplied (alias-name2), then it must not
be the same as the new alias-name being defined (in its fully-qualified
form). The table-name cannot be a declared temporary table (SQLSTATE
42995).

Notes
v The definition of the newly created alias is stored in SYSCAT.TABLES.
v An alias can be defined for an object that does not exist at the time of the

definition. If it does not exist, a warning is issued (SQLSTATE 01522).
However, the referenced object must exist when a SQL statement containing
the alias is compiled, otherwise an error is issued (SQLSTATE 52004).

v An alias can be defined to refer to another alias as part of an alias chain but
this chain is subject to the same restrictions as a single alias when used in
an SQL statement. An alias chain is resolved in the same way as a single
alias. If an alias used in a view definition, a statement in a package, or a
trigger points to an alias chain, then a dependency is recorded for the view,
package, or trigger on each alias in the chain. Repetitive cycles in an alias
chain are not allowed and are detected at alias definition time.

v Creating an alias with a schema name that does not already exist will result
in the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM.
The CREATEIN privilege on the schema is granted to PUBLIC.

Examples
Example 1: HEDGES attempts to create an alias for a table T1 (both
unqualified).

CREATE ALIAS A1 FOR T1

The alias HEDGES.A1 is created for HEDGES.T1.

Example 2: HEDGES attempts to create an alias for a table (both qualified).
CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1

The alias HEDGES.A1 is created for MCKNIGHT.T1.

Example 3: HEDGES attempts to create an alias for a table (alias in a different
schema; HEDGES is not a DBADM; HEDGES does not have CREATEIN on
schema MCKNIGHT).

CREATE ALIAS MCKNIGHT.A1 FOR MCKNIGHT.T1

This example fails (SQLSTATE 42501).

CREATE ALIAS

Chapter 6. SQL Statements 567

Example 4: HEDGES attempts to create an alias for an undefined table (both
qualified; FUZZY.WUZZY does not exist).

CREATE ALIAS HEDGES.A1 FOR FUZZY.WUZZY

This statement succeeds but with a warning (SQLSTATE 01522).

Example 5: HEDGES attempts to create an alias for an alias (both qualified).
CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1
CREATE ALIAS HEDGES.A2 FOR HEDGES.A1

The first statement succeeds (as per example 2).

The second statement succeeds and an alias chain is created, consisting of
HEDGES.A2 which refers to HEDGES.A1 which refers to MCKNIGHT.T1.
Note that it does not matter whether or not HEDGES has any privileges on
MCKNIGHT.T1. The alias is created regardless of the table privileges.

Example 6: Designate A1 as an alias for the nickname FUZZYBEAR.
CREATE ALIAS A1 FOR FUZZYBEAR

Example 7: A large organization has a finance department numbered D108 and
a personnel department numbered D577. D108 keeps certain information in a
table that resides at a DB2 RDBMS. D577 keeps certain records in a table that
resides at an Oracle RDBMS. A DBA defines the two RDBMSs as data sources
within a federated system, and gives the tables the nicknames of DEPTD108
and DEPTD577, respectively. A federated system user needs to create joins
between these tables, but would like to reference them by names that are
more meaningful than their alphanumeric nicknames. So the user defines
FINANCE as an alias for DEPTD108 and PERSONNEL as an alias for
DEPTD577.

CREATE ALIAS FINANCE FOR DEPTD108
CREATE ALIAS PERSONNEL FOR DEPTD577

CREATE ALIAS

568 SQL Reference

CREATE BUFFERPOOL
The CREATE BUFFERPOOL statement creates a new buffer pool to be used
by the database manager. Although the buffer pool definition is transactional
and the entries will be reflected in the catalog tables on commit, the buffer
pool will not become active until the next time the database is started.

In a partitioned database, a default buffer pool definition is specified for each
partition or node, with the capability to override the size on specific partitions
or nodes. Also, in a partitioned database, the buffer pool is defined on all
partitions unless nodegroups are specified. If nodegroups are specified, the
buffer pool will only be created on partitions that are in those nodegroups.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.
However, if the bind option DYNAMICRULES BIND applies, the statement
cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM
authority.

Syntax

�� CREATE BUFFERPOOL bufferpool-name

�

ALL NODES

,

NODEGROUP nodegroup-name

�

� SIZE number-of-pages
except-on-nodes-clause

* �

�
PAGESIZE 4096

PAGESIZE integer
K

*
NOT EXTENDED STORAGE

*
EXTENDED STORAGE

��

except-on-nodes-clause:

EXCEPT ON NODE
NODES

�

CREATE BUFFERPOOL

Chapter 6. SQL Statements 569

� �

,

(node-number1 SIZE number-of-pages)
TO node-number2

Description

bufferpool-name
Names the buffer pool. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The bufferpool-name must not identify a
buffer pool that already exists in a catalog (SQLSTATE 42710). The
bufferpool-name must not begin with the characters ″SYS″ or ″IBM″
(SQLSTATE 42939).

ALL NODES
This buffer pool will be created on all partitions in the database.

NODEGROUP nodegroup-name, ...
Identifies the nodegroup or nodegroups to which the buffer pool
definition is applicable. If this is specified, this buffer pool will only be
created on partitions in these nodegroups. Each nodegroup must currently
exist in the database (SQLSTATE 42704). If the NODEGROUP keyword is
not specified, then this buffer pool will be created on all partitions (and
any partitions subsequently added to the database).

SIZE number-of-pages
The size of the buffer pool specified as the number of pages. 69 In a
partitioned database, this will be the default size for all partitions where
the buffer pool exists.

except-on-nodes-clause
Specifies the partition or partitions for which the size of the buffer pool
will be different than the default. If this clause is not specified, then all
partitions will have the same size as specified for this buffer pool.

EXCEPT ON NODES
Keywords that indicate that specific partitions are specified. NODE is
a synonym for NODES.

node-number1
Specifies a specific partition number that is included in the
partitions for which the buffer pool is created.

TO node-number2
Specify a range of partition numbers. The value of node-number2
must be greater than or equal to the value of node-number1

69. The size can be specified with a value of (-1) which will indicate that the buffer pool size should be taken from
the BUFFPAGE database configuration parameter.

CREATE BUFFERPOOL

570 SQL Reference

(SQLSTATE 428A9). All partitions between and including the
specified partition numbers must be included in the partitions for
which the buffer pool is created (SQLSTATE 42729).

SIZE number-of-pages
The size of the buffer pool specified as the number of pages.

PAGESIZE integer [K]
Defines the size of pages used for the bufferpool. The valid values for
integer without the suffix K are 4 096, 8 192, 16 384 or 32 768. The valid
values for integer with the suffix K are 4, 8, 16 or 32. An error occurs if the
page size is not one of these values (SQLSTATE 428DE). The default is
4 096 byte (4K) pages. Any number of spaces is allowed between integer
and K, including no space.

EXTENDED STORAGE
If the extended storage configuration is turned on,70 pages that are being
migrated out of this buffer pool will be cached in the extended storage.

NOT EXTENDED STORAGE
Even if the database extended storage configuration is turned on, pages
that are being migrated out of this buffer pool, will NOT be cached in the
extended storage.

Notes
v Until the next time the database is started, any table space that is created

will use an already active buffer pool of the same page size. The database
has to be restarted for the table space assignment to the new buffer pool to
take effect.

v There should be enough real memory on the machine for the total of all the
buffer pools, as well as for the rest of the database manager and application
requirements. If DB2 is unable to obtain the total memory for all buffer
pools, it will attempt to start up only the default buffer pool. If this is
unsuccessful, it will start up a minimal default buffer pool. In either of
these cases, a warning will be returned to the user (SQLSTATE 01626) and
the pages from all table spaces will use the default buffer pool.

70. Extended storage configuration is turned on by setting the database configuration parameters
NUM_ESTORE_SEGS and ESTORE_SEG_SIZE to non-zero values. See Administration Guide for details.

CREATE BUFFERPOOL

Chapter 6. SQL Statements 571

CREATE DISTINCT TYPE
The CREATE DISTINCT TYPE statement defines a distinct type. The distinct
type is always sourced on one of the built-in data types. Successful execution
of the statement also generates functions to cast between the distinct type and
its source type and, optionally, generates support for the comparison
operators (=, <>, <, <=, >, and >=) for use with the distinct type.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include as
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database, if the schema name of the

distinct type does not refer to an existing schema.
v CREATEIN privilege on the schema, if the schema name of the distinct type

refers to an existing schema.

Syntax

�� CREATE DISTINCT TYPE distinct-type-name AS �

�
(1)

source-data-type WITH COMPARISONS ��

source-data-type:

CREATE DISTINCT TYPE

572 SQL Reference

SMALLINT
INTEGER
INT

BIGINT
FLOAT

(integer)
REAL

PRECISION
DOUBLE
DECIMAL
DEC (integer)
NUMERIC ,integer
NUM

CHARACTER
CHAR (integer) FOR BIT DATA

VARCHAR(integer)
LONG VARCHAR

GRAPHIC
(integer)

VARGRAPHIC(integer)
LONG VARGRAPHIC
DATE
TIME
TIMESTAMP

BLOB (integer)
CLOB K
DBCLOB M

G
DATALINK

(integer)

Notes:

1 Required for all source-data-types except LOBs, LONG VARCHAR,
LONG VARGRAPHIC and DATALINK which are not supported.

Description

distinct-type-name
Names the distinct type. The name, including the implicit or explicit
qualifier must not identify a distinct type described in the catalog. The
unqualified name must not be the same as the name of a source-data-type
or BOOLEAN (SQLSTATE 42918).

In dynamic SQL statements, the CURRENT SCHEMA special register is
used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies
the qualifier for unqualified object names. The qualified form is a
schema-name followed by a period and an SQL identifier.

The schema name (implicit or explicit) must not be greater than 8 bytes
(SQLSTATE 42622).

CREATE DISTINCT TYPE

Chapter 6. SQL Statements 573

A number of names used as keywords in predicates are reserved for
system use, and may not be used as a distinct-type-name. The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH and the comparison operators
as described in “Basic Predicate” on page 187. Failure to observe this rule
will lead to an error (SQLSTATE 42939).

If a two-part distinct-type-name is specified, the schema name cannot begin
with ″SYS″; otherwise, an error (SQLSTATE 42939) is raised.

source-data-type
Specifies the data type used as the basis for the internal representation of
the distinct type. For information about the association of distinct types
with other data types, see “Distinct Types” on page 87. For information
about data types, see “CREATE TABLE” on page 712.

WITH COMPARISONS
Specifies that system-generated comparison operators are to be created for
comparing two instances of a distinct type. These keywords should not be
specified if the source-data-type is BLOB, CLOB, DBCLOB, LONG
VARCHAR, LONG VARGRAPHIC, or DATALINK, otherwise a warning
will be returned (SQLSTATE 01596) and the comparison operators will not
be generated. For all other source-data-types, the WITH COMPARISONS
keywords are required.

Notes
v Creating a distinct type with a schema name that does not already exist will

result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

v The following functions are generated to cast to and from the source type:
– One function to convert from the distinct type to the source type
– One function to convert from the source type to the distinct type
– One function to convert from INTEGER to the distinct type if the source

type is SMALLINT
– one function to convert from VARCHAR to the distinct type if the source

type is CHAR
– one function to convert from VARGRAPHIC to the distinct type if the

source type is GRAPHIC.

In general these functions will have the following format:
CREATE FUNCTION source-type-name (distinct-type-name)

RETURNS source-type-name ...

CREATE FUNCTION distinct-type-name (source-type-name)
RETURNS distinct-type-name ...

CREATE DISTINCT TYPE

574 SQL Reference

In cases in which the source type is a parameterized type, the function to
convert from the distinct type to the source type will have as function name
the name of the source type without the parameters (see Table 20 for details).
The type of the return value of this function will include the parameters given
on the CREATE DISTINCT TYPE statement. The function to convert from the
source type to the distinct type will have an input parameter whose type is
the source type including its parameters. For example,

CREATE DISTINCT TYPE T_SHOESIZE AS CHAR(2)
WITH COMPARISONS

CREATE DISTINCT TYPE T_MILES AS DOUBLE
WITH COMPARISONS

will generate the following functions:
FUNCTION CHAR (T_SHOESIZE) RETURNS CHAR (2)

FUNCTION T_SHOESIZE (CHAR (2))
RETURNS T_SHOESIZE

FUNCTION DOUBLE (T_MILES) RETURNS DOUBLE

FUNCTION T_MILES (DOUBLE) RETURNS T_MILES

The schema of the generated cast functions is the same as the schema of the
distinct type. No other function with this name and with the same signature
may already exist in the database (SQLSTATE 42710).

The following table gives the names of the functions to convert from the
distinct type to the source type and from the source type to the distinct type
for all predefined data types.

Table 20. CAST functions on distinct types

Source Type Name Function Name Parameter Return-type

CHAR <distinct> CHAR (n) <distinct>

CHAR <distinct> CHAR (n)

<distinct> VARCHAR (n) <distinct>

VARCHAR <distinct> VARCHAR (n) <distinct>

VARCHAR <distinct> VARCHAR (n)

LONG VARCHAR <distinct> LONG VARCHAR <distinct>

LONG_VARCHAR <distinct> LONG VARCHAR

CLOB <distinct> CLOB (n) <distinct>

CLOB <distinct> CLOB (n)

BLOB <distinct> BLOB (n) <distinct>

BLOB <distinct> BLOB (n)

CREATE DISTINCT TYPE

Chapter 6. SQL Statements 575

Table 20. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter Return-type

GRAPHIC <distinct> GRAPHIC (n) <distinct>

GRAPHIC <distinct> GRAPHIC (n)

<distinct> VARGRAPHIC (n) <distinct>

VARGRAPHIC <distinct> VARGRAPHIC (n) <distinct>

VARGRAPHIC <distinct> VARGRAPHIC (n)

LONG VARGRAPHIC <distinct> LONG VARGRAPHIC <distinct>

LONG_VARGRAPHIC <distinct> LONG VARGRAPHIC

DBCLOB <distinct> DBCLOB (n) <distinct>

DBCLOB <distinct> DBCLOB (n)

SMALLINT <distinct> SMALLINT <distinct>

<distinct> INTEGER <distinct>

SMALLINT <distinct> SMALLINT

INTEGER <distinct> INTEGER <distinct>

INTEGER <distinct> INTEGER

BIGINT <distinct> BIGINT <distinct>

BIGINT <distinct> BIGINT

DECIMAL <distinct> DECIMAL (p,s) <distinct>

DECIMAL <distinct> DECIMAL (p,s)

NUMERIC <distinct> DECIMAL (p,s) <distinct>

DECIMAL <distinct> DECIMAL (p,s)

REAL <distinct> REAL <distinct>

<distinct> DOUBLE <distinct>

REAL <distinct> REAL

FLOAT(n) where n<=24 <distinct> REAL <distinct>

<distinct> DOUBLE <distinct>

REAL <distinct> REAL

FLOAT(n) where n>24 <distinct> DOUBLE <distinct>

DOUBLE <distinct> DOUBLE

FLOAT <distinct> DOUBLE <distinct>

DOUBLE <distinct> DOUBLE

DOUBLE <distinct> DOUBLE <distinct>

DOUBLE <distinct> DOUBLE

CREATE DISTINCT TYPE

576 SQL Reference

Table 20. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter Return-type

DOUBLE PRECISION <distinct> DOUBLE <distinct>

DOUBLE <distinct> DOUBLE

DATE <distinct> DATE <distinct>

DATE <distinct> DATE

TIME <distinct> TIME <distinct>

TIME <distinct> TIME

TIMESTAMP <distinct> TIMESTAMP <distinct>

TIMESTAMP <distinct> TIMESTAMP

DATALINK <distinct> DATALINK <distinct>

DATALINK <distinct> DATALINK

Note: NUMERIC and FLOAT are not recommended when creating a user-defined type for a portable
application. DECIMAL and DOUBLE should be used instead.

The functions described in the above table are the only functions that are
generated automatically when distinct types are defined. Consequently, none
of the built-in functions (AVG, MAX, LENGTH, etc.) are supported on distinct
types until the CREATE FUNCTION statement (see “CREATE FUNCTION”
on page 589) is used to register user-defined functions for the distinct type,
where those user-defined functions are sourced on the appropriate built-in
functions. In particular, note that it is possible to register user-defined
functions that are sourced on the built-in column functions.

When a distinct type is created using the WITH COMPARISONS clause,
system-generated comparison operators are created. Creation of these
comparison operators will generate entries in the SYSCAT.FUNCTIONS
catalog view for the new functions.

The schema name of the distinct type must be included in the SQL path (see
“SET PATH” on page 1031 or the FUNCPATH BIND option as described in
the Application Development Guide) for successful use of these operators and
cast functions in SQL statements.

Examples
Example 1: Create a distinct type named SHOESIZE that is based on an
INTEGER data type.

CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS

CREATE DISTINCT TYPE

Chapter 6. SQL Statements 577

This will also result in the creation of comparison operators (=, <>, <, <=, >,
>=) and cast functions INTEGER(SHOESIZE) returning INTEGER and
SHOESIZE(INTEGER) returning SHOESIZE.

Example 2: Create a distinct type named MILES that is based on a DOUBLE
data type.

CREATE DISTINCT TYPE MILES AS DOUBLE WITH COMPARISONS

This will also result in the creation of comparison operators (=, <>, <, =, >,
>=) and cast functions DOUBLE(MILES) returning DOUBLE and
MILES(DOUBLE) returning MILES.

CREATE DISTINCT TYPE

578 SQL Reference

CREATE EVENT MONITOR
The CREATE EVENT MONITOR statement defines a monitor that will record
certain events that occur when using the database. The definition of each
event monitor also specifies where the database should record the events.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.
However, if the bind option DYNAMICRULES BIND applies, the statement
cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID must include either SYSADM or
DBADM authority (SQLSTATE 42502).

Syntax

�� CREATE EVENT MONITOR event-monitor-name FOR �

� �

,

DATABASE
TABLES
DEADLOCKS
TABLESPACES
BUFFERPOOLS
CONNECTIONS
STATEMENTS WHERE Event Condition
TRANSACTIONS

�

�
MANUALSTART

WRITE TO PIPE pipe-name
FILE path-name File Options AUTOSTART

�

�
ON NODE node-number

LOCAL

GLOBAL
��

Event Condition:

CREATE EVENT MONITOR

Chapter 6. SQL Statements 579

�

AND | OR

APPL_ID = comparison-string
NOT AUTH_ID (1)

APPL_NAME <>
>

(1)
>=
<

(1)
<=
LIKE
NOT LIKE

(Event Condition)

File Options:

NONE
MAXFILES number-of-files

pages
MAXFILESIZE NONE

�

�
BUFFERSIZE pages

BLOCKED

NONBLOCKED

APPEND

REPLACE

Notes:

1 Other forms of these operators are also supported. See “Basic
Predicate” on page 187 for more details.

Description

event-monitor-name
Names the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

DATABASE
Specifies that the event monitor records a database event when the
last application disconnects from the database.

TABLES
Specifies that the event monitor records a table event for each active
table when the last application disconnects from the database. An
active table is a table that has changed since the first connection to the
database.

CREATE EVENT MONITOR

580 SQL Reference

DEADLOCKS
Specifies that the event monitor records a deadlock event whenever a
deadlock occurs.

TABLESPACES
Specifies that the event monitor records a table space event for each
table space when the last application disconnects from the database.

BUFFERPOOLS
Specifies that the event monitor records a buffer pool event when the
last application disconnects from the database.

CONNECTIONS
Specifies that the event monitor records a connection event when an
application disconnects from the database.

STATEMENTS
Specifies that the event monitor records a statement event whenever a
SQL statement finishes executing.

TRANSACTIONS
Specifies that the event monitor records a transaction event whenever
a transaction completes (that is, whenever there is a commit or
rollback operation).

WHERE event condition
Defines a filter that determines which connections cause a
CONNECTION, STATEMENT or TRANSACTION event to occur. If
the result of the event condition is TRUE for a particular connection,
then that connection will generate the requested events.

This clause is a special form of the WHERE clause that should not be
confused with a standard search condition.

To determine if an application will generate events for a particular
event monitor, the WHERE clause is evaluated:
1. For each active connection when an event monitor is first turned

on.
2. Subsequently for each new connection to the database at connect

time.

The WHERE clause is not evaluated for each event.

If no WHERE clause is specified then all events of the specified event
type will be monitored.

APPL_ID
Specifies that the application ID of each connection should be
compared with the comparison-string in order to determine if the

CREATE EVENT MONITOR

Chapter 6. SQL Statements 581

connection should generate CONNECTION, STATEMENT or
TRANSACTION events (whichever was specified).

AUTH_ID
Specifies that the authorization ID of each connection should be
compared with the comparison-string in order to determine if the
connection should generate CONNECTION, STATEMENT or
TRANSACTION events (whichever was specified).

APPL_NAME
Specifies that the application program name of each connection
should be compared with the comparison-string in order to
determine if the connection should generate CONNECTION,
STATEMENT or TRANSACTION events (whichever was
specified).

The application program name is the first 20 bytes of the
application program file name, after the last path separator.

comparison-string
A string to be compared with the APPL_ID, AUTH_ID, or
APPL_NAME of each application that connects to the database.
comparison-string must be a string constant (that is, host variables
and other string expressions are not permitted).

WRITE TO
Introduces the target for the data.

PIPE
Specifies that the target for the event monitor data is a named pipe.
The event monitor writes the data to the pipe in a single stream (that
is, as if it were a single, infinitely long file). When writing the data to
a pipe, an event monitor does not perform blocked writes. If there is
no room in the pipe buffer, then the event monitor will discard the
data. It is the monitoring application’s responsibility to read the data
promptly if it wishes to ensure no data loss.

pipe-name
The name of the pipe (FIFO on AIX) to which the event monitor
will write the data.

The naming rules for pipes are platform specific. On UNIX
operating systems pipe names are treated like file names. As a
result, relative pipe names are permitted, and are treated like
relative path-names (see path-name below). However, on OS/2,
Windows 95 and Windows NT, there is a special syntax for a pipe
name. As a result, on OS/2, Windows 95 and Windows NT
absolute pipe names are required.

CREATE EVENT MONITOR

582 SQL Reference

The existence of the pipe will not be checked at event monitor
creation time. It is the responsibility of the monitoring application
to have created and opened the pipe for reading at the time that
the event monitor is activated. If the pipe is not available at this
time, then the event monitor will turn itself off, and will log an
error. (That is, if the event monitor was activated at database start
time as a result of the AUTOSTART option, then the event
monitor will log an error in the system error log.) If the event
monitor is activated via the SET EVENT MONITOR STATE SQL
statement, then that statement will fail (SQLSTATE 58030).

FILE
Indicates that the target for the event monitor data is a file (or set
of files). The event monitor writes out the stream of data as a
series of 8 character numbered files, with the extension “evt”. (for
example, 00000000.evt, 00000001.evt, and 00000002.evt). The data
should be considered to be one logical file even though the data is
broken up into smaller pieces (that is, the start of the data stream
is the first byte in the file 00000000.evt; the end of the data stream
is the last byte in the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the
maximum number of files. An event monitor will never split a
single event record across two files. However, an event monitor
may write related records in two different files. It is the
responsibility of the application that uses this data to keep track
of such related information when processing the event files.

path-name
The name of the directory in which the event monitor should
write the event files data. The path must be known at the
server, however, the path itself could reside on another
partition or node (for example, in a UNIX-based system, this
might be an NFS mounted file). A string constant must be
used when specifying the path-name.

The directory does not have to exist at CREATE EVENT
MONITOR time. However, a check is made for the existence
of the target path when the event monitor is activated. At that
time, if the target path does not exist, an error (SQLSTATE
428A3) is raised.

If an absolute path (a path that starts with the root directory
on AIX, or a disk identifier on OS/2, Windows 95 and
Windows NT) is specified, then the specified path will be the
one used. If a relative path (a path that does not start with the
root) is specified, then the path relative to the DB2EVENT
directory in the database directory will be used.

CREATE EVENT MONITOR

Chapter 6. SQL Statements 583

When a relative path is specified, the DB2EVENT directory is
used to convert it into an absolute path. Thereafter, no
distinction is made between absolute and relative paths. The
absolute path is stored in the SYSCAT.EVENTMONITORS
catalog view.

It is possible to specify two or more event monitors that have
the same target path. However, once one of the event
monitors has been activated for the first time, and as long as
the target directory is not empty, it will be impossible to
activate any of the other event monitors.

File Options
Specifies the options for the file format.

MAXFILES NONE
Specifies that there is no limit to the number of event files
that the event monitor will create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event
monitor files that will exist for a particular event monitor
at any time. Whenever an event monitor has to create
another file, it will check to make sure that the number of
.evt files in the directory is less than number-of-files. If this
limit has already been reached, then the event monitor
will turn itself off.

If an application removes the event files from the
directory after they have been written, then the total
number of files that an event monitor can produce can
exceed number-of-files. This option has been provided to
allow a user to guarantee that the event data will not
consume more than a specified amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event
monitor file. Whenever an event monitor writes a new
event record to a file, it checks that the file will not grow
to be greater than pages (in units of 4K pages). If the
resulting file would be too large, then the event monitor
switches to the next file. The default for this option is:
v OS/2, Windows 95 and Windows NT - 200 4K pages
v UNIX - 1000 4K pages

The number of pages must be greater than at least the size
of the event buffer in pages. If this requirement is not met,
then an error (SQLSTATE 428A4) is raised.

CREATE EVENT MONITOR

584 SQL Reference

MAXFILESIZE NONE
Specifies that there is no set limit on a file’s size. If
MAXFILESIZE NONE is specified, then MAXFILES 1
must also be specified. This option means that one file
will contain all of the event data for a particular event
monitor. In this case the only event file will be
00000000.evt.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of
4K pages). All event monitor file I/O is buffered to
improve the performance of the event monitors. The
larger the buffers, the less I/O will be performed by the
event monitor. Highly active event monitors should have
larger buffers than relatively inactive event monitors.
When the monitor is started, two buffers of the specified
size are allocated. Event monitors use double buffering to
permit asynchronous I/O.

The minimum and default size of each buffer (if this
option is not specified) is 4 pages (that is, 2 buffers, each
16 K in size). The maximum size of the buffers is limited
by the size of the monitor heap (MON_HEAP) since the
buffers are allocated from the heap. If using a lot of event
monitors at the same time, increase the size of the
MON_HEAP database configuration parameter.

Event monitors that write their data to a pipe also have
two internal (non-configurable) buffers that are each 1
page in size. These buffers are also allocated from the
monitor heap (MON_HEAP). For each active event
monitor that has a pipe target, increase the size of the
database heap by 2 pages.

BLOCKED
Specifies that each agent that generates an event should
wait for an event buffer to be written out to disk if the
agent determines that both event buffers are full.
BLOCKED should be selected to guarantee no event data
loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should
not wait for the event buffer to be written out to disk if
the agent determines that both event buffers are full.
NONBLOCKED event monitors do not slow down
database operations to the extent of BLOCKED event

CREATE EVENT MONITOR

Chapter 6. SQL Statements 585

monitors. However, NONBLOCKED event monitors are
subject to data loss on highly active systems.

APPEND
Specifies that if event data files already exist when the
event monitor is turned on, then the event monitor will
append the new event data to the existing stream of data
files. When the event monitor is reactivated, it will resume
writing to the event files as if it had never been turned
off. APPEND is the default option.

The APPEND option does not apply at CREATE EVENT
MONITOR time, if there is existing event data in the
directory where the newly created event monitor is to
write its event data.

REPLACE
Specifies that if event data files already exist when the
event monitor is turned on, then the event monitor will
erase all of the event files and start writing data to file
00000000.evt.

MANUALSTART
Specifies that the event monitor not be started automatically each time
the database is started. Event monitors with the MANUALSTART
option must be activated manually using the SET EVENT MONITOR
STATE statement. This is the default option.

AUTOSTART
Specifies that the event monitor be started automatically each time the
database is started.

ON NODE
Keyword that indicates that specific partitions are specified.

node-number
Specifies a partition number where the event monitor runs and
write the events. With the monitoring scope defined as GLOBAL,
all partitions report to the specified partition number. The I/O
component will physically run on the specified partition, writing
its records to /tmp/dlocks directory on that partition.

GLOBAL
Event monitor reports from all partitions. For a partitioned database
in DB2 Universal Database Version 7, only deadlock event monitors
can be defined as GLOBAL. The global event monitor will report
deadlocks for all nodes in the system.

CREATE EVENT MONITOR

586 SQL Reference

LOCAL
Event monitor reports only on the partition that is running. It gives a
partial trace of the database activity. This is the default.

Rules
v Each of the event types (DATABASE, TABLES, DEADLOCKs,...) can only be

specified once in a particular event monitor definition.

Notes
v Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS

catalog view. The events themselves are recorded in the SYSCAT.EVENTS
catalog view.

v For detailed information on using the database monitor and on interpreting
data from pipes and files, see the System Monitor Guide and Reference.

Examples
Example 1: The following example creates an event monitor called
SMITHPAY. This event monitor, will collect event data for the database as well
as for the SQL statements performed by the PAYROLL application owned by
the JSMITH authorization ID. The data will be appended to the absolute path
/home/jsmith/event/smithpay/. A maximum of 25 files will be created. Each
file will be a maximum of 1 024 4K pages long. The file I/O will be
non-blocked.

CREATE EVENT MONITOR SMITHPAY
FOR DATABASE, STATEMENTS
WHERE APPL_NAME = 'PAYROLL' AND AUTH_ID = 'JSMITH'
WRITE TO FILE '/home/jsmith/event/smithpay'
MAXFILES 25
MAXFILESIZE 1024
NONBLOCKED
APPEND

Example 2: The following example creates an event monitor called
DEADLOCKS_EVTS. This event monitor will collect deadlock events and will
write them to the relative path DLOCKS. One file will be written, and there is
no maximum file size. Each time the event monitor is activated, it will append
the event data to the file 00000000.evt if it exists. The event monitor will be
started each time the database is started. The I/0 will be blocked by default.

CREATE EVENT MONITOR DEADLOCK_EVTS
FOR DEADLOCKS
WRITE TO FILE 'DLOCKS'
MAXFILES 1
MAXFILESIZE NONE
AUTOSTART

Example 3: This example creates an event monitor called DB_APPLS. This
event monitor collects connection events, and writes the data to the named
pipe /home/jsmith/applpipe.

CREATE EVENT MONITOR

Chapter 6. SQL Statements 587

CREATE EVENT MONITOR DB_APPLS
FOR CONNECTIONS
WRITE TO PIPE '/home/jsmith/applpipe'

CREATE EVENT MONITOR

588 SQL Reference

CREATE FUNCTION
This statement is used to register or define a user-defined function or function
template with an application server.

There are five different types of functions that can be created using this
statement. Each of these is described separately.
v External Scalar

The function is written in a programming language and returns a scalar
value. The external executable is registered in the database along with
various attributes of the function. See “CREATE FUNCTION (External
Scalar)” on page 590.

v External Table
The function is written in a programming language and returns a complete
table. The external executable is registered in the database along with
various attributes of the function. See “CREATE FUNCTION (External
Table)” on page 615.

v OLE DB External Table
A user-defined OLE DB external table function is registered in the database
to access data from an OLE DB provider. See “CREATE FUNCTION (OLE
DB External Table)” on page 631.

v Source or template
A source function is implemented by invoking another function (either
built-in, external, SQL, or source) that is already registered in the database.
See “CREATE FUNCTION (Source or Template)” on page 639.
It is possible to create a partial function, called a function template, that
defines what types of values are to be returned but contains no executable
code. The user maps it to a data source function within a federated system,
so that the data source function can be invoked from a federated database.
A function template can be registered only with an application server that is
designated as a federated server.

v SQL Scalar, Table or Row
The function body is written in SQL and defined together with the
registration in the database. It returns a scalar value, a table, or a single
row. See “CREATE FUNCTION (SQL Scalar, Table or Row)” on page 649.

CREATE FUNCTION

Chapter 6. SQL Statements 589

CREATE FUNCTION (External Scalar)
This statement is used to register a user-defined external scalar function with
an application server. A scalar function returns a single value each time it is
invoked, and is in general valid wherever an SQL expression is valid

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database, if the schema name of the

function does not refer to an existing schema.
v CREATEIN privilege on the schema, if the schema name of the function

refers to an existing schema.

To create a not-fenced function, the privileges held by the authorization ID of
the statement must also include at least one of the following:
v CREATE_NOT_FENCED authority on the database
v SYSADM or DBADM authority.

To create a fenced function, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax

�� CREATE FUNCTION function-name �

�

�

()
,

data-type1
parameter-name AS LOCATOR

* �

CREATE FUNCTION (External Scalar)

590 SQL Reference

� RETURNS data-type2
AS LOCATOR

data-type3 CAST FROM data-type4
AS LOCATOR

* �

�
SPECIFIC specific-name

* EXTERNAL *
NAME ’string’

identifier

�

�
(1)

LANGUAGE C
JAVA
OLE

* PARAMETER STYLE DB2SQL
DB2GENERAL
JAVA

* �

�
NOT DETERMINISTIC

(2)
DETERMINISTIC

*
FENCED

NOT FENCED

RETURNS NULL ON NULL INPUT (3)

CALLED ON NULL INPUT
�

� * NO SQL * �

�
EXTERNAL ACTION

NO EXTERNAL ACTION
*

NO SCRATCHPAD

100
SCRATCHPAD

length

*
NO FINAL CALL

FINAL CALL
* �

�
ALLOW PARALLEL

DISALLOW PARALLEL
*

NO DBINFO

DBINFO
*

TRANSFORM GROUP group-name
* �

�
PREDICATES (predicate-specification)

��

predicate-specification:

WHEN = constant
<> EXPRESSION AS expression-name
<
>
<=
>=

�

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 591

� data-filter
index-exploitation

index-exploitation
data-filter

data-filter:

FILTER USING function-invocation
case-expression

index-exploitation:

SEARCH BY INDEX EXTENSION index-extension-name
EXACT

�

� � exploitation-rule

exploitation-rule:

WHEN KEY (parameter-name1) �

� �

,

USE search-method-name (parameter-name2)

Notes:

1 LANGUAGE SQL is also supported. See “CREATE FUNCTION (SQL
Scalar, Table or Row)” on page 649.

2 NOT VARIANT may be specified in place of DETERMINISTIC and
VARIANT may be specified in place of NOT DETERMINISTIC.

3 NULL CALL may be specified in place of CALLED ON NULL INPUT
and NOT NULL CALL may be specified in place of RETURNS NULL
ON NULL INPUT.

Description

function-name
Names the function being defined. It is a qualified or unqualified name
that designates a function. The unqualified form of function-name is an
SQL identifier (with a maximum length of 18). In dynamic SQL

CREATE FUNCTION (External Scalar)

592 SQL Reference

statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier. The qualified name must not be the same as the
data type of the first parameter, if that first parameter is a structured type.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function or method described in the catalog (SQLSTATE
42723). The unqualified name, together with the number and data types of
the parameters, while of course unique within its schema, need not be
unique across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”.
Otherwise, an error (SQLSTATE 42939) is raised.

A number of names used as keywords in predicates are reserved for
system use, and may not be used as a function-name. The names are
SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,
UNIQUE, OVERLAPS, SIMILAR, MATCH and the comparison operators
as described in “Basic Predicate” on page 187. Failure to observe this rule
will lead to an error (SQLSTATE 42939).

In general, the same name can be used for more than one function if there
is some difference in the signature of the functions.

Although there is no prohibition against it, an external user-defined
function should not be given the same name as a built-in function, unless
it is an intentional override. To give a function having a different meaning
the same name (for example, LENGTH, VALUE, MAX), with consistent
arguments, as a built-in scalar or column function, is to invite trouble for
dynamic SQL statements, or when static SQL applications are rebound;
the application may fail, or perhaps worse, may appear to run
successfully while providing a different result.

parameter-name
Names the parameter that can be used in the subsequent function
definition. Parameter names are required to reference the parameters of a
function in the index-exploitation clause of a predicate specification.

(data-type1,...)
Identifies the number of input parameters of the function, and specifies
the data type of each parameter. One entry in the list must be specified
for each parameter that the function will expect to receive. No more than
90 parameters are allowed. If this limit is exceeded, an error (SQLSTATE
54023) is raised.

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 593

It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For
example,

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to
have exactly the same type for all corresponding parameters. Lengths,
precisions and scales are not considered in this type comparison.
Therefore CHAR(8) and CHAR(35) are considered to be the same type, as
are DECIMAL(11,2) and DECIMAL (4,3). There is some further bundling
of types that causes them to be treated as the same type for this purpose,
such as DECIMAL and NUMERIC. A duplicate signature raises an SQL
error (SQLSTATE 42723).

For example, given the statements:
CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

the second and fourth statements would fail because they are considered
to be duplicate functions.

data-type1
Specifies the data type of the parameter.
v SQL data type specifications and abbreviations which may be

specified in the data-type1 definition of a CREATE TABLE statement
and have a correspondence in the language that is being used to
write the function may be specified. See the language-specific
sections of the Application Development Guide for details on the
mapping between the SQL data types and host language data types
with respect to user-defined functions.

v DECIMAL (and NUMERIC) are invalid with LANGUAGE C and
OLE (SQLSTATE 42815). For alternatives to using DECIMAL refer
to Application Development Guide.

v REF(type-name) may be specified as the type of a parameter.
However, such a parameter must be unscoped.

v Structured types may be specified, provided that appropriate
transform functions exist in the associated transform group.

AS LOCATOR
For the LOB types or distinct types which are based on a LOB
type, the AS LOCATOR clause can be added. This indicates that a
LOB locator is to be passed to the UDF instead of the actual
value. This saves greatly in the number of bytes passed to the

CREATE FUNCTION (External Scalar)

594 SQL Reference

UDF, and may save as well in performance, particularly in the
case where only a few bytes of the value are actually of interest to
the UDF. Use of LOB locators in UDFs are described in Application
Development Guide.

Here is an example which illustrates the use of the AS LOCATOR
clause in parameter definitions:

CREATE FUNCTION foo (CLOB(10M) AS LOCATOR, IMAGE AS LOCATOR)
...

which assumes that IMAGE is a distinct type based on one of the
LOB types.

Note also that for argument promotion purposes, the AS
LOCATOR clause has no effect. In the example the types are
considered to be CLOB and IMAGE respectively, which would
mean that a CHAR or VARCHAR argument could be passed to
the function as the first argument. Likewise, the AS LOCATOR
has no effect on the function signature, which is used in matching
the function (a) when referenced in DML, by a process called
″function resolution″, and (b) when referenced in a DDL statement
such as COMMENT ON or DROP. In fact the clause may or may
not be used in COMMENT ON or DROP with no significance.

An error (SQLSTATE 42601) is raised if AS LOCATOR is specified
for a type other than a LOB or a distinct type based on a LOB.

If the function is FENCED, the AS LOCATOR clause cannot be
specified (SQLSTATE 42613).

RETURNS
This mandatory clause identifies the output of the function.

data-type2
Specifies the data type of the output.

In this case, exactly the same considerations apply as for the
parameters of external functions described above under data-type1 for
function parameters.

AS LOCATOR
For LOB types or distinct types which are based on LOB types,
the AS LOCATOR clause can be added. This indicates that a LOB
locator is to be passed from the UDF instead of the actual value.

data-type3 CAST FROM data-type4
Specifies the data type of the output.

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 595

This form of the RETURNS clause is used to return a different data
type to the invoking statement from the data type that was returned
by the function code. For example, in

CREATE FUNCTION GET_HIRE_DATE(CHAR(6))
RETURNS DATE CAST FROM CHAR(10)

...

the function code returns a CHAR(10) value to the database manager,
which, in turn, converts it to a DATE and passes that value to the
invoking statement. The data-type4 must be castable to the data-type3
parameter. If it is not castable, an error (SQLSTATE 42880) is raised
(for the definition of castable, see “Casting Between Data Types” on
page 91).

Since the length, precision or scale for data-type3 can be inferred from
data-type4, it not necessary (but still permitted) to specify the length,
precision, or scale for parameterized types specified for data-type3.
Instead empty parentheses may be used (for example VARCHAR()
may be used). FLOAT() cannot be used (SQLSTATE 42601) since
parameter value indicates different data types (REAL or DOUBLE).

Distinct types and structured types are not valid as the type specified
in data-type4 (SQLSTATE 42815).

The cast operation is also subject to run-time checks that might result
in conversion errors being raised.

AS LOCATOR
For data-type4 specifications that are LOB types or distinct types
which are based on LOB types, the AS LOCATOR clause can be
added. This indicates that a LOB locator is to be passed back from
the UDF instead of the actual value. Use of LOB locators in UDFs
are described in Application Development Guide.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another
function instance or method specification that exists at the application
server; otherwise an error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

CREATE FUNCTION (External Scalar)

596 SQL Reference

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

EXTERNAL
This clause indicates that the CREATE FUNCTION statement is being
used to register a new function based on code written in an external
programming language and adhering to the documented linkage
conventions and interface.

If NAME clause is not specified ″NAME function-name″ is assumed.

NAME ’string’
This clause identifies the name of the user-written code which
implements the function being defined.

The 'string' option is a string constant with a maximum of 254
characters. The format used for the string is dependent on the
LANGUAGE specified.
v For LANGUAGE C:

The string specified is the library name and function within library,
which the database manager invokes to execute the user-defined
function being CREATEd. The library (and the function within the
library) do not need to exist when the CREATE FUNCTION
statement is performed. However, when the function is used in an
SQL statement, the library and function within the library must
exist and be accessible from the database server machine, otherwise
an error (SQLSTATE 42724) is raised.

�� ’ library_id ’
absolute_path_id ! func_id

��

Extraneous blanks are not permitted within the single quotes.

library_id
Identifies the library name containing the function. The
database manager will look for the library in the
.../sqllib/function directory (UNIX-based systems), or
...\instance_name\function directory (OS/2, and Windows 32-bit
operating systems as specified by the DB2INSTPROF registry
variable), where the database manager will locate the
controlling sqllib directory which is being used to run the
database manager. For example, the controlling sqllib directory
in UNIX-based systems is /u/$DB2INSTANCE/sqllib.

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 597

’myfunc’ were the library_id in a UNIX-based system it would
cause the database manager to look for the function in library
/u/production/sqllib/function/myfunc, provided the database
manager is being run from /u/production.

For OS/2, and Windows 32-bit operating systems, the database
manager will look in the LIBPATH or PATH if the library_id is
not located in the function directory.In OS/2 the library_id
should not contain more than 8 characters.

absolute_path_id
Identifies the full path name of the file containing the function.

In a UNIX-based system, for example,
’/u/jchui/mylib/myfunc’ would cause the database manager to
look in /u/jchui/mylib for the myfunc shared library.

In OS/2, and Windows 32-bit operating systems,
’d:\mylib\myfunc’ would cause the database manager to load
dynamic link library, myfunc.dll file, from the d:\mylib
directory.In OS/2 the last part of this specification (i.e. the name
of the dll), should not contain more than 8 characters.

! func_id
Identifies the entry point name of the function to be invoked.
The ! serves as a delimiter between the library id and the
function id. If ! func_id is omitted, the database manager will
use the default entry point established when the library was
linked.

In a UNIX-based system, for example, ’mymod!func8’ would
direct the database manager to look for the library
$inst_home_dir/sqllib/function/mymod and to use entry point
func8 within that library.

In OS/2, and Windows 32-bit operating systems,
’mymod!func8’ would direct the database manager to load the
mymod.dll file and call the func8() function in the dynamic link
library (DLL).

If the string is not properly formed, an error (SQLSTATE 42878) is
raised.

The body of every external function should be in a directory that is
available on every partition of the database.

v For LANGUAGE JAVA:
The string specified contains the optional jar file identifier, class
identifier and method identifier, which the database manager
invokes to execute the user-defined function being CREATEd. The

CREATE FUNCTION (External Scalar)

598 SQL Reference

class identifier and method identifier do not need to exist when the
CREATE FUNCTION statement is performed. If a jar_id is specified,
it must exist when the CREATE FUNCTION statement is executed.
However, when the function is used in an SQL statement, the
method identifier must exist and be accessible from the database
server machine, otherwise an error (SQLSTATE 42724) is raised.

�� ’
jar_id :

class_id .
!

method_id ’ ��

Extraneous blanks are not permitted within the single quotes.

jar_id
Identifies the jar identifier given to the jar collection when it
was installed in the database. It can be either a simple identifier,
or a schema qualified identifier. Examples are ’myJar’ and
’mySchema.myJar’.

class_id
Identifies the class identifier of the Java object. If the class is
part of a package, the class identifier part must include the
complete package prefix, for example, ’myPacks.UserFuncs’.
The Java virtual machine will look in directory
’.../myPacks/UserFuncs/’ for the classes. In OS/2 and
Windows 32-bit operating systems, the Java virtual machine
will look in directory ’...\myPacks\UserFuncs\’.

method_id
Identifies the method name of the Java object to be invoked.

v For LANGUAGE OLE:
The string specified is the OLE programmatic identifier (progid) or
class identifier (clsid), and method identifier, which the database
manager invokes to execute the user-defined function being
CREATEd. The programmatic identifier or class identifier, and
method identifier do not need to exist when the CREATE
FUNCTION statement is performed. However, when the function is
used in an SQL statement, the method identifier must exist and be
accessible from the database server machine, otherwise an error
(SQLSTATE 42724) is raised.

�� ’ progid ! method_id ’
clsid

��

Extraneous blanks are not permitted within the single quotes.

progid
Identifies the programmatic identifier of the OLE object.

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 599

progid is not interpreted by the database manager but only
forwarded to the OLE APIs at run time. The specified OLE
object must be creatable and support late binding (also called
IDispatch-based binding).

clsid
Identifies the class identifier of the OLE object to create. It can
be used as an alternative for specifying a progid in the case that
an OLE object is not registered with a progid. The clsid has the
form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where ’n’ is an alphanumeric character. clsid is not interpreted
by the database manager but only forwarded to the OLE APIs
at run time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used
as the library-id in the string. Unless it is a delimited identifier, the
identifier is folded to upper case. If the identifier is qualified with a
schema name, the schema name portion is ignored. This form of
NAME can only be used with LANGUAGE C.

LANGUAGE
This mandatory clause is used to specify the language interface
convention to which the user-defined function body is written.

C This means the database manager will call the user-defined
function as if it were a C function. The user-defined function must
conform to the C language calling and linkage convention as
defined by the standard ANSI C prototype.

JAVA This means the database manager will call the user-defined
function as a method in a Java class.

OLE This means the database manager will call the user-defined
function as if it were a method exposed by an OLE automation
object. The user-defined function must conform with the OLE
automation data types and invocation mechanism as described in
the OLE Automation Programmer’s Reference.

LANGUAGE OLE is only supported for user-defined functions
stored in DB2 for Windows 32-bit operating systems.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters
to and returning the value from functions.

CREATE FUNCTION (External Scalar)

600 SQL Reference

DB2SQL
Used to specify the conventions for passing parameters to and
returning the value from external functions that conform to C
language calling and linkage conventions or methods exposed by
OLE automation objects. This must be specified when
LANGUAGE C or LANGUAGE OLE is used.

DB2GENERAL
Used to specify the conventions for passing parameters to and
returning the value from external functions that are defined as a
method in a Java class. This can only specified when LANGUAGE
JAVA is used.

The value DB2GENRL may be used as a synonym for
DB2GENERAL.

JAVA This means that the function will use a parameter passing
convention that conforms to the Java language and SQLJ Routines
specification. This can only be specified when LANGUAGE JAVA
is used and there are no structured types as parameter or return
types (SQLSTATE 429B8). PARAMETER STYLE JAVA functions do
not support the FINAL CALL, SCRATCHPAD or DBINFO clauses.

Refer to Application Development Guide for details on passing parameters.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the
same results for given argument values (DETERMINISTIC) or whether the
function depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC function must always
return the same result from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a NOT DETERMINISTIC function
would be a random-number generator. An example of a DETERMINISTIC
function would be a function that determines the square root of the input.

FENCED or NOT FENCED
This clause specifies whether or not the function is considered “safe” to
run in the database manager operating environment’s process or address
space (NOT FENCED), or not (FENCED).

If a function is registered as FENCED, the database manager insulates its
internal resources (e.g. data buffers) from access by the function. Most
functions will have the option of running as FENCED or NOT FENCED.
In general, a function running as FENCED will not perform as well as a
similar one running as NOT FENCED.

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 601

Warning: Use of NOT FENCED for functions not adequately coded,
reviewed and tested can compromise the integrity of DB2. DB2
takes some precautions against many of the common types of
inadvertent failures that might occur, but cannot guarantee
complete integrity when NOT FENCED user defined functions
are used.

Note that, while the use of FENCED does offer a greater degree
of protection for database integrity than NOT FENCED, a
FENCED UDF that has not been adequately coded, reviewed
and tested can also cause an inadvertent failure of DB2.

Most user-defined functions should be able to run either as FENCED or
NOT FENCED. Only FENCED can be specified for a function with
LANGUAGE OLE (SQLSTATE 42613).

If the function is FENCED, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

To change from FENCED to NOT FENCED, the function must be
re-registered (by first dropping it and then re-creating it). Either SYSADM
authority, DBADM authority or a special authority
(CREATE_NOT_FENCED) is required to register a user-defined function
as NOT FENCED.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if
any of the arguments is null. If the user-defined function is defined to
have no parameters, then of course this null argument condition cannot
arise, and it does not matter how this specification is coded.

If RETURNS NULL ON NULL INPUT is specified, and if, at execution
time, any one of the function’s arguments is null, then the user-defined
function is not called and the result is the null value.

If CALLED ON NULL INPUT is specified, then regardless of whether any
arguments are null, the user-defined function is called. It can return a null
value or a normal (non-null) value. But responsibility for testing for null
argument values lies with the UDF.

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for backwards and family compatibility. Similarly, NOT
NULL CALL may be used as a synonym for RETURNS NULL ON NULL
INPUT.

NO SQL
This mandatory clauses indicates that the function cannot issue any SQL
statements. If it does, an error (SQLSTATE 38502) is raised at run time.

CREATE FUNCTION (External Scalar)

602 SQL Reference

NO EXTERNAL ACTION or EXTERNAL ACTION
This optional clause specifies whether or not the function takes some
action that changes the state of an object not managed by the database
manager. Optimizations that assume functions have no external impacts
are prevented by specifying EXTERNAL ACTION. For example: sending a
message, ringing a bell, or writing a record to a file.

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be
provided for an external function. (It is strongly recommended that
user-defined functions be re-entrant, so a scratchpad provides a means for
the function to “save state” from one call to the next.)

If SCRATCHPAD is specified, then at first invocation of the user-defined
function, memory is allocated for a scratchpad to be used by the external
function. This scratchpad has the following characteristics:
v length, if specified, sets the size of the scratchpad in bytes; this value

must be between 1 and 32 767 (SQLSTATE 42820). The default size is
100 bytes.

v It is initialized to all X'00'’s.
v Its scope is the SQL statement. There is one scratchpad per reference to

the external function in the SQL statement. So if the UDFX function in
the following statement is defined with the SCRATCHPAD keyword,
three scratchpads would be assigned.

SELECT A, UDFX(A) FROM TABLEB
WHERE UDFX(A) > 103 OR UDFX(A) < 19

If ALLOW PARALLEL is specified or defaulted to, then the scope is
different from the above. If the function is executed in multiple
partitions, a scratchpad would be assigned in each partition where the
function is processed, for each reference to the function in the SQL
statement. Similarly, if the query is executed with intra-partition
parallelism enabled, more than three scratchpads may be assigned.

v It is persistent. Its content is preserved from one external function call
to the next. Any changes made to the scratchpad by the external
function on one call will be there on the next call. The database
manager initializes scratchpads at the beginning of execution of each
SQL statement. The database manager may reset scratchpads at the
beginning of execution of each subquery. The system issues a final call
before resetting a scratchpad if the FINAL CALL option is specified.

v It can be used as a central point for system resources (for example,
memory) which the external function might acquire. The function could
acquire the memory on the first call, keep its address in the scratchpad,
and refer to it in subsequent calls.

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 603

(In such a case where system resource is acquired, the FINAL CALL
keyword should also be specified; this causes a special call to be made
at end-of-statement to allow the external function to free any system
resources acquired.)

If SCRATCHPAD is specified, then on each invocation of the user-defined
function an additional argument is passed to the external function which
addresses the scratchpad.

If NO SCRATCHPAD is specified then no scratchpad is allocated or
passed to the external function.

SCRATCHPAD is not supported for PARAMETER STYLE JAVA functions.

NO FINAL CALL or FINAL CALL
This optional clause specifies whether a final call is to be made to an
external function. The purpose of such a final call is to enable the external
function to free any system resources it has acquired. It can be useful in
conjunction with the SCRATCHPAD keyword in situations where the
external function acquires system resources such as memory and anchors
them in the scratchpad. If FINAL CALL is specified, then at execution
time:
v An additional argument is passed to the external function which

specifies the type of call. The types of calls are:
– Normal call: SQL arguments are passed and a result is expected to

be returned.
– First call: the first call to the external function for this reference to

the user-defined function in this SQL statement. The first call is a
normal call.

– Final call: a final call to the external function to enable the function
to free up resources. The final call is not a normal call. This final call
occurs at the following times:
- End-of-statement: This case occurs when the cursor is closed for

cursor-oriented statements, or when the statement is through
executing otherwise.

- End-of-transaction: This case occurs when the normal
end-of-statement does not occur. For example, the logic of an
application may for some reason bypass the close of the cursor.

If a commit operation occurs while a cursor defined as WITH HOLD
is open, a final call is made at the subsequent close of the cursor or
at the end of the application.

If NO FINAL CALL is specified then no “call type” argument is passed
to the external function, and no final call is made.

CREATE FUNCTION (External Scalar)

604 SQL Reference

A description of the scalar UDF processing of these calls when errors
occur is included in the Application Development Guide.

FINAL CALL is not supported for PARAMETER STYLE JAVA functions.

ALLOW PARALLEL or DISALLOW PARALLEL
This optional clause specifies whether, for a single reference to the
function, the invocation of the function can be parallelized. In general, the
invocations of most scalar functions should be parallelizable, but there
may be functions (such as those depending on a single copy of a
scratchpad) that cannot. If either ALLOW PARALLEL or DISALLOW
PARALLEL are specified for a scalar function, then DB2 will accept this
specification. The following questions should be considered in
determining which keyword is appropriate for the function.
v Are all the UDF invocations completely independent of each other? If

YES, then specify ALLOW PARALLEL.
v Does each UDF invocation update the scratchpad, providing value(s)

that are of interest to the next invocation? (For example, the
incrementing of a counter.) If YES, then specify DISALLOW PARALLEL
or accept the default.

v Is there some external action performed by the UDF which should
happen only on one partition? If YES, then specify DISALLOW
PARALLEL or accept the default.

v Is the scratchpad used, but only so that some expensive initialization
processing can be performed a minimal number of times? If YES, then
specify ALLOW PARALLEL.

In any case, the body of every external function should be in a directory
that is available on every partition of the database.

The syntax diagram indicates that the default value is ALLOW
PARALLEL. However, the default is DISALLOW PARALLEL if one or
more of the following options is specified in the statement:
v NOT DETERMINISTIC
v EXTERNAL ACTION
v SCRATCHPAD
v FINAL CALL

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known
by DB2 will be passed to the UDF as an additional invocation-time
argument (DBINFO) or not (NO DBINFO). NO DBINFO is the default.
DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613) or
PARAMETER STYLE JAVA.

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 605

If DBINFO is specified, then a structure is passed to the UDF which
contains the following information:
v Data base name - the name of the currently connected database.
v Application ID - unique application ID which is established for each

connection to the database.
v Application Authorization ID - the application run-time authorization

ID, regardless of the nested UDFs in between this UDF and the
application.

v Code page - identifies the database code page.
v Schema name - under the exact same conditions as for Table name,

contains the name of the schema; otherwise blank.
v Table name - if and only if the UDF reference is either the right-hand

side of a SET clause in an UPDATE statement or an item in the
VALUES list of an INSERT statement, contains the unqualified name of
the table being updated or inserted; otherwise blank.

v Column name - under the exact same conditions as for Table name,
contains the name of the column being updated or inserted; otherwise
blank.

v Database version/release - identifies the version, release and
modification level of the database server invoking the UDF.

v Platform - contains the server’s platform type.
v Table function result column numbers - not applicable to external scalar

functions.

Please see the Application Development Guide for detailed information on
the structure and how it is passed to the user-defined function.

TRANSFORM GROUP group-name
Indicates the transform group to be used for user-defined structured type
transformations when invoking the function. A transform is required if the
function definition includes a user-defined structured type as either a
parameter or returns data type. If this clause is not specified, the default
group name DB2_FUNCTION is used. If the specified (or default)
group-name is not defined for a referenced structured type, an error is
raised (SQLSTATE 42741). If a required FROM SQL or TO SQL transform
function is not defined for the given group-name and structured type, an
error is raised (SQLSTATE 42744).

The transform functions, both FROM SQL and TO SQL, whether
designated or implied, must be SQL functions which properly transform
between the structured type and its built in type attributes.

PREDICATES
Defines the filtering and/or index extension exploitation performed when
this function is used in a predicate. A predicate-specification allows the

CREATE FUNCTION (External Scalar)

606 SQL Reference

optional SELECTIVITY clause of a search-condition to be specified. If the
PREDICATES clause is specified, the function must be defined as
DETERMINISTIC with NO EXTERNAL ACTION (SQLSTATE 42613).

WHEN comparison-operator
Introduces a specific use of the function in a predicate with a
comparison operator ("=", "<", ">", ">=", "<=", "<>").

constant
Specifies a constant value with a data type comparable to the
RETURNS type of the function (SQLSTATE 42818). When a
predicate uses this function with the same comparison operator
and this constant, the specified filtering and index exploitation
will be considered by the optimizer.

EXPRESSION AS expression-name
Provides a name for an expression. When a predicate uses this
function with the same comparison operator and an expression,
filtering and index exploitation may be used. The expression is
assigned an expression name so that it can be used as a search
function argument. The expression-name cannot be the same as any
parameter-name of the function being created (SQLSTATE 42711).
When an expression is specified, the type of the expression is
identified.

FILTER USING
Allows specification of an external function or a case expression to be
used for additional filtering of the result table.

function-invocation
Specifies a filter function that can be used to perform additional
filtering of the result table. This is a version of the defined
function (used in the predicate) that reduces the number of rows
on which the user-defined predicate must be executed, to
determine if rows qualify. If the results produced by the index are
close to the results expected for the user-defined predicate,
applying the filtering function may be redundant. If not specified,
data filtering is not performed.

This function can use any parameter-name, the expression-name, or
constants as arguments (SQLSTATE 42703), and returns an integer
(SQLSTATE 428E4). A return value of 1 means the row is kept,
otherwise it is discarded.

This function must also:
v not be defined with LANGUAGE SQL (SQLSTATE 429B4)
v not be defined with NOT DETERMINISTIC or EXTERNAL

ACTION (SQLSTATE 42845)

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 607

v not have a structured data type as the data type of any of the
parameters (SQLSTATE 428E3)

v not include a subquery (SQLSTATE 428E4).

If an argument invokes another function or method, these four
rules are also enforced for this nested function or method.
However, system generated observer methods are allowed as
arguments to the filter function (or any function or method used
as an argument), as long as the argument evaluates to a built-in
data type.

case-expression
Specifies a case expression for additional filtering of the result
table. The searched-when-clause and simple-when-clause can use
parameter-name, expression-name, or a constant (SQLSTATE 42703).
An external function with the rules specified in FILTER USING
function-invocation may be used as a result-expression. Any
function or method referenced in the case-expression must also
conform to the four rules listed under function-invocation.

Subqueries cannot be used anywhere in the case-expression
(SQLSTATE 428E4).

The case expression must return an integer (SQLSTATE 428E4). A
return value of 1 in the result-expression means that the row is
kept, otherwise it is discarded.

index-exploitation
Defines a set of rules in terms of the search method of an index
extension that can be used to exploit the index.

SEARCH BY INDEX EXTENSION index-extension-name
Identifies the index extension. The index-extension-name must
identify an existing index extension.

EXACT
Indicates that the index lookup is exact in terms of the predicate
evaluation. Use EXACT to tell DB2 that neither the original
user-defined predicate function or the filter need to be applied
after the index lookup. The EXACT predicate is useful when the
index lookup returns the same results as the predicate.

If EXACT is not specified, then the original user-defined predicate
is applied after index lookup. If the index is expected to provide
only an approximation of the predicate, do not specify the EXACT
option.

If the index lookup is not used, then the filter function and the
original predicate have to be applied.

CREATE FUNCTION (External Scalar)

608 SQL Reference

exploitation-rule
Describes the search targets and search arguments and how they can
be used to perform the index search through a search method defined
in the index extension.

WHEN KEY (parameter-name1)
This defines the search target. Only one search target can be
specified for a key. The parameter-name1 value identifies parameter
names of the defined function (SQLSTATE 42703 or 428E8).

The data type of parameter-name1 must match that of the source
key specified in the index extension (SQLSTATE 428EY). The
match must be exact for built-in and distinct data types and
within the same structured type hierarchy for structured types.

This clause is true when the values of the named parameter are
columns that are covered by an index based on the index
extension specified.

USE search-method-name(parameter-name2,...)
This defines the search argument. It identifies which search
method to use from those defined in the index extension. The
search-method-name must match a search method defined in the
index extension (SQLSTATE 42743). The parameter-name2 values
identify parameter names of the defined function or the
expression-name in the EXPRESSION AS clause (SQLSTATE 42703).
It must be different from any parameter name specified in the
search target (SQLSTATE 428E9). The number of parameters and
the data type of each parameter-name2 must match the parameters
defined for the search method in the index extension (SQLSTATE
42816). The match must be exact for built-in and distinct data
types and within the same structured type hierarchy for
structured types.

Notes
v Determining whether one data type is castable to another data type does

not consider length or precision and scale for parameterized data types
such as CHAR and DECIMAL. Therefore, errors may occur when using a
function as a result of attempting to cast a value of the source data type to
a value of the target data type. For example, VARCHAR is castable to
DATE but if the source type is actually defined as VARCHAR(5), an error
will occur when using the function.

v When choosing the data types for the parameters of a user-defined
function, consider the rules for promotion that will affect its input values
(see “Promotion of Data Types” on page 90). For example, a constant which
may be used as an input value could have a built-in data type different
from the one expected and, more significantly, may not be promoted to the

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 609

data type expected. Based on the rules for promotion, it is generally
recommended to use the following data types for parameters:
– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

v For portability of UDFs across platforms the following data types should
not be used:
– FLOAT- use DOUBLE or REAL instead.
– NUMERIC- use DECIMAL instead.
– LONG VARCHAR- use CLOB (or BLOB) instead.

v A function and a method may not be in an overriding relationship
(SQLSTATE 42745). For more information about overriding, see “CREATE
TYPE (Structured)” on page 792.

v A function may not have the same signature as a method (comparing the
first parameter-type of the function with the subject-type of the method)
(SQLSTATE 42723).

v For information on writing, compiling, and linking an external user-defined
function, see the Application Development Guide.

v Creating a function with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

Examples
Example 1: Pellow is registering the CENTRE function in his PELLOW
schema. Let those keywords that will default default, and let the system
provide a function specific name:

CREATE FUNCTION CENTRE (INT,FLOAT)
RETURNS FLOAT
EXTERNAL NAME 'mod!middle'
LANGUAGE C
PARAMETER STYLE DB2SQL
DETERMINISTIC
NO SQL
NO EXTERNAL ACTION

Example 2: Now, McBride (who has DBADM authority) is registering another
CENTRE function in the PELLOW schema, giving it an explicit specific name
for subsequent data definition language use, and explicitly providing all
keyword values. Note also that this function uses a scratchpad and
presumably is accumulating data there that affects subsequent results. Since
DISALLOW PARALLEL is specified, any reference to the function is not

CREATE FUNCTION (External Scalar)

610 SQL Reference

parallelized and therefore a single scratchpad is used to perform some
one-time only initialization and save the results.

CREATE FUNCTION PELLOW.CENTRE (FLOAT, FLOAT, FLOAT)
RETURNS DECIMAL(8,4) CAST FROM FLOAT
SPECIFIC FOCUS92
EXTERNAL NAME 'effects!focalpt'
LANGUAGE C PARAMETER STYLE DB2SQL
DETERMINISTIC FENCED NOT NULL CALL NO SQL NO EXTERNAL ACTION
SCRATCHPAD NO FINAL CALL
DISALLOW PARALLEL

Example 3: The following is the C language user-defined function program
written to implement the rule:

output = 2 * input - 4

returning NULL if and only if the input is null. It could be written even more
simply (that is, without the null checking), if the CREATE FUNCTION
statement had used NOT NULL CALL. Further examples of user-defined
function programs can be found in the Application Development Guide. The
CREATE FUNCTION statement:

CREATE FUNCTION ntest1 (SMALLINT)
RETURNS SMALLINT
EXTERNAL NAME 'ntest1!nudft1'
LANGUAGE C PARAMETER STYLE DB2SQL
DETERMINISTIC NOT FENCED NULL CALL
NO SQL NO EXTERNAL ACTION

The program code:

#include "sqlsystm.h"
/* NUDFT1 IS A USER_DEFINED SCALAR FUNCTION */
/* udft1 accepts smallint input

and produces smallint output
implementing the rule:

if (input is null)
set output = null;

else
set output = 2 * input - 4;

*/
void SQL_API_FN nudft1

(short *input, /* ptr to input arg */
short *output, /* ptr to where result goes */
short *input_ind, /* ptr to input indicator var */
short *output_ind, /* ptr to output indicator var */
char sqlstate[6], /* sqlstate, allows for null-term */
char fname[28], /* fully qual func name, nul-term */
char finst[19], /* func specific name, null-term */
char msgtext[71]) /* msg text buffer, null-term */

{
/* first test for null input */
if (*input_ind == -1)

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 611

{
/* input is null, likewise output */
*output_ind = -1;

}
else
{

/* input is not null. set output to 2*input-4 */
*output = 2 * (*input) - 4;
/* and set out null indicator to zero */
*output_ind = 0;

}

/* signal successful completion by leaving sqlstate as is */
/* and exit */
return;

}
/* end of UDF: NUDFT1 */

Example 4: The following registers a Java UDF which returns the position of
the first vowel in a string. The UDF is written in Java, is to be run fenced, and
is the findvwl method of class javaUDFs.

CREATE FUNCTION findv (CLOB(100K))
RETURNS INTEGER
FENCED
LANGUAGE JAVA
PARAMETER STYLE JAVA
EXTERNAL NAME 'javaUDFs.findvwl'
NO EXTERNAL ACTION
CALLED ON NULL INPUT
DETERMINISTIC
NO SQL

Example 5: This example outlines a user-defined predicate WITHIN that takes
two parameters, g1 and g2, of type SHAPE as input:

CREATE FUNCTION within (g1 SHAPE, g2 SHAPE)
RETURNS INTEGER
LANGUAGE C
PARAMETER STYLE DB2SQL
NOT VARIANT
NOT FENCED
NO SQL
NO EXTERNAL ACTION
EXTERNAL NAME 'db2sefn!SDESpatilRelations'
PREDICATES
WHEN = 1
FILTER USING mbrOverlap(g1..xmin, g1..ymin, g1..xmax, g1..max,

g2..xmin, g2..ymin, g2..xmax, g2..ymax)
SEARCH BY INDEX EXTENSION gridIndex
WHEN KEY(g1) USE withinExplRule(g2)
WHEN KEY(g2) USE withinExplRule(g1)

CREATE FUNCTION (External Scalar)

612 SQL Reference

The description of the WITHIN function is similar to that of any user-defined
function, but the following additions indicate that this function can be used in
a user-defined predicate.
v PREDICATES WHEN = 1 indicates that when this function appears as

within(g1, g2) = 1

in the WHERE clause of a DML statement, the predicate is to be treated as
a user-defined predicate and the index defined by the index extension
gridIndex should be used to retrieve rows that satisfy this predicate. If a
constant is specified, the constant specified during the DML statement has
to match exactly the constant specified in the create index statement. This
condition is provided mainly to cover Boolean expression where the result
type is either a 1 or a 0. For other cases, the EXPRESSION clause is a better
choice.

v FILTER USING mbrOverlap refers to a filtering function mbrOverlap,
which is a cheaper version of the WITHIN predicate. In the above example,
the mbrOverlap function takes the minimum bounding rectangles as input
and quickly determines if they overlap or not. If the minimum bounding
rectangles of the two input shapes do not overlap, then g1 will not be
contained with g2. Therefore the tuple can be safely discarded, avoiding the
application of the expensive WITHIN predicate.

v The SEARCH BY INDEX EXTENSION clause indicates that combinations
of index extension and search target can be used for this user-defined
predicate.

Example 6: This example outlines a user-defined predicate DISTANCE that
takes two parameters, P1 and P2, of type POINT as input:

CREATE FUNCTION distance (P1 POINT, P2 POINT)
RETURNS INTEGER
LANGUAGE C
PARAMETER STYLE DB2SQL
NOT VARIANT
NOT FENCED
NO SQL
NO EXTERNAL ACTION
EXTERNAL NAME 'db2sefn!SDEDistances'
PREDICATES
WHEN > EXPRESSION AS distExpr
SEARCH BY INDEX EXTENSION gridIndex
WHEN KEY(P1) USE distanceGrRule(P2, distExpr)
WHEN KEY(P2) USE distanceGrRule(P1, distExpr)

The description of the DISTANCE function is similar to that of any
user-defined function, but the following additions indicate that when this
function is used in a predicate, that predicate is a user-defined predicate.

CREATE FUNCTION (External Scalar)

Chapter 6. SQL Statements 613

v PREDICATES WHEN > EXPRESSION AS distExpr is another valid
predicate specification. When an expression is specified in the WHEN
clause, the result type of that expression is used for determining if the
predicate is a user-defined predicate in the DML statement. For example:

SELECT T1.C1
FROM T1, T2
WHERE distance (T1.P1, T2.P1) > T2.C2

The predicate specification distance takes two parameters as input and
compares the results with T2.C2, which is of type INTEGER. Since only the
data type of the right hand side expression matters, (as opposed to using a
specific constant), it is better to choose the EXPRESSION clause in the
CREATE FUNCTION DDL for specifying a wildcard as the comparison
value.

Alternatively, the following is also a valid user-defined predicate:
SELECT T1.C1

FROM T1, T2
WHERE distance(T1.P1, T2.P1) > distance (T1.P2, T2.P2)

There is currently a restriction that only the right hand side is treated as the
expression; the term on the left hand side is the user-defined function for
the user-defined predicate.

v The SEARCH BY INDEX EXTENSION clause indicates that combinations
of index extension and search target can be used for this
user-defined-predicate. In the case of the distance function, the expression
identified as distExpr is also one of the search arguments that is passed to
the range-producer function (defined as part of the index extension). The
expression identifier is used to define a name for the expression so that it is
passed to the range-producer function as an argument.

CREATE FUNCTION (External Scalar)

614 SQL Reference

CREATE FUNCTION (External Table)
This statement is used to register a user-defined external table function with
an application server.

A table function may be used in the FROM clause of a SELECT, and returns a
table to the SELECT by returning one row at a time.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the function does not exist
v CREATEIN privilege on the schema, if the schema name of the function

exists.

To create a not-fenced function, the privileges held by the authorization ID of
the statement must also include at least one of the following:
v CREATE_NOT_FENCED authority on the database
v SYSADM or DBADM authority.

To create a fenced function, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax

�� CREATE FUNCTION function-name �

�

�

()
,

data-type1
parameter-name AS LOCATOR

* �

CREATE FUNCTION (External Table)

Chapter 6. SQL Statements 615

� �

,

RETURNS TABLE (column-name data-type2)
AS LOCATOR

* �

�
SPECIFIC specific-name

* EXTERNAL *
NAME ’string’

identifier

�

�
(1)

LANGUAGE C *
JAVA
OLE

PARAMETER STYLE DB2SQL *
DB2GENERAL

�

�
NOT DETERMINISTIC

(2)
DETERMINISTIC

*
FENCED

NOT FENCED
*

RETURNS NULL ON NULL INPUT

(3)
CALLED ON NULL INPUT

�

� * NO SQL *
EXTERNAL ACTION

NO EXTERNAL ACTION
* �

�
NO SCRATCHPAD

100
SCRATCHPAD

length

*
NO FINAL CALL

FINAL CALL
* DISALLOW PARALLEL * �

�
NO DBINFO

DBINFO
*

CARDINALITY integer
*

TRANSFORM GROUP group-name
��

Notes:

1 See “CREATE FUNCTION (OLE DB External Table)” on page 631 for
information on creating LANGUAGE OLE DB external table functions.
See “CREATE FUNCTION (SQL Scalar, Table or Row)” on page 649 for
information on creating LANGUAGE SQL table functions.

2 NOT VARIANT may be specified in place of DETERMINISTIC and
VARIANT may be specified in place of NOT DETERMINISTIC.

3 NULL CALL may be specified in place of CALLED ON NULL INPUT
and NOT NULL CALL may be specified in place of RETURNS NULL
ON NULL INPUT.

CREATE FUNCTION (External Table)

616 SQL Reference

Description

function-name
Names the function being defined. It is a qualified or unqualified name
that designates a function. The unqualified form of function-name is an
SQL identifier (with a maximum length of 18). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier. The qualified name must not be the same as the
data type of the first parameter, if that first parameter is a structured type.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function described in the catalog (SQLSTATE 42723). The
unqualified name, together with the number and data types of the
parameters, while of course unique within its schema, need not be unique
across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for
system use, and may not be used as a function-name (SQLSTATE 42939).
The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH and the
comparison operators as described in “Basic Predicate” on page 187.

The same name can be used for more than one function if there is some
difference in the signature of the functions. Although there is no
prohibition against it, an external user-defined table function should not
be given the same name as a built-in function.

parameter-name
Specifies an optional name for the parameter that is distinct from the
names of all other parameters in this function.

(data-type1,...)
Identifies the number of input parameters of the function, and specifies
the data type of each parameter. One entry in the list must be specified
for each parameter that the function will expect to receive. No more than
90 parameters are allowed. If this limit is exceeded, an error (SQLSTATE
54023) is raised.

It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For
example,

CREATE FUNCTION WOOFER() ...

CREATE FUNCTION (External Table)

Chapter 6. SQL Statements 617

No two identically-named functions within a schema are permitted to
have exactly the same type for all corresponding parameters. Lengths,
precisions and scales are not considered in this type comparison.
Therefore CHAR(8) and CHAR(35) are considered to be the same type, as
are DECIMAL(11,2) and DECIMAL (4,3). There is some further bundling
of types that causes them to be treated as the same type for this purpose,
such as DECIMAL and NUMERIC. A duplicate signature raises an SQL
error (SQLSTATE 42723).

For example, given the statements:
CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

the second and fourth statements would fail because they are considered
to be a duplicate functions.

data-type1
Specifies the data type of the parameter.
v SQL data type specifications and abbreviations which may be

specified in the data-type definition of a CREATE TABLE statement
and have a correspondence in the language that is being used to
write the function may be specified. See the language-specific
sections of the Application Development Guide for details on the
mapping between the SQL data types and host language data types
with respect to user-defined functions.

v DECIMAL (and NUMERIC) are invalid with LANGUAGE C and
OLE (SQLSTATE 42815). For alternatives to using DECIMAL refer
to Application Development Guide.

v REF(type-name) may be specified as the data type of a parameter.
However, such a parameter must be unscoped (SQLSTATE 42997).

v Structured types may be specified, provided that appropriate
transform functions exist in the associated transform group.

AS LOCATOR
For the LOB types or distinct types which are based on a LOB
type, the AS LOCATOR clause can be added. This indicates that a
LOB locator is to be passed to the UDF instead of the actual
value. This saves greatly in the number of bytes passed to the
UDF, and may save as well in performance, particularly in the
case where only a few bytes of the value are actually of interest to
the UDF. Use of LOB locators in UDFs are described in Application
Development Guide.

CREATE FUNCTION (External Table)

618 SQL Reference

Here is an example which illustrates the use of the AS LOCATOR
clause in parameter definitions:

CREATE FUNCTION foo (CLOB(10M) AS LOCATOR, IMAGE AS LOCATOR)
...

which assumes that IMAGE is a distinct type based on one of the
LOB types.

Note also that for argument promotion purposes, the AS
LOCATOR clause has no effect. In the example the types are
considered to be CLOB and IMAGE respectively, which would
mean that a CHAR or VARCHAR argument could be passed to
the function as the first argument. Likewise, the AS LOCATOR
has no effect on the function signature, which is used in matching
the function (a) when referenced in DML, by a process called
″function resolution″, and (b) when referenced in a DDL statement
such as COMMENT ON or DROP. In fact the clause may or may
not be used in COMMENT ON or DROP with no significance.

An error (SQLSTATE 42601) is raised if AS LOCATOR is specified
for a type other than a LOB or a distinct type based on a LOB.

If the function is FENCED, the AS LOCATOR clause cannot be
specified (SQLSTATE 42613).

RETURNS TABLE
Specifies that the output of the function is a table. The parentheses that
follow this keyword delimit a list of the names and types of the columns
of the table, resembling the style of a simple CREATE TABLE statement
which has no additional specifications (constraints, for example). No more
than 255 columns are allowed (SQLSTATE 54011).

column-name
Specifies the name of this column. The name cannot be qualified and
the same name cannot be used for more than one column of the table.

data-type2
Specifies the data type of the column, and can be any data type
supported for a parameter of a UDF written in the particular
language, except for structured types (SQLSTATE 42997).

AS LOCATOR
When data-type2 is a LOB type or distinct type based on a LOB
type, the use of this option indicates that the function is returning
a locator for the LOB value that is instantiated in the result table.

The valid types for use with this clause are discussed on page 593.

CREATE FUNCTION (External Table)

Chapter 6. SQL Statements 619

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

EXTERNAL
This clause indicates that the CREATE FUNCTION statement is being
used to register a new function based on code written in an external
programming language and adhering to the documented linkage
conventions and interface.

If NAME clause is not specified ″NAME function-name″ is assumed.

NAME ’string’
This clause identifies the user-written code which implements the
function being defined.

The 'string' option is a string constant with a maximum of 254
characters. The format used for the string is dependent on the
LANGUAGE specified.
v For LANGUAGE C:

The string specified is the library name and function within library,
which the database manager invokes to execute the user-defined
function being CREATEd. The library (and the function within the
library) do not need to exist when the CREATE FUNCTION
statement is performed. However, when the function is used in an
SQL statement, the library and function within the library must
exist and be accessible from the database server machine.

�� ’ library_id ’
absolute_path_id ! func_id

��

Extraneous blanks are not permitted within the single quotes.

CREATE FUNCTION (External Table)

620 SQL Reference

library_id
Identifies the library name containing the function. The
database manager will look for the library in the
.../sqllib/function directory (UNIX-based systems), or
...\instance_name\function directory (OS/2, and Windows 32-bit
operating systems as specified by the DB2INSTPROF registry
variable), where the database manager will locate the
controlling sqllib directory which is being used to run the
database manager. For example, the controlling sqllib directory
in UNIX-based systems is /u/$DB2INSTANCE/sqllib.

If ’myfunc’ were the library_id in a UNIX-based system it would
cause the database manager to look for the function in library
/u/production/sqllib/function/myfunc, provided the database
manager is being run from /u/production.

For OS/2, and Windows 32-bit operating systems, the database
manager will look in the LIBPATH or PATH if the library_id is
not located in the function directory.

In OS/2 the library_id should not contain more than 8
characters.

absolute_path_id
Identifies the full path name of the function.

In a UNIX-based system, for example,
’/u/jchui/mylib/myfunc’ would cause the database manager to
look in /u/jchui/mylib for the myfunc function.

In OS/2, and Windows 32-bit operating systems
’d:\mylib\myfunc’ would cause the database manager to load
the myfunc.dll file from the d:\mylib directory.

In OS/2 the last part of this specification (i.e. the name of the
dll), should not contain more than 8 characters.

! func_id
Identifies the entry point name of the function to be invoked.
The ! serves as a delimiter between the library id and the
function id. If ! func_id is omitted, the database manager will
use the default entry point established when the library was
linked.

In a UNIX-based system, for example, ’mymod!func8’ would
direct the database manager to look for the library
$inst_home_dir/sqllib/function/mymod and to use entry point
func8 within that library.

CREATE FUNCTION (External Table)

Chapter 6. SQL Statements 621

In OS/2, and Windows 32-bit operating systems,
’mymod!func8’ would direct the database manager to load the
mymod.dll file and call the func8() function in the dynamic link
library (DLL).

If the string is not properly formed, an error (SQLSTATE 42878) is
raised.

In any case, the body of every external function should be in a
directory that is available on every partition of the database.

v For LANGUAGE JAVA:
The string specified contains the optional jar file identifier, class
identifier and method identifier, which the database manager
invokes to execute the user-defined function being CREATEd. The
class identifier and method identifier do not need to exist when the
CREATE FUNCTION statement is performed. If a jar_id is specified,
it must exist when the CREATE FUNCTION statement is executed.
However, when the function is used in an SQL statement, the
method identifier must exist and be accessible from the database
server machine.

�� ’
jar_name :

class_id . method_id ’
!

��

Extraneous blanks are not permitted within the single quotes.

jar_name
Identifies the jar identifier given to the jar collection when it
was installed in the database. It can be either a simple identifier,
or a schema qualified identifier. Examples are ’myJar’ and
’mySchema.myJar’

class_id
Identifies the class identifier of the Java object. If the class is
part of a package, the class identifier part must include the
complete package prefix, for example, ’myPacks.UserFuncs’.
The Java virtual machine will look in directory
’.../myPacks/UserFuncs/’ for the classes. In OS/2 and
Windows 32-bit operating systems, the Java virtual machine
will look in directory ’...\myPacks\UserFuncs\’.

method_id
Identifies the method name of the Java object to be invoked.

v For LANGUAGE OLE:
The string specified is the OLE programmatic identifier (progid) or
class identifier (clsid), and method identifier, which the database

CREATE FUNCTION (External Table)

622 SQL Reference

manager invokes to execute the user-defined function being
CREATEd. The programmatic identifier or class identifier, and
method identifier do not need to exist when the CREATE
FUNCTION statement is performed. However, when the function is
used in an SQL statement, the method identifier must exist and be
accessible from the database server machine, otherwise an error
(SQLSTATE 42724) is raised.

�� ’ progid ! method_id ’
clsid

��

Extraneous blanks are not permitted within the single quotes.

progid
Identifies the programmatic identifier of the OLE object.

progid is not interpreted by the database manager but only
forwarded to the OLE APIs at run time. The specified OLE
object must be creatable and support late binding (also called
IDispatch-based binding).

clsid
Identifies the class identifier of the OLE object to create. It can
be used as an alternative for specifying a progid in the case that
an OLE object is not registered with a progid. The clsid has the
form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where ’n’ is an alphanumeric character. clsid is not interpreted
by the database manager but only forwarded to the OLE APIs
at run time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This clause identifies the name of the user-written code which
implements the function being defined. The identifier specified is an
SQL identifier. The SQL identifier is used as the library-id in the string.
Unless it is a delimited identifier, the identifier is folded to upper
case. If the identifier is qualified with a schema name, the schema
name portion is ignored. This form of NAME can only be used with
LANGUAGE C.

LANGUAGE
This mandatory clause is used to specify the language interface
convention to which the user-defined function body is written.

C This means the database manager will call the user-defined

CREATE FUNCTION (External Table)

Chapter 6. SQL Statements 623

function as if it were a C function. The user-defined function must
conform to the C language calling and linkage convention as
defined by the standard ANSI C prototype.

JAVA This means the database manager will call the user-defined
function as a method in a Java class.

OLE This means the database manager will call the user-defined
function as if it were a method exposed by an OLE automation
object. The user-defined function must conform with the OLE
automation data types and invocation mechanism as described in
the OLE Automation Programmer’s Reference.

LANGUAGE OLE is only supported for user-defined functions
stored in DB2 for Windows 32-bit operating systems.

Refer to “CREATE FUNCTION (OLE DB External Table)” on page 631 for
creating LANGUAGE OLEDB external table functions.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters
to and returning the value from functions.

DB2SQL
Used to specify the conventions for passing parameters to and
returning the value from external functions that conform to C
language calling and linkage conventions. This must be specified
when LANGUAGE C or LANGUAGE OLE is used.

DB2GENERAL
Used to specify the conventions for passing parameters to and
returning the value from external functions that are defined as a
method in a Java class. This can only be specified when
LANGUAGE JAVA is used.

The value DB2GENRL may be used as a synonym for
DB2GENERAL.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the
same results for given argument values (DETERMINISTIC) or whether the
function depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC function must always
return the same table from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a NOT DETERMINISTIC table function
would be a function that retrieves data from a data source such as a file.

CREATE FUNCTION (External Table)

624 SQL Reference

FENCED or NOT FENCED
This clause specifies whether or not the function is considered “safe” to
run in the database manager operating environment’s process or address
space (NOT FENCED), or not (FENCED).

If a function is registered as FENCED, the database manager insulates its
internal resources (e.g. data buffers) from access by the function. Most
functions will have the option of running as FENCED or NOT FENCED.
In general, a function running as FENCED will not perform as well as a
similar one running as NOT FENCED.

Warning: Use of NOT FENCED for functions not adequately coded,
reviewed and tested can compromise the integrity of DB2. DB2
takes some precautions against many of the common types of
inadvertent failures that might occur, but cannot guarantee
complete integrity when NOT FENCED user defined functions
are used.

Note that, while the use of FENCED does offer a greater degree
of protection for database integrity, a FENCED UDF that has
not been adequately coded, reviewed and tested can cause an
inadvertent failure of DB2.

Most user-defined functions should be able to run either as FENCED or
NOT FENCED. Only FENCED can be specified for a function with
LANGUAGE OLE (SQLSTATE 42613).

To change from FENCED to NOT FENCED, the function must be
re-registered (by first dropping it and then re-creating it). Either SYSADM
authority, DBADM authority or a special authority
(CREATE_NOT_FENCED) is required to register a user-defined function
as NOT FENCED.

If the function is FENCED, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if
any of the arguments is null. If the user-defined function is defined to
have no parameters, then of course this null argument condition cannot
arise, and it does not matter how this specification is coded.

If RETURNS NULL ON NULL INPUT is specified, and if, at table
function OPEN time, any of the function’s arguments are null, then the
user-defined function is not called. The result of the attempted table
function scan is the empty table (a table with no rows).

CREATE FUNCTION (External Table)

Chapter 6. SQL Statements 625

If CALLED ON NULL INPUT is specified, then regardless of whether any
arguments are null, the user-defined function is called. It can return a null
value or a normal (non-null) value. But responsibility for testing for null
argument values lies with the UDF.

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for backwards and family compatibility. Similarly, NOT
NULL CALL may be used as a synonym for RETURNS NULL ON NULL
INPUT.

NO SQL
This mandatory clauses indicates that the function cannot issue any SQL
statements. If it does, an error (SQLSTATE 38502) is raised at run time.

NO EXTERNAL ACTION or EXTERNAL ACTION
This optional clause specifies whether or not the function takes some
action that changes the state of an object not managed by the database
manager. Optimizations that assume functions have no external impacts
are prevented by specifying EXTERNAL ACTION. For example: sending a
message, ringing a bell, or writing a record to a file.

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be
provided for an external function. (It is strongly recommended that
user-defined functions be re-entrant, so a scratchpad provides a means for
the function to “save state” from one call to the next.)

If SCRATCHPAD is specified, then at first invocation of the user-defined
function, memory is allocated for a scratchpad to be used by the external
function. This scratchpad has the following characteristics:
v length, if specified, sets the size of the scratchpad in bytes and must be

between 1 and 32 767 (SQLSTATE 42820). The default value is 100.
v It is initialized to all X'00'’s.
v Its scope is the SQL statement. There is one scratchpad per reference to

the external function in the SQL statement. So if the UDFX function in
the following statement is defined with the SCRATCHPAD keyword,
two scratchpads would be assigned.

SELECT A.C1, B.C2
FROM TABLE (UDFX(:hv1)) AS A,

TABLE (UDFX(:hv1)) AS B
WHERE ...

v It is persistent. It is initialized at the beginning of the execution of the
statement, and can be used by the external table function to preserve
the state of the scratchpad from one call to the next. If the FINAL CALL
keyword is also specified for the UDF, then the scratchpad is NEVER
altered by DB2, and any resources anchored in the scratchpad should
be released when the special FINAL call is made.

CREATE FUNCTION (External Table)

626 SQL Reference

If NO FINAL CALL is specified or defaulted, then the external table
function should clean up any such resources on the CLOSE call, as DB2
will re-initialize the scratchpad on each OPEN call. This determination
of FINAL CALL or NO FINAL CALL and the associated behavior of
the scratchpad could be an important consideration, particularly if the
table function will be used in a subquery or join, since that is when
multiple OPEN calls can occur during the execution of a statement.

v It can be used as a central point for system resources (for example,
memory) which the external function might acquire. The function could
acquire the memory on the first call, keep its address in the scratchpad,
and refer to it in subsequent calls.
(As outlined above, the FINAL CALL/NO FINAL CALL keyword is
used to control the re-initialization of the scratchpad, and also dictates
when the external table function should release resources anchored in
the scratchpad.)

If SCRATCHPAD is specified, then on each invocation of the user-defined
function an additional argument is passed to the external function which
addresses the scratchpad.

If NO SCRATCHPAD is specified then no scratchpad is allocated or
passed to the external function.

NO FINAL CALL or FINAL CALL
This optional clause specifies whether a final call (and a separate first call)
is to be made to an external function. It also controls when the scratchpad
is re-initalized. If NO FINAL CALL is specified, then DB2 can only make
three types of calls to the table function: open, fetch and close. However,
if FINAL CALL is specified, then in addition to open, fetch and close, a
first call and a final call can be made to the table function.

For external table functions, the call-type argument is ALWAYS present,
regardless of which option is chosen. See Application Development Guide for
more information about this argument and its values.

A description of the table UDF processing of these calls when errors occur
is included in the Application Development Guide.

DISALLOW PARALLEL
This clause specifies that, for a single reference to the function, the
invocation of the function can not be parallelized. Table functions are
always run on a single partition.

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known
by DB2 will be passed to the UDF as an additional invocation-time
argument (DBINFO) or not (NO DBINFO). NO DBINFO is the default.
DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613).

CREATE FUNCTION (External Table)

Chapter 6. SQL Statements 627

If DBINFO is specified, then a structure is passed to the UDF which
contains the following information:
v Data base name - the name of the currently connected database.
v Application ID - unique application ID which is established for each

connection to the database.
v Application Authorization ID - the application run-time authorization

ID, regardless of the nested UDFs in between this UDF and the
application.

v Code page - identifies the database code page.
v Schema name - not applicable to external table functions.
v Table name - not applicable to external table functions.
v Column name - not applicable to external table functions.
v Database version/release- identifies the version, release and

modification level of the database server invoking the UDF.
v Platform - contains the server’s platform type.
v Table function result column numbers - an array of the numbers of the

table function result columns actually needed for the particular
statement referencing the function. Only provided for table functions, it
enables the UDF to optimize by only returning the required column
values instead of all column values.

Please see the Application Development Guide for detailed information on
the structure and how it is passed to the UDF.

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows
to be returned by the function for optimization purposes. Valid values for
integer range from 0 to 2 147 483 647 inclusive.

If the CARDINALITY clause is not specified for a table function, DB2 will
assume a finite value as a default- the same value assumed for tables for
which the RUNSTATS utility has not gathered statistics.

Warning: if a function does in fact have infinite cardinality, i.e. it returns a
row every time it is called to do so, never returning the ″end-of-table″
condition, then queries which require the ″end-of-table″ condition to
correctly function will be infinite, and will have to be interrupted.
Examples of such queries are those involving GROUP BY and ORDER BY.
The user is advised to not write such UDFs.

TRANSFORM GROUP group-name
Indicates the transform group to be used for user-defined structured type
transformations when invoking the function. A transform is required if the
function definition includes a user-defined structured type as a parameter
data type. If this clause is not specified, the default group name
DB2_FUNCTION is used. If the specified (or default) group-name is not

CREATE FUNCTION (External Table)

628 SQL Reference

defined for a referenced structured type, an error results (SQLSTATE
42741). If a required FROM SQL transform function is not defined for the
given group-name and structured type, an error results (SQLSTATE
42744).

Notes
v When choosing the data types for the parameters of a user-defined

function, consider the rules for promotion that will affect its input values
(see “Promotion of Data Types” on page 90). For example, a constant which
may be used as an input value could have a built-in data type different
from the one expected and, more significantly, may not be promoted to the
data type expected. Based on the rules for promotion, it is generally
recommended to use the following data types for parameters:
– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

v For portability of UDFs across platforms the following data types should
not be used:
– FLOAT- use DOUBLE or REAL instead.
– NUMERIC- use DECIMAL instead.
– LONG VARCHAR- use CLOB (or BLOB) instead.

v For information on writing, compiling, and linking an external user-defined
function, see the Application Development Guide.

v Creating a function with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

Examples
Example 1: The following registers a table function written to return a row
consisting of a single document identifier column for each known document
in a text management system. The first parameter matches a given subject
area and the second parameter contains a given string.

Within the context of a single session, the UDF will always return the same
table, and therefore it is defined as DETERMINISTIC. Note the RETURNS
clause which defines the output from DOCMATCH. FINAL CALL must be
specified for each table function. In addition, the DISALLOW PARALLEL
keyword is added as table functions cannot operate in parallel. Although the
size of the output for DOCMATCH is highly variable, CARDINALITY 20 is a
representative value, and is specified to help the DB2 optimizer.

CREATE FUNCTION (External Table)

Chapter 6. SQL Statements 629

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
RETURNS TABLE (DOC_ID CHAR(16))
EXTERNAL NAME '/common/docfuncs/rajiv/udfmatch'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
NOT FENCED
SCRATCHPAD
FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20

Example 2: The following registers an OLE table function that is used to
retrieve message header information and the partial message text of messages
in Microsoft Exchange. For an example of the code that implements this table
function, see the Application Development Guide.
CREATE FUNCTION MAIL()

RETURNS TABLE (TIMERECIEVED DATE,
SUBJECT VARCHAR(15),
SIZE INTEGER,
TEXT VARCHAR(30))

EXTERNAL NAME 'tfmail.header!list'
LANGUAGE OLE
PARAMETER STYLE DB2SQL
NOT DETERMINISTIC
FENCED
CALLED ON NULL INPUT
SCRATCHPAD
FINAL CALL
NO SQL
EXTERNAL ACTION
DISALLOW PARALLEL

CREATE FUNCTION (External Table)

630 SQL Reference

CREATE FUNCTION (OLE DB External Table)
This statement is used to register a user-defined OLE DB external table
function to access data from an OLE DB provider.

A table function may be used in the FROM clause of a SELECT.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the function does not exist
v CREATEIN privilege on the schema, if the schema name of the function

exists.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax

�� CREATE FUNCTION function-name ()
data-type1

parameter-name

* �

� �

,

RETURNS TABLE (column-name data-type2) * �

�
SPECIFIC specific-name

* EXTERNAL NAME ’string’ * �

� LANGUAGE OLEDB *
NOT DETERMINISTIC

(1)
DETERMINISTIC

* �

CREATE FUNCTION (OLE DB External Table)

Chapter 6. SQL Statements 631

�
RETURNS NULL ON NULL INPUT (2)

CALLED ON NULL INPUT
*

NO EXTERNAL ACTION

EXTERNAL ACTION
* �

�
CARDINALITY integer

* ��

Notes:

1 NOT VARIANT may be specified in place of DETERMINISTIC and
VARIANT may be specified in place of NOT DETERMINISTIC.

2 NULL CALL may be specified in place of CALLED ON NULL INPUT
and NOT NULL CALL may be specified in place of RETURNS NULL
ON NULL INPUT.

Description

function-name
Names the function being defined. It is a qualified or unqualified name
that designates a function. The unqualified form of function-name is an
SQL identifier (with a maximum length of 18). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function described in the catalog (SQLSTATE 42723). The
unqualified name, together with the number and data types of the
parameters, while of course unique within its schema, need not be unique
across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for
system use, and may not be used as a function-name (SQLSTATE 42939).
The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH and the
comparison operators as described in “Basic Predicate” on page 187.

The same name can be used for more than one function if there is some
difference in the signature of the functions. Although there is no
prohibition against it, an external user-defined table function should not
be given the same name as a built-in function.

CREATE FUNCTION (OLE DB External Table)

632 SQL Reference

parameter-name
Specifies an optional name for the parameter.

data-type1
Identifies the input parameter of the function, and specifies the data type
of the parameter. If no input parameter is specified, then data is retrieved
from the external source possibly subsetted through query optimization.
The input parameter can be any character or graphic string data type and
it passes command text to an OLE DB provider.

It is possible to register a function that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For
example,
CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to
have exactly the same type for all corresponding parameters. Length is
not considered in this type comparison. Therefore CHAR(8) and
CHAR(35) are considered to be the same type. A duplicate signature raises
an SQL error (SQLSTATE 42723).

RETURNS TABLE
Specifies that the output of the function is a table. The parentheses that
follow this keyword delimit a list of the names and types of the columns
of the table, resembling the style of a simple CREATE TABLE statement
which has no additional specifications (constraints, for example).

column-name
Specifies the name of the column which must be the same as the
corresponding rowset column name. The name cannot be qualified
and the same name cannot be used for more than one column of the
table.

data-type2
Specifies the data type of the column (see language-specific sections of
Application Development Guide for details on the mapping between the
SQL data types and OLE DB data types).

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

CREATE FUNCTION (OLE DB External Table)

Chapter 6. SQL Statements 633

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

EXTERNAL NAME ’string’
This clause identifies the external table and an OLE DB provider.

The 'string' option is a string constant with a maximum of 254 characters.

The string specified is used to establish a connection and session with a
OLE DB provider, and retrieve data from a rowset. The OLE DB provider
and data source do not need to exist when the CREATE FUNCTION
statement is performed. See OLE DB Table Functions in Application
Development Guide for more details.

��’ server ! ’
rowset

! ! connectstring
rowset ! COLLATING_SEQUENCE = N

Y

��

server
Identifies the local name of a data source as defined by “CREATE
SERVER” on page 708.

rowset
Identifies the rowset (table) exposed by the OLE DB provider. Fully
qualified table names must be provided for OLE DB providers that
support catalog or schema names.

connectstring
String version of the initialization properties needed to connect to a
data source. The basic format of a connection string is based on the
ODBC connection string. The string contains a series of
keyword/value pairs separated by semicolons. The equal sign (=)
separates each keyword and its value. Keywords are the descriptions
of the OLE DB initialization properties (property set
DBPROPSET_DBINIT) or provider-specific keywords. Refer to the
language-specific sections of Application Development Guide for details.

COLLATING_SEQUENCE
Specifies whether the data source uses the same collating sequence as
DB2 Universal Database. See “CREATE SERVER” on page 708 for
details. Valid values are as follows:

CREATE FUNCTION (OLE DB External Table)

634 SQL Reference

Y = Same collating sequence
N = Different collating sequence

If COLLATING_SEQUENCE is not specified, then the data source is
assumed to have a different collating sequence from DB2 Universal
Database.

If server is provided, connectstring or COLLATING_SEQUENCE are not
allowed in the external name. They are defined as server options
CONNECTSTRING and COLLATING_SEQUENCE. If no server is
provided, a connectstring must be provided. If rowset is not provided, the
table function must have an input parameter to pass through command
text to the OLE DB provider.

LANGUAGE OLEDB
This means the database manager will deploy a built-in generic OLE DB
consumer to retrieve data from the OLE DB provider. No table function
implementation is required by the developer.

LANGUAGE OLEDB table functions can be created on any platform, but
only executed on platforms supported by Microsoft OLE DB.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the
same results for given argument values (DETERMINISTIC) or whether the
function depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC function must always
return the same table from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if
any of the arguments is null. If the user-defined function is defined to
have no parameters, then of course this null argument condition cannot
arise.

If RETURNS NULL ON NULL INPUT is specified and if at execution time
any one of the function’s arguments is null, the user-defined function is
not called and the result is the empty table, i.e. a table with no rows.

If CALLED ON NULL INPUT is specified, then at execution time
regardless of whether any arguments are null, the user-defined function is
called. It can return an empty table or not, depending on its logic. But
responsibility for testing for null argument values lies with the UDF.

CREATE FUNCTION (OLE DB External Table)

Chapter 6. SQL Statements 635

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for backwards and family compatibility. Similarly, NOT
NULL CALL may be used as a synonym for RETURNS NULL ON NULL
INPUT.

NO EXTERNAL ACTION or EXTERNAL ACTION
This optional clause specifies whether or not the function takes some
action that changes the state of an object not managed by the database
manager. Optimizations that assume functions with no external impacts
are prevented by specifying EXTERNAL ACTION. For example: sending a
message, ringing a bell, or writing a record to a file.

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows
to be returned by the function for optimization purposes. Valid values for
integer range from 0 to 2 147 483 647 inclusive.

If the CARDINALITY clause is not specified for a table function, DB2 will
assume a finite value as a default- the same value assumed for tables for
which the RUNSTATS utility has not gathered statistics.

Warning: if a function does in fact have infinite cardinality, i.e. it returns a
row every time it is called to do so, never returning the ″end-of-table″
condition, then queries which require the ″end-of-table″ condition to
correctly function will be infinite, and will have to be interrupted.
Examples of such queries are those involving GROUP BY and ORDER BY.
The user is advised to not write such UDFs.

Notes
v FENCED, FINAL CALL, SCRATCHPAD, PARAMETER STYLE DB2SQL,

DISALLOW PARALLEL, NO DBINFO, and NO SQL are implicit in the
statement and can be specified. Refer to “CREATE FUNCTION (External
Table)” on page 615 for specific descriptions.

v When choosing the data types for the parameters of a user-defined
function, consider the rules for promotion that will affect its input values
(see “Promotion of Data Types” on page 90). For example, a constant which
may be used as an input value could have a built-in data type different
from the one expected and, more significantly, may not be promoted to the
data type expected. Based on the rules for promotion, it is generally
recommended to use the following data types for parameters:
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

v For portability of UDFs across platforms the following data types should
not be used:
– FLOAT- use DOUBLE or REAL instead.
– NUMERIC- use DECIMAL instead.

CREATE FUNCTION (OLE DB External Table)

636 SQL Reference

– LONG VARCHAR- use CLOB (or BLOB) instead.
v For information on creating a user-defined OLE DB external table function,

see the Application Development Guide.
v Creating a function with a schema name that does not already exist will

result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

Examples
Example 1: The following registers an OLE DB table function, which retrieves
order information from a Microsoft Access database. The connection string is
defined in the external name.

CREATE FUNCTION orders ()
RETURNS TABLE (orderid INTEGER,

customerid CHAR(5),
employeeid INTEGER,
orderdate TIMESTAMP,
requireddate TIMESTAMP,
shippeddate TIMESTAMP,
shipvia INTEGER,
freight dec(19,4))

LANGUAGE OLEDB
EXTERNAL NAME '!orders!Provider=Microsoft.Jet.OLEDB.3.51;

Data Source=c:\sqllib\samples\oledb\nwind.mdb
!COLLATING_SEQUENCE=Y';

Example 2: The following registers an OLE DB table function, which retrieves
customer information from an Oracle database. The connection string is
provided through a server definition. The table name is fully qualified in the
external name. The local user john is mapped to the remote user dave. Other
users will use the guest userid in the connection string. Refer to “CREATE
SERVER” on page 708, “CREATE WRAPPER” on page 839 and “CREATE
USER MAPPING” on page 821 for details on the statements.

CREATE SERVER spirit
WRAPPER OLEDB
OPTIONS (CONNECTSTRING 'Provider=MSDAORA;Persist Security Info=False;

User ID=guest;password=pwd;Locale Identifier=1033;
OLE DB Services=CLIENTCURSOR;Data Source=spirit');

CREATE USER MAPPING FOR john
SERVER spirit
OPTIONS (REMOTE_AUTHID 'dave', REMOTE_PASSWORD 'mypwd');

CREATE FUNCTION customers ()
RETURNS TABLE (customer_id INTEGER,

name VARCHAR(20),
address VARCHAR(20),
city VARCHAR(20),
state VARCHAR(5),

CREATE FUNCTION (OLE DB External Table)

Chapter 6. SQL Statements 637

zip_code INTEGER)
LANGUAGE OLEDB
EXTERNAL NAME 'spirit!demo.customer';

Example 3: The following registers an OLE DB table function, which retrieves
information about stores from a MS SQL Server 7.0 database. The connection
string is provided in the external name. The table function has an input
parameter to pass through command text to the OLE DB provider. The rowset
name does not need to be specified in the external name. The query example
passes in a SQL command text to retrieve the top 3 stores.

CREATE FUNCTION favorites (varchar(600))
RETURNS TABLE (store_id CHAR (4),

name VARCHAR (41),
sales INTEGER)

SPECIFIC favorites
LANGUAGE OLEDB
EXTERNAL NAME '!!Provider=SQLOLEDB.1;Persist Security Info=False;

User ID=sa;Initial Catalog=pubs;Data Source=WALTZ;
Locale Identifier=1033;Use Procedure for Prepare=1;
Auto Translate=False;Packet Size=4096;Workstation ID=WALTZ;
OLE DB Services=CLIENTCURSOR;';

SELECT *
FROM TABLE (favorites

(' select top 3 sales.stor_id as store_id, ' || '
stores.stor_name as name, ' || '
sum(sales. qty) as sales ' || '

from sales, stores ' || '
where sales.stor_id = stores.stor_id ' || '
group by sales.stor_id, stores.stor_name' || '
order by sum(sales.qty) desc')) as f;

CREATE FUNCTION (OLE DB External Table)

638 SQL Reference

CREATE FUNCTION (Source or Template)
This statement is used to:
v Register a user-defined function, based on another existing scalar or column

function, with an application server.
v Register a function template with an application server that is designated as

a federated server. A function template is a partial function that contains no
executable code. The user creates it for the purpose of mapping it to a data
source function. After the mapping is created, the user can specify the
function template in queries submitted to the federated server. When such a
query is processed, the federated server will invoke the data source
function to which the template is mapped, and return values whose data
types correspond to those in the RETURNS portion of the template’s
definition. Refer to “Function Mappings, Function Templates, and Function
Mapping Options” on page 48 for more information.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the function does not exist
v CREATEIN privilege on the schema, if the schema name of the function

exists.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

No authority is required on a function referenced in the SOURCE clause.

Syntax

�� CREATE FUNCTION function-name �

CREATE FUNCTION (Source or Template)

Chapter 6. SQL Statements 639

�

�

()
,

data-type1
parameter-name

* RETURNS data-type2 * �

�
SPECIFIC specific-name

* �

�

�

SOURCE function-name
SPECIFIC specific-name
function-name ()

,

data-type
AS TEMPLATE

* ��

Description

function-name
Names the function or function template being defined. It is a qualified or
unqualified name that designates a function. The unqualified form of
function-name is an SQL identifier (with a maximum length of 18). In
dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by
a period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function or function template described in the catalog
(SQLSTATE 42723). The unqualified name, together with the number and
data types of the parameters, while of course unique within its schema,
need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”.
Otherwise, an error (SQLSTATE 42939) is raised.

A number of names used as keywords in predicates are reserved for
system use, and may not be used as a function-name (SQLSTATE 42939).
The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH and the
comparison operators as described in “Basic Predicate” on page 187.

When naming a user-defined function that is sourced on an existing
function with the purpose of supporting the same function with a

CREATE FUNCTION (Source or Template)

640 SQL Reference

user-defined distinct type, the same name as the sourced function may be
used. This allows users to use the same function with a user-defined
distinct type without realizing that an additional definition was required.
In general, the same name can be used for more than one function if there
is some difference in the signature of the functions.

(data-type,...)
Identifies the number of input parameters of the function or function
template, and specifies the data type of each parameter. One entry in the
list must be specified for each parameter that the function or function
template will expect to receive. No more than 90 parameters are allowed.
If this limit is exceeded, an error (SQLSTATE 54023) is raised.

It is possible to register a function or function template that has no
parameters. In this case, the parentheses must still be coded, with no
intervening data types. For example,

CREATE FUNCTION WOOFER() ...

No two identically-named functions or function templates within a
schema are permitted to have exactly the same type for all corresponding
parameters. (This restriction applies also to a function and function
template within a schema that have the same name.) Lengths, precisions
and scales are not considered in this type comparison. Therefore CHAR(8)
and CHAR(35) are considered to be the same type, as are DECIMAL(11,2)
and DECIMAL (4,3). There is some further bundling of types that causes
them to be treated as the same type for this purpose, such as DECIMAL
and NUMERIC. A duplicate signature raises an SQL error (SQLSTATE
42723).

For example, given the statements:
CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

the second and fourth statements would fail because they are considered
to be a duplicate functions.

parameter-name
Specifies an optional name for the parameter that is distinct from the
names of all other parameters in this function.

data-type1
Specifies the data type of the parameter.

With a sourced scalar function any valid SQL data type may be used
provided it is castable to the type of the corresponding parameter of
the function identified in the SOURCE clause (for the definition of

CREATE FUNCTION (Source or Template)

Chapter 6. SQL Statements 641

castable, see “Casting Between Data Types” on page 91). A
REF(type-name) data type cannot be specified as the data type of a
parameter (SQLSTATE 42997).

Since the function is sourced, it is not necessary (but still permitted) to
specify length, precision, or scale for the parameterized data types.
Instead, empty parentheses may be used (for example CHAR() may be
used). A parameterized data type is any one of the data types that can be
defined with a specific length, scale, or precision. The parameterized
data types are the string data types and the decimal data types.

RETURNS
This mandatory clause identifies the output of the function or function
template.

data-type2
Specifies the data type of the output.

Any valid SQL data type is valid, as is a distinct type, provided it is
castable from the result type of the source function (for the definition
of castable, see “Casting Between Data Types” on page 91).

The parameter of a parameterized type need not be specified, as
above for parameters of a sourced function. Instead, empty
parentheses may be used, for example, VARCHAR().

Also see page 644 for additional considerations and rules that apply
to the specification of the data type in the RETURNS clause when the
function is sourced on another.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

CREATE FUNCTION (Source or Template)

642 SQL Reference

SOURCE
Specifies that the function being created is to be implemented by another
function (the source function) already known to the database manager.
The source function can be either a built-in function71 or a previously
created user-defined scalar function.

The SOURCE clause may be specified only for scalar or column functions;
it may not be specified for table functions.

The SOURCE clause provides the identity of the other function.

function-name
Identifies the particular function that is to be used as the source and is
valid only if there is exactly one specific function in the schema with
this function-name. This syntax variant is not valid for a source
function that is a built-in function.

If an unqualified name is provided, then the authorization ID’s
current SQL path (the value of the CURRENT PATH special register)
is used to locate the function. The first schema in the function path
that has a function with this name is selected.

If no function by this name exists in the named schema or if the name
is not qualified and there is no function with this name in the
function path, an error (SQLSTATE 42704) is raised. If there is more
than one specific instance of the function in the named or located
schema, an error (SQLSTATE 42725) is raised.

SPECIFIC specific-name
Identifies the particular user-defined function that is to be used as the
source, by the specific-name either specified or defaulted to at function
creation time. This syntax variant is not valid for a source function
that is a built-in function.

If an unqualified name is provided, then the authorization ID’s
current SQL path is used to locate the function. The first schema in
the function path that has a function with this specific name is
selected.

If no function by this specific-name exists in the named schema or if
the name is not qualified and there is no function with this
specific-name in the SQL path, an error (SQLSTATE 42704) is raised.

function-name (data-type,...)
Provides the function signature, which uniquely identifies the source
function. This is the only valid syntax variant for a source function
that is a built-in function.

71. With the exception of COALESCE, NODENUMBER, NULLIF, PARTITION, TYPE_ID, TYPE_NAME,
TYPE_SCHEMA and VALUE.

CREATE FUNCTION (Source or Template)

Chapter 6. SQL Statements 643

The rules for function resolution (as described in “Function
Resolution” on page 144) are applied to select one function from the
functions with the same function name, given the data types specified
in the SOURCE clause. However, the data type of each parameter in
the function selected must have the exact same type as the
corresponding data type specified in the source function.

function-name
Gives the function name of the source function. If an unqualified
name is provided, then the schemas of the user’s SQL path are
considered.

data-type
Must match the data type that was specified on the CREATE
FUNCTION statement in the corresponding position (comma
separated).

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses
may be coded to indicate that these attributes are to be ignored
when looking for a data type match. For example, DECIMAL()
will match a parameter whose data type was defined as
DECIMAL(7,2)).

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must
exactly match that specified in the CREATE FUNCTION
statement. This can be useful in assuring that the exact intended
function will be used. Also note that synonyms for data types will
be considered a match (for example DEC and NUMERIC will
match).

A type of FLOAT(n) does not need to match the defined value for
n since 0<n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.

If no function with the specified signature exists in the named or
implied schema, an error (SQLSTATE 42883) is raised.

AS TEMPLATE
Indicates that this statement will be used to create a function template, not
a function with executable code.

Rules
v For convenience, in this section we will call the function being created CF

and the function identified in the SOURCE clause SF, no matter which of
the three allowable syntaxes was used to identify SF.

CREATE FUNCTION (Source or Template)

644 SQL Reference

– The unqualified name of CF and the unqualified name of SF can be
different.

– A function named as the source of another function can, itself, use
another function as its source. Extreme care should be exercised when
exploiting this facility because it could be very difficult to debug an
application if an indirectly invoked function raises an error.

– The following clauses are invalid if specified in conjunction with the
SOURCE clause (because CF will inherit these attributes from SF):
- CAST FROM ...,
- EXTERNAL ...,
- LANGUAGE ...,
- PARAMETER STYLE ...,
- DETERMINISTIC / NOT DETERMINISTIC,
- FENCED / NOT FENCED,
- RETURNS NULL ON NULL INPUT / CALLED ON NULL INPUT
- EXTERNAL ACTION / NO EXTERNAL ACTION
- NO SQL
- SCRATCHPAD / NO SCRATCHPAD
- FINAL CALL / NO FINAL CALL
- RETURNS TABLE (...)
- CARDINALITY ...
- ALLOW PARALLEL / DISALLOW PARALLEL
- DBINFO / NO DBINFO

An error (SQLSTATE 42613) will result from violation of these rules.
v The number of input parameters in CF must be the same as those in SF;

otherwise an error (SQLSTATE 42624) is raised.
v It is not necessary for CF to specify length, precision, or scale for a

parameterized data type in the case of:
– The function’s input parameters,
– Its RETURNS parameter

Instead, empty parentheses may be specified as part of the data type (for
example: VARCHAR()) in order to indicate that the length/precision/scale
will be the same as those of the source function, or determined by the
casting.

However, if length, precision, or scale is specified then the value in CF is
checked against the corresponding value in SF as outlined below for input
parameters and returns value.

CREATE FUNCTION (Source or Template)

Chapter 6. SQL Statements 645

v The specification of the input parameters of CF are checked against those of
SF. The data type of each parameter of CF must either be the same as or be
castable to the data type of the corresponding parameter of SF. For the
definition of castable, see “Casting Between Data Types” on page 91. If any
parameter is not the same type or castable, an error (SQLSTATE 42879) is
raised.
Note that this rule provides no guarantee against an error occurring when
CF is used. An argument that matches the data type and length or precision
attributes of a CF parameter may not be assignable if the corresponding SF
parameter has a shorter length or less precision. In general, parameters of
CF should not have length or precision attributes that are greater than the
attributes of the corresponding SF parameters.

v The specifications for the RETURNS data type of CF are checked against
that of SF. The final RETURNS data type of SF, after any casting, must
either be the same as or castable to the RETURNS data type of CF.
Otherwise an error (SQLSTATE 42866) is raised.
Note that this rule provides no guarantee against an error occurring when
CF is used. A result value that matches the data type and length or
precision attributes of the SF RETURNS data type may not be assignable if
the CF RETURNS data type has a shorter length or less precision. Caution
should be used when choosing to specify the RETURNS data type of CF as
having length or precision attributes that are less than the attributes of the
SF RETURNS data type.

Notes
v Determining whether one data type is castable to another data type does

not consider length or precision and scale for parameterized data types
such as CHAR and DECIMAL. Therefore, errors may occur when using a
function as a result of attempting to cast a value of the source data type to
a value of the target data type. For example, VARCHAR is castable to
DATE but if the source type is actually defined as VARCHAR(5), an error
will occur when using the function.

v When choosing the data types for the parameters of a user-defined
function, consider the rules for promotion that will affect its input values
(see “Promotion of Data Types” on page 90). For example, a constant which
may be used as an input value could have a built-in data type different
from the one expected and, more significantly, may not be promoted to the
data type expected. Based on the rules for promotion, it is generally
recommended to use the following data types for parameters:
– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

CREATE FUNCTION (Source or Template)

646 SQL Reference

v Creating a function with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

v For a federated server to recognize a data source function, the function
must map to a counterpart at the federated database. If the database
contains no counterpart, the user must create the counterpart and then the
mapping.
The counterpart can be a function (scalar or source) or a function template.
If the user creates a function and the required mapping, then, each time a
query that specifies the function is processed, DB2 (1) compares strategies
for invoking it with strategies for invoking the data source function, and (2)
invokes the function that is expected to require less overhead.
If the user creates a function template and the mapping, then, each time a
query that specifies the template is processed, DB2 invokes the data source
function that it maps to, provided that an access plan for invoking this
function exists. Refer to the Application Development Guide for more
information about controlling the overhead of invoking functions in a
federated system.

Examples
Example 1: Some time after the creation of Pellow’s original CENTRE external
scalar function, another user wants to create a function based on it, except this
function is intended to accept only integer arguments.

CREATE FUNCTION MYCENTRE (INTEGER, INTEGER)
RETURNS FLOAT
SOURCE PELLOW.CENTRE (INTEGER, FLOAT)

Example 2: You have created a distinct type HATSIZE which is based on the
built-in INTEGER data type, and now would find it useful to have an AVG
function to compute the average hat size of different departments. This is
easily done as follows:

CREATE FUNCTION AVG (HATSIZE) RETURNS (HATSIZE)
SOURCE SYSIBM.AVG (INTEGER)

The creation of the distinct type has generated the required cast function,
allowing the cast from HATSIZE to INTEGER for the argument and from
INTEGER to HATSIZE for the result of the function.

Example 3: In a federated system, a user wants to invoke an Oracle UDF that
returns table statistics in the form of values with double precision
floating-points. The federated server can recognize this function only if there
is a mapping between the function and a federated database counterpart. But
no such counterpart exists. The user decides to provide one in the form of a
function template, and to assign this template to a schema called NOVA. The

CREATE FUNCTION (Source or Template)

Chapter 6. SQL Statements 647

user uses the following code to register the template with the federated
server; for the user’s code for the mapping, refer to “Examples” on page 660.

CREATE FUNCTION NOVA.STATS (DOUBLE, DOUBLE)
RETURNS DOUBLE
AS TEMPLATE

Example 4: In a federated system, a user wants to invoke an Oracle UDF that
returns the dollar amounts that employees of a particular organization earn as
bonuses. The federated server can recognize this function only if there is a
mapping between the function and a federated database counterpart. No such
counterpart exists; thus, the user creates one in the form of a function
template. The user uses the following code to register this template with the
federated server; for the user’s code for the mapping, refer to “Examples” on
page 660.

CREATE FUNCTION BONUS ()
RETURNS DECIMAL (8,2)
AS TEMPLATE

CREATE FUNCTION (Source or Template)

648 SQL Reference

CREATE FUNCTION (SQL Scalar, Table or Row)
This statement is used to define a user-defined SQL scalar, table or row
function. A scalar function returns a single value each time it is invoked, and is
generally valid wherever an SQL expression is valid. A table function may be
used in a FROM clause and returns a table. A row function may be used as a
transform function and returns a row.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database, if the schema name of the

function does not refer to an existing schema
v CREATEIN privilege on the schema, if the schema name of the function

refers to an existing schema.

If the authorization ID of the statement does not have SYSADM or DBADM
authority, and the function identifies a table or view, the privileges that the
authorization ID of the statement holds (without considering GROUP
privileges) must include SELECT WITH GRANT OPTION for each identified
table and view.

If a function definer can only create the function because the definer has
SYSADM authority, then the definer is granted implicit DBADM authority for
the purpose of creating the function.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-name data-type1

�

CREATE FUNCTION (SQL Scalar, Table or Row)

Chapter 6. SQL Statements 649

� * RETURNS data-type2
ROW column-list
TABLE

*
SPECIFIC specific-name

* �

�
LANGUAGE SQL

*
NOT DETERMINISTIC

DETERMINISTIC
*

EXTERNAL ACTION

NO EXTERNAL ACTION
* �

�
READS SQL DATA

CONTAINS SQL
*

STATIC DISPATCH
*

(1)
CALLED ON NULL INPUT

�

� *
(2)

PREDICATES (predicate-specification)

�

�

�

RETURN expression
NULL

fullselect
,

WITH common-table-expression

��

column-list:

�

,

(column-name data-type3)

Notes:

1 NULL CALL may be specified in place of CALLED ON NULL INPUT

2 Valid only if RETURNS specifies a scalar result (data-type2)

Description

function-name
Names the function being defined. It is a qualified or unqualified name
that designates a function. The unqualified form of function-name is an
SQL identifier (with a maximum length of 18). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier.

CREATE FUNCTION (SQL Scalar, Table or Row)

650 SQL Reference

The name, including the implicit or explicit qualifiers, together with the
number of parameters and the data type of each parameter (without
regard for any length, precision or scale attributes of the data type) must
not identify a function described in the catalog (SQLSTATE 42723). The
unqualified name, together with the number and data types of the
parameters, while of course unique within its schema, need not be unique
across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”
(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for
system use, and may not be used as a function-name (SQLSTATE 42939).
The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH and the
comparison operators as described in “Basic Predicate” on page 187.

The same name can be used for more than one function if there is some
difference in the signature of the functions. Although there is no
prohibition against it, an external user-defined table function should not
be given the same name as a built-in function.

parameter-name
A name that is distinct from the names of all other parameters in this
function.

data-type1
Specifies the data type of the parameter:
v SQL data type specifications and abbreviations that may be specified in

the data-type1 definition of a CREATE TABLE statement.
v REF may be specified, but that REF is unscoped. The system does not

attempt to infer the scope of the parameter or result. Inside the body of
the function, a reference type can be used in a dereference operation
only by first casting it to have a scope. Similarly, a reference returned
by an SQL function can be used in a dereference operation only by first
casting it to have a scope.

v LONG VARCHAR and LONG VARGRAPHIC data types may not be
used (SQLSTATE 42815).

RETURNS
This mandatory clause identifies the type of output of the function.

data-type2
Specifies the data type of the output.

In this statement, exactly the same considerations apply as for the
parameters of SQL functions described above under data-type1 for
function parameters.

CREATE FUNCTION (SQL Scalar, Table or Row)

Chapter 6. SQL Statements 651

ROW column-list
Specifies that the output of the function is a single row. If the function
returns more than one row, an error is raised (SQLSTATE 21505). The
column-list must include at least two columns (SQLSTATE 428F0).

A row function can only be used as a transform function for a
structured type (having one structured type as its parameter and
returning only base types).

TABLE column-list
Specifies that the output of the function is a table.

column-list
The list of column names and data types returned for a ROW or
TABLE function

column-name
Specifies the name of this column. The name cannot be qualified
and the same name cannot be used for more than one column of
the row.

data-type3
Specifies the data type of the column, and can be any data type
supported by a parameter of the SQL function.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being
defined. This specific name can be used when sourcing on this function,
dropping the function, or commenting on the function. It can never be
used to invoke the function. The unqualified form of specific-name is an
SQL identifier (with a maximum length of 18). The qualified form is a
schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error is
raised (SQLSTATE 42710).

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of function-name or an error is raised (SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

LANGUAGE SQL
Specifies that the function is written using SQL. The supported SQL is
currently limited to the RETURN statement.

CREATE FUNCTION (SQL Scalar, Table or Row)

652 SQL Reference

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the
same results for given argument values (DETERMINISTIC) or whether the
function depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC function must always
return the same table from successive invocations with identical inputs.
Optimizations taking advantage of the fact that identical inputs always
produce the same results are prevented by specifying NOT
DETERMINISTIC.

NOT DETERMINISTIC must be explicitly or implicitly specified if the
body of the function accesses a special register or calls another
non-deterministic function (SQLSTATE 428C2).

NO EXTERNAL ACTION or EXTERNAL ACTION
This optional clause specifies whether or not the function takes some
action that changes the state of an object not managed by the database
manager. By specifying NO EXTERNAL ACTION, the system can use
certain optimizations that assume functions have no external impacts.

EXTERNAL ACTION must be explicitly or implicitly specified if the body
of the function calls another function that has an external action
(SQLSTATE 428C2).

READS SQL DATA or CONTAINS SQL
Indicates what type of SQL statements can be executed. Because the SQL
statement supported is the RETURN statement, the distinction has to do
with whether or not the expression is a subquery.

READS SQL DATA
Indicates that SQL statements that do not modify SQL data can be
executed by the function (SQLSTATE 42985). Nicknames or OLEDB
table functions cannot be referenced in the SQL statement (SQLSTATE
42997).

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data
can be executed by the function (SQLSTATE 42985).

STATIC DISPATCH
This optional clause indicates that at function resolution time, DB2
chooses a function based on the static types (declared types) of the
parameters of the function.

CALLED ON NULL INPUT
This clause indicates that the function is called regardless of whether any
of its arguments are null. It can return a null value or a non-null value.
Responsibility for testing null argument values lies with the user-defined
function.

CREATE FUNCTION (SQL Scalar, Table or Row)

Chapter 6. SQL Statements 653

The phrase NULL CALL may be used in place of CALLED ON NULL
INPUT.

PREDICATES
For predicates using this function, this clause identifies those that can
exploit the index extensions, and can use the optional SELECTIVITY
clause for the predicate’s search condition. If the PREDICATES clause is
specified, the function must be defined as DETERMINISTIC with NO
EXTERNAL ACTION (SQLSTATE 42613).

predicate-specification
See “CREATE FUNCTION (External Scalar)” on page 590 for details
on predicate specifications.

RETURN
Specifies the return value of the function. Parameter names can be
referenced in the RETURN statement. Parameter names may be qualified
by the function name to avoid ambiguous references.

expression
Specifies the expression to be returned for the function. The result
data type of the expression must be assignable (using store
assignment rules) to the data type defined in the RETURNS clause
(SQLSTATE 42866). A scalar expression (other than a scalar fullselect)
cannot be specified for a table function (SQLSTATE 428F1).

NULL
Specifies that the function returns a null value of the data type
defined in the RETURNS clause.

WITH common-table-expression
Defines a common table expression for use with the fullselect that
follows. See “common-table-expression” on page 440.

fullselect
Specifies the row or rows to be returned for the function. The number
of columns in the fullselect must match the number of columns in the
function result (SQLSTATE 42811), and the static column types of the
fullselect must be assignable to the declared column types of the
function result, using the rules for assignment to columns (SQLSTATE
42866).

If the function is a scalar function, the fullselect must return one
column (SQLSTATE 42823) and, at most, one row (SQLSTATE 21000).

If the function is a row function, it must return, at most, one row
(SQLSTATE 21505).

If the function is a table function, it can return zero or more rows with
one or more columns.

CREATE FUNCTION (SQL Scalar, Table or Row)

654 SQL Reference

Notes
v Resolution of function calls inside the function body is done according to

the function path that is effective for the CREATE FUNCTION statement
and does not change after the function is created.

v If an SQL function contains multiple references to any of the date or time
special registers, all references return the same value, and it will be the
same value returned by the register invocation in the statement that called
the function.

v The body of an SQL function must not contain a recursive call to itself or to
another function or method that calls it.

v The following rules are enforced by all statements that create functions or
methods:
– A function may not have the same signature as a method (comparing the

first parameter-type of the function with the subject-type of the method).
– A function and a method may not be in an overriding relationship. That

is, if the function were a method with its first parameter as subject, it
must not override, or be overridden by, another method.

– Since overriding does not apply to functions, it is permissible for two
functions to exist such that, if they were methods, one would override
the other.

For the purpose of comparing parameter-types in the above rules:
– Parameter-names, lengths, AS LOCATOR, and FOR BIT DATA are

ignored.
– A subtype is considered to be different from its supertype.

Examples
Example 1: Define a scalar function that returns the tangent of a value using
the existing sine and cosine functions.

CREATE FUNCTION TAN (X DOUBLE)
RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(X)/COS(X)

Example 2: Define a transform function for the structured type PERSON.
CREATE FUNCTION FROMPERSON (P PERSON)

RETURNS ROW (NAME VARCHAR(10), FIRSTNAME VARCHAR(10))
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN VALUES (P..NAME, P..FIRSTNAME)

CREATE FUNCTION (SQL Scalar, Table or Row)

Chapter 6. SQL Statements 655

Example 3: Define a table function that returns the employees in a specified
department number.

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
RETURNS TABLE (EMPNO CHAR(6),

LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))

LANGUAGE SQL
READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
RETURN

SELECT EMPNO, LASTNAME, FIRSTNME
FROM EMPLOYEE
WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

Note that the definer of this function must have the SELECT WITH GRANT
OPTION privilege on the EMPLOYEE table and that all users may invoke the
table function DEPTEMPLOYEES, effectively giving them access to the data in
the result columns for each department number.

CREATE FUNCTION (SQL Scalar, Table or Row)

656 SQL Reference

CREATE FUNCTION MAPPING
The CREATE FUNCTION MAPPING statement is used to:
v Create a mapping between a federated database function or function

template and a data source function. The mapping can associate the
federated database function or template with a function at either (1) a
specified data source or (2) a range of data sources; for example, all data
sources of a particular type and version.

v Disable a default mapping between a federated database function and a
data source function.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSADM or DBADM
authority.

Syntax

�� CREATE FUNCTION MAPPING
function-mapping-name

FOR �

� �

,

function-name ()
data-type

SPECIFIC specific-name

�

� SERVER server-name
SERVER TYPE server-type

VERSION server-version
WRAPPER wrapper-name

�

�
function-options WITH INFIX

��

server-version:

version
. release

. mod
version-string-constant

CREATE FUNCTION MAPPING

Chapter 6. SQL Statements 657

function-options:

�

,
ADD

OPTIONS (function-option-name string-constant)

Description

function-mapping-name
Names the function mapping. The name must not identify a function
mapping that is already described in the catalog (SQLSTATE 42710).

If the function-mapping-name is omitted, a system-generated unique name
is assigned.

function-name
Is the qualified or unqualified name of the function or function template
to map from.

data-type
For a function or function template that has any input parameters,
data-type specifies the data type of such a parameter. The data type cannot
be LONG VARCHAR, LONG VARGRAPHIC, DATALINK, a large object
(LOB) type, or a user-defined type.

SPECIFIC specific-name
Identifies the function or function template to map from. Specify
specific-name if the function or function template does not have a unique
function-name in the federated database.

SERVER server-name
Names the data source that contains the function that is being mapped to.

TYPE server-type
Identifies the type of data source that contains the function that is being
mapped to.

VERSION
Identifies the version of the data source denoted by server-type.

version
Specifies the version number. version must be an integer.

release
Specifies the number of the release of the version denoted by version.
release must be an integer.

mod
Specifies the number of the modification of the release denoted by
release. mod must be an integer.

CREATE FUNCTION MAPPING

658 SQL Reference

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, ‘8i’); or it can
be the concatenated values of version, release, and, if applicable, mod
(for example, ‘8.0.3’).

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to
interact with data sources of the type and version denoted by server-type
and server-version.

OPTIONS
Indicates what function mapping options are to be enabled. Refer to
“Function Mapping Options” on page 1248 for descriptions of
function-option-names and their settings.

ADD
Enables one or more function mapping options.

function-option-name
Names a function mapping option that applies either to the function
mapping or to the data source function included in the mapping.

string-constant
Specifies the setting for function-option-name as a character string
constant.

WITH INFIX
Specifies that the data source function be generated in infix format.

Notes
v A federated database function or function template can map to a data

source function if:
– The federated database function or template has the same number of

input parameters as the data source function.
– The data types that are defined for the federated function or template are

compatible with the corresponding data types that are defined for the
data source function.

v If a distributed request references a DB2 function that maps to a data
source function, the optimizer develops strategies for invoking either
function when the request is processed. The DB2 function is invoked if
doing so requires less overhead than invoking the data source function.
Otherwise, if invoking the DB2 function requires more overhead, then the
data source function is invoked.

v If a distributed request references a DB2 function template that maps to a
data source function, only the data source function can be invoked when
the request is processed. The template cannot be invoked because it has no
executable code.

CREATE FUNCTION MAPPING

Chapter 6. SQL Statements 659

v Default function mappings can be rendered inoperable by disabling them
(they cannot be dropped). To disable a default function mapping, code the
CREATE FUNCTION MAPPING statement so that it specifies the name of
the DB2 function within the mapping and sets the DISABLE option to ‘Y’.

v Functions in the SYSIBM schema do not have a specific name. To override
the default function mapping for a function in the SYSIBM schema, specify
function-name with qualifier SYSIBM and function name (such as LENGTH).

v A CREATE FUNCTION MAPPING statement within a given unit of work
(UOW) cannot be processed under either of the following conditions:
– The statement references a single data source, and the UOW already

includes a SELECT statement that references a nickname for a table or
view within this data source.

– The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes a
SELECT statement that references a nickname for a table or view within
one of these data sources.

Examples
Example 1: Map a function template to a UDF that all Oracle data sources can
access. The template is called STATS and belongs to a schema called NOVA.
The Oracle UDF is called STATISTICS and belongs to a schema called STAR.

CREATE FUNCTION MAPPING MY_ORACLE_FUN1
FOR NOVA.STATS (DOUBLE, DOUBLE)
SERVER TYPE ORACLE
OPTIONS (REMOTE_NAME 'STAR.STATISTICS')

Example 2: Map a function template called BONUS to a UDF, also called
BONUS, that is used at an Oracle data source called ORACLE1.

CREATE FUNCTION MAPPING MY_ORACLE_FUN2
FOR BONUS()
SERVER ORACLE1
OPTIONS (REMOTE_NAME 'BONUS')

Example 3: Assume that there is a default function mapping between the
WEEK system function that is defined to the federated database and a similar
function that is defined to Oracle data sources. When a query that requests
Oracle data and that references WEEK is processed, either WEEK or its Oracle
counterpart will be invoked, depending on which one is estimated by the
optimizer to require less overhead. The DBA wants to find out how
performance would be affected if only WEEK were invoked for such queries.
To ensure that WEEK is invoked each time, the DBA must disable the
mapping.

CREATE FUNCTION MAPPING
FOR SYSFUN.WEEK(INT)
TYPE ORACLE
OPTIONS (DISABLE 'Y')

CREATE FUNCTION MAPPING

660 SQL Reference

Example 4: Map the local function UCASE(CHAR) to a UDF that’s used at an
Oracle data source called ORACLE2. Include the estimated number of
instructions per invocation of the Oracle UDF.

CREATE FUNCTION MAPPING MY_ORACLE_FUN4
FOR SYSFUN.UCASE(CHAR)
SERVER ORACLE2
OPTIONS

(REMOTE_NAME 'UPPERCASE',
INSTS_PER_INVOC '1000')

CREATE FUNCTION MAPPING

Chapter 6. SQL Statements 661

CREATE INDEX
The CREATE INDEX statement is used to create:
v An index on a DB2 table
v An index specification: metadata that indicates to the optimizer that a data

source table has an index

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority.
v One of:

– CONTROL privilege on the table
– INDEX privilege on the table

and one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist
– CREATEIN privilege on the schema, if the schema name of the index

refers to an existing schema.

Syntax

�� CREATE
UNIQUE

INDEX index-name �

� �

,
(1) ASC

ON table-name (column-name)
(2) DESC

nickname

�

�
SPECIFICATION ONLY

�

*
,

(3)
INCLUDE (column-name)

�

CREATE INDEX

662 SQL Reference

�

�

* *
CLUSTER
EXTEND USING index-extension-name

,

(constant-expression)

�

�
PCTFREE 10

*
PCTFREE integer MINPCTUSED integer

* �

�
DISALLOW REVERSE SCANS

*
ALLOW REVERSE SCANS

��

Notes:

1 In a federated system, the table-name must identify a table in the
federated database. It cannot identify a data source table.

2 If nickname is specified, the CREATE INDEX statement will create an
index specification. INCLUDE, CLUSTER, PCTFREE, MINPCTUSED,
DISALLOW REVERSE SCANS, and ALLOW REVERSE SCANS cannot
be specified.

3 The INCLUDE clause may only be specified if UNIQUE is specified.

Description

UNIQUE
If ON table-name is specified, UNIQUE prevents the table from containing
two or more rows with the same value of the index key. The uniqueness
is enforced at the end of the SQL statement that updates rows or inserts
new rows. For details refer to “Appendix J. Interaction of Triggers and
Constraints” on page 1287.

The uniqueness is also checked during the execution of the CREATE
INDEX statement. If the table already contains rows with duplicate key
values, the index is not created.

When UNIQUE is used, null values are treated as any other values. For
example, if the key is a single column that may contain null values, that
column may contain no more than one null value.

If the UNIQUE option is specified and the table has a partitioning key, the
columns in the index key must be a superset of the partitioning key. That
is, the columns specified for a unique index key must include all the
columns of the partitioning key (SQLSTATE 42997).

CREATE INDEX

Chapter 6. SQL Statements 663

If ON nickname is specified, UNIQUE should be specified only if the data
for the index key contains unique values for every row of the data source
table. The uniqueness will not be checked.

The table-name cannot be a declared temporary table (SQLSTATE 42995).

INDEX index-name
Names the index or index specification. The name, including the implicit
or explicit qualifier, must not identify an index or index specification that
is described in the catalog. The qualifier must not be SYSIBM, SYSCAT,
SYSFUN, or SYSSTAT (SQLSTATE 42939)

ON table-name or nickname
The table-name names a table on which an index is to be created. The table
must be a base table (not a view) or a summary table described in the
catalog. It must not name a catalog table (SQLSTATE 42832), or a declared
temporary table (SQLSTATE 42995). If UNIQUE is specified and table-name
is a typed table, it must not be a subtable (SQLSTATE 429B3). If UNIQUE
is specified, the table-name cannot be a summary table (SQLSTATE 42809).

nickname is the nickname on which an index specification is to be created.
The nickname references either a data source table whose index is
described by the index specification, or a data source view that is based
on such a table. The nickname must be listed in the catalog.

column-name
For an index, column-name identifies a column that is to be part of the
index key. For an index specification, column-name is the name by which
the federated server references a column of a data source table.

Each column-name must be an unqualified name that identifies a column
of the table. 16 columns or less may be specified. If table-name is a typed
table, 15 columns or less may be specified. If table-name is a subtable, at
least one column-name must be introduced in the subtable, that is, not
inherited from a supertable (SQLSTATE 428DS). No column-name may be
repeated (SQLSTATE 42711).

The sum of the stored lengths of the specified columns must not be
greater than 1024. If table-name is a typed table, the index key length limit
is further reduced by 4 bytes.

Note that this length can be reduced by system overhead which varies
according to the data type of the column and whether it is nullable. See
“Byte Counts” on page 757 for more information on overhead affecting
this limit.

The length of any individual column must not be greater than 255 bytes.
No LOB column, DATALINK column, or distinct type column based on a
LOB or DATALINK may be used as part of an index, even if the length
attribute of the column is small enough to fit within the 255 byte limit

CREATE INDEX

664 SQL Reference

(SQLSTATE 42962). A structured type column can only be specified if the
EXTEND USING clause is also specified (SQLSTATE 42962). If the
EXTEND USING clause is specified, only one column can be specified and
the type of the column must be a structured type or a distinct type that is
not based on a LOB, DATALINK, LONG VARCHAR, or LONG
VARGRAPHIC (SQLSTATE 42997).

ASC
Specifies that index entries are to be kept in ascending order of the
column values; this is the default setting. ASC cannot be specified for
indexes that are defined with EXTEND USING (SQLSTATE 42601).

DESC
Specifies that index entries are to be kept in descending order of the
column values. DESC cannot be specified for indexes that are defined
with EXTEND USING (SQLSTATE 42601).

SPECIFICATION ONLY
Indicates that this statement will be used to create an index specification
that applies to the data source table referenced by nickname.
SPECIFICATION ONLY must be specified if nickname is specified
(SQLSTATE 42601). It cannot be specified if table-name is specified
(SQLSTATE 42601).

INCLUDE
This keyword introduces a clause that specifies additional columns to be
appended to the set of index key columns. Any columns included with
this clause are not used to enforce uniqueness. These included columns
may improve the performance of some queries through index only access.
The columns must be distinct from the columns used to enforce
uniqueness (SQLSTATE 42711). The limits for the number of columns and
sum of the length attributes apply to all of the columns in the unique key
and in the index.

column-name
Identifies a column that is included in the index but not part of the
unique index key. The same rules apply as defined for columns of the
unique index key. The keywords ASC or DESC may be specified
following the column-name but have no effect on the order.

INCLUDE cannot be specified for indexes that are defined with EXTEND
USING, or if nickname is specified (SQLSTATE 42601).

CLUSTER
Specifies that the index is the clustering index of the table. The cluster
factor of a clustering index is maintained or improved dynamically as
data is inserted into the associated table, by attempting to insert new rows
physically close to the rows for which the key values of this index are in
the same range. Only one clustering index may exist for a table so

CREATE INDEX

Chapter 6. SQL Statements 665

CLUSTER may not be specified if it was used in the definition of any
existing index on the table (SQLSTATE 55012). A clustering index may not
be created on a table that is defined to use append mode (SQLSTATE
428D8).

CLUSTER is disallowed if nickname is specified (42601).

EXTEND USING index-extension-name
Names the index-extension used to manage this index. If this clause is
specified, then there must be only one column-name specified and that
column must be a structured type or a distinct type (SQLSTATE 42997).
The index-extension-name must name an index extension described in the
catalog (SQLSTATE 42704). For a distinct type, the column must exactly
match the type of the corresponding source key parameter in the index
extension. For a structured type column, the type of the corresponding
source key parameter must be the same type or a supertype of the column
type (SQLSTATE 428E0).

constant-expression
Identifies values for any required arguments for the index extension.
Each expression must be a constant value with a data type that
exactly matches the defined data type of the corresponding index
extension parameters, including length or precision, and scale
(SQLSTATE 428E0).

PCTFREE integer
Specifies what percentage of each index page to leave as free space when
building the index. The first entry in a page is added without restriction.
When additional entries are placed in an index page at least integer
percent of free space is left on each page. The value of integer can range
from 0 to 99. However, if a value greater than 10 is specified, only 10
percent free space will be left in non-leaf pages. The default is 10.

PCTFREE is disallowed if nickname is specified (SQLSTATE 42601).

MINPCTUSED integer
Indicates whether indexes are reorganized online and the threshold for the
minimum percentage of space used on an index leaf page If after a key is
deleted from an index leaf page, the percentage of space used on the page
is at or below integer percentage, an attempt is made to merge the
remaining keys on this page with those of a neighboring page. If there is
sufficient space on one of these pages, the merge is performed and one of
the pages is deleted. The value of integer can be from 0 to 99. However, a
value of 50 or below is recommended for performance reasons.

MINPCTUSED is disallowed if nickname is specified (SQLSTATE 42601).

DISALLOW REVERSE SCANS
Specifies that an index only supports forward scans or scanning of the
index in the order defined at INDEX CREATE time. This is the default.

CREATE INDEX

666 SQL Reference

DISALLOW REVERSE SCANS is disallowed if nickname is specified
(SQLSTATE 42601).

ALLOW REVERSE SCANS
Specifies that an index can support both forward and reverse scans; that
is, in the order defined at INDEX CREATE time and in the opposite (or
reverse) order.

ALLOW REVERSE SCANS is disallowed if nickname is specified
(SQLSTATE 42601).

Rules
v The CREATE INDEX statement will fail (SQLSTATE 01550) if attempting to

create an index that matches an existing index. Two index descriptions are
considered duplicates if:
– the set of columns (both key and include columns) and their order in the

index is the same as that of an existing index AND
– the ordering attributes are the same AND
– both the previously existing index and the one being created are

non-unique OR the previously existing index is unique AND
– if both the previously existing index and the one being created are

unique, the key columns of the index being created are the same or a
superset of key columns of the previously existing index.

Notes
v If the named table already contains data, CREATE INDEX creates the index

entries for it. If the table does not yet contain data, CREATE INDEX creates
a description of the index; the index entries are created when data is
inserted into the table.

v Once the index is created and data is loaded into the table, it is advisable to
issue the RUNSTATS command. (See Command Reference for information
about RUNSTATS.) The RUNSTATS command updates statistics collected
on the database tables, columns, and indexes. These statistics are used to
determine the optimal access path to the tables. By issuing the RUNSTATS
command, the database manager can determine the characteristics of the
new index.

v Creating an index with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

v The optimizer can recommend indexes prior to creating the actual index.
Refer to “SET CURRENT EXPLAIN MODE” on page 1006 for more details.

v If an index specification is being defined for a data source table that has an
index, the name of the index specification does not have to match the name
of the index.

CREATE INDEX

Chapter 6. SQL Statements 667

v The optimizer uses index specifications to improve access to the data source
tables that the specifications apply to.

v For more information about index specifications, see “Index Specifications”
on page 49.

Examples
Example 1: Create an index named UNIQUE_NAM on the PROJECT table.
The purpose of the index is to ensure that there are not two entries in the
table with the same value for project name (PROJNAME). The index entries
are to be in ascending order.

CREATE UNIQUE INDEX UNIQUE_NAM
ON PROJECT(PROJNAME)

Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table.
Arrange the index entries in ascending order by job title (JOB) within each
department (WORKDEPT).

CREATE INDEX JOB_BY_DPT
ON EMPLOYEE (WORKDEPT, JOB)

Example 3: The nickname EMPLOYEE references a data source table called
CURRENT_EMP. After this nickname was created, an index was defined on
CURRENT_EMP. The columns chosen for the index key were WORKDEBT
and JOB. Create an index specification that describes this index. Through this
specification, the optimizer will know that the index exists and what its key
is. With this information, the optimizer can improve its strategy to access the
table.

CREATE UNIQUE INDEX JOB_BY_DEPT
ON EMPLOYEE (WORKDEPT, JOB)
SPECIFICATION ONLY

Example 4: Create an extended index type named SPATIAL_INDEX on a
structured type column location. The description in index extension
GRID_EXTENSION is used to maintain SPATIAL_INDEX. The literal is given
to GRID_EXTENSION to create the index grid size. For a definition of index
extensions, please see “CREATE INDEX EXTENSION” on page 669.

CREATE INDEX SPATIAL_INDEX ON CUSTOMER (LOCATION)
EXTEND USING (GRID_EXTENSION (x'000100100010001000400010'))

CREATE INDEX

668 SQL Reference

CREATE INDEX EXTENSION
The CREATE INDEX EXTENSION statement creates an extension object for
use with indexes on tables that have structured type or distinct type columns.

Invocation
This statement can be embedded in an application program or issued through
dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database (if the schema name of the

index extension does not refer to an existing schema)
v CREATEIN privilege on the schema (if the schema name of the index

extension refers to an existing schema)

Syntax

�� CREATE INDEX EXTENSION index-extension-name �

�

�

,

(parameter-name1 data-type1)

�

� index-maintenance index-search ��

index-maintenance:

FROM SOURCE KEY (parameter-name2 data-type2) �

� GENERATE KEY USING table-function-invocation

index-search:

�

,

WITH TARGET KEY (parameter-name3 data-type3) �

CREATE INDEX EXTENSION

Chapter 6. SQL Statements 669

� �

,

SEARCH METHODS search-method-definition

search-method-definition:

�

,

WHEN method-name (parameter-name4 data-type4) �

� RANGE THROUGH range-producing-function-invocation �

�
FILTER USING index-filtering-function-invocation

case-expression

Description

index-extension-name
Names the index extension. The name, including the implicit or explicit
qualifier, must not identify an index extension described in the catalog. If
a two-part index-extension-name is specified, the schema name cannot begin
with ″SYS″; otherwise, an error (SQLSTATE 42939) is returned.

parameter-name1
Identifies a parameter that is passed to the index extension at
CREATE INDEX time to define the actual behavior of this index
extension. The parameter that is passed to the index extension is
called an instance parameter, because that value defines a new instance
of an index extension.

parameter-name1 must be unique within the definition of the index
extension. No more than 90 parameters are allowed. If this limit is
exceeded, an error (SQLSTATE 54023) is returned.

data-type1
Specifies the data type of each parameter. One entry in the list must
be specified for each parameter that the index extension will expect to
receive. The only SQL data types that may be specified are those that
can be used as constants, such as VARCHAR, INTEGER, DECIMAL,
DOUBLE, or VARGRAPHIC (SQLSTATE 429B5). See “Constants” on
page 115 for more information about constants. The parameter value
that is received by the index extension at CREATE INDEX must match
data-type1 exactly, including length, precision and scale (SQLSTATE
428E0).

CREATE INDEX EXTENSION

670 SQL Reference

index-maintenance
Specifies how the index keys of a structured or distinct type column are
maintained. Index maintenance is the process of transforming the source
column to a target key. The transformation process is defined using a
table function that has previously been defined in the database.

FROM SOURCE KEY (parameter-name2 data-type2)
Specifies a structured data type or distinct type for the source key
column that is supported by this index extension.

parameter-name2
Identifies the parameter that is associated with the source key
column. A source key column is the index key column (defined in
the CREATE INDEX statement) with the same data type as
data-type2.

data-type2
Specifies the data type for parameter-name2. data-type2 must be a
user-defined structured type or a distinct type that is not sourced
on LOB, DATALINK, LONG VARCHAR, or LONG
VARGRAPHIC (SQLSTATE 42997). When the index extension is
associated with the index at CREATE INDEX time, the data type
of the index key column must:
v exactly match data-type2 if it is a distinct type; or
v be the same type or a subtype of data-type2 if it is a structured

type

Otherwise, an error is returned (SQLSTATE 428E0).

GENERATE KEY USING table-function-invocation
Specifies how the index key is generated using a user-defined table
function. Multiple index entries may be generated for a single source
key data value. An index entry cannot be duplicated from a single
source key data value (SQLSTATE 22526). The function can use
parameter-name1, parameter-name2, or a constant as arguments. If the
data type of parameter-name2 is a structured data type, only the
observer methods of that structured type can be used in its arguments
(SQLSTATE 428E3). The output of the GENERATE KEY function must
be specified in the TARGET KEY specification. The output of the
function can also be used as input for the index filtering function
specified on the FILTER USING clause.

The function used in table-function-invocation must:
1. Resolve to a table function (SQLSTATE 428E4)
2. Not be defined with LANGUAGE SQL (SQLSTATE 428E4)
3. Not be defined with NOT DETERMINISTIC (SQLSTATE 428E4) or

EXTERNAL ACTION (SQLSTATE 428E4)

CREATE INDEX EXTENSION

Chapter 6. SQL Statements 671

4. Not have a structured data type, LOB, DATALINK, LONG
VARCHAR, or LONG VARGRAPHIC (SQLSTATE 428E3) in the
data type of the parameters, with the exception of system
generated observer methods.

5. Not include a subquery (SQLSTATE 428E3).
6. Return columns with data types that follow the restrictions for

data types of columns of an index defined without the EXTEND
USING clause.

If an argument invokes another operation or routine, it must be an
observer method (SQLSTATE 428E3).

index-search
Specifies how searching is performed by providing a mapping of the
search arguments to search ranges.

WITH TARGET KEY
Specifies the target key parameters that are the output of the key
generation function specified on the GENERATE KEY USING clause.

parameter-name3
Identifies the parameter associated with a given target key.
parameter-name3 corresponds to the columns of the RETURNS table as
specified in the table function of the GENERATE KEY USING clause.
The number of parameters specified must match the number of
columns returned by that table function (SQLSTATE 428E2).

data-type3
Specifies the data type for each corresponding parameter-name3.
data-type3 must exactly match the data type of each corresponding
output column of the RETURNS table, as specified in the table
function of the GENERATE KEY USING clause (SQLSTATE 428E2),
including the length, precision, and type.

SEARCH METHODS
Introduces the search methods that are defined for the index.

search-method-definition
Specifies the method details of the index search. It consists of a method
name, the search arguments, a range producing function, and an optional
index filter function.

WHEN method-name
The name of a search method. This is an SQL identifier that relates to
the method name specified in the index exploitation rule (found in the
PREDICATES clause of a user-defined function). A search-method-name
can be referenced by only one WHEN clause in the search method
definition (SQLSTATE 42713).

CREATE INDEX EXTENSION

672 SQL Reference

parameter-name4
Identifies the parameter of a search argument. These names are for
use in the RANGE THROUGH and FILTER USING clauses.

data-type4
The data type associated with a search parameter.

RANGE THROUGH range-producing-function-invocation
Specifies an external table function that produces search ranges. This
function uses parameter-name1, parameter-name4, or a constant as
arguments and returns a set of search ranges.

The table function used in range-producing-function-invocation must:
1. Resolve to a table function (SQLSTATE 428E4)
2. Not include a subquery (SQLSTATE 428E3) or SQL function

(SQLSTATE 428E4) in its arguments
3. Not be defined with LANGUAGE SQL (SQLSTATE 428E4)
4. Not be defined with NOT DETERMINISTIC or EXTERNAL

ACTION (SQLSTATE 428E4)
5. The number and types of this function’s results must relate to the

results of the table function specified in the GENERATE KEY
USING clause as follows (SQLSTATE 428E1):
v Return up to twice as many columns as returned by the key

transformation function
v Have an even number of columns, in which the first half of the

return columns define the start of the range (start key values),
and the second half of the return columns define the end of the
range (stop key values)

v Have each start key column with the same type as the
corresponding stop key column

v Have the type of each start key column the same as the
corresponding key transformation function column.

More precisely, let a1:t1, ..., an:tn be the function result columns and
data types of the key transformation function. The function result
columns of the range-producing-function-invocation must be b1:t1, ...,
bm:tm, c1:t1, ..., cm:tm, where m <= n and the "b" columns are the start
key columns and the "c" columns are the stop key columns.

When the range-producing-function-invocation returns a null value as the
start or stop key value, the semantics are undefined.

FILTER USING
Allows specification of an external function or a case expression to be
used for filtering index entries that were returned after applying the
range-producing function.

CREATE INDEX EXTENSION

Chapter 6. SQL Statements 673

index-filtering-function-invocation
Specifies an external function to be used for filtering index entries.
This function uses the parameter-name1, parameter-name3,
parameter-name4, or a constant as arguments (SQLSTATE 42703) and
returns an integer (SQLSTATE 428E4). If the value returned is 1, the
row corresponding to the index entry is retrieved from the table.
Otherwise, the index entry is not considered for further processing.

If not specified, index filtering is not performed.

The function used in the index-filtering-function-invocation must:
1. Not be defined with LANGUAGE SQL (SQLSTATE 429B4)
2. Not be defined with NOT DETERMINISTIC or EXTERNAL

ACTION (SQLSTATE 42845)
3. Not have a structured data type in the data type of any of the

parameters (SQLSTATE 428E3).
4. Not include a subquery (SQLSTATE 428E3)

If an argument invokes another function or method, these four rules
are also enforced for this nested function or method. However, system
generated observer methods are allowed as arguments to the filter
function (or any function or method used as an argument), as long as
the argument results in a built-in data type.

case-expression
Specifies a case expression for filtering index entries. Either
parameter-name1, parameter-name3, parameter-name4, or a constant
(SQLSTATE 42703) can be used in the searched-when-clause and
simple-when-clause. An external function with the rules specified in
FILTER USING index-filtering-function-invocation may be used in
result-expression. Any function referenced in the case-expression must
also conform to the four rules listed under index-filtering-function-
invocation. In addition, subqueries cannot be used anywhere else in
the case-expression (SQLSTATE 428E4). The case expression must return
an integer (SQLSTATE 428E4). A return value of 1 in the
result-expression means the index entry is kept, otherwise the index
entry is discarded.

Notes
v Creating an index extension with a schema name that does not already exist

will result in the implicit creation of that schema, provided the
authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is
granted to PUBLIC.

CREATE INDEX EXTENSION

674 SQL Reference

Examples
Example 1: The following creates an index extension called grid_extension that
uses a structured type SHAPE column in a table function called gridEntry to
generate seven index target keys. This index extension also provides two
index search methods to produce search ranges when given a search
argument.

CREATE INDEX EXTENSION GRID_EXTENSION (LEVELS VARCHAR(20) FOR BIT DATA)
FROM SOURCE KEY (SHAPECOL SHAPE)
GENERATE KEY USING GRIDENTRY(SHAPECOL..MBR..XMIN,

SHAPECOL..MBR..YMIN,
SHAPECOL..MBR..XMAX,
SHAPECOL..MBR..YMAX,
LEVELS)

WITH TARGET KEY (LEVEL INT, GX INT, GY INT,
XMIN INT, YMIN INT, XMAX INT, YMAX INT)

SEARCH METHODS
WHEN SEARCHFIRSTBYSECOND (SEARCHARG SHAPE)
RANGE THROUGH GRIDRANGE(SEARCHARG..MBR..XMIN,

SEARCHARG..MBR..YMIN,
SEARCHARG..MBR..XMAX,
SEARCHARG..MBR..YMAX,
LEVELS)

FILTER USING
CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR SEARCHARG..MBR..YMAX < YMIN) THEN 0
ELSE CHECKDUPLICATE(LEVEL, GX, GY,

XMIN, YMIN, XMAX, YMAX,
SEARCHARG..MBR..XMIN,
SEARCHARG..MBR..YMIN,
SEARCHARG..MBR..XMAX,
SEARCHARG..MBR..YMAX,
LEVELS)

END
WHEN SEARCHSECONDBYFIRST (SEARCHARG SHAPE)
RANGE THROUGH GRIDRANGE(SEARCHARG..MBR..XMIN,

SEARCHARG..MBR..YMIN,
SEARCHARG..MBR..XMAX,
SEARCHARG..MBR..YMAX,
LEVELS)

FILTER USING
CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR SEARCHARG..MBR..YMAX < YMIN) THEN 0
ELSE MBROVERLAP(XMIN, YMIN, XMAX, YMAX,

SEARCHARG..MBR..XMIN,
SEARCHARG..MBR..YMIN,
SEARCHARG..MBR..XMAX,
SEARCHARG..MBR..YMAX)

END

CREATE INDEX EXTENSION

Chapter 6. SQL Statements 675

CREATE METHOD
This statement is used to associate a method body with a method specification
that is already part of the definition of a user-defined structured type.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v CREATEIN privilege on the schema of the structured type referred to in

CREATE METHOD
v The DEFINER of the structured type referred to in the CREATE METHOD

statement.

If the authorization ID of the statement does not have SYSADM or DBADM
authority, and the method identifies a table or view in the RETURN
statement, the privileges that the authorization ID of the statement holds
(without considering group privileges) must include SELECT WITH GRANT
OPTION for each identified table and view.

If the authorization ID has insufficient authority to perform the operation, an
error is raised (SQLSTATE 42502).

Syntax

�� CREATE METHOD method-name FOR type-name
method-signature

SPECIFIC METHOD specific-name

�

� * EXTERNAL * *
NAME ’string’ TRANSFORM GROUP group-name

identifier
RETURN scalar-expression

NULL

��

method-signature:

�

method-name ()
,

data-type1
parameter-name AS LOCATOR

�

CREATE METHOD

676 SQL Reference

�
RETURNS data-type2

AS LOCATOR
data-type3 CAST FROM data-type4

AS LOCATOR

Description

METHOD
Identifies an existing method specification that is associated with a
user-defined structured type. The method-specification can be identified
through one of the following means:

method-name
Names the method specification for which a method body is being
defined. The implicit schema is the schema of the subject type
(type-name). There must be only one method specification for type-name
that has this method-name (SQLSTATE 42725).

method-signature
Provides the method signature which uniquely identifies the method
to be defined. The method signature must match the method
specification that was provided on the CREATE TYPE or ALTER TYPE
statement (SQLSTATE 42883).

method-name
Names the method specification for which a method body is being
defined. The implicit schema is the schema of the subject type
(type-name).

parameter-name
Identifies the parameter name. If parameter names are
provided in the method signature, they must be exactly the
same as the corresponding parts of the matching method
specification. Parameter names are supported in this statement
solely for documentation purposes.

data-type1
Specifies the data type of each parameter.

AS LOCATOR
For the LOB types or distinct types which are based on a LOB
type, the AS LOCATOR clause can be added.

RETURNS
This clause identifies the output of the method. If a RETURNS
clause is provided in the method signature, it must be exactly the
same as the corresponding part of the matching method

CREATE METHOD

Chapter 6. SQL Statements 677

specification on CREATE TYPE. The RETURNS clause is
supported in this statement solely for documentation purposes.

data-type2
Specifies the data type of the output.

AS LOCATOR
For LOB types or distinct types which are based on LOB
types, the AS LOCATOR clause can be added. This
indicates that a LOB locator is to be returned by the
method instead of the actual value.

data-type3 CAST FROM data-type4
This form of the RETURNS clause is used to return a different
data type to the invoking statement from the data type that
was returned by the function code.

AS LOCATOR
For LOB types or distinct types which are based on LOB
types, the AS LOCATOR clause can be used to indicate
that a LOB locator is to be returned from the method
instead of the actual value.

FOR type-name
Names the type for which the specified method is to be associated.
The name must identify a type already described in the catalog.
(SQLSTATE 42704) In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names.

SPECIFIC METHOD specific-name
Identifies the particular method, using the specific name either specified
or defaulted to at CREATE TYPE time. The specific-name must identify a
method specification in the named or implicit schema; otherwise, an error
is raised (SQLSTATE 42704).

EXTERNAL
This clause indicates that the CREATE METHOD statement is being used
to register a method, based on code written in an external programming
language, and adhering to the documented linkage conventions and
interface. The matching method-specification in CREATE TYPE must
specify a LANGUAGE other than SQL. When the method is invoked, the
subject of the method is passed to the implementation as an implicit first
parameter.

If the NAME clause is not specified, ″NAME method-name″ is assumed.

CREATE METHOD

678 SQL Reference

NAME
This clause identifies the name of the user-written code which
implements the method being defined.

’string’
The ’string’ option is a string constant with a maximum of 254
characters. The format used for the string is dependent on the
LANGUAGE specified. See “CREATE FUNCTION (External
Scalar)” on page 590 for more information of the specific language
conventions.

identifier
This identifier specified is an SQL identifier. The SQL identifier is
used as the library-id in the string. Unless it is a delimited
identifier, the identifier is folded to upper case. If the identifier is
qualified with a schema name, the schema name portion is
ignored. This form of NAME can only be used with LANGUAGE
C (as defined in the method-specification on CREATE TYPE).

TRANSFORM GROUP group-name
Indicates the transform group that is used for user-defined structured type
transformations when invoking the method. A transform is required since
the method definition includes a user-defined structured type.

It is strongly recommended that a transform group name be specified; if
this clause is not specified, the default group-name used is
DB2_FUNCTION. If the specified (or default) group-name is not defined
for a referenced structured type, an error results (SQLSTATE 42741).
Likewise, if a required FROM SQL or TO SQL transform function is not
defined for the given group-name and structured type, an error results
(SQLSTATE 42744).

RETURN scalar-expression or NULL
The RETURN statement is an SQL control statement that specifies the
value returned by the method.

scalar-expression
An expression that specifies the body of the method when the
method-specification on CREATE TYPE specifies LANGUAGE SQL.
Parameter names can be referenced in the expression. The subject of
the method is passed to the method implementation in the form of an
implicit first parameter named SELF. The result data type of the
expression must be assignable (using store assignment rules) to the
data type defined in the RETURNS clause of the method-specification
on CREATE TYPE (SQLSTATE 42866).

The expression must comply with the following parts of the
method-specification:
v DETERMINISTIC or NOT DETERMINISTIC (SQLSTATE 428C2)

CREATE METHOD

Chapter 6. SQL Statements 679

v EXTERNAL ACTION or NO EXTERNAL ACTION (SQLSTATE
428C2)

v CONTAINS SQL or READS SQL DATA (SQLSTATE 42985)

NULL
Specifies that the function returns a null value. The null value is of
the data type defined in the RETURNS clause of the
method-specification created with the CREATE TYPE statement.

Rules
The method specification must be previously defined using the CREATE
TYPE or ALTER TYPE statement before CREATE METHOD can be used
(SQLSTATE 42723).

Examples
Example 1:

CREATE METHOD BONUS (RATE DOUBLE)
FOR EMP
RETURN SELF..SALARY * RATE

Example 2:
CREATE METHOD SAMEZIP (addr address_t)

RETURNS INTEGER
FOR address_t
RETURN

(CASE
WHEN (self..zip = addr..zip)

THEN 1
ELSE 0

END)

Example 3:
CREATE METHOD DISTANCE (address_t)

FOR address_t
EXTERNAL NAME 'addresslib!distance'
TRANSFORM GROUP func_group

CREATE METHOD

680 SQL Reference

CREATE NICKNAME
The CREATE NICKNAME statement creates a nickname for a data source
table or view.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the federated database, if the implicit or

explicit schema name of the nickname does not exist
v CREATEIN privilege on the schema, if the schema name of the nickname

exists

In addition, the user’s authorization ID at the data source must hold the
privilege to select from the data source catalog the metadata about the table
or view for which the nickname is being created.

Syntax

�� CREATE NICKNAME nickname FOR remote-object-name ��

Description

nickname
Names the federated server’s identifier for the table or view that is
referenced by remote-object-name. The nickname, including the implicit or
explicit qualifier, must not identify a table, view, alias, or nickname
described in the catalog. The schema name must not begin with SYS
(SQLSTATE 42939).

remote-object-name
Names a three-part identifier with this format:

data-source-name.remote-schema-name.remote-table-name

where:

data-source-name
Names the data source that contains the table or view for which the
nickname is being created. The data-source-name is the same name that
was assigned to the data source in the CREATE SERVER statement.

CREATE NICKNAME

Chapter 6. SQL Statements 681

remote-schema-name
Names the schema to which the table or view belongs.

remote-table-name
Names either of the following identifiers:
v The name or an alias of a DB2 family table or view
v The name of an Oracle table or view
v The table-name cannot be a declared temporary table (SQLSTATE

42995)

Notes
v The table or view that the nickname references must already exist at the

data source denoted by the first qualifier in remote-object-name.
v The federated server does not support those data source data types that

correspond to the following DB2 data types: LONG VARCHAR, LONG
VARGRAPHIC, DATALINK, large object (LOB) types, and user-defined
types. When a nickname is defined for a data source table or view, only
those columns in the table or view that have supported data types will be
defined to, and can be queried from, the federated database. When the
CREATE NICKNAME statement is run against a table or view that has
columns with unsupported data types, an error is issued.

v Because data types might be incompatible between data sources, the
federated server makes minor adjustments to store remote catalog data
locally as needed. Refer to the Application Development Guide for details.

v The maximum allowable length of DB2 index names is 18 characters. If a
nickname is being created for a table that has an index whose name exceeds
this length, the entire name is not cataloged. Rather, DB2 truncates it to 18
characters. If the string formed by these characters is not unique within the
schema to which the index belongs, DB2 attempts to make it unique by
replacing the last character with 0. If the result is still not unique, DB2
changes the last character to 1. DB2 repeats this process with numbers 2
through 9, and if necessary, with numbers 0 through 9 for the name’s
seventeenth character, sixteenth character, and so on, until a unique name is
generated. To illustrate: The index of a data source table is named
ABCDEFGHIJKLMNOPQRSTUVWXYZ. The names
ABCDEFGHIJKLMNOPQR and ABCDEFGHIJKLMNOPQ0 already exist in
the schema to which this index belongs. The new name is over 18
characters; therefore, DB2 truncates it to ABCDEFGHIJKLMNOPQR.
Because this name already exists in the schema, DB2 changes the truncated
version to ABCDEFGHIJKLMNOPQ0. Because this latter name exists, too,
DB2 changes the truncated version to ABCDEFGHIJKLMNOPQ1. This
name does not already exist in the schema, so DB2 now accepts it as a new
name.

v When a nickname is created for a table or view, DB2 stores the names of
the table’s or view’s columns in the catalog. If a name exceeds the

CREATE NICKNAME

682 SQL Reference

maximum allowable length for DB2 column names (30 characters), DB2
truncates the name to this length. If the truncated version is not unique
among the other names of the table’s or view’s columns, DB2 makes it
unique by following the procedure described in the preceding paragraph.

Examples
Example 1: Create a nickname for a view, DEPARTMENT, that is in a schema
called HEDGES. This view is stored in a DB2 Universal Database for OS/390
data source called OS390A.

CREATE NICKNAME DEPT FOR OS390A.HEDGES.DEPARTMENT

Example 2: Select all records from the view for which a nickname was created
in Example 1. The view must be referenced by its nickname. (It can be
referenced it by its own name only in pass-through sessions.)

SELECT * FROM OS390A.HEDGES.DEPARTMENT Invalid
SELECT * FROM DEPT Valid after nickname DEPT is created

CREATE NICKNAME

Chapter 6. SQL Statements 683

CREATE NODEGROUP
The CREATE NODEGROUP statement creates a new nodegroup within the
database and assigns partitions or nodes to the nodegroup, and records the
nodegroup definition in the catalog.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be prepared dynamically.
However, if the bind option DYNAMICRULES BIND applies, the statement
cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM or
authority.

Syntax

�� CREATE NODEGROUP nodegroup-name �

�

�

ON ALL NODES

,

ON NODES (node-number1)
NODE TO node-number2

��

Description

nodegroup-name
Names the nodegroup. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The nodegroup-name must not identify a
nodegroup that already exists in the catalog (SQLSTATE 42710). The
nodegroup-name must not begin with the characters ″SYS″ or ″IBM″
(SQLSTATE 42939).

ON ALL NODES
Specifies that the nodegroup is defined over all partitions defined to the
database (db2nodes.cfg file) at the time the nodegroup is created.

If a partition is added to the database system, the ALTER NODEGROUP
statement should be issued to include this new partition in a nodegroup
(including IBMDEFAULTGROUP). Furthermore, the REDISTRIBUTE
NODEGROUP command must be issued to move data to the partition.
Refer to the Administrative API Reference or the Command Reference for
more information.

CREATE NODEGROUP

684 SQL Reference

ON NODES
Specifies the specific partitions that are in the nodegroup. NODE is a
synonym for NODES.

node-number1
Specify a specific partition number. 72

TO node-number2
Specify a range of partition numbers. The value of node-number2 must
be greater than or equal to the value of node-number1 (SQLSTATE
428A9). All partitions between and including the specified partition
numbers are included in the nodegroup.

Rules
v Each partition or node specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729).
v Each node-number listed in the ON NODES clause must be appear at most

once (SQLSTATE 42728).
v A valid node-number is between 0 and 999 inclusive (SQLSTATE 42729).

Notes
v This statement creates a partitioning map for the nodegroup (Refer to “Data

Partitioning Across Multiple Partitions” on page 59 for more information) .
A partitioning map identifier (PMAP_ID) is generated for each partitioning
map. This information is recorded in the catalog and can be retrieved from
SYSCAT.NODEGROUPS and SYSCAT.PARTITIONMAPS. Each entry in the
partitioning map specifies the target partition on which all rows that are
hashed reside. For a single-partition nodegroup, the corresponding
partitioning map has only one entry. For a multiple partition nodegroup,
the corresponding partitioning map has 4 096 entries, where the partition
numbers are assigned to the map entries in a round-robin fashion, by
default.

Example
Assume that you have a partitioned database with six partitions defined as: 0,
1, 2, 5, 7, and 8.
v Assume that you want to create a nodegroup call MAXGROUP on all six

partitions. The statement is as follows:
CREATE NODEGROUP MAXGROUP
ON ALL NODES

v Assume that you want to create a nodegroup MEDGROUP on partitions 0,
1, 2, 5, 8. The statement is as follows:
CREATE NODEGROUP MEDGROUP
ON NODES (0 TO 2, 5, 8)

72. node-name of the form ’NODEnnnnn’ may be specified for compatibility with the previous version.

CREATE NODEGROUP

Chapter 6. SQL Statements 685

v Assume that you want to create a single-partition nodegroup MINGROUP
on partition (or node) 7. The statement is as follows:
CREATE NODEGROUP MINGROUP
ON NODE (7)

Note: The singular form of the keyword NODES is also accepted.

CREATE NODEGROUP

686 SQL Reference

CREATE PROCEDURE
This statement is used to register a stored procedure with an application
server.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include as
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the procedure does not exist
v CREATEIN privilege on the schema, if the schema name of the procedure

refers to an existing schema.

To create a not-fenced stored procedure, the privileges held by the
authorization ID of the statement must also include at least one of the
following:
v CREATE_NOT_FENCED authority on the database
v SYSADM or DBADM authority.

To create a fenced stored procedure, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an
error (SQLSTATE 42502) is raised.

Syntax

�� CREATE PROCEDURE �

�

�

procedure-name ()
,

IN
parameter-name data-type

OUT
INOUT

* �

CREATE PROCEDURE

Chapter 6. SQL Statements 687

�
SPECIFIC specific-name

*
DYNAMIC RESULT SETS 0 (1)

DYNAMIC RESULT SETS integer
* �

�
MODIFIES SQL DATA

(2)
NO SQL
CONTAINS SQL
READS SQL DATA

*
NOT DETERMINISTIC

DETERMINISTIC
* �

�

(3)
CALLED ON NULL INPUT

* �

� LANGUAGE C * external-procedure-options *
JAVA
COBOL
OLE

LANGUAGE SQL * SQL-procedure-body

��

external-procedure-options:

* EXTERNAL
NAME ’string’

identifier

*
FENCED

NOT FENCED
* �

� PARAMETER STYLE DB2DARI
(4)

DB2GENERAL
GENERAL
GENERAL WITH NULLS
DB2SQL
JAVA

*
PROGRAM TYPE SUB

MAIN

* �

�
NO DBINFO

DBINFO
*

SQL-procedure-body:

SQL-procedure-statement

CREATE PROCEDURE

688 SQL Reference

Notes:

1 RESULT SETS may be specified in place of DYNAMIC RESULT SETS.

2 NO SQL is not a valid choice for LANGUAGE SQL.

3 NULL CALL may be specified in place of CALLED ON NULL INPUT.

4 DB2GENRL may be specified in place of DB2GENERAL, SIMPLE CALL
may be specified in place of GENERAL and SIMPLE CALL WITH
NULLS may be specified in place of GENERAL WITH NULLS.

Description

procedure-name
Names the procedure being defined. It is a qualified or unqualified name
that designates a procedure. The unqualified form of procedure-name is an
SQL identifier (with a maximum length of 128). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period
and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the
number of parameters must not identify a procedure described in the
catalog (SQLSTATE 42723). The unqualified name, together with the
number of the parameters, while of course unique within its schema, need
not be unique across schemas.

The a two-part name is specified, the schema-name cannot begin with
“SYS”. Otherwise, an error (SQLSTATE 42939) is raised.

(IN | OUT | INOUT parameter-name data-type,...)
Identifies the parameters of the procedure, and specifies the mode, name
and data type of each parameter. One entry in the list must be specified
for each parameter that the procedure will expect.

It is possible to register a procedure that has no parameters. In this case,
the parentheses must still be coded, with no intervening data types. For
example,

CREATE PROCEDURE SUBWOOFER() ...

No two identically-named procedures within a schema are permitted to
have exactly the same number of parameters. Lengths, precisions and
scales are not considered in this type comparison. Therefore CHAR(8) and
CHAR(35) are considered to be the same type, as are DECIMAL(11,2) and
DECIMAL (4,3). There is some further bundling of types that causes them
to be treated as the same type for this purpose, such as DECIMAL and
NUMERIC. A duplicate signature raises an SQL error (SQLSTATE 42723).

CREATE PROCEDURE

Chapter 6. SQL Statements 689

For example, given the statements:
CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...
CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail because the number of parameters of the
procedure are the same even if the data types are not.

IN | OUT | INOUT
Specifies the mode of the parameter.
v IN - parameter is input only
v OUT - parameter is output only
v INOUT - parameter is both input and output

parameter-name
Specifies the name of the parameter.

data-type
Specifies the data type of the parameter.
v SQL data type specifications and abbreviations which may be

specified in the data-type definition of a CREATE TABLE statement
and have a correspondence in the language that is being used to
write the procedure may be specified. See the language-specific
sections of the Application Development Guide for details on the
mapping between the SQL data types and host language data types
with respect to stored procedures.

v User-defined data types are not supported (SQLSTATE 42601).

SPECIFIC specific-name
Provides a unique name for the instance of the procedure that is being
defined. This specific name can be used when dropping the procedure or
commenting on the procedure. It can never be used to invoke the
procedure. The unqualified form of specific-name is an SQL identifier (with
a maximum length of 18). The qualified form is a schema-name followed by
a period and an SQL identifier. The name, including the implicit or
explicit qualifier, must not identify another procedure instance that exists
at the application server; otherwise an error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of procedure-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmsshhn.

CREATE PROCEDURE

690 SQL Reference

DYNAMIC RESULT SETS integer
Indicates the estimated upper bound of returned result sets for the stored
procedure. Refer to “Returning Result Sets from Stored Procedures” in the
SQL Reference for more information.

The value RESULT SETS may be used as a synonym for DYNAMIC
RESULT SETS for backwards and family compatibility.

NO SQL, CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA
Indicates whether the stored procedure issues any SQL statements and, if
so, what type.

NO SQL
Indicates that the stored procedure cannot execute any SQL statements
(SQLSTATE 38001).

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data
can be executed by the stored procedure (SQLSTATE 38004 or 42985).
Statements that are not supported in any stored procedure return a
different error (SQLSTATE 38003 or 42985).

READS SQL DATA
Indicates that some SQL statements do not modify SQL data can be
included in the stored procedure (SQLSTATE 38002 or 42985).
Statements that are not supported in any stored procedure return a
different error (SQLSTATE 38003 or 42985).

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement
except statements that are not supported in stored procedures
(SQLSTATE 38003 or 42985).

The following table indicates whether or not an SQL statement (specified
in the first column) is allowed to execute in a stored procedure with the
specified SQL data access indication. If an executable SQL statement is
encountered in a stored procedure defined with NO SQL, SQLSTATE
38001 is returned. For other executions contexts, SQL statements that are
not supported in any context return SQLSTATE 38003. For other SQL
statements not allowed in a CONTAINS SQL context, SQLSTATE 38004 is
returned and in a READS SQL DATA context, SQLSTATE 38002 is
returned. During creation of an SQL procedure, a statement that does not
match the SQL data access indication will cause SQLSTATE 42895 to be
returned.

CREATE PROCEDURE

Chapter 6. SQL Statements 691

Table 21. SQL Statement and SQL Data Access Indication

SQL Statement NO SQL CONTAINS
SQL

READS SQL
DATA

MODIFIES
SQL DATA

ALTER... N N N Y

BEGIN DECLARE
SECTION

Y(1) Y Y Y

CALL N Y(4) Y(4) Y(4)

CLOSE CURSOR N N Y Y

COMMENT ON N N N Y

COMMIT N N N N

COMPOUND SQL N Y Y Y

CONNECT(2) N N N N

CREATE N N N Y

DECLARE CURSOR Y(1) Y Y Y

DECLARE GLOBAL
TEMPORARY TABLE

N Y Y Y

DELETE N N N Y

DESCRIBE N N Y Y

DISCONNECT(2) N N N N

DROP ... N N N Y

END DECLARE SECTION Y(1) Y Y Y

EXECUTE N Y(3) Y(3) Y

EXECUTE IMMEDIATE N Y(3) Y(3) Y

EXPLAIN N N N Y

FETCH N N Y Y

FREE LOCATOR N Y Y Y

FLUSH EVENT
MONITOR

N N N Y

GRANT ... N N N Y

INCLUDE Y(1) Y Y Y

INSERT N N N Y

LOCK TABLE N Y Y Y

OPEN CURSOR N N Y Y

PREPARE N Y Y Y

REFRESH TABLE N N N Y

CREATE PROCEDURE

692 SQL Reference

Table 21. SQL Statement and SQL Data Access Indication (continued)

SQL Statement NO SQL CONTAINS
SQL

READS SQL
DATA

MODIFIES
SQL DATA

RELEASE
CONNECTION(2)

N N N N

RELEASE SAVEPOINT N N N Y

RENAME TABLE N N N Y

REVOKE ... N N N Y

ROLLBACK N Y Y Y

ROLLBACK TO
SAVEPOINT

N N N Y

SAVEPOINT N N N Y

SELECT INTO N N Y Y

SET CONNECTION(2) N N N N

SET INTEGRITY N N N Y

SET special register N Y Y Y

UPDATE N N N Y

VALUES INTO N N Y Y

WHENEVER Y(1) Y Y Y

Notes:

1. Although the NO SQL option implies that no SQL statements can be
specified, non-executable statements are not restricted.

2. Connection management statements are not allowed in any stored
procedure execution contexts.

3. It depends on the statement being executed. The statement specified
for the EXECUTE statement must be a statement that is allowed in the
context of the particular SQL access level in effect. For example, if the
SQL access level in effect is READS SQL DATA, the statement must
not be an INSERT, UPDATE, or DELETE.

4. A CALL statement in a stored procedure can only refer to a stored
procedure written in the same programming language as the calling
stored procedure.

LANGUAGE
This mandatory clause is used to specify the language interface
convention to which the stored procedure body is written.

C This means the database manager will call the stored procedure as

CREATE PROCEDURE

Chapter 6. SQL Statements 693

if it were a C procedure. The stored procedure must conform to
the C language calling and linkage convention as defined by the
standard ANSI C prototype.

JAVA This means the database manager will call the stored procedure as
a method in a Java class.

COBOL
This means the database manager will call the procedure as if it
were a COBOL procedure.

OLE This means the database manager will call the stored procedure as
if it were a method exposed by an OLE automation object. The
stored-procedure must conform with the OLE automation data
types and invocation mechanism. Also, the OLE automation object
needs to be implemented as an in-process server (DLL). These
restrictions are outlined in the OLE Automation Programmer’s
Reference.

LANGUAGE OLE is only supported for stored procedures stored
in DB2 for Windows 32-bit operating systems.

SQL The specified SQL-procedure-body includes the statements which
define the processing of the stored procedure

EXTERNAL
This clause indicates that the CREATE PROCEDURE statement is being
used to register a new procedure based on code written in an external
programming language and adhering to the documented linkage
conventions and interface.

If NAME clause is not specified ″NAME procedure-name″ is assumed.

NAME ’string’
This clause identifies the name of the user-written code which
implements the procedure being defined.

The 'string' option is a string constant with a maximum of 254
characters. The format used for the string is dependent on the
LANGUAGE specified.
v For LANGUAGE C:

The string specified is the library name and procedure within the
library, which the database manager invokes to execute the stored
procedure being CREATEd. The library (and the procedure within
the library) do not need to exist when the CREATE PROCEDURE
statement is performed. However, when the procedure is called, the
library and procedure within the library must exist and be
accessible from the database server machine.

CREATE PROCEDURE

694 SQL Reference

�� ’ library_id ’
absolute_path_id ! proc_id

��

The name must be enclosed in single quotes. Extraneous blanks are
not permitted within the single quotes.

library_id
Identifies the library name containing the procedure. The
database manager will look for the library in the
.../sqllib/function/unfenced directory and the
.../sqllib/function directory (UNIX-based systems), or
...\instance_name\function\unfenced directory and the
...\instance_name\function directory (OS/2, Windows 32-bit
operating systems as specified by the DB2INSTPROF registry
variable), where the database manager will locate the
controlling sqllib directory which is being used to run the
database manager. For example, the controlling sqllib directory
in UNIX-based systems is /u/$DB2INSTANCE/sqllib.

If ’myproc’ were the library_id in a UNIX-based system it would
cause the database manager to look for the procedure in library
/u/production/sqllib/function/unfenced/myfunc and
/u/production/sqllib/function/myfunc, provided the database
manager is being run from /u/production.

For OS/2, Windows 32-bit operating systems, the database
manager will look in the LIBPATH or PATH if the library_id is
not found in the function directory, and will be run as fenced.

Stored procedures located in any of these directories do not use
any of the registered attributes.

absolute_path_id
Identifies the full path name of the procedure.

In a UNIX-based system, for example,
’/u/jchui/mylib/myproc’ would cause the database manager to
look in /u/jchui/mylib for the myproc procedure.

In OS/2, Windows 32-bit operating systems ’d:\mylib\myproc’
would cause the database manager to load the myproc.dll file
from the d:\mylib directory.

If an absolute path is specified, the procedure will run as
fenced, ignoring the FENCED or NOT FENCED attribute.

! proc_id
Identifies the entry point name of the procedure to be invoked.
The ! serves as a delimiter between the library id and the

CREATE PROCEDURE

Chapter 6. SQL Statements 695

procedure id. If ! proc_id is omitted, the database manager will
use the default entry point established when the library was
linked.

In a UNIX-based system, for example, ’mymod!proc8’ would
direct the database manager to look for the library
$inst_home_dir/sqllib/function/mymod and to use entry point
proc8 within that library.

In OS/2, Windows 32-bit operating systems ’mymod!proc8’
would direct the database manager to load the mymod.dll file
and call the proc8() procedure in the dynamic link library
(DLL).

If the string is not properly formed, an error (SQLSTATE 42878) is
raised.

The body of every stored procedure should be in a directory which
is mounted and available on every partition of the database.

v For LANGUAGE JAVA:
The string specified contains the optional jar file identifier, class
identifier and method identifier, which the database manager
invokes to execute the stored procedure being CREATEd. The class
identifier and method identifier do not need to exist when the
CREATE PROCEDURE statement is performed. If a jar_id is
specified, it must exist when the CREATE PROCEDURE statement
is performed. However, when the procedure is called, the class
identifier and the method identifier must exist and be accessible
from the database server machine, otherwise an error (SQLSTATE
42884) is raised.

�� ’
jar_id :

class_id . method_id ’
!

��

The name must be enclosed in single quotes. Extraneous blanks are
not permitted within the single quotes.

jar_id
Identifies the jar identifier given to the jar collection when it
was installed in the database. It can be either a simple identifier,
or a schema qualified identifier. Examples are ’myJar’ and
’mySchema.myJar’.

class_id
Identifies the class identifier of the Java object. If the class is
part of a package, the class identifier part must include the
complete package prefix, for example, ’myPacks.StoredProcs’.

CREATE PROCEDURE

696 SQL Reference

The Java virtual machine will look in directory
’../myPacks/StoredProcs/’ for the classes. In OS/2 and
Windows 32-bit operating systems, the Java virtual machine
will look in directory ’..\myPacks\StoredProcs\’.

method_id
Identifies the method name with the Java class to be invoked.

v For LANGUAGE OLE:
The string specified is the OLE programmatic identifier (progid) or
class identifier (clsid), and method identifier (method_id), which the
database manager invokes to execute the stored procedure being
created by the statement. The programmatic identifier or class
identifier, and the method identifier do not need to exist when the
CREATE PROCEDURE statement is executed. However, when the
procedure is used in the CALL statement, the method identifier
must exist and be accessible from the database server machine,
otherwise an error results (SQLSTATE 42724).

�� ’ progid ! method_id ’
clsid

��

The name must be enclosed in single quotes. Extraneous blanks are
not permitted within the single quotes.

progid
Identifies the programmatic identifier of the OLE object.

A progid is not interpreted by the database manager, but only
forwarded to the OLE automation controller at run time. The
specified OLE object must be creatable and support late binding
(also known as IDispatch-based binding). By convention,
progids have the following format:

<program_name>.<component_name>.<version>

Since it is only a convention, and not a rule, progids may in fact
have a different format.

clsid
Identifies the class identifier of the OLE object to create. It can
be used as an alternative for specifying a progid in the case that
an OLE object is not registered with a progid. The clsid has the
form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. A clsid is not interpreted
by the database manager but only forwarded to the OLE APIs
at run time.

CREATE PROCEDURE

Chapter 6. SQL Statements 697

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used
as the library-id in the string. Unless it is a delimited identifier, the
identifier is folded to upper case. If the identifier is qualified with a
schema name, the schema name portion is ignored. This form of
NAME can only be used with LANGUAGE C.

FENCED or NOT FENCED
This clause specifies whether or not the stored procedure is
considered “safe” to run in the database manager operating
environment’s process or address space (NOT FENCED), or not
(FENCED).

If a stored procedure is registered as FENCED, the database manager
insulates its internal resources (e.g. data buffers) from access by the
procedure. All procedures have the option of running as FENCED or
NOT FENCED. In general, a procedure running as FENCED will not
perform as well as a similar one running as NOT FENCED.

If the stored procedure is located in .../sqllib/function/unfenced
directory and the .../sqllib/function directory (UNIX-based systems),
or ...\instance_name\function\unfenced directory and the
...\instance_name\function directory (OS/2, Windows 32-bit operating
systems), then the FENCED or NOT FENCED registered attribute
(and every other registered attribute) will be ignored.

Note: Use of NOT FENCED for procedures not adequately checked
out can compromise the integrity of DB2. DB2 takes some
precautions against many of the common types of inadvertent
failures that might occur, but cannot guarantee complete
integrity when NOT FENCED stored procedures are used.

To change from FENCED to NOT FENCED, the procedure must be
re-registered (by first dropping it and then re-creating it). Either
SYSADM authority, DBADM authority or a special authority
(CREATE_NOT_FENCED) is required to register a stored procedures
as NOT FENCED. Only FENCED can be specified for a stored
procedure with LANGUAGE OLE.

PARAMETER STYLE
This clause is used to specify the conventions used for passing
parameters to and returning the value from stored procedures.

DB2DARI
This means that the stored procedure will use a parameter

CREATE PROCEDURE

698 SQL Reference

passing convention that conforms to C language calling and
linkage conventions. This can only be specified when
LANGUAGE C is used.

DB2GENERAL
This means that the stored procedure will use a parameter
passing convention that is defined for use with Java methods.
This can only be specified when LANGUAGE JAVA is used.

The value DB2GENRL may be used as a synonym for
DB2GENERAL.

GENERAL
This means that the stored procedure will use a parameter
passing mechanism where the stored procedure receives the
parameters specified on the CALL. The parameters are passed
directly as expected by the language, the SQLDA structure is
not used. This can only be specified when LANGUAGE C or
COBOL is used.

Null indicators are NOT directly passed to the program.

The value SIMPLE CALL may be used as a synonym for
GENERAL.

GENERAL WITH NULLS
In addition to the parameters on the CALL statement as
specified in GENERAL, another argument is passed to the
stored procedure. This additional argument contains a vector
of null indicators for each of the parameters on the CALL
statement. In C, this would be an array of short ints. This can
only be specified when LANGUAGE C or COBOL is used.

The value SIMPLE CALL WITH NULLS may be used as a
synonym for GENERAL WITH NULLLS.

DB2SQL
In addition to the parameters on the CALL statement, the
following arguments are passed to the stored procedure:
v a NULL indicator for each parameter on the CALL

statement
v the SQLSTATE to be returned to DB2
v the qualified name of the stored procedure
v the specific name of the stored procedure
v the SQL diagnostic string to be returned to DB2

This can only be specified when LANGUAGE C, COBOL or
OLE is used.

JAVA This means that the stored procedure will use a parameter

CREATE PROCEDURE

Chapter 6. SQL Statements 699

passing convention that conforms to the Java language and
SQLJ Routines specification. IN/OUT and OUT parameters
will be passed as single entry arrays to facilitate returning
values. This can only be specified when LANGUAGE JAVA is
used.

PARAMETER STYLE JAVA procedures do not support the
DBINFO or PROGRAM TYPE clauses.

Refer to Application Development Guide for details on passing
parameters.

PROGRAM TYPE
Specifies whether the stored procedure expects parameters in the style
of a main routine or a subroutine.

SUB
The stored procedure expects the parameters to be passed as
separate arguments.

MAIN
The stored procedure expects the parameters to be passed as an
argument counter, and a vector of arguments (argc, argv). The
name of the stored procedure to be invoked must also be ″main″.
Stored procedures of this type must still be built in the same
fashion as a shared library as opposed to a stand-alone executable.

The default for PROGRAM TYPE is SUB. PROGRAM TYPE MAIN is
only valid for LANGUAGE C or COBOL and PARAMETER STYLE
GENERAL, GENERAL WITH NULLS or DB2SQL.

DETERMINISTIC or NOT DETERMINISTIC
This clause specifies whether the procedure always returns the same
results for given argument values (DETERMINISTIC) or whether the
procedure depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC procedure must
always return the same result from successive invocations with
identical inputs.

This clause currently does not impact processing of the stored
procedure.

CALLED ON NULL INPUT
CALLED ON NULL INPUT always applies to stored procedures. This
means that regardless if any arguments are null, the stored procedure
is called. It can return a null value or a normal (non-null) value.
Responsibility for testing for null argument values lies with the stored
procedure.

CREATE PROCEDURE

700 SQL Reference

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for backwards and family compatibility.

NO DBINFO or DBINFO
Specifies whether specific information known by DB2 is passed to the
stored procedure when it is invoked as an additional invocation-time
argument (DBINFO) or not (NO DBINFO). NO DBINFO is the
default. DBINFO is not supported for LANGUAGE OLE (SQLSTATE
42613). It is also not supported for PARAMETER STYLE JAVA,
DB2GENERAL, or DB2DARI.

If DBINFO is specified, then a structure is passed to the stored
procedure which contains the following information:
v Data base name - the name of the currently connected database.
v Application ID - unique application ID which is established for each

connection to the database.
v Application Authorization ID - the application run-time

authorization ID.
v Code page - identifies the database code page.
v Schema name - not applicable to stored procedures.
v Table name - not applicable to stored procedures.
v Column name - not applicable to stored procedures.
v Database version/release - identifies the version, release and

modification level of the database server invoking the stored
procedure.

v Platform - contains the server’s platform type.
v Table function result column numbers - not applicable to stored

procedures.

Please see the Application Development Guide for detailed information
on the structure and how it is passed to the stored procedure.

SQL-procedure-body
Specifies the SQL statement that is the body of the SQL procedure.
Multiple SQL-procedure-statements may be specified within a compound
statement. See “Chapter 7. SQL Procedures” on page 1059 for more
information.

Notes
v For information on creating the programs for a stored procedure, see the

Application Development Guide.
v Creating a procedure with a schema name that does not already exist will

result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

CREATE PROCEDURE

Chapter 6. SQL Statements 701

v The settings of the special registers of the caller are inherited by the stored
procedure on invocation and restored upon return to the caller. Special
registers may be changed within a stored procedure, but these changes do
not effect the caller. This is not true for legacy stored procedures (those
defined with parameter style DB2DARI or stored in the default library),
where the changes made to special registers in a procedure become the
settings for the caller.

Examples
Example 1: Create the procedure definition for a stored procedure, written in
Java, that is passed a part number and returns the cost of the part and the
quantity that are currently available.

CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)

EXTERNAL NAME 'parts.onhand'
LANGUAGE JAVA PARAMETER STYLE JAVA

Example 2: Create the procedure definition for a stored procedure, written in
C, that is passed an assembly number and returns the number of parts that
make up the assembly, total part cost and a result set that lists the part
numbers, quantity and unit cost of each part.

CREATE PROCEDURE ASSEMBLY_PARTS (IN ASSEMBLY_NUM INTEGER,
OUT NUM_PARTS INTEGER,
OUT COST DOUBLE)

EXTERNAL NAME 'parts!assembly'
DYNAMIC RESULT SETS 1 NOT FENCED
LANGUAGE C PARAMETER STYLE GENERAL

Example 3: Create an SQL procedure that returns the median staff salary.
Return a result set containing the name, position, and salary of all employees
who earn more than the median salary.

CREATE PROCEDURE MEDIAN_RESULT_SET
(OUT medianSalary DOUBLE)

RESULT SETS 1
LANGUAGE SQL

BEGIN
DECLARE v_numRecords INT DEFAULT 1;
DECLARE v_counter INT DEFAULT 0;

DECLARE c1 CURSOR FOR
SELECT CAST(salary AS DOUBLE)

FROM staff
ORDER BY salary;

DECLARE c2 CURSOR WITH RETURN FOR
SELECT name, job, CAST(salary AS INTEGER)

FROM staff
WHERE salary > medianSalary
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND

CREATE PROCEDURE

702 SQL Reference

SET medianSalary = 6666;
SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords

FROM STAFF;
OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1)

DO FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;
OPEN c2;

END

CREATE PROCEDURE

Chapter 6. SQL Statements 703

CREATE SCHEMA
The CREATE SCHEMA statement defines a schema. It is also possible to
create some objects and grant privileges on objects within the statement.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
An authorization ID that holds SYSADM or DBADM authority can create a
schema with any valid schema-name or authorization-name.

An authorization ID that does not hold SYSADM or DBADM authority can
only create a schema with a schema-name or authorization-name that matches
the authorization ID of the statement.

If the statement includes any schema-SQL-statements the privileges held by the
authorization-name (if not specified, it defaults to the authorization ID of the
statement) must include at least one of the following:
v The privileges required to perform each of the schema-SQL-statements
v SYSADM or DBADM authority.

Syntax

�� CREATE SCHEMA schema-name
AUTHORIZATION authorization-name
schema-name AUTHORIZATION authorization-name

�

�

� schema-SQL-statement

��

Description

schema-name
Names the schema. The name must not identify a schema already
described in the catalog (SQLSTATE 42710). The name cannot begin with
″SYS″ (SQLSTATE 42939). The owner of the schema is the authorization
ID that issued the statement.

AUTHORIZATION authorization-name
Identifies the user that is the owner of the schema. The value

CREATE SCHEMA

704 SQL Reference

authorization-name is also used to name the schema. The authorization-name
must not identify a schema already described in the catalog (SQLSTATE
42710).

schema-name AUTHORIZATION authorization-name
Identifies a schema called schema-name with the user called
authorization-name as the schema owner. The schema-name must not
identify a schema-name for a schema already described in the catalog
(SQLSTATE 42710). The schema-name cannot begin with ″SYS″ (SQLSTATE
42939).

schema-SQL-statement
SQL statements that can be included as part of the CREATE SCHEMA
statement are:
v CREATE TABLE statement excluding typed tables and summary tables

(see “CREATE TABLE” on page 712)
v CREATE VIEW statement excluding typed views (see “CREATE VIEW”

on page 823)
v CREATE INDEX statement (see “CREATE INDEX” on page 662)
v COMMENT ON statement (see “COMMENT ON” on page 532)
v GRANT statement (see “GRANT (Table, View, or Nickname Privileges)”

on page 926).

Notes
v The owner of the schema is determined as follows:

– If an AUTHORIZATION clause is specified, the specified
authorization-name is the schema owner

– If an AUTHORIZATION clause is not specified, the authorization ID that
issued the CREATE SCHEMA statement is the schema owner.

v The schema owner is assumed to be a user (not a group).
v When the schema is explicitly created with the CREATE SCHEMA

statement, the schema owner is granted CREATEIN, DROPIN, and
ALTERIN privileges on the schema with the ability to grant these privileges
to other users.

v The definer of any object created as part of the CREATE SCHEMA
statement is the schema owner. The schema owner is also the grantor for
any privileges granted as part of the CREATE SCHEMA statement.

v Unqualified object names in any SQL statement within the CREATE
SCHEMA statement are implicitly qualified by the name of the created
schema.

v If the CREATE statement contains a qualified name for the object being
created, the schema name specified in the qualified name must be the same

CREATE SCHEMA

Chapter 6. SQL Statements 705

as the name of the schema being created (SQLSTATE 42875). Any other
objects referenced within the statements may be qualified with any valid
schema name.

v If the AUTHORIZATION clause is specified and DCE authentication is
used, the group membership of the authorization-name specified will not be
considered in evaluating the authorizations required to perform the
statements that follow the clause. If the authorization-name specified is
different than the authorization id creating the schema, an authorization
failure may result during the execution of the CREATE SCHEMA statement.

v It is recommended not to use ″SESSION″ as a schema name. Since declared
temporary tables must be qualified by ″SESSION″, it is possible to have an
application declare a temporary table with a name identical to that of a
persistent table. An SQL statement that references a table with the schema
name ″SESSION″ will resolve (at statement compile time) to the declared
temporary table rather than a persistent table with the same name. Since an
SQL statement is compiled at different times for static embedded and
dynamic embedded SQL statements, the results depend on when the
declared temporary table is defined. If persistent tables, views or aliases are
not defined with a schema name of ″SESSION″, these issues do not require
consideration.

Examples
Example 1: As a user with DBADM authority, create a schema called RICK
with the user RICK as the owner.

CREATE SCHEMA RICK AUTHORIZATION RICK

Example 2: Create a schema that has an inventory part table and an index
over the part number. Give authority on the table to user JONES.

CREATE SCHEMA INVENTRY

CREATE TABLE PART (PARTNO SMALLINT NOT NULL,
DESCR VARCHAR(24),
QUANTITY INTEGER)

CREATE INDEX PARTIND ON PART (PARTNO)

GRANT ALL ON PART TO JONES

Example 3: Create a schema called PERS with two tables that each have a
foreign key that references the other table. This is an example of a feature of
the CREATE SCHEMA statement that allows such a pair of tables to be
created without the use of the ALTER TABLE statement.

CREATE SCHEMA PERS

CREATE TABLE ORG (DEPTNUMB SMALLINT NOT NULL,
DEPTNAME VARCHAR(14),
MANAGER SMALLINT,

CREATE SCHEMA

706 SQL Reference

DIVISION VARCHAR(10),
LOCATION VARCHAR(13),
CONSTRAINT PKEYDNO

PRIMARY KEY (DEPTNUMB),
CONSTRAINT FKEYMGR

FOREIGN KEY (MANAGER)
REFERENCES STAFF (ID))

CREATE TABLE STAFF (ID SMALLINT NOT NULL,
NAME VARCHAR(9),
DEPT SMALLINT,
JOB VARCHAR(5),
YEARS SMALLINT,
SALARY DECIMAL(7,2),
COMM DECIMAL(7,2),
CONSTRAINT PKEYID

PRIMARY KEY (ID),
CONSTRAINT FKEYDNO

FOREIGN KEY (DEPT)
REFERENCES ORG (DEPTNUMB))

CREATE SCHEMA

Chapter 6. SQL Statements 707

CREATE SERVER
The CREATE SERVER statement73 defines a data source to a federated
database.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSADM or DBADM
authority on the federated database.

Syntax

�� CREATE SERVER server-name
TYPE server-type

�

�
VERSION server-version

WRAPPER wrapper-name �

�
AUTHORIZATION remote-authorization-name

PASSWORD password

�

� �

,
ADD

OPTIONS (server-option-name string-constant) ��

server-version:

version
. release

. mod
version-string-constant

73. In this statement, the term SERVER and the parameter names that start with server- refer only to data sources in a
federated system. They do not refer to the federated server in such a system, or to DRDA application servers. For
information about federated systems, see “DB2 Federated Systems” on page 41. For information about DRDA
application servers, see “Distributed Relational Database” on page 29.

CREATE SERVER

708 SQL Reference

Description

server-name
Names the data source that is being defined to the federated database.
The name must not identify a data source that is described in the catalog.
The server-name must not be the same as the name of any table space in
the federated database.

TYPE server-type
Specifies the type of the data source denoted by server-name. This option is
required with the DRDA, SQLNET, and NET8 wrappers. Refer to
“Appendix F. Federated Systems” on page 1245 for a list of supported data
source types.

VERSION
Specifies the version of the data source denoted by server-name.

version
Specifies the version number. version must be an integer.

release
Specifies the number of the release of the version denoted by version.
release must be an integer.

mod
Specifies the number of the modification of the release denoted by
release. mod must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, ‘8i’); or it can
be the concatenated values of version, release, and, if applicable, mod
(for example, ‘8.0.3’).

WRAPPER wrapper-name
Names the wrapper that the federated server uses to interact with data
sources of the type and version denoted by server-type and ‘server-version’.

AUTHORIZATION remote-authorization-name
Specifies the authorization ID under which any necessary actions are
performed at the data source when the CREATE SERVER statement is
processed. This ID must hold the authority (BINDADD or its equivalent)
that the necessary actions require.

PASSWORD password
Specifies the password associated with the authorization ID represented
by remote-authorization-name. If password is not specified, it will default to
the password for the ID under which the user is connected to the
federated database.

CREATE SERVER

Chapter 6. SQL Statements 709

OPTIONS
Indicates what server options are to be enabled. Refer to “Server Options”
on page 1249 for descriptions of server-option-names and their settings.

ADD
Enables one or more server options.

server-option-name
Names a server option that will be used to either configure or provide
information about the data source denoted by server-name.

string-constant
Specifies the setting for server-option-name as a character string
constant.

Notes
v If remote-authorization-name is not specified, the authorization ID for the

federated database will be used.
v The password should be specified in the case required by the data source; if

any letters in password must be in lowercase, enclose password in quotation
marks. If an identifier is specified but not password, the authentication type
of the data source denoted by server-name is assumed to be CLIENT.

v If the CREATE SERVER statement is used to define a DB2 family instance
as a data source, DB2 may need to bind certain packages to that instance. If
a bind is required, the remote-authorization-name in the statement must have
BIND authority. The time required for the bind to complete is dependent on
data source speed and network connection speed.

v If a server option is set to one value for a type of data source, and this
same option set to another value for an instance of this type, the second
value overrides the first for the instance. For example, suppose that
PASSWORD is set to ‘Y’ (yes, validate passwords at the data source) for a
federated system’s DB2 Universal Database for OS/390 data sources. Then
later, this option’s default (‘N’) is used for a specific DB2 Universal
Database for OS/390 data source named SIBYL. As a result, passwords will
be validated at all of the DB2 Universal Database for OS/390 data sources
except SIBYL.

Examples
Example 1: Define a DB2 for MVS/ESA 4.1 data source that is accessible
through a wrapper called DB2WRAP. Call the data source CRANDALL. In
addition, specify that:
v MURROW and DROWSSAP will be the authorization ID and password

under which packages are bound at CRANDALL when this statement is
processed.

v CRANDALL is defined to the DB2 RDBMS as an instance called MYNODE.

CREATE SERVER

710 SQL Reference

v When the federated server accesses CRANDALL, it will be connected to a
database called MYDB.

v The authorization IDs and passwords under which CRANDALL can be
accessed are to be sent to CRANDALL in uppercase.

v MYDB and the federated database use the same collating sequence.
CREATE SERVER CRANDALL

TYPE DB2/MVS
VERSION 4.1
WRAPPER DB2WRAP
AUTHORIZATION MURROW
PASSWORD DROWSSAP
OPTIONS

(NODE 'MYNODE',
DBNAME 'MYDB',
FOLD_ID 'U',
FOLD_PW 'U',
COLLATING_SEQUENCE 'Y')

Example 2: Define an Oracle 7.2 data source that’s accessible through a
wrapper called KLONDIKE. Call the data source CUSTOMERS. Specify that:
v CUSTOMERS is defined to the Oracle RDBMS as an instance called ABC.

Provide these statistics for the optimizer:
v The CPU for the federated server runs twice as fast as the CPU that

supports CUSTOMERS.
v The I/O devices at the federated server process data one and a half times

as fast as the I/O devices at CUSTOMERS.
CREATE SERVER CUSTOMERS

TYPE ORACLE
VERSION 7.2
WRAPPER KLONDIKE
OPTIONS

(NODE 'ABC',
CPU_RATIO '2.0',
IO_RATIO '1.5')

CREATE SERVER

Chapter 6. SQL Statements 711

CREATE TABLE
The CREATE TABLE statement defines a table. The definition must include its
name and the names and attributes of its columns. The definition may include
other attributes of the table, such as its primary key or check constraints.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v CREATETAB authority on the database and USE privilege on the table

space as well as one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on the schema, if the schema name of the table

refers to an existing schema.

If a subtable is being defined, the authorization ID must be the same as the
definer of the root table of the table hierarchy.

To define a foreign key, the privileges held by the authorization ID of the
statement must include one of the following on the parent table:
v REFERENCES privilege on the table
v REFERENCES privilege on each column of the specified parent key
v CONTROL privilege on the table
v SYSADM or DBADM authority.

To define a summary table (using a fullselect) the privileges held by the
authorization ID of the statement must include at least one of the following
on each table or view identified in the fullselect:
v SELECT privilege on the table or view and ALTER privilege if REFRESH

DEFERRED or REFRESH IMMEDIATE is specified
v CONTROL privilege on the table or view
v SYSADM or DBADM authority.

Syntax

�� CREATE TABLE table-name
SUMMARY

�

CREATE TABLE

712 SQL Reference

� element-list
OF type-name1

typed-table-options
summary-table-definition

LIKE table-name1
view-name copy-options
nickname

DATA CAPTURE NONE
*

DATA CAPTURE CHANGES
* �

�
IN tablespace-name1 tablespace-options

* �

�

�

,
USING HASHING

PARTITIONING KEY (column)
REPLICATED

�

� *
NOT LOGGED INITIALLY

* ��

element-list:

�

,

(column-definition)
unique-constraint
referential-constraint
check-constraint

typed-table-options:

HIERARCHY hierarchy-name typed-element-list
under-clause

under-clause:

UNDER supertable-name INHERIT SELECT PRIVILEGES

typed-element-list:

CREATE TABLE

Chapter 6. SQL Statements 713

�

,

(OID-column-definition)
with-options
unique-constraint
check-constraint

summary-table-definition:

�

AS (fullselect) summary-table-options
,

(column-name)

summary-table-options:

DEFINITION ONLY
copy-options

refreshable-table-options

copy-options:

*
COLUMN

INCLUDING DEFAULTS
EXCLUDING

* �

�

COLUMN ATTRIBUTES
EXCLUDING IDENTITY

COLUMN ATTRIBUTES
INCLUDING IDENTITY

*

refreshable-table-options:

DATA INITIALLY DEFERRED REFRESH DEFERRED
IMMEDIATE

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

CREATE TABLE

714 SQL Reference

tablespace-options:

(1)
INDEX IN tablespace-name2

LONG IN tablespace-name3

column-definition:

column-name
(2)

data-type
column-options

column-options:

�

NOT NULL
(3)

lob-options
(4)

datalink-options
(5)

SCOPE typed-table-name
typed-view-name

PRIMARY KEY
(6) UNIQUE

CONSTRAINT constraint-name references-clause
CHECK (check-condition)

(7)
column-default-spec

(8)
INLINE LENGTH integer

Notes:

1 Specifying which table space will contain a table’s index can only be
done when the table is created.

2 If the first column-option chosen is a column-default-spec with a
generation-expression, then the data-type can be omitted. It will be
determined from the resulting data type of the generation-expression.

3 The lob-options clause only applies to large object types (BLOB, CLOB
and DBCLOB) and distinct types based on large object types.

4 The datalink-options clause only applies to the DATALINK type
and distinct types based on the DATALINK type. The LINKTYPE URL
clause is required for these types.

CREATE TABLE

Chapter 6. SQL Statements 715

5 The SCOPE clause only applies to the REF type.

6 For compatibility with Version 1, the CONSTRAINT keyword may be
omitted in a column-definition defining a references-clause.

7 IDENTITY column attributes are not supported in an Extended
Enterprise Edition (EEE) database with more than one partition.

8 INLINE LENGTH only applies to columns defined as structured types.

data-type:

SMALLINT
INTEGER
INT

BIGINT
FLOAT

(integer)
REAL

PRECISION
DOUBLE
DECIMAL
DEC (integer)
NUMERIC ,integer
NUM

CHARACTER
CHAR (integer) (1)
VARCHAR (integer) FOR BIT DATA

CHARACTER VARYING
CHAR

LONG VARCHAR

BLOB (integer)
CLOB K
DBCLOB M

G
GRAPHIC

(integer)
VARGRAPHIC (integer)
LONG VARGRAPHIC
DATE
TIME
TIMESTAMP
DATALINK

(integer)
distinct-type-name
structured-type-name
REF (type-name2)

Notes:

1 The FOR BIT DATA clause may be specified in random order with
the other column constraints that follow.

CREATE TABLE

716 SQL Reference

default-values:

constant
datetime-special-register
USER
NULL
cast-function (constant)

datetime-special-register
USER

lob-options:

LOGGED NOT COMPACT
* * *

NOT LOGGED COMPACT

datalink-options:

LINKTYPE URL
NO LINK CONTROL

FILE LINK CONTROL file-link-options
MODE DB2OPTIONS

file-link-options:

* INTEGRITY ALL * READ PERMISSION FS
DB

�

� * WRITE PERMISSION FS
BLOCKED

* RECOVERY NO
YES

�

� * ON UNLINK RESTORE *
DELETE

column-default-spec:

default-clause
GENERATED ALWAYS AS identity-clause

BY DEFAULT (generation-expression)

CREATE TABLE

Chapter 6. SQL Statements 717

identity-clause:

�

IDENTITY
,

1
(START WITH numeric-constant)

1
INCREMENT BY numeric-constant

CACHE 20
NO CACHE
CACHE integer-constant

references-clause:

REFERENCES table-name

�

,

(column-name)

rule-clause

rule-clause:

ON DELETE NO ACTION ON UPDATE NO ACTION
* * *

ON DELETE RESTRICT ON UPDATE RESTRICT
CASCADE
SET NULL

default-clause:

WITH
DEFAULT

default-values

unique-constraint:

CONSTRAINT constraint-name
UNIQUE
PRIMARY KEY

�

,

(column-name)

referential-constraint:

(1)
CONSTRAINT constraint-name

FOREIGN KEY �

,

(column-name) �

CREATE TABLE

718 SQL Reference

� references-clause

check-constraint:

CONSTRAINT constraint-name
CHECK (check-condition)

OID-column-definition:

REF IS OID-column-name USER GENERATED

with-options:

column-name WITH OPTIONS column-options

Notes:

1 For compatibility with Version 1, constraint-name may be
specified following FOREIGN KEY (without the CONSTRAINT
keyword).

Description

SUMMARY
Indicates that a summary table is being defined. The keyword is optional,
but when specified, the statement must include a summary-table-definition
(SQLSTATE 42601).

table-name
Names the table. The name, including the implicit or explicit qualifier,
must not identify a table, view, or alias described in the catalog. The
schema name must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT
(SQLSTATE 42939).

OF type-name1
Specifies that the columns of the table are based on the attributes of the
structured type identified by type-name1. If type-name1 is specified without
a schema name, the type name is resolved by searching the schemas on
the SQL path (defined by the FUNCPATH preprocessing option for static
SQL and by the CURRENT PATH register for dynamic SQL). The type
name must be the name of an existing user-defined type (SQLSTATE
42704) and it must be an instantiable structured type (SQLSTATE 428DP)
with at least one attribute (SQLSTATE 42997).

CREATE TABLE

Chapter 6. SQL Statements 719

If UNDER is not specified, an object identifier column must be specified
(refer to the OID-column-definition). This object identifier column is the
first column of the table. The object ID column is followed by columns
based on the attributes of type-name1.

HIERARCHY hierarchy-name
Names the hierarchy table associated with the table hierarchy. It is created
at the same time as the root table of the hierarchy. The data for all
subtables in the typed table hierarchy is stored in the hierarchy table. A
hierarchy table cannot be directly referenced in SQL statements. A
hierarchy-name is a table-name. The hierarchy-name, including the implicit or
explicit schema name, must not identify a table, nickname, view, or alias
described in the catalog. If the schema name is specified, it must be the
same as the schema name of the table being created (SQLSTATE 428DQ).
If this clause is omitted when defining the root table, a name is generated
by the system consisting of the name of the table being created followed
by a unique suffix such that the identifier is unique within the identifiers
of the existing tables, views, aliases, and nicknames.

UNDER supertable-name
Indicates that the table is a subtable of supertable-name. The supertable
must be an existing table (SQLSTATE 42704) and the table must be
defined using a structured type that is the immediate supertype of
type-name1 (SQLSTATE 428DB). The schema name of table-name and
supertable-name must be the same (SQLSTATE 428DQ). The table identified
by supertable-name must not have any existing subtable already defined
using type-name1 (SQLSTATE 42742).

The columns of the table include the object identifier column of the
supertable with its type modified to be REF(type-name1), followed by
columns based on the attributes of type-name1 (remember that the type
includes the attributes of its supertype). The attribute names cannot be the
same as the OID column name (SQLSTATE 42711).

Other table options including table space, data capture, not logged
initially and partitioning key options cannot be specified. These options
are inherited from the supertable (SQLSTATE 42613).

INHERIT SELECT PRIVILEGES
Any user or group holding a SELECT privilege on the supertable will be
granted an equivalent privilege on the newly created subtable. The
subtable definer is considered to be the grantor of this privilege.

element-list
Defines the elements of a table. This includes the definition of columns
and constraints on the table.

typed-element-list
Defines the additional elements of a typed table. This includes the

CREATE TABLE

720 SQL Reference

additional options for the columns, the addition of an object identifier
column (root table only), and constraints on the table.

summary-table-definition
If the table definition is based on the result of a query, then the table is a
summary table based on the query.

column-name
Names the columns in the table. If a list of column names is specified,
it must consist of as many names as there are columns in the result
table of the fullselect. Each column-name must be unique and
unqualified. If a list of column names is not specified, the columns of
the table inherit the names of the columns of the result table of the
fullselect.

A list of column names must be specified if the result table of the
fullselect has duplicate column names of an unnamed column
(SQLSTATE 42908). An unnamed column is a column derived from a
constant, function, expression, or set operation that is not named
using the AS clause of the select list.

AS
Introduces the query that is used for the definition of the table and to
determine the data included in the table.

fullselect
Defines the query in which the table is based. The resulting column
definitions are the same as those for a view defined with the same
query.

Every select list element must have a name (use the AS clause for
expressions - see “select-clause” on page 395 for details) . The
summary-table-options specified define attributes of the summary table.
The option chosen also defines the contents of the fullselect as
follows.

When DEFINITION ONLY is specified, any valid fullselect that does
not reference a typed table or typed view can be specified.

When REFRESH DEFERRED or REFRESH IMMEDIATE is specified,
the fullselect cannot include (SQLSTATE 428EC):
v references to a nickname, summary table, declared temporary table,

or typed table in any FROM clause
v references to a view where the fullselect of the view violates any of

the listed restrictions on the fullselect of the summary table
v expressions that are a reference type or DATALINK type (or distinct

type based on these types)
v functions that have external action
v functions written in SQL

CREATE TABLE

Chapter 6. SQL Statements 721

v functions that depend on physical characteristics (for example
NODENUMBER, PARTITION)

v table or view references to system objects (explain tables also
should not be specified)

v expressions that are a structured type or LOB type (or a distinct
type based on a LOB type)

When REFRESH IMMEDIATE is specified:
v the fullselect must be a subselect
v the subselect cannot include:

– functions that are not deterministic
– scalar fullselects
– predicates with fullselects
– special registers

v a GROUP BY clause must be included in the subselect unless the
summary table is REPLICATED.

v The supported column functions are SUM, COUNT, COUNT_BIG
and GROUPING (without DISTINCT). The select list must contain a
COUNT(*) or COUNT_BIG(*) column. If the summary table select
list contains SUM(X) where X is a nullable argument, then the
summary table must also have COUNT(X) in its select list. These
column functions cannot be part of any expressions.

v if the FROM clause references more than one table or view, it can
only define an inner join without using the explicit INNER JOIN
syntax

v all GROUP BY items must be included in the select list
v GROUPING SETS, CUBE and ROLLUP are supported. The GROUP

BY items and associated GROUPING column functions in the select
list must form a unique key of the result set. Thus, the following
restrictions must be satisfied:
– no grouping sets may be repeated. For example, ROLLUP(X,Y), X

is not allowed because it is equivalent to
GROUPING SETS((X,Y),(X),(X))

– if X is a nullable GROUP BY item that appears within
GROUPING SETS, CUBE, or ROLLUP, then GROUPING(X) must
appear in the select list

– grouping on constants is not allowed
v a HAVING clause is not allowed
v if in a multiple partition nodegroup, then a partitioning key must

be a subset of the group by items, or the summary table must be
replicated.

CREATE TABLE

722 SQL Reference

summary-table-options
Define the attributes of the summary table.

DEFINITION ONLY
The query is used only to define the table. The table is not populated
using the results of query and the REFRESH TABLE statement cannot
be used. When the CREATE TABLE statement is completed, the table
is no longer considered a summary table.

The columns of the table are defined based on the definitions of the
columns that result from the fullselect. If the fullselect references a
single table in the FROM clause, select list items that are columns of
that table are defined using the column name, data type, and
nullability characteristic of the referenced table.

refreshable-table-options
Define the refreshable options of the summary table attributes.

DATA INITIALLY DEFERRED
Data is not inserted into the table as part of the CREATE TABLE
statement. A REFRESH TABLE statement specifying the table-name
is used to insert data into the table.

REFRESH
Indicates how the data in the table is maintained.

DEFERRED
The data in the table can be refreshed at any time using the
REFRESH TABLE statement. The data in the table only reflects
the result of the query as a snapshot at the time the REFRESH
TABLE statement is processed. Summary tables defined with
this attribute do not allow INSERT, UPDATE or DELETE
statements (SQLSTATE 42807).

IMMEDIATE
The changes made to the underlying tables as part of a
DELETE, INSERT, or UPDATE are cascaded to the summary
table. In this case, the content of the table, at any
point-in-time, is the same as if the specified subselect is
processed. Summary tables defined with this attribute do not
allow INSERT, UPDATE, or DELETE statements (SQLSTATE
42807).

ENABLE QUERY OPTIMIZATION
The summary table can be used for query optimization under
appropriate circumstances.

DISABLE QUERY OPTIMIZATION
The summary table will not be used for query optimization. The
table can still be queried directly.

CREATE TABLE

Chapter 6. SQL Statements 723

LIKE table-name1 or view-name or nickname
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table (table-name1), view
(view-name) or nickname (nickname). The name specified after LIKE must
identify a table, view or nickname that exists in the catalog, or a declared
temporary table. A typed table or typed view cannot be specified
(SQLSTATE 428EC).

The use of LIKE is an implicit definition of n columns, where n is the
number of columns in the identified table, view or nickname.
v If a table is identified, then the implicit definition includes the column

name, data type and nullability characteristic of each of the columns of
table-name1. If EXCLUDING COLUMN DEFAULTS is not specified, then
the column default is also included.

v If a view is identified, then the implicit definition includes the column
name, data type, and nullability characteristic of each of the result
columns of the fullselect defined in view-name.

v If a nickname is identified, then the implicit definition includes the
column name, data type, and nullability characteristic of each column
of nickname.

Column default and identity column attributes may be included or
excluded, based on the copy-attributes clauses. The implicit definition
does not include any other attributes of the identified table, view or
nickname. Thus the new table does not have any unique constraints,
foreign key constraints, triggers, or indexes. The table is created in the
table space implicitly or explicitly specified by the IN clause, and the table
has any other optional clause only if the optional clause is specified.

copy-options
These options specify whether or not to copy additional attributes of the
source result table definition (table, view or fullselect).

INCLUDING COLUMN DEFAULTS
Column defaults for each updatable column of the source result table
definition are copied. Columns that are not updatable will not have a
default defined in the corresponding column of the created table.

If LIKE table-name is specified and table-name identifies a base table or
declared temporary table, then INCLUDING COLUMN DEFAULTS is
the default.

EXCLUDING COLUMN DEFAULTS
Columns defaults are not copied from the source result table
definition.

This clause is the default, except when LIKE table-name is specified
and table-name identifies a base table or declared temporary table.

CREATE TABLE

724 SQL Reference

INCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes (START WITH, INCREMENT BY, and
CACHE values) are copied from the source result table definition, if
possible. It is possible to copy the identity column attributes, if the
element of the corresponding column in the table, view, or fullselect is
the name of a table column, or the name of a view column which
directly or indirectly maps to the name of a base table column with
the identity property. In all other cases, the columns of the new table
will not get the identity property. For example:
v the select-list of the fullselect includes multiple instances of an

identity column name (that is, selecting the same column more than
once)

v the select list of the fullselect includes multiple identity columns
(that is, it involves a join)

v the identity column is included in an expression in the select list
v the fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are not copied from the source result table
definition.

column-definition
Defines the attributes of a column.

column-name
Names a column of the table. The name cannot be qualified and the
same name cannot be used for more than one column of the table.

A table may have the following:
v a 4K page size with maximum of 500 columns where the byte

counts of the columns must not be greater than 4005 in a 4K page
size. Refer to “Row Size” on page 756 for more details.

v an 8K page size with maximum of 1 012 columns where the byte
counts of the columns must not be greater than 8101. Refer to “Row
Size” on page 756 for more details.

v an 16K page size with maximum of 1 012 columns where the byte
counts of the columns must not be greater than 16 293.

v an 32K page size with maximum of 1 012 columns where the byte
counts of the columns must not be greater than 32 677.

data-type
Is one of the types in the following list. Use:

SMALLINT
For a small integer.

CREATE TABLE

Chapter 6. SQL Statements 725

INTEGER or INT
For a large integer.

BIGINT
For a big integer.

FLOAT(integer)
For a single or double precision floating-point number, depending
on the value of the integer. The value of the integer must be in the
range 1 through 53. The values 1 through 24 indicate single
precision and the values 25 through 53 indicate double precision.

You can also specify:
REAL For single precision floating-point.
DOUBLE For double precision

floating-point.
DOUBLE PRECISION For double precision

floating-point.
FLOAT For double precision

floating-point.

DECIMAL(precision-integer, scale-integer) or DEC(precision-integer,

scale-integer)
For a decimal number. The first integer is the precision of the
number; that is, the total number of digits; it may range from 1 to
31. The second integer is the scale of the number; that is, the
number of digits to the right of the decimal point; it may range
from 0 to the precision of the number.

If precision and scale are not specified, the default values of 5,0
are used. The words NUMERIC and NUM can be used as
synonyms for DECIMAL and DEC.

CHARACTER(integer) or CHAR(integer) or CHARACTER or CHAR
For a fixed-length character string of length integer, which may
range from 1 to 254. If the length specification is omitted, a length
of 1 character is assumed.

VARCHAR(integer), or CHARACTER VARYING(integer), or CHAR

VARYING(integer)
For a varying-length character string of maximum length integer,
which may range from 1 to 32 672.

LONG VARCHAR
For a varying-length character string with a maximum length of
32700.

FOR BIT DATA
Specifies that the contents of the column are to be treated as bit

CREATE TABLE

726 SQL Reference

(binary) data. During data exchange with other systems, code
page conversions are not performed. Comparisons are done in
binary, irrespective of the database collating sequence.

BLOB(integer [K | M | G])
For a binary large object string of the specified maximum length
in bytes.

The length may be in the range of 1 byte to 2 147 483 647 bytes.

If integer by itself is specified, that is the maximum length.

If integer K (in either upper or lower case) is specified, the
maximum length is 1 024 times integer. The maximum value for
integer is 2 097 152.

If integer M is specified, the maximum length is 1 048 576 times
integer. The maximum value for integer is 2 048.

If integer G is specified, the maximum length is 1 073 741 824
times integer. The maximum value for integer is 2.

To create BLOB strings greater than 1 gigabyte, you must specify
the NOT LOGGED option.

Any number of spaces is allowed between the integer and K, M,
or G. Also, no space is required. For example, all the following are
valid.

BLOB(50K) BLOB(50 K) BLOB (50 K)

CLOB(integer [K | M | G])74

For a character large object string of the specified maximum
length in bytes.

The meaning of the integer K | M | G is the same as for BLOB.

To create CLOB strings greater than 1 gigabyte, you must specify
the NOT LOGGED option.

DBCLOB(integer [K | M | G])
For a double-byte character large object string of the specified
maximum length in double-byte characters.

The meaning of the integer K | M | G is similar to that for BLOB.
The differences are that the number specified is the number of
double-byte characters and that the maximum size is 1 073 741
823 double-byte characters.

74. Observe that it is not possible to specify the FOR BIT DATA clause for CLOB columns. However, a CHAR FOR
BIT DATA string can be assigned to a CLOB column and a CHAR FOR BIT DATA string can be concatenated with
a CLOB string.

CREATE TABLE

Chapter 6. SQL Statements 727

To create DBCLOB strings greater than 1 gigabyte, you must
specify the NOT LOGGED option.

GRAPHIC(integer)
For a fixed-length graphic string of length integer which may
range from 1 to 127. If the length specification is omitted, a length
of 1 is assumed.

VARGRAPHIC(integer)
For a varying-length graphic string of maximum length integer,
which may range from 1 to 16 336.

LONG VARGRAPHIC
For a varying-length graphic string with a maximum length of
16 350.

DATE
For a date.

TIME
For a time.

TIMESTAMP
For a timestamp.

DATALINK or DATALINK(integer)
For a link to data stored outside the database.

The column in the table consists of ″anchor values″ that contain
the reference information that is required to establish and
maintain the link to the external data as well as an optional
comment.

The length of a DATALINK column is 200 bytes. If integer is
specified, it must be 200. If the length specification is omitted, a
length of 200 bytes is assumed.

A DATALINK value is an encapsulated value with a set of built-in
scalar functions. There is a function called DLVALUE to create a
DATALINK value. The following functions can be used to extract
attributes from a DATALINK value.
v DLCOMMENT
v DLLINKTYPE
v DLURLCOMPLETE
v DLURLPATH
v DLURLPATHONLY
v DLURLSCHEME
v DLURLSERVER

A DATALINK column has the following restrictions:

CREATE TABLE

728 SQL Reference

v The column cannot be part of any index. Therefore, it cannot be
included as a column of a primary key or unique constraint
(SQLSTATE 42962).

v The column cannot be a foreign key of a referential constraint
(SQLSTATE 42830).

v A default value (WITH DEFAULT) cannot be specified for the
column. If the column is nullable, the default for the column is
NULL (SQLSTATE 42894).

distinct-type-name
For a user-defined type that is a distinct type. If a distinct type
name is specified without a schema name, the distinct type name
is resolved by searching the schemas on the SQL path (defined by
the FUNCPATH preprocessing option for static SQL and by the
CURRENT PATH register for dynamic SQL).

If a column is defined using a distinct type, then the data type of
the column is the distinct type. The length and the scale of the
column are respectively the length and the scale of the source type
of the distinct type.

If a column defined using a distinct type is a foreign key of a
referential constraint, then the data type of the corresponding
column of the primary key must have the same distinct type.

structured-type-name
For a user-defined type that is a structured type. If a structured
type name is specified without a schema name, the structured
type name is resolved by searching the schemas on the SQL path
(defined by the FUNCPATH preprocessing option for static SQL,
and by the CURRENT PATH register for dynamic SQL).

If a column is defined using a structured type, then the static data
type of the column is the structured type. The column may
include values with a dynamic type that is a subtype of
structured-type-name.

A column defined using a structured type cannot be used in a
primary key, unique constraint, foreign key, index key or
partitioning key (SQLSTATE 42962).

If a column is defined using a structured type, and contains a
reference-type attribute at any level of nesting, that reference-type
attribute is unscoped. To use such an attribute in a dereference
operation, it is necessary to specify a SCOPE explicitly, using a
CAST specification.

If a column is defined using a structured type with an attribute of
type DATALINK, or a distinct type sourced on DATALINK, this

CREATE TABLE

Chapter 6. SQL Statements 729

column can only be null. An attempt to use the constructor
function for this type will return an error (SQLSTATE 428ED) and
so no instance of this type can be inserted into the column.

REF (type-name2)
For a reference to a typed table. If type-name2 is specified without
a schema name, the type name is resolved by searching the
schemas on the SQL path (defined by the FUNCPATH
preprocessing option for static SQL and by the CURRENT PATH
register for dynamic SQL). The underlying data type of the
column is based on the representation data type specified in the
REF USING clause of the CREATE TYPE statement for type-name2
or the root type of the data type hierarchy that includes
type-name2.

column-options
Defines additional options related to columns of the table.

NOT NULL
Prevents the column from containing null values.

If NOT NULL is not specified, the column can contain null values,
and its default value is either the null value or the value provided
by the WITH DEFAULT clause.

lob-options
Specifies options for LOB data types.

LOGGED
Specifies that changes made to the column are to be written to
the log. The data in such columns is then recoverable with
database utilities (such as RESTORE DATABASE). LOGGED is
the default.

LOBs greater than 1 gigabyte cannot be logged (SQLSTATE
42993) and LOBs greater than 10 megabytes should probably
not be logged.

NOT LOGGED
Specifies that changes made to the column are not to be
logged.

NOT LOGGED has no effect on a commit or rollback
operation; that is, the database’s consistency is maintained
even if a transaction is rolled back, regardless of whether or
not the LOB value is logged. The implication of not logging is
that during a roll forward operation, after a backup or load
operation, the LOB data will be replaced by zeros for those
LOB values that would have had log records replayed during
the roll forward. During crash recovery, all committed changes

CREATE TABLE

730 SQL Reference

and changes rolled back will reflect the expected results. See
the Administration Guide for the implications of not logging
LOB columns.

COMPACT
Specifies that the values in the LOB column should take up
minimal disk space (free any extra disk pages in the last
group used by the LOB value), rather than leave any leftover
space at the end of the LOB storage area that might facilitate
subsequent append operations. Note that storing data in this
way may cause a performance penalty in any append
(length-increasing) operations on the column.

NOT COMPACT
Specifies some space for insertions to assist in future changes
to the LOB values in the column. This is the default.

datalink-options
Specifies the options associated with a DATALINK data type.

LINKTYPE URL
This defines the type of link as a Uniform Resource Locator
(URL).

NO LINK CONTROL
Specifies that there will not be any check made to determine
that the file exists. Only the syntax of the URL will be
checked. There is no database manager control over the file.

FILE LINK CONTROL
Specifies that a check should be made for the existence of the
file. Additional options may be used to give the database
manager further control over the file.

file-link-options
Additional options to define the level of database manager
control of the file link.

INTEGRITY
Specifies the level of integrity of the link between a
DATALINK value and the actual file.

ALL
Any file specified as a DATALINK value is under the
control of the database manager and may NOT be
deleted or renamed using standard file system
programming interfaces.

READ PERMISSION
Specifies how permission to read the file specified in a
DATALINK value is determined.

CREATE TABLE

Chapter 6. SQL Statements 731

FS The read access permission is determined by the file
system permissions. Such files can be accessed
without retrieving the file name from the column.

DB
The read access permission is determined by the
database. Access to the file will only be allowed by
passing a valid file access token, returned on retrieval
of the DATALINK value from the table, in the open
operation.

WRITE PERMISSION
Specifies how permission to write to the file specified in a
DATALINK value is determined.

FS The write access permission is determined by the file
system permissions. Such files can be accessed
without retrieving the file name from the column.

BLOCKED
Write access is blocked. The file cannot be directly
updated through any interface. An alternative
mechanism must be used to cause updates to the
information. For example, the file is copied, the copy
updated, and then the DATALINK value updated to
point to the new copy of the file.

RECOVERY
Specifies whether or not DB2 will support point in time
recovery of files referenced by values in this column.

YES
DB2 will support point in time recovery of files
referenced by values in this column. This value can
only be specified when INTEGRITY ALL and WRITE
PERMISSION BLOCKED are also specified.

NO
Specifies that point in time recovery will not be
supported.

ON UNLINK
Specifies the action taken on a file when a DATALINK
value is changed or deleted (unlinked). Note that this is
not applicable when WRITE PERMISSION FS is used.

RESTORE
Specifies that when a file is unlinked, the DataLink
File Manager will attempt to return the file to the
owner with the permissions that existed at the time

CREATE TABLE

732 SQL Reference

the file was linked. In the case where the user is no
longer registered with the file server, the result is
product-specific.75 This can only be specified when
INTEGRITY ALL and WRITE PERMISSION
BLOCKED are also specified.

DELETE
Specifies that the file will be deleted when it is
unlinked. This can only be specified when READ
PERMISSION DB and WRITE PERMISSION
BLOCKED are also specified.

MODE DB2OPTIONS
This mode defines a set of default file link options. The
defaults defined by DB2OPTIONS are:
v INTEGRITY ALL
v READ PERMISSION FS
v WRITE PERMISSION FS
v RECOVERY NO

ON UNLINK is not applicable since WRITE PERMISSION FS
is used.

SCOPE
Identifies the scope of the reference type column.

A scope must be specified for any column that is intended to be
used as the left operand of a dereference operator or as the
argument of the DEREF function. Specifying the scope for a
reference type column may be deferred to a subsequent ALTER
TABLE statement to allow the target table to be defined, usually
in the case of mutually referencing tables.

typed-table-name
The name of a typed table. The table must already exist or be
the same as the name of the table being created (SQLSTATE
42704). The data type of column-name must be REF(S), where S
is the type of typed-table-name (SQLSTATE 428DM). No
checking is done of values assigned to column-name to ensure
that the values actually reference existing rows in
typed-table-name.

typed-view-name
The name of a typed view. The view must already exist or be
the same as the name of the view being created (SQLSTATE
42704). The data type of column-name must be REF(S), where S

75. With DB2 Universal Database, the file is assigned to a special predefined ″dfmunknown″ user id.

CREATE TABLE

Chapter 6. SQL Statements 733

is the type of typed-view-name (SQLSTATE 428DM). No
checking is done of values assigned to column-name to ensure
that the values actually reference existing rows in
typed-view-name.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a
constraint that was already specified within the same CREATE
TABLE statement. (SQLSTATE 42710).

If this clause is omitted, an 18-character identifier unique within
the identifiers of the existing constraints defined on the table, is
generated76 by the system.

When used with a PRIMARY KEY or UNIQUE constraint, the
constraint-name may be used as the name of an index that is
created to support the constraint.

PRIMARY KEY
This provides a shorthand method of defining a primary key
composed of a single column. Thus, if PRIMARY KEY is specified
in the definition of column C, the effect is the same as if the
PRIMARY KEY(C) clause is specified as a separate clause.

A primary key cannot be specified if the table is a subtable
(SQLSTATE 429B3) since the primary key is inherited from the
supertable.

See PRIMARY KEY within the description of the unique-constraint
below.

UNIQUE
This provides a shorthand method of defining a unique key
composed of a single column. Thus, if UNIQUE is specified in the
definition of column C, the effect is the same as if the UNIQUE(C)
clause is specified as a separate clause.

A unique constraint cannot be specified if the table is a subtable
(SQLSTATE 429B3) since unique constraints are inherited from the
supertable.

See UNIQUE within the description of the unique-constraint below.

references-clause
This provides a shorthand method of defining a foreign key
composed of a single column. Thus, if a references-clause is
specified in the definition of column C, the effect is the same as if

76. The identifier is formed of ″SQL″ followed by a sequence of 15 numeric characters generated by a
timestamp-based function.

CREATE TABLE

734 SQL Reference

that references-clause were specified as part of a FOREIGN KEY
clause in which C is the only identified column.

See references-clause under referential-constraint below.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint
that applies to a single column. See CHECK (check-condition)
below.

INLINE LENGTH integer
This option is only valid for a column defined using a structured
type (SQLSTATE 42842) and indicates the maximum byte size of
an instance of a structured type to store inline with the rest of the
values in the row. Instances of structured types that cannot be
stored inline are stored separately from the base table row, similar
to the way that LOB values are handled. This takes place
automatically.

The default INLINE LENGTH for a structured-type column is the
inline length of its type (specified explicitly or by default in the
CREATE TYPE statement). If INLINE LENGTH of the structured
type is less than 292, the value 292 is used for the INLINE
LENGTH of the column.

Note: The inline lengths of subtypes are not counted in the
default inline length, meaning that instances of subtypes
may not fit inline unless an explicit INLINE LENGTH is
specified at CREATE TABLE time to account for existing
and future subtypes.

The explicit INLINE LENGTH value must be at least 292 and
cannot exceed 32672 (SQLSTATE 54010).

column-default-spec

default-clause
Specifies a default value for the column.

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not
supplied on INSERT or is specified as DEFAULT on
INSERT or UPDATE. If a default value is not specified
following the DEFAULT keyword, the default value
depends on the data type of the column as shown in
Table 19 on page 487.

CREATE TABLE

Chapter 6. SQL Statements 735

If a column is defined as a DATALINK, then a default
value cannot be specified (SQLSTATE 42613). The only
possible default is NULL.

If the column is based on a column of a typed table, a
specific default value must be specified when defining a
default. A default value cannot be specified for the object
identifier column of a typed table (SQLSTATE 42997).

If a column is defined using a distinct type, then the
default value of the column is the default value of the
source data type cast to the distinct type.

If a column is defined using a structured type, the
default-clause cannot be specified (SQLSTATE 42842).

Omission of DEFAULT from a column-definition results in
the use of the null value as the default for the column. If
such a column is defined NOT NULL, then the column
does not have a valid default.

default-values
Specific types of default values that can be specified are as
follows.

constant
Specifies the constant as the default value for the
column. The specified constant must:
v represent a value that could be assigned to the

column in accordance with the rules of assignment
as described in Chapter 3

v not be a floating-point constant unless the column
is defined with a floating-point data type

v not have non-zero digits beyond the scale of the
column data type if the constant is a decimal
constant (for example, 1.234 cannot be the default
for a DECIMAL(5,2) column)

v be expressed with no more than 254 characters
including the quote characters, any introducer
character such as the X for a hexadecimal constant,
and characters from the fully qualified function
name and parentheses when the constant is the
argument of a cast-function.

datetime-special-register
Specifies the value of the datetime special register
(CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP) at the time of INSERT or UPDATE as

CREATE TABLE

736 SQL Reference

the default for the column. The data type of the
column must be the data type that corresponds to the
special register specified (for example, data type must
be DATE when CURRENT DATE is specified).

USER
Specifies the value of the USER special register at the
time of INSERT or UPDATE as the default for the
column. If USER is specified, the data type of the
column must be a character string with a length not
less than the length attribute of USER.

NULL
Specifies NULL as the default for the column. If NOT
NULL was specified, DEFAULT NULL may be
specified within the same column definition but will
result in an error on any attempt to set the column to
the default value.

cast-function
This form of a default value can only be used with
columns defined as a distinct type, BLOB or datetime
(DATE, TIME or TIMESTAMP) data type. For distinct
type, with the exception of distinct types based on
BLOB or datetime types, the name of the function
must match the name of the distinct type for the
column. If qualified with a schema name, it must be
the same as the schema name for the distinct type. If
not qualified, the schema name from function
resolution must be the same as the schema name for
the distinct type. For a distinct type based on a
datetime type, where the default value is a constant, a
function must be used and the name of the function
must match the name of the source type of the distinct
type with an implicit or explicit schema name of
SYSIBM. For other datetime columns, the
corresponding datetime function may also be used.
For a BLOB or a distinct type based on BLOB, a
function must be used and the name of the function
must be BLOB with an implicit or explicit schema
name of SYSIBM. For an example of using the
cast-function, see 501.

constant
Specifies a constant as the argument. The constant
must conform to the rules of a constant for the
source type of the distinct type or for the data

CREATE TABLE

Chapter 6. SQL Statements 737

type if not a distinct type. If the cast-function is
BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP. The source type of the
distinct type of the column must be the data type
that corresponds to the specified special register.

USER
Specifies the USER special register. The data type
of the source type of the distinct type of the
column must be a string data type with a length
of at least 8 bytes. If the cast-function is BLOB, the
length attribute must be at least 8 bytes.

If the value specified is not valid, an error (SQLSTATE
42894) is raised.

GENERATED
Indicates that DB2 generates values for the column. You must
specify GENERATED if the column is to be considered a
generated column or an IDENTITY column.

ALWAYS
Indicates that DB2 will always generate a value for the
column when a row is inserted into the table or whenever
the result value of the generation-expression may change.
The result of the expression is stored in the table.
GENERATED ALWAYS is the recommended value unless
you are using data propagation, or doing unload and
reload operations. GENERATED ALWAYS is the required
value for generated columns.

BY DEFAULT
Indicates that DB2 will generate a value for the column
when a row is inserted into the table, unless a value is
specified. BY DEFAULT is the recommended value when
using data propagation or doing unload/reload.

Although not explicitly required, a unique, single-column
index should be defined on the generated column to
ensure uniqueness of the values.

AS IDENTITY
Specifies that the column is to be the identity column for this

CREATE TABLE

738 SQL Reference

table.77 A table can only have a single IDENTITY column
(SQLSTATE 428C1). The IDENTITY keyword can only be
specified if the data-type associated with the column is an
exact numeric type78 with a scale of zero, or a user-defined
distinct type for which the source type is an exact numeric
type with a scale of zero (SQLSTATE 42815).

An identity column is implicitly NOT NULL.

START WITH numeric-constant
Specifies the first value for the identity column. This value
can be any positive or negative value that could be
assigned to this column (SQLSTATE 42820) as long as
there are no non-zero digits to the right of the decimal
point (SQLSTATE 42894). The default is 1.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the
identity column. This value can be any positive or
negative value that could be assigned to this column
(SQLSTATE 42820). This value cannot be zero and cannot
exceed the value of a large integer constant (SQLSTATE
428125), provided that there are no non-zero digits to the
right of the decimal point (SQLSTATE 42894).

If this value is negative, then the sequence of values for
this identity column descends. If this value is positive,
then the sequence of values for this identity column
ascends. The default is 1.

CACHE or NO CACHE
Specifies whether to keep some pre-allocated values in
memory for faster access. If a new value is needed for the
identity column, and there are none available in the cache,
then the end of the new cache block must be logged.
However, when a new value is needed for the identity
column, and there is an unused value in the cache, then
the allocation of that identity value is quicker, since no
logging is necessary. This is a performance and tuning
option.

77. Identity columns are not be supported in a database with multiple partitions (SQLSTATE 42997). An identity
column cannot be created if more than one partition for the database exists. A database that includes any identity
columns cannot be started with more than one partition.

78. SMALLINT, INTEGER, BIGINT, or DECIMAL with a scale of zero, or a distinct type based on one of these types
are considered exact numeric types. By contrast, single and double precision floating points are considered
approximate numeric data types. Reference types, even if represented by an exact numeric type cannot be defined
as identity columns.

CREATE TABLE

Chapter 6. SQL Statements 739

CACHE integer-constant
Specifies how many values of the identity sequence
that DB2 pre-allocates and keeps in memory.
Pre-allocating and storing values in the cache reduces
logging when values are generated for the identity
column.

If a new value is needed for the identity column and
there are none available in the cache, then the
allocation of the value involves waiting for the log.
However, when a new value is needed for the identity
column and there is an unused value in the cache, the
allocation of that identity value can be made quicker
by not performing the logging.

In the event of a database deactivation, either
normally79 or due to a system failure, all cached
sequence values that have not been used in committed
statements are lost. The value specified for the
CACHE option is the maximum number of values for
the identity column that could be lost in case of
database deactivation.

The minimum value is 2 and the maximum value is
32767 (SQLSTATE 42815). The default is CACHE 20.

NO CACHE
Specifies that values for the identity column are not to
be pre-allocated.

When this option is specified, the values of the
identity column are not stored in the cache. In this
case, every request for a new identity value results in
logging.

AS (generation-expression)
Specifies that the definition of the column is based on an
expression.80 The generation-expression cannot contain any of
the following (SQLSTATE 42621):
v subqueries
v column functions
v dereference operations or DEREF functions

79. If a database is not explicitly activated (using the ACTIVATE command or API), when the last application is
disconnected from the database, an implicit deactivation occurs.

80. If the expression for a GENERATED ALWAYS column includes a user-defined external function, changing the
executable for the function (such that the results change for given arguments) can result in inconsistent data. This
can be avoided by using the SET INTEGRITY statement to force the generation of new values.

CREATE TABLE

740 SQL Reference

v user-defined or built-in functions that are non-deterministic
v user-defined functions using the EXTERNAL ACTION

option
v user-defined functions using the SCRATCHPAD option
v user-defined functions using the READS SQL DATA option
v host variables or parameter markers
v special registers
v references to columns defined later in the column list
v references to other generated columns

The data type for the column is based on the result data type
of the generation-expression. A CAST specification can be used
to force a particular data type and to provide a scope (for a
reference type only). If data-type is specified, values are
assigned to the column under the assignment rules described
in “Chapter 3. Language Elements” on page 63. A generated
column is implicitly considered nullable, unless the NOT
NULL column option is used. The data type of a generated
column must be one for which equality is defined. This
excludes columns of LONG VARCHAR, LONG
VARGRAPHIC, LOB data types, DATALINKs, structured
types, and distinct types based on any of these types
(SQLSTATE 42962).

OID-column-definition
Defines the object identifier column for the typed table.

REF IS OID-column-name USER GENERATED
Specifies that an object identifier (OID) column is defined in
the table as the first column. An OID is required for the root
table of a table hierarchy (SQLSTATE 428DX). The table must
be a typed table (the OF clause must be present) that is not a
subtable (SQLSTATE 42613). The name for the column is
defined as OID-column-name and cannot be the same as the
name of any attribute of the structured type type-name1
(SQLSTATE 42711). The column is defined with type
REF(type-name1), NOT NULL and a system required unique
index (with a default index name) is generated. This column
is referred to as the object identifier column or OID column. The
keywords USER GENERATED indicate that the initial value
for the OID column must be provided by the user when
inserting a row. Once a row is inserted, the OID column
cannot be updated (SQLSTATE 42808).

with-options
Defines additional options that apply to columns of a typed table.

CREATE TABLE

Chapter 6. SQL Statements 741

column-name
Specifies the name of the column for which additional options
are specified. The column-name must correspond to the name
of a column of the table that is not also a column of a
supertable (SQLSTATE 428DJ). A column name can only
appear in one WITH OPTIONS clause in the statement
(SQLSTATE 42613).

If an option is already specified as part of the type definition
(in CREATE TYPE), the options specified here override the
options in CREATE TYPE.

WITH OPTIONS column-options
Defines options for the specified column. See column-options
described earlier. If the table is a subtable, primary key or
unique constraints cannot be specified (SQLSTATE 429B3).

DATA CAPTURE
Indicates whether extra information for inter-database data
replication is to be written to the log. This clause cannot be
specified when creating a subtable (SQLSTATE 42613).

If the table is a typed table, then this option is not supported
(SQLSTATE 428DH or 42HDR).

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this
table will be written to the log. This option is required if this
table will be replicated and the Capture program is used to
capture changes for this table from the log.

If the table is defined to allow data on a partition other than
the catalog partition (multiple partition nodegroup or
nodegroup with a partition other than the catalog partition),
then this option is not supported (SQLSTATE 42997).

If the schema name (implicit or explicit) of the table is longer
than 18 bytes, then this option is not supported (SQLSTATE
42997).

Further information about using replication can be found in
the Administration Guide and the Replication Guide and
Reference.

IN tablespace-name1
Identifies the table space in which the table will be created. The
table space must exist, and be a REGULAR table space over which
the authorization ID of the statement has USE privilege. If no

CREATE TABLE

742 SQL Reference

other table space is specified, then all table parts will be stored in
this table space. This clause cannot be specified when creating a
subtable (SQLSTATE 42613), since the table space is inherited from
the root table of the table hierarchy. If this clause is not specified,
a table space for the table is determined as follows:
IF table space IBMDEFAULTGROUP over which the user has USE privilege

exists with sufficient page size
THEN choose it

ELSE IF a table space over which the user has USE privilege
exists with sufficient page size
(see below when multiple table spaces qualify)

THEN choose it
ELSE issue an error (SQLSTATE 42727).

If more than one table space is identified by the ELSE IF
condition, then choose the table space with the smallest sufficient
page size over which the authorization ID of the statement has
USE privilege. When more than one table space qualifies,
preference is given according to who was granted the USE
privilege:
1. the authorization ID
2. a group to which the authorization ID belongs
3. PUBLIC

If more than one table space still qualifies, the final choice is made
by the database manager.

Determination of the table space may change when:
v table spaces are dropped or created
v USE privileges are granted or revoked.

The sufficient page size of a table is determined by either the byte
count of the row or the number of columns. See “Row Size” on
page 756 for more information.

tablespace-options:
Specifies the table space in which indexes and/or long column
values will be stored. See “CREATE TABLESPACE” on page 764
for details on types of table spaces.

INDEX IN tablespace-name2
Identifies the table space in which any indexes on the table
will be created. This option is allowed only when the primary
table space specified in the IN clause is a DMS table space.
The specified table space must exist, must be a REGULAR
DMS table space over which the authorization ID of the
statement has USE privilege, and must be in the same
nodegroup as tablespace-name1 (SQLSTATE 42838).

CREATE TABLE

Chapter 6. SQL Statements 743

Note that specifying which table space will contain a table’s
index can only be done when the table is created. The
checking of USE privilege over the table space for the index is
only carried out at table creation time. The database manager
will not require that the authorization ID of a CREATE INDEX
statement have USE privilege on the table space when an
index is created later.

LONG IN tablespace-name3
Identifies the table space in which the values of any long
columns (LONG VARCHAR, LONG VARGRAPHIC, LOB data
types, distinct types with any of these as source types, or any
columns defined with user-defined structured types with
values that cannot be stored inline) will be stored. This option
is allowed only when the primary table space specified in the
IN clause is a DMS table space. The table space must exist,
must be a LONG DMS table space over which the
authorization ID of the statement has USE privilege, and must
be in the same nodegroup of tablspace-name1 (SQLSTATE
42838).

Note that specifying which table space will contain a table’s
long and LOB columns can only be done when the table is
created. The checking of USE privilege over the table space for
the long and LOB columns is only carried out at table creation
time. The database manager will not require that the
authorization ID of an ALTER TABLE statement have USE
privilege on the table space when a long or LOB column is
added later.

PARTITIONING KEY (column-name,...)
Specifies the partitioning key used when data in the table is
partitioned. Each column-name must identify a column of the table
and the same column must not be identified more than once. No
column with data type that is a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, distinct type
based on any of these types, or structured type may be used as
part of a partitioning key (SQLSTATE 42962). A partitioning key
cannot be specified for a table that is a subtable (SQLSTATE
42613), since the partitioning key is inherited from the root table
in the table hierarchy.

If this clause is not specified, and this table resides in a multiple
partition nodegroup, then the partitioning key is defined as
follows:
v if the table is a typed table, the object identifier column

CREATE TABLE

744 SQL Reference

v if a primary key is specified, the first column of the primary
key is the partitioning key

v otherwise, the first column whose data type is not a LOB,
LONG VARCHAR, LONG VARGRAPHIC, DATALINK column,
distinct type based on one of these types, or structured type
column is the partitioning key.

If none of the columns satisfy the requirement of the default
partitioning key, the table is created without one. Such tables are
allowed only in table spaces defined on single-partition
nodegroups.

For tables in table spaces defined on single-partition nodegroups,
any collection of non-long type columns can be used to define the
partitioning key. If you do not specify this parameter, no
partitioning key is created.

For restrictions related to the partitioning key, see “Rules” on
page 752.

USING HASHING
Specifies the use of the hashing function as the partitioning
method for data distribution. This is the only partitioning
method supported.

REPLICATED
Specifies that the data stored in the table is physically replicated
on each database partition of the nodegroup of the table space in
which the table is defined. This means that a copy of all the data
in the table exists on each of these database partitions. This option
can only be specified for a summary table (SQLSTATE 42997).

NOT LOGGED INITIALLY
Any changes made to the table by an Insert, Delete, Update,
Create Index, Drop Index, or Alter Table operation in the same
unit of work in which the table is created are not logged. See
“Notes” on page 753 for other considerations when using this
option.

All catalog changes and storage related information are logged, as
are all operations that are done on the table in subsequent units of
work.

A foreign key constraint cannot be defined on a table that
references a parent with the NOT LOGGED INITIALLY attribute.
This clause cannot be specified when creating a subtable
(SQLSTATE 42613).

CREATE TABLE

Chapter 6. SQL Statements 745

Note: A rollback to savepoint request cannot be issued in the
same unit of work as the creation of a NOT LOGGED
INITIALLY table. This will result in an error (SQLSTATE
40506), and the entire unit of work will be rolled back.

unique-constraint
Defines a unique or primary key constraint. If the table has a partitioning
key, then any unique or primary key must be a superset of the
partitioning key. A unique or primary key constraint cannot be specified
for a table that is a subtable (SQLSTATE 429B3). If the table is a root table,
the constraint applies to the table and all its subtables.

CONSTRAINT constraint-name
Names the primary key or unique constraint. See page 734.

UNIQUE (column-name,...)
Defines a unique key composed of the identified columns. The
identified columns must be defined as NOT NULL. Each column-name
must identify a column of the table and the same column must not be
identified more than once.

The number of identified columns must not exceed 16 and the sum of
their stored lengths must not exceed 1024 (refer to “Byte Counts” on
page 757 for the stored lengths). The length of any individual column
must not exceed 255 bytes. This length is for the data only and is not
affected by the null byte, should it be present. The maximum data
length of a column is 255 bytes, whether the column is nullable or
not. No LOB, LONG VARCHAR, LONG VARGRAPHIC, DATALINK,
distinct type based on one of these types, or structured type may be
used as part of a unique key, even if the length attribute of the
column is small enough to fit within the 255 byte limit (SQLSTATE
42962).

The set of columns in the unique key cannot be the same as the set of
columns of the primary key or another unique key (SQLSTATE 01543).
81

A unique constraint cannot be specified if the table is a subtable
(SQLSTATE 429B3) since unique constraints are inherited from the
supertable.

The description of the table as recorded in the catalog includes the
unique key and its unique index. A unique index will automatically
be created for the columns in the sequence specified with ascending
order for each column. The name of the index will be the same as the
constraint-name if this does not conflict with an existing index in the
schema where the table is created. If the index name conflicts, the

81. If LANGLEVEL is SQL92E or MIA then an error is returned, SQLSTATE 42891.

CREATE TABLE

746 SQL Reference

name will be SQL, followed by a character timestamp
(yymmddhhmmssxxx), with SYSIBM as the schema name.

PRIMARY KEY (column-name,...)
Defines a primary key composed of the identified columns. The clause
must not be specified more than once and the identified columns
must be defined as NOT NULL. Each column-name must identify a
column of the table and the same column must not be identified more
than once.

The number of identified columns must not exceed 16 and the sum of
their stored lengths must not exceed 1024 (refer to “Byte Counts” on
page 757 for the stored lengths). The length of any individual column
must not exceed 255 bytes. This length is for the data only and is not
affected by the null byte, should it be present. The maximum data
length of a column is 255 bytes, whether the column is nullable or
not. No LOB, LONG VARCHAR, LONG VARGRAPHIC, DATALINK,
distinct type based on one of these types, or structured type may be
used as part of a primary key, even if the length attribute of the
column is small enough to fit within the 255 byte limit (SQLSTATE
42962).

The set of columns in the primary key cannot be the same as the set
of columns of a unique key (SQLSTATE 01543). 81

Only one primary key can be defined on a table.

A primary key cannot be specified if the table is a subtable
(SQLSTATE 429B3) since the primary key is inherited from the
supertable.

The description of the table as recorded in the catalog includes the
primary key and its primary index. A unique index will automatically
be created for the columns in the sequence specified with ascending
order for each column. The name of the index will be the same as the
constraint-name if this does not conflict with an existing index in the
schema where the table is created. If the index name conflicts, the
name will be SQL, followed by a character timestamp
(yymmddhhmmssxxx), with SYSIBM as the schema name.

If the table has a partitioning key, the columns of a unique-constraint must
be a superset of the partitioning key columns; column order is
unimportant.

referential-constraint
Defines a referential constraint.

CONSTRAINT constraint-name
Names the referential constraint. See page 734.

CREATE TABLE

Chapter 6. SQL Statements 747

FOREIGN KEY (column-name,...)
Defines a referential constraint with the specified constraint-name.

Let T1 denote the object table of the statement. The foreign key of the
referential constraint is composed of the identified columns. Each
name in the list of column names must identify a column of T1 and
the same column must not be identified more than once. The number
of identified columns must not exceed 16 and the sum of their stored
lengths must not exceed 1024 (refer to “Byte Counts” on page 757 for
the stored lengths). No LOB, LONG VARCHAR, LONG
VARGRAPHIC, DATALINK, distinct type based on one of these types,
or structured type column may be used as part of a foreign key
(SQLSTATE 42962). There must be the same number of foreign key
columns as there are in the parent key and the data types of the
corresponding columns must be compatible (SQLSTATE 42830). Two
column descriptions are compatible if they have compatible data types
(both columns are numeric, character strings, graphic, date/time, or
have the same distinct type).

references-clause
Specifies the parent table and parent key for the referential constraint.

REFERENCES table-name
The table specified in a REFERENCES clause must identify a base
table that is described in the catalog, but must not identify a
catalog table.

A referential constraint is a duplicate if its foreign key, parent key,
and parent table are the same as the foreign key, parent key and
parent table of a previously specified referential constraint.
Duplicate referential constraints are ignored and a warning is
issued (SQLSTATE 01543).

In the following discussion, let T2 denote the identified parent
table and let T1 denote the table being created82(T1 and T2 may
be the same table).

The specified foreign key must have the same number of columns
as the parent key of T2 and the description of the nth column of
the foreign key must be comparable to the description of the nth
column of that parent key. Datetime columns are not considered
to be comparable to string columns for the purposes of this rule.

(column-name,...)
The parent key of a referential constraint is composed of the
identified columns. Each column-name must be an unqualified

82. or altered, in the case where this clause is referenced from the description of the ALTER TABLE statement.

CREATE TABLE

748 SQL Reference

name that identifies a column of T2. The same column must
not be identified more than once.

The list of column names must match the set of columns (in
any order) of the primary key or a unique constraint that
exists on T2 (SQLSTATE 42890). If a column name list is not
specified, then T2 must have a primary key (SQLSTATE
42888). Omission of the column name list is an implicit
specification of the columns of that primary key in the
sequence originally specified.

The referential constraint specified by a FOREIGN KEY clause
defines a relationship in which T2 is the parent and T1 is the
dependent.

rule-clause
Specifies what action to take on dependent tables.

ON DELETE
Specifies what action is to take place on the dependent tables
when a row of the parent table is deleted. There are four
possible actions:
v NO ACTION (default)
v RESTRICT
v CASCADE
v SET NULL

The delete rule applies when a row of T2 is the object of a
DELETE or propagated delete operation and that row has
dependents in T1. Let p denote such a row of T2.
v If RESTRICT or NO ACTION is specified, an error occurs

and no rows are deleted.
v If CASCADE is specified, the delete operation is propagated

to the dependents of p in T1.
v If SET NULL is specified, each nullable column of the

foreign key of each dependent of p in T1 is set to null.

SET NULL must not be specified unless some column of the
foreign key allows null values. Omission of the clause is an
implicit specification of ON DELETE NO ACTION.

A cycle involving two or more tables must not cause a table to
be delete-connected to itself unless all of the delete rules in
the cycle are CASCADE. Thus, if the new relationship would
form a cycle and T2 is already delete connected to T1, then

CREATE TABLE

Chapter 6. SQL Statements 749

the constraint can only be defined if it has a delete rule of
CASCADE and all other delete rules of the cycle are
CASCADE.

If T1 is delete-connected to T2 through multiple paths, those
relationships in which T1 is a dependent and which form all
or part of those paths must have the same delete rule and it
must not be SET NULL. The NO ACTION and RESTRICT
actions are treated identically. Thus, if T1 is a dependent of T3
in a relationship with a delete rule of r, the referential
constraint cannot be defined when r is SET NULL if any of
these conditions exist:
v T2 and T3 are the same table
v T2 is a descendant of T3 and the deletion of rows from T3

cascades to T2
v T3 is a descendant of T2 and the deletion of rows from T2

cascades to T3
v T2 and T3 are both descendants of the same table and the

deletion of rows from that table cascades to both T2 and T3.

If r is other than SET NULL, the referential constraint can be
defined, but the delete rule that is implicitly or explicitly
specified in the FOREIGN KEY clause must be the same as r.

In applying the above rules to referential constraints, in which
either the parent table or the dependent table is a member of
a typed table hierarchy, all the referential constraints that
apply to any table in the respective hierarchies are taken into
consideration.

ON UPDATE
Specifies what action is to take place on the dependent tables
when a row of the parent table is updated. The clause is
optional. ON UPDATE NO ACTION is the default and ON
UPDATE RESTRICT is the only alternative.

The difference between NO ACTION and RESTRICT is described
under CREATE TABLE in “Notes” on page 753.

check-constraint
Defines a check constraint. A check-constraint is a search-condition that must
evaluate to not false.

CONSTRAINT constraint-name
Names the check constraint. See page 734.

CREATE TABLE

750 SQL Reference

CHECK (check-condition)
Defines a check constraint. A check-condition is a search-condition except
as follows:
v A column reference must be to a column of the table being created
v The search-condition cannot contain a TYPE predicate
v It cannot contain any of the following (SQLSTATE 42621):

– subqueries
– dereference operations or DEREF functions where the scoped

reference argument is other than the object identifier (OID)
column.

– CAST specifications with a SCOPE clause
– column functions
– functions that are not deterministic
– functions defined to have an external action
– user-defined functions using the SCRATCHPAD option
– user-defined functions using the READS SQL DATA option
– host variables
– parameter markers
– special registers
– an alias
– references to generated columns other than the identity column

If a check constraint is specified as part of a column-definition then a
column reference can only be made to the same column. Check
constraints specified as part of a table definition can have column
references identifying columns previously defined in the CREATE
TABLE statement. Check constraints are not checked for
inconsistencies, duplicate conditions or equivalent conditions.
Therefore, contradictory or redundant check constraints can be
defined resulting in possible errors at execution time.

The check-condition ″IS NOT NULL″ can be specified, however it is
recommended that nullability be enforced directly using the NOT
NULL attribute of a column. For example, CHECK (salary + bonus >
30000) is accepted if salary is set to NULL, because CHECK
constraints must be either satisfied or unknown and in this case salary
is unknown. However, CHECK (salary IS NOT NULL) would be
considered false and a violation of the constraint if salary is set to
NULL.

CREATE TABLE

Chapter 6. SQL Statements 751

Check constraints are enforced when rows in the table are inserted or
updated. A check constraint defined on a table automatically applies
to all subtables of that table.

Rules
v The sum of the byte counts of the columns, including the inline lengths of

all structured type columns, must not be greater than the row size limit that
is based on the page size of the table space (SQLSTATE 54010). Refer to
“Byte Counts” on page 757 and Table 33 on page 1102 for more information.
For typed tables, the byte count is applied to the columns of the root table
of the table hierarchy and every additional column introduced by every
subtable in the table hierarchy (additional subtable columns must be
considered nullable for byte count purposes, even when defined as not
nullable). There is also an additional 4 bytes of overhead to identify the
subtable to which each row belongs.

v The number of columns in a table cannot exceed 1 012 (SQLSTATE 54011).
For typed tables, the total number of attributes of the types of all of the
subtables in the table hierarchy cannot exceed 1010.

v An object identifier column of a typed table cannot be updated (SQLSTATE
42808).

v A partitioning key column of a table cannot be updated (SQLSTATE 42997).
v Any unique or primary key constraint defined on the table must be a

superset of the partitioning key (SQLSTATE 42997).
v A nullable column of a partitioning key cannot be included as a foreign key

column when the relationship is defined with ON DELETE SET NULL
(SQLSTATE 42997).

v The following table provides the supported combinations of DATALINK
options in the file-link-options (SQLSTATE 42613).

Table 22. Valid DATALINK File Control Option Combinations

INTEGRITY
READ
PERMISSION

WRITE
PERMISSION RECOVERY ON UNLINK

ALL FS FS NO Not applicable

ALL FS BLOCKED NO RESTORE

ALL FS BLOCKED YES RESTORE

ALL DB BLOCKED NO RESTORE

ALL DB BLOCKED NO DELETE

ALL DB BLOCKED YES RESTORE

ALL DB BLOCKED YES DELETE

The following rules only apply to partitioned databases.

CREATE TABLE

752 SQL Reference

v Tables composed only of columns with types LOB, LONG VARCHAR,
LONG VARGRAPHIC, DATALINK, distinct type based on one of these
types, or structured type can only be created in table spaces defined on
single-partition nodegroups.

v The partitioning key definition of a table in a table space defined on a
multiple partition nodegroup cannot be altered.

v The partitioning key column of a typed table must be the OID column.

Notes
v Creating a table with a schema name that does not already exist will result

in the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM.
The CREATEIN privilege on the schema is granted to PUBLIC.

v If a foreign key is specified:
– All packages with a delete usage on the parent table are invalidated.
– All packages with an update usage on at least one column in the parent

key are invalidated.
v Creating a subtable causes invalidation of all packages that depend on any

table in table hierarchy.
v VARCHAR and VARGRAPHIC columns that are greater than 4 000 and

2 000 respectively should not be used as input parameters in functions in
SYSFUN schema. Errors will occur when the function is invoked with an
argument value that exceeds these lengths (SQLSTATE 22001).

v The use of NO ACTION or RESTRICT as delete or update rules for
referential constraints determines when the constraint is enforced. A delete
or update rule of RESTRICT is enforced before all other constraints
including those referential constraints with modifying rules such as
CASCADE or SET NULL. A delete or update rule of NO ACTION is
enforced after other referential constraints. There are very few cases where
this can make a difference during a delete or update. One example where
different behavior is evident involves a DELETE of rows in a view that is
defined as a UNION ALL of related tables.

Table T1 is a parent of table T3, delete rule as noted below
Table T2 is a parent of table T3, delete rule CASCADE

CREATE VIEW V1 AS SELECT * FROM T1 UNION ALL SELECT * FROM T2

DELETE FROM V1

If table T1 is a parent of table T3 with delete rule of RESTRICT, a restrict
violation will be raised (SQLSTATE 23001) if there are any child rows for
parent keys of T1 in T3.

If table T1 is a parent of table T3 with delete rule of NO ACTION, the child
rows may be deleted by the delete rule of CASCADE when deleting rows

CREATE TABLE

Chapter 6. SQL Statements 753

from T2 before the NO ACTION delete rule is enforced for the deletes from
T1. If deletes from T2 did not result in deleting all child rows for parent
keys of T1 in T3, then a constraint violation will be raised (SQLSTATE
23504).

Note that the SQLSTATE returned is different depending on whether the
delete or update rule is RESTRICT or NO ACTION.

v For tables in table spaces defined on multiple partition nodegroups, table
collocation should be considered in choosing the partitioning keys.
Following is a list of items to consider:
– The tables must be in the same nodegroup for collocation. The table

spaces may be different, but must be defined in the same nodegroup.
– The partitioning keys of the tables must have the same number of

columns, and the corresponding key columns must be partition
compatible for collocation. For more information, see “Partition
Compatibility” on page 114.

– The choice of partitioning key also has an impact on performance of
joins.If a table is frequently joined with another table, you should
consider the joining column(s) as a partitioning key for both tables.

v The NOT LOGGED INITIALLY clause can not be used when DATALINK
columns with the FILE LINK CONTROL attribute are present in the table
(SQLSTATE 42613) .

v The NOT LOGGED INITIALLY option is useful for situations where a large
result set needs to be created with data from an alternate source (another
table or a file) and recovery of the table is not necessary. Using this option
will save the overhead of logging the data. The following considerations
apply when this option is specified:
– When the unit of work is committed, all changes that were made to the

table during the unit of work are flushed to disk.
– When you run the Rollforward utility and it encounters a log record that

indicates that a table in the database was either populated by the Load
utility or created with the NOT LOGGED INITIALLY option, the table
will be marked as unavailable. The table will be dropped by the
Rollforward utility if it later encounters a DROP TABLE log. Otherwise,
after the database is recovered, an error will be issued if any attempt is
made to access the table (SQLSTATE 55019). The only operation
permitted is to drop the table.

– Once such a table is backed up as part of a database or table space back
up, recovery of the table becomes possible.

v A REFRESH DEFERRED summary table defined with ENABLE QUERY
OPTIMIZATION may be used to optimize the processing of queries if
CURRENT REFRESH AGE is set to ANY. A REFRESH IMMEDIATE
summary table defined with ENABLE QUERY OPTIMIZATION is always

CREATE TABLE

754 SQL Reference

considered for optimization. In order for this optimization be able to use a
REFRESH DEFERRED or REFRESH IMMEDIATE summary table, the
fullselect must conform to certain rules in addition to those already
described. The fullselect must:
– be a subselect with a GROUP BY clause or a subselect with a single table

reference
– not include DISTINCT anywhere in the select list
– not include any special registers
– not include functions that are not deterministic.

If the query specified when creating a summary table does not conform to
these rules, a warning is returned (SQLSTATE 01633).

v If a summary table is defined with REFRESH IMMEDIATE, it is possible for
an error to occur when attempting to apply the change resulting from an
insert, update or delete of an underlying table. The error will cause the
failure of the insert, update or delete of the underlying table.

v A referential constraint may be defined in such a way that either the parent
table or the dependent table is a part of a table hierarchy. In such a case,
the effect of the referential constraint is as follows:
1. Effects of INSERT, UPDATE, and DELETE statements:

– If a referential constraint exists, in which PT is a parent table and DT
is a dependent table, the constraint ensures that for each row of DT
(or any of its subtables) that has a non-null foreign key, a row exists
in PT (or one of its subtables) with a matching parent key. This rule
is enforced against any action that affects a row of PT or DT,
regardless of how that action is initiated.

2. Effects of DROP TABLE statements:
– for referential constraints in which the dropped table is the parent

table or dependent table, the constraint is dropped
– for referential constraints in which a supertable of the dropped table

is the parent table the rows of the dropped table are considered to be
deleted from the supertable. The referential constraint is checked and
its delete rule is invoked for each of the deleted rows.

– for referential constraints in which a supertable of the dropped table
is the dependent table, the constraint is not checked. Deletion of a
row from a dependent table cannot result in violation of a referential
constraint.

v Inoperative summary tables: An inoperative summary table is a table that
is no longer available for SQL statements. A summary table becomes
inoperative if:
– A privilege upon which the summary table definition is dependent is

revoked.

CREATE TABLE

Chapter 6. SQL Statements 755

– An object such as a table, alias or function, upon which the summary
table definition is dependent is dropped.

In practical terms, an inoperative summary table is one in which the
summary table definition has been unintentionally dropped. For example,
when an alias is dropped, any summary table defined using that alias is
made inoperative. All packages dependent on the summary table are no
longer valid.

Until the inoperative summary table is explicitly recreated or dropped, a
statement using that inoperative summary table cannot be compiled
(SQLSTATE 51024) with the exception of the CREATE ALIAS, CREATE
TABLE, DROP TABLE, and COMMENT ON TABLE statements. Until the
inoperative summary table has been explicitly dropped, its qualified name
cannot be used to create another view, base table or alias. (SQLSTATE
42710).

An inoperative summary table may be recreated by issuing a CREATE
TABLE statement using the definition text of the inoperative summary
table. This summary table query text is stored in the TEXT column of the
SYSCAT.VIEWS catalog. When recreating an inoperative summary table, it
is necessary to explicitly grant any privileges required on that table by
others, due to the fact that all authorization records on a summary table are
deleted if the summary table is marked inoperative. Note that there is no
need to explicitly drop the inoperative summary table in order to recreate
it. Issuing a CREATE TABLE statement that defines a summary table with
the same table-name as an inoperative summary table will cause that
inoperative summary table to be replaced, and the CREATE TABLE
statement will return a warning (SQLSTATE 01595).

Inoperative summary tables are indicated by an X in the VALID column of
the SYSCAT.VIEWS catalog view and an X in the STATUS column of the
SYSCAT.TABLES catalog view.

v Privileges: When any table is created, the definer of the table is granted
CONTROL privilege. When a subtable is created, the SELECT privilege that
each user or group has on the immediate supertable is automatically
granted on the subtable with the table definer as the grantor.

v Row Size: The maximum number of bytes allowed in the row of a table is
dependent on the page size of the table space in which the table is created
(tablspace-name1). The following list shows the row size limit and number of
columns limit associated with each table space page size.

Table 23. Limits for Number of Columns and Row Size in Each table space Page Size

Page Size Row Size Limit Column Count Limit

4K 4 005 500

CREATE TABLE

756 SQL Reference

Table 23. Limits for Number of Columns and Row Size in Each table space Page
Size (continued)

Page Size Row Size Limit Column Count Limit

8K 8 101 1 012

16K 16 293 1 012

32K 32 677 1 012

The actual number of columns for a table may be further limited by the
following formula:
– Total Columns * 8 + Number of LOB Columns * 12 + Number of

Datalink Columns * 28 <= row size limit for page size.
v Byte Counts: The following list contains the byte counts of columns by

data type for columns that do not allow null values. For a column that
allows null values the byte count is one more than shown in the list.
If the table is created based on a structured type, an additional 4 bytes of
overhead is reserved to identify rows of subtables regardless of whether or
not subtables are defined. Also, additional subtable columns must be
considered nullable for byte count purposes, even when defined as not
nullable.

Data type Byte count

INTEGER 4

SMALLINT 2

BIGINT 8

REAL 4

DOUBLE 8

DECIMAL The integral part of (p/2)+1, where p is the
precision.

CHAR(n) n

VARCHAR(n) n+4

LONG VARCHAR 24

GRAPHIC(n) n*2

VARGRAPHIC(n) (n*2)+4

LONG VARGRAPHIC 24

DATE 4

TIME 3

CREATE TABLE

Chapter 6. SQL Statements 757

TIMESTAMP 10

DATALINK(n) n+54

LOB types Each LOB value has a LOB descriptor in the
base record that points to the location of the
actual value. The size of the descriptor
varies according to the maximum length
defined for the column. The following table
shows typical sizes:
Maximum LOB Length LOB Descriptor Size

1 024 72
8 192 96

65 536 120
524 000 144

4 190 000 168
134 000 000 200
536 000 000 224

1 070 000 000 256
1 470 000 000 280
2 147 483 647 316

Distinct type Length of the source type of the distinct
type.

Reference type Length of the built-in data type on which
the reference type is based.

Structured type The INLINE LENGTH + 4. The INLINE
LENGTH is the value specified (or
implicitly calculated) for the column in the
column-options clause.

Examples
Example 1: Create table TDEPT in the DEPARTX table space. DEPTNO,
DEPTNAME, MGRNO, and ADMRDEPT are column names. CHAR means
the column will contain character data. NOT NULL means that the column
cannot contain a null value. VARCHAR means the column will contain
varying-length character data. The primary key consists of the column
DEPTNO.

CREATE TABLE TDEPT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT CHAR(3) NOT NULL,
PRIMARY KEY(DEPTNO))

IN DEPARTX

Example 2: Create table PROJ in the SCHED table space. PROJNO,
PROJNAME, DEPTNO, RESPEMP, PRSTAFF, PRSTDATE, PRENDATE, and
MAJPROJ are column names. CHAR means the column will contain character

CREATE TABLE

758 SQL Reference

data. DECIMAL means the column will contain packed decimal data. 5,2
means the following: 5 indicates the number of decimal digits, and 2 indicates
the number of digits to the right of the decimal point. NOT NULL means that
the column cannot contain a null value. VARCHAR means the column will
contain varying-length character data. DATE means the column will contain
date information in a three-part format (year, month, and day).

CREATE TABLE PROJ
(PROJNO CHAR(6) NOT NULL,
PROJNAME VARCHAR(24) NOT NULL,
DEPTNO CHAR(3) NOT NULL,
RESPEMP CHAR(6) NOT NULL,
PRSTAFF DECIMAL(5,2) ,
PRSTDATE DATE ,
PRENDATE DATE ,
MAJPROJ CHAR(6) NOT NULL)

IN SCHED

Example 3: Create a table called EMPLOYEE_SALARY where any unknown
salary is considered 0. No table space is specified, so that the table will be
created in a table space selected by the system based on the rules descirbed
for the IN tablespace-name1 clause.

CREATE TABLE EMPLOYEE_SALARY
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT)

Example 4: Create distinct types for total salary and miles and use them for
columns of a table created in the default table space. In a dynamic SQL
statement assume the CURRENT SCHEMA special register is JOHNDOE and
the CURRENT PATH is the default (″SYSIBM″,″SYSFUN″,″JOHNDOE″).

If a value for SALARY is not specified it must be set to 0 and if a value for
LIVING_DIST is not specified it must to set to 1 mile.

CREATE DISTINCT TYPE JOHNDOE.T_SALARY AS INTEGER WITH COMPARISONS

CREATE DISTINCT TYPE JOHNDOE.MILES AS FLOAT WITH COMPARISONS

CREATE TABLE EMPLOYEE
(ID INTEGER NOT NULL,
NAME CHAR (30),
SALARY T_SALARY NOT NULL WITH DEFAULT,
LIVING_DIST MILES DEFAULT MILES(1))

Example 5: Create distinct types for image and audio and use them for
columns of a table. No table space is specified, so that the table will be
created in a table space selected by the system based on the rules descirbed
for the IN tablespace-name1 clause. Assume the CURRENT PATH is the default.

CREATE TABLE

Chapter 6. SQL Statements 759

CREATE DISTINCT TYPE IMAGE AS BLOB (10M)

CREATE DISTINCT TYPE AUDIO AS BLOB (1G)

CREATE TABLE PERSON
(SSN INTEGER NOT NULL,
NAME CHAR (30),
VOICE AUDIO,
PHOTO IMAGE)

Example 6: Create table EMPLOYEE in the HUMRES table space. The
constraints defined on the table are the following:
v The values of department number must lie in the range 10 to 100.
v The job of an employee can only be either ’Sales’, ’Mgr’ or ’Clerk’.
v Every employee that has been with the company since 1986 must make

more than $40,500.

Note: If the columns included in the check constraints are nullable they could
also be NULL.

CREATE TABLE EMPLOYEE
(ID SMALLINT NOT NULL,
NAME VARCHAR(9),
DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),
JOB CHAR(5) CHECK (JOB IN ('Sales','Mgr','Clerk')),
HIREDATE DATE,
SALARY DECIMAL(7,2),
COMM DECIMAL(7,2),
PRIMARY KEY (ID),
CONSTRAINT YEARSAL CHECK (YEAR(HIREDATE) > 1986 OR SALARY > 40500)
)
IN HUMRES

Example 7: Create a table that is wholly contained in the PAYROLL table
space.

CREATE TABLE EMPLOYEE
IN PAYROLL

Example 8: Create a table with its data part in ACCOUNTING and its index
part in ACCOUNT_IDX.

CREATE TABLE SALARY.....
IN ACCOUNTING INDEX IN ACCOUNT_IDX

Example 9: Create a table and log SQL changes in the default format.
CREATE TABLE SALARY1

or
CREATE TABLE SALARY1

DATA CAPTURE NONE

CREATE TABLE

760 SQL Reference

Example 10: Create a table and log SQL changes in an expanded format.
CREATE TABLE SALARY2

DATA CAPTURE CHANGES

Example 11: Create a table EMP_ACT in the SCHED table space. EMPNO,
PROJNO, ACTNO, EMPTIME, EMSTDATE, and EMENDATE are column
names. Constraints defined on the table are:
v The value for the set of columns, EMPNO, PROJNO, and ACTNO, in any

row must be unique.
v The value of PROJNO must match an existing value for the PROJNO

column in the PROJECT table and if the project is deleted all rows referring
to the project in EMP_ACT should also be deleted.
CREATE TABLE EMP_ACT
(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DECIMAL(5,2),
EMSTDATE DATE,
EMENDATE DATE,
CONSTRAINT EMP_ACT_UNIQ UNIQUE (EMPNO,PROJNO,ACTNO),
CONSTRAINT FK_ACT_PROJ FOREIGN KEY (PROJNO)

REFERENCES PROJECT (PROJNO) ON DELETE CASCADE
)
IN SCHED

A unique index called EMP_ACT_UNIQ is automatically created in the same
schema to enforce the unique constraint.

Example 12: Create a table that is to hold information about famous goals for
the ice hockey hall of fame. The table will list information about the player
who scored the goal, the goaltender against who it was scored, the date and
place, and a description. When available, it will also point to places where
newspaper articles about the game are stored and where still and moving
pictures of the goal are stored. The newspaper articles are to be linked so they
cannot be deleted or renamed but all existing display and update applications
must continue to operate. The still pictures and movies are to be linked with
access under complete control of DB2. The still pictures are to have recovery
and are to be returned to their original owner if unlinked. The movie pictures
are not to have recovery and are to be deleted if unlinked. The description
column and the three DATALINK columns are nullable.

CREATE TABLE HOCKEY_GOALS
(BY_PLAYER VARCHAR(30) NOT NULL,

BY_TEAM VARCHAR(30) NOT NULL,
AGAINST_PLAYER VARCHAR(30) NOT NULL,
AGAINST_TEAM VARCHAR(30) NOT NULL,
DATE_OF_GOAL DATE NOT NULL,
DESCRIPTION CLOB(5000),
ARTICLES DATALINK LINKTYPE URL FILE LINK CONTROL MODE DB2OPTIONS,

CREATE TABLE

Chapter 6. SQL Statements 761

SNAPSHOT DATALINK LINKTYPE URL FILE LINK CONTROL
INTEGRITY ALL
READ PERMISSION DB WRITE PERMISSION BLOCKED
RECOVERY YES ON UNLINK RESTORE,

MOVIE DATALINK LINKTYPE URL FILE LINK CONTROL
INTEGRITY ALL
READ PERMISSION DB WRITE PERMISSION BLOCKED
RECOVERY NO ON UNLINK DELETE)

Example 13: Suppose an exception table is needed for the EMPLOYEE table.
One can be created using the following statement.

CREATE TABLE EXCEPTION_EMPLOYEE AS
(SELECT EMPLOYEE.*,

CURRENT TIMESTAMP AS TIMESTAMP,
CAST ('' AS CLOB(32K)) AS MSG

FROM EMPLOYEE
) DEFINITION ONLY

Example 14: Given the following table spaces with the indicated attributes:
TBSPACE PAGESIZE USER USERAUTH
------------------ ----------- ------ --------
DEPT4K 4096 BOBBY Y
PUBLIC4K 4096 PUBLIC Y
DEPT8K 8192 BOBBY Y
DEPT8K 8192 RICK Y
PUBLIC8K 8192 PUBLIC Y

v If RICK creates the following table, it is placed in table space PUBLIC4K
since the byte count is less than 4005; but if BOBBY creates the same table,
it is placed in table space DEPT4K, since BOBBY has USE privilege because
of an explicit grant:

CREATE TABLE DOCUMENTS
(SUMMARY VARCHAR(1000),
REPORT VARCHAR(2000))

v If BOBBY creates the following table, it is placed in table space DEPT8K
since the byte count is greater than 4005, and BOBBY has USE privilege
because of an explicit grant. However, if DUNCAN creates the same table,
it is placed in table space PUBLIC8K, since DUNCAN has no specific
privileges:

CREATE TABLE CURRICULUM
(SUMMARY VARCHAR(1000),
REPORT VARCHAR(2000),
EXERCISES VARCHAR(1500))

Example 15: Create a table with a LEAD column defined with the structured
type EMP. Specify an INLINE LENGTH of 300 bytes for the LEAD column,
indicating that any instances of LEAD that cannot fit within the 300 bytes are
stored outside the table (separately from the base table row, similar to the way
LOB values are handled).

CREATE TABLE

762 SQL Reference

CREATE TABLE PROJECTS (PID INTEGER,
LEAD EMP INLINE LENGTH 300,
STARTDATE DATE,

...)

Example 16: Create a table DEPT with five columns named DEPTNO,
DEPTNAME, MGRNO, ADMRDEPT, and LOCATION. Column DEPT is to be
defined as an IDENTITY column such that DB2 will always generate a value
for it. The values for the DEPT column should begin with 500 and increment
by 1.

CREATE TABLE DEPT
(DEPTNO SMALLINT NOT NULL

GENERATED ALWAYS AS IDENTITY
(START WITH 500, INCREMENT BY 1),

DEPTNAME VARCHAR (36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT SMALLINT NOT NULL,
LOCATION CHAR(30))

CREATE TABLE

Chapter 6. SQL Statements 763

CREATE TABLESPACE
The CREATE TABLESPACE statement creates a new tablespace within the
database, assigns containers to the tablespace, and records the tablespace
definition and attributes in the catalog.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.
However, if the bind option DYNAMICRULES BIND applies, the statement
cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM
authority.

Syntax

�� CREATE
REGULAR

LONG
SYSTEM

TEMPORARY
USER

TABLESPACE tablespace-name �

�
NODEGROUP

IN nodegroup-name

PAGESIZE 4096

PAGESIZE integer
K

�

� MANAGED BY SYSTEM system-containers
DATABASE database-containers

�

�
EXTENTSIZE number-of-pages

integer K
M
G

PREFETCHSIZE number-of-pages
integer K

M
G

�

�
BUFFERPOOL bufferpool-name 24.1

OVERHEAD number-of-milliseconds

�

CREATE TABLESPACE

764 SQL Reference

�
0.9

TRANSFERRATE number-of-milliseconds

�

�
DROPPED TABLE RECOVERY ON

OFF

��

system-containers:

� �

,

USING (’ container-string ’)
on-nodes-clause

database-containers:

� USING container-clause
on-nodes-clause

container-clause:

�

,

(FILE ’ container-string ’ number-of-pages)
DEVICE integer K

M
G

on-nodes-clause:

ON NODE
NODES

(�

,

node-number1
TO node-number2

)

Description

REGULAR
Stores all data except for temporary tables.

CREATE TABLESPACE

Chapter 6. SQL Statements 765

LONG
Stores long or LOB table columns. It may also store structured type
columns. The tablespace must be a DMS tablespace.

SYSTEM TEMPORARY
Stores temporary tables (work areas used by the database manager to
perform operations such as sorts or joins). The keyword SYSTEM is
optional. Note that a database must always have at least one SYSTEM
TEMPORARY tablespace, as temporary tables can only be stored in such a
tablespace. A temporary tablespace is created automatically when a
database is created.

See CREATE DATABASE in the Command Reference for more information.

USER TEMPORARY
Stores declared global temporary tables. Note that no user temporary
tablespaces exist when a database is created. At least one user temporary
tablespace should be created with appropriate USE privileges, to allow
definition of declared temporary tables.

tablespace-name
Names the tablespace. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The tablespace-name must not identify a
tablespace that already exists in the catalog (SQLSTATE 42710). The
tablespace-name must not begin with the characters SYS (SQLSTATE 42939).

IN NODEGROUP nodegroup-name
Specifies the nodegroup for the tablespace. The nodegroup must exist. The
only nodegroup that can be specified when creating a SYSTEM
TEMPORARY tablespace is IBMTEMPGROUP. The NODEGROUP
keyword is optional.

If the nodegroup is not specified, the default nodegroup
(IBMDEFAULTGROUP) is used for REGULAR, LONG and USER
TEMPORARY tablespaces. For SYSTEM TEMPORARY tablespaces, the
default nodegroup IBMTEMPGROUP is used.

PAGESIZE integer [K]
Defines the size of pages used for the tablespace. The valid values for
integer without the suffix K are 4 096 or 8 192, 16 384, or 32 768. The valid
values for integer with the suffix K are 4 or 8, 16, or 32. An error occurs if
the page size is not one of these values (SQLSTATE 428DE) or the page
size is not the same as the page size of the bufferpool associated with the
tablespace (SQLSTATE 428CB). The default is 4 096 byte (4K) pages. Any
number of spaces is allowed between integer and K, including no space.

MANAGED BY SYSTEM
Specifies that the tablespace is to be a system managed space (SMS)
tablespace.

CREATE TABLESPACE

766 SQL Reference

system-containers
Specify the containers for an SMS tablespace.

USING (’container-string’,...)
For a SMS tablespace, identifies one or more containers that will
belong to the tablespace and into which the tablespace’s data will be
stored. The container-string cannot exceed 240 bytes in length.

Each container-string can be an absolute or relative directory name.
The directory name, if not absolute, is relative to the database
directory. If any component of the directory name does not exist, it is
created by the database manager. When a tablespace is dropped, all
components created by the database manager are deleted. If the
directory identified by container-string exist, it must not contain any
files or subdirectories (SQLSTATE 428B2).

The format of container-string is dependent on the operating system.
The containers are specified in the normal manner for the operating
system. For example, an OS/2 Windows 95 and Windows NT
directory path begins with a drive letter and a “:”, while on
UNIX-based systems, a path begins with a “/”.

Note that remote resources (such as LAN-redirected drives on OS/2,
Windows 95 and Windows NT or NFS-mounted file systems on AIX)
are not supported.

on-nodes-clause
Specifies the partition or partitions on which the containers are
created in a partitioned database. If this clause is not specified, then
the containers are created on the partitions in the nodegroup that are
not explicitly specified in any other on-nodes-clauses. For a SYSTEM
TEMPORARY tablespace defined on nodegroup IBMTEMPGROUP,
when the on-nodes-clause is not specified, the containers will also be
created on all new partitions or nodes added to the database. See
page 769 for details on specifying this clause.

MANAGED BY DATABASE
Specifies that the tablespace is to be a database managed space (DMS)
tablespace.

database-containers
Specify the containers for a DMS tablespace.

USING
Introduces a container-clause.

container-clause
Specifies the containers for a DMS tablespace.

(FILE|DEVICE ’container-string’ number-of-pages,...)
For a DMS tablespace, identifies one or more containers that will

CREATE TABLESPACE

Chapter 6. SQL Statements 767

belong to the tablespace and into which the tablespace’s data will
be stored. The type of the container (either FILE or DEVICE) and
its size (in PAGESIZE pages) are specified. The size can also be
specified as an integer value followed by K (for kilobytes), M (for
megabytes) or G (for gigabytes). If specified in this way, the floor
of the number of bytes divided by the pagesize is used to
determine the number of pages for the container. A mixture of
FILE and DEVICE containers can be specified. The container-string
cannot exceed 254 bytes in length.

For a FILE container, the container-string must be an absolute or
relative file name. The file name, if not absolute, is relative to the
database directory. If any component of the directory name does
not exist, it is created by the database manager. If the file does not
exist, it will be created and initialized to the specified size by the
database manager. When a tablespace is dropped, all components
created by the database manager are deleted.

Note: If the file exists it is overwritten and if it is smaller than
specified it is extended. The file will not be truncated if it is
larger than specified.

For a DEVICE container, the container-string must be a device
name. The device must already exist.

All containers must be unique across all databases; a container can
belong to only one tablespace. The size of the containers can
differ, however optimal performance is achieved when all
containers are the same size. The exact format of container-string is
dependent on the operating system. The containers will be
specified in the normal manner for the operating system. For
more detail on declaring containers, refer to the Administration
Guide.

Remote resources (such as LAN-redirected drives on OS/2,
Windows 95 and Windows NT or NFS-mounted file systems on
AIX) are not supported.

on-nodes-clause
Specifies the partition or partitions on which the containers are
created in a partitioned database. If this clause is not specified,
then the containers are created on the partitions in the nodegroup
that are not explicitly specified in any other on-nodes-clause. For a
SYSTEM TEMPORARY tablespace defined on nodegroup
IBMTEMPGROUP, when the on-nodes-clause is not specified, the
containers will also be created on all new partitions added to the
database. See page 769 for details on specifying this clause.

CREATE TABLESPACE

768 SQL Reference

on-nodes-clause
Specifies the partitions on which containers are created in a partitioned
database.

ON NODES
Keywords that indicate that specific partitions are specified. NODE is
a synonym for NODES.

node-number1
Specify a specific partition (or node) number.

TO node-number2
Specify a range of partition (or node) numbers. The value of
node-number2 must be greater than or equal to the value of
node-number1 (SQLSTATE 428A9). All partitions between and
including the specified partition numbers are included in the
partitions for which the containers are created if the node is
included in the nodegroup of the tablespace.

The partition specified by number and every partition (or node) in the
range of partition must exist in the nodegroup on which the
tablespace is defined (SQLSTATE 42729). A partition-number may only
appear explicitly or within a range in exactly one on-nodes-clause for
the statement (SQLSTATE 42613).

EXTENTSIZE number-of-pages
Specifies the number of PAGESIZE pages that will be written to a
container before skipping to the next container. The extent size value
can also be specified as an integer value followed by K (for kilobytes),
M (for megabytes), or G (for gigabytes). If specified in this way, the
floor of the number of bytes divided by the pagesize is used to
determine the number of pages value for extent size. The database
manager cycles repeatedly through the containers as data is stored.

The default value is provided by the DFT_EXTENT_SZ configuration
parameter.

PREFETCHSIZE number-of-pages
Specifies the number of PAGESIZE pages that will be read from the
tablespace when data prefetching is being performed. The prefetch
size value can also be specified as an integer value followed by K (for
kilobytes), M (for megabytes), or G (for gigabytes). If specified in this
way, the floor of the number of bytes divided by the pagesize is used
to determine the number of pages value for prefetch size. Prefetching
reads in data needed by a query prior to it being referenced by the
query, so that the query need not wait for I/O to be performed.

CREATE TABLESPACE

Chapter 6. SQL Statements 769

The default value is provided by the DFT_PREFETCH_SZ
configuration parameter. (This configuration parameter, like all
configuration parameters, is explained in detail in the Administration
Guide.)

BUFFERPOOL bufferpool-name
The name of the buffer pool used for tables in this tablespace. The
buffer pool must exist (SQLSTATE 42704). If not specified, the default
buffer pool (IBMDEFAULTBP) is used. The page size of the bufferpool
must match the page size specified (or defaulted) for the tablespace
(SQLSTATE 428CB). The nodegroup of the tablespace must be defined
for the bufferpool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies
the I/O controller overhead and disk seek and latency time, in
milliseconds. The number should be an average for all containers that
belong to the tablespace, if not the same for all containers. This value
is used to determine the cost of I/O during query optimization.

TRANSFERRATE number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies
the time to read one page into memory, in milliseconds. The number
should be an average for all containers that belong to the tablespace,
if not the same for all containers. This value is used to determine the
cost of I/O during query optimization.

DROPPED TABLE RECOVERY
Dropped tables in the specified tablespace may be recovered using the
RECOVER TABLE ON option of the ROLLFORWARD command. This
clause can only be specified for a REGULAR tablespace (SQLSTATE
42613). For more information on recovering dropped tables, refer to
the Administration Guide.

Notes
v For information on how to determine the correct EXTENTSIZE,

PREFETCHSIZE, OVERHEAD, and TRANSFERRATE values, refer to the
Administration Guide.

v Choosing between a database-managed space or a system-managed space
for a tablespace is a fundamental choice involving trade-offs. See the
Administration Guide for a discussion of those trade-offs.

v When more than one TEMPORARY tablespace exists in the database, they
will be used in round-robin fashion in order to balance their usage. See the
Administration Guide for information on using more than one tablespace,
rebalancing and recommended values for EXTENTSIZE, PREFETCHSIZE,
OVERHEAD, and TRANSFERRATE.

CREATE TABLESPACE

770 SQL Reference

v In a partitioned database if more than one partition resides on the same
physical node, then the same device or specific path cannot be specified for
such partitions (SQLSTATE 42730). For this environment, either specify a
unique container-string for each partition or use a relative path name.

v You can specify a node expression for container string syntax when creating
either SMS or DMS containers. You would typically specify the node
expression if you are using multiple logical nodes in the partitioned
database system. This ensures that container names are unique across nodes
(database partition servers). When you specify the expression, either the
node number is part of the container name, or, if you specify additional
arguments, the result of the argument is part of the container name.
You use the argument “ $N” ([blank]$N) to indicate the node expression.
The argument must occur at the end of the container string and can only be
used in one of the following forms. In the table that follows, the node
number is assumed to be 5:

Table 24. Arguments for Creating Containers

Syntax Example Value

[blank]$N " $N" 5

[blank]$N+[number] " $N+1011" 1016

[blank]$N%[number] " $N%3" 2

[blank]$N+[number]%[number] " $N+12%13" 4

[blank]$N%[number]+[number] " $N%3+20" 22

Note:

– % is modulus

– In all cases, the operators are evaluated from left to right.

Some examples are as follows:

Example 1:
CREATE TABLESPACE TS1 MANAGED BY DATABASE USING

(device '/dev/rcont $N' 20000)

On a two-node system, the following containers would be used:

/dev/rcont0 - on NODE 0
/dev/rcont1 - on NODE 1

Example 2:
CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

(file '/DB2/containers/TS2/container $N+100' 10000)

On a four-node system, the following containers would be created:

CREATE TABLESPACE

Chapter 6. SQL Statements 771

/DB2/containers/TS2/container100 - on NODE 0
/DB2/containers/TS2/container101 - on NODE 1
/DB2/containers/TS2/container102 - on NODE 2
/DB2/containers/TS2/container103 - on NODE 3

Example 3:
CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING
('/TS3/cont $N%2','/TS3/cont $N%2+2')

On a two-node system, the following containers would be created:

/TS3/cont0 - On NODE 0
/TS3/cont2 - On NODE 0
/TS3/cont1 - On NODE 1
/TS3/cont3 - On NODE 1

Examples
Example 1: Create a regular DMS table space on a UNIX-based system using
3 devices of 10 000 4K pages each. Specify their I/O characteristics.

CREATE TABLESPACE PAYROLL
MANAGED BY DATABASE
USING (DEVICE'/dev/rhdisk6' 10000,

DEVICE '/dev/rhdisk7' 10000,
DEVICE '/dev/rhdisk8' 10000)

OVERHEAD 24.1
TRANSFERRATE 0.9

Example 2: Create a regular SMS table space on OS/2 or Windows NT using
3 directories on three separate drives, with a 64-page extent size, and a
32-page prefetch size.

CREATE TABLESPACE ACCOUNTING
MANAGED BY SYSTEM
USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp')
EXTENTSIZE 64
PREFETCHSIZE 32

Example 3: Create a temporary DMS table space on Unix using 2 files of
50,000 pages each, and a 256-page extent size.

CREATE TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY DATABASE
USING (FILE '/tmp/tempspace2.f1' 50000,

FILE '/tmp/tempspace2.f2' 50000)
EXTENTSIZE 256

Example 4: Create a DMS table space on nodegroup ODDNODEGROUP
(nodes 1,3,5) on a Unix partitioned database. On all partitions (or nodes), use
the device /dev/rhdisk0 for 10 000 4K pages. Also specify a partition specific
device for each partition with 40 000 4K pages.

CREATE TABLESPACE

772 SQL Reference

CREATE TABLESPACE PLANS
MANAGED BY DATABASE
USING (DEVICE '/dev/rhdisk0' 10000, DEVICE '/dev/rn1hd01' 40000)
ON NODE (1)
USING (DEVICE '/dev/rhdisk0' 10000, DEVICE '/dev/rn3hd03' 40000)
ON NODE (3)
USING (DEVICE '/dev/rhdisk0' 10000, DEVICE '/dev/rn5hd05' 40000)
ON NODE (5)

CREATE TABLESPACE

Chapter 6. SQL Statements 773

CREATE TRANSFORM
The CREATE TRANSFORM statement defines transformation functions,
identified by a group name, that are used to exchange structured type values
with host language programs and with external functions and methods.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v definer of the type identified by type-name and definer of every function

specified.

Syntax

�� CREATE TRANSFORM FOR type-name
TRANSFORMS

�

� � �

,
(1)

group-name (TO SQL WITH function-specification)
FROM SQL

��

function-specification:

�

FUNCTION function-name
()

,

data-type
SPECIFIC FUNCTION specific-name

Notes:

1 The same clause must not be specified more than once.

Description

TRANSFORM or TRANSFORMS
Indicates that one or more transform groups is being defined. Either
version of the keyword can be specified.

CREATE TRANSFORM

774 SQL Reference

FOR type-name
Specifies a name for the user-defined structured type for which the
transform group is being defined.

In dynamic SQL statements, the CURRENT SCHEMA special register is
used as a qualifier for an unqualified type-name. In static SQL statements
the QUALIFIER precompile/bind option implicitly specifies the qualifier
for an unqualified type-name. The type-name must be the name of an
existing user-defined type (SQLSTATE 42704), and it must be a structured
type (SQLSTATE 42809). The structured type or any other structured type
in the same type hierarchy must not have transforms already defined with
the given group-name (SQLSTATE 42739).

group-name
Specifies the name of the transform group containing the TO SQL and
FROM SQL functions. The name does not need to be unique; but a
transform group of this name (with the same TO SQL and/or FROM SQL
direction defined) must not be previously defined for the specified
type-name (SQLSTATE 42739). A group-name must be an SQL identifier,
with a maximum of 18 characters in length (SQLSTATE 42622), and it may
not include any qualifier prefix (SQLSTATE 42601). The group-name cannot
begin with the prefix 'SYS', since this is reserved for database use
(SQLSTATE 42939).

At most, one of each of the FROM SQL and TO SQL function designations
may be specified for any given group (SQLSTATE 42628).

TO SQL
Defines the specific function used to transform a value to the SQL
user-defined structured type format. The function must have all its
parameters as built-in data types and the returned type is type-name.

FROM SQL
Defines the specific function used to transform a value to a built in data
type value representing the SQL user-defined structured type. The
function must have one parameter of data type type-name, and return a
built-in data type (or set of built-in data types).

WITH function-specification
There are several ways available to specify the function instance.

If FROM SQL is specified, function-specification must identify a function
that meets the following requirements:
v there is one parameter of type type-name

v the return type is a built-in type, or a row whose columns all have
built-in types

v the signature specifies either LANGUAGE SQL or the use of another
FROM SQL transform function which has LANGUAGE SQL.

CREATE TRANSFORM

Chapter 6. SQL Statements 775

If TO SQL is specified, function-specification must identify a function that
meets the following requirements:
v all parameters have built-in types
v the return type is type-name

v the signature specifies either LANGUAGE SQL or the use of another
TO SQL transform function which has LANGUAGE SQL.

Methods (even if specified with FUNCTION ACCESS) cannot be specified
as transforms through function-specification. Instead, only functions that are
defined by the CREATE FUNCTION statement can act as transforms
(SQLSTATE 42704 or 42883).

Additionally, although not enforced, the one or more built-in types which
are returned from the FROM SQL function should directly correspond to
the one or more built-in types which are parameters of the TO SQL
function. This is a logical consequence of the inverse relationship between
these two functions.

FUNCTION function-name
Identifies the particular function by name, and is valid only if there is
exactly one function with the function-name. The function identified
may have any number of parameters defined for it.

In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names.

If no function by this name exists in the named or implied schema, an
error is raised (SQLSTATE 42704). If there is more than one specific
instance of the function in the named or implied schema, an error is
raised (SQLSTATE 42725). The standard function selection algorithm is
not used.

FUNCTION function-name (data-tape,...)
Provides the function signature, which uniquely identifies the function
to be used. The standard function selection algorithm is not used.

function-name
Specifies the name of the function. In dynamic SQL statements,
the CURRENT SCHEMA special register is used as a qualifier for
an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names.

(data-type,...)
The data-types specified here must match the data types specified
in the CREATE FUNCTION statement in the corresponding

CREATE TRANSFORM

776 SQL Reference

position. Both the number of data types and the logical
concatenation of the data types are used to identify the specific
function.

If the data-type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses can
be coded to indicate that these attributes should be ignored when
looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), since the parameter
value indicates different data types (REAL or DOUBLE). However,
if length, precision, or scale is coded, the value must exactly
match that specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for
n since 0<n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.
Note that the FOR BIT DATA attribute is not considered part of
the signature for matching purposes. For example, a CHAR FOR
BIT DATA specified in the signature would match a function
defined with CHAR only.

If no function with the specified signature exists in the named or
implied schema, an error is raised (SQLSTATE 42883).

SPECIFIC FUNCTION specific-name
Identifies the particular user-defined function, using a specific name
either specified or defaulted to at function creation time.

In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The specific-name
must identify a specific function instance in the named or implied
schema; otherwise, an error is raised (SQLSTATE 42704).

Notes
v When a transform group is not specified in an application program (using

the TRANSFORM GROUP precompile or bind option for static SQL, or the
SET CURRENT DEFAULT TRANSFORM GROUP statement for dynamic
SQL), the transform functions in the transform group 'DB2_PROGRAM' are
used (if defined) when the application program is retrieving or sending
host variables that are based on the user-defined structured type identified
by type-name. When retrieving a value of data type type-name, the FROM
SQL transform is executed to transform the structured type to the built-in
data type returned by the transform function. Similarly, when sending a

CREATE TRANSFORM

Chapter 6. SQL Statements 777

host variable that will be assigned to a value of data type type-name, the TO
SQL transform is executed to transform the built-in data type value to the
structured type value. If a user-defined transform group is not specified or
a 'DB2_PROGRAM' group is not defined (for the given structured type), an
error results.

v The built-in data type representation for a structured type host variable
must be assignable:
– from the result of the FROM SQL transform function for the structured

type as defined by the specified TRANSFORM GROUP option of the
precompile command (using retrieval assignment rules) and

– to the parameter of the TO SQL transform function for the structured
type as defined by the specified TRANSFORM GROUP option of the
precompile command (using storage assignment rules).

If a host variable is not assignment compatible with the type required by
the applicable transform function, an error is raised (for bind-in: SQLSTATE
42821, for bind-out: SQLSTATE 42806). For errors that result from string
assignments, see “String Assignments” on page 96.

v The transform functions identified in the default transform group named
'DB2_FUNCTION' are used whenever a user-defined function not written in
SQL is invoked using the data type type-name as a parameter or returns
type. This applies when the function or method does not specify the
TRANSFORM GROUP clause. When invoking the function with an
argument of data type type-name, the FROM SQL transform is executed to
transform the structured type to the built-in data type returned by the
transform function. Similarly, when the returns data type of the function is
of data type type-name, the TO SQL transform is executed to transform the
built-in data type value returned from the external function program into
the structured type value.

v If a structured type contains an attribute which is also a structured type, the
associated transform functions must recursively expand (or assemble) all
nested structured types. This means that the results or parameters of the
transform functions consist only of the set of built-in types representing all
base attributes of the subject structured type (including all its nested
structured types). There is no ″cascading″ of transform functions for
handling nested structured types.

v The function (or functions) identified in this statement are resolved
according to the rules outlined above at the execution of this statement.
When these functions are used (implicitly) in subsequent SQL statements,
they do not undergo another resolution process. The transform functions
defined in this statement are recorded exactly as they are resolved in this
statement.

v When attributes or subtypes of a given type are created or dropped, the
transform functions for the user-defined structured type must also be
changed.

CREATE TRANSFORM

778 SQL Reference

v For a given transform group, the FROM SQL and TO SQL functions can be
specified in either the same group-name clause, in separate group-name
clauses, or in separate CREATE TRANSFORM statements. The only
restriction is that a given FROM SQL or TO SQL function designation may
not be redefined without first dropping the existing group definition. This
allows you to define, for example, a FROM SQL transform function for a
given group first, and the corresponding TO SQL transform function for the
same group at a later time.

Examples
Example 1: Create two transform groups that associate the user-defined
structured type polygon with a transform function customized for C and one
specialized for Java.

CREATE TRANSFORM FOR POLYGON
mystruct1 (FROM SQL WITH FUNCTION myxform_sqlstruct,

TO SQL WITH FUNCTION myxform_structsql)
myjava1 (FROM SQL WITH FUNCTION myxform_sqljava,

TO SQL WITH FUNCTION myxform_javasql)

CREATE TRANSFORM

Chapter 6. SQL Statements 779

CREATE TRIGGER
The CREATE TRIGGER statement defines a trigger in the database.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement when the trigger
is created must include at least one of the following:
v SYSADM or DBADM authority.
v ALTER privilege on the table on which the trigger is defined, or ALTERIN

privilege on the schema of the table on which the trigger is defined and one
of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the trigger does not exist
– CREATEIN privilege on the schema, if the schema name of the trigger

refers to an existing schema.

If the authorization ID of the statement does not have SYSADM or DBADM
authority, the privileges that the authorization ID of the statement holds
(without considering PUBLIC or group privileges) must include all of the
following as long as the trigger exists:
v SELECT privilege on the table on which the trigger is defined, if any

transition variables or tables are specified
v SELECT privilege on any table or view referenced in the triggered action

condition
v Necessary privileges to invoke the triggered SQL statements specified.

If a trigger definer can only create the trigger because the definer has
SYSADM authority, then the definer is granted explicit DBADM authority for
the purpose of creating the trigger.

Syntax

�� CREATE TRIGGER trigger-name NO CASCADE BEFORE
AFTER

�

CREATE TRIGGER

780 SQL Reference

�

�

INSERT
DELETE
UPDATE

,

OF column-name

ON table-name �

�

�
(1) (2) AS

REFERENCING OLD correlation-name
AS

NEW correlation-name
AS

OLD_TABLE identifier
AS

NEW_TABLE identifier

�

� FOR EACH ROW
(3)

FOR EACH STATEMENT

MODE DB2SQL triggered-action ��

triggered-action:

WHEN (search-condition)
�

�

�

triggered-SQL-statement

BEGIN ATOMIC triggered-SQL-statement ; END

Notes:

1 OLD and NEW may only be specified once each.

2 OLD_TABLE and NEW_TABLE may only be specified once each and
only for AFTER triggers.

3 FOR EACH STATEMENT may not be specified for BEFORE triggers.

Description

trigger-name
Names the trigger. The name, including the implicit or explicit schema
name must not identify a trigger already described in the catalog
(SQLSTATE 42710). If a two part name is specified, the schema name
cannot begin with ″SYS″ (SQLSTATE 42939).

CREATE TRIGGER

Chapter 6. SQL Statements 781

NO CASCADE BEFORE
Specifies that the associated triggered action is to be applied before any
changes caused by the actual update of the subject table are applied to the
database. It also specifies that the triggered action of the trigger will not
cause other triggers to be activated.

AFTER
Specifies that the associated triggered action is to be applied after the
changes caused by the actual update of the subject table are applied to the
database.

INSERT
Specifies that the triggered action associated with the trigger is to be
executed whenever an INSERT operation is applied to the designated base
table.

DELETE
Specifies that the triggered action associated with the trigger is to be
executed whenever a DELETE operation is applied to the designated base
table.

UPDATE
Specifies that the triggered action associated with the trigger is to be
executed whenever an UPDATE operation is applied to the designated
base table subject to the columns specified or implied.

If the optional column-name list is not specified, every column of the table
is implied. Therefore, omission of the column-name list implies that the
trigger will be activated by the update of any column of the table.

OF column-name,...
Each column-name specified must be a column of the base table
(SQLSTATE 42703). If the trigger is a BEFORE trigger, the column-name
specified may not be a generated column other than the identity
column (SQLSTATE 42989). No column-name shall appear more than
once in the column-name list (SQLSTATE 42711). The trigger will only
be activated by the update of a column identified in the column-name
list.

ON table-name
Designates the subject table of the trigger definition. The name must
specify a base table or an alias that resolves to a base table (SQLSTATE
42809). The name must not specify a catalog table (SQLSTATE 42832), a
summary table (SQLSTATE 42997), a declared temporary table (SQLSTATE
42995), or a nickname (SQLSTATE 42809).

REFERENCING
Specifies the correlation names for the transition variables and the table
names for the transition tables. Correlation names identify a specific row in
the set of rows affected by the triggering SQL operation. Table names

CREATE TRIGGER

782 SQL Reference

identify the complete set of affected rows. Each row affected by the
triggering SQL operation is available to the triggered action by qualifying
columns with correlation-names specified as follows.

OLD AS correlation-name
Specifies a correlation name which identifies the row state prior to the
triggering SQL operation.

NEW AS correlation-name
Specifies a correlation name which identifies the row state as modified
by the triggering SQL operation and by any SET statement in a
BEFORE trigger that has already executed.

The complete set of rows affected by the triggering SQL operation is
available to the triggered action by using a temporary table name
specified as follows.

OLD_TABLE AS identifier
Specifies a temporary table name which identifies the set of affected
rows prior to the triggering SQL operation.

NEW_TABLE AS identifier
Specifies a temporary table name which identifies the affected rows as
modified by the triggering SQL operation and by any SET statement
in a BEFORE trigger that has already executed.

The following rules apply to the REFERENCING clause:
v None of the OLD and NEW correlation names and the OLD_TABLE

and NEW_TABLE names can be identical (SQLSTATE 42712).
v Only one OLD and one NEW correlation-name may be specified for a

trigger (SQLSTATE 42613).
v Only one OLD_TABLE and one NEW_TABLE identifier may be specified

for a trigger (SQLSTATE 42613).
v The OLD correlation-name and the OLD_TABLE identifier can only be

used if the trigger event is either a DELETE operation or an UPDATE
operation (SQLSTATE 42898). If the operation is a DELETE operation,
OLD correlation-name captures the value of the deleted row. If it is an
UPDATE operation, it captures the value of the row before the UPDATE
operation. The same applies to the OLD_TABLE identifier and the set of
affected rows.

v The NEW correlation-name and the NEW_TABLE identifier can only be
used if the trigger event is either an INSERT operation or an UPDATE
operation (SQLSTATE 42898). In both operations, the value of NEW
captures the new state of the row as provided by the original operation
and as modified by any BEFORE trigger that has executed to this point.
The same applies to the NEW_TABLE identifier and the set of affected
rows.

CREATE TRIGGER

Chapter 6. SQL Statements 783

v OLD_TABLE and NEW_TABLE identifiers cannot be defined for a
BEFORE trigger (SQLSTATE 42898).

v OLD and NEW correlation-names cannot be defined for a FOR EACH
STATEMENT trigger (SQLSTATE 42899).

v Transition tables cannot be modified (SQLSTATE 42807).
v The total of the references to the transition table columns and transition

variables in the triggered-action cannot exceed the limit for the number
of columns in a table or the sum of their lengths cannot exceed the
maximum length of a row in a table (SQLSTATE 54040).

v The scope of each correlation-name and each identifier is the entire trigger
definition.

FOR EACH ROW
Specifies that the triggered action is to be applied once for each row of the
subject table that is affected by the triggering SQL operation.

FOR EACH STATEMENT
Specifies that the triggered action is to be applied only once for the whole
statement. This type of trigger granularity cannot be specified for a
BEFORE trigger (SQLSTATE 42613). If specified, an UPDATE or DELETE
trigger is activated even when no rows are affected by the triggering
UPDATE or DELETE statement.

MODE DB2SQL
This clause is used to specify the mode of triggers. This is the only valid
mode currently supported.

triggered-action
Specifies the action to be performed when a trigger is activated. A
triggered-action is composed of one or several triggered-SQL-statements
and by an optional condition for the execution of the
triggered-SQL-statements. If there is more than one triggered-SQL-statement
in the triggered-action for a given trigger, they must be enclosed within
the BEGIN ATOMIC and END keywords, separated by a semi-colon, 83

and are executed in the order they are specified.

WHEN (search-condition)
Specifies a condition that is true, false, or unknown. The
search-condition provides a capability to determine whether or not a
certain triggered action should be executed.

The associated action is performed only if the specified search
condition evaluates as true. If the WHEN clause is omitted, the
associated triggered-SQL-statements are always performed.

83. When using this form in the Command Line Processor, the statement terminating character cannot be the
semi-colon. See the Command Reference for information on specifying an alternative terminating character.

CREATE TRIGGER

784 SQL Reference

triggered-SQL-statement
If the trigger is a BEFORE trigger, then a triggered SQL statement
must be one of the following (SQLSTATE 42987):
v a fullselect 84

v a SET transition-variable SQL statement.
v a SIGNAL SQLSTATE statement

If the trigger is an AFTER trigger, then a triggered SQL statement
must be one of the following (SQLSTATE 42987):
v an INSERT SQL statement
v a searched UPDATE SQL statement
v a searched DELETE SQL statement
v a SIGNAL SQLSTATE statement
v a fullselect 84

The triggered-SQL-statement cannot reference an undefined transition
variable (SQLSTATE 42703) or a declared temporary table (SQLSTATE
42995).

The triggered-SQL-statement in a BEFORE trigger cannot reference a
summary table defined with REFRESH IMMEDIATE (SQLSTATE
42997).

The triggered-SQL-statement in a BEFORE trigger cannot reference a
generated column, other than the identity column, in the new
transition variable (SQLSTATE 42989).

Notes
v Adding a trigger to a table that already has rows in it will not cause any

triggered actions to be activated. Thus, if the trigger is designed to enforce
constraints on the data in the table, those constraints may not be satisfied
by the existing rows.

v If the events for two triggers occur simultaneously (for example, if they
have the same event, activation time, and subject tables), then the first
trigger created is the first to execute.

v If a column is added to the subject table after triggers have been defined,
the following rules apply:
– If the trigger is an UPDATE trigger that was specified without an explicit

column list, then an update to the new column will cause the activation
of the trigger.

– The column will not be visible in the triggered action of any previously
defined trigger.

84. A common-table-expression may precede a fullselect.

CREATE TRIGGER

Chapter 6. SQL Statements 785

– The OLD_TABLE and NEW_TABLE transition tables will not contain this
column. Thus, the result of performing a ″SELECT *″ on a transition
table will not contain the added column.

v If a column is added to any table referenced in a triggered action, the new
column will not be visible to the triggered action.

v The result of a fullselect specified as a triggered-SQL-statement is not
available inside or outside of the trigger.

v A before delete trigger defined on a table involved in a cycle of cascaded
referential constraints should not include references to the table on which it
is defined or any other table modified by cascading during the evaluation
of the cycle of referential integrity constraints. The results of such a trigger
are data dependent and therefore may not produce consistent results.
In its simplest form, this means that a before delete trigger on a table with
a self-referencing referential constraint and a delete rule of CASCADE
should not include any references to the table in the triggered-action.

v The creation of a trigger causes certain packages to be marked invalid:
– If an update trigger without an explicit column list is created, then

packages with an update usage on the target table are invalidated.
– If an update trigger with a column list is created, then packages with

update usage on the target table are only invalidated if the package also
has an update usage on at least one column in the column-name list of the
CREATE TRIGGER statement.

– If an insert trigger is created, packages that have an insert usage on the
target table are invalidated.

– If a delete trigger is created, packages that have a delete usage on the
target table are invalidated.

v A package remains invalid until the application program is explicitly bound
or rebound, or it is executed and the database manager automatically
rebinds it.

v Inoperative triggers: An inoperative trigger is a trigger that is no longer
available and is therefore never activated. A trigger becomes inoperative if:
– A privilege that the creator of the trigger is required to have for the

trigger to execute is revoked.
– An object such as a table, view or alias, upon which the triggered action

is dependent, is dropped.
– A view, upon which the triggered action is dependent, becomes

inoperative.
– An alias that is the subject table of the trigger is dropped.

In practical terms, an inoperative trigger is one in which a trigger definition
has been dropped as a result of cascading rules for DROP or REVOKE
statements. For example, when an view is dropped, any trigger with a
triggered-SQL-statement defined using that view is made inoperative.

CREATE TRIGGER

786 SQL Reference

When a trigger is made inoperative, all packages with statements
performing operations that were activating the trigger will be marked
invalid. When the package is rebound (explicitly or implicitly) the
inoperative trigger is completely ignored. Similarly, applications with
dynamic SQL statements performing operations that were activating the
trigger will also completely ignore any inoperative triggers.

The trigger name can still be specified in the DROP TRIGGER and
COMMENT ON TRIGGER statements.

An inoperative trigger may be recreated by issuing a CREATE TRIGGER
statement using the definition text of the inoperative trigger. This trigger
definition text is stored in the TEXT column of SYSCAT.TRIGGERS. Note
that there is no need to explicitly drop the inoperative trigger in order to
recreate it. Issuing a CREATE TRIGGER statement with the same
trigger-name as an inoperative trigger will cause that inoperative trigger to
be replaced with a warning (SQLSTATE 01595).

Inoperative triggers are indicated by an X in the VALID column of the
SYSCAT.TRIGGERS catalog view.

v Errors executing triggers: Errors that occur during the execution of
triggered-SQL-statements are returned using SQLSTATE 09000 unless the
error is considered severe. If the error is severe, the severe error SQLSTATE
is returned. The SQLERRMC field of the SQLCA for non-severe error will
include the trigger name, SQLCODE, SQLSTATE and as many tokens as
will fit from the tokens of the failure.
A triggered-SQL-statement could be a SIGNAL SQLSTATE statement or
contain a RAISE_ERROR function. In both these cases, the SQLSTATE
returned is the one specified in the SIGNAL SQLSTATE statement or the
RAISE_ERROR condition.

v Creating a trigger with a schema name that does not already exist will
result in the implicit creation of that schema provided the authorization ID
of the statement has IMPLICIT_SCHEMA authority. The schema owner is
SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

v A value generated by the database manager for an identity column is
generated before the execution of any BEFORE triggers. Therefore, the
generated identity value is visible to BEFORE triggers.

v A value generated by the database manager for a generated by expression
column is generated after the execution of all BEFORE triggers.Therefore,
the value generated by the expression is not visible to BEFORE triggers.

v Triggers and typed tables: A trigger can be attached to a typed table at any
level of a table hierarchy. If an SQL statement activates multiple triggers,
the triggers will be executed in their creation order, even if they are
attached to different tables in the typed table hierarchy.

CREATE TRIGGER

Chapter 6. SQL Statements 787

When a trigger is activated, its transition variables (OLD, NEW,
OLD_TABLE and NEW_TABLE) may contain rows of subtables. However,
they will contain only columns defined on the table to which they are
attached.
Effects of INSERT, UPDATE, and DELETE statements:
– Row triggers: When an SQL statement is used to INSERT, UPDATE, or

DELETE a table row, it activates row-triggers attached to the most
specific table containing the row, and all supertables of that table. This
rule is always true, regardless of how the SQL statement accesses the
table. For example, when issuing an UPDATE EMP command, some of
the updated rows may be in the subtable MGR. For EMP rows, the
row-triggers attached to EMP and its supertables are activated. For MGR
rows, the row-triggers attached to MGR and its supertables are activated.

– Statement triggers: An INSERT, UPDATE, or DELETE statement activates
statement-triggers attached to tables (and their supertables) that could be
affected by the statement. This rule is always true, regardless of whether
any actual rows in these tables were affected. For example, on an
INSERT INTO EMP command, statement-triggers for EMP and its
supertables are activated. As another example, on either an UPDATE
EMP or DELETE EMP command, statement triggers for EMP and its
supertables and subtables are activated, even if no subtable rows were
updated or deleted. Likewise, a UPDATE ONLY (EMP) or DELETE
ONLY (EMP) command will activate statement-triggers for EMP and its
supertables, but not statement-triggers for subtables.

Effects of DROP TABLE statements: A DROP TABLE statement does not
activate any triggers that are attached to the table being dropped. However,
if the dropped table is a subtable, all the rows of the dropped table are
considered to be deleted from its supertables. Therefore, for a table T:
– Row triggers: DROP TABLE T activates row-type delete-triggers that are

attached to all supertables of T, for each row of T.
– Statement triggers: DROP TABLE T activates statement-type

delete-triggers that are attached to all supertables of T, regardless of
whether T contains any rows.

Actions on Views: To predict what triggers are activated by an action on a
view, use the view definition to translate that action into an action on base
tables. For example:
1. An SQL statement performs UPDATE V1, where V1 is a typed view

with a subview V2. Suppose V1 has underlying table T1, and V2 has
underlying table T2. The statement could potentially affect rows in T1,
T2, and their subtables, so statement triggers are activated for T1 and T2
and all their subtables and supertables.

2. An SQL statement performs UPDATE V1, where V1 is a typed view
with a subview V2. Suppose V1 is defined as SELECT ... FROM

CREATE TRIGGER

788 SQL Reference

ONLY(T1) and V2 is defined as SELECT ... FROM ONLY(T2). Since the
statement cannot affect rows in subtables of T1 and T2, statement
triggers are activated for T1 and T2 and their supertables, but not their
subtables.

3. An SQL statement performs UPDATE ONLY(V1), where V1 is a typed
view defined as SELECT ... FROM T1. The statement can potentially
affect T1 and its subtables. Therefore, statement triggers are activated for
T1 and all its subtables and supertables.

4. An SQL statement performs UPDATE ONLY(V1), where V1 is a typed
view defined as SELECT ... FROM ONLY(T1). In this case, T1 is the only
table that can be affected by the statement, even if V1 has subviews and
T1 has subtables. Therefore, statement triggers are activated only for T1
and its supertables.

Examples
Example 1: Create two triggers that will result in the automatic tracking of
the number of employees a company manages. The triggers will interact with
the following tables:

EMPLOYEE table with these columns: ID, NAME, ADDRESS, and
POSITION.
COMPANY_STATS table with these columns: NBEMP, NBPRODUCT, and
REVENUE.

The first trigger increments the number of employees each time a new person
is hired; that is, each time a new row is inserted into the EMPLOYEE table:

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The second trigger decrements the number of employees each time an
employee leaves the company; that is, each time a row is deleted from the
table EMPLOYEE:

CREATE TRIGGER FORMER_EMP
AFTER DELETE ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1

Example 2: Create a trigger that ensures that whenever a parts record is
updated, the following check and (if necessary) action is taken:

If the on-hand quantity is less than 10% of the maximum stocked quantity,
then issue a shipping request ordering the number of items for the affected
part to be equal to the maximum stocked quantity minus the on-hand
quantity.

CREATE TRIGGER

Chapter 6. SQL Statements 789

The trigger will interact with the PARTS table with these columns: PARTNO,
DESCRIPTION, ON_HAND, MAX_STOCKED, and PRICE.

ISSUE_SHIP_REQUEST is a user-defined function that sends an order form
for additional parts to the appropriate company.
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.ON_HAND < 0.10 * N.MAX_STOCKED)
BEGIN ATOMIC
VALUES(ISSUE_SHIP_REQUEST(N.MAX_STOCKED - N.ON_HAND, N.PARTNO));
END

Example 3: Create a trigger that will cause an error when an update occurs
that would result in a salary increase greater than ten percent of the current
salary.

CREATE TRIGGER RAISE_LIMIT
AFTER UPDATE OF SALARY ON EMPLOYEE
REFERENCING NEW AS N OLD AS O
FOR EACH ROW MODE DB2SQL
WHEN (N.SALARY > 1.1 * O.SALARY)

SIGNAL SQLSTATE '75000' ('Salary increase>10%')

Example 4: Consider an application which records and tracks changes to stock
prices. The database contains two tables, CURRENTQUOTE and
QUOTEHISTORY.
Tables: CURRENTQUOTE (SYMBOL, QUOTE, STATUS)

QUOTEHISTORY (SYMBOL, QUOTE, QUOTE_TIMESTAMP)

When the QUOTE column of CURRENTQUOTE is updated, the new quote
should be copied, with a timestamp, to the QUOTEHISTORY table. Also, the
STATUS column of CURRENTQUOTE should be updated to reflect whether
the stock is:
1. rising in value;
2. at a new high for the year;
3. dropping in value;
4. at a new low for the year;
5. steady in value.

CREATE TRIGGER statements that accomplish this are as follows.
v Trigger Definition to set the status:

CREATE TRIGGER STOCK_STATUS
NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE
REFERENCING NEW AS NEWQUOTE OLD AS OLDQUOTE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

SET NEWQUOTE.STATUS =

CREATE TRIGGER

790 SQL Reference

CASE
WHEN NEWQUOTE.QUOTE >

(SELECT MAX(QUOTE) FROM QUOTEHISTORY
WHERE SYMBOL = NEWQUOTE.SYMBOL
AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))

THEN 'High'
WHEN NEWQUOTE.QUOTE <

(SELECT MIN(QUOTE) FROM QUOTEHISTORY
WHERE SYMBOL = NEWQUOTE.SYMBOL
AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))

THEN 'Low'
WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE

THEN 'Rising'
WHEN NEWQUOTE.QUOTE < OLDQUOTE.QUOTE

THEN 'Dropping'
WHEN NEWQUOTE.QUOTE = OLDQUOTE.QUOTE

THEN 'Steady'
END;

END

v Trigger Definition to record change in QUOTEHISTORY table:
CREATE TRIGGER RECORD_HISTORY

AFTER UPDATE OF QUOTE ON CURRENTQUOTE
REFERENCING NEW AS NEWQUOTE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

INSERT INTO QUOTEHISTORY
VALUES (NEWQUOTE.SYMBOL, NEWQUOTE.QUOTE, CURRENT TIMESTAMP);

END

CREATE TRIGGER

Chapter 6. SQL Statements 791

CREATE TYPE (Structured)
The CREATE TYPE statement defines a user-defined structured type. A
user-defined structured type may include zero or more attributes. A structured
type may be a subtype allowing attributes to be inherited from a supertype.
Successful execution of the statement generates methods, for retrieving and
updating values of attributes. Successful execution of the statement also
generates functions, for constructing instances of a structured type used in a
column, for casting between the reference type and its representation type,
and for supporting the comparison operators (=, <>, <, <=, >, and >=) on the
reference type.

The CREATE TYPE statement also defines any method specifications for
user-defined methods to be used with the user-defined structured type.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include as
least one of the following:
v SYSADM or DBADM authority
v IMPLICIT_SCHEMA authority on the database, if the schema name of the

type does not refer to an existing schema.
v CREATEIN privilege on the schema, if the schema name of the type refers

to an existing schema.

If UNDER is specified and the authorization ID of the statement is not the
same as the definer of the root type of the type hierarchy, then SYSADM or
DBADM authority is required.

Syntax

�� CREATE TYPE type-name
UNDER supertype-name

�

�

�

,

AS (attribute-definition)

*
INSTANTIABLE

NOT INSTANTIABLE
* �

CREATE TYPE (Structured)

792 SQL Reference

�
INLINE LENGTH integer

*
WITHOUT COMPARISONS

*
NOT FINAL

* �

� MODE DB2SQL *
WITH FUNCTION ACCESS

*
REF USING rep-type

�

� *
CAST (SOURCE AS REF) WITH funcname1

�

� *
CAST (REF AS SOURCE) WITH funcname2

* �

�

�

,

method-specification

��

attribute-definition:

attribute-name data-type
lob-options
datalink-options

rep-type:

SMALLINT
INTEGER
INT

BIGINT
DECIMAL
DEC (integer)
NUMERIC , integer
NUM

CHARACTER
CHAR (integer) (1)
VARCHAR (integer) FOR BIT DATA

CHARACTER VARYING
CHAR

GRAPHIC
(integer)

VARGRAPHIC (integer)

CREATE TYPE (Structured)

Chapter 6. SQL Statements 793

method-specification:

METHOD method-name �

�

�

()
,

data-type2
parameter-name AS LOCATOR

* RETURNS �

� data-type3
AS LOCATOR

data-type4 CAST FROM data-type5
AS LOCATOR

* �

�
SPECIFIC specific-name

*
SELF AS RESULT

* �

�
SQL-routine-characteristics

external-routine-characteristics
*

SQL-routine-characteristics:

*
LANGUAGE SQL

*
NOT DETERMINISTIC

DETERMINISTIC
*

NO EXTERNAL ACTION

EXTERNAL ACTION
* �

�
READS SQL DATA

CONTAINS SQL
*

CALLED ON NULL INPUT
*

external-routine-characteristics:

* LANGUAGE C
JAVA
OLE

* PARAMETER STYLE DB2SQL
DB2GENERAL

* �

�
NOT DETERMINISTIC

(2)
DETERMINISTIC

*
FENCED

NOT FENCED
*

CALLED ON NULL INPUT

(3)
RETURNS NULL ON NULL INPUT

�

CREATE TYPE (Structured)

794 SQL Reference

� * NO SQL *
NO EXTERNAL ACTION

EXTERNAL ACTION
*

NO SCRATCHPAD

100
SCRATCHPAD

length

* �

�
NO FINAL CALL

FINAL CALL
�

� *
ALLOW PARALLEL

DISALLOW PARALLEL
*

NO DBINFO

DBINFO
*

Notes:

1 The FOR BIT DATA clause may be specified in random order with
the other column constraints that follow.

2 NOT VARIANT may be specified in place of DETERMINISTIC and
VARIANT may be specified in place of NOT DETERMINISTIC.

3 NULL CALL may be specified in place of CALLED ON NULL INPUT
and NOT NULL CALL may be specified in place of RETURNS NULL
ON NULL INPUT.

Description

type-name
Names the type. The name, including the implicit or explicit qualifier,
must not identify any other type (built-in, structured, or distinct) already
described in the catalog. The unqualified name must not be the same as
the name of a built-in data type or BOOLEAN (SQLSTATE 42918). In
dynamic SQL statements, the CURRENT SCHEMA special register is used
as a qualifier for an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names.

The schema name (implicit or explicit) must not be greater than 8 bytes
(SQLSTATE 42622).

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as a type-name (SQLSTATE 42939). The
names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE,
EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH and the
comparison operators as described in “Basic Predicate” on page 187.

CREATE TYPE (Structured)

Chapter 6. SQL Statements 795

If a two-part type-name is specified, the schema name cannot begin with
″SYS″; otherwise, an error (SQLSTATE 42939) is raised.

UNDER supertype-name
Specifies that this structured type is a subtype under the specified
supertype-name. The supertype-name must identify an existing structured
type (SQLSTATE 42704). If supertype-name is specified without a schema
name, the type is resolved by searching the schemas on the SQL path. The
structured type includes all the attributes of the supertype followed by the
additional attributes given in the attribute-definition.

attribute-definition
Defines the attributes of the structured type.

attribute-name
The name of an attribute. The attribute-name cannot be the same as
any other attribute of this structured type or any supertype of this
structured type (SQLSTATE 42711).

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as an attribute-name (SQLSTATE
42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,
NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH
and the comparison operators as described in “Basic Predicate” on
page 187.

data-type
The data type of the attribute. It is one of the data types listed under
“CREATE TABLE” on page 712 other than LONG VARCHAR, LONG
VARGRAPHIC, or a distinct type based on LONG VARCHAR or
LONG VARGRAPHIC (SQLSTATE 42601). The data type must
identify an existing data type (SQLSTATE 42704). If data-type is
specified without a schema name, the type is resolved by searching
the schemas on the SQL path. The description of various data types is
given in “CREATE TABLE” on page 712. If the attribute data type is a
reference type, the target type of the reference must be a structured
type that exists, or is created by this statement (SQLSTATE 42704).

A structured type defined with an attribute of type DATALINK can
only be effectively used as the data type for a typed table or typed
view (SQLSTATE 01641).

To prevent type definitions that would, at runtime, permit an instance
of the type to directly or indirectly contain another instance of the
same type or one of its subtypes, a type can not be defined such that
one of its attribute types directly or indirectly uses itself (SQLSTATE
428EP). See “Structured Types” on page 88 for more information.

CREATE TYPE (Structured)

796 SQL Reference

lob-options
Specifies the options associated with LOB types (or distinct types
based on LOB types). For a detailed description of lob-options, see
“CREATE TABLE” on page 712.

datalink-options
Specifies the options associated with DATALINK types (or distinct
types based on DATALINK types). For a detailed description of
datalink-options, see “CREATE TABLE” on page 712.

Note that if no options are specified for a DATALINK type or distinct
type sourced on DATALINK, LINKTYPE URL and NO LINK
CONTROL options are the defaults.

INSTANTIABLE or NOT INSTANTIABLE
Determines whether an instance of the structured type can be created.
Implications of not instantiable structured types are:
v no constructor function is generated for a non-instantiable type
v a non-instantiable type cannot be used as the type of a table or view

(SQLSTATE 428DP)
v a non-instantiable type can be used as the type of a column (only null

values or instances of instantiable subtypes can be inserted into the
column.

To create instances of a non-instantiable type, instantiable subtypes must
be created. If NOT INSTANTIABLE is specified, no instance of the new
type can be created.

INLINE LENGTH integer
This option indicates the maximum size (in bytes) of a structured type
column instance to store inline with the rest of the values in the row of a
table. Instances of a structured type or its subtypes, that are larger than
the specified inline length, are stored separately from the base table row,
similar to the way that LOB values are handled.

If the specified INLINE LENGTH is smaller than the size of the result of
the constructor function for the newly-created type (32 bytes plus 10 bytes
per attribute) and smaller than 292 bytes, an error results (SQLSTATE
429B2). Note that the number of attributes includes all attributes inherited
from the supertype of the type.

The INLINE LENGTH for the type, whether specified or a default value,
is the default inline length for columns that use the structured type. This
default can be overridden at CREATE TABLE time.

INLINE LENGTH has no meaning when the structured type is used as
the type of a typed table.

The default INLINE LENGTH for a structured type is calculated by the
system. In the formula given below, the following terms are used:

CREATE TYPE (Structured)

Chapter 6. SQL Statements 797

short attribute
refers to an attribute with any of the following data types:
SMALLINT, INTEGER, BIGINT, REAL, DOUBLE, FLOAT, DATE,
or TIME. Also included are distinct types or reference types based
on these types.

non-short attribute
refers to an attribute of any of the remaining data types, or
distinct types based on those data types.

The system calculates the default inline length as follows:
1. Determine the added space requirements for non-short attributes using

the following formula:
space_for_non_short_attributes = SUM(attributelength + n)
n is defined as:
v 0 bytes for nested structured type attributes
v 2 bytes for non-LOB attributes
v 9 bytes for LOB attributes

attributelength is based on the data type specified for the attribute as
shown in Table 25.

2. Calculate the total default inline length using the following formula:
default_length(structured_type) = (number_of_attributes * 10) + 32 +
space_for_non-short_attributes

number_of_attributes is the total number of attributes for the structured
type, including attributes that are inherited from its supertype.
However, number_of_attributes does not include any attributes defined
for any subtype of structured_type.

Table 25. Byte Counts for Attribute Data Types

Attribute Data Type Byte Count

DECIMAL The integral part of (p/2)+1, where p is the precision

CHAR(n) n

VARCHAR(n) n

GRAPHIC(n) n * 2

VARGRAPHIC(n) n * 2

TIMESTAMP 10

DATALINK(n) n + 54

CREATE TYPE (Structured)

798 SQL Reference

Table 25. Byte Counts for Attribute Data Types (continued)

LOB Type Each LOB attribute has a LOB descriptor in the structured type instance that
points to the location of the actual value. The size of the descriptor varies
according to the maximum length defined for the LOB attribute

Maximum LOB Length LOB Descriptor Size

1 024 72

8 192 96

65 536 120

524 000 144

4 190 000 168

134 000 000 200

536 000 000 224

1 070 000 000 256

1 470 000 000 280

2 147 483 647 316

Distinct Type Length of the source type of the distinct type

Reference Type Length of the built-in data type on which the reference type is based.

Structured Type inline_length(attribute_type)

WITHOUT COMPARISONS
Indicates that there are no comparison functions supported for instances
of the structured type.

NOT FINAL
Indicates that the structured type may be used as a supertype.

MODE DB2SQL
This clause is required and allows for direct invocation of the constructor
function on this type.

WITH FUNCTION ACCESS
Indicates that all methods of this type and its subtypes, including
methods created in the future, can be accessed using functional notation.
This clause can be specified only for the root type of a structured type
hierarchy (the UNDER clause is not specified) (SQLSTATE 42613). This
clause is provided to allow the use of functional notation for those
applications that prefer this form of notation over method invocation
notation.

REF USING rep-type
Defines the built-in data type used as the representation (underlying data
type) for the reference type of this structured type and all its subtypes.
This clause can only be specified for the root type of a structured type

CREATE TYPE (Structured)

Chapter 6. SQL Statements 799

hierarchy (UNDER clause is not specified) (SQLSTATE 42613). The rep-type
cannot be a LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB,
DBCLOB, DATALINK, or structured type, and must have a length less
than or equal to 255 bytes (SQLSTATE 42613).

If this clause is not specified for the root type of a structured type
hierarchy, then REF USING VARCHAR(16) FOR BIT DATA is assumed.

CAST (SOURCE AS REF) WITH funcname1
Defines the name of the system-generated function that casts a value with
the data type rep-type to the reference type of this structured type. A
schema name must not be specified as part of funcname1 (SQLSTATE
42601). The cast function is created in the same schema as the structured
type. If the clause is not specified, the default value for funcname1 is
type-name (the name of the structured type). A function signature matching
funcname1(rep-type) must not already exist in the same schema (SQLSTATE
42710).

CAST (REF AS SOURCE) WITH funcname2
Defines the name of the system-generated function that casts a reference
type value for this structured type to the data type rep-type. A schema
name must not be specified as part of funcname2 (SQLSTATE 42601). The
cast function is created in the same schema as the structured type. If the
clause is not specified, the default value for funcname2 is rep-type (the
name of the representation type).

method-specification
Defines the methods for this type. A method cannot actually be used until
it is given a body with a CREATE METHOD statement (SQLSTATE
42884).

method-name
Names the method being defined. It must be an unqualified SQL
identifier (SQLSTATE 42601). The method name is implicitly qualified
with the schema used for CREATE TYPE.

A number of names used as keywords in predicates are reserved for
system use, and cannot be used as a method-name (SQLSTATE 42939).
The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH and the
comparison operators as described in “Basic Predicate” on page 187.

In general, the same name can be used for more than one method if
there is some difference in their signatures.

parameter-name
Identifies the parameter name. It cannot be SELF, which is the
name for the implicit subject parameter of a method (SQLSTATE
42734). If the method is an SQL method, all its parameters must
have names (SQLSTATE 42629).

CREATE TYPE (Structured)

800 SQL Reference

data-type2
Specifies the data type of each parameter. One entry in the list
must be specified for each parameter that the method will expect
to receive. No more than 90 parameters are allowed, including the
implicit SELF parameter. If this limit is exceeded, an error is
raised (SQLSTATE 54023).

SQL data type specifications and abbreviations which may be
specified as a column-type in a CREATE TABLE statement and
have a correspondence in the language that is being used to write
the method may be specified. Refer to the language-specific
sections of the Application Development Guide for details on the
mapping between SQL data types and host language data types
with respect to user-defined functions and methods.

Note: If the SQL data type in question is a structured type, there
is no default mapping to a host language data type. A
user-defined transform function must be used to create a
mapping between the structured type and the host
language data type.

DECIMAL (and NUMERIC) are invalid with LANGUAGE C and
OLE (SQLSTATE 42815). For alternatives to using DECIMAL, refer
to the Application Development Guide.

REF may be specified, but it does not have a defined scope. Inside
the body of the method, a reference-type can be used in a
path-expression only by first casting it to have a scope. Similarly,
a reference returned by a method can be used in a path-expression
only by first casting it to have a scope.

AS LOCATOR
For LOB types or distinct types which are based on a LOB type,
the AS LOCATOR clause can be added. This indicates that a LOB
locator is to be passed to the method instead of the actual value.
This saves greatly in the number of bytes passed to the method,
and may save as well in performance, particularly in the case
where only a few bytes of the value are actually of interest to the
method. Use of LOB locators is described in the Application
Development Guide.

An error is raised (SQLSTATE 42601) if AS LOCATOR is specified
for a type other than a LOB or a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS
LOCATOR clause cannot be specified (SQLSTATE 42613).

CREATE TYPE (Structured)

Chapter 6. SQL Statements 801

RETURNS
This mandatory clause identifies the method’s result.

data-type3
Specifies the data type of the method’s result. In this case, exactly the
same considerations apply as for the parameters of methods described
above under data-type2.

AS LOCATOR
For LOB types or distinct types which are based on LOB types,
the AS LOCATOR clause can be added. This indicates that a LOB
locator is to be passed from the method instead of the actual
value.

An error is raised (SQLSTATE 42601) if AS LOCATOR is specified
for a type other than a LOB or a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS
LOCATOR clause cannot be specified (SQLSTATE 42613).

data-type4 CAST FROM data-type5
Specifies the data type of the method’s result.

This clause is used to return a different data type to the invoking
statement from the data type returned by the method code. The
data-type5 must be castable to the data-type4 parameter. If it is not
castable, an error is raised (SQLSTATE 42880).

Since the length, precision or scale for data-type4 can be inferred from
data-type5, it not necessary (but still permitted) to specify the length,
precision, or scale for parameterized types specified for data-type4.
Instead, empty parentheses may be used (VARCHAR(), for example).
FLOAT() cannot be used (SQLSTATE 42601), since the parameter value
indicates different data types (REAL or DOUBLE).

A distinct type is not valid as the type specified in data-type5
(SQLSTATE 42815).

The cast operation is also subject to runtime checks that might result
in conversion errors being raised.

AS LOCATOR
For LOB types or distinct types which are based on LOB types,
the AS LOCATOR clause can be added. This indicates that a LOB
locator is to be passed from the method instead of the actual
value.

An error is raised (SQLSTATE 42601) if AS LOCATOR is specified
for a type other than a LOB or a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS
LOCATOR clause cannot be specified (SQLSTATE 42613).

CREATE TYPE (Structured)

802 SQL Reference

SPECIFIC specific-name
Provides a unique name for the instance of the method that is being
defined. This specific name can be used when creating the method body
or dropping the method. It can never be used to invoke the method. The
unqualified form of specific-name is an SQL identifier (with a maximum
length of 18). The qualified form is a schema-name followed by a period
and an SQL identifier. The name, including the implicit or explicit
qualifier, must not identify another specific method name that exists at the
application server; otherwise an error is raised (SQLSTATE 42710).

The specific-name may be the same as an existing method-name.

If no qualifier is specified, the qualifier that was used for type-name is
used. If a qualifier is specified, it must be the same as the explicit or
implicit qualifier of type-name or an error is raised (SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the
database manager. The unique name is SQL followed by a character
timestamp, SQLyymmddhhmmssxxx.

SELF AS RESULT
Identifies this method as a type-preserving method, which means the
following:
v The declared return type must be the same as the declared subject-type

(SQLSTATE 428EQ).
v When an SQL statement is compiled and resolves to a type preserving

method, the static type of the result of the method is the same as the
static type of the subject argument.

v The method must be implemented in such a way that the dynamic type
of the result is the same as the dynamic type of the subject argument
(SQLSTATE 2200G) and the result may also not be NULL (SQLSTATE
22004).

SQL-routine-characteristics
Specifies the characteristics of the method body that will be defined for
this type using CREATE METHOD.

LANGUAGE SQL
This clause is used to indicate that the method is written in SQL with
a single RETURN statement. The method body is specified using the
CREATE METHOD statement.

NOT DETERMINISTIC or DETERMINISTIC
This optional clause specifies whether the method always returns the
same results for given argument values (DETERMINISTIC) or whether
the method depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC method must always
return the same result from successive invocations with identical
inputs. Optimizations taking advantage of the fact that identical

CREATE TYPE (Structured)

Chapter 6. SQL Statements 803

inputs always produce the same results are prevented by specifying
NOT DETERMINISTIC. NOT DETERMINISTIC must be explicitly or
implicitly specified if the body of the method accesses a special
register, or calls another non-deterministic routine (SQLSTATE 428C2).

NO EXTERNAL ACTION or EXTERNAL ACTION
This optional clause specifies whether or not the method takes some
action that changes the state of an object not managed by the database
manager. Optimizations that assume methods have no external
impacts are prevented by specifying EXTERNAL ACTION. For
example: sending a message, ringing a bell, or writing a record to a
file.

READS SQL DATA or CONTAINS SQL
Indicates what type of SQL statements can be executed. Because the
SQL statement supported is the RETURN statement, the distinction
has to do with whether or not the expression is a subquery.

READS SQL DATA
Indicates that SQL statements that do not modify SQL data can be
executed by the method (SQLSTATE 42985). Nicknames cannot be
referenced in the SQL statement (SQLSTATE 42997).

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL
data can be executed by the method (SQLSTATE 42985).

CALLED ON NULL INPUT
This optional clause indicates that regardless of whether any
arguments are null, the user-defined method is called. It can return a
null value or a normal (non-null) value. However, responsibility for
testing for null argument values lies with the method.

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for family compatibility.

external-routine-characteristics

LANGUAGE
This mandatory clause is used to specify the language interface
convention to which the user-defined method body is written.

C This means the database manager will call the user-defined
method as if it were a C function. The user-defined method must
conform to the C language calling and linkage convention as
defined by the standard ANSI C prototype.

JAVA
This means the database manager will call the user-defined
method as a method in a Java class.

CREATE TYPE (Structured)

804 SQL Reference

OLE
This means the database manager will call the user-defined
method as if it were a method exposed by an OLE automation
object. The method must conform with the OLE automation data
types and invocation mechanism as described in the OLE
Automation Programmer’s Reference.

LANGUAGE OLE is only supported for user-defined methods
stored in Windows 32-bit operating systems.

PARAMETER STYLE
This clause is used to specify the conventions used for passing
parameters to and returning the value from methods.

DB2SQL
Used to specify the conventions for passing parameters to and
returning the value from external methods that conform to C
language calling and linkage conventions or methods exposed by
OLE automation objects. This must be specified when either
LANGUAGE C or LANGUAGE OLE is used.

DB2GENERAL
Used to specify the conventions for passing parameters to and
returning the value from external methods that are defined as a
method in a Java class. This can only be specified when
LANGUAGE JAVA is used.

The value DB2GENRL may be used as a synonym for
DB2GENERAL.

Refer to the Application Development Guide for details on passing
parameters.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the method always returns the
same results for given argument values (DETERMINISTIC) or whether
the method depends on some state values that affect the results (NOT
DETERMINISTIC). That is, a DETERMINISTIC method must always
return the same result from successive invocations with identical
inputs. Optimizations taking advantage of the fact that identical
inputs always produce the same results are prevented by specifying
NOT DETERMINISTIC.

An example of a NOT DETERMINISTIC method would be a method
that randomly returns a serial number of an employee in a
department. An example of a DETERMINISTIC method would be a
method that calculates the area of a polygon.

FENCED or NOT FENCED
This clause specifies whether the method is considered ″safe″ to run in

CREATE TYPE (Structured)

Chapter 6. SQL Statements 805

the database manager operating environment’s process or address
space (NOT FENCED), or not (FENCED).

If a method is registered as FENCED, the database manager insulates
its internal resources (data buffers, for example) from access by the
method. Most methods will have the option of running as FENCED or
NOT FENCED. In general, a method running as FENCED will not
perform as well as a similar one running as NOT FENCED.

Note: Use of NOT FENCED for methods not adequately checked out
can compromise the integrity of DB2. DB2 takes some
precautions against many of the common types of inadvertent
failures that might occur, but cannot guarantee complete
integrity when NOT FENCED user defined methods are used.

While the use of FENCED does offer a greater degree of
protection for database integrity than NOT FENCED, a
FENCED method that has not been adequately coded, reviewed
and tested can also cause an inadvertent failure of DB2.

Most methods should be able to run either as FENCED or NOT
FENCED. Only FENCED can be specified for a method with
LANGUAGE OLE (SQLSTATE 42613).

If the method is FENCED, the AS LOCATOR clause cannot be
specified (SQLSTATE 42613).

To change from FENCED to NOT FENCED, the method must be
re-registered, by first dropping it and then recreating it.

Either SYSADM authority, DBADM authority or a special authority
(CREATE_NOT_FENCED) is required to register a method as NOT
FENCED.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external
method if any of the non-subject arguments is null.

If RETURNS NULL ON NULL INPUT is specified, and if at execution
time any one of the method’s arguments is null, the method is not
called and the result is the null value.

If CALLED ON NULL INPUT is specified, then regardless of the
number of null arguments, the method is called. It can return a null
value or a normal (non-null) value. However, responsibility for testing
for null argument values lies with the method.

CREATE TYPE (Structured)

806 SQL Reference

The value NULL CALL may be used as a synonym for CALLED ON
NULL INPUT for backwards and family compatibility. Similarly, NOT
NULL CALL may be used as a synonym for RETURNS NULL ON
NULL INPUT.

There are two cases in which this specification is ignored:
v If the subject argument is null, in which case the method is not

executed and the result is null
v If the method is defined to have no parameters, in which case this

null argument condition cannot occur.

NO SQL
This mandatory clauses indicates that the method cannot issue any
SQL statements. If it does, an error is raised at run time (SQLSTATE
38502).

EXTERNAL ACTION or NO EXTERNAL ACTION
This optional clause specifies whether or not the method takes some
action that changes the state of an object not managed by the database
manager. Optimizations that assume methods have no external
impacts are prevented by specifying EXTERNAL ACTION.

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is
to be provided for an external method. It is strongly recommended
that methods be re-entrant, so a scratchpad provides a means for the
method to ″save state″ from one call to the next.

If SCRATCHPAD is specified, then at the first invocation of the
user-defined method, memory is allocated for a scratchpad to be used
by the external method. This scratchpad has the following
characteristics:
v length, if specified, sets the size in bytes of the scratchpad and must

be between 1 and 32 767 (SQLSTATE 42820). The default value is
100.

v It is initialized to all X’00’’s.
v Its scope is the SQL statement. There is one scratchpad per

reference to the external method in the SQL statement.

So, if method X in the following statement is defined with the
SCRATCHPAD keyword, three scratchpads would be assigned.

SELECT A, X..(A) FROM TABLEB
WHERE X..(A) > 103 OR X..(A) < 19

If ALLOW PARALLEL is specified or defaulted to, then the scope is
different from the above. If the method is executed in multiple
partitions, a scratchpad would be assigned in each partition where the
method is processed, for each reference to the method in the SQL

CREATE TYPE (Structured)

Chapter 6. SQL Statements 807

statement. Similarly, if the query is executed with intra-partition
parallelism enabled, more than three scratchpads may be assigned.

The scratchpad is persistent. Its content is preserved from one external
method call to the next. Any changes made to the scratchpad by the
external method on one call will be present on the next call. The
database manager initializes scratchpads at the beginning of execution
of each SQL statement. The database manager may reset scratchpads
at the beginning of execution of each subquery. The system issues a
final call before resetting a scratchpad if the FINAL CALL option is
specified.

The scratchpad can be used as a central point for system resources
(memory, for example) which the external method might acquire. The
method could acquire the memory on the first call, keep its address in
the scratchpad, and refer to it in subsequent calls.

In such a case where system resource is acquired, the FINAL CALL
keyword should also be specified; this causes a special call to be made
at end-of-statement to allow the external method to free any system
resources acquired.

If SCRATCHPAD is specified, then on each invocation of the
user-defined method, an additional argument is passed to the external
method which addresses the scratchpad.

If NO SCRATCHPAD is specified, then no scratchpad is allocated or
passed to the external method.

NO FINAL CALL or FINAL CALL
This optional clause specifies whether a final call is to be made to an
external method. The purpose of such a final call is to enable the
external method to free any system resources it has acquired. It can be
useful in conjunction with the SCRATCHPAD keyword in situations
where the external method acquires system resources such as memory
and anchors them in the scratchpad.

If FINAL CALL is specified, then at execution time, an additional
argument is passed to the external method which specifies the type of
call. The types of calls are:
v Normal call: SQL arguments are passed and a result is expected to

be returned.
v First call: the first call to the external method for this specific

reference to the method in this specific SQL statement. The first call
is a normal call.

CREATE TYPE (Structured)

808 SQL Reference

v Final call: a final call to the external method to enable the method
to free up resources. The final call is not a normal call. This final
call occurs at the following times:
– End-of-statement: this case occurs when the cursor is closed for

cursor-oriented statements, or when the statement is through
executing otherwise.

– End-of-transaction: This case occurs when the normal
end-of-statement does not occur. For example, the logic of an
application may for some reason bypass the close of the cursor.

If a commit operation occurs while a cursor defined as WITH
HOLD is open, a final call is made at the subsequent close of the
cursor or at the end of the application.

If NO FINAL CALL is specified, then no ″call type″ argument is
passed to the external method, and no final call is made.

ALLOW PARALLEL or DISALLOW PARALLEL
This optional clause specifies whether, for a single reference to the
method, the invocation of the method can be parallelized. In general,
the invocations of most scalar methods should be parallelizable, but
there may be methods (such as those depending on a single copy of a
scratchpad) that cannot. If either ALLOW PARALLEL or DISALLOW
PARALLEL are specified for a method, then DB2 will accept this
specification.

The following questions should be considered in determining which
keyword is appropriate for the method:.
v Are all the method invocations completely independent of each

other? If YES, then specify ALLOW PARALLEL.
v Does each method invocation update the scratchpad, providing

value(s) that are of interest to the next invocation (the incrementing
of a counter, for example)? If YES, then specify DISALLOW
PARALLEL or accept the default.

v Is there some external action performed by the method which
should happen only on one partition? If YES, then specify
DISALLOW PARALLEL or accept the default.

v Is the scratchpad used, but only so that some expensive
initialization processing can be performed a minimal number of
times? If YES, then specify ALLOW PARALLEL.

In any case, the body of every external method should be in a
directory that is available on every partition of the database.

The syntax diagram indicates that the default value is ALLOW
PARALLEL. However, the default is DISALLOW PARALLEL if one or
more of the following options is specified in the statement:

CREATE TYPE (Structured)

Chapter 6. SQL Statements 809

v NOT DETERMINISTIC
v EXTERNAL ACTION
v SCRATCHPAD
v FINAL CALL

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information
known by DB2 will be passed to the method as an additional
invocation-time argument (DBINFO), or not (NO DBINFO). NO
DBINFO is the default. DBINFO is not supported for LANGUAGE
OLE (SQLSTATE 42613).

If DBINFO is specified, then a structure is passed to the method
which contains the following information:
v Data base name - the name of the currently connected database.
v Application ID - unique application ID which is established for each

connection to the database.
v Application Authorization ID - the application runtime

authorization ID, regardless of the nested methods in between this
method and the application.

v Code page - identifies the database code page.
v Schema name - under the exact same conditions as for Table name,

contains the name of the schema; otherwise blank.
v Table name - if and only if the method reference is either the

right-hand side of a SET clause in an UPDATE statement, or an
item in the VALUES list of an INSERT statement, contains the
unqualified name of the table being updated or inserted; otherwise
blank.

v Column name - under the exact same conditions as for Table name,
contains the name of the column being updated or inserted;
otherwise blank.

v Database version/release - identifies the version, release and
modification level of the database server invoking the method.

v Platform - contains the server’s platform type.
v Table method result column numbers - not applicable to methods.

Refer to Application Development Guide for detailed information on the
structure and how it is passed to the method.

Notes
v Creating a structured type with a schema name that does not already exist

will result in the implicit creation of that schema provided the authorization
ID of the statement has IMPLICIT_SCHEMA authority. The schema owner
is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

CREATE TYPE (Structured)

810 SQL Reference

v A structured subtype defined with no attributes defines a subtype that
inherits all its attributes from the supertype. If neither an UNDER clause
nor any other attribute is specified, then the type is a root type of a type
hierarchy without any attributes.

v The addition of a new subtype to a type hierarchy may cause packages to
be invalidated. A package may be invalidated if it depends on a supertype
of the new type. Such a dependency is the result of the use of a TYPE
predicate or a TREAT specification.

v A structured type may have no more than 4082 attributes (SQLSTATE
54050).

v A method specification is not allowed to have the same signature as a
function (comparing the first parameter-type of the function with the
subject-type of the method).

v A method MT, with subject-type T, is defined to override another method
MS, with subject-type S, if all of the following are true:
– MT and MS have the same unqualified name and the same number of

parameters
– T is a proper subtype of S
– The non-subject parameter-types of MT are the same as the

corresponding non-subject parameter-types of MS. Note that, ″same″
applies to the basic type, such as VARCHAR, disregarding length and
precision.

No method may override, or be overridden by, another method (SQLSTATE
42745). Futhermore, a function and a method may not be in an overriding
relationship. This means that if the function were a method with its first
parameter as subject S, it must not override another method of any
supertype of S, and it must not be overridden by another method of any
subtype of S.

v Creation of a structured type automatically generates a set of functions and
methods for use with the type. All the functions and methods are generated
in the same schema as the structured type. If the signature of the generated
function or method conflicts with or overrides the signature of an existing
function in this schema, the statement fails (SQLSTATE 42710). The
generated functions or methods cannot be dropped without dropping the
structured type (SQLSTATE 42917). The following functions and methods
are generated:
– Functions

- Reference Comparisons
Six comparison functions with names =, <>, <, <=, >, >= are generated
for the reference type REF(type-name). Each of these functions takes
two parameters of type REF(type-name) and returns true, false, or
unknown. The comparison operators for REF(type-name) are defined to

CREATE TYPE (Structured)

Chapter 6. SQL Statements 811

have the same behavior as the comparison operators for the
underlying data type of REF(type-name).85

The scope of the reference type is not considered in the comparison.
- Cast functions

Two cast functions are generated to cast between the generated
reference type REF(type-name) and the underlying data type of this
reference type.
v The name of the function to cast from the underlying type to the

reference type is the implicit or explicit funcname1.
The format of this function is:

CREATE FUNCTION funcname1 (rep-type)
RETURNS REF(type-name) ...

v The name of the function to cast from the reference type to the
underlying type of the reference type is the implicit or explicit
funcname2.
The format of this function is:

CREATE FUNCTION funcname2 (REF(type-name))
RETURNS rep-type ...

For some rep-types, there are additional cast functions generated with
funcname1 to handle casting from constants.
v If rep-type is SMALLINT, the additional generated cast function has

the format:
CREATE FUNCTION funcname1 (INTEGER)

RETURNS REF(type-name)

v If rep-type is CHAR(n), the additional generated cast function has
the format:

CREATE FUNCTION funcname1 (VARCHAR(n))
RETURNS REF(type-name)

v If rep-type is GRAPHIC(n), the additional generated cast function
has the format:

CREATE FUNCTION funcname1 (VARGRAPHIC(n))
RETURNS REF(type-name)

The schema name of the structured type must be included in the SQL
path (see “SET PATH” on page 1031 or the FUNCPATH BIND option
as described in the Application Development Guide) for successful use of
these operators and cast functions in SQL statements.

- Constructor function

85. All references in a type hierarchy have the same reference representation type. This enables REF(S) and REF(T) to
be compared provided that S and T have a common supertype. Since uniqueness of the OID column is enforced
only within a table hierarchy, it is possible that a value of REF(T) in one table hierarchy may be ″equal″ to a value
of REF(T) in another table hierarchy, even though they reference different rows.

CREATE TYPE (Structured)

812 SQL Reference

The constructor function is generated to allow a new instance of the
type to be constructed. This new instance will have null for all
attributes of the type, including attributes that are inherited from a
supertype.
The format of the generated constructor function is:

CREATE FUNCTION type-name ()
RETURNS type-name
...

If NOT INSTANTIABLE is specified, no constructor function is
generated. If the structured type has attributes of type DATALINK,
then the invocation of the constructor function fails (SQLSTATE
428ED).

– Methods
- Observer methods

An observer method is defined for each attribute of the structured
type. For each attribute, the observer method returns the type of the
attribute. If the subject is null, the observer method returns a null
value of the attribute type.
For example, the attributes of an instance of the structured type
ADDRESS can be observed using C1..STREET, C1..CITY, C1..COUNTRY,
and C1..CODE.
The method signature of the generated observer method is as if the
following statement had been executed:
CREATE TYPE type-name

...
METHOD attribute-name()

RETURNS attribute-type

where type-name is the structured type name.
- Mutator methods

A type-preserving mutator method is defined for each attribute of the
structured type. Use mutator methods to change attributes within an
instance of a structured type. For each attribute, the mutator method
returns a copy of the subject modified by assigning the argument to
the named attribute of the copy.
For example, an instance of the structured type ADDRESS can be
mutated using C1..CODE('M3C1H7'). If the subject is null, the mutator
method raises an error (SQLSTATE 2202D).
The method signature of the generated mutator method is as if the
following statement had been executed:

CREATE TYPE (Structured)

Chapter 6. SQL Statements 813

CREATE TYPE type-name
...

METHOD attribute-name (attribute-type)
RETURNS type-name

If the attribute data type is SMALLINT, REAL, CHAR, or GRAPHIC,
an additional mutator method is generated in order to support
mutation using constants:
v If attribute-type is SMALLINT, the additional mutator supports an

argument of type INTEGER.
v If attribute-type is REAL, the additional mutator supports an

argument of type DOUBLE.
v If attribute-type is CHAR, the additional mutator supports an

argument of type VARCHAR.
v If attribute-type is GRAPHIC, the additional mutator supports an

argument of type VARGRAPHIC.
- If the structured type is used as a column type, the length of an

instance of the type can be no more than 1 GB in length at runtime
(SQLSTATE 54049).

v When creating a new subtype for an existing structured type (for use as a
column type), any transform functions already written in support of
existing related structured types should be re-examined and updated as
necessary. Whether the new type is in the same hierarchy as a given type,
or in the hierarchy of a nested type, it is likely that the existing transform
function associated with this type will need to be modified to include some
or all of the new attributes introduced by the new subtype. Generally
speaking, since it is the set of transform functions associated with a given
type (or type hierarchy) which enables UDF and Client Application access
to the structured type, the transform functions should be written to support
ALL of the attributes in a given composite hierarchy (that is, including the
transitive closure of all subtypes and their nested structured types).

Examples
Example 1: Create a type for department.

CREATE TYPE DEPT AS
(DEPT NAME VARCHAR(20),

MAX_EMPS INT)
REF USING INT

MODE DB2SQL

Example 2: Create a type hierarchy consisting of a type for employees and a
subtype for managers.

CREATE TYPE EMP AS
(NAME VARCHAR(32),
SERIALNUM INT,
DEPT REF(DEPT),

CREATE TYPE (Structured)

814 SQL Reference

SALARY DECIMAL(10,2))
MODE DB2SQL

CREATE TYPE MGR UNDER EMP AS
(BONUS DECIMAL(10,2))
MODE DB2SQL

Example 3: Create a type hierarchy for addresses. Addresses are intended to
be used as types of columns. The inline length is not specified, so DB2 will
calculate a default length. Encapsulate within the address type definition an
external method that calculates how close this address is to a given input
address. Create the method body using the CREATE METHOD statement.

CREATE TYPE address_t AS
(STREET VARCHAR(30),
NUMBER CHAR(15),
CITY VARCHAR(30),
STATE VARCHAR(10))
NOT FINAL
MODE DB2SQL

METHOD SAMEZIP (addr address_t)
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL
NO EXTERNAL ACTION

METHOD DISTANCE (address_t)
RETURNS FLOAT
LANGUAGE C
DETERMINISTIC
PARAMETER STYLE DB2SQL
NO SQL
NO EXTERNAL ACTION

CREATE TYPE germany_addr_t UNDER address_t AS
(FAMILY_NAME VARCHAR(30))
NOT FINAL
MODE DB2SQL

CREATE TYPE us_addr_t UNDER address_t AS
(ZIP VARCHAR(10))
NOT FINAL
MODE DB2SQL

Example 4: Create a type that has nested structured type attributes.
CREATE TYPE PROJECT AS

(PROJ_NAME VARCHAR(20),
PROJ_ID INTEGER,
PROJ_MGR MGR,
PROJ_LEAD EMP,
LOCATION ADDR_T,
AVAIL_DATE DATE)
MODE DB2SQL

CREATE TYPE (Structured)

Chapter 6. SQL Statements 815

CREATE TYPE MAPPING
The CREATE TYPE MAPPING statement creates a mapping between these
data types:
v A data type of a column of a data source table or view that is going to be

defined to a federated database
v A corresponding data type that is already defined to the federated database.

The mapping can associate the federated database data type with a data type
at either (1) a specified data source or (2) a range of data sources; for example,
all data sources of a particular type and version.

A data type mapping has to be created only if an existing one is not adequate.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must have
SYSADM or DBADM authority.

Syntax

�� CREATE TYPE MAPPING FROM local-data-type
type-mapping-name

TO �

� remote-server TYPE data-source-data-type �

�
FOR BIT DATA
(p)

[p..p] ,s P=S
,[s..s] P>S

P<S
P>=S
P<=S
P<>S

��

local-data-type:

CREATE TYPE MAPPING

816 SQL Reference

SMALLINT
INTEGER
INT

BIGINT
FLOAT

(integer)
REAL

PRECISION
DOUBLE
DECIMAL
DEC (integer)
NUMERIC ,integer
NUM

CHARACTER
CHAR (integer) FOR BIT DATA
VARCHAR

CHARACTER VARYING (integer)
CHAR

GRAPHIC
(integer)

VARGRAPHIC
(integer)

DATE
TIME
TIMESTAMP

remote-server:

SERVER server-name
SERVER TYPE server-type

VERSION server-version
WRAPPER wrapper-name

server-version:

version
. release

. mod
version-string-constant

Description

type-mapping-name
Names the data type mapping. The name must not identify a data type
mapping that is already described in the catalog. A unique name is
generated if type-mapping-name is not specified.

local-data-type
Identifies a data type that is defined to a federated database. If
local-data-type is specified without a schema name, the type name is

CREATE TYPE MAPPING

Chapter 6. SQL Statements 817

resolved by searching the schemas on the SQL path (defined by the
FUNCPATH preprocessing option for static SQL and by the CURRENT
PATH register for dynamic SQL). If length or precision (and scale) are not
specified for the local-data-type, then the values are determined from the
source-data-type.

The local-data-type cannot be LONG VARCHAR, LONG VARGRAPHIC,
DATALINK, a large object (LOB) type, or a user-defined type (SQLSTATE
42806).

SERVER server-name
Names the data source to which data-source-data-type is defined.

SERVER TYPE server-type
Identifies the type of data source to which data-source-data-type is defined.

VERSION
Identifies the version of the data source to which data-source-data-type is
defined.

version
Specifies the version number. version must be an integer.

release
Specifies the number of the release of the version denoted by version.
release must be an integer.

mod
Specifies the number of the modification of the release denoted by
release. mod must be an integer.

version-string-constant
Specifies the complete designation of the version. The
version-string-constant can be a single value (for example, ‘8i’); or it can
be the concatenated values of version, release, and, if applicable, mod
(for example, ‘8.0.3’).

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to
interact with data sources of the type and version denoted by server-type
and server-version.

TYPE data-source-data-type
Specifies the data source data type that is being mapped to local-data-type.
If data-source-data-type is qualified by a schema name at the data source, it
is allowable, but not required, to specify this qualifier.

The data-source-data-type must be a built-in data type. User-defined types
are not allowed. If the type has a short and long form (for example,
CHAR and CHARACTER), the short form should be specified.

p For a decimal data type, p specifies the maximum number of digits that a

CREATE TYPE MAPPING

818 SQL Reference

value can have. For all other data types for character data, p specifies the
maximum number of characters that a value can have. The p must be
valid with respect to the data type (SQLSTATE 42611). If p is not specified
and the data type requires it, the system will determine the best match.

[p..p]
For a decimal data type, [p..p] specifies the minimum and maximum
number of digits that a value can have. For all other data types for
character data, [p..p] specifies the minimum and maximum number of
characters that a value can have. In all cases, the maximum must equal or
exceed the minimum; and both numbers must be valid with respect to the
data type (SQLSTATE 42611).

s For a decimal data type, s specifies the allowable maximum number of
digits to the right of the decimal point. This number must be valid with
respect to the data type (SQLSTATE 42611). If a number is not specified
and the data type requires one, the system will determine the best match.

[s..s]
For a decimal data type, [s..s] specifies the minimum and maximum
number of digits allowed to the right of the decimal point. The maximum
must equal or exceed the minimum, and both numbers must be valid
with respect to the data type (SQLSTATE 42611).

P [operand] S
For a decimal data type, P [operand] S specifies a comparison between the
maximum allowable precision and the maximum number of digits
allowed to the right of the decimal point. For example, the operand =
indicates that the maximum allowable precision and the maximum
number digits allowed in the decimal fraction are the same. Specify P
[operand] S only if the level of checking that it enforces is required.

FOR BIT DATA
Indicates whether data-source-data-type is for bit data. These keywords are
required if the data source type column contains binary values. The
database manager will determine this attribute if it is not specified on a
character data type.

Notes
A CREATE TYPE MAPPING statement within a given unit of work (UOW)
cannot be processed under either of the following conditions:
v The statement references a single data source, and the UOW already

includes a SELECT statement that references a nickname for a table or view
within this data source.

v The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes a
SELECT statement that references a nickname for a table or view within
one of these data sources.

CREATE TYPE MAPPING

Chapter 6. SQL Statements 819

Examples
Example 1: Create a mapping between SYSIBM.DATE and the Oracle data type
DATE at all Oracle data sources.

CREATE TYPE MAPPING MY_ORACLE_DATE
FROM SYSIBM.DATE
TO SERVER TYPE ORACLE
TYPE DATE

Example 2: Create a mapping between SYSIBM.DECIMAL(10,2) and the Oracle
data type NUMBER([10..38],2) at data source ORACLE1.

CREATE TYPE MAPPING MY_ORACLE_DEC
FROM SYSIBM.DECIMAL(10,2)
TO SERVER ORACLE1
TYPE NUMBER([10..38],2)

CREATE TYPE MAPPING

820 SQL Reference

CREATE USER MAPPING
The CREATE USER MAPPING statement defines a mapping between an
authorization ID that uses a federated database and the authorization ID and
password to use at a specified data source.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
If the authorization ID of the statement is different than the authorization
name that is being mapped to the data source, then the authorization ID must
include SYSADM or DBADM authority. Otherwise, if the authorization ID and
the authorization name match, then no privileges or authorities are required.

Syntax

�� CREATE USER MAPPING FOR authorization-name
USER

SERVER server-name �

� �

,
ADD

OPTIONS (user-option-name string-constant) ��

Description

authorization-name
Specifies the authorization name under which a user or application
connects to a federated database. This name is to be mapped to an
identifier under which the data source denoted by server-name can be
accessed.

USER
The value in the special register USER. When USER is specified, then the
authorization ID of the CREATE USER MAPPING statement will be
mapped to the data source authorization ID that is specified in the
REMOTE_AUTHID user option.

SERVER server-name
Identifies the data source that is accessible under the mapping
authorization ID.

OPTIONS
Indicates what user options are to be enabled. Refer to “User Options” on
page 1254 for descriptions of user-option-names and their settings.

CREATE USER MAPPING

Chapter 6. SQL Statements 821

ADD
Enables one or more user options.

user-option-name
Names a user option that will be used to complete the user mapping
that is being created.

string-constant
Specifies the setting for user-option-name as a character string constant.

Notes
v A user mapping cannot be created in a given unit of work (UOW) if the

UOW already includes a SELECT statement that references a nickname for
a table or view at the data source that is to be included in the mapping.

Examples
Example 1: To access a data source called S1, you need to map your
authorization name and password for your local database to your user ID and
password for S1. Your authorization name is RSPALTEN, and the user ID and
password that you use for S1 are SYSTEM and MANAGER, respectively.

CREATE USER MAPPING FOR RSPALTEN
SERVER S1
OPTIONS
(REMOTE_AUTHID 'SYSTEM',

REMOTE_PASSWORD 'MANAGER')

Example 2: Marc already has access to a DB2 data source. He now needs
access to an Oracle data source, so that he can create joins between certain
DB2 and Oracle tables. He acquires a username and password for the Oracle
data source; the username is the same as his authorization ID for the
federated database, but his Oracle and federated database passwords are
different. To be able to access Oracle from the federated database, he must
map the two passwords together.

CREATE USER MAPPING FOR MARCR
SERVER ORACLE1
OPTIONS
(REMOTE_PASSWORD 'NZXCZY')

CREATE USER MAPPING

822 SQL Reference

CREATE VIEW
The CREATE VIEW statement creates a view on one or more tables, views or
nicknames.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority or
v For each table, view or nickname identified in any fullselect:

– CONTROL privilege on that table or view, or
– SELECT privilege on that table or view

and at least one of the following:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the view does not exist
– CREATEIN privilege on the schema, if the schema name of the view

refers to an existing schema.

If creating a subview, the authorization ID of the statement must:
– be the same as the definer of the root table of the table hierarchy.
– have SELECT WITH GRANT on the underlying table of the subview or

the superview must not have SELECT privilege granted to any user
other than the view definer.

Group privileges are not considered for any table or view specified in the
CREATE VIEW statement.

Privileges are not considered when defining a view on federated database
nickname. Authorization requirements of the data source for the table or view
referenced by the nickname are applied when the query is processed. The
authorization ID of the statement may be mapped to a different remote
authorization ID.

If a view definer can only create the view because the definer has SYSADM
authority, then the definer is granted explicit DBADM authority for the
purpose of creating the view.

CREATE VIEW

Chapter 6. SQL Statements 823

Syntax

�� CREATE VIEW view-name
FEDERATED

�

�

�

,

(column-name)
OF type-name root-view-definition

subview-definition

AS �

�

�

fullselect
,

WITH common-table-expression

�

�
CASCADED

WITH CHECK OPTION
LOCAL

��

root-view-definition:

MODE DB2SQL (oid-column)
, with-options

subview-definition:

MODE DB2SQL under-clause
(with-options) EXTEND

oid-column:

REF IS oid-column-name USER GENERATED
UNCHECKED

with-options:

CREATE VIEW

824 SQL Reference

� �

,
,

column-name WITH OPTIONS SCOPE typed-table-name
typed-view-name

READ ONLY

under-clause:

UNDER superview-name INHERIT SELECT PRIVILEGES

Note: See “Chapter 5. Queries” on page 393 for the syntax of
common-table-expression and fullselect.

Description

FEDERATED
Indicates that the view being created references a nickname or an OLEDB
table function. If an OLEDB table function or a nickname is directly, or
indirectly, referenced in the fullselect and the FEDERATED keyword is not
specified, a warning will be issued (SQLSTATE 01639) when the CREATE
VIEW statement is submitted. However, the view will still be created.

Conversely, if an OLEDB table function or a nickname is not directly, or
indirectly, referenced in the fullselect and the FEDERATED keyword is
specified, an error will be issued (SQLSTATE 429BA) when the CREATE
VIEW statement is submitted. The view will not be created.

view-name
Names the view. The name, including the implicit or explicit qualifier,
must not identify a table, view, nickname or alias described in the catalog.
The qualifier must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT
(SQLSTATE 42939).

The name can be the same as the name of an inoperative view (see
“Inoperative views” on page 833). In this case the new view specified in
the CREATE VIEW statement will replace the inoperative view. The user
will get a warning (SQLSTATE 01595) when an inoperative view is
replaced. No warning is returned if the application was bound with the
bind option SQLWARN set to NO.

column-name
Names the columns in the view. If a list of column names is specified, it
must consist of as many names as there are columns in the result table of
the fullselect. Each column-name must be unique and unqualified. If a list
of column names is not specified, the columns of the view inherit the
names of the columns of the result table of the fullselect.

CREATE VIEW

Chapter 6. SQL Statements 825

A list of column names must be specified if the result table of the
fullselect has duplicate column names or an unnamed column (SQLSTATE
42908). An unnamed column is a column derived from a constant,
function, expression, or set operation that is not named using the AS
clause of the select list.

OF type-name
Specifies that the columns of the view are based on the attributes of the
structured type identified by type-name. If type-name is specified without a
schema name, the type name is resolved by searching the schemas on the
SQL path (defined by the FUNCPATH preprocessing option for static SQL
and by the CURRENT PATH register for dynamic SQL). The type name
must be the name of an existing user-defined type (SQLSTATE 42704) and
it must be a structured type that is instantiable (SQLSTATE 428DP).

MODE DB2SQL
This clause is used to specify the mode of the typed view. This is the only
valid mode currently supported.

UNDER superview-name
Indicates that the view is a subview of superview-name. The superview
must be an existing view (SQLSTATE 42704) and the view must be
defined using a structured type that is the immediate supertype of
type-name (SQLSTATE 428DB). The schema name of view-name and
superview-name must be the same (SQLSTATE 428DQ). The view identified
by superview-name must not have any existing subview already defined
using type-name (SQLSTATE 42742).

The columns of the view include the object identifier column of the
superview with its type modified to be REF(type-name), followed by
columns based on the attributes of type-name (remember that the type
includes the attributes of its supertype).

INHERIT SELECT PRIVILEGES
Any user or group holding a SELECT privilege on the superview will be
granted an equivalent privilege on the newly created subview. The
subview definer is considered to be the grantor of this privilege.

OID-column
Defines the object identifier column for the typed view.

REF IS OID-column-name USER GENERATED
Specifies that an object identifier (OID) column is defined in the view
as the first column. An OID is required for the root view of a view
hierarchy (SQLSTATE 428DX). The view must be a typed view (the
OF clause must be present) that is not a subview (SQLSTATE 42613).
The name for the column is defined as OID-column-name and cannot
be the same as the name of any attribute of the structured type
type-name (SQLSTATE 42711). The first column specified in fullselect

CREATE VIEW

826 SQL Reference

must be of type REF(type-name) (you may need to cast it so that it has
the appropriate type). If UNCHECKED is not specified, it must be
based on a not nullable column on which uniqueness is enforced
through an index (primary key, unique constraint, unique index, or
OID-column). This column will be referred to as the object identifier
column or OID column. The keywords USER GENERATED indicate
that the initial value for the OID column must be provided by the
user when inserting a row. Once a row is inserted, the OID column
cannot be updated (SQLSTATE 42808).

UNCHECKED
Defines the object identifier column of the typed view definition to
assume uniqueness even though the system can not prove this
uniqueness. This is intended for use with tables or views that are
being defined into a typed view hierarchy where the user knows that
the data conforms to this uniqueness rule but it does not comply with
the rules that allow the system to prove uniqueness. UNCHECKED
option is mandatory for view hierarchies that range over multiple
hierarchies or legacy tables or views By specifying UNCHECKED, the
user takes responsibility for ensuring that each row of the view has a
unique OID. If the user fails to ensure this property, and a view
contains duplicate OID values, then a path-expression or DEREF
operator involving one of the non-unique OID values may result in an
error (SQLSTATE 21000).

with-options
Defines additional options that apply to columns of a typed view.

column-name WITH OPTIONS
Specifies the name of the column for which additional options are
specified. The column-name must correspond to the name of an
attribute defined in (not inherited by) the type-name of the view. The
column must be a reference type (SQLSTATE 42842). It cannot
correspond to a column that also exists in the superview (SQLSTATE
428DJ). A column name can only appear in one WITH OPTIONS
SCOPE clause in the statement (SQLSTATE 42613).

SCOPE
Identifies the scope of the reference type column. A scope must be
specified for any column that is intended to be used as the left
operand of a dereference operator or as the argument of the DEREF
function.

Specifying the scope for a reference type column may be deferred to a
subsequent ALTER VIEW statement (if the scope is not inherited) to
allow the target table or view to be defined, usually in the case of
mutually referencing views and tables. If no scope is specified for a
reference type column of the view and the underlying table or view

CREATE VIEW

Chapter 6. SQL Statements 827

column was scoped, then the underlying column’s scope is inherited
by the reference type column. The column remains unscoped if the
underlying table or view column did not have a scope. See “Notes”
on page 832 for more information about scope and reference type

columns.

typed-table-name
The name of a typed table. The table must already exist or be the
same as the name of the table being created (SQLSTATE 42704).
The data type of column-name must be REF(S), where S is the type
of typed-table-name (SQLSTATE 428DM). No checking is done of
any existing values in column-name to ensure that the values
actually reference existing rows in typed-table-name.

typed-view-name
The name of a typed view. The view must already exist or be the
same as the name of the view being created (SQLSTATE 42704).
The data type of column-name must be REF(S), where S is the type
of typed-view-name (SQLSTATE 428DM). No checking is done of
any existing values in column-name to ensure that the values
actually reference existing rows in typed-view-name.

READ ONLY
Identifies the column as a read-only column. This option is used to
force a column to be read-only so that subview definitions can specify
an expression for the same column that is implicitly read-only.

AS
Identifies the view definition.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows.
A common table expression cannot be specified when defining a typed
view. See “common-table-expression” on page 440.

fullselect
Defines the view. At any time, the view consists of the rows that would
result if the SELECT statement were executed. The fullselect must not
reference host variables, parameter markers, or declared temporary tables.
However, a parameterized view can be created as an SQL table function.
See “CREATE FUNCTION (SQL Scalar, Table or Row)” on page 649.

For Typed Views and Subviews: The fullselect must conform to the
following rules otherwise an error is returned (SQLSTATE 428EA unless
otherwise specified).
v The fullselect must not include references to the NODENUMBER or

PARTITION functions, non-deterministic functions, or functions defined
to have external action.

CREATE VIEW

828 SQL Reference

v The body of the view must consist of a single subselect, or a UNION
ALL of two or more subselects. Let each of the subselects participating
directly in the view body be called a branch of the view. A view may
have one or more branches.

v The FROM-clause of each branch must consist of a single table or view
(not necessarily typed), called the underlying table or view of that
branch.

v The underlying table or view of each branch must be in a separate
hierarchy (i.e., a view may not have multiple branches with their
underlying tables or views in the same hierarchy).

v None of the branches of a typed view definition may specify GROUP
BY or HAVING.

v If the view body contains UNION ALL, then the root view in the
hierarchy must specify the UNCHECKED option for its OID column.

For a hierarchy of views and subviews: Let BR1 and BR2 be any branches
that appear in the definitions of views in the hierarchy. Let T1 be the
underlying table or view of BR1, and let T2 be the underlying table or
view of BR2. Then:
v If T1 and T2 are not in the same hierarchy, then the root view in the

view hierarchy must specify the UNCHECKED option for its OID
column.

v If T1 and T2 are in the same hierarchy, then BR1 and BR2 must contain
predicates or ONLY-clauses that are sufficient to guarantee that their
row-sets are disjoint.

For typed subviews defined using EXTEND AS: For every branch in the
body of the subview:
v The underlying table of each branch must be a (not necessarily proper)

subtable of some underlying table of the immediate superview.
v The expressions in the SELECT list must be assignable to the

non-inherited columns of the subview (SQLSTATE 42854).

For typed subviews defined using AS without EXTEND:
v For every branch in the body of the subview, the expressions in the

SELECT-list must be assignable to the declared types of the inherited
and non-inherited columns of the subview (SQLSTATE 42854).

v The OID-expression of each branch over a given hierarchy in the
subview must be equivalent (except for casting) to the OID-expression
in the branch over the same hierarchy in the root view.

v The expression for a column not defined (implicitly or explicitly) as
READ ONLY in a superview must be equivalent in all branches over
the same underlying hierarchy in its subviews.

CREATE VIEW

Chapter 6. SQL Statements 829

WITH CHECK OPTION
Specifies the constraint that every row that is inserted or updated through
the view must conform to the definition of the view. A row that does not
conform to the definition of the view is a row that does not satisfy the
search conditions of the view.

WITH CHECK OPTION must not be specified if the view is read-only
(SQLSTATE 42813). If WITH CHECK OPTION is specified for an
updatable view that does not allow inserts, then the constraint applies to
updates only.

WITH CHECK OPTION must not be specified if the view references the
NODENUMBER or PARTITION function, a non-deterministic function, or
a function with external action (SQLSTATE 42997).

WITH CHECK OPTION must not be specified if the view is a typed view
(SQLSTATE 42997).

WITH CHECK OPTION must not be specified if a nickname is the update
target of the view.

If WITH CHECK OPTION is omitted, the definition of the view is not
used in the checking of any insert or update operations that use the view.
Some checking might still occur during insert or update operations if the
view is directly or indirectly dependent on another view that includes
WITH CHECK OPTION. Because the definition of the view is not used,
rows might be inserted or updated through the view that do not conform
to the definition of the view.

CASCADED
The WITH CASCADED CHECK OPTION constraint on a view V
means that V inherits the search conditions as constraints from any
updatable view on which V is dependent. Furthermore, every
updatable view that is dependent on V is also subject to these
constraints. Thus, the search conditions of V and each view on which
V is dependent are ANDed together to form a constraint that is
applied for an insert or update of V or of any view dependent on V.

LOCAL
The WITH LOCAL CHECK OPTION constraint on a view V means
the search condition of V is applied as a constraint for an insert or
update of V or of any view that is dependent on V.

The difference between CASCADED and LOCAL is shown in the
following example. Consider the following updatable views (substituting
for Y from column headings of the table that follows):

CREATE VIEW

830 SQL Reference

V1 defined on table T
V2 defined on V1 WITH Y CHECK OPTION
V3 defined on V2
V4 defined on V3 WITH Y CHECK OPTION
V5 defined on V4

The following table shows the search conditions against which inserted or
updated rows are checked:

Y is LOCAL Y is CASCADED
V1 checked against: no view no view
V2 checked against: V2 V2, V1
V3 checked against: V2 V2, V1
V4 checked against: V2, V4 V4, V3, V2, V1
V5 checked against: V2, V4 V4, V3, V2, V1

Consider the following updatable view which shows the impact of the
WITH CHECK OPTION using the default CASCADED option:

CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CHECK OPTION

CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

The following INSERT statement using V1 will succeed because V1 does
not have a WITH CHECK OPTION and V1 is not dependent on any other
view that has a WITH CHECK OPTION.

INSERT INTO V1 VALUES(5)

The following INSERT statement using V2 will result in an error because
V2 has a WITH CHECK OPTION and the insert would produce a row
that did not conform to the definition of V2.

INSERT INTO V2 VALUES(5)

The following INSERT statement using V3 will result in an error even
though it does not have WITH CHECK OPTION because V3 is dependent
on V2 which does have a WITH CHECK OPTION (SQLSTATE 44000).

INSERT INTO V3 VALUES(5)

The following INSERT statement using V3 will succeed even though it
does not conform to the definition of V3 (V3 does not have a WITH
CHECK OPTION); it does conform to the definition of V2 which does
have a WITH CHECK OPTION.

INSERT INTO V3 VALUES(200)

CREATE VIEW

Chapter 6. SQL Statements 831

Notes
v Creating a view with a schema name that does not already exist will result

in the implicit creation of that schema provided the authorization ID of the
statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM.
The CREATEIN privilege on the schema is granted to PUBLIC.

v View columns inherit the NOT NULL WITH DEFAULT attribute from the
base table or view except when columns are derived from an expression.
When a row is inserted or updated into an updatable view, it is checked
against the constraints (primary key, referential integrity, and check) if any
are defined on the base table.

v A new view cannot be created if it uses an inoperative view in its
definition. (SQLSTATE 51024).

v This statement does not support declared temporary tables (SQLSTATE
42995).

v Deletable views: A view is deletable if all of the following are true:
– each FROM clause of the outer fullselect identifies only one base table

(with no OUTER clause), deletable view (with no OUTER clause),
deletable nested table expression, or deletable common table expression
(cannot identify a nickname)

– the outer fullselect does not include a VALUES clause
– the outer fullselect does not include a GROUP BY clause or HAVING

clause
– the outer fullselect does not include column functions in the select list
– the outer fullselect does not include SET operations (UNION, EXCEPT or

INTERSECT) with the exception of UNION ALL
– the base tables in the operands of a UNION ALL must not be the same

table and each operand must be deletable
– the select list of the outer fullselect does not include DISTINCT

v Updatable views: A column of a view is updatable if all of the following
are true:
– the view is deletable
– the column resolves to a column of a base table (not using a dereference

operation) and READ ONLY option is not specified
– all the corresponding columns of the operands of a UNION ALL have

exactly matching data types (including length or precision and scale) and
matching default values if the fullselect of the view includes a UNION
ALL

A view is updatable if ANY column of the view is updatable.
v Insertable views:

A view is insertable if ALL columns of the view are updatable and the
fullselect of the view does not include UNION ALL.

CREATE VIEW

832 SQL Reference

v Read-only views: A view is read-only if it is NOT deletable.
The READONLY column in the SYSCAT.VIEWS catalog view indicates if a
view is read-only.

v Common table expressions and nested table expressions follow the same set
of rules for determining whether they are deletable, updatable, insertable or
read-only.

v Inoperative views: An inoperative view is a view that is no longer available
for SQL statements. A view becomes inoperative if:
– A privilege, upon which the view definition is dependent, is revoked.
– An object such as a table, nickname, alias or function, upon which the

view definition is dependent, is dropped.
– A view, upon which the view definition is dependent, becomes

inoperative.
– A view that is the superview of the view definition (the subview)

becomes inoperative.

In practical terms, an inoperative view is one in which the view definition
has been unintentionally dropped. For example, when an alias is dropped,
any view defined using that alias is made inoperative. All dependent views
also become inoperative and packages dependent on the view are no longer
valid.

Until the inoperative view is explicitly recreated or dropped, a statement
using that inoperative view cannot be compiled (SQLSTATE 51024) with the
exception of the CREATE ALIAS, CREATE VIEW, DROP VIEW, and
COMMENT ON TABLE statements. Until the inoperative view has been
explicitly dropped, its qualified name cannot be used to create another table
or alias (SQLSTATE 42710).

An inoperative view may be recreated by issuing a CREATE VIEW
statement using the definition text of the inoperative view. This view
definition text is stored in the TEXT column of the SYSCAT.VIEWS catalog.
When recreating an inoperative view, it is necessary to explicitly grant any
privileges required on that view by others, due to the fact that all
authorization records on a view are deleted if the view is marked
inoperative. Note that there is no need to explicitly drop the inoperative
view in order to recreate it. Issuing a CREATE VIEW statement with the
same view-name as an inoperative view will cause that inoperative view to
be replaced, and the CREATE VIEW statement will return a warning
(SQLSTATE 01595).

Inoperative views are indicated by an X in the VALID column of the
SYSCAT.VIEWS catalog view and an X in the STATUS column of the
SYSCAT.TABLES catalog view.

CREATE VIEW

Chapter 6. SQL Statements 833

v Privileges

The definer of a view always receives the SELECT privilege on the view as
well as the right to drop the view. The definer of a view will get
CONTROL privilege on the view only if the definer has CONTROL
privilege on every base table, view or nickname identified in the fullselect,
or if the definer has SYSADM or DBADM authority.
The definer of the view is granted INSERT, UPDATE, column level
UPDATE or DELETE privileges on the view if the view is not read-only
and the definer has the corresponding privileges on the underlying objects.
The definer of a view only acquires privileges if the privileges from which
they are derived exist at the time the view is created. The definer must
have these privileges either directly or because PUBLIC has the privilege.
Privileges are not considered when defining a view on federated server
nickname. However, when using a view on a nickname, the user’s
authorization ID must have valid select privileges on the table or view that
the nickname references at the data source. Otherwise, an error is returned.
Privileges held by groups of which the view definer is a member, are not
considered.
When a subview is created, the SELECT privileges held on the immediate
superview are automatically granted on the subview.

v Scope and REF columns

When selecting a reference type column in the fullselect of a view
definition, consider the target type and scope that is required.
– If the required target type and scope is the same as the underlying table

or view, the column can simply be selected.
– If the scope needs to be changed, use the WITH OPTIONS SCOPE clause

to define the required scope table or view.
– If the target type of the reference needs to be changed, the column must

be cast first to the representation type of the reference and then to the
new reference type. The scope in this case can be specified in the cast to
the reference type or using the WITH OPTIONS SCOPE clause. For
example, assume you select column Y defined as REF(TYP1) SCOPE
TAB1. You want this to be defined as REF(VTYP1) SCOPE VIEW1. The
select list item would be as follows:

CAST(CAST(Y AS VARCHAR(16) FOR BIT DATA) AS REF(VTYP1) SCOPE VIEW1)

v Identity columns A column of a view is considered an identity column, if
the element of the corresponding column in the fullselect of the view
definition is the name of an identity column of a table, or the name of a
column of a view which directly or indirectly maps to the name of an
identity column of a base table.
In all other cases, the columns of a view will not get the identity property.
For example:

CREATE VIEW

834 SQL Reference

– the select-list of the view definition includes multiple instances of the
name of an identity column (that is, selecting the same column more
than once)

– the view definition involves a join
– a column in the view definition includes an expression that refers to an

identity column
– the view definition includes a UNION

When inserting into a view for which the select list of the view definition
directly or indirectly includes the name of an identity column of a base
table, the same rules apply as if the INSERT statement directly referenced
the identity column of the base table.

v Federated views A federated view is a view that includes a reference to a
nickname somewhere in the fullselect. The presence of such a nickname
changes the authorization model used for the view both at create time and
when the view is subsequently referenced in a query. If a view is created
that references a nickname and the FEDERATED keyword is not included, a
warning is issued to indicate that the authorization requirements for this
view are different because of the reference to a nickname.
A nickname has no associated DML privileges and therefore when the view
is created, no privilege checking is done to determine whether the view
definer has access to the nickname or to the underlying data source table or
view. Privilege checking of references to tables or views at the federated
database are handled as usual, requiring the view definer to have at least
SELECT privilege on such objects.
When a federated view is subsequently referenced in a query, the
nicknames result in queries against the data source and authorization ID
that issued the query (or the remote authorization ID to which it maps)
must have the necessary privileges to access the data source table or view.
The authorization ID that issues the query referencing the federated view is
not required to have any additional privileges on tables or views
(non-federated) that exist at the federated server.

Examples
Example 1: Create a view named MA_PROJ upon the PROJECT table that
contains only those rows with a project number (PROJNO) starting with the
letters ‘MA’.

CREATE VIEW MA_PROJ AS SELECT *
FROM PROJECT
WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Example 2: Create a view as in example 1, but select only the columns for
project number (PROJNO), project name (PROJNAME) and employee in
charge of the project (RESPEMP).

CREATE VIEW

Chapter 6. SQL Statements 835

CREATE VIEW MA_PROJ
AS SELECTPROJNO, PROJNAME, RESPEMP
FROM PROJECT
WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Example 3: Create a view as in example 2, but, in the view, call the column
for the employee in charge of the project IN_CHARGE.

CREATE VIEW MA_PROJ
(PROJNO, PROJNAME, IN_CHARGE)
AS SELECTPROJNO, PROJNAME, RESPEMP
FROM PROJECT
WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Note: Even though only one of the column names is being changed, the
names of all three columns in the view must be listed in the parentheses that
follow MA_PROJ.

Example 4: Create a view named PRJ_LEADER that contains the first four
columns (PROJNO, PROJNAME, DEPTNO, RESPEMP) from the PROJECT
table together with the last name (LASTNAME) of the person who is
responsible for the project (RESPEMP). Obtain the name from the EMPLOYEE
table by matching EMPNO in EMPLOYEE to RESPEMP in PROJECT.

CREATE VIEW PRJ_LEADER
AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME
FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO

Example 5: Create a view as in example 4, but in addition to the columns
PROJNO, PROJNAME, DEPTNO, RESPEMP, and LASTNAME, show the total
pay (SALARY + BONUS + COMM) of the employee who is responsible. Also
select only those projects with mean staffing (PRSTAFF) greater than one.

CREATE VIEW PRJ_LEADER
(PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY)
AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM

FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO
AND PRSTAFF > 1

Specifying the column name list could be avoided by naming the expression
SALARY+BONUS+COMM as TOTAL_PAY in the fullselect.

CREATE VIEW PRJ_LEADER
AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP,

LASTNAME, SALARY+BONUS+COMM AS TOTAL_PAY
FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO AND PRSTAFF > 1

Example 6: Given the set of tables and views shown in the following figure:

CREATE VIEW

836 SQL Reference

User ZORPIE (who does not have either DBADM or SYSADM authority) has
been granted the privileges shown in brackets below each object:
1. ZORPIE will get CONTROL privilege on the view that she creates with:

CREATE VIEW VA AS SELECT * FROM S1.V1

because she has CONTROL on S1.V1.86 It it does not matter which, if any,
privileges she has on the underlying base table.

2. ZORPIE will not be allowed to create the view:
CREATE VIEW VB AS SELECT * FROM S1.V2

because she has neither CONTROL nor SELECT on S1.V2. It does not
matter that she has CONTROL on the underlying base table (S1.T2).

3. ZORPIE will get CONTROL privilege on the view that she creates with:
CREATE VIEW VC (COLA, COLB, COLC, COLD)

AS SELECT * FROM S1.V1, S1.T2
WHERE COLA = COLC

because the fullselect of ZORPIE.VC references view S1.V1 and table S1.T2
and she has CONTROL on both of these. Note that the view VC is
read-only, so ZORPIE does not get INSERT, UPDATE or DELETE
privileges.

4. ZORPIE will get SELECT privilege on the view that she creates with:
CREATE VIEW VD (COLA,COLB, COLE, COLF)

AS SELECT * FROM S1.V1, S1.V3
WHERE COLA = COLE

because the fullselect of ZORPIE.VD references the two views S1.V1 and
S1.V3, one on which she has only SELECT privilege, and one on which
she has CONTROL privilege. She is given the lesser of the two privileges,
SELECT, on ZORPIE.VD.

86. CONTROL on S1.V1 must have been granted to ZORPIE by someone with DBADM or SYSADM authority.

COLA COLB

INTEGERCHAR(5)

COLC COLD

INTEGERCHAR(5)

COLE COLF

INTEGERCHAR(5)

...SELECT * FROM S1.T1 ...SELECT * FROM S1.T2 ...SELECT * FROM S1.T3

table: S1.T1 table: S1.T2 table: S1.T3

view: S1.V1 view: S1.V2 view: S1.V3

(SELECT, INSERT) (CONTROL) (SELECT)

(CONTROL) (none) (SELECT)

Figure 14. Tables and Views for Example 6

CREATE VIEW

Chapter 6. SQL Statements 837

5. ZORPIE will get INSERT, UPDATE and DELETE privilege WITH GRANT
OPTION and SELECT privilege on the view VE in the following view
definition.

CREATE VIEW VE
AS SELECT * FROM S1.V1
WHERE COLA > ANY

(SELECT COLE FROM S1.V3)

ZORPIE’s privileges on VE are determined primarily by her privileges on
S1.V1. Since S1.V3 is only referenced in a subquery, she only needs
SELECT privilege on S1.V3 to create the view VE. The definer of a view
only gets CONTROL on the view if they have CONTROL on all objects
referenced in the view definition. ZORPIE does not have CONTROL on
S1.V3, consequently she does not get CONTROL on VE.

CREATE VIEW

838 SQL Reference

CREATE WRAPPER
The CREATE WRAPPER statement registers a wrapper—a mechanism by
which a federated server can interact with a certain category of data
sources—to a federated database.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization

The authorization ID of the statement must have SYSADM or DBADM
authority.

Syntax

�� CREATE WRAPPER wrapper-name
LIBRARY ‘library-name’

��

Description

wrapper-name
Names the wrapper. It can be:
v A predefined name. If a predefined name is specified, the federated

server automatically assigns a default to ‘library-name’.
The predefined names are:

DRDA For all DB2 family data sources

NET8 For all Oracle data sources that are supported by
Oracle’s Net8 client software

OLEDB For all OLE DB providers supported by Microsoft OLE
DB

SQLNET For all Oracle data sources that are supported by
Oracle’s SQL*Net client software

v A user-supplied name. If such a name is provided, it is necessary to
also specify ‘library-name’.

LIBRARY ‘library-name’
Names the file that contains the wrapper module. The LIBRARY option is
only necessary when a user-supplied wrapper-name is used. This option
should not be used when a predefined wrapper-name is given. The default
file names for the predefined wrapper-names are:

CREATE WRAPPER

Chapter 6. SQL Statements 839

Table 26. Default file names for LIBRARY option

Platform DRDA SQLNET NET8 OLEDB

AIX libdrda.a libsqlnet.a libnet8.a –

HP-UX libdrda.sl libsqlnet.sl libnet8.sl –

SOLARIS libdrda.so libsqlnet.so libnet8.so –

UNIX libdrda.a libsqlnet.a libnet8.a –

WINNT drda.dll sqlnet.dll net8.dll db2oledb.dll

Notes
Refer to Installation and Configuration Supplement for more information on how
to select and define wrappers.

Examples
Example 1: Register a wrapper that the federated server can use to interact
with an Oracle data source that is supported by Oracle’s SQL*Net client
software. Use the predefined name.

CREATE WRAPPER SQLNET

Example 2: Register a wrapper that the federated server on an AIX system can
use to interact with DB2 for VM and VSE data sources. Specify a name to
indicate that these data sources are used for testing.

CREATE WRAPPER TEST
LIBRARY 'libsqlds.a'

The extension in the library name (a) indicates that wrapper TEST is for data
sources that reside in an AIX system.

CREATE WRAPPER

840 SQL Reference

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded
within an application program. It is not an executable statement and cannot
be dynamically prepared.

Authorization
The term “SELECT statement of the cursor” is used in order to specify the
authorization rules. The SELECT statement of the cursor is one of the
following:
v The prepared select-statement identified by the statement-name

v The specified select-statement.

For each table or view identified (directly or using an alias) in the SELECT
statement of the cursor, the privileges held by the authorization ID of the
statement must include at least one of the following:
v SYSADM or DBADM authority.
v For each table or view identified in the select-statement:

– SELECT privilege on the table or view, or
– CONTROL privilege of the table or view.

If statement-name is specified:

v The authorization ID of the statement is the run-time authorization ID.
v The authorization check is performed when the select-statement is

prepared.
v The cursor cannot be opened unless the select-statement is successfully

prepared.

If select-statement is specified:

v GROUP privileges are not checked.
v The authorization ID of the statement is the authorization ID specified

during program preparation.

Syntax

�� DECLARE cursor-name CURSOR
WITH HOLD TO CALLER

WITH RETURN
TO CLIENT

�

DECLARE CURSOR

Chapter 6. SQL Statements 841

� FOR select-statement
statement-name

��

Description

cursor-name
Specifies the name of the cursor created when the source program is run.
The name must not be the same as the name of another cursor declared in
the source program. The cursor must be opened before use (see “OPEN”
on page 949).

WITH HOLD
Maintains resources across multiple units of work. The effect of the WITH
HOLD cursor attribute is as follows:
v For units of work ending with COMMIT:

– Open cursors defined WITH HOLD remain open. The cursor is
positioned before the next logical row of the results table.
If a DISCONNECT statement is issued after a COMMIT statement
for a connection with WITH HOLD cursors, the held cursors must be
explicitly closed or the connection will be assumed to have
performed work (simply by having open WITH HELD cursors even
though no SQL statements were issued) and the DISCONNECT
statement will fail.

– All locks are released, except locks protecting the current cursor
position of open WITH HOLD cursors. The locks held include the
locks on the table, and for parallel environments, the locks on rows
where the cursors are currently positioned. Locks on packages and
dynamic SQL sections (if any) are held.

– Valid operations on cursors defined WITH HOLD immediately
following a COMMIT request are:
- FETCH: Fetches the next row of the cursor.
- CLOSE: Closes the cursor.

– UPDATE and DELETE CURRENT OF CURSOR are valid only for
rows that are fetched within the same unit of work.

– LOB locators are freed.
v For units of work ending with ROLLBACK:

– All open cursors are closed.
– All locks acquired during the unit of work are released.
– LOB locators are freed.

v For special COMMIT case:
– Packages may be recreated either explicitly, by binding the package,

or implicitly, because the package has been invalidated and then

DECLARE CURSOR

842 SQL Reference

dynamically recreated the first time it is referenced. All held cursors
are closed during package rebind. This may result in errors during
subsequent execution.

WITH RETURN
This clause indicates that the cursor is intended for use as a result set
from a stored procedure. WITH RETURN is relevant only if the
DECLARE CURSOR statement is contained with the source code for a
stored procedure. In other cases, the precompiler may accept the clause,
but it has no effect.

Within an SQL procedure, cursors declared using the WITH RETURN
clause that are still open when the SQL procedure ends, define the result
sets from the SQL procedure. All other open cursors in an SQL procedure
are closed when the SQL procedure ends. Within an external stored
procedure (one not defined using LANGUAGE SQL), the WITH RETURN
clause has no effect, and any cursors open at the end of an external
procedure are considered the result sets.

TO CALLER
Specifies that the cursor can return a result set to the caller. For
example, if the caller is another stored procedure, the result set is
returned to that stored procedure. If the caller is a client
application, the result set is returned to the client application.

TO CLIENT
Specifies that the cursor can return a result set to the client
application. This cursor is invisible to any intermediate nested
procedures.

select-statement
Identifies the SELECT statement of the cursor. The select-statement must
not include parameter markers, but may include references to host
variables. The declarations of the host variables must precede the
DECLARE CURSOR statement in the source program. See
“select-statement” on page 439 for an explanation of select-statement.

statement-name
The SELECT statement of the cursor is the prepared SELECT statement
identified by the statement-name when the cursor is opened. The
statement-name must not be identical to a statement-name specified in
another DECLARE CURSOR statement of the source program.

For an explanation of prepared SELECT statements, see “PREPARE” on
page 954.

Notes
v A program called from another program, or from a different source file

within the same program, cannot use the cursor that was opened by the
calling program.

DECLARE CURSOR

Chapter 6. SQL Statements 843

v Unnested stored procedures, with LANGUAGE other than SQL, will have
WITH RETURN TO CALLER as the default behavior if DECLARE
CURSOR is specified without a WITH RETURN clause, and the cursor is
left open in the procedure. This provides compatibility with stored
procedures from previous versions that allow stored procedures to return
result sets to applicable client applications. To avoid this behavior, close all
cursors opened in the procedure.

v If the SELECT statement of a cursor contains CURRENT DATE, CURRENT
TIME, or CURRENT TIMESTAMP, all references to these special registers
will yield the same value on each FETCH. This value is determined when
the cursor is opened.

v For more efficient processing of data, the database manager can block data
for read-only cursors when retrieving data from a remote server. The use of
the FOR UPDATE clause helps the database manager decide whether a
cursor is updatable or not. Updatability is also used to determine the access
path selection as well. If a cursor is not going to be used in a Positioned
UPDATE or DELETE statement, it should be declared as FOR READ ONLY.

v A cursor in the open state designates a result table and a position relative to
the rows of that table. The table is the result table specified by the SELECT
statement of the cursor.

v A cursor is deletable if all of the following are true:
– each FROM clause of the outer fullselect identifies only one base table or

deletable view (cannot identify a nested or common table expression or a
nickname) without use of the OUTER clause

– the outer fullselect does not include a VALUES clause
– the outer fullselect does not include a GROUP BY clause or HAVING

clause
– the outer fullselect does not include column functions in the select list
– the outer fullselect does not include SET operations (UNION, EXCEPT,

or INTERSECT) with the exception of UNION ALL
– the select list of the outer fullselect does not include DISTINCT
– the select-statement does not include an ORDER BY clause
– the select-statement does not include a FOR READ ONLY clause87

– one or more of the following is true:
- the FOR UPDATE clause88 is specified
- the cursor is statically defined
- the LANGLEVEL bind option is MIA or SQL92E

87. The FOR READ ONLY clause is defined in “read-only-clause” on page 447.

88. The FOR UPDATE clause is defined in “update-clause” on page 446.

DECLARE CURSOR

844 SQL Reference

A column in the select list of the outer fullselect associated with a cursor is
updatable if all of the following are true:
– the cursor is deletable
– the column resolves to a column of the base table
– the LANGLEVEL bind option is MIA, SQL92E or the select-statement

includes the FOR UPDATE clause (the column must be specified
explicitly or implicitly in the FOR UPDATE clause).

A cursor is read-only if it is not deletable.

A cursor is ambiguous if all of the following are true:
– the select-statement is dynamically prepared
– the select-statement does not include either the FOR READ ONLY clause

or the FOR UPDATE clause
– the LANGLEVEL bind option is SAA1
– the cursor otherwise satisfies the conditions of a deletable cursor.

An ambiguous cursor is considered read-only if the BLOCKING bind
option is ALL, otherwise it is considered deletable.

v Cursors in stored procedures that are called by application programs
written using CLI can be used to define result sets that are returned directly
to the client application. Cursors in SQL procedures can also be returned to
a calling SQL procedure only if they are defined using the WITH RETURN
clause. See the “Notes” on page 527.

Example
The DECLARE CURSOR statement associates the cursor name C1 with the
results of the SELECT.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPARTMENT
WHERE ADMRDEPT = 'A00';

DECLARE CURSOR

Chapter 6. SQL Statements 845

DECLARE GLOBAL TEMPORARY TABLE
The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary
table for the current session. The declared temporary table description does
not appear in the system catalog. It is not persistent and cannot be shared
with other sessions. Each session that defines a declared global temporary
table of the same name has its own unique description of the temporary table.
When the session terminates, the rows of the table are deleted, and the
description of the temporary table is dropped.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v USE privilege on the USER TEMPORARY table space.

When defining a table using LIKE or a fullselect, the privileges held by the
authorization ID of the statement must also include at least one of the
following on each identified table or view:
v SELECT privilege on the table or view
v CONTROL privilege on the table or view
v SYSADM or DBADM authority

Syntax

�� DECLARE GLOBAL TEMPORARY TABLE table-name �

� �

,

(column-definition)
LIKE table-name2

view-name copy-options
AS (fullselect) DEFINITION ONLY

copy-options

�

�
ON COMMIT DELETE ROWS

* * * NOT LOGGED *
WITH REPLACE ON COMMIT PRESERVE ROWS

�

DECLARE GLOBAL TEMPORARY TABLE

846 SQL Reference

� *
IN tablespace-name

�

�

�

*
,

USING HASHING
PARTITIONING KEY (column-name)

��

column-definition:

column-name data-type
column-options

column-options:

* * *
NOT NULL default-clause

GENERATED ALWAYS AS identity-clause
BY DEFAULT

copy-options:

COLUMN ATTRIBUTES
EXCLUDING IDENTITY

* * *
COLUMN COLUMN ATTRIBUTES

INCLUDING DEFAULTS INCLUDING IDENTITY
EXCLUDING

Description

table-name
Names the temporary table. The qualifier, if specified explicitly, must be
SESSION, otherwise an error is returned (SQLSTATE 428EK). If the
qualifier is not specified, SESSION is implicitly assigned.

Each session that defines a declared global temporary table with the same
table-name has its own unique description of that declared global
temporary table. The WITH REPLACE clause must be specified if
table-name identifies a declared temporary table that already exists in the
session (SQLSTATE 42710).

It is possible that a table, view, alias, or nickname already exists in the
catalog, with the same name and the schema name SESSION. In this case:
v A declared global temporary table table-name may still be defined

without any error or warning

DECLARE GLOBAL TEMPORARY TABLE

Chapter 6. SQL Statements 847

v Any references to SESSION.table-name will resolve to the declared global
temporary table rather than the SESSION.table-name already defined in
the catalog.

column-definition
Defines the attributes of a column of the temporary table.

column-name
Names a column of the table. The name cannot be qualified and the
same name cannot be used for more than one column of the table
(SQLSTATE 42711).

A table may have the following:
v a 4K page size with maximum of 500 columns where the byte

counts of the columns must not be greater than 4005 in a 4K page
size. Refer to “Row Size” on page 756 for more details.

v an 8K page size with maximum of 1 012 columns where the byte
counts of the columns must not be greater than 8 101. Refer to
“Row Size” on page 756 for more details.

v a 16K page size with maximum of 1 012 columns where the byte
counts of the columns must not be greater than 16 293. Refer to
“Row Size” on page 756 for more details.

v a 32K page size with maximum of 1 012 columns where the byte
counts of the columns must not be greater than 32 677. Refer to
“Row Size” on page 756 for more details.

data-type
See data-type in “CREATE TABLE” on page 712 for allowable types.
Note that BLOB, CLOB, DBCLOB, LONG VARCHAR, LONG
VARGRAPHIC, DATALINK, reference, and structured types cannot be
used with declared global temporary tables (SQLSTATE 42962). This
exception includes distinct types sourced on these restricted types.

FOR BIT DATA can be specified as part of character string data types.

column-options
Defines additional options related to the columns of the table.

NOT NULL
Prevents the column from containing null values. See NOT NULL
in “CREATE TABLE” on page 712 for specification of null values.

default-clause
See default-clause in “CREATE TABLE” on page 712 for
specification of defaults.

identity-clause
See identity-clause in “CREATE TABLE” on page 712 for
specification of identity columns.

DECLARE GLOBAL TEMPORARY TABLE

848 SQL Reference

LIKE table-name2 or view-name
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table (table-name2) or view
(view-name), or nickname (nickname). The name specified after LIKE must
identify a table, view or nickname that exists in the catalog or a declared
temporary table. A typed table or typed view cannot be specified
(SQLSTATE 428EC).

The use of LIKE is an implicit definition of n columns, where n is the
number of columns in the identified table or view.
v If a table is identified, then the implicit definition includes the column

name, data type and nullability characteristic of each of the columns of
table-name2. If EXCLUDING COLUMN DEFAULTS is not specified, then
the column default is also included.

v If a view is identified, then the implicit definition includes the column
name, data type, and nullability characteristic of each of the result
columns of the fullselect defined in view-name.

Column default and identity column attributes may be included or
excluded, based on the copy-attributes clauses.

The implicit definition does not include any other attributes of the
identified table or view. Thus, the new table does not have any unique
constraints, foreign key constraints, triggers, or indexes. The table is
created in the table space either implicitly or explicitly, as specified by the
IN clause.

The names used for table-name2 and view-name can not be the same as the
name of the global temporary table that is being created (SQLSTATE
428EC).

AS (fullselect) DEFINITION ONLY
Specifies that the table definition is based on the column definitions from
the result of a query expression. The use of AS (fullselect) is an implicit
definition of n columns for the declared global temporary table, where n
is the number of columns that would result from fullselect. The columns of
the new table are defined by the columns that result from the fullselect.
Every select list element must have a unique name (SQLSTATE 42711).
The AS clause can be used in the select-clause to provide unique names.

The implicit definition includes the column name, data type, and
nullability characteristic of each of the result columns of fullselect.

copy-options
These options specify whether or not to copy additional attributes of the
source result table definition (table, view, or fullselect).

DECLARE GLOBAL TEMPORARY TABLE

Chapter 6. SQL Statements 849

INCLUDING COLUMN DEFAULTS
Column defaults for each updatable column of the source result table
definition are copied. Columns that are not updatable will not have a
default defined in the corresponding column of the created table.

If LIKE table-name2 is specified, and table-name2 identifies a base table
or declared temporary table, then INCLUDING COLUMN DEFAULTS
is the default.

EXCLUDING COLUMN DEFAULTS
Column defaults are not copied from the source result table definition.

This clause is the default, except when LIKE table-name is specified
and table-name identifies a base table or declared temporary table.

INCLUDING IDENTITY COLUMN ATTRIBUTES
If available, identity column attributes (START WITH, INCREMENT
BY, and CACHE values) are copied from the source’s result table
definition. It is possible to copy these attributes if the element of the
corresponding column in the table, view, or fullselect is the name of a
column of a table, or the name of a column of a view, which directly
or indirectly maps to the column name of a base table with the
identity property. In all other cases, the columns of the new temporary
table will not get the identity property. For example:
v the select list of the fullselect includes multiple instances of the

name of an identity column (that is, selecting the same column
more than once)

v the select list of the fullselect includes multiple identity columns
(that is, it involves a join)

v the identity column is included in an expression in the select list
v the fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are not copied from the source result table
definition.

ON COMMIT
Specifies the action taken on the global temporary table when a COMMIT
operation is performed.

DELETE ROWS
All rows of the table will be deleted if no WITH HOLD cursor is open
on the table. This is the default.

PRESERVE ROWS
Rows of the table will be preserved.

NOT LOGGED
Changes to the table are not logged, including creation of the table. When

DECLARE GLOBAL TEMPORARY TABLE

850 SQL Reference

a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is performed
and the table was changed in the unit of work (or savepoint), then all
rows of the table are deleted. If the table was created in the unit of work
(or savepoint), then that table will be dropped. If the table was dropped
in the unit of work (or savepoint) then the table will be restored, but with
no rows. Furthermore, if a statement that performs an INSERT, UPDATE,
or DELETE operation on the table encounters an error, all rows of the
table are deleted.

WITH REPLACE
Indicates that, in the case that a declared global temporary table already
exists with the specified name, the existing table is replaced with the
temporary table defined by this statement (and all rows of the existing
table are deleted).

When WITH REPLACE is not specified, then the name specified must not
identify a declared global temporary table that already exists in the
current session (SQLSTATE 42710).

IN tablespace-name
Identifies the table space in which the global temporary table will be
instantiated. The table space must exist and be a USER TEMPORARY
table space (SQLSTATE 42838), over which the authorization ID of the
statement has USE privilege (SQLSTATE 42501). If this clause is not
specified, a table space for the table is determined by choosing the USER
TEMPORARY table space with the smallest sufficient page size over
which the authorization ID of the statement has USE privilege. When
more than one table space qualifies, preference is given according to who
was granted the USE privilege:
1. the authorization ID
2. a group to which the authorization ID belongs
3. PUBLIC

If more than one table space still qualifies, the final choice is made by the
database manager. When no USER TEMPORARY table space qualifies, an
error is raised (SQLSTATE 42727).

Determination of the table space may change when:
v table spaces are dropped or created
v USE privileges are granted or revoked.

The sufficient page size of a table is determined by either the byte count
of the row or the number of columns. Refer to “Row Size” on page 756 for
more information.

PARTITIONING KEY (column-name,...)
Specifies the partitioning key used when data in the table is partitioned.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 6. SQL Statements 851

Each column-name must identify a column of the table and the same
column must not be identified more than once.

If this clause is not specified, and this table resides in a multiple partition
nodegroup, then the partitioning key is defined as the first column of
declared temporary table.

For declared temporary tables, in table spaces defined on single-partition
nodegroups, any collection of columns can be used to define the
partitioning key. If you do not specify this parameter, no partitioning key
is created.

Note that partitioning key columns cannot be updated (SQLSTATE 42997).

USING HASHING
Specifies the use of the hashing function as the partitioning method
for data distribution. This is the only partitioning method supported.

Notes
v Referencing a declared global temporary table: The description of a

declared global temporary table does not appear in the DB2 catalog
(SYSCAT.TABLES); therefore, it is not persistent and is not sharable across
database connections. This means that each session that defines a declared
global temporary table called table-name has its own possibly unique
description of that declared global temporary table.
In order to reference the declared global temporary table in an SQL
statement (other than the DECLARE GLOBAL TEMPORARY TABLE
statement), the table must be explicitly or implicitly qualified by the schema
name SESSION. If table-name is not qualified by SESSION, declared global
temporary tables are not considered when resolving the reference.
A reference to SESSION.table-name in a connection that has not declared a
global temporary table by that name will attempt to resolve from persistent
objects in the catalog. If no such object exists, an error occurs (SQLSTATE
42704).

v When binding a package that has static SQL statements that refer to tables
implicitly or explicitly qualified by SESSION, those statements will not be
bound statically. When these statements are invoked, they will be
incrementally bound, regardless of the VALIDATE option chosen while
binding the package. At runtime, each table reference will be resolved to a
declared temporary table, if it exists, or a permanent table. If neither exists,
an error will be raised (SQLSTATE 42704).

v Privileges: When a declared global temporary table is defined, the definer
of the table is granted all table privileges on the table, including the ability
to drop the table. Additionally, these privileges are granted to PUBLIC.89

89. None of the privileges are granted with the GRANT option, and none of the privileges appear in the catalog table.

DECLARE GLOBAL TEMPORARY TABLE

852 SQL Reference

This enables any SQL statement in the session to reference a declared global
temporary table that has already been defined in that session.

v Instantiation and Termination: For the explanations below, P denotes a
session and T is a declared global temporary table in the session P:
– An empty instance of T is created as a result of the DECLARE GLOBAL

TEMPORARY TABLE statement that is executed in P.
– Any SQL statement in P can make reference to T; and any reference to T

in P is a reference to that same instance of T.
– If a DECLARE GLOBAL TEMPORARY TABLE statement is specified

within the SQL procedure compound statement (defined by BEGIN and
END), the scope of the declared global temporary table is the connection,
not just the compound statement, and the table is known outside of the
compound statement. The table is not implicitly dropped at the END of
the compound statement. A declared global temporary table cannot be
defined multiple times by the same name in other compound statements
in that session, unless the table has been explicitly dropped.

– Assuming that the ON COMMIT DELETE ROWS clause was specified
implicitly or explicitly, then when a commit operation terminates a unit
of work in P, and there is no open WITH HOLD cursor in P that is
dependent on T, the commit includes the operation DELETE FROM
SESSION.T.

– When a rollback operation terminates a unit of work or a savepoint in P,
and that unit of work or savepoint includes a modification to
SESSION.T, then the rollback includes the operation DELETE from
SESSION.T.
When a rollback operation terminates a unit of work or a savepoint in P,
and that unit of work or savepoint includes the declaration of
SESSION.T, then the rollback includes the operation DROP SESSION.T.
If a rollback operation terminates a unit of work or a savepoint in P, and
that unit of work or savepoint includes the drop of a declared temporary
table SESSION.T, then the rollback will undo the drop of the table, but
the table will have been emptied.

– When the application process that declared T terminates or disconnects
from the database, T is dropped and its instantiated rows are destroyed.

– When the connection to the server at which T was declared terminates, T
is dropped and its instantiated rows are destroyed.

v Restrictions on the Use of Declared Global Temporary Tables: Declared
Global Temporary tables cannot:
– Be specified in an ALTER, COMMENT, GRANT, LOCK, RENAME or

REVOKE statement (SQLSTATE 42995).
– Be referenced in a CREATE ALIAS, CREATE FUNCTION (SQL Scalar,

Table, or Row), CREATE INDEX, CREATE TRIGGER, or CREATE VIEW
statement (SQLSTATE 42995).

DECLARE GLOBAL TEMPORARY TABLE

Chapter 6. SQL Statements 853

– Be specified in referential constraints (SQLSTATE 42995).

DECLARE GLOBAL TEMPORARY TABLE

854 SQL Reference

DELETE
The DELETE statement deletes rows from a table or view. Deleting a row
from a view deletes the row from the table on which the view is based.

There are two forms of this statement:
v The Searched DELETE form is used to delete one or more rows (optionally

determined by a search condition).
v The Positioned DELETE form is used to delete exactly one row (as

determined by the current position of a cursor).

Invocation
A DELETE statement can be embedded in an application program or issued
through the use of dynamic SQL statements. It is an executable statement that
can be dynamically prepared.

Authorization
To execute either form of this statement, the privileges held by the
authorization ID of the statement must include at least one of the following:
v DELETE privilege on the table or view for which rows are to be deleted
v CONTROL privilege on the table or view for which rows are to be deleted
v SYSADM or DBADM authority.

To execute a Searched DELETE statement, the privileges held by the
authorization ID of the statement must also include at least one of the
following for each table or view referenced by a subquery:
v SELECT privilege
v CONTROL privilege
v SYSADM or DBADM authority.

When the package is precompiled with SQL92 rules 90 and the searched form
of a DELETE includes a reference to a column of the table or view in the
search-condition, the privileges held by the authorization ID of the statement
must also include at least one of the following:
v SELECT privilege
v CONTROL privilege
v SYSADM or DBADM authority.

When the specified table or view is preceded by the ONLY keyword, the
privileges held by the authorization ID of the statement must also include the
SELECT privilege for every subtable or subview of the specified table or view.

90. The package used to process the statement is precompiled using option LANGLEVEL with value SQL92E or MIA.

DELETE

Chapter 6. SQL Statements 855

Group privileges are not checked for static DELETE statements.

Syntax
Searched DELETE:

�� DELETE FROM table-name
view-name
ONLY (table-name)

view-name

AS
correlation-name

�

�
WHERE search-condition

��

Positioned DELETE:

�� DELETE FROM table-name
view-name
ONLY (table-name)

view-name

WHERE CURRENT OF cursor-name ��

Description

FROM table-name or view-name
Identifies the table or view from which rows are to be deleted. The name
must identify a table or view that exists in the catalog, but it must not
identify a catalog table, a catalog view, a summary table or a read-only
view. (For an explanation of read-only views, see “CREATE VIEW” on
page 823.)

If table-name is a typed table, rows of the table or any of its proper
subtables may get deleted by the statement.

If view-name is a typed view, rows of the underlying table or underlying
tables of the view’s proper subviews may get deleted by the statement. If
view-name is a regular view with an underlying table that is a typed table,
rows of the typed table or any of its proper subtables may get deleted by
the statement.

Only the columns of the specified table may be referenced in the WHERE
clause. For a positioned DELETE, the associated cursor must also have
specified the table or view in the FROM clause without using ONLY.

FROM ONLY (table-name)
Applicable to typed tables, the ONLY keyword specifies that the statement
should apply only to data of the specified table and rows of proper
subtables cannot be deleted by the statement. For a positioned DELETE,

DELETE

856 SQL Reference

the associated cursor must also have specified the table in the FROM
clause using ONLY. If table-name is not a typed table, the ONLY keyword
has no effect on the statement.

FROM ONLY (view-name)
Applicable to typed views, the ONLY keyword specifies that the statement
should apply only to data of the specified view and rows of proper
subviews cannot be deleted by the statement. For a positioned DELETE,
the associated cursor must also have specified the view in the FROM
clause using ONLY. If view-name is not a typed view, the ONLY keyword
has no effect on the statement.

correlation-name
May be used within the search-condition to designate the table or view.
(For an explanation of correlation-name, see “Chapter 3. Language
Elements” on page 63.)

WHERE
Specifies a condition that selects the rows to be deleted. The clause can be
omitted, a search condition specified, or a cursor named. If the clause is
omitted, all rows of the table or view are deleted.

search-condition
Is any search condition as described in “Search Conditions” on
page 205. Each column-name in the search condition, other than in a
subquery must identify a column of the table or view.

The search-condition is applied to each row of the table or view and the
deleted rows are those for which the result of the search-condition is
true.

If the search condition contains a subquery, the subquery can be
thought of as being executed each time the search condition is applied
to a row, and the results used in applying the search condition. In
actuality, a subquery with no correlated references is executed once,
whereas a subquery with a correlated reference may have to be
executed once for each row. If a subquery refers to the object table of
a DELETE statement or a dependent table with a delete rule of
CASCADE or SET NULL, the subquery is completely evaluated before
any rows are deleted.

CURRENT OF cursor-name
Identifies a cursor that is defined in a DECLARE CURSOR statement
of the program. The DECLARE CURSOR statement must precede the
DELETE statement.

The table or view named must also be named in the FROM clause of
the SELECT statement of the cursor, and the result table of the cursor
must not be read-only. (For an explanation of read-only result tables,
see “DECLARE CURSOR” on page 841.)

DELETE

Chapter 6. SQL Statements 857

When the DELETE statement is executed, the cursor must be
positioned on a row: that row is the one deleted. After the deletion,
the cursor is positioned before the next row of its result table. If there
is no next row, the cursor is positioned after the last row.

Rules
v If the identified table or the base table of the identified view is a parent, the

rows selected for delete must not have any dependents in a relationship
with a delete rule of RESTRICT, and the DELETE must not cascade to
descendent rows that have dependents in a relationship with a delete rule
of RESTRICT.
If the delete operation is not prevented by a RESTRICT delete rule, the
selected rows are deleted. Any rows that are dependents of the selected
rows are also affected:
– The nullable columns of the foreign keys of any rows that are their

dependents in a relationship with a delete rule of SET NULL are set to
the null value.

– Any rows that are their dependents in a relationship with a delete rule of
CASCADE are also deleted, and the above rules apply, in turn, to those
rows.

The delete rule of NO ACTION is checked to enforce that any non-null
foreign key refers to an existing parent row after the other referential
constraints have been enforced.

Notes
v If an error occurs during the execution of a multiple row DELETE, no

changes are made to the database.
v Unless appropriate locks already exist, one or more exclusive locks are

acquired during the execution of a successful DELETE statement. Issuing a
COMMIT or ROLLBACK statement will release the locks. Until the locks
are released by a commit or rollback operation, the effect of the delete
operation can only be perceived by:
– The application process that performed the deletion
– Another application process using isolation level UR.

The locks can prevent other application processes from performing
operations on the table.

v If an application process deletes a row on which any of its cursors are
positioned, those cursors are positioned before the next row of their result
table. Let C be a cursor that is positioned before row R (as a result of an
OPEN, a DELETE through C, a DELETE through some other cursor, or a
searched DELETE). In the presence of INSERT, UPDATE, and DELETE
operations that affect the base table from which R is derived, the next

DELETE

858 SQL Reference

FETCH operation referencing C does not necessarily position C on R. For
example, the operation can position C on R’, where R’ is a new row that is
now the next row of the result table.

v SQLERRD(3) in the SQLCA shows the number of rows deleted from the
object table after the statement executes. It does not include rows that were
deleted as a result of a CASCADE delete rule. SQLERRD(5) in the SQLCA
shows the number of rows affected by referential constraints and by
triggered statements. It includes rows that were deleted as a result of a
CASCADE delete rule and rows in which foreign keys were set to NULL as
the result of a SET NULL delete rule. With regards to triggered statements,
it includes the number of rows that were inserted, updated, or deleted. (For
a description of the SQLCA, see “Appendix B. SQL Communications
(SQLCA)” on page 1107.)

v If an error occurs that prevents deleting all rows matching the search
condition and all operations required by existing referential constraints, no
changes are made to the table and the error is returned.

v For any deleted row that includes currently linked files through DATALINK
columns, the files are unlinked, and will be either restored or deleted,
depending on the datalink column definition.
An error may occur when attempting to delete a DATALINK value if the
file server of value is no longer registered with the database server
(SQLSTATE 55022).
An error may also occur when deleting a row that has a link to a server
that is unavailable at the time of deletion (SQLSTATE 57050).

Examples
Example 1: Delete department (DEPTNO) ‘D11’ from the DEPARTMENT
table.

DELETE FROM DEPARTMENT
WHERE DEPTNO = 'D11'

Example 2: Delete all the departments from the DEPARTMENT table (that is,
empty the table).

DELETE FROM DEPARTMENT

DELETE

Chapter 6. SQL Statements 859

DESCRIBE
The DESCRIBE statement obtains information about a prepared statement. For
an explanation of prepared statements, see “PREPARE” on page 954.

Invocation
This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

�� DESCRIBE statement-name INTO descriptor-name ��

Description

statement-name
Identifies the statement about which information is required. When the
DESCRIBE statement is executed, the name must identify a prepared
statement.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in
“Appendix C. SQL Descriptor Area (SQLDA)” on page 1113. Before the
DESCRIBE statement is executed, the following variables in the SQLDA
must be set:

SQLN Indicates the number of variables represented by SQLVAR. (SQLN
provides the dimension of the SQLVAR array.) SQLN must be set
to a value greater than or equal to zero before the DESCRIBE
statement is executed.

When the DESCRIBE statement is executed, the database manager assigns
values to the variables of the SQLDA as follows:

SQLDAID
The first 6 bytes are set to ’SQLDA ’ (that is, 5 letters followed by the
space character).

The seventh byte, called SQLDOUBLED, is set to ’2’ if the SQLDA
contains two SQLVAR entries for every select-list item (or, column of
the result table). This technique is used in order to accommodate LOB,
distinct type, structured type, or reference type result columns.
Otherwise, SQLDOUBLED is set to the space character.

The doubled flag is set to space if there is not enough room in the
SQLDA to contain the entire DESCRIBE reply.

DESCRIBE

860 SQL Reference

The eighth byte is set to the space character.

SQLDABC
Length of the SQLDA.

SQLD If the prepared statement is a SELECT, the number of columns in its
result table; otherwise, 0.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no
values are assigned to occurrences of SQLVAR.

If the value is n, where n is greater than 0 but less than or equal to
the value of SQLN, values are assigned to the first n occurrences of
SQLVAR so that the first occurrence of SQLVAR contains a description
of the first column of the result table, the second occurrence of
SQLVAR contains a description of the second column of the result
table, and so on. The description of a column consists of the values
assigned to SQLTYPE, SQLLEN, SQLNAME, SQLLONGLEN, and
SQLDATATYPE_NAME.

Basic SQLVAR

SQLTYPE
A code showing the data type of the column and whether or
not it can contain null values.

SQLLEN
A length value depending on the data type of the result
columns. SQLLEN is 0 for LOB data types.

SQLNAME
If the derived column is not a simple column reference, then
sqlname contains an ASCII numeric literal value, which
represents the derived column’s original position within the
select list; otherwise, sqlname contains the name of the
column.

Secondary SQLVAR

These variables are only used if the number of SQLVAR entries are
doubled to accommodate LOB, distinct type, structured type, or
reference type columns.

SQLLONGLEN
The length attribute of a BLOB, CLOB, or DBCLOB
column.

SQLDATATYPE_NAME
For any user-defined type (distinct or structured)
column, the database manager sets this to the fully

DESCRIBE

Chapter 6. SQL Statements 861

qualified user-defined type name. For a reference type
column, the database manager sets this to the fully
qualified user-defined type name of the target type of
the reference. Otherwise, schema name is SYSIBM and
the type name is the name in the TYPENAME column
of the SYSCAT.DATATYPES catalog view.

Notes
v Before the DESCRIBE statement is executed, the value of SQLN must be set

to indicate how many occurrences of SQLVAR are provided in the SQLDA
and enough storage must be allocated to contain SQLN occurrences. To
obtain the description of the columns of the result table of a prepared
SELECT statement, the number of occurrences of SQLVAR must not be less
than the number of columns.

v If a LOB of a large size is expected, then remember that manipulating this
large object will affect application memory. Given this condition, consider
using locators or file reference variables. Modify the SQLDA after the
DESCRIBE statement is executed but prior to allocating storage so that an
SQLTYPE of SQL_TYP_xLOB is changed to SQL_TYP_xLOB_LOCATOR or
SQL_TYP_xLOB_FILE with corresponding changes to other fields such as
SQLLEN. Then allocate storage based on SQLTYPE and continue.
See the Application Development Guide for more information on using
locators and file reference variables with the SQLDA.

v Code page conversions between extended Unix code (EUC) code pages and
DBCS code pages can result in the expansion and contraction of character
lengths. See the Application Development Guide for information on handling
such situations.

v If a structured type is being selected, but no FROM SQL transform is
defined (either because no TRANSFORM GROUP was specified using the
CURRENT DEFAULT TRANSFORM GROUP special register (SQLSTATE
428EM), or because the named group does not have a FROM SQL
transform function defined (SQLSTATE 42744)), the DESCRIBE will return
an error.

v Allocating the SQLDA: Among the possible ways to allocate the SQLDA
are the three described below.
First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to
accommodate any select list that the application will have to process. If the
table contains any LOB, distinct type, structured type, or reference type
columns, the number of SQLVARs should be double the maximum number
of columns; otherwise the number should be the same as the maximum
number of columns. Having done the allocation, the application can use
this SQLDA repeatedly.
This technique uses a large amount of storage that is never deallocated,
even when most of this storage is not used for a particular select list.

DESCRIBE

862 SQL Reference

Second Technique: Repeat the following two steps for every processed select
list:
1. Execute a DESCRIBE statement with an SQLDA that has no occurrences

of SQLVAR; that is, an SQLDA for which SQLN is zero. The value
returned for SQLD is the number of columns in the result table. This is
either the required number of occurrences of SQLVAR or half the
required number. Because there were no SQLVAR entries, a warning
with SQLSTATE 01005 will be issued. If the SQLCODE accompanying
that warning is equal to one of +237, +238 or +239, the number of
SQLVAR entries should be double the value returned in SQLD. 91

2. Allocate an SQLDA with enough occurrences of SQLVAR. Then execute
the DESCRIBE statement again, using this new SQLDA.

This technique allows better storage management than the first technique,
but it doubles the number of DESCRIBE statements.

Third Technique: Allocate an SQLDA that is large enough to handle most,
and perhaps all, select lists but is also reasonably small. Execute DESCRIBE
and check the SQLD value. Use the SQLD value for the number of
occurrences of SQLVAR to allocate a larger SQLDA, if necessary.

This technique is a compromise between the first two techniques. Its
effectiveness depends on a good choice of size for the original SQLDA.

Example
In a C program, execute a DESCRIBE statement with an SQLDA that has no
occurrences of SQLVAR. If SQLD is greater than zero, use the value to allocate
an SQLDA with the necessary number of occurrences of SQLVAR and then
execute a DESCRIBE statement using that SQLDA.

EXEC SQL BEGIN DECLARE SECTION;
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

... /* code to prompt user for a query, then to generate */
/* a select-statement in the stmt1_str */

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

... /* code to set SQLN to zero and to allocate the SQLDA */
EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

... /* code to check that SQLD is greater than zero, to set */
/* SQLN to SQLD, then to re-allocate the SQLDA */

91. The return of these positive SQLCODEs assumes that the SQLWARN bind option setting was YES (return positive
SQLCODEs). If SQLWARN was set to NO, +238 is still returned to indicate that the number of SQLVAR entries
must be double the value returned in SQLD.

DESCRIBE

Chapter 6. SQL Statements 863

EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

... /* code to prepare for the use of the SQLDA */
/* and allocate buffers to receive the data */

EXEC SQL OPEN DYN_CURSOR;

... /* loop to fetch rows from result table */
EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :sqlda;
.
.
.

DESCRIBE

864 SQL Reference

DISCONNECT
The DISCONNECT statement destroys one or more connections when there is
no active unit of work (that is, after a commit or rollback operation). 92

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded
within an application program. It is an executable statement that cannot be
dynamically prepared.

Authorization
None Required.

Syntax

�� DISCONNECT
(1)

server-name
host-variable
CURRENT

SQL
ALL

��

Notes:

1 Note that an application server named CURRENT or ALL can only
be identified by a host variable.

Description

server-name or host-variable
Identifies the application server by the specified server-name or a
host-variable which contains the server-name.

If a host-variable is specified, it must be a character string variable with a
length attribute that is not greater than 8, and it must not include an
indicator variable. The server-name that is contained within the host-variable
must be left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application
server. It must be listed in the application requester’s local directory.

92. If a single connection is the target of the DISCONNECT statement, then the connection is destroyed only if the
database has participated in any existing unit of work, not whether there is an active unit of work. For example, if
several other databases have done work but the target in question has not, it can still be disconnected without
destroying the connection.

DISCONNECT

Chapter 6. SQL Statements 865

The specified database-alias or the database-alias contained in the host
variable must identify an existing connection of the application process. If
the database-alias does not identify an existing connection, an error
(SQLSTATE 08003) is raised.

CURRENT
Identifies the current connection of the application process. The
application process must be in the connected state. If not, an error
(SQLSTATE 08003) is raised.

ALL
Indicates that all existing connections of the application process are to be
destroyed. An error or warning does not occur if no connections exist
when the statement is executed. The optional keyword SQL is included to
be consistent with the syntax of the RELEASE statement.

Rules
v Generally, the DISCONNECT statement cannot be executed while within a

unit of work. If attempted, an error (SQLSTATE 25000) is raised. The
exception to this rule is if a single connection is specified to be disconnected
and the database has not participated in an existing unit of work. In this
case, it does not matter if there is an active unit of work when the
DISCONNECT statement is issued.

v The DISCONNECT statement cannot be executed at all in the Transaction
Processing (TP) Monitor environment (SQLSTATE 25000). It is used when
the SYNCPOINT precompiler option is set to TWOPHASE.

Notes
v If the DISCONNECT statement is successful, each identified connection is

destroyed.
If the DISCONNECT statement is unsuccessful, the connection state of the
application process and the states of its connections are unchanged.

v If DISCONNECT is used to destroy the current connection, the next
executed SQL statement should be CONNECT or SET CONNECTION.

v Type 1 CONNECT semantics do not preclude the use of DISCONNECT.
However, though DISCONNECT CURRENT and DISCONNECT ALL can
be used, they will not result in a commit operation like a CONNECT
RESET statement would do.
If server-name or host-variable is specified in the DISCONNECT statement, it
must identify the current connection because Type 1 CONNECT only
supports one connection at a time. Generally, DISCONNECT will fail if
within a unit of work with the exception noted in “Rules”.

v Resources are required to create and maintain remote connections. Thus, a
remote connection that is not going to be reused should be destroyed as
soon as possible.

DISCONNECT

866 SQL Reference

v Connections can also be destroyed during a commit operation because the
connection option is in effect. The connection option could be
AUTOMATIC, CONDITIONAL, or EXPLICIT, which can be set as a
precompiler option or through the SET CLIENT API at run time. See
“Options that Govern Distributed Unit of Work Semantics” on page 39 for
information about the specification of the DISCONNECT option.

Examples
Example 1: The SQL connection to IBMSTHDB is no longer needed by the
application. The following statement should be executed after a commit or
rollback operation to destroy the connection.

EXEC SQL DISCONNECT IBMSTHDB;

Example 2: The current connection is no longer needed by the application.
The following statement should be executed after a commit or rollback
operation to destroy the connection.

EXEC SQL DISCONNECT CURRENT;

Example 3: The existing connections are no longer needed by the application.
The following statement should be executed after a commit or rollback
operation to destroy all the connections.

EXEC SQL DISCONNECT ALL;

DISCONNECT

Chapter 6. SQL Statements 867

DROP
The DROP statement deletes an object. Any objects that are directly or
indirectly dependent on that object are either deleted or made inoperative.
(See “Inoperative Trigger” on page 786 and “Inoperative views” on page 833
for details.) Whenever an object is deleted, its description is deleted from the
catalog and any packages that reference the object are invalidated.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges that must be held by the authorization ID of the DROP
statement when dropping objects that allow two-part names must include one
of the following or an error will result (SQLSTATE 42501):
v SYSADM or DBADM authority
v DROPIN privilege on the schema for the object
v definer of the object as recorded in the DEFINER column of the catalog

view for the object
v CONTROL privilege on the object (applicable only to indexes, index

specifications, nicknames, packages, tables, and views).
v definer of the user-defined type as recorded in the DEFINER column of the

catalog view SYSCAT.DATATYPES (applicable only when dropping a
method associated with a user-defined type)

The authorization ID of the DROP statement when dropping a table or view
hierarchy must hold one of the above privileges for each of the tables or
views in the hierarchy.

The authorization ID of the DROP statement when dropping a schema must
have SYSADM or DBADM authority or be the schema owner as recorded in
the OWNER column of SYSCAT.SCHEMATA.

The authorization ID of the DROP statement when dropping a buffer pool,
nodegroup, or table space must have SYSADM or SYSCTRL authority.

The authorization ID of the DROP statement when dropping an event
monitor, server definition, data type mapping, function mapping or a wrapper
must have SYSADM or DBADM authority.

The authorization ID of the DROP statement when dropping a user mapping
must have SYSADM or DBADM authority, if this authorization ID is different

DROP

868 SQL Reference

from the federated database authorization name within the mapping.
Otherwise, if the authorization ID and the authorization name match, no
authorities or privileges are required.

The authorization ID of the DROP statement when dropping a transform must
hold SYSADM or DBADM authority, or must be the DEFINER of type-name.

Syntax

�� DROP �

DROP

Chapter 6. SQL Statements 869

�

�

�

�

�

(1)
ALIAS alias-name
BUFFERPOOL bufferpool-name
EVENT MONITOR event-monitor-name
FUNCTION function-name

()
,

data-type
SPECIFIC FUNCTION specific-name
FUNCTION MAPPING function-mapping-name

(2)
INDEX index-name
INDEX EXTENSION index-extension-name RESTRICT
METHOD method-name FOR type-name

()
,

datatype
SPECIFIC METHOD specific-name
NICKNAME nickname
NODEGROUP nodegroup-name

(3)
PACKAGE package-name
PROCEDURE procedure-name

()
,

data-type
SPECIFIC PROCEDURE specific-name
SCHEMA schema-name RESTRICT
SERVER server-name
TABLE table-name
TABLE HIERARCHY root-table-name

,

TABLESPACE tablespace-name
TABLESPACES
TRANSFORM ALL FOR type-name
TRANSFORMS group-name

TRIGGER trigger-name
TYPE type-name

(4)
DISTINCT

TYPE MAPPING type-mapping-name
USER MAPPING FOR authorization-name SERVER server-name

USER
VIEW view-name
VIEW HIERARCHY root-view-name
WRAPPER wrapper-name

��

DROP

870 SQL Reference

Notes:

1 SYNONYM can be used as a synonym for ALIAS.

2 Index-name can be the name of either an index or an index specification.

3 PROGRAM can be used as a synonym for PACKAGE.

4 DATA can also be used when dropping any user-defined type.

Description

ALIAS alias-name
Identifies the alias that is to be dropped. The alias-name must identify an
alias that is described in the catalog (SQLSTATE 42704). The specified alias
is deleted.

All tables, views and triggers93 that reference the alias are made
inoperative.

BUFFERPOOL bufferpool-name
Identifies the buffer pool that is to be dropped. The bufferpool-name must
identify a buffer pool that is described in the catalog (SQLSTATE 42704).
There can be no table spaces assigned to the buffer pool (SQLSTATE
42893). The IBMDEFAULTBP buffer pool cannot be dropped (SQLSTATE
42832). The storage for the buffer pool will not be released until the
database is stopped.

EVENT MONITOR event-monitor-name
Identifies the event monitor that is to be dropped. The event-monitor-name
must identify an event monitor that is described in the catalog
(SQLSTATE 42704).

If the identified event monitor is ON, an error (SQLSTATE 55034) is
raised. Otherwise, the event monitor is deleted.

If there are event files in the target path of the event monitor when the
event monitor is dropped, the event files are not deleted. However, if a
new event monitor is created which specifies the same target path, then
the event files are deleted.

FUNCTION
Identifies an instance of a user-defined function (either a complete
function or a function template) that is to be dropped. The function
instance specified must be a user-defined function described in the
catalog. Functions implicitly generated by the CREATE DISTINCT TYPE
statement cannot be dropped.

There are several different ways available to identify the function instance:

93. This includes both the table referenced in the ON clause of the CREATE TRIGGER statement and all tables
referenced within the triggered SQL statements.

DROP

Chapter 6. SQL Statements 871

FUNCTION function-name
Identifies the particular function, and is valid only if there is exactly
one function instance with the function-name. The function thus
identified may have any number of parameters defined for it. In
dynamic SQL statements, the CURRENT SCHEMA special register is
used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. If no function by
this name exists in the named or implied schema, an error (SQLSTATE
42704) is raised. If there is more than one specific instance of the
function in the named or implied schema, an error (SQLSTATE 42854)
is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function
to be dropped. The function selection algorithm is not used.

function-name
Gives the function name of the function to be dropped. In
dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names.

(data-type,...)
Must match the data types that were specified on the CREATE
FUNCTION statement in the corresponding position. The number
of data types, and the logical concatenation of the data types is
used to identify the specific function instance which is to be
dropped.

If the data-type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead, an empty set of parentheses
may be coded to indicate that these attributes are to be ignored
when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must
exactly match that specified in the CREATE PROCEDURE
statement.

A type of FLOAT(n) does not need to match the defined value for
n since 0<n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.

DROP

872 SQL Reference

If no function with the specified signature exists in named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Identifies the particular user-defined function that is to be dropped,
using the specific name either specified or defaulted to at function
creation time. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name.
In static SQL statements the QUALIFIER precompile/bind option
implicitly specifies the qualifier for unqualified object names. The
specific-name must identify a specific function instance in the named or
implied schema; otherwise, an error (SQLSTATE 42704) is raised.

It is not possible to drop a function that is in either the SYSIBM schema or
the SYSFUN schema (SQLSTATE 42832).

Other objects can be dependent upon a function. All such dependencies
must be removed before the function can be dropped, with the exception
of packages which are marked inoperative. An attempt to drop a function
with such dependencies will result in an error (SQLSTATE 42893). See
page 884 for a list of these dependencies.

If the function can be dropped, it is dropped.

Any package dependent on the specific function being dropped is marked
as inoperative. Such a package is not implicitly rebound. It must either be
rebound by use of the BIND or REBIND command or it must be
reprepared by use of the PREP command. See the Command Reference for
information on these commands.

FUNCTION MAPPING function-mapping-name
Identifies the function mapping to be dropped. The function-mapping-name
must identify a user-defined function mapping that is described in the
catalog (SQLSTATE 42704). The function mapping is deleted from the
database.

Default function mappings cannot be dropped. However, they can be
disabled. For an example, see Example 3 in “CREATE FUNCTION
MAPPING” on page 657.

Packages having a dependency on a dropped function mapping are
invalidated.

INDEX index-name
Identifies the index or index specification that is to be dropped. The
index-name must identify an index or index specification that is described
in the catalog (SQLSTATE 42704). It cannot be an index required by the

DROP

Chapter 6. SQL Statements 873

system for a primary key or unique constraint or for a replicated
summary table (SQLSTATE 42917). The specified index or index
specification is deleted.

Packages having a dependency on a dropped index or index specification
are invalidated.

INDEX EXTENSION index-extension-name RESTRICT
Identifies the index extension that is to be dropped. The
index-extension-name must identify an index extension that is described in
the catalog (SQLSTATE 42704). The RESTRICT keyword enforces the rule
that no index can be defined that depends on this index extension
definition (SQLSTATE 42893).

METHOD
Identifies a method body that is to be dropped. The method body
specified must be a method described in the catalog (SQLSTATE 42704).
Method bodies that are implicitly generated by the CREATE TYPE
statement cannot be dropped.

DROP METHOD deletes the body of a method, but the method
specification (signature) remains as a part of the definition of the subject
type. After dropping the body of a method, the method specification can
be removed from the subject type definition by ALTER TYPE DROP
METHOD.

There are several ways available to identify the method body to be
dropped:

METHOD method-name
Identifies the particular method dropped, and is valid only if there is
exactly one method instance with name method-name and subject type
type-name. Thus, the method identified may have any number of
parameters. If no method by this name exists for the type type-name,
an error is raised (SQLSTATE 42704). If there is more than one specific
instance of the method for the named data type, an error is raised
(SQLSTATE 42854).

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method
to be dropped. The method selection algorithm is not used.

method-name
The method name of the method to be dropped for the specified
type. The name must be an unqualified identifier.

(data-type, ...)
Must match the data types that were specified in the
corresponding positions of the method-specification of the
CREATE TYPE or ALTER TYPE statement. The number of data

DROP

874 SQL Reference

types and the logical concatenation of the data types are used to
identify the specific method instance which is to be dropped.

If the data-type is unqualified, the type name is resolved by
searching the schemas on the SQL path.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead, an empty set of parentheses
may be coded to indicate that these attributes are to be ignored
when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must
exactly match that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for
n since 0<n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the named
data type, an error is raised (SQLSTATE 42883).

FOR type-name
Names the type for which the specified method is to be dropped. The
name must identify a type already described in the catalog
(SQLSTATE 42704). In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified type
name. In static SQL statements, the QUALIFIER precompile/bind
option implicitly specifies the qualifier for unqualified type names.

SPECIFIC METHOD specific-name
Identifies the particular method that is to be dropped, using a name
either specified or defaulted to at CREATE TYPE or ALTER TYPE
time. If the specific name is unqualified, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified specific name
in dynamic SQL. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for an
unqualified specific name. The specific-name must identify a method;
otherwise, an error is raised (SQLSTATE 42704).

Other objects can be dependent upon a method. All such dependencies
must be removed before the method can be dropped, with the exception
of packages which will be marked inoperative if the drop is successful. An
attempt to drop a method with such dependencies will result in an error
(SQLSTATE 42893).

If the method can be dropped, it will be dropped.

DROP

Chapter 6. SQL Statements 875

Any package dependent on the specific method being dropped is marked
as inoperative. Such a package is not implicitly re-bound. Either it must
be re-bound by use of the BIND or REBIND command, or it must be
re-prepared by use of the PREP command. See Command Reference for
information on these commands.

NICKNAME nickname
Identifies the nickname to be dropped. The nickname must be listed in the
catalog (SQLSTATE 42704). The nickname is deleted from the database.

All information about the columns and indexes associated with the
nickname is deleted from the catalog. Any index specifications that are
dependent on the nickname are dropped. Any views dependent on the
nickname are marked inoperative. Any packages depending on the
dropped index specifications or inoperative views are invalidated. The
data source table that the nickname references is not affected.

NODEGROUP nodegroup-name
Identifies the nodegroup that is to be dropped. nodegroup-name must
identify a nodegroup that is described in the catalog (SQLSTATE 42704).
This is a one-part name.

Dropping a nodegroup drops all table spaces defined in the nodegroup.
All existing database objects with dependencies on the tables in the table
spaces (such as packages, referential constraints, etc.) are dropped or
invalidated (as appropriate), and dependent views and triggers are made
inoperative.

System defined nodegroups cannot be dropped (SQLSTATE 42832).

If a DROP NODEGROUP is issued against a nodegroup that is currently
undergoing a data redistribution, the DROP NODEGROUP operation fails
an error is returned (SQLSTATE 55038). However, a partially redistributed
nodegroup can be dropped. A nodegroup can become partially
redistributed if a REDISTRIBUTE NODEGROUP command does not
execute to completion. This can happen if it gets interrupted by either an
error or a force application all command.94

PACKAGE package-name
Identifies the package that is to be dropped. The package-name must
identify a package that is described in the catalog (SQLSTATE 42704). The
specified package is deleted. All privileges on the package are also
deleted.

94. For a partially redistributed nodegroup, the REBALANCE_PMAP_ID in the SYSCAT.NODEGROUPS catalog is not
−1.

DROP

876 SQL Reference

PROCEDURE
Identifies an instance of a stored procedure that is to be dropped. The
procedure instance specified must be a stored procedure described in the
catalog.

There are several different ways available to identify the procedure
instance:

PROCEDURE procedure-name
Identifies the particular procedure, and is valid only if there is exactly
one procedure instance with the procedure-name in the schema. The
procedure thus identified may have any number of parameters
defined for it. If no procedure by this name exists in the named or
implied schema, an error (SQLSTATE 42704) is raised. In dynamic
SQL statements, the CURRENT SCHEMA special register is used as a
qualifier for an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier
for unqualified object names. If there is more than one specific
instance of the procedure in the named or implied schema, an error
(SQLSTATE 42854) is raised.

PROCEDURE procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the
procedure to be dropped. The procedure selection algorithm is not
used.

procedure-name
Gives the procedure name of the procedure to be dropped. In
dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names.

(data-type,...)
Must match the data types that were specified on the CREATE
PROCEDURE statement in the corresponding position. The
number of data types, and the logical concatenation of the data
types is used to identify the specific procedure instance which is
to be dropped.

If the data-type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead, an empty set of parentheses
may be coded to indicate that these attributes are to be ignored
when looking for a data type match.

DROP

Chapter 6. SQL Statements 877

FLOAT() cannot be used (SQLSTATE 42601) since the parameter
value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must
exactly match that specified in the CREATE FUNCTION
statement.

A type of FLOAT(n) does not need to match the defined value for
n since 0<n<25 means REAL and 24<n<54 means DOUBLE.
Matching occurs based on whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in named or
implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Identifies the particular stored procedure that is to be dropped, using
the specific name either specified or defaulted to at procedure creation
time. In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static
SQL statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The specific-name
must identify a specific procedure instance in the named or implied
schema; otherwise, an error (SQLSTATE 42704) is raised.

SCHEMA schema-name RESTRICT
Identifies the schema that is to be dropped. The schema-name must identify
a schema that is described in the catalog (SQLSTATE 42704). The
RESTRICT keyword enforces the rule that no objects can be defined in the
specified schema for the schema to be deleted from the database
(SQLSTATE 42893).

SERVER server-name
Identifies the data source whose definition is to be dropped from the
catalog. The server-name must identify a data source that is described in
the catalog (SQLSTATE 42704). The definition of the data source is
deleted.

All nicknames for tables and views residing at the data source are
dropped. Any index specifications dependent on these nicknames are
dropped. Any user-defined function mappings, user-defined type
mappings, and user mappings that are dependent on the dropped server
definition are also dropped. All packages dependent on the dropped
server definition, function mappings, nicknames, and index specifications
are invalidated.

TABLE table-name
Identifies the base table, declared temporary table, or summary table that
is to be dropped. The table-name must identify a table that is described in
the catalog or, if it is a declared temporary table, then the table-name must

DROP

878 SQL Reference

be qualified by the schema name SESSION and exist in the application
(SQLSTATE 42704). The subtables of a typed table are dependent on their
supertables. All subtables must be dropped before a supertable can be
dropped (SQLSTATE 42893). The specified table is deleted from the
database.

All indexes, primary keys, foreign keys, check constraints, and summary
tables referencing the table are dropped. All views and triggers95 that
reference the table are made inoperative. All packages depending on any
object dropped or marked inoperative will be invalidated. This includes
packages dependent on any supertables above the subtable in the
hierarchy. Any reference columns for which the dropped table is defined
as the scope of the reference become unscoped.

Packages are not dependent on declared temporary tables, and therefore
are not invalidated when such a table is dropped.

All files that are linked through any DATALINK columns are unlinked.
The unlink operation is performed asynchronously so the files may not be
immediately available for other operations.

When a subtable is dropped from a table hierarchy, the columns
associated with the subtable are no longer accessible although they
continue to be considered with respect to limits on the number of columns
and size of the row. Dropping a subtable has the effect of deleting all the
rows of the subtable from the supertables. This may result in activation of
triggers or referential integrity constraints defined on the supertables.

When a declared temporary table is dropped, and its creation preceded
the active unit of work or savepoint, then the table will be functionally
dropped and the application will not be able to access the table. However,
the table will still reserve some space in its table space and will prevent
that USER TEMPORARY table space from being dropped or the
nodegroup of the USER TEMPORARY table space from being
redistributed until the unit of work is committed or savepoint is ended.
Dropping a declared temporary table causes the data in the table to be
destroyed, regardless of whether DROP is committed or rolled back.

TABLE HIERARCHY root-table-name
Identifies the typed table hierarchy that is to be dropped. The
root-table-name must identify a typed table that is the root table in the
typed table hierarchy (SQLSTATE 428DR). The typed table identified by
root-table-name and all of its subtables are deleted from the database.

All indexes, summary tables, primary keys, foreign keys, and check
constraints referencing the dropped tables are dropped. All views and

95. This includes both the table referenced in the ON clause of the CREATE TRIGGER statement and all tables
referenced within the triggered SQL statements.

DROP

Chapter 6. SQL Statements 879

triggers that reference the dropped tables are made inoperative. All
packages depending on any object dropped or marked inoperative will be
invalidated. Any reference columns for which one of the dropped tables is
defined as the scope of the reference become unscoped.

All files that are linked through any DATALINK columns are unlinked.
The unlink operation is performed asynchronously so the files may not be
immediately available for other operations.

Unlike dropping a single subtable, dropping the table hierarchy does not
result in the activation of delete triggers of any tables in the hierarchy nor
does it log the deleted rows.

TABLESPACE or TABLESPACES tablespace-name
Identifies the table spaces that are to be dropped. tablespace-name must
identify a table space that is described in the catalog (SQLSTATE 42704).
This is a one-part name.

The table spaces will not be dropped (SQLSTATE 55024) if there is any
table that stores at least one of its parts in a table space being dropped
and has one or more of its parts in another table space that is not being
dropped (these tables would need to be dropped first). System table
spaces cannot be dropped (SQLSTATE 42832). A SYSTEM TEMPORARY
table space cannot be dropped (SQLSTATE 55026) if it is the only
temporary table space that exists in the database. A USER TEMPORARY
table space cannot be dropped if there is a declared temporary table
created in it (SQLSTATE 55039). Even if a declared temporary table has
been dropped, the USER TEMPORARY table space will still be considered
to be in use until the unit of work containing the DROP TABLE has been
committed.

Dropping a table space drops all objects defined in the table space. All
existing database objects with dependencies on the table space, such as
packages, referential constraints, etc. are dropped or invalidated (as
appropriate), and dependent views and triggers are made inoperative.

Containers created by the user are not deleted. Any directories in the path
of the container name that were created by the database manager on
CREATE TABLESPACE will be deleted. All containers that are below the
database directory are deleted. For SMS table spaces, the deletions occur
after all connections are disconnected or the DEACTIVATE DATABASE
command is issued.

TRANSFORM ALL FOR type-name
Indicates that all transforms groups defined for the user-defined data type
type-name are to be dropped. The transform functions referenced in these
groups are not dropped. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object
name. In static SQL statements, the QUALIFIER precompile/bind option

DROP

880 SQL Reference

implicitly specifies the qualifier for unqualified object names. The
type-name must identify a user-defined type described in the catalog
(SQLSTATE 42704).

If there are not transforms defined for type-name, an error is raised
(SQLSTATE 42740).

DROP TRANSFORM is the inverse of CREATE TRANSFORM. It causes
the transform functions associated with certain groups, for a given
datatype, to become undefined. The functions formerly associated with
these groups still exist and can still be called explicitly, but they no longer
have the transform property, and are no longer invoked implicitly for
exchanging values with the host language environment.

The transform group is not dropped if there is a user-defined function (or
method) written in a language other than SQL that has a dependency on
one of the group’s transform functions defined for the user-defined type
type-name (SQLSTATE 42893). Such a function has a dependency on the
transform function associated with the referenced transform group
defined for type type-name. Packages that depend on a transform function
associated with the named transform group are marked inoperative.

TRANSFORMS group-name FOR type-name
Indicates that the specified transform group for the user-defined data type
type-name is to be dropped. The transform functions referenced in this
group are not dropped. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object
name. In static SQL statements, the QUALIFIER precompile/bind option
implicitly specifies the qualifier for unqualified object names. The
type-name must identify a user-defined type described in the catalog
(SQLSTATE 42704), and the group-name must identify an existing
transform group for type-name.

TRIGGER trigger-name
Identifies the trigger that is to be dropped. The trigger-name must identify
a trigger that is described in the catalog (SQLSTATE 42704). The specified
trigger is deleted.

Dropping triggers causes certain packages to be marked invalid. See the
“Notes” section in “CREATE TRIGGER” on page 780 concerning the
creation of triggers (which follows the same rules).

TYPE type-name
Identifies the user-defined type to be dropped. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier
for an unqualified object name. In static SQL statements the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names. For a structured type, the associated reference type is also
dropped. The type-name must identify a user-defined type described in the

DROP

Chapter 6. SQL Statements 881

catalog. If DISTINCT is specified, then the type-name must identify a
distinct type described in the catalog. The type is not dropped (SQLSTATE
42893) if any of the following are true.
v The type is used as the type of a column of a table or view.
v The type has a subtype.
v The type is a structured type used as the data type of a typed table or a

typed view.
v The type is an attribute of another structured type.
v There exists a column of a table whose type might contain an instance

of type-name. This can occur if type-name is the type of the column or is
used elsewhere in the column’s associated type hierarchy. More
formally, for any type T, T cannot be dropped if there exists a column
of a table whose type directly or indirectly uses type-name.

v The type is the target type of a reference-type column of a table or
view, or a reference-type attribute of another structured type.

v The type or a reference to the type is a parameter type or a return value
type of a function or method that cannot be dropped.

v The type, or a reference to the type, is used in the body of an SQL
function or method, but it is not a parameter type or a return value
type.

v The type is used in a check constraint, trigger, view definition, or index
extension.

Functions that use the type: If the user-defined type can be dropped, then
for every function, F (with specific name SF), that has parameters or a
return value of the type being dropped or a reference to the type being
dropped, the following DROP FUNCTION statement is effectively
executed:

DROP SPECIFIC FUNCTION SF

It is possible that this statement also would cascade to drop dependent
functions. If all of these functions are also in the list to be dropped
because of a dependency on the user-defined type, the drop of the
user-defined type will succeed (otherwise it fails with SQLSTATE 42893).

Methods that use the type: If the user-defined type can be dropped, then
for every method, M of type T1 (with specific name SM), that has
parameters or a return value of the type being dropped or a reference to
the type being dropped, the following statements are effectively executed:

DROP SPECIFIC METHOD SM
ALTER TYPE T1 DROP SPECIFIC METHOD SM

The existence of objects that are dependent on these methods may cause
the DROP TYPE to fail.

DROP

882 SQL Reference

TYPE MAPPING type-mapping-name
Identifies the user-defined data type mapping to be dropped. The
type-mapping-name must identify a data type mapping that is described in
the catalog (SQLSTATE 42704). The data type mapping is deleted from the
database.

No additional objects are dropped.

USER MAPPING FOR authorization-name | USER SERVER server-name
Identifies the user mapping to be dropped. This mapping associates an
authorization name that is used to access the federated database with an
authorization name that is used to access a data source. The first of these
two authorization names is either identified by the authorization-name or
referenced by the special register USER. The server-name identifies the data
source that the second authorization name is used to access.

The authorization-name must be listed in the catalog (SQLSTATE 42704).
The server-name must identify a data source that is described in the catalog
(SQLSTATE 42704). The user mapping is deleted.

No additional objects are dropped.

VIEW view-name
Identifies the view that is to be dropped. The view-name must identify a
view that is described in the catalog (SQLSTATE 42704). The subviews of
a typed view are dependent on their superviews. All subviews must be
dropped before a superview can be dropped (SQLSTATE 42893).

The specified view is deleted. The definition of any view or trigger that is
directly or indirectly dependent on that view is marked inoperative. Any
summary table that is dependent on any view that is marked inoperative
is dropped. Any packages dependent on a view that is dropped or
marked inoperative will be invalidated. This includes packages dependent
on any superviews above the subview in the hierarchy. Any reference
columns for which the dropped view is defined as the scope of the
reference become unscoped.

VIEW HIERARCHY root-view-name
Identifies the typed view hierarchy that is to be dropped. The
root-view-name must identify a typed view that is the root view in the
typed view hierarchy (SQLSTATE 428DR). The typed view identified by
root-view-name and all of its subviews are deleted from the database.

The definition of any view or trigger that is directly or indirectly
dependent on any of the dropped views is marked inoperative. Any
packages dependent on any view or trigger that is dropped or marked
inoperative will be invalidated. Any reference columns for which a
dropped view or view marked inoperative is defined as the scope of the
reference become unscoped.

DROP

Chapter 6. SQL Statements 883

WRAPPER wrapper-name
Identifies the wrapper to be dropped. The wrapper-name must identify a
wrapper that is described in the catalog (SQLSTATE 42704). The wrapper
is deleted.

All server definitions, user-defined function mappings, and user-defined
data type mappings that are dependent on the wrapper are dropped. All
user-defined function mappings, nicknames, user-defined data type
mappings, and user mappings that are dependent on the dropped server
definitions are also dropped. Any index specifications dependent on the
dropped nicknames are dropped, and any views dependent on these
nicknames are marked inoperative. All packages dependent on the
dropped objects and inoperative views are invalidated.

Rules
Dependencies: Table 27 on page 885 shows the dependencies96 that objects
have on each other.Four different types of dependencies are shown:

R Restrict semantics. The underlying object cannot be dropped as long
as the object that depends on it exists.

C Cascade semantics. Dropping the underlying object causes the object
that depends on it (the depending object) to be dropped as well.
However, if the depending object cannot be dropped because it has a
Restrict dependency on some other object, the drop of the underlying
object will fail.

X Inoperative semantics. Dropping the underlying object causes the
object that depends on it to become inoperative. It remains inoperative
until a user takes some explicit action.

A Automatic Invalidation/Revalidation semantics. Dropping the
underlying object causes the object that depends on it to become
invalid. The database manager attempts to revalidate the invalid
object.

Some DROP statement parameters and objects are not shown in Table 27 on
page 885 because they would result in blank rows or columns:
v EVENT MONITOR, PACKAGE, PROCEDURE, SCHEMA, TYPE MAPPING,

and USER MAPPING DROP statements do not have object dependencies.
v Alias, bufferpool, partitioning key, privilege, and procedure object types do

not have DROP statement dependencies.
v A DROP SERVER, DROP FUNCTION MAPPING, or DROP TYPE

MAPPING statement in a given unit of work (UOW) cannot be processed
under either of the following conditions:

96. Not all dependencies are explicitly recorded in the catalog. For example, there is no record of which constraints a
package has a dependency on.

DROP

884 SQL Reference

– The statement references a single data source, and the UOW already
includes a SELECT statement that references a nickname for a table or
view within this data source (SQLSTATE 55006).

– The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes a
SELECT statement that references a nickname for a table or view within
one of these data sources (SQLSTATE 55006).

Table 27. Dependencies

Object Type →

Statement ↓

C
O
N
S
T
R
A
I
N
T

F
U
N
C
T
I
O
N

F
U
N
C

M
A
P
P
I
N
G

I
N
D
E
X

I
N
D
E
X

E
X
T
E
N
S
I
O
N

M
E
T
H
O
D

N
I
C
K
N
A
M
E

N
O
D
E
G
R
O
U
P

P
A
C
K
A
G
E

S
E
R
V
E
R

T
A
B
L
E

T
A
B
L
E
S
P
A
C
E

T
R
I
G
G
E
R

T
Y
P
E

T
Y
P
E

M
A
P
P
I
N
G

U
S
E
R

M
A
P
P
I
N
G

V
I
E
W

ALTER
NICKNAME

- - - - - - - - A - - - - - - - -

ALTER SERVER - - - - - - - - A - - - - - - - -

ALTER TABLE
DROP
CONSTRAINT

C - - - - - - - A1 - - - - - - - -

ALTER TABLE
DROP
PARTITIONING
KEY

- - - - - - - R20 A1 - - - - - - - -

ALTER TYPE
ADD
ATTRIBUTE

- - - - R - - - A23 - R24 - - - - - R14

ALTER TYPE
DROP
ATTRIBUTE

- - - - R - - - A23 - R24 - - - - - R14

ALTER TYPE
ADD METHOD

- - - - - - - - - - - - - - - - -

ALTER TYPE
DROP METHOD

- - - - - - - - - - - - - - - - -

DROP ALIAS - R - - - - - - A3 - R3 - X3 - - - X3

DROP
BUFFERPOOL

- - - - - - - - - - - R - - - - -

DROP

Chapter 6. SQL Statements 885

Table 27. Dependencies (continued)

Object Type →

Statement ↓

C
O
N
S
T
R
A
I
N
T

F
U
N
C
T
I
O
N

F
U
N
C

M
A
P
P
I
N
G

I
N
D
E
X

I
N
D
E
X

E
X
T
E
N
S
I
O
N

M
E
T
H
O
D

N
I
C
K
N
A
M
E

N
O
D
E
G
R
O
U
P

P
A
C
K
A
G
E

S
E
R
V
E
R

T
A
B
L
E

T
A
B
L
E
S
P
A
C
E

T
R
I
G
G
E
R

T
Y
P
E

T
Y
P
E

M
A
P
P
I
N
G

U
S
E
R

M
A
P
P
I
N
G

V
I
E
W

DROP
FUNCTION

R R7 R - R R7 - - X - R - R - - - R

DROP
FUNCTION
MAPPING

- - - - - - - - A - - - - - - - -

DROP INDEX R - - - - - - - A - - - - - - - R17

DROP INDEX
EXTENSION

- R - R - - - - - - - - - - - - -

DROP METHOD R R7 R - R R - - X - R - R - - - R

DROP
NICKNAME

- R - C - - - - A - - - - - - - X16

DROP
NODEGROUP

- - - - - - - - - - - C - - - - -

DROP SERVER - C21 C19 - - - C - A - - - - - C19 C -

DROP TABLE C R - C - - - - A9 - RC11 - X16 - - - X16

DROP TABLE
HIERARCHY

C R - C - - - - A9 - RC11 - X16 - - - X16

DROP
TABLESPACE

- - - C6 - - - - - - CR6 - - - - - -

DROP
TRANSFORM

- R - - - - - - X - - - - - - - -

DROP TRIGGER - - - - - - - - A1 - - - - - - - -

DROP TYPE R13 R5 - - R - - - A12 - R18 - R13 R4 - - R14

DROP VIEW - R - - - - - - A2 - - - X16 - - - X15

DROP VIEW
HIERARCHY

- R - - - - - - A2 - - - X16 - - - X16

DROP
WRAPPER

- - C - - - - - - C - - - - C - -

REVOKE a
privilege10

- CR25 - - - - - - A1 - CX8 - X - - - X8

DROP

886 SQL Reference

1 This dependency is implicit in depending on a table with these
constraints, triggers, or a partitioning key.

2 If a package has an INSERT, UPDATE, or DELETE statement acting
upon a view, then the package has an insert, update or delete usage
on the underlying base table of the view. In the case of UPDATE, the
package has an update usage on each column of the underlying base
table that is modified by the UPDATE.

If a package has a statement acting on a typed view, creating or
dropping any view in the same view hierarchy will invalidate the
package.

3 If a package, summary table, view, or trigger uses an alias, it becomes
dependent both on the alias and the object that the alias references. If
the alias is in a chain, then a dependency is created on each alias in
the chain.

Aliases themselves are not dependent on anything. It is possible for
an alias to be defined on an object that does not exist.

4 A user-defined type T can depend on another user-defined type B, if
T:
v names B as the data type of an attribute
v has an attribute of REF(B)
v has B as a supertype.

5 Dropping a data type cascades to drop the functions and methods
that use that data type as a parameter or a result type, and methods
defined on the data type. Dropping of these functions and methods
will not be prevented by the fact that they depend on each other.
However, for functions or methods using the datatype within their
bodies, restrict semantics apply.

6 Dropping a table space or a list of table spaces causes all the tables
that are completely contained within the given table space or list to be
dropped. However, if a table spans table spaces (indexes or long
columns in different table spaces) and those table spaces are not in the
list being dropped then the table space(s) cannot be dropped as long
as the table exists.

7 A function can depend on another specific function if the depending
function names the base function in a SOURCE clause. A function or
method can also depend on another specific function or method if the
depending routine is written in SQL and uses the base routine in its
body. An external method, or an external function with a structured
type parameter or returns type will also depend on one or more
transform functions.

8 Only loss of SELECT privilege will cause a summary table to be

DROP

Chapter 6. SQL Statements 887

dropped or a view to become inoperative. If the view that is made
inoperative is included in a typed view hierarchy, all of its subviews
also become inoperative.

9 If a package has an INSERT, UPDATE, or DELETE statement acting
on table T, then the package has an insert, update or delete usage on
T. In the case of UPDATE, the package has an update usage on each
column of T that is modified by the UPDATE.

If a package has a statement acting on a typed table, creating or
dropping any table in the same table hierarchy will invalidate the
package.

10 Dependencies do not exist at the column level because privileges on
columns cannot be revoked individually.

If a package, trigger or view includes the use of OUTER(Z) in the
FROM clause, there is a dependency on the SELECT privilege on
every subtable or subview of Z. Similarly, if a package, trigger, or
view includes the use of DEREF(Y) where Y is a reference type with a
target table or view Z, there is a dependency on the SELECT privilege
on every subtable or subview of Z.

11 A summary table is dependent on the underlying table or tables
specified in the fullselect of the table definition.

Cascade semantics apply to dependent summary tables.

A subtable is dependent on its supertables up to the root table. A
supertable cannot be dropped until all its subtables are dropped.

12 A package can depend on structured types as a result of using the
TYPE predicate or the subtype-treatment expression (TREAT expression
AS data-type). The package has a dependency on the subtypes of each
structured type specified in the right side of the TYPE predicate, or
the right side of the TREAT expression. Dropping or creating a
structured type that alters the subtypes on which the package is
dependent causes invalidation.

13 A check constraint or trigger is dependent on a type if the type is
used anywhere in the constraint or trigger. There is no dependency on
the subtypes of a structured type used in a TYPE predicate within a
check constraint or trigger.

14 A view is dependent on a type if the type is used anywhere in the
view definition (this includes the type of typed view). There is no
dependency on the subtypes of a structured type used in a TYPE
predicate within a view definition.

15 A subview is dependent on its superview up to the root view. A

DROP

888 SQL Reference

superview cannot be dropped until all its subviews are dropped.
Refer to 16 for additional view dependencies.

16 A trigger or view is also dependent on the target table or target view
of a dereference operation or DEREF function. A trigger or view with
a FROM clause that includes OUTER(Z) is dependent on all the
subtables or subviews of Z that existed at the time the trigger or view
was created.

17 A typed view can depend on the existence of a unique index to
ensure the uniqueness of the object identifier column.

18 A table may depend on a user defined data type (distinct or
structured) because the type is:
v used as the type of a column
v used as the type of the table
v used as an attribute of the type of the table
v used as the target type of a reference type that is the type of a

column of the table or an attribute of the type of the table
v directly or indirectly used by a type that is the column of the table.

19 Dropping a server cascades to drop the function mappings and type
mappings created for that named server.

20 If the partitioning key is defined on a table in a multiple partition
nodegroup, the partitioning key is required.

21 If a dependent OLE DB table function has ″R″ dependent objects (see
DROP FUNCTION), then the server cannot be dropped.

22 An SQL function or method can depend on the objects referenced by
its body.

23 When an attribute A of type TA of type-name T is dropped, the
following DROP statements are effectively executed:
Mutator method: DROP METHOD A (TA) FOR T
Observer method: DROP METHOD A () FOR T
ALTER TYPE T

DROP METHOD A(TA)
DROP METHOD A()

24 A table may depend on an attribute of a user-defined structured data
type in the following cases:
1. The table is a typed table that is based on type-name or any of its

subtypes.
2. The table has an existing column of a type that directly or

indirectly refers to type-name.
25 A REVOKE of SELECT privilege on a table or view that is used in the

body of an SQL function causes an attempt to drop the function, if the

DROP

Chapter 6. SQL Statements 889

function defined no longer has the SELECT WITH GRANT OPTION
privilege. If such a function is used in a view or trigger, it cannot be
dropped and the REVOKE is restricted as a result. Otherwise, the
REVOKE cascades and drops such functions.

Notes
v It is valid to drop a user-defined function while it is in use. Also, a cursor

can be open over a statement which contains a reference to a user-defined
function, and while this cursor is open the function can be dropped without
causing the cursor fetches to fail.

v If a package which depends on a user-defined function is executing, it is
not possible for another authorization ID to drop the function until the
package completes its current unit of work. At that point, the function is
dropped and the package becomes inoperative. The next request for this
package results in an error indicating that the package must be explicitly
rebound.

v The removal of a function body (this is very different from dropping the
function) can occur while an application which needs the function body is
executing. This may or may not cause the statement to fail, depending on
whether the function body still needs to be loaded into storage by the
database manager on behalf of the statement.

v For any dropped table that includes currently linked files through
DATALINK columns, the files are unlinked, and will be either restored or
deleted, depending on the datalink column definition.

v If a table containing a DATALINK column is dropped while any DB2 Data
Links Managers configured to the database are unavailable, either through
DROP TABLE or DROP TABLESPACE, then the operation will fail
(SQLSTATE 57050).

v In addition to the dependencies recorded for any explicitly specified UDF,
the following dependencies are recorded when transforms are implicitly
required:
1. When the structured type parameter or result of a function or method

requires a transform, a dependency is recorded for the function or
method on the required TO SQL or FROM SQL transform function.

2. When an SQL statement included in a package requires a transform
function, a dependency is recorded for the package on the designated
TO SQL or FROM SQL transform function.

Since the above describes the only circumstances under which dependencies
are recorded due to implicit invocation of transforms, no objects other than
functions, methods, or packages can have a dependency on implicitly
invoked transform functions. On the other hand, explicit calls to transform
functions (in views and triggers, for example) do result in the usual
dependencies of these other types of objects on transform functions. As a

DROP

890 SQL Reference

result, a DROP TRANSFORM statement may also fail due to these ″explicit″
type dependencies of objects on the transform(s) being dropped (SQLSTATE
42893).

v Since the dependency catalogs do not distinguish between depending on a
function as a transform versus depending on a function by explicit function
call, it is suggested that explicit calls to transform functions are not written.
In such an instance, the transform property on the function cannot be
dropped, or packages will be marked inoperative, simply because they
contain explicit invocations in an SQL expression.

Examples
Example 1: Drop table TDEPT.

DROP TABLE TDEPT

Example 2: Drop the view VDEPT.
DROP VIEW VDEPT

Example 3: The authorization ID HEDGES attempts to drop an alias.
DROP ALIAS A1

The alias HEDGES.A1 is removed from the catalogs.

Example 4: Hedges attempts to drop an alias, but specifies T1 as the
alias-name, where T1 is the name of an existing table (not the name of an
alias).

DROP ALIAS T1

This statement fails (SQLSTATE 42809).

Example 5:

Drop the BUSINESS_OPS nodegroup. To drop the nodegroup, the two table
spaces (ACCOUNTING and PLANS) in the nodegroup must first be dropped.

DROP TABLESPACE ACCOUNTING
DROP TABLESPACE PLANS
DROP NODEGROUP BUSINESS_OPS

Example 6: Pellow wants to drop the CENTRE function, which he created in
his PELLOW schema, using the signature to identify the function instance to
be dropped.

DROP FUNCTION CENTRE (INT,FLOAT)

Example 7: McBride wants to drop the FOCUS92 function, which she created
in the PELLOW schema, using the specific name to identify the function
instance to be dropped.

DROP

Chapter 6. SQL Statements 891

DROP SPECIFIC FUNCTION PELLOW.FOCUS92

Example 8: Drop the function ATOMIC_WEIGHT from the CHEM schema,
where it is known that there is only one function with that name.

DROP FUNCTION CHEM.ATOMIC_WEIGHT

Example 9: Drop the trigger SALARY_BONUS, which caused employees
under a specified condition to receive a bonus to their salary.

DROP TRIGGER SALARY_BONUS

Example 10: Drop the distinct data type named shoesize, if it is not currently
in use.

DROP DISTINCT TYPE SHOESIZE

Example 11: Drop the SMITHPAY event monitor.
DROP EVENT MONITOR SMITHPAY

Example 12: Drop the schema from Example 2 under CREATE SCHEMA
using RESTRICT. Notice that the table called PART must be dropped first.

DROP TABLE PART
DROP SCHEMA INVENTRY RESTRICT

Example 13: Macdonald wants to drop the DESTROY procedure, which he
created in the EIGLER schema, using the specific name to identify the
procedure instance to be dropped.

DROP SPECIFIC PROCEDURE EIGLER.DESTROY

Example 14: Drop the procedure OSMOSIS from the BIOLOGY schema, where
it is known that there is only one procedure with that name.

DROP PROCEDURE BIOLOGY.OSMOSIS

Example 15: User SHAWN used one authorization ID to access the federated
database and another to access the database at an Oracle data source called
ORACLE1. A mapping was created between the two authorizations, but
SHAWN no longer needs to access the data source. Drop the mapping.

DROP USER MAPPING FOR SHAWN SERVER ORACLE1

Example 16: An index of a data source table that a nickname references has
been deleted. Drop the index specification that was created to let the
optimizer know about this index.

DROP INDEX INDEXSPEC

Example 17: Drop the MYSTRUCT1 transform group.
DROP TRANSFORM MYSTRUCT1 FOR POLYGON

DROP

892 SQL Reference

Example 18: Drop the method BONUS for the EMP data type in the
PERSONNEL schema.

DROP METHOD BONUS (SALARY DECIMAL(10,2)) FOR PERSONNEL.EMP

DROP

Chapter 6. SQL Statements 893

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of a host variable
declare section.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in REXX.

Authorization
None required.

Syntax

�� END DECLARE SECTION ��

Description
The END DECLARE SECTION statement can be coded in the application
program wherever declarations can appear according to the rules of the host
language. It indicates the end of a host variable declaration section. A host
variable section starts with a BEGIN DECLARE SECTION statement (see
“BEGIN DECLARE SECTION” on page 520).

The BEGIN DECLARE SECTION and the END DECLARE SECTION
statements must be paired and may not be nested.

Host variable declarations can be specified by using the SQL INCLUDE
statement. Otherwise, a host variable declaration section must not contain any
statements other than host variable declarations.

Host variables referenced in SQL statements must be declared in a host
variable declare section in all host languages, other than REXX.97 Furthermore,
the declaration of each variable must appear before the first reference to the
variable.

Variables declared outside a declare section must not have the same name as
variables declared within a declare section.

Example
See “BEGIN DECLARE SECTION” on page 520 for examples that use the
END DECLARE SECTION statement.

97. See “Rules” on page 520 for information on how host variables can be declared in REXX in the case of LOB
locators and file reference variables.

END DECLARE SECTION

894 SQL Reference

EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation
This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
For statements where authorization checking is performed at statement
execution time (DDL, GRANT, and REVOKE statements), the privileges held
by the authorization ID of the statement must include those required to
execute the SQL statement specified by the PREPARE statement. For
statements where authorization checking is performed at statement
preparation time (DML), no authorization is required to use this statement.

Syntax

�� EXECUTE statement-name

�

,

USING host-variable
USING DESCRIPTOR descriptor-name

��

Description

statement-name
Identifies the prepared statement to be executed. The statement-name must
identify a statement that was previously prepared and the prepared
statement must not be a SELECT statement.

USING
Introduces a list of host variables for which values are substituted for the
parameter markers (question marks) in the prepared statement. (For an
explanation of parameter markers, see “PREPARE” on page 954.) If the
prepared statement includes parameter markers, USING must be used.

host-variable, ...
Identifies a host variable that is declared in the program in accordance
with the rules for declaring host variables. The number of variables
must be the same as the number of parameter markers in the
prepared statement. The nth variable corresponds to the nth
parameter marker in the prepared statement. Locator variables and
file reference variables, where appropriate, can be provided as the
source of values for parameter markers.

DESCRIPTOR descriptor-name
Identifies an input SQLDA that must contain a valid description of
host variables.

EXECUTE

Chapter 6. SQL Statements 895

Before the EXECUTE statement is processed, the user must set the
following fields in the input SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in

the SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for

the SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR
occurrences. Therefore, the value in SQLDABC must be greater than
or equal to 16 + SQLN*(N), where N is the length of an SQLVAR
occurrence.

If LOB input data needs to be accommodated, there must be two
SQLVAR entries for every parameter marker.

SQLD must be set to a value greater than or equal to zero and less
than or equal to SQLN. For more information, see “Appendix C. SQL
Descriptor Area (SQLDA)” on page 1113.

Notes
v Before the prepared statement is executed, each parameter marker is

effectively replaced by the value of its corresponding host variable. For a
typed parameter marker, the attributes of the target variable are those
specified by the CAST specification. For an untyped parameter marker, the
attributes of the target variable are determined according to the context of
the parameter marker. See “Rules” on page 955 for the rules affecting
parameter markers.
Let V denote a host variable that corresponds to parameter marker P. The
value of V is assigned to the target variable for P in accordance with the
rules for assigning a value to a column. Thus:
– V must be compatible with the target.
– If V is a string, its length must not be greater than the length attribute of

the target.
– If V is a number, the absolute value of its integral part must not be

greater than the maximum absolute value of the integral part of the
target.

– If the attributes of V are not identical to the attributes of the target, the
value is converted to conform to the attributes of the target.

EXECUTE

896 SQL Reference

When the prepared statement is executed, the value used in place of P is
the value of the target variable for P. For example, if V is CHAR(6) and the
target is CHAR(8), the value used in place of P is the value of V padded
with two blanks.

v Dynamic SQL Statement Caching:

The information required to execute dynamic and static SQL statements is
placed in the database package cache when static SQL statements are first
referenced or when dynamic SQL statements are first prepared. This
information stays in the package cache until it becomes invalid, the cache
space is required for another statement, or the database is shut down.
When an SQL statement is executed or prepared, the package information
relevant to the application issuing the request is loaded from the system
catalog into the package cache. The actual executable section for the
individual SQL statement is also placed into the cache: static SQL sections
are read in from the system catalog and placed in the package cache when
the statement is first referenced; Dynamic SQL sections are placed directly
in the cache after they have been created. Dynamic SQL sections can be
created by an explicit statement, such as a PREPARE or EXECUTE
IMMEDIATE statement. Once created, sections for dynamic SQL statements
may be recreated by an implicit prepare of the statement performed by the
system if the original section has been deleted for space management
reasons or has become invalid due to changes in the environment.
Each SQL statement is cached at a database level and can be shared among
applications. Static SQL statements are shared among applications using the
same package; Dynamic SQL statements are shared among applications
using the same compilation environment and the exact same statement text.
The text of each SQL statement issued by an application is cached locally
within the application for use in the event that an implicit prepare is
required. Each PREPARE statement in the application program can cache
one statement. All EXECUTE IMMEDIATE statements in an application
program share the same space and only one cached statement exists for all
these EXECUTE IMMEDIATE statements at a time. If the same PREPARE or
any EXECUTE IMMEDIATE statement is issued multiple times with a
different SQL statement each time, only the last statement will be cached
for reuse. The optimal use of the cache is to issue a number of different
PREPARE statements once at the start of the application and then to issue
an EXECUTE or OPEN statement as required.
With the caching of dynamic SQL statements, once a statement has been
created, it can be reused over multiple units of work without the need to
prepare the statement again. The system will recompile the statement as
required if environment changes occur.
The following events are examples of environment or data object changes
which can cause cached dynamic statements to be implicitly prepared on
the next PREPARE, EXECUTE, EXECUTE IMMEDIATE, or OPEN request:

EXECUTE

Chapter 6. SQL Statements 897

– ALTER NICKNAME
– ALTER SERVER
– ALTER TABLE
– ALTER TABLESPACE
– ALTER TYPE
– CREATE FUNCTION
– CREATE FUNCTION MAPPING
– CREATE INDEX
– CREATE TABLE
– CREATE TEMPORARY TABLESPACE
– CREATE TRIGGER
– CREATE TYPE
– DROP (all objects)
– RUNSTATS on any table or index
– any action that causes a view to become inoperative
– UPDATE of statistics in any system catalog table
– SET CURRENT DEGREE
– SET PATH
– SET QUERY OPTIMIZATION
– SET SCHEMA
– SET SERVER OPTION

The following list outlines the behavior that can be expected from cached
dynamic SQL statements:
– PREPARE Requests: Subsequent preparations of the same statement will

not incur the cost of compiling the statement if the section is still valid.
The cost and cardinality estimates for the current cached section will be
returned. These values may differ from the values returned from any
previous PREPARE for the same SQL statement.
There will be no need to issue a PREPARE statement subsequent to a
COMMIT or ROLLBACK statement.

– EXECUTE Requests: EXECUTE statements may occasionally incur the
cost of implicitly preparing the statement if it has become invalid since
the original PREPARE. If a section is implicitly prepared, it will use the
current environment and not the environment of the original PREPARE
statement.

– EXECUTE IMMEDIATE Requests: Subsequent EXECUTE IMMEDIATE
statements for the same statement will not incur the cost of compiling
the statement if the section is still valid.

EXECUTE

898 SQL Reference

– OPEN Requests: OPEN requests for dynamically defined cursors may
occasionally incur the cost of implicitly preparing the statement if it has
become invalid since the original PREPARE statement. If a section is
implicitly prepared, it will use the current environment and not the
environment of the original PREPARE statement.

– FETCH Requests: No behavior changes should be expected.
– ROLLBACK: Only those dynamic SQL statements prepared or implicitly

prepared during the unit of work affected by the rollback operation will
be invalidated.

– COMMIT: Dynamic SQL statements will not be invalidated but any locks
acquired will be freed. Cursors not defined as WITH HOLD cursors will
be closed and their locks freed. Open WITH HOLD cursors will hold
onto their package and section locks to protect the active section during,
and after, commit processing.

If an error occurs during an implicit prepare, an error will be returned for
the request causing the implicit prepare (SQLSTATE 56098).

Examples
Example 1: In this C example, an INSERT statement with parameter markers
is prepared and executed. h1 - h4 are host variables that correspond to the
format of TDEPT.

strcpy (s,"INSERT INTO TDEPT VALUES(?,?,?,?)");
EXEC SQL PREPARE DEPT_INSERT FROM :s;

.

.
(Check for successful execution and put values into :h1, :h2, :h3, :h4)

.

.
EXEC SQL EXECUTE DEPT_INSERT USING :h1, :h2,
:h3, :h4;

Example 2: This EXECUTE statement uses an SQLDA.
EXECUTE S3 USING DESCRIPTOR :sqlda3

EXECUTE

Chapter 6. SQL Statements 899

EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement:
v Prepares an executable form of an SQL statement from a character string

form of the statement.
v Executes the SQL statement.

EXECUTE IMMEDIATE combines the basic functions of the PREPARE and
EXECUTE statements. It can be used to prepare and execute SQL statements
that contain neither host variables nor parameter markers.

Invocation
This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
The authorization rules are those defined for the SQL statement specified by
EXECUTE IMMEDIATE.

Syntax

�� EXECUTE IMMEDIATE host-variable ��

Description

host-variable
A host variable must be specified and it must identify a host variable that
is described in the program in accordance with the rules for declaring
character-string variables. It must be a character-string variable less than
the maximum statement size of 65 535. Note that a CLOB(65535) can
contain a maximum size statement but a VARCHAR can not.

The value of the identified host variable is called the statement string.

The statement string must be one of the following SQL statements:
v ALTER
v COMMENT ON
v COMMIT
v CREATE
v DELETE
v DECLARE GLOBAL TEMPORARY TABLE
v DROP
v GRANT
v INSERT

EXECUTE IMMEDIATE

900 SQL Reference

v LOCK TABLE
v REFRESH TABLE
v RELEASE SAVEPOINT
v RENAME TABLE
v RENAME TABLESPACE
v REVOKE
v ROLLBACK
v SAVEPOINT
v SET CURRENT DEGREE
v SET CURRENT EXPLAIN MODE
v SET CURRENT EXPLAIN SNAPSHOT
v SET CURRENT QUERY OPTIMIZATION
v SET CURRENT REFRESH AGE
v SET CURRENT TRANSFORM GROUP
v SET EVENT MONITOR STATE
v SET INTEGRITY
v SET PASSTHRU
v SET PATH
v SET SCHEMA
v SET SERVER OPTION
v UPDATE

The statement string must not include parameter markers or references to host
variables, and must not begin with EXEC SQL. It must not contain a
statement terminator, with the exception of the CREATE TRIGGER statement
which can contain a semi-colon (;) to separate triggered SQL statements, or
the CREATE PROCEDURE statement to separate SQL statements in the SQL
procedure body.

When an EXECUTE IMMEDIATE statement is executed, the specified
statement string is parsed and checked for errors. If the SQL statement is
invalid, it is not executed and the error condition that prevents its execution is
reported in the SQLCA. If the SQL statement is valid, but an error occurs
during its execution, that error condition is reported in the SQLCA.

Notes
v Statement caching affects the behavior of an EXECUTE IMMEDIATE

statement. See “Dynamic SQL Statement Caching” on page 897 for
information.

EXECUTE IMMEDIATE

Chapter 6. SQL Statements 901

Example
Use C program statements to move an SQL statement to the host variable
qstring (char[80]) and prepare and execute whatever SQL statement is in the
host variable qstring.

if (strcmp(accounts,"BIG") == 0)
strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *

FROM EMP_ACT WHERE ACTNO < 100");
else

strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *
FROM EMP_ACT WHERE ACTNO >= 100");

.

.

.
EXEC SQL EXECUTE IMMEDIATE :qstring;

EXECUTE IMMEDIATE

902 SQL Reference

EXPLAIN
The EXPLAIN statement captures information about the access plan chosen
for the supplied explainable statement and places this information into the
Explain tables. (See “Appendix K. Explain Tables and Definitions” on
page 1291 for information on the Explain tables and table definitions.)

An explainable statement is a DELETE, INSERT, SELECT, SELECT INTO,
UPDATE, VALUES, or VALUES INTO SQL statement.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

The statement to be explained is not executed.

Authorization
The authorization rules are those defined for the SQL statement specified in
the EXPLAIN statement. For example, if a DELETE statement was used as the
explainable-sql-statement (see statement syntax that follows), then the
authorization rules for a DELETE statement would be applied when the
DELETE statement is explained.

The authorization rules for static EXPLAIN statements are those rules that
apply for static versions of the statement passed as the explainable-sql-
statement. Dynamically prepared EXPLAIN statements use the authorization
rules for the dynamic preparation of the statement provided for the
explainable-sql-statement parameter.

The current authorization ID must have insert privilege on the Explain tables.

Syntax

�� EXPLAIN PLAN SELECTION
ALL

(1)
PLAN

FOR SNAPSHOT
WITH

�

�
SET QUERYNO = integer SET QUERYTAG = string-constant

�

� FOR explainable-sql-statement ��

Notes:

1 The PLAN option is supported only for syntax toleration of existing DB2

EXPLAIN

Chapter 6. SQL Statements 903

for MVS EXPLAIN statements. There is no PLAN table.
Specifying PLAN is equivalent to specifying PLAN SELECTION.

Description

PLAN SELECTION
Indicates that the information from the plan selection phase of SQL
compilation is to be inserted into the Explain tables.

ALL
Specifying ALL is equivalent to specifying PLAN SELECTION.

PLAN
The PLAN option provides syntax toleration for existing database
applications from other systems. Specifying PLAN is equivalent to
specifying PLAN SELECTION.

FOR SNAPSHOT
This clause indicates that only an Explain Snapshot is to be taken and
placed into the SNAPSHOT column of the EXPLAIN_STATEMENT table.
No other Explain information is captured other than that present in the
EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables.

The Explain Snapshot information is intended for use with Visual Explain.

WITH SNAPSHOT
This clause indicates that, in addition to the regular Explain information,
an Explain Snapshot is to be taken.

The default behavior of the EXPLAIN statement is to only gather regular
Explain information and not the Explain Snapshot.

The Explain Snapshot information is intended for use with Visual Explain.

default (neither FOR SNAPSHOT nor WITH SNAPSHOT specified)
Puts Explain information into the Explain tables. No snapshot is taken for
use with Visual Explain.

SET QUERYNO = integer
Associates integer, via the QUERYNO column in the
EXPLAIN_STATEMENT table, with explainable-sql-statement. The integer
value supplied must be a positive value.

If this clause is not specified for a dynamic EXPLAIN statement, a default
value of one (1) is assigned. For a static EXPLAIN statement, the default
value assigned is the statement number assigned by the precompiler.

SET QUERYTAG = string-constant
Associates string-constant, via the QUERYTAG column in the
EXPLAIN_STATEMENT table, with explainable-sql-statement. string-constant

EXPLAIN

904 SQL Reference

can be any character string up to 20 bytes in length. If the value supplied
is less than 20 bytes in length, the value is padded on the right with
blanks to the required length.

If this clause is not specified for an EXPLAIN statement, blanks are used
as the default value.

FOR explainable-sql-statement
Specifies the SQL statement to be explained. This statement can be any
valid DELETE, INSERT, SELECT, SELECT INTO, UPDATE, VALUES, or
VALUES INTO SQL statement. If the EXPLAIN statement is embedded in
a program, the explainable-sql-statement can contain references to host
variables (these variables must be defined in the program). Similarly, if
EXPLAIN is being dynamically prepared, the explainable-sql-statement can
contain parameter markers.

The explainable-sql-statement must be a valid SQL statement that could be
prepared and executed independently of the EXPLAIN statement. It
cannot be a statement name or host variable. SQL statements referring to
cursors defined through CLP are not valid for use with this statement.

To explain dynamic SQL within an application, the entire EXPLAIN
statement must be dynamically prepared.

Notes
The following table shows the interaction of the snapshot keywords and the
Explain information.

Keyword Specified Capture Explain
Information?

Take Snapshot for Visual
Explain?

none Yes No

FOR SNAPSHOT No Yes

WITH SNAPSHOT Yes Yes

If neither the FOR SNAPSHOT nor WITH SNAPSHOT clause is specified,
then no Explain snapshot is taken.

The Explain tables must be created by the user prior to the invocation of
EXPLAIN. (See “Appendix K. Explain Tables and Definitions” on page 1291
for information on the Explain tables and table definitions.) The information
generated by this statement is stored in these explain tables in the schema
designated at the time the statement is compiled.

If any errors occur during the compilation of the explainable-sql-statement
supplied, then no information is stored in the Explain tables.

EXPLAIN

Chapter 6. SQL Statements 905

The access plan generated for the explainable-sql-statement is not saved and
thus, cannot be invoked at a later time. The Explain information for the
explainable-sql-statement is inserted when the EXPLAIN statement itself is
compiled.

For a static EXPLAIN SQL statement, the information is inserted into the
Explain tables at bind time and during an explicit rebind (see REBIND in the
Command Reference). During precompilation, the static EXPLAIN statements
are commented out in the modified application source file. At bind time, the
EXPLAIN statements are stored in the SYSCAT.STATEMENTS catalog. When
the package is run, the EXPLAIN statement is not executed. Note that the
section numbers for all statements in the application will be sequential and
will include the EXPLAIN statements. An alternative to using a static
EXPLAIN statement is to use a combination of the EXPLAIN and EXPLSNAP
BIND/PREP options. Static EXPLAIN statements can be used to cause the
Explain tables to be populated for one specific static SQL statement out of
many; simply prefix the target statement with the appropriate EXPLAIN
statement syntax and bind the application without using either of the Explain
BIND/PREP options. The EXPLAIN statement can also be used when it is
advantageous to set the QUERYNO or QUERYTAG field at the time of the
actual Explain invocation.

For an incremental bind EXPLAIN SQL statement, the Explain tables are
populated when the EXPLAIN statement is submitted for compilation. When
the package is run, the EXPLAIN statement performs no processing (though
the statement will be successful). When populating the explain tables, the
explain table qualifier and authorization ID used during population will be
those of the package owner. The EXPLAIN statement can also be used when it
is advantageous to set the QUERYNO or QUERYTAG field at the time of the
actual Explain invocation.

For dynamic EXPLAIN statements, the Explain tables are populated at the
time the EXPLAIN statement is submitted for compilation. An Explain
statement can be prepared with the PREPARE statement but, if executed, will
perform no processing (though the statement will be successful). An
alternative to issuing dynamic EXPLAIN statements is to use a combination of
the CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special registers to explain dynamic SQL statements. The EXPLAIN statement
should be used when it is advantageous to set the QUERYNO or QUERYTAG
field at the time of the actual Explain invocation.

Examples
Example 1: Explain a simple SELECT statement and tag with QUERYNO =
13.

EXPLAIN PLAN SET QUERYNO = 13 FOR SELECT C1 FROM T1;

EXPLAIN

906 SQL Reference

This statement is successful.

Example 2:

Explain a simple SELECT statement and tag with QUERYTAG = ’TEST13’.
EXPLAIN PLAN SELECTION SET QUERYTAG = 'TEST13'

FOR SELECT C1 FROM T1;

This statement is successful.

Example 3: Explain a simple SELECT statement and tag with QUERYNO = 13
and QUERYTAG = ’TEST13’.

EXPLAIN PLAN SELECTION SET QUERYNO = 13 SET QUERYTAG = 'TEST13'
FOR SELECT C1 FROM T1;

This statement is successful.

Example 4: Attempt to get Explain information when Explain tables do not
exist.

EXPLAIN ALL FOR SELECT C1 FROM T1;

This statement would fail as the Explain tables have not been defined
(SQLSTATE 42704).

EXPLAIN

Chapter 6. SQL Statements 907

FETCH
The FETCH statement positions a cursor on the next row of its result table
and assigns the values of that row to host variables.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded
within an application program. It is an executable statement that cannot be
dynamically prepared.

Authorization
See “DECLARE CURSOR” on page 841 for an explanation of the authorization
required to use a cursor.

Syntax

�� FETCH cursor-name
FROM

�

,

INTO host-variable
USING DESCRIPTOR descriptor-name

��

Description

cursor-name
Identifies the cursor to be used in the fetch operation. The cursor-name
must identify a declared cursor as explained in “DECLARE CURSOR” on
page 841. The DECLARE CURSOR statement must precede the FETCH
statement in the source program. When the FETCH statement is executed,
the cursor must be in the open state.

If the cursor is currently positioned on or after the last row of the result
table:
v SQLCODE is set to +100, and SQLSTATE is set to '02000'.
v The cursor is positioned after the last row.
v Values are not assigned to host variables.

If the cursor is currently positioned before a row, it will be repositioned
on that row, and values will be assigned to host variables as specified by
INTO or USING.

If the cursor is currently positioned on a row other than the last row, it
will be repositioned on the next row and values of that row will be
assigned to host variables as specified by INTO or USING.

INTO host-variable, ...
Identifies one or more host variables that must be described in accordance
with the rules for declaring host variables. The first value in the result

FETCH

908 SQL Reference

row is assigned to the first host variable in the list, the second value to
the second host variable, and so on. For LOB values in the select-list, the
target can be a regular host variable (if it is large enough), a locator
variable, or a file-reference variable.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more
host variables.

Before the FETCH statement is processed, the user must set the following
fields in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA.
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA.
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement.
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR
occurrences. Therefore, the value in SQLDABC must be greater than or
equal to 16 + SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB or structured type result columns need to be accommodated, there
must be two SQLVAR entries for every select-list item (or column of the
result table). See “Effect of DESCRIBE on the SQLDA” on page 1120,
which discusses SQLDOUBLED, LOB , and structured type columns.

SQLD must be set to a value greater than or equal to zero and less than
or equal to SQLN. For more information, see “Appendix C. SQL
Descriptor Area (SQLDA)” on page 1113.

The nth variable identified by the INTO clause or described in the SQLDA
corresponds to the nth column of the result table of the cursor. The data type
of each variable must be compatible with its corresponding column.

Each assignment to a variable is made according to the rules described in
Chapter 3. If the number of variables is less than the number of values in the
row, the SQLWARN3 field of the SQLDA is set to 'W'. Note that there is no
warning if there are more variables than the number of result columns. If an
assignment error occurs, the value is not assigned to the variable, and no
more values are assigned to variables. Any values that have already been
assigned to variables remain assigned.

FETCH

Chapter 6. SQL Statements 909

Notes
v An open cursor has three possible positions:

– Before a row
– On a row
– After the last row.

v If a cursor is on a row, that row is called the current row of the cursor. A
cursor referenced in an UPDATE or DELETE statement must be positioned
on a row. A cursor can only be on a row as a result of a FETCH statement.

v When retrieving into LOB locators in situations where it is not necessary to
retain the locator across FETCH statements, it is good practice to issue a
FREE LOCATOR statement before issuing the next FETCH statement, as
locator resources are limited.

v It is possible for an error to occur that makes the state of the cursor
unpredictable.

v It is possible that a warning may not be returned on a FETCH. It is also
possible that the returned warning applies to a previously fetched row. This
occurs as a result of optimizations such as the use of system temporary
tables or pushdown operators (see Administration Guide).

v Statement caching affects the behavior of an EXECUTE IMMEDIATE
statement. See the “Notes” on page 896 for information.

v DB2 CLI supports additional fetching capabilities. For instance when a
cursor’s result table is read-only, the SQLFetchScroll() function can be used
to position the cursor at any spot within that result table.

Examples
Example 1: In this C example, the FETCH statement fetches the results of the
SELECT statement into the program variables dnum, dname, and mnum. When no
more rows remain to be fetched, the not found condition is returned.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT

WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN C1;

while (SQLCODE==0) {
EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

}

EXEC SQL CLOSE C1;

Example 2: This FETCH statement uses an SQLDA.
FETCH CURS USING DESCRIPTOR :sqlda3

FETCH

910 SQL Reference

FLUSH EVENT MONITOR
The FLUSH EVENT MONITOR statement writes current database monitor
values for all active monitor types associated with event monitor
event-monitor-name to the event monitor I/O target. Hence, at any time a
partial event record is available for event monitors that have low record
generation frequency (such as a database event monitor). Such records are
noted in the event monitor log with a partial record identifier.

When an event monitor is flushed, its active internal buffers are written to the
event monitor output object.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID must include either SYSADM or
DBADM authority (SQLSTATE 42502).

Syntax

�� FLUSH EVENT MONITOR event-monitor-name
BUFFER

��

Description

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL
identifier.

BUFFER
Indicates that the event monitor buffers are to be written out. If BUFFER
is specified, then a partial record is not generated. Only the data already
present in the event monitor buffers are written out.

Notes
v Flushing out the event monitor will not cause the event monitor values to

be reset. This means that the event monitor record that would have been
generated if no flush was performed, will still be generated when the
normal monitor event is triggered.

FLUSH EVENT MONITOR

Chapter 6. SQL Statements 911

FREE LOCATOR
The FREE LOCATOR statement removes the association between a locator
variable and its value.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

�� FREE LOCATOR �

,

variable-name ��

Description

LOCATOR variable-name, ...
Identifies one or more locator variables that must be declared in
accordance with the rules for declaring locator variables.

The locator-variable must currently have a locator assigned to it. That is, a
locator must have been assigned during this unit of work (by a FETCH
statement or a SELECT INTO statement) and must not subsequently have
been freed (by a FREE LOCATOR statement); otherwise, an error is raised
(SQLSTATE 0F001).

If more than one locator is specified, all locators that can be freed will be
freed, regardless of errors detected in other locators in the list.

Example
In a COBOL program, free the BLOB locator variables TKN-VIDEO and
TKN-BUF and the CLOB locator variable LIFE-STORY-LOCATOR.

EXEC SQL
FREE LOCATOR :TKN-VIDEO, :TKN-BUF, :LIFE-STORY-LOCATOR
END-EXEC.

FREE LOCATOR

912 SQL Reference

GRANT (Database Authorities)
This form of the GRANT statement grants authorities that apply to the entire
database (rather than privileges that apply to specific objects within the
database).

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
To grant DBADM authority, SYSADM authority is required. To grant other
authorities, either DBADM or SYSADM authority is required.

Syntax

�� GRANT �

,

BINDADD
CONNECT
CREATETAB
CREATE_NOT_FENCED
IMPLICIT_SCHEMA
DBADM
LOAD

ON DATABASE �

� �

,

TO authorization-name
USER
GROUP

PUBLIC

��

Description

BINDADD
Grants the authority to create packages. The creator of a package
automatically has the CONTROL privilege on that package and retains
this privilege even if the BINDADD authority is subsequently revoked.

CONNECT
Grants the authority to access the database.

CREATETAB
Grants the authority to create base tables. The creator of a base table
automatically has the CONTROL privilege on that table. The creator
retains this privilege even if the CREATETAB authority is subsequently
revoked.

GRANT (Database Authorities)

Chapter 6. SQL Statements 913

There is no explicit authority required for view creation. A view can be
created at any time if the authorization ID of the statement used to create
the view has either CONTROL or SELECT privilege on each base table of
the view.

CREATE_NOT_FENCED
Grants the authority to register functions that execute in the database
manager’s process. Care must be taken that functions so registered will
not have adverse side effects (see the FENCED or NOT FENCED clause
on page 601 for more information).

Once a function has been registered as not fenced, it continues to run in
this manner even if CREATE_NOT_FENCED is subsequently revoked.

IMPLICIT_SCHEMA
Grants the authority to implicitly create a schema.

DBADM
Grants the database administrator authority. A database administrator has
all privileges against all objects in the database and may grant these
privileges to others.

BINDADD, CONNECT, CREATETAB, CREATE_NOT_FENCED and
IMPLICIT_SCHEMA are automatically granted to an authorization-name
that is granted DBADM authority.

LOAD
Grants the authority to load in this database. This authority gives a user
the right to use the LOAD utility in this database. SYSADM and DBADM
also have this authority by default. However, if a user only has LOAD
authority (not SYSADM or DBADM), the user is also required to have
table-level privileges. In addition to LOAD privilege, the user is required
to have:
v INSERT privilege on the table for LOAD with mode INSERT,

TERMINATE (to terminate a previous LOAD INSERT), or RESTART (to
restart a previous LOAD INSERT)

v INSERT and DELETE privilege on the table for LOAD with mode
REPLACE, TERMINATE (to terminate a previous LOAD REPLACE), or
RESTART (to restart a previous LOAD REPLACE)

v INSERT privilege on the exception table, if such a table is used as part
of LOAD

TO
Specifies to whom the authorities are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

GRANT (Database Authorities)

914 SQL Reference

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of
the user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the authorities to all users. DBADM cannot be granted to
PUBLIC.

Rules
v If neither USER nor GROUP is specified, then

– If the authorization-name is defined in the operating system only as
GROUP, then GROUP is assumed.

– If the authorization-name is defined in the operating system only as
USER or if it is undefined, USER is assumed.

– If the authorization-name is defined in the operating system as both, or
DCE authentication is used, an error (SQLSTATE 56092) is raised.

Examples
Example 1: Give the users WINKEN, BLINKEN, and NOD the authority to
connect to the database.

GRANT CONNECT ON DATABASE TO USER WINKEN, USER BLINKEN, USER NOD

Example 2: GRANT BINDADD authority on the database to a group named
D024. There is both a group and a user called D024 in the system.

GRANT BINDADD ON DATABASE TO GROUP D024

Observe that, the GROUP keyword must be specified; otherwise, an error will
occur since both a user and a group named D024 exist. Any member of the
D024 group will be allowed to bind packages in the database, but the D024
user will not be allowed (unless this user is also a member of the group D024,
had been granted BINDADD authority previously, or BINDADD authority
had been granted to another group of which D024 was a member).

GRANT (Database Authorities)

Chapter 6. SQL Statements 915

GRANT (Index Privileges)
This form of the GRANT statement grants the CONTROL privilege on
indexes.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v DBADM authority
v SYSADM authority.

Syntax

�� GRANT CONTROL ON INDEX index-name �

� �

,

TO authorization-name
USER
GROUP

PUBLIC

��

Description

CONTROL
Grants the privilege to drop the index. This is the CONTROL authority
for indexes, which is automatically granted to creators of indexes.

ON INDEX index-name
Identifies the index for which the CONTROL privilege is to be granted.

TO
Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

GRANT (Index Privileges)

916 SQL Reference

The list of authorization IDs cannot include the authorization ID of
the user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the privileges to all users.

Rules
v If neither USER nor GROUP is specified, then

– If the authorization-name is defined in the operating system only as
GROUP, then GROUP is assumed.

– If the authorization-name is defined in the operating system only as
USER or if it is undefined, USER is assumed.

– If the authorization-name is defined in the operating system as both, or
DCE authentication is used, an error (SQLSTATE 56092) is raised.

Example
GRANT CONTROL ON INDEX DEPTIDX TO USER USER4

GRANT (Index Privileges)

Chapter 6. SQL Statements 917

GRANT (Package Privileges)
This form of the GRANT statement grants privileges on a package.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v CONTROL privilege on the referenced package
v SYSADM or DBADM authority.

To grant the CONTROL privilege, SYSADM or DBADM authority is required.

Syntax

�� GRANT �

,

BIND
CONTROL

(1)
EXECUTE

(2)
ON PACKAGE package-name �

� �

,

TO authorization-name
USER
GROUP

PUBLIC

��

Notes:

1 RUN can be used as a synonym for EXECUTE.

2 PROGRAM can be used as a synonym for PACKAGE.

Description

BIND
Grants the privilege to bind a package. The BIND privilege is really a
rebind privilege, because the package must have already been bound (by
someone with BINDADD authority) to have existed at all.

GRANT (Package Privileges)

918 SQL Reference

In addition to the BIND privilege, the user must hold the necessary
privileges on each table referenced by static DML statements contained in
the program. This is necessary because authorization on static DML
statements is checked at bind time.

CONTROL
Grants the privilege to rebind, drop, or execute the package, and extend
package privileges to other users. The CONTROL privilege for packages is
automatically granted to creators of packages. A package owner is the
package binder, or the ID specified with the OWNER option at
bind/precompile time.

BIND and EXECUTE are automatically granted to an authorization-name
that is granted CONTROL privilege.

EXECUTE
Grants the privilege to execute the package.

ON PACKAGE package-name
Specifies the name of the package on which privileges are to be granted.

TO
Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of
the user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the privileges to all users.

Rules
v If neither USER nor GROUP is specified, then

– If the authorization-name is defined in the operating system only as
GROUP, then GROUP is assumed.

– If the authorization-name is defined in the operating system only as USER
or if it is undefined, USER is assumed.

– If the authorization-name is defined in the operating system as both, or
DCE authentication is used, an error (SQLSTATE 56092) is raised.

Examples
Example 1: Grant the EXECUTE privilege on PACKAGE CORPDATA.PKGA
to PUBLIC.

GRANT (Package Privileges)

Chapter 6. SQL Statements 919

GRANT EXECUTE
ON PACKAGE CORPDATA.PKGA
TO PUBLIC

Example 2: GRANT EXECUTE privilege on package CORPDATA.PKGA to a
user named EMPLOYEE. There is neither a group nor a user called
EMPLOYEE.

GRANT EXECUTE ON PACKAGE
CORPDATA.PKGA TO EMPLOYEE

or
GRANT EXECUTE ON PACKAGE

CORPDATA.PKGA TO USER EMPLOYEE

GRANT (Package Privileges)

920 SQL Reference

GRANT (Schema Privileges)
This form of the GRANT statement grants privileges on a schema.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v WITH GRANT OPTION for each identified privilege on schema-name

v SYSADM or DBADM authority

Privileges cannot be granted on schema names SYSIBM, SYSCAT, SYSFUN
and SYSSTAT by any user.

Syntax

�� GRANT �

,

ALTERIN
CREATEIN
DROPIN

ON SCHEMA schema-name �

� �

,

TO authorization-name
USER
GROUP

PUBLIC

WITH GRANT OPTION
��

Description

ALTERIN
Grants the privilege to alter or comment on all objects in the schema. The
owner of an explicitly created schema automatically receives ALTERIN
privilege.

CREATEIN
Grants the privilege to create objects in the schema. Other authorities or
privileges required to create the object (such as CREATETAB) are still
required. The owner of an explicitly created schema automatically receives
CREATEIN privilege. An implicitly created schema has CREATEIN
privilege automatically granted to PUBLIC.

GRANT (Schema Privileges)

Chapter 6. SQL Statements 921

DROPIN
Grants the privilege to drop all objects in the schema. The owner of an
explicitly created schema automatically receives DROPIN privilege.

ON SCHEMA schema-name
Identifies the schema on which the privileges are to be granted.

TO
Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of
the user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the privileges to all users.

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the privileges to
others.

If the WITH GRANT OPTION is omitted, the specified authorization-names
can only grant the privileges to others if they:
v have DBADM authority or
v received the ability to grant privileges from some other source.

Rules
v If neither USER nor GROUP is specified, then

– If the authorization-name is defined in the operating system only as
GROUP, then GROUP is assumed.

– If the authorization-name is defined in the operating system only as
USER or if it is undefined, USER is assumed.

– If the authorization-name is defined in the operating system as both, or
DCE authentication is used, an error (SQLSTATE 56092) is raised.

v In general, the GRANT statement will process the granting of privileges
that the authorization ID of the statement is allowed to grant, returning a
warning (SQLSTATE 01007) if one or more privileges was not granted. If no
privileges were granted, an error is returned (SQLSTATE 42501).98

98. If the package used for processing the statement was precompiled with LANGLEVEL set to SQL92E for MIA, a
warning is returned (SQLSTATE 01007) unless the grantor has NO privileges on the object of the grant.

GRANT (Schema Privileges)

922 SQL Reference

Examples
Example 1: Grant USER2 to the ability to create objects in schema
CORPDATA.

GRANT CREATEIN ON SCHEMA CORPDATA TO USER2

Example 2: Grant user BIGGUY the ability to create and drop objects in
schema CORPDATA.

GRANT CREATEIN, DROPIN ON SCHEMA CORPDATA TO BIGGUY

GRANT (Schema Privileges)

Chapter 6. SQL Statements 923

GRANT (Server Privileges)
This form of the GRANT statement grants the privilege to access and use a
specified data source in pass-through mode.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have either SYSADM or DBADM
authority.

Syntax

�� GRANT PASSTHRU ON SERVER server-name TO �

� �

,

authorization-name
USER
GROUP

PUBLIC

��

Description

server-name
Names the data source for which the privilege to use in pass-through
mode is being granted. server-name must identify a data source that is
described in the catalog.

TO
Specifies to whom the privilege is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of
the user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants to all users the privilege to pass through to server-name.

GRANT (Server Privileges)

924 SQL Reference

Examples
Example 1: Give R. Smith and J. Jones the privilege to pass through to data
source SERVALL. Their authorization IDs are RSMITH and JJONES.

GRANT PASSTHRU ON SERVER SERVALL
TO USER RSMITH,
USER JJONES

Example 2: Grant the privilege to pass through to data source EASTWING to
a group whose authorization ID is D024. There is a user whose authorization
ID is also D024.

GRANT PASSTHRU ON SERVER EASTWING TO GROUP D024

The GROUP keyword must be specified; otherwise, an error will occur
because D024 is a user’s ID as well as the specified group’s ID (SQLSTATE
56092). Any member of group D024 will be allowed to pass through to
EASTWING. Therefore, if user D024 belongs to the group, this user will be
able to pass through to EASTWING.

GRANT (Server Privileges)

Chapter 6. SQL Statements 925

GRANT (Table, View, or Nickname Privileges)
This form of the GRANT statement grants privileges on a table, view, or
nickname.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v CONTROL privilege on the referenced table, view, or nickname
v The WITH GRANT OPTION for each identified privilege. If ALL is

specified, the authorization ID must have some grantable privilege on the
identified table, view, or nickname.

v SYSADM or DBADM authority.

To grant the CONTROL privilege, SYSADM or DBADM authority is required.

To grant privileges on catalog tables and views, either SYSADM or DBADM
authority is required.

Syntax

�� GRANT

�

�

�

PRIVILEGES
ALL

,

ALTER
CONTROL
DELETE
INDEX
INSERT
REFERENCES

,

(column-name)
SELECT
UPDATE

,

(column-name)

�

GRANT (Table, View or Nickname Privileges)

926 SQL Reference

�
TABLE

ON table-name
(1)

view-name
(2)

nickname

�

,

TO authorization-name
USER
GROUP

PUBLIC

�

�
WITH GRANT OPTION

��

Notes:

1 ALTER, INDEX, and REFERENCES privileges are not applicable to
views.

2 DELETE, INSERT, SELECT, and UPDATE privileges are not applicable
to nicknames.

Description

ALL or ALL PRIVILEGES
Grants all the appropriate privileges, except CONTROL, on the base table,
view, or nickname named in the ON clause.

If the authorization ID of the statement has CONTROL privilege on the
table, view, or nickname, or DBADM or SYSADM authority, then all the
privileges applicable to the object (except CONTROL) are granted.
Otherwise, the privileges granted are all those grantable privileges that
the authorization ID of the statement has on the identified table, view, or
nickname.

If ALL is not specified, one or more of the keywords in the list of
privileges must be specified.

ALTER
Grants the privilege to:
v Add columns to a base table definition.
v Create or drop a primary key or unique constraint on a base table. For

more information on the authorization required to create or drop a
primary key or a unique constraint, see “ALTER TABLE” on page 477.

v Create or drop a foreign key on a base table.
The REFERENCES privilege on each column of the parent table is also
required.

v Create or drop a check constraint on a base table.
v Create a trigger on a base table.
v Add, reset, or drop a column option for a nickname.
v Change a nickname column name or data type.

GRANT (Table, View or Nickname Privileges)

Chapter 6. SQL Statements 927

v Add or change a comment on a base table, a view, or a nickname.

CONTROL
Grants:
v All of the appropriate privileges in the list, that is:

– ALTER, CONTROL, DELETE, INSERT, INDEX, REFERENCES,
SELECT, and UPDATE to base tables

– CONTROL, DELETE, INSERT, SELECT, and UPDATE to views
– ALTER, CONTROL, INDEX, and REFERENCES to nicknames

v The ability to grant the above privileges (except for CONTROL) to
others.

v The ability to drop the base table, view, or nickname.
This ability cannot be extended to others on the basis of holding
CONTROL privilege. The only way that it can be extended is by
granting the CONTROL privilege itself and that can only be done by
someone with SYSADM or DBADM authority.

v The ability to execute the RUNSTATS utility on the table and indexes.
See the Command Reference for information on RUNSTATS.

v The ability to issue SET INTEGRITY statement on the base table or
summary table.

The definer of a base table, summary table, or nickname automatically
receives the CONTROL privilege.

The definer of a view automatically receives the CONTROL privilege if
the definer holds the CONTROL privilege on all tables, views, and
nicknames identified in the fullselect.

DELETE
Grants the privilege to delete rows from the table or updatable view.

INDEX
Grants the privilege to create an index on a table, or an index specification
on a nickname. The creator of an index or index specification
automatically has the CONTROL privilege on the index or index
specification (authorizing the creator to drop the index or index
specification). In addition, the creator retains the CONTROL privilege
even if the INDEX privilege is revoked.

INSERT
Grants the privilege to insert rows into the table or updatable view and to
run the IMPORT utility.

REFERENCES
Grants the privilege to create and drop a foreign key referencing the table
as the parent.

GRANT (Table, View or Nickname Privileges)

928 SQL Reference

If the authorization ID of the statement has one of:
v DBADM or SYSADM authority
v CONTROL privilege on the table
v REFERENCES WITH GRANT OPTION on the table

then the grantee(s) can create referential constraints using all columns of
the table as parent key, even those added later using the ALTER TABLE
statement. Otherwise, the privileges granted are all those grantable
column REFERENCES privileges that the authorization ID of the
statement has on the identified table. For more information on the
authorization required to create or drop a foreign key, see “ALTER
TABLE” on page 477.

The privilege can be granted on a nickname although foreign keys cannot
be defined to reference nicknames.

REFERENCES (column-name,...)
Grants the privilege to create and drop a foreign key using only those
columns specified in the column list as a parent key. Each column-name
must be an unqualified name that identifies a column of the table
identified in the ON clause. Column level REFERENCES privilege cannot
be granted on typed tables, typed views, or nicknames (SQLSTATE 42997).

SELECT
Grants the privilege to:
v Retrieve rows from the table or view.
v Create views on the table.
v Run the EXPORT utility against the table or view. See the Command

Reference for information on EXPORT.

UPDATE
Grants the privilege to use the UPDATE statement on the table or
updatable view identified in the ON clause.

If the authorization ID of the statement has one of:
v DBADM or SYSADM authority
v CONTROL privilege on the table or view
v UPDATE WITH GRANT OPTION on the table or view

then the grantee(s) can update all updatable columns of the table or view
on which the grantor has with grant privilege as well as those columns
added later using the ALTER TABLE statement. Otherwise, the privileges
granted are all those grantable column UPDATE privileges that the
authorization ID of the statement has on the identified table or view.

UPDATE (column-name,...)
Grants the privilege to use the UPDATE statement to update only those

GRANT (Table, View or Nickname Privileges)

Chapter 6. SQL Statements 929

columns specified in the column list. Each column-name must be an
unqualified name that identifies a column of the table or view identified
in the ON clause. Column level UPDATE privilege cannot be granted on
typed tables, typed views, or nicknames (SQLSTATE 42997).

ON TABLE table-name or view-name or nickname
Specifies the table, view, or nickname on which privileges are to be
granted.

No privileges may be granted on an inoperative view or an inoperative
summary table (SQLSTATE 51024). No privileges may be granted on a
declared temporary table (SQLSTATE 42995).

TO
Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.99

A privilege granted to a group is not used for authorization checking
on static DML statements in a package. Nor is it used when checking
authorization on a base table while processing a CREATE VIEW
statement.

In DB2 Universal Database, table privileges granted to groups only
apply to statements that are dynamically prepared. For example, if the
INSERT privilege on the PROJECT table has been granted to group
D204 but not UBIQUITY (a member of D204) UBIQUITY could issue
the statement:

EXEC SQL EXECUTE IMMEDIATE :INSERT_STRING;

where the content of the string is:
INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)
VALUES ('AD3114', 'TOOL PROGRAMMING', 'D21', '000260');

but could not precompile or bind a program with the statement:
EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)
VALUES ('AD3114', 'TOOL PROGRAMMING', 'D21', '000260');

99. Restrictions in previous versions on grants to authorization ID of the user issuing the statement have been
removed.

GRANT (Table, View or Nickname Privileges)

930 SQL Reference

PUBLIC
Grants the privileges to all users.100

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the privileges to
others.

If the specified privileges include CONTROL, the WITH GRANT OPTION
applies to all the applicable privileges except for CONTROL (SQLSTATE
01516).

Rules
v If neither USER nor GROUP is specified, then

– If the authorization-name is defined in the operating system only as
GROUP, then GROUP is assumed.

– If the authorization-name is defined in the operating system only as USER
or if it is undefined, USER is assumed.

– If the authorization-name is defined in the operating system as both, or
DCE authentication is used, an error (SQLSTATE 56092) is raised.

v In general, the GRANT statement will process the granting of privileges
that the authorization ID of the statement is allowed to grant, returning a
warning (SQLSTATE 01007) if one or more privileges was not granted. If no
privileges were granted, an error is returned (SQLSTATE 42501).101 If
CONTROL privilege is specified, privileges will only be granted if the
authorization ID of the statement has SYSADM or DBADM authority
(SQLSTATE 42501).

Notes
v Privileges may be granted independently at every level of a table hierarchy.

A user with a privilege on a supertable may affect the subtables. For
example, an update specifying the supertable T may show up as a change
to a row in the subtable S of T done by a user with UPDATE privilege on T
but without UPDATE privilege on S. A user can only operate directly on
the subtable if the necessary privilege is held on the subtable.

v Granting nickname privileges has no effect on data source object (table or
view) privileges. Typically, data source privileges are required for the table
or view that a nickname references when attempting to retrieve data.

v DELETE, INSERT, SELECT, and UPDATE privileges are not defined for
nicknames since operations on nicknames depend on the privileges of the
authorization ID used at the data source when the statement referencing the
nickname is processed.

100. Restrictions in previous versions on the use of privileges granted to PUBLIC for static SQL statements and
CREATE VIEW statements have been removed.

101. If the package used for processing the statement was precompiled with LANGLEVEL set to SQL92E or MIA, a
warning is returned (SQLSTATE 01007) unless the grantor has NO privileges on the object of the grant.

GRANT (Table, View or Nickname Privileges)

Chapter 6. SQL Statements 931

Examples
Example 1: Grant all privileges on the table WESTERN_CR to PUBLIC.

GRANT ALL ON WESTERN_CR
TO PUBLIC

Example 2: Grant the appropriate privileges on the CALENDAR table so that
users PHIL and CLAIRE can read it and insert new entries into it. Do not
allow them to change or remove any existing entries.

GRANT SELECT, INSERT ON CALENDAR
TO USER PHIL, USER CLAIRE

Example 3: Grant all privileges on the COUNCIL table to user FRANK and
the ability to extend all privileges to others.

GRANT ALL ON COUNCIL
TO USER FRANK WITH GRANT OPTION

Example 4: GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a
user named JOHN. There is a user called JOHN and no group called JOHN.

GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or
GRANT SELECT

ON CORPDATA.EMPLOYEE TO USER JOHN

Example 5: GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a
group named JOHN. There is a group called JOHN and no user called JOHN.

GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or
GRANT SELECT ON CORPDATA.EMPLOYEE TO GROUP JOHN

Example 6: GRANT INSERT and SELECT on table T1 to both a group named
D024 and a user named D024.

GRANT INSERT, SELECT ON TABLE T1
TO GROUP D024, USER D024

In this case, both the members of the D024 group and the user D024 would be
allowed to INSERT into and SELECT from the table T1. Also, there would be
two rows added to the SYSCAT.TABAUTH catalog view.

Example 7: GRANT INSERT, SELECT, and CONTROL on the CALENDAR
table to user FRANK. FRANK must be able to pass the privileges on to
others.

GRANT CONTROL ON TABLE CALENDAR
TO FRANK WITH GRANT OPTION

GRANT (Table, View or Nickname Privileges)

932 SQL Reference

The result of this statement is a warning (SQLSTATE 01516) that CONTROL
was not given the WITH GRANT OPTION. Frank now has the ability to grant
any privilege on CALENDAR including INSERT and SELECT as required.
FRANK cannot grant CONTROL on CALENDAR to other users unless he has
SYSADM or DBADM authority.

Example 8: User JON created a nickname for an Oracle table that had no
index. The nickname is ORAREM1. Later, the Oracle DBA defined an index
for this table. User SHAWN now wants DB2 to know that this index exists, so
that the optimizer can devise strategies to access the table more efficiently.
SHAWN can inform DB2 of the index by creating an index specification for
ORAREM1. Give SHAWN the index privilege on this nickname, so that he
can create the index specification.

GRANT INDEX ON NICKNAME ORAREM1
TO USER SHAWN

GRANT (Table, View or Nickname Privileges)

Chapter 6. SQL Statements 933

GRANT (Table Space Privileges)
This form of the GRANT statement grants privileges on a table space.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v WITH GRANT OPTION for use of the table space
v SYSADM, SYSCTRL, or DBADM authority

Syntax

�� GRANT USE OF TABLESPACE tablespace-name TO �

� �

,

authorization-name
USER
GROUP

PUBLIC

WITH GRANT OPTION
��

Description

USE
Grants the privilege to specify or default to the table space when creating
a table. The creator of a table space automatically receives USE privilege
with grant option.

OF TABLESPACE tablespace-name
Identifies the table space on which the USE privilege is to be granted. The
table space cannot be SYSCATSPACE (SQLSTATE 42838) or a system
temporary table space (SQLSTATE 42809).

TO
Specifies to whom the USE privilege is granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

GRANT (Table Space Privileges)

934 SQL Reference

authorization-name
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of
the user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the USE privilege to all users.

WITH GRANT OPTION
Allows the specified authorization-name to GRANT the USE privilege to
others.

If the WITH GRANT OPTION is omitted, the specified authorization-name
can only GRANT the USE privilege to others if they:
v have SYSADM or DBADM authority or
v received the ability to GRANT the USE privilege from some other

source.

Notes
If neither USER nor GROUP is specified, then
v If the authorization-name is defined in the operating system only as GROUP,

then GROUP is assumed.
v If the authorization-name is defined in the operating system only as USER, or

if it is undefined, then USER is assumed.
v If the authorization-name is defined in the operating system as both, or DCE

authentication is used, an error is returned (SQLSTATE 56092).

Examples
Example 1: Grant user BOBBY the ability to create tables in table space
PLANS and to grant this privilege to others.

GRANT USE OF TABLESPACE PLANS TO BOBBY WITH GRANT OPTION

GRANT (Table Space Privileges)

Chapter 6. SQL Statements 935

INCLUDE
The INCLUDE statement inserts declarations into a source program.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

Authorization
None required.

Syntax

�� INCLUDE SQLCA
SQLDA
name

��

Description

SQLCA
Indicates the description of an SQL communication area (SQLCA) is to be
included. For a description of the SQLCA, see “Appendix B. SQL
Communications (SQLCA)” on page 1107.

SQLDA
Indicates the description of an SQL descriptor area (SQLDA) is to be
included. For a description of the SQLDA, see “Appendix C. SQL
Descriptor Area (SQLDA)” on page 1113.

name
Identifies an external file containing text that is to be included in the
source program being precompiled. It may be an SQL identifier without a
filename extension or a literal in single quotes (' '). An SQL identifier
assumes the filename extension of the source file being precompiled. If a
filename extension is not provided by a literal in quotes then none is
assumed.

For host language specific information, see the Application Development
Guide.

Notes
v When a program is precompiled, the INCLUDE statement is replaced by

source statements. Thus, the INCLUDE statement should be specified at a
point in the program such that the resulting source statements are
acceptable to the compiler.

v The external source file must be written in the host language specified by
the name. If it is greater than 18 characters or contains characters not
allowed in an SQL identifier then it must be in single quotes. INCLUDE
name statements may be nested though not cyclical (for example, if A and B

INCLUDE

936 SQL Reference

are modules and A contains an INCLUDE name statement, then it is not
valid for A to call B and then B to call A).

v When the LANGLEVEL precompile option is specified with the SQL92E
value, INCLUDE SQLCA should not be specified. SQLSTATE and
SQLCODE variables may be defined within the host variable declare
section.

Example
Include an SQLCA in a C program.

EXEC SQL INCLUDE SQLCA;

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT

WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN C1;

while (SQLCODE==0) {
EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

(Print results)

}

EXEC SQL CLOSE C1;

INCLUDE

Chapter 6. SQL Statements 937

INSERT
The INSERT statement inserts rows into a table or view. Inserting a row into a
view also inserts the row into the table on which the view is based.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization
To execute this statement, the privileges held by the authorization ID of the
statement must include at least one of the following:
v INSERT privilege on the table or view where rows are to be inserted
v CONTROL privilege on the table or view where rows are to be inserted
v SYSADM or DBADM authority.

In addition, for each table or view referenced in any fullselect used in the
INSERT statement, the privileges held by the authorization ID of the
statement must include at least one of the following:
v SELECT privilege
v CONTROL privilege
v SYSADM or DBADM authority.

GROUP privileges are not checked for static INSERT statements.

Syntax

�� INSERT INTO table-name
view-name

�

,

(column-name)

�

INSERT

938 SQL Reference

� �

�

�

,

VALUES expression
NULL
DEFAULT

,

(expression)
NULL
DEFAULT

fullselect
,

WITH common-table-expression

��

Note: See “Chapter 5. Queries” on page 393 for the syntax of
common-table-expression and fullselect.

Description

INTO table-name or view-name
Identifies the object of the insert operation. The name must identify a
table or view that exists at the application server, but it must not identify
a catalog table, a summary table, a view of a catalog table, or a read-only
view.

A value cannot be inserted into a view column that is derived from:
v A constant, expression, or scalar function
v The same base table column as some other column of the view
v A column derived from a nickname.

If the object of the insert operation is a view with such columns, a list of
column names must be specified, and the list must not identify these
columns.

(column-name,...)
Specifies the columns for which insert values are provided. Each name
must be an unqualified name that identifies a column of the table or view.
The same column must not be identified more than once. A view column
that cannot accept insert values must not be identified.

Omission of the column list is an implicit specification of a list in which
every column of the table or view is identified in left-to-right order. This
list is established when the statement is prepared and therefore does not
include columns that were added to a table after the statement was
prepared.

INSERT

Chapter 6. SQL Statements 939

The implicit column list is established at prepare time. Hence an INSERT
statement embedded in an application program does not use any columns
that might have been added to the table or view after prepare time.

VALUES
Introduces one or more rows of values to be inserted.

Each host variable named must be described in the program in accordance
with the rules for declaring host variables.

The number of values for each row must equal the number of names in
the column list. The first value is inserted in the first column in the list,
the second value in the second column, and so on.

expression
An expression can be as defined in “Expressions” on page 157.

NULL
Specifies the null value and should only be specified for nullable
columns.

DEFAULT
Specifies that the default value is to be used. The result of specifying
DEFAULT depends on how the column was defined, as follows:
v If the column was defined as a generated column based on an

expression, the column value is generated by the system, based on
that expression.

v If the IDENTITY clause is used, the value is generated by the
database manager.

v If the WITH DEFAULT clause is used, the value inserted is as
defined for the column (see default-clause in “CREATE TABLE” on
page 712).

v If the WITH DEFAULT clause, GENERATED clause, and the NOT
NULL clause are not used, the value inserted is NULL.

v If the NOT NULL clause is used and the GENERATED clause is not
used, or the WITH DEFAULT clause is not used or DEFAULT
NULL is used, the DEFAULT keyword cannot be specified for that
column (SQLSTATE 23502).

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows.
See “common-table-expression” on page 440 for an explanation of the
common-table-expression.

fullselect
Specifies a set of new rows in the form of the result table of a fullselect.
There may be one, more than one, or none. If the result table is empty,
SQLCODE is set to +100 and SQLSTATE is set to '02000'.

INSERT

940 SQL Reference

When the base object of the INSERT and the base object of the fullselect
or any subquery of the fullselect, are the same table, the fullselect is
completely evaluated before any rows are inserted.

The number of columns in the result table must equal the number of
names in the column list. The value of the first column of the result is
inserted in the first column in the list, the second value in the second
column, and so on.

Rules
v Default values: The value inserted in any column that is not in the column

list is either the default value of the column or null. Columns that do not
allow null values and are not defined with NOT NULL WITH DEFAULT
must be included in the column list. Similarly, if you insert into a view, the
value inserted into any column of the base table that is not in the view is
either the default value of the column or null. Hence, all columns of the
base table that are not in the view must have either a default value or allow
null values. The only value that can be inserted into a generated column
defined with the GENERATED ALWAYS clause is DEFAULT (SQLSTATE
428C9).

v Length: If the insert value of a column is a number, the column must be a
numeric column with the capacity to represent the integral part of the
number. If the insert value of a column is a string, the column must either
be a string column with a length attribute at least as great as the length of
the string, or a datetime column if the string represents a date, time, or
timestamp.

v Assignment: Insert values are assigned to columns in accordance with the
assignment rules described in Chapter 3.

v Validity: If the table named, or the base table of the view named, has one
or more unique indexes, each row inserted into the table must conform to
the constraints imposed by those indexes. If a view whose definition
includes WITH CHECK OPTION is named, each row inserted into the view
must conform to the definition of the view. For an explanation of the rules
governing this situation, see “CREATE VIEW” on page 823.

v Referential Integrity: For each constraint defined on a table, each non-null
insert value of the foreign key must be equal to a primary key value of the
parent table.

v Check Constraint: Insert values must satisfy the check conditions of the
check constraints defined on the table. An INSERT to a table with check
constraints defined has the constraint conditions evaluated once for each
row that is inserted.

v Triggers: Insert statements may cause triggers to be executed. A trigger may
cause other statements to be executed or may raise error conditions based
on the insert values.

INSERT

Chapter 6. SQL Statements 941

v Datalinks: Insert statements that include DATALINK values will result in
an attempt to link the file if a URL value is included (not empty string or
blanks) and the column is defined with FILE LINK CONTROL. Errors in
the DATALINK value or in linking the file will cause the insert to fail
(SQLSTATE 428D1 or 57050).

Notes
v After execution of an INSERT statement that is embedded within a

program, the value of the third variable of the SQLERRD(3) portion of the
SQLCA indicates the number of rows that were inserted. SQLERRD(5)
contains the count of all triggered insert, update and delete operations.

v Unless appropriate locks already exist, one or more exclusive locks are
acquired at the execution of a successful INSERT statement. Until the locks
are released, an inserted row can only be accessed by:
– The application process that performed the insert.
– Another application process using isolation level UR through a read-only

cursor, SELECT INTO statement, or subselect used in a subquery.
v For further information about locking, see the description of the COMMIT,

ROLLBACK, and LOCK TABLE statements.
v If an application is running against a partitioned database, and it is bound

with option INSERT BUF, then INSERT with VALUES statements which are
not processed using EXECUTE IMMEDIATE may be buffered. DB2 assumes
that such an INSERT statement is being processed inside a loop in the
application’s logic. Rather than execute the statement to completion, it
attempts to buffer the new row values in one or more buffers. As a result
the actual insertions of the rows into the table are performed later,
asynchronous with the application’s INSERT logic. Be aware that this
asynchronous insertion may cause an error related to an INSERT to be
returned on some other SQL statement that follows the INSERT in the
application.
This has the potential to dramatically improve INSERT performance, but is
best used with clean data, due to the asynchronous nature of the error
handling. See buffered insert in the Application Development Guide for further
details.

v When a row is inserted into a table that has an identity column, DB2
generates a value for the identity column.
– For a GENERATED ALWAYS identity column, DB2 always generates the

value.
– For a GENERATED BY DEFAULT column, if a value is not explicitly

specified (with a VALUES clause, or subselect), DB2 generates a value.

The first value generated by DB2 is the value of the START WITH
specification for the identity column.

INSERT

942 SQL Reference

v When a value is inserted for a user-defined distinct type identity column,
the entire computation is done in the source type, and the result is cast to
the distinct type before the value is actually assigned to the column.102

v When inserting into a GENERATED ALWAYS identity column, DB2 will
always generate a value for the column, and users must not specify a value
at insertion time. If a GENERATED ALWAYS identity column is listed in
the column-list of the INSERT statement, with a non-DEFAULT value in the
VALUES clause, an error occurs (SQLSTATE 428C9).
For example, assuming that EMPID is defined as an identity column that is
GENERATED ALWAYS, then the command:

INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)
VALUES (:hv_valid_emp_id, :hv_name, :hv_addr)

will result in an error.
v When inserting into a GENERATED BY DEFAULT column, DB2 will allow

an actual value for the column to be specified within the VALUES clause, or
from a subselect. However, when a value is specified in the VALUES clause,
DB2 does not perform any verification of the value. In order to guarantee
uniqueness of the values, a unique index on the identity column must be
created.
When inserting into a table with a GENERATED BY DEFAULT identity
column, without specifying a column list, the VALUES clause can specify
the DEFAULT keyword to represent the value for the identity column. DB2
will generate the value for the identity column.

INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)
VALUES (DEFAULT, :hv_name, :hv_addr)

In this example, EMPID is defined as an identity column, and thus the
value inserted into this column is generated by DB2.

v The rules for inserting into an identity column with a subselect are similar
to those for an insert with a VALUES clause. A value for an identity column
may only be specified if the identity column is defined as GENERATED BY
DEFAULT.
For example, assume T1 and T2 are tables with the same definition, both
containing columns intcol1 and identcol2 (both are type INTEGER and the
second column has the identity attribute). Consider the following insert:

INSERT INTO T2
SELECT *
FROM T1

This example is logically equivalent to:

102. There is no casting of the previous value to the source type prior to the computation.

INSERT

Chapter 6. SQL Statements 943

INSERT INTO T2 (intcol1,identcol2)
SELECT intcol1, identcol2
FROM T1

In both cases, the INSERT statement is providing an explicit value for the
identity column of T2. This explicit specification can be given a value for
the identity column, but the identity column in T2 must be defined as
GENERATED BY DEFAULT. Otherwise, an error will result (SQLSTATE
428C9).

If there is a table with a column defined as a GENERATED ALWAYS
identity, it is still possible to propagate all other columns from a table with
the same definition. For example, given the example tables T1 and T2
described above, the intcol1 values from T1 to T2 can be propagated with
the following SQL:

INSERT INTO T2 (intcol1)
SELECT intcol1
FROM T1

Note that, because identcol2 is not specified in the column-list, it will be
filled in with its default (generated) value.

v When inserting a row into a single column table where the column is
defined as a GENERATED ALWAYS identity column, it is possible to
specify a VALUES clause with the DEFAULT keyword. In this case, the
application does not provide any value for the table, and DB2 generates the
value for the identity column.

INSERT INTO IDTABLE
VALUES(DEFAULT)

Assuming the same single column table for which the column has the
identity attribute, to insert multiple rows with a single INSERT statement,
the following INSERT statement could be used:

INSERT INTO IDTABLE
VALUES (DEFAULT), (DEFAULT), (DEFAULT), (DEFAULT)

v When DB2 generates a value for an identity column, that generated value is
consumed; the next time that a value is needed, DB2 will generate a new
value. This is true even when an INSERT statement involving an identity
column fails or is rolled back.
For example, assume that a unique index has been created on the identity
column. If a duplicate key violation is detected in generating a value for an
identity column, an error occurs (SQLSTATE 23505) and the value
generated for the identity column is considered to be consumed. This can
occur when the identity column is defined as GENERATED BY DEFAULT
and the system tries to generate a new value, but the user has explicitly
specified values for the identity column in previous INSERT statements.
Reissuing the same INSERT statement in this case can lead to success. DB2

INSERT

944 SQL Reference

will generate the next value for the identity column, and it is possible that
this next value will be unique, and that this INSERT statement will be
successful.

v If the maximum value for the identity column is exceeded (or minimum
value for a descending sequence) in generating a value for an identity
column, an error occurs (SQLSTATE 23522). In this situation, the user
would have to DROP and CREATE a new table with an identity column
having a larger range (that is, change the data type or increment value for
the column to allow for a larger range of values).
For example, an identity column may have been defined with a data type
of SMALLINT, and eventually the column runs out of assignable values. To
redefine the identity column as INTEGER, the data would need to be
unloaded, the table would have to be dropped and recreated with a new
definition for the column, and then the data would be reloaded. When the
table is redefined, it needs to specify a START WITH value for the identity
column such that the next value generated by DB2 will be the next value in
the original sequence. To determine the end value, issue a query using
MAX of the identity column (for an ascending sequence), or MIN of the
identity column (for a descending sequence), before unloading the data.

Examples
Example 1: Insert a new department with the following specifications into the
DEPARTMENT table:
v Department number (DEPTNO) is ‘E31’
v Department name (DEPTNAME) is ‘ARCHITECTURE’
v Managed by (MGRNO) a person with number ‘00390’
v Reports to (ADMRDEPT) department ‘E01’.

INSERT INTO DEPARTMENT
VALUES ('E31', 'ARCHITECTURE', '00390', 'E01')

Example 2: Insert a new department into the DEPARTMENT table as in
example 1, but do not assign a manager to the new department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
VALUES ('E31', 'ARCHITECTURE', 'E01')

Example 3: Insert two new departments using one statement into the
DEPARTMENT table as in example 2, but do not assign a manager to the new
department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
VALUES ('B11', 'PURCHASING', 'B01'),

('E41', 'DATABASE ADMINISTRATION', 'E01')

Example 4: Create a temporary table MA_EMP_ACT with the same columns
as the EMP_ACT table. Load MA_EMP_ACT with the rows from the
EMP_ACT table with a project number (PROJNO) starting with the letters
‘MA’.

INSERT

Chapter 6. SQL Statements 945

CREATE TABLE MA_EMP_ACT
(EMPNO CHAR(6) NOT NULL,

PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DEC(5,2),
EMSTDATE DATE,
EMENDATE DATE)

INSERT INTO MA_EMP_ACT
SELECT * FROM EMP_ACT

WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Example 5: Use a C program statement to add a skeleton project to the
PROJECT table. Obtain the project number (PROJNO), project name
(PROJNAME), department number (DEPTNO), and responsible employee
(RESPEMP) from host variables. Use the current date as the project start date
(PRSTDATE). Assign a NULL value to the remaining columns in the table.
EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)

VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE);

INSERT

946 SQL Reference

LOCK TABLE
The LOCK TABLE statement either prevents concurrent application processes
from changing a table or prevents concurrent application processes from using
a table.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SELECT privilege on the table
v CONTROL privilege on the table
v SYSADM or DBADM authority.

Syntax

�� LOCK TABLE table-name IN SHARE
EXCLUSIVE

MODE ��

Description

table-name
Identifies the table. The table-name must identify a table that exists at the
application server, but it must not identify a catalog table. It cannot be a
nickname (SQLSTATE 42809) or a declared temporary table (SQLSTATE
42995). If the table-name is a typed table, it must be the root table of the
table hierarchy (SQLSTATE 428DR).

IN SHARE MODE
Prevents concurrent application processes from executing any but
read-only operations on the table.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations
on the table. Note that EXCLUSIVE MODE does not prevent concurrent
application processes that are running at isolation level Uncommitted
Read (UR) from executing read-only operations on the table.

Notes
v Locking is used to prevent concurrent operations. A lock is not necessarily

acquired during the execution of the LOCK TABLE statement if a suitable
lock already exists. The lock that prevents concurrent operations is held at
least until the termination of the unit of work.

LOCK TABLE

Chapter 6. SQL Statements 947

v In a partitioned database, a table lock is first acquired at the first partition
in the nodegroup (the partition with the lowest number) and then at other
partitions. If the LOCK TABLE statement is interrupted, the table may be
locked on some partitions but not on others. If this occurs, either issue
another LOCK TABLE statement to complete the locking on all partitions,
or issue a COMMIT or ROLLBACK statement to release the current locks.

v This statement affects all partitions in the nodegroup.

Example
Obtain a lock on the table EMP. Do not allow other programs either to read or
update the table.

LOCK TABLE EMP IN EXCLUSIVE MODE

LOCK TABLE

948 SQL Reference

OPEN
The OPEN statement opens a cursor so that it can be used to fetch rows from
its result table.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded
within an application program. It is an executable statement that cannot be
dynamically prepared.

Authorization
See “DECLARE CURSOR” on page 841 for the authorization required to use a
cursor.

Syntax

�� OPEN cursor-name

�

,

USING host-variable
USING DESCRIPTOR descriptor-name

��

Description

cursor-name
Names a cursor that is defined in a DECLARE CURSOR statement that
was stated earlier in the program. When the OPEN statement is executed,
the cursor must be in the closed state.

The DECLARE CURSOR statement must identify a SELECT statement, in
one of the following ways:
v Including the SELECT statement in the DECLARE CURSOR statement
v Including a statement-name that names a prepared SELECT statement.

The result table of the cursor is derived by evaluating that SELECT
statement, using the current values of any host variables specified in it or
in the USING clause of the OPEN statement. The rows of the result table
may be derived during the execution of the OPEN statement and a
temporary table may be created to hold them; or they may be derived
during the execution of subsequent FETCH statements. In either case, the
cursor is placed in the open state and positioned before the first row of its
result table. If the table is empty the state of the cursor is effectively “after
the last row”.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) of a prepared statement. (For an
explanation of parameter markers, see “PREPARE” on page 954.) If the

OPEN

Chapter 6. SQL Statements 949

DECLARE CURSOR statement names a prepared statement that includes
parameter markers, USING must be used. If the prepared statement does
not include parameter markers, USING is ignored.

host-variable
Identifies a variable described in the program in accordance with the
rules for declaring host variables. The number of variables must be
the same as the number of parameter markers in the prepared
statement. The nth variable corresponds to the nth parameter marker
in the prepared statement. Where appropriate, locator variables and
file reference variables can be provided as the source of values for
parameter markers.

DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host
variables.

Before the OPEN statement is processed, the user must set the
following fields in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in

the SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for

the SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR
occurrences. Therefore, the value in SQLDABC must be greater than
or equal to 16 + SQLN*(N), where N is the length of an SQLVAR
occurrence.

If LOB result columns need to be accommodated, there must be two
SQLVAR entries for every select-list item (or column of the result
table). See “Effect of DESCRIBE on the SQLDA” on page 1120, which
discusses SQLDOUBLED and LOB columns.

SQLD must be set to a value greater than or equal to zero and less
than or equal to SQLN. For more information, see “Appendix C. SQL
Descriptor Area (SQLDA)” on page 1113.

Rules
v When the SELECT statement of the cursor is evaluated, each parameter

marker in the statement is effectively replaced by its corresponding host
variable. For a typed parameter marker, the attributes of the target variable
are those specified by the CAST specification. For an untyped parameter

OPEN

950 SQL Reference

marker, the attributes of the target variable are determined according to the
context of the parameter marker. See “Rules” on page 955 for the rules
affecting parameter markers.

v Let V denote a host variable that corresponds to parameter marker P. The
value of V is assigned to the target variable for P in accordance with the
rules for assigning a value to a column. Thus:
– V must be compatible with the target.
– If V is a string, its length must not be greater than the length attribute of

the target.
– If V is a number, the absolute value of its integral part must not be

greater than the maximum absolute value of the integral part of the
target.

– If the attributes of V are not identical to the attributes of the target, the
value is converted to conform to the attributes of the target.

When the SELECT statement of the cursor is evaluated, the value used in
place of P is the value of the target variable for P. For example, if V is
CHAR(6), and the target is CHAR(8), the value used in place of P is the
value of V padded with two blanks.

v The USING clause is intended for a prepared SELECT statement that
contains parameter markers. However, it can also be used when the
SELECT statement of the cursor is part of the DECLARE CURSOR
statement. In this case the OPEN statement is executed as if each host
variable in the SELECT statement were a parameter marker, except that the
attributes of the target variables are the same as the attributes of the host
variables in the SELECT statement. The effect is to override the values of
the host variables in the SELECT statement of the cursor with the values of
the host variables specified in the USING clause.

Notes
v Closed state of cursors: All cursors in a program are in the closed state

when the program is initiated and when it initiates a ROLLBACK
statement.
All cursors, except open cursors declared WITH HOLD, are in a closed
state when a program issues a COMMIT statement.
A cursor can also be in the closed state because a CLOSE statement was
executed or an error was detected that made the position of the cursor
unpredictable.

v To retrieve rows from the result table of a cursor, execute a FETCH
statement when the cursor is open. The only way to change the state of a
cursor from closed to open is to execute an OPEN statement.

v Effect of temporary tables: In some cases, the result table of a cursor is
derived during the execution of FETCH statements. In other cases, the
temporary table method is used instead. With this method the entire result

OPEN

Chapter 6. SQL Statements 951

table is transferred to a temporary table during the execution of the OPEN
statement. When a temporary table is used, the results of a program can
differ in these two ways:
– An error can occur during OPEN that would otherwise not occur until

some later FETCH statement.
– INSERT, UPDATE, and DELETE statements executed in the same

transaction while the cursor is open cannot affect the result table.

Conversely, if a temporary table is not used, INSERT, UPDATE, and
DELETE statements executed while the cursor is open can affect the result
table if issued from the same unit of work. The Application Development
Guide describes how locking can be used to control the effect of INSERT,
UPDATE, and DELETE operations executed by concurrent units of work.
Your result table can also be affected by operations executed by your own
unit of work, and the effect of such operations is not always predictable.
For example, if cursor C is positioned on a row of its result table defined as
SELECT * FROM T, and a new row is inserted into T, the effect of that
insert on the result table is not predictable because its rows are not ordered.
Thus a subsequent FETCH C may or may not retrieve the new row of T.

v Statement caching affects cursors declared open by the OPEN statement.
See the “Notes” on page 896 for information.

Examples
Example 1: Write the embedded statements in a COBOL program that will:
1. Define a cursor C1 that is to be used to retrieve all rows from the

DEPARTMENT table for departments that are administered by
(ADMRDEPT) department ‘A00’.

2. Place the cursor C1 before the first row to be fetched.
EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPARTMENT
WHERE ADMRDEPT = 'A00'

END-EXEC.

EXEC SQL OPEN C1
END-EXEC.

Example 2: Code an OPEN statement to associate a cursor DYN_CURSOR
with a dynamically defined select-statement in a C program. Assuming two
parameter markers are used in the predicate of the select-statement, two host
variable references are supplied with the OPEN statement to pass integer and
varchar(64) values between the application and the database. (The related host
variable definitions, PREPARE statement, and DECLARE CURSOR statement
are also shown in the example below.)

OPEN

952 SQL Reference

EXEC SQL BEGIN DECLARE SECTION;
static short hv_int;
char hv_vchar64[64];
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING :hv_int, :hv_vchar64;

Example 3: Code an OPEN statement as in example 2, but in this case the
number and data types of the parameter markers in the WHERE clause are
not known.

EXEC SQL BEGIN DECLARE SECTION;
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :sqlda;

OPEN

Chapter 6. SQL Statements 953

PREPARE
The PREPARE statement is used by application programs to dynamically
prepare an SQL statement for execution. The PREPARE statement creates an
executable SQL statement, called a prepared statement, from a character string
form of the statement, called a statement string.

Invocation
This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
For statements where authorization checking is performed at statement
preparation time (DML), the privileges held by the authorization ID of the
statement must include those required to execute the SQL statement specified
by the PREPARE statement. For statements where authorization checking is
performed at statement execution (DDL, GRANT, and REVOKE statements),
no authorization is required to use the statement; however, the authorization
is checked when the prepared statement is executed.

Syntax

�� PREPARE statement-name
INTO descriptor-name

FROM host-variable ��

Description

statement-name
Names the prepared statement. If the name identifies an existing prepared
statement, that previously prepared statement is destroyed. The name
must not identify a prepared statement that is the SELECT statement of
an open cursor.

INTO
If INTO is used, and the PREPARE statement is successfully executed,
information about the prepared statement is placed in the SQLDA
specified by the descriptor-name.

descriptor-name
Is the name of an SQLDA.103

FROM
Introduces the statement string. The statement string is the value of the
specified host variable.

host-variable
Must identify a host variable that is described in the program in

103. The DESCRIBE statement may be used as an alternative to this clause. See “DESCRIBE” on page 860.

PREPARE

954 SQL Reference

accordance with the rules for declaring character string variables. It
must be a character-string variable (either fixed-length or
varying-length).

Rules
v Rules for statement strings: The statement string must be an executable

statement that can be dynamically prepared. It must be one of the following
SQL statements:
– ALTER
– COMMENT ON
– COMMIT
– CREATE
– DECLARE GLOBAL TEMPORARY TABLE
– DELETE
– DROP
– EXPLAIN
– FLUSH EVENT MONITOR
– GRANT
– INSERT
– LOCK TABLE
– REFRESH TABLE
– RELEASE SAVEPOINT
– RENAME TABLE
– RENAME TABLESPACE
– REVOKE
– ROLLBACK
– SAVEPOINT
– select-statement
– SET CURRENT DEFAULT TRANSFORM GROUP
– SET CURRENT DEGREE
– SET CURRENT EXPLAIN MODE
– SET CURRENT EXPLAIN SNAPSHOT
– SET CURRENT QUERY OPTIMIZATION
– SET CURRENT REFRESH AGE
– SET EVENT MONITOR STATE
– SET INTEGRITY
– SET PASSTHRU
– SET PATH

PREPARE

Chapter 6. SQL Statements 955

– SET SCHEMA
– SET SERVER OPTION
– UPDATE

v Parameter Markers: Although a statement string cannot include references
to host variables, it may include parameter markers; those can be replaced by
the values of host variables when the prepared statement is executed.A
parameter marker is a question mark (?) that is declared where a host
variable could be stated if the statement string were a static SQL statement.
For an explanation of how parameter markers are replaced by values, see
“OPEN” on page 949 and “EXECUTE” on page 895.
There are two types of parameter markers:

Typed parameter marker
A parameter marker that is specified along with its target data type. It
has the general form:

CAST(? AS data-type)

This notation is not a function call, but a “promise” that the type of the
parameter at run time will be of the data type specified or some data
type that can be converted to the specified data type. For example, in:

UPDATE EMPLOYEE
SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))
WHERE EMPNO = ?

the value of the argument of the TRANSLATE function will be
provided at run time. The data type of that value will either be
VARCHAR(12), or some type that can be converted to VARCHAR(12).

Untyped parameter marker
A parameter marker that is specified without its target data type. It has
the form of a single question mark. The data type of an untyped
parameter marker is provided by context. For example, the untyped
parameter marker in the predicate of the above update statement is the
same as the data type of the EMPNO column.

Typed parameter markers can be used in dynamic SQL statements
wherever a host variable is supported and the data type is based on the
promise made in the CAST function.

Untyped parameters markers can be used in dynamic SQL statements in
selected locations where host variables are supported. These locations and
the resulting data type are found in Table 28 on page 957. The locations are
grouped in this table into expressions, predicates and functions to assist in
determining applicability of an untyped parameter marker. When an
untyped parameter marker is used in a function (including arithmetic
operators, CONCAT and datetime operators) with an unqualified function

PREPARE

956 SQL Reference

name, the qualifier is set to ’SYSIBM’ for the purposes of function
resolution.

Table 28. Untyped Parameter Marker Usage

Untyped Parameter Marker Location Data Type

Expressions (including select list, CASE and VALUES)

Alone in a select list Error

Both operands of a single arithmetic
operator, after considering operator
precedence and order of operation rules.

Includes cases such as:

? + ? + 10

Error

One operand of a single operator in an
arithmetic expression (not a datetime
expression)

Includes cases such as:

? + ? * 10

The data type of the other operand.

Labelled duration within a datetime
expression. (Note that the portion of a
labelled duration that indicates the type of
units cannot be a parameter marker.)

DECIMAL(15,0)

Any other operand of a datetime
expression (for instance ’timecol + ?’ or ’?
- datecol’).

Error

Both operands of a CONCAT operator Error

One operand of a CONCAT operator
where the other operand is a non-CLOB
character data type

If one operand is either CHAR(n) or
VARCHAR(n), where n is less than 128,
then other is VARCHAR(254 - n). In all
other cases the data type is
VARCHAR(254).

One operand of a CONCAT operator
where the other operand is a
non-DBCLOB graphic data type.

If one operand is either GRAPHIC(n) or
VARGRAPHIC(n), where n is less than 64,
then other is VARCHAR(127 - n). In all
other cases the data type is
VARCHAR(127).

One operand of a CONCAT operator
where the other operand is a large object
string.

Same as that of the other operand.

PREPARE

Chapter 6. SQL Statements 957

Table 28. Untyped Parameter Marker Usage (continued)

Untyped Parameter Marker Location Data Type

As a value on the right hand side of a SET
clause of an UPDATE statement.

The data type of the column. If the
column is defined as a user-defined
distinct type, then it is the source data
type of the user-defined distinct type. If
the column is defined as a user-defined
structured type, then it is the structured
type, also indicating the returns type of
the transform function.

The expression following CASE in a
simple CASE expression

Error

At least one of the result-expressions in a
CASE expression (both Simple and
Searched) with the rest of the
result-expressions either untyped
parameter marker or NULL.

Error

Any or all expressions following WHEN
in a simple CASE expression.

Result of applying the “Rules for Result
Data Types” on page 107 to the expression
following CASE and the expressions
following WHEN that are not untyped
parameter markers.

A result-expression in a CASE expression
(both Simple and Searched) where at least
one result-expression is not NULL and not
an untyped parameter marker.

Result of applying the Rules for Result
Data Types to all result-expressions that
are other than NULL or untyped
parameter markers.

Alone as a column-expression in a
single-row VALUES clause that is not
within an INSERT statement.

Error.

Alone as a column-expression in a
multi-row VALUES clause that is not
within an INSERT statement, and for
which the column-expressions in the same
position in all other row-expressions are
untyped parameter markers.

Error

Alone as a column-expression in a
multi-row VALUES clause that is not
within an INSERT statement, and for
which the expression in the same position
of at least one other row-expression is not
an untyped parameter marker or NULL.

Result of applying the “Rules for Result
Data Types” on page 107 on all operands
that are other than untyped parameter
markers.

PREPARE

958 SQL Reference

Table 28. Untyped Parameter Marker Usage (continued)

Untyped Parameter Marker Location Data Type

Alone as a column-expression in a
single-row VALUES clause within an
INSERT statement.

The data type of the column. If the
column is defined as a user-defined
distinct type, then it is the source data
type of the user-defined distinct type. If
the column is defined as a user-defined
structured type, then it is the structured
type, also indicating the returns type of
the transform function.

Alone as a column-expression in a
multi-row VALUES clause within an
INSERT statement.

The data type of the column. If the
column is defined as a user-defined
distinct type, then it is the source data
type of the user-defined distinct type. If
the column is defined as a user-defined
structured type, then it is the structured
type, also indicating the returns type of
the transform function.

As a value on the right side of a SET
special register statement

The data type of the special register.

Predicates

Both operands of a comparison operator Error

One operand of a comparison operator
where the other operand other than an
untyped parameter marker.

The data type of the other operand

All operands of a BETWEEN predicate Error

Either
1st and 2nd, or
1st and 3rd

operands of a BETWEEN predicate

Same as that of the only non-parameter
marker.

Remaining BETWEEN situations (i.e. one
untyped parameter marker only)

Result of applying the “Rules for Result
Data Types” on page 107 on all operands
that are other than untyped parameter
markers.

All operands of an IN predicate Error

Both the 1st and 2nd operands of an IN
predicate.

Result of applying the Rules for Result
Data Types on all operands of the IN list
(operands to the right of IN keyword) that
are other than untyped parameter
markers.

The 1st operand of an IN predicate where
the right hand side is a fullselect.

Data type of the selected column

PREPARE

Chapter 6. SQL Statements 959

Table 28. Untyped Parameter Marker Usage (continued)

Untyped Parameter Marker Location Data Type

Any or all operands of the IN list of the
IN predicate

Results of applying the Rules for Result
Data Types on all operands of the IN
predicate (operands to the left and right of
the IN predicate) that are other than
untyped parameter markers.

The 1st operand and zero or more
operands in the IN list excluding the 1st
operand of the IN list

Result of applying the Rules for Result
Data Types on all operands of the IN list
(operands to the right of IN keyword) that
are other than untyped parameter
markers.

All three operands of the LIKE predicate. Match expression (operand 1) and pattern
expression (operand 2) are
VARCHAR(32672). Escape expression
(operand 3) is VARCHAR(2).

The match expression of the LIKE
predicate when either the pattern
expression or the escape expression is
other than an untyped parameter marker.

Either VARCHAR(32672) or
VARGRAPHIC(16336) depending on the
data type of the first operand that is not
an untyped parameter marker.

The pattern expression of the LIKE
predicate when either the match
expression or the escape expression is
other than an untyped parameter marker.

Either VARCHAR(32672) or
VARGRAPHIC(16336) depending on the
data type of the first operand that is not
an untyped parameter marker. If the data
type of the match expression is BLOB, the
data type of the pattern expression is
assumed to be BLOB(32672).

The escape expression of the LIKE
predicate when either the match
expression or the pattern expression is
other than an untyped parameter marker.

Either VARCHAR(2) or VARGRAPHIC(1)
depending on the data type of the first
operand that is not an untyped parameter
marker. If the data type of the match
expression or pattern expression is BLOB,
the data type of the escape expression is
assumed to be BLOB(1).

Operand of the NULL predicate error

Functions

All operands of COALESCE (also called
VALUE) or NULLIF

Error

Any operand of COALESCE where at least
one operand is other than an untyped
parameter marker.

Result of applying the “Rules for Result
Data Types” on page 107 on all operands
that are other than untyped parameter
markers.

PREPARE

960 SQL Reference

Table 28. Untyped Parameter Marker Usage (continued)

Untyped Parameter Marker Location Data Type

An operand of NULLIF where the other
operand is other than an untyped
parameter marker.

The data type of the other operand

POSSTR (both operands) Both operands are VARCHAR(32672).

POSSTR (one operand where the other
operand is a character data type).

VARCHAR(32672).

POSSTR (one operand where the other
operand is a graphic data type).

VARGRAPHIC(16336).

POSSTR (the search-string operand when
the other operand is a BLOB).

BLOB(32672).

SUBSTR (1st operand) VARCHAR(32672)

SUBSTR (2nd and 3rd operands) INTEGER

The 1st operand of the TRANSLATE scalar
function.

Error

The 2nd and 3rd operands of the
TRANSLATE scalar function.

VARCHAR(32672) if the first operand is a
character type. VARGRAPHIC(16336) if
the first operand is a graphic type.

The 4th operand of the TRANSLATE
scalar function.

VARCHAR(1) if the first operand is a
character type. VARGRAPHIC(1) if the
first operand is a graphic type.

The 2nd operand of the TIMESTAMP
scalar function.

TIME

Unary minus DOUBLE PRECISION

Unary plus DOUBLE PRECISION

All other operands of all other scalar
functions including user-defined functions.

Error

Operand of a column function Error

Notes
v When a PREPARE statement is executed, the statement string is parsed and

checked for errors. If the statement string is invalid, the error condition is
reported in the SQLCA. Any subsequent EXECUTE or OPEN statement that
references this statement will also receive the same error (due to an implicit
prepare done by the system) unless the error has been corrected.

v Prepared statements can be referred to in the following kinds of statements,
with the restrictions shown:

In... The prepared statement ...

DECLARE CURSOR must be SELECT

PREPARE

Chapter 6. SQL Statements 961

EXECUTE must not be SELECT
v A prepared statement can be executed many times. Indeed, if a prepared

statement is not executed more than once and does not contain parameter
markers, it is more efficient to use the EXECUTE IMMEDIATE statement
rather than the PREPARE and EXECUTE statements.

v Statement caching affects repeated preparations. See the “Notes” on
page 896 for information.

v See the Application Development Guide for examples of dynamic SQL
statements in the supported host languages.

Examples
Example 1: Prepare and execute a non-select-statement in a COBOL program.
Assume the statement is contained in a host variable HOLDER and that the
program will place a statement string into the host variable based on some
instructions from the user. The statement to be prepared does not have any
parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :HOLDER
END-EXEC.

EXEC SQL EXECUTE STMT_NAME
END-EXEC.

Example 2: Prepare and execute a non-select-statement as in example 1,
except code it for a C program. Also assume the statement to be prepared can
contain any number of parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :holder;
EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR :insert_da;

Assume that the following statement is to be prepared:
INSERT INTO DEPT VALUES(?, ?, ?, ?)

The columns in the DEPT table are defined as follows:
DEPT_NO CHAR(3) NOT NULL, -- department number
DEPTNAME VARCHAR(29), -- department name
MGRNO CHAR(6), -- manager number
ADMRDEPT CHAR(3) -- admin department number

PREPARE

962 SQL Reference

To insert department number G01 named COMPLAINTS, which has no
manager and reports to department A00, the structure INSERT_DA should
have the above values before issuing the EXECUTE statement.

SQLDAID
SQLDABC
SQLN
SQLD

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

192
4
4

452
3

G01

COMPLAINTS
0

-1

A00
0

449
29

453
6

453
3

PREPARE

Chapter 6. SQL Statements 963

REFRESH TABLE
The REFRESH TABLE statement refreshes the data in a summary table.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v CONTROL privilege on the table.

Syntax

�� �

,

REFRESH TABLE table-name ��

Description

table-name
Specifies a table name.

The name, including the implicit or explicit schema, must identify a table
that already exists at the current server. The table must allow the
REFRESH TABLE statement (SQLSTATE 42809). This includes summary
tables defined with:
v REFRESH IMMEDIATE
v REFRESH DEFERRED

REFRESH TABLE

964 SQL Reference

RELEASE (Connection)
This statement places one or more connections in the release-pending state.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded
within an application program. It is an executable statement that cannot be
dynamically prepared.

Authorization
None Required.

Syntax

�� RELEASE
(1)

server-name
host-variable
CURRENT

SQL
ALL

��

Notes:

1 Note that an application server named CURRENT or ALL can only
be identified by a host variable.

Description

server-name or host-variable
Identifies the application server by the specified server-name or a
host-variable which contains the server-name.

If a host-variable is specified, it must be a character string variable with a
length attribute that is not greater than 8, and it must not include an
indicator variable. The server-name that is contained within the host-variable
must be left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application
server. It must be listed in the application requester’s local directory.

The specified database-alias or the database-alias contained in the host
variable must identify an existing connection of the application process. If
the database-alias does not identify an existing connection, an error
(SQLSTATE 08003) is raised.

CURRENT
Identifies the current connection of the application process. The
application process must be in the connected state. If not, an error
(SQLSTATE 08003) is raised.

RELEASE (Connection)

Chapter 6. SQL Statements 965

ALL
Identifies all existing connections of the application process. This form of
the RELEASE statement places all existing connections of the application
process in the release-pending state. All connections will therefore be
destroyed during the next commit operation. An error or warning does
not occur if no connections exist when the statement is executed. The
optional keyword SQL is included to be compatible with DB2/MVS SQL
syntax.

Notes

Examples
Example 1: The SQL connection to IBMSTHDB is no longer needed by the
application. The following statement will cause it to be destroyed during the
next commit operation:

EXEC SQL RELEASE IBMSTHDB;

Example 2: The current connection is no longer needed by the application.
The following statement will cause it to be destroyed during the next commit
operation:

EXEC SQL RELEASE CURRENT;

Example 3: If an application has no need to access the databases after a
commit but will continue to run for a while, then it is better not to tie up
those connections unnecessarily. The following statement can be executed
before the commit to ensure all connections will be destroyed at the commit:

EXEC SQL RELEASE ALL;

RELEASE (Connection)

966 SQL Reference

RELEASE SAVEPOINT
The RELEASE SAVEPOINT statement is used to indicate that the application
no longer wishes to have the named savepoint maintained. After this
statement has been invoked, rollback to the savepoint is no longer possible.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

��
TO

RELEASE SAVEPOINT savepoint-name ��

Description

savepoint-name
The named savepoint is released. Rollback to that savepoint is no longer
possible. If the named savepoint does not exist, an error is issued
(SQLSTATE 3B001).

Notes
v The name of the savepoint that was released can now be re-used in another

SAVEPOINT statement, regardless of whether the UNIQUE keyword was
specified on an earlier SAVEPOINT statement specifying this same
savepoint name.

Example
Example 1: Release a savepoint named SAVEPOINT1.

RELEASE SAVEPOINT SAVEPOINT1

RELEASE SAVEPOINT

Chapter 6. SQL Statements 967

RENAME TABLE
The RENAME TABLE statement renames an existing table.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include
either SYSADM or DBADM authority or CONTROL privilege.

Syntax

��
TABLE

RENAME source-table-name TO target-identifier ��

Description

source-table-name
Names the existing table that is to be renamed. The name, including the
schema name, must identify a table that already exists in the database
(SQLSTATE 42704). It can be an alias identifying the table. It must not be
the name of a catalog table (SQLSTATE 42832), a summary table, a typed
table (SQLSTATE 42997), a nickname, or an object of other than table or
alias (SQLSTATE 42809).

target-identifier
Specifies the new name for the table without a schema name. The schema
name of the source-table-name is used to qualify the new name for the
table. The qualified name must not identify a table, view, or alias that
already exists in the database (SQLSTATE 42710).

Rules
The source table must not:
v Be referenced in any existing view definitions or summary table definitions
v Be referenced in any triggered SQL statements in existing triggers or be the

subject table of an existing trigger
v Be referenced in an SQL function
v Have any check constraints
v Have any generated columns other than the identity column
v Be a parent or dependent table in any referential integrity constraints
v Be the scope of any existing reference column.

RENAME TABLE

968 SQL Reference

An error (SQLSTATE 42986) is returned if the source table violates one or
more of these conditions.

Notes
v Catalog entries are updated to reflect the new table name.
v All authorizations associated with the source table name are transferred to

the new table name (the authorization catalog tables are updated
appropriately).

v Indexes defined over the source table are transferred to the new table (the
index catalog tables are updated appropriately).

v Any packages that are dependent on the source table are invalidated.
v If an alias is used for the source-table-name, it must resolve to a table name.

The table is renamed within the schema of this table. The alias is not
changed by the RENAME statement and continues to refer to the old table
name.

v A table with primary key or unique constraints may be renamed if none of
the primary key or unique constraints are referenced by any foreign key.

Example
Change the name of the EMP table to EMPLOYEE.

RENAME TABLE EMP TO EMPLOYEE

RENAME TABLE

Chapter 6. SQL Statements 969

RENAME TABLESPACE
The RENAME TABLESPACE statement renames an existing table space.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include
either SYSADM or SYSCTRL authority.

Syntax

�� RENAME TABLESPACE source-tablespace-name TO target-tablespace-name ��

Description

source-tablespace-name
Specifies the existing table space that is to be renamed, as a one-part
name. It is an SQL identifier (either ordinary or delimited). The table
space name must identify a table space that already exists in the catalog
(SQLSTATE 42704).

target-tablespace-name
Specifies the new name for the table space, as a one-part name. It is an
SQL identifier (either ordinary or delimited). The new table space name
must not identify a table space that already exists in the catalog
(SQLSTATE 42710), and it cannot start with ’SYS’ (SQLSTATE 42939).

Rules
v The SYSCATSPACE table space cannot be renamed (SQLSTATE 42832).
v Any table spaces with ″rollforward pending″ or ″rollforward in progress″

states cannot be renamed (SQLSTATE 55039)

Notes
v Renaming a table space will update the minimum recovery time of a table

space to the point in time when the rename took place. This implies that a
roll forward at the table space level must be to at least this point in time.

v The new table space name must be used when restoring a table space from
a backup image, where the rename was done after the backup was created.
Refer to the Administrative API Reference or the Command Reference for more
information on restoring backups.

RENAME TABLESPACE

970 SQL Reference

Example
Change the name of the table space USERSPACE1 to DATA2000:

RENAME TABLESPACE USERSPACE1 TO DATA2000

RENAME TABLESPACE

Chapter 6. SQL Statements 971

REVOKE (Database Authorities)
This form of the REVOKE statement revokes authorities that apply to the
entire database.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v DBADM authority
v SYSADM authority.

To revoke DBADM authority, SYSADM authority is required.

Syntax

�� REVOKE �

,

BINDADD
CONNECT
CREATETAB
CREATE_NOT_FENCED
IMPLICIT_SCHEMA
DBADM
LOAD

ON DATABASE �

� �

,

FROM authorization-name
USER
GROUP

PUBLIC

��

Description

BINDADD
Revokes the authority to create packages. The creator of a package
automatically has the CONTROL privilege on that package and retains
this privilege even if his BINDADD authority is subsequently revoked.

The BINDADD authority cannot be revoked from an authorization-name
holding DBADM authority without also revoking the DBADM authority.

REVOKE (Database Authorities)

972 SQL Reference

CONNECT
Revokes the authority to access the database.

Revoking the CONNECT authority from a user does not affect any
privileges that were granted to that user on objects in the database. If the
user is subsequently granted the CONNECT authority again, all
previously held privileges are still valid (assuming they were not
explicitly revoked).

The CONNECT authority cannot be revoked from an authorization-name
holding DBADM authority without also revoking the DBADM authority
(SQLSTATE 42504).

CREATETAB
Revokes the authority to create tables. The creator of a table automatically
has the CONTROL privilege on that table, and retains this privilege even
if his CREATETAB authority is subsequently revoked.

The CREATETAB authority cannot be revoked from an authorization-name
holding DBADM authority without also revoking the DBADM authority
(SQLSTATE 42504).

CREATE_NOT_FENCED
Revokes the authority to register functions that execute in the database
manager’s process. However, once a function has been registered as not
fenced, it continues to run in this manner even if CREATE_NOT_FENCED
is subsequently revoked from the authorization ID that registered the
function.

The CREATE_NOT_FENCED authority cannot be revoked from an
authorization-name holding DBADM authority without also revoking the
DBADM authority (SQLSTATE 42504).

IMPLICIT_SCHEMA
Revokes the authority to implicitly create a schema. It does not affect the
ability to create objects in existing schemas or to process a CREATE
SCHEMA statement.

DBADM
Revokes the DBADM authority.

DBADM authority cannot be revoked from PUBLIC (because it cannot be
granted to PUBLIC).

Revoking DBADM authority does not automatically revoke any privileges
that were held by the authorization-name on objects in the database, nor
does it revoke BINDADD, CONNECT, CREATETAB,
IMPLICIT_SCHEMA, or CREATE_NOT_FENCED authority.

LOAD
Revoke the authority to LOAD in this database.

REVOKE (Database Authorities)

Chapter 6. SQL Statements 973

FROM
Indicates from whom the authorities are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists one or more authorization IDs.

The authorization ID of the REVOKE statement itself cannot be used
(SQLSTATE 42502). It is not possible to revoke the authorities from an
authorization-name that is the same as the authorization ID of the
REVOKE statement.

PUBLIC
Revokes the authorities from PUBLIC.

Rules
v If neither USER nor GROUP is specified, then:

– If all rows for the grantee in the SYSCAT.DBAUTH catalog view have a
GRANTEETYPE of U, then USER will be assumed.

– If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
– If some rows have U and some rows have G, then an error (SQLSTATE

56092) is raised.
– If DCE authentication is used, then an error is raised (SQLSTATE 56092).

Notes
v Revoking a specific privilege does not necessarily revoke the ability to

perform the action. A user may proceed with their task if other privileges
are held by PUBLIC or a group, or if they have a higher level authority
such as DBADM.

Examples
Example 1: Given that USER6 is only a user and not a group, revoke the
privilege to create tables from the user USER6.

REVOKE CREATETAB ON DATABASE FROM USER6

Example 2: Revoke BINDADD authority on the database from a group named
D024. There are two rows in the SYSCAT.DBAUTH catalog view for this
grantee; one with a GRANTEETYPE of U and one with a GRANTEETYPE of
G.

REVOKE BINDADD ON DATABASE FROM GROUP D024

In this case, the GROUP keyword must be specified; otherwise an error will
occur (SQLSTATE 56092).

REVOKE (Database Authorities)

974 SQL Reference

REVOKE (Index Privileges)
This form of the REVOKE statement revokes the CONTROL privilege on an
index.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must hold either SYSADM or DBADM
authority (SQLSTATE 42501).

Syntax

�� REVOKE CONTROL ON INDEX index-name �

� �

,

FROM authorization-name
USER
GROUP

PUBLIC

��

Description

CONTROL
Revokes the privilege to drop the index. This is the CONTROL privilege
for indexes, which is automatically granted to creators of indexes.

ON INDEX index-name
Specifies the name of the index on which the CONTROL privilege is to be
revoked.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists one or more authorization IDs.

REVOKE (Index Privileges)

Chapter 6. SQL Statements 975

The authorization ID of the REVOKE statement itself cannot be used
(SQLSTATE 42502). It is not possible to revoke the privileges from an
authorization-name that is the same as the authorization ID of the
REVOKE statement.

PUBLIC
Revokes the privileges from PUBLIC.

Rules
v If neither USER nor GROUP is specified, then:

If all rows for the grantee in the SYSCAT.INDEXAUTH catalog view
have a GRANTEETYPE of U, then USER will be assumed.
If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
If some rows have U and some rows have G, then an error (SQLSTATE
56092) is raised.
If DCE authentication is used, then an error is raised (SQLSTATE 56092).

Notes
v Revoking a specific privilege does not necessarily revoke the ability to

perform the action. A user may proceed with their task if other privileges
are held by PUBLIC or a group, or if they have authorities such as
ALTERIN on the schema of an index.

Examples
Example 1: Given that USER4 is only a user and not a group, revoke the
privilege to drop an index DEPTIDX from the user USER4.

REVOKE CONTROL ON INDEX DEPTIDX FROM USER4

Example 2: Revoke the privilege to drop an index LUNCHITEMS from the
user CHEF and the group WAITERS.

REVOKE CONTROL ON INDEX LUNCHITEMS
FROM USER CHEF, GROUP WAITERS

REVOKE (Index Privileges)

976 SQL Reference

REVOKE (Package Privileges)
This form of the REVOKE statement revokes CONTROL, BIND, and
EXECUTE privileges against a package.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v CONTROL privilege on the referenced package
v SYSADM or DBADM authority.

To revoke the CONTROL privilege, SYSADM or DBADM authority are
required.

Syntax

�� REVOKE �

,

BIND
CONTROL

(1)
EXECUTE

(2)
ON PACKAGE package-name �

� �

,

FROM authorization-name
USER
GROUP

PUBLIC

��

Notes:

1 RUN can be used as a synonym for EXECUTE.

2 PROGRAM can be used as a synonym for PACKAGE.

Description

BIND
Revokes the privilege to execute BIND or REBIND on the referenced
package.

REVOKE (Package Privileges)

Chapter 6. SQL Statements 977

The BIND privileges cannot be revoked from an authorization-name that
holds CONTROL privilege on the package without also revoking the
CONTROL privilege.

CONTROL
Revokes the privilege to drop the package and to extend package
privileges to other users.

Revoking CONTROL does not revoke the other package privileges.

EXECUTE
Revokes the privilege to execute the package.

The EXECUTE privilege cannot be revoked from an authorization-name that
holds CONTROL privilege on the package without also revoking the
CONTROL privilege.

ON PACKAGE package-name
Specifies the package on which privileges are revoked.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists one or more authorization IDs.

The authorization ID of the REVOKE statement itself cannot be used
(SQLSTATE 42502). It is not possible to revoke the privileges from an
authorization-name that is the same as the authorization ID of the
REVOKE statement.

PUBLIC
Revokes the privileges from PUBLIC.

Rules
v If neither USER nor GROUP is specified, then:

– If all rows for the grantee in the SYSCAT.PACKAGEAUTH catalog view
have a GRANTEETYPE of U, then USER will be assumed.

– If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
– If some rows have U and some rows have G, then an error (SQLSTATE

56092) is raised.
– If DCE authentication is used, then an error is raised (SQLSTATE 56092).

REVOKE (Package Privileges)

978 SQL Reference

Notes
v Revoking a specific privilege does not necessarily revoke the ability to

perform the action. A user may proceed with their task if other privileges
are held by PUBLIC or a group, or if they have privileges such as ALTERIN
on the schema of a package.

Examples
Example 1: Revoke the EXECUTE privilege on package CORPDATA.PKGA
from PUBLIC.

REVOKE EXECUTE
ON PACKAGE CORPDATA.PKGA
FROM PUBLIC

Example 2: Revoke CONTROL authority on the RRSP_PKG package for the
user FRANK and for PUBLIC.

REVOKE CONTROL
ON PACKAGE RRSP_PKG
FROM USER FRANK, PUBLIC

REVOKE (Package Privileges)

Chapter 6. SQL Statements 979

REVOKE (Schema Privileges)
This form of the REVOKE statement revokes the privileges on a schema.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must hold either SYSADM or DBADM
authority (SQLSTATE 42501).

Syntax

�� REVOKE �

,

ALTERIN
CREATEIN
DROPIN

ON SCHEMA schema-name �

� �

,

FROM authorization-name
USER
GROUP

PUBLIC

��

Description

ALTERIN
Revokes the privilege to alter or comment on objects in the schema.

CREATEIN
Revokes the privilege to create objects in the schema.

DROPIN
Revokes the privilege to drop objects in the schema.

ON SCHEMA schema-name
Specifies the name of the schema on which privileges are to be revoked.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

REVOKE (Schema Privileges)

980 SQL Reference

authorization-name,...
Lists one or more authorization IDs.

The authorization ID of the REVOKE statement itself cannot be used
(SQLSTATE 42502). It is not possible to revoke the privileges from an
authorization-name that is the same as the authorization ID of the
REVOKE statement.

PUBLIC
Revokes the privileges from PUBLIC.

Rules
v If neither USER nor GROUP is specified, then:

– If all rows for the grantee in the SYSCAT.SCHEMAAUTH catalog view
have a GRANTEETYPE of U, then USER will be assumed.

– If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
– If some rows have U and some rows have G, then an error (SQLSTATE

56092) is raised.
– If DCE authentication is used, then an error is raised (SQLSTATE 56092).

Notes
v Revoking a specific privilege does not necessarily revoke the ability to

perform the action. A user may proceed with their task if other privileges
are held by PUBLIC or a group, or if they have a higher level authority
such as DBADM.

Examples
Example 1: Given that USER4 is only a user and not a group, revoke the
privilege to create objects in schema DEPTIDX from the user USER4.

REVOKE CREATEIN ON SCHEMA DEPTIDX FROM USER4

Example 2: Revoke the privilege to drop objects in schema LUNCH from the
user CHEF and the group WAITERS.

REVOKE DROPIN ON SCHEMA LUNCH
FROM USER CHEF, GROUP WAITERS

REVOKE (Schema Privileges)

Chapter 6. SQL Statements 981

REVOKE (Server Privileges)
This form of the REVOKE statement revokes the privilege to access and use a
specified data source in pass-through mode.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSADM or DBADM
authority.

Syntax

�� REVOKE PASSTHRU ON SERVER server-name FROM �

� �

,

authorization-name
USER
GROUP

PUBLIC

��

Description

SERVER server-name
Names the data source for which the privilege to use in pass-through
mode is being revoked. server-name must identify a data source that is
described in the catalog.

FROM
Specifies from whom the privilege is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The authorization ID of the REVOKE statement itself cannot be used
(SQLSTATE 42502). It is not possible to revoke the privileges from an
authorization-name that is the same as the authorization ID of the
REVOKE statement.

REVOKE (Server Privileges)

982 SQL Reference

PUBLIC
Revokes from all users the privilege to pass through to server-name.

Examples
Example 1: Revoke USER6’s privilege to pass through to data source
MOUNTAIN.

REVOKE PASSTHRU ON SERVER MOUNTAIN FROM USER USER6

Example 2: Revoke group D024’s privilege to pass through to data source
EASTWING.

REVOKE PASSTHRU ON SERVER EASTWING FROM GROUP D024

The members of group D024 will no longer be able to use their group ID to
pass through to EASTWING. But if any members have the privilege to pass
through to EASTWING under their own user IDs, they will retain this
privilege.

REVOKE (Server Privileges)

Chapter 6. SQL Statements 983

REVOKE (Table, View, or Nickname Privileges)
This form of the REVOKE statement revokes privileges on a table, view, or
nickname.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v CONTROL privilege on the referenced table, view, or nickname.

To revoke the CONTROL privilege, either SYSADM or DBADM authority is
required.

To revoke the privileges on catalog tables and views, either SYSADM or
DBADM authority is required.

Syntax

�� REVOKE

�

PRIVILEGES
ALL

,

ALTER
CONTROL
DELETE
INDEX
INSERT
REFERENCES
SELECT
UPDATE

ON
TABLE

table-name
view-name
nickname

�

� �

,

FROM authorization-name
USER
GROUP

PUBLIC

��

REVOKE (Table, View or Nickname Privileges)

984 SQL Reference

Description

ALL or ALL PRIVILEGES
Revokes all privileges held by an authorization-name for the specified
tables, views, or nicknames.

If ALL is not used, one or more of the keywords listed below must be
used. Each keyword revokes the privilege described, but only as it applies
to the tables, views, or nicknames named in the ON clause. The same
keyword must not be specified more than once.

ALTER
Revokes the privilege to add columns to the base table definition; create
or drop a primary key or unique constraint on the table; create or drop a
foreign key on the table; add/change a comment on the table, view, or
nickname; create or drop a check constraint; create a trigger; add, reset, or
drop a column option for a nickname; or, change nickname column names
or data types.

CONTROL
Revokes the ability to drop the table, view, or nickname, and the ability to
execute the RUNSTATS utility on the table and indexes.

Revoking CONTROL privilege from an authorization-name does not revoke
other privileges granted to the user on that object.

DELETE
Revokes the privilege to delete rows from the table or updatable view.

INDEX
Revokes the privilege to create an index on the table or an index
specification on the nickname. The creator of an index or index
specification automatically has the CONTROL privilege over the index or
index specification (authorizing the creator to drop the index or index
specification). In addition, the creator retains this privilege even if the
INDEX privilege is revoked.

INSERT
Revokes the privileges to insert rows into the table or updatable view, and
to run the IMPORT utility.

REFERENCES
Revokes the privilege to create or drop a foreign key referencing the table
as the parent. Any column level REFERENCES privileges are also
revoked.

SELECT
Revokes the privilege to retrieve rows from the table or view, to create a
view on a table, and to run the EXPORT utility against the table or view.

REVOKE (Table, View or Nickname Privileges)

Chapter 6. SQL Statements 985

Revoking SELECT privilege may cause some views to be marked
inoperative. For information on inoperative views, see “Notes” on
page 832.

UPDATE
Revokes the privilege to update rows in the table or updatable view. Any
column level UPDATE privileges are also revoked.

ON TABLE table-name or view-name or nickname
Specifies the table, view, or nickname on which privileges are to be
revoked. The table-name cannot be a declared temporary table (SQLSTATE
42995).

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists one or more authorization IDs.

The ID of the REVOKE statement itself cannot be used (SQLSTATE
42502). It is not possible to revoke the privileges from an
authorization-name that is the same as the authorization ID of the
REVOKE statement.

PUBLIC
Revokes the privileges from PUBLIC.

Rules
v If neither USER nor GROUP is specified, then:

– If all rows for the grantee in the SYSCAT.TABAUTH and
SYSCAT.COLAUTH catalog views have a GRANTEETYPE of U, then
USER will be assumed.

– If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
– If some rows have U and some rows have G, then an error (SQLSTATE

56092) is raised.
– If DCE authentication is used, then an error is raised (SQLSTATE 56092).

Notes
v If a privilege is revoked from the authorization-name used to create a view

(this is called the view’s DEFINER in SYSCAT.VIEWS), that privilege is also
revoked from any dependent views.

v If the DEFINER of the view loses a SELECT privilege on some object on
which the view definition depends (or an object upon which the view

REVOKE (Table, View or Nickname Privileges)

986 SQL Reference

definition depends is dropped (or made inoperative in the case of another
view)), then the view will be made inoperative (see the “Notes” section in
“CREATE VIEW” on page 823 for information on inoperative views).
However, if a DBADM or SYSADM explicitly revokes all privileges on the
view from the DEFINER, then the record of the DEFINER will not appear
in SYSCAT.TABAUTH but nothing will happen to the view - it remains
operative.

v Privileges on inoperative views cannot be revoked.
v All packages dependent upon an object for which a privilege is revoked are

marked invalid. A package remains invalid until a bind or rebind operation
on the application is successfully executed, or the application is executed
and the database manager successfully rebinds the application (using
information stored in the catalogs). Packages marked invalid due to a
revoke may be successfully rebound without any additional grants.
For example, if a package owned by USER1 contains a SELECT from table
T1 and the SELECT privilege for table T1 is revoked from USER1, then the
package will be marked invalid. If SELECT authority is re-granted, or if the
user holds DBADM authority, the package is successfully rebound when
executed.

v Packages, triggers or views that include the use of OUTER(Z) in the FROM
clause, are dependent on having SELECT privilege on every subtable or
subview of Z. Similarly, packages, triggers, or views that include the use of
DEREF(Y) where Y is a reference type with a target table or view Z, are
dependent on having SELECT privilege on every subtable or subview of Z.
If one of these SELECT privileges is revoked, such packages are invalidated
and such triggers or views are made inoperative.

v Table, view, or nickname privileges cannot be revoked from an
authorization-name with CONTROL on the object without also revoking the
CONTROL privilege (SQLSTATE 42504).

v Revoking a specific privilege does not necessarily revoke the ability to
perform the action. A user may proceed with their task if other privileges
are held by PUBLIC or a group, or if they have privileges such as ALTERIN
on the schema of a table or a view.

v If the DEFINER of the summary table loses a SELECT privilege on a table
on which the summary table definition depends, (or a table upon which the
summary table definition depends is dropped), then the summary table will
be made inoperative (see the “Notes” on page 753 for information on
inoperative summary tables).
However, if a DBADM or SYSADM explicitly revokes all privileges on the
summary table from the DEFINER, then the record in SYSTABAUTH for
the DEFINER will be deleted, but nothing will happen to the summary
table - it remains operative.

REVOKE (Table, View or Nickname Privileges)

Chapter 6. SQL Statements 987

v Revoking nickname privileges has no affect on data source object (table or
view) privileges.

v Revoking the SELECT privilege for a table or view that is directly or
indirectly referenced in an SQL function may fail if the SQL function cannot
be dropped because some other object is dependent on the function
(SQLSTATE 42893).

Note: “Rules” on page 884 lists the dependencies that objects such as tables
and views can have on one another.

Examples
Example 1: Revoke SELECT privilege on table EMPLOYEE from user
ENGLES. There is one row in the SYSCAT.TABAUTH catalog view for this
table and grantee and the GRANTEETYPE value is U.

REVOKE SELECT
ON TABLE EMPLOYEE
FROM ENGLES

Example 2: Revoke update privileges on table EMPLOYEE previously granted
to all local users. Note that grants to specific users are not affected.

REVOKE UPDATE
ON EMPLOYEE
FROM PUBLIC

Example 3: Revoke all privileges on table EMPLOYEE from users PELLOW
and MLI and from group PLANNERS.

REVOKE ALL
ON EMPLOYEE
FROM USER PELLOW, USER MLI, GROUP PLANNERS

Example 4: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from
a user named JOHN. There is one row in the SYSCAT.TABAUTH catalog view
for this table and grantee and the GRANTEETYPE value is U.

REVOKE SELECT
ON CORPDATA.EMPLOYEE FROM JOHN

or
REVOKE SELECT

ON CORPDATA.EMPLOYEE FROM USER JOHN

Note that an attempt to revoke the privilege from GROUP JOHN would result
in an error, since the privilege was not previously granted to GROUP JOHN.

Example 5: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from
a group named JOHN. There is one row in the SYSCAT.TABAUTH catalog
view for this table and grantee and the GRANTEETYPE value is G.

REVOKE (Table, View or Nickname Privileges)

988 SQL Reference

REVOKE SELECT
ON CORPDATA.EMPLOYEE FROM JOHN

or
REVOKE SELECT
ON CORPDATA.EMPLOYEE FROM GROUP JOHN

Example 6: Revoke user SHAWN’s privilege to create an index specification
on nickname ORAREM1.

REVOKE INDEX
ON ORAREM1 FROM USER SHAWN

REVOKE (Table, View or Nickname Privileges)

Chapter 6. SQL Statements 989

REVOKE (Table Space Privileges)
This form of the REVOKE statement revokes the USE privilege on a table
space.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement must hold either SYSADM, SYSCTRL or
DBADM authority (SQLSTATE 42501).

Syntax

�� REVOKE USE OF TABLESPACE tablespace-name FROM �

� �

,

authorization-name
USER
GROUP

PUBLIC

��

Description

USE
Revokes the privilege to specify or default to the table space when
creating a table.

OF TABLESPACE tablespace-name
Specifies the table space on which the USE privilege is to be revoked. The
table space cannot be SYSCATSPACE (SQLSTATE 42838) or a SYSTEM
TEMPORARY table space (SQLSTATE 42809).

FROM
Indicates from whom the USE privilege is revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name
Lists one or more authorization IDs.

REVOKE (Table Space Privileges)

990 SQL Reference

The authorization ID of the REVOKE statement itself cannot be used
(SQLSTATE 42502). It is not possible to revoke the privileges from an
authorization-name that is the same as the authorization ID of the
REVOKE statement.

PUBLIC
Revokes the USE privilege from PUBLIC.

Rules
v If neither USER nor GROUP is specified, then:

– If all rows for the grantee in the SYSCAT.TBSPACEAUTH catalog view
have a GRANTEETYPE of U, then USER will be assumed.

– If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
– If some rows have U and some rows have G, then an error results

(SQLSTATE 56092).
– If DCE authentication is used, then an error results (SQLSTATE 56092).

Notes
v Revoking the USE privilege does not necessarily revoke the ability to create

tables in that table space. A user may still be able to create tables in that
table space if the USE privilege is held by PUBLIC or a group, or if the user
has a higher level authority, such as DBADM.

Examples
Example 1: Revoke the privilege to create tables in table space PLANS from
the user BOBBY.

REVOKE USE OF TABLESPACE PLANS FROM USER BOBBY

REVOKE (Table Space Privileges)

Chapter 6. SQL Statements 991

ROLLBACK
The ROLLBACK statement is used to back out of the database changes that
were made within a unit of work or a savepoint.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization
None required.

Syntax

�� ROLLBACK
WORK

TO SAVEPOINT
savepoint-name

��

Description
The unit of work in which the ROLLBACK statement is executed is
terminated and a new unit of work is initiated. All changes made to the
database during the unit of work are backed out.

The following statements, however, are not under transaction control and
changes made by them are independent of issuing the ROLLBACK statement:
v SET CONNECTION,
v SET CURRENT DEGREE,
v SET CURRENT DEFAULT TRANSFORM GROUP,
v SET CURRENT EXPLAIN MODE,
v SET CURRENT EXPLAIN SNAPSHOT,
v SET CURRENT PACKAGESET,
v SET CURRENT QUERY OPTIMIZATION,
v SET CURRENT REFRESH AGE,
v SET EVENT MONITOR STATE,
v SET PASSTHRU,
v SET PATH,
v SET SCHEMA,
v SET SERVER OPTION.

TO SAVEPOINT
Indicates that a partial rollback (ROLLBACK TO SAVEPOINT) is to be
performed. If no savepoint is active, an SQL error is returned (SQLSTATE

ROLLBACK

992 SQL Reference

3B502). After a successful ROLLBACK, the savepoint continues to exist. If
a savepoint-name is not provided, rollback is to the most recently set
savepoint.

If this clause is omitted, the ROLLBACK WORK statement rolls back the
entire transaction. Furthermore, savepoints within the transaction are
released.

savepoint-name
Indicate the savepoint to which to rollback. After a successful
ROLLBACK, the savepoint defined by savepoint-name continues to exist. If
the savepoint name does not exist, an error is returned (SQLSTATE
3B001). Data and schema changes made since the savepoint was set are
undone.

Notes
v All locks held are released on a ROLLBACK of the unit of work. All open

cursors are closed. All LOB locators are freed.
v Executing a ROLLBACK statement does not affect either the SET statements

that change special register values or the RELEASE statement.
v If the program terminates abnormally, the unit of work is implicitly rolled

back.
v Statement caching is affected by the rollback operation. See the “Notes” on

page 896 for information.
v Savepoints are not allowed in atomic execution contexts such as atomic

compound statements and triggers.
v The impact on cursors resulting from a ROLLBACK TO SAVEPOINT

depends on the statements within the savepoint
– If the savepoint contains DDL on which a cursor is dependent, the cursor

is marked invalid. Attempts to use such a cursor results in an error
(SQLSTATE 57007).

– Otherwise:
- If the cursor is referenced in the savepoint, the cursor remains open

and is positioned before the next logical row of the result table.104

- Otherwise, the cursor is not affected by the ROLLBACK TO
SAVEPOINT (it remains open and positioned).

v Dynamically prepared statement names are still valid, although the
statement may be implicitly prepared again, as a result of DDL operations
that are rolled back within the savepoint.

v A ROLLBACK TO SAVEPOINT operation will drop any declared temporary
tables named within the savepoint. If a declared temporary table is
modified within the savepoint, then all rows in the table are deleted.

104. A FETCH must be performed before a positioned UPDATE or DELETE statement is issued.

ROLLBACK

Chapter 6. SQL Statements 993

v All locks are retained after a ROLLBACK TO SAVEPOINT statement.
v All LOB locators are preserved following a ROLLBACK TO SAVEPOINT

operation.

Example
Delete the alterations made since the last commit point or rollback.

ROLLBACK WORK

ROLLBACK

994 SQL Reference

SAVEPOINT
Use the SAVEPOINT statement to set a savepoint within a transaction.

Invocation
This statement can be imbedded in an application program (including a
stored procedure) or issued interactively. It is an executable statement that can
be dynamically prepared.

Authorization
None required.

Syntax

�� SAVEPOINT savepoint-name
UNIQUE

�

�
ON ROLLBACK RETAIN LOCKS

ON ROLLBACK RETAIN CURSORS ��

Description

savepoint-name
Name of the savepoint.

UNIQUE
Specifying a UNIQUE savepoint indicates that the application does not
intend to reuse this savepoint name while the savepoint is active.

ON ROLLBACK RETAIN CURSORS
Specifies system behavior upon rollback to this savepoint with respect to
open cursor statements processed after the SAVEPOINT statement. The
RETAIN CURSORS clause indicates that, whenever possible, the cursors
are unchanged by a rollback to savepoint. For situations where the cursors
are affected by the rollback to savepoint, see “ROLLBACK” on page 992.

ON ROLLBACK RETAIN LOCKS
Specifies system behavior upon rollback to this savepoint with respect to
locks acquired after the setting of the savepoint. Locks acquired since the
savepoint are not tracked and are not rolled back (released) on rollback to
the savepoint.

Rules
v Savepoints cannot be nested. If a savepoint statement is issued, and there is

already an established savepoint present, then an error occurs (SQLSTATE
3B002).

SAVEPOINT

Chapter 6. SQL Statements 995

Notes
v The UNIQUE keyword is supported for compatibility with DB2 Universal

Database for OS/390. The following describes the behavior on DB2
Universal Database for OS/390.
If a savepoint named savepoint-name already exists within the transaction, an
error is returned (SQLSTATE 3B501). By omitting the UNIQUE clause, the
applications assert that this savepoint name may be reused within the
transaction. If savepoint-name already exists within the transaction, it will be
destroyed and a new savepoint named savepoint-name will be created.
Destruction of a savepoint by reusing its name for another savepoint is not
the same as releasing the old savepoint with the RELEASE SAVEPOINT
statement. Destruction of a savepoint by reusing its name destroys just that
savepoint. Releasing a savepoint by means of the RELEASE SAVEPOINT
statement releases the named savepoint and all savepoints established after
the named savepoint.

v Within a savepoint, if a utility, SQL statement, or DB2 command performs
intermittent COMMIT statements during processing, then the savepoint will
be implicitly released.

v The SQL statement SET INTEGRITY has the same effects as a DDL
statement within a savepoint.

v In an application, inserts may be buffered (that is, the application was
precompiled with INSERT BUF option). The buffer will be flushed when
SAVEPOINT, ROLLBACK, or RELEASE TO SAVEPOINT statements are
issued.

SAVEPOINT

996 SQL Reference

SELECT
The SELECT statement is a form of query. It can be embedded in an
application program or issued interactively. For detailed information, see
“select-statement” on page 439 and “subselect” on page 394.

SELECT

Chapter 6. SQL Statements 997

SELECT INTO
The SELECT INTO statement produces a result table consisting of at most one
row, and assigns the values in that row to host variables. If the table is empty,
the statement assigns +100 to SQLCODE and '02000' to SQLSTATE and does
not assign values to the host variables. If more than one row satisfies the
search condition, statement processing is terminated, and an error occurs
(SQLSTATE 21000).

Invocation
This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include, for
each table or view referenced in the SELECT INTO statement, at least one of
the following:
v SELECT privilege
v CONTROL privilege
v SYSADM or DBADM authority.

GROUP privileges are not checked for static SELECT INTO statements.

Syntax

�� select-clause INTO �

,

host-variable from-clause �

�
where-clause group-by-clause having-clause

��

Description
See “Chapter 5. Queries” on page 393 for a description of the select-clause,
from-clause, where-clause, group-by-clause, and having-clause.

INTO
Introduces a list of host variables.

host-variable
Identifies a variable that is described in the program under the rules
for declaring host variables.

The first value in the result row is assigned to the first variable in the
list, the second value to the second variable, and so on. If the number
of host variables is less than the number of column values, the value

SELECT INTO

998 SQL Reference

'W' is assigned to the SQLWARN3 field of the SQLCA. (See
“Appendix B. SQL Communications (SQLCA)” on page 1107.)

Each assignment to a variable is made according to the rules
described in “Assignments and Comparisons” on page 94.
Assignments are made in sequence through the list.

If an error occurs, no value is assigned to any host variable.

Examples
Example 1: This C example puts the maximum salary in EMP into the host
variable MAXSALARY.

EXEC SQL SELECT MAX(SALARY)
INTO :MAXSALARY
FROM EMP;

Example 2: This C example puts the row for employee 528671, from EMP, into
host variables.

EXEC SQL SELECT * INTO :h1, :h2, :h3, :h4
FROM EMP
WHERE EMPNO = '528671';

SELECT INTO

Chapter 6. SQL Statements 999

SET CONNECTION
The SET CONNECTION statement changes the state of a connection from
dormant to current, making the specified location the current server. It is not
under transaction control.

Invocation
Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded
within an application program. It is an executable statement that cannot be
dynamically prepared.

Authorization
None Required.

Syntax

�� SET CONNECTION server-name
host-variable

��

Description

server-name or host-variable
Identifies the application server by the specified server-name or a
host-variable which contains the server-name.

If a host-variable is specified, it must be a character string variable with a
length attribute that is not greater than 8, and it must not include an
indicator variable. The server-name that is contained within the host-variable
must be left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application
server. It must be listed in the application requester’s local directory.

The server-name or the host-variable must identify an existing connection of
the application process. If they do not identify an existing connection, an
error (SQLSTATE 08003) is raised.

If SET CONNECTION is to the current connection, the states of all
connections of the application process are unchanged.

Successful Connection

If the SET CONNECTION statement executes successfully:
v No connection is made. The CURRENT SERVER special register is

updated with the specified server-name.
v The previously current connection, if any, is placed into the dormant

state (assuming a different server-name is specified).

SET CONNECTION

1000 SQL Reference

v The CURRENT SERVER special register and the SQLCA are updated in
the same way as documented under Type 1 CONNECT; details 552.

Unsuccessful Connection

If the SET CONNECTION statement fails:
v No matter what the reason for failure, the connection state of the

application process and the states of its connections are unchanged.
v As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the

SQLCA is set to the name of the module that detected the error.

Notes
v The use of type 1 CONNECT statements does not preclude the use of SET

CONNECTION, but the statement will always fail (SQLSTATE 08003),
unless the SET CONNECTION statement specifies the current connection,
because dormant connections cannot exist.

v The SQLRULES(DB2) connection option (see “Options that Govern
Distributed Unit of Work Semantics” on page 39) does not preclude the use
of SET CONNECTION, but the statement is unnecessary because type 2
CONNECT statements can be used instead.

v When a connection is used, made dormant, and then restored to the current
state in the same unit of work, that connection reflects its last use by the
application process with regard to the status of locks, cursors, and prepared
statements.

Examples
Execute SQL statements at IBMSTHDB, execute SQL statements at
IBMTOKDB, and then execute more SQL statements at IBMSTHDB.

EXEC SQL CONNECT TO IBMSTHDB;
/* Execute statements referencing objects at IBMSTHDB */

EXEC SQL CONNECT TO IBMTOKDB;
/* Execute statements referencing objects at IBMTOKDB */

EXEC SQL SET CONNECTION IBMSTHDB;
/* Execute statements referencing objects at IBMSTHDB */

Note that the first CONNECT statement creates the IBMSTHDB connection,
the second CONNECT statement places it in the dormant state, and the SET
CONNECTION statement returns it to the current state.

SET CONNECTION

Chapter 6. SQL Statements 1001

SET CURRENT DEFAULT TRANSFORM GROUP
The SET CURRENT DEFAULT TRANSFORM GROUP statement changes the
value of the CURRENT DEFAULT TRANSFORM GROUP special register. This
statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��
CURRENT

SET DEFAULT TRANSFORM GROUP
=

group-name ��

Description

group-name
Specifies a one-part name that identifies a transform group defined for all
structured types. This name can be referenced in subsequent statements
(or until the special register value is changed again using another SET
CURRENT DEFAULT TRANSFORM GROUP statement).

The name must be an SQL identifier, up to 18 characters in length
(SQLSTATE 42815). No validation that the group-name is defined for any
structured type is made when the special register is set. Only when a
structured type is specifically referenced is the definition of the named
transform group checked for validity.

Rules
v If the value specified does not conform to the rules for a group-name, an

error is raised (SQLSTATE 42815)
v The TO SQL and FROM SQL functions defined in the group-name transform

group are used for exchanging user-defined structured type data with a
host program.

Notes
v The initial value of the CURRENT DEFAULT TRANSFORM GROUP special

register is the empty string.
v See “CURRENT DEFAULT TRANSFORM GROUP” on page 118 for

additional rules regarding the use of the special register.

SET CURRENT DEFAULT TRANSFORM GROUP

1002 SQL Reference

Examples
Example 1: Set the default transform group to MYSTRUCT1. The TO SQL and
FROM SQL functions defined in the MYSTRUCT1 transform group will be
used for exchanging user-defined structured type variables with the current
host program.

SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

SET CURRENT DEFAULT TRANSFORM GROUP

Chapter 6. SQL Statements 1003

SET CURRENT DEGREE
The SET CURRENT DEGREE statement assigns a value to the CURRENT
DEGREE special register. This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��
=

SET CURRENT DEGREE string-constant
host-variable

��

Description
The value of CURRENT DEGREE is replaced by the value of the string
constant or host variable. The value must be a character string that is not
longer than 5 bytes. The value must be the character string representation of
an integer between 1 and 32 767 inclusive or ’ANY’.

If the value of CURRENT DEGREE represented as an integer is 1 when an
SQL statement is dynamically prepared, the execution of that statement will
not use intra-partition parallelism.

If the value of CURRENT DEGREE is a number when an SQL statement is
dynamically prepared, the execution of that statement can involve
intra-partition parallelism with the specified degree.

If the value of CURRENT DEGREE is ’ANY’ when an SQL statement is
dynamically prepared, the execution of that statement can involve
intra-partition parallelism using a degree determined by the database
manager.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length
must not exceed 5. If a longer field is provided, an error will be returned
(SQLSTATE 42815). If the actual value provided is larger than the
replacement value specified, the input must be padded on the right with
blanks. Leading blanks are not allowed (SQLSTATE 42815). All input
values are treated as being case-insensitive. If a host-variable has an
associated indicator variable, the value of that indicator variable must not
indicate a null value (SQLSTATE 42815).

SET CURRENT DEGREE

1004 SQL Reference

string-constant
The string-constant length must not exceed 5.

Notes
The degree of intra-partition parallelism for static SQL statements can be
controlled using the DEGREE option of the PREP or BIND command. Refer to
the Command Reference for details on these commands.

The actual runtime degree of intra-partition parallelism will be the lower of:
v Maximum query degree (max_querydegree) configuration parameter
v Application runtime degree
v SQL statement compilation degree

The intra_parallel database manager configuration must be on to use
intra-partition parallelism. If it is set to off, the value of this register will be
ignored and the statement will not use intra-partition parallelism for the
purpose of optimization (SQLSTATE 01623).

Some SQL statements cannot use intra-partition parallelism. See the
Administration Guide for a description of degree of intra-partition parallelism
and a list of restrictions.

Example
Example 1: The following statement sets the CURRENT DEGREE to inhibit
intra-partition parallelism.

SET CURRENT DEGREE = '1'

Example 2: The following statement sets the CURRENT DEGREE to allow
intra-partition parallelism.

SET CURRENT DEGREE = 'ANY'

SET CURRENT DEGREE

Chapter 6. SQL Statements 1005

SET CURRENT EXPLAIN MODE
The SET CURRENT EXPLAIN MODE statement changes the value of the
CURRENT EXPLAIN MODE special register. It is not under transaction
control.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization
No special authorization is required to execute this statement.

Syntax

��
=

SET CURRENT EXPLAIN MODE NO
YES
EXPLAIN
RECOMMEND INDEXES
EVALUATE INDEXES
host-variable

��

Description

NO
Disables the Explain facility. No Explain information is captured. NO is
the initial value of the special register.

YES
Enables the Explain facility and causes Explain information to be inserted
into the Explain tables for eligible dynamic SQL statements. All dynamic
SQL statements are compiled and executed normally.

EXPLAIN
Enables the Explain facility and causes Explain information to be captured
for any eligible dynamic SQL statement that is prepared. However,
dynamic statements are not executed.

RECOMMEND INDEXES
Enables the SQL compiler to recommend indexes. All queries that are
executed in this explain mode will populate the ADVISE_INDEX table
with recommended indexes. In addition, Explain information will be
captured in the Explain tables to reveal how the recommended indexes
are used, but the statements are neither compiled nor executed.

EVALUATE INDEXES
Enables the SQL compiler to evaluate indexes. The indexes to be
evaluated are read from the ADVISE_INDEX table, and must be marked
with EVALUATE = Y. The optimizer generates virtual indexes based on
the values from the catalogs. All queries that are executed in this explain

SET CURRENT EXPLAIN MODE

1006 SQL Reference

mode will be compiled and optimized using estimated statistics based on
the virtual indexes. The statements are not executed.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length
must not exceed 254. If a longer field is provided, an error will be
returned (SQLSTATE 42815). The value specified must be NO, YES,
EXPLAIN, RECOMMEND INDEXES, or EVALUATE INDEXES. If the
actual value provided is larger than the replacement value specified, the
input must be padded on the right with blanks. Leading blanks are not
allowed (SQLSTATE 42815). All input values are treated as being
case-insensitive. If a host-variable has an associated indicator variable, the
value of that indicator variable must not indicate a null value (SQLSTATE
42815).

Notes
Explain information for static SQL statements can be captured by using the
EXPLAIN option of the PREP or BIND command. If the ALL value of the
EXPLAIN option is specified, and the CURRENT EXPLAIN MODE register
value is NO, explain information will be captured for dynamic SQL
statements at runtime. If the value of the CURRENT EXPLAIN MODE register
is not NO, then the value of the EXPLAIN bind option is ignored. For more
information on the interaction between the EXPLAIN option and the
CURRENT EXPLAIN MODE special register, see Table 143 on page 1326.

RECOMMEND INDEXES and EVALUATE INDEXES are special modes which
can only be set with the SET CURRENT EXPLAIN MODE command. These
modes cannot be set using PREP or BIND options, and they do not work with
the SET CURRENT SNAPSHOT command.

If the Explain facility is activated, the current authorization ID must have
INSERT privilege for the Explain tables or an error (SQLSTATE 42501) is
raised.

For further information, see the Administration Guide.

Example
Example 1: The following statement sets the CURRENT EXPLAIN MODE
special register, so that Explain information will be captured for any
subsequent eligible dynamic SQL statements and the statement will not be
executed.

SET CURRENT EXPLAIN MODE = EXPLAIN

SET CURRENT EXPLAIN MODE

Chapter 6. SQL Statements 1007

SET CURRENT EXPLAIN SNAPSHOT
The SET CURRENT EXPLAIN SNAPSHOT statement changes the value of the
CURRENT EXPLAIN SNAPSHOT special register. It is not under transaction
control.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��
=

SET CURRENT EXPLAIN SNAPSHOT NO
YES
EXPLAIN
host-variable

��

Description

NO
Disables the Explain snapshot facility. No snapshot is taken. NO is the
initial value of the special register.

YES
Enables the Explain snapshot facility, creating a snapshot of the internal
representation for each eligible dynamic SQL statement. This information
is inserted in the SNAPSHOT column of the EXPLAIN_STATEMENT table
(see “Appendix K. Explain Tables and Definitions” on page 1291).

The EXPLAIN SNAPSHOT facility is intended for use with Visual
Explain.

EXPLAIN
Enables the Explain snapshot facility, creating a snapshot of the internal
representation for each eligible dynamic SQL statement that is prepared.
However, dynamic statements are not executed.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length
of its contents must not exceed 8. If a longer field is provided, an error
will be returned (SQLSTATE 42815). The value contained in this register
must be either NO, YES, or EXPLAIN. If the actual value provided is
larger than the replacement value specified, the input must be padded on
the right with blanks. Leading blanks are not allowed (SQLSTATE 42815).
All input values are treated as being case-insensitive. If host-variable has an

SET CURRENT EXPLAIN SNAPSHOT

1008 SQL Reference

associated indicator variable, the value of that indicator variable must not
indicate a null value (SQLSTATE 42815).

Notes
Explain snapshots for static SQL statements can be captured by using the
EXPLSNAP option of the PREP or BIND command. If the ALL value of the
EXPLSNAP option is specified, and the CURRENT EXPLAIN SNAPSHOT
register value is NO, Explain snapshots will be captured for dynamic SQL
statements at runtime. If the value of the CURRENT EXPLAIN SNAPSHOT
register is not NO, then the EXPLSNAP option is ignored. For more
information on the interaction between the EXPLSNAP option and the
CURRENT EXPLAIN SNAPSHOT special register, see Table 144 on page 1327.

If the Explain snapshot facility is activated, the current authorization ID must
have INSERT privilege for the Explain tables or an error (SQLSTATE 42501) is
raised.

For further information, see the Administration Guide.

Example
Example 1: The following statement sets the CURRENT EXPLAIN
SNAPSHOT special register, so that an Explain snapshot will be taken for any
subsequent eligible dynamic SQL statements and the statement will be
executed.

SET CURRENT EXPLAIN SNAPSHOT = YES

Example 2: The following example retrieves the current value of the
CURRENT EXPLAIN SNAPSHOT special register into the host variable called
SNAP.

EXEC SQL VALUES (CURRENT EXPLAIN SNAPSHOT) INTO :SNAP;

SET CURRENT EXPLAIN SNAPSHOT

Chapter 6. SQL Statements 1009

SET CURRENT PACKAGESET

The SET CURRENT PACKAGESET statement sets the schema name
(collection identifier) that will be used to select the package to use for
subsequent SQL statements. This statement is not under transaction control.

Invocation
This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared. This statement is
not supported in REXX.

Authorization
None required.

Syntax

��
=

SET CURRENT PACKAGESET string-constant
host-variable

��

Description

string-constant
A character string constant with a maximum length of 30. If more than the
maximum, it will be truncated at runtime.

host-variable
A variable of type CHAR or VARCHAR with a maximum length of 30. It
cannot be set to null. If more than the maximum, it will be truncated at
runtime.

Notes
v This statement allows an application to specify the schema name used

when selecting a package for an executable SQL statement. The statement is
processed at the client and does not flow to the application server.

v The COLLECTION bind option can be used to create a package with a
specified schema name. See the Command Reference for details.

v Unlike DB2 for MVS/ESA, the SET CURRENT PACKAGESET statement is
implemented without support for a special register called CURRENT
PACKAGESET.

Example
Assume an application called TRYIT is precompiled by userid PRODUSA,
making ’PRODUSA’ the default schema name in the bind file. The application
is then bound twice with different bind options. The following command line
processor commands were used:

SET CURRENT PACKAGESET

1010 SQL Reference

DB2 CONNECT TO SAMPLE USER PRODUSA
DB2 BIND TRYIT.BND DATETIME USA
DB2 CONNECT TO SAMPLE USER PRODEUR
DB2 BIND TRYIT.BND DATETIME EUR COLLECTION 'PRODEUR'

This creates two packages called TRYIT. The first bind command created the
package in the schema named ’PRODUSA’. The second bind command
created the package in the schema named ’PRODEUR’ based on the
COLLECTION option.

Assume the application TRYIT contains the following statements:

EXEC SQL CONNECT TO SAMPLE;
.
.
EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO='000010'; �1�
.
.
EXEC SQL SET CURRENT PACKAGESET 'PRODEUR'; �2�
.
.
EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO='000010'; �3�

�1� This statement will run using the PRODUSA.TRYIT package because
it is the default package for the application. The date is therefore
returned in USA format.

�2� This statement sets the schema name to ’PRODEUR’ for package
selection.

�3� This statement will run using the PRODEUR.TRYIT package as a
result of the SET CURRENT PACKAGESET statement. The date is
therefore returned in EUR format.

SET CURRENT PACKAGESET

Chapter 6. SQL Statements 1011

SET CURRENT QUERY OPTIMIZATION
The SET CURRENT QUERY OPTIMIZATION statement assigns a value to the
CURRENT QUERY OPTIMIZATION special register. The value specifies the
current class of optimization techniques enabled when preparing dynamic
SQL statements. It is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��
=

SET CURRENT QUERY OPTIMIZATION 0
1
2
3
5
7
9
host-variable

��

Description

optimization-class
optimization-class can be specified either as an integer constant or as the
name of a host variable that will contain the appropriate value at run
time. An overview of the classes follows (for details refer to the
Administration Guide).

0 Specifies that a minimal amount of optimization is
performed to generate an access plan. This class is most
suitable for simple dynamic SQL access to well-indexed
tables.

1 Specifies that optimization roughly comparable to DB2
Version 1 is performed to generate an access plan.

2 Specifies a level of optimization higher than that of DB2
Version 1, but at significantly less optimization cost than
levels 3 and above, especially for very complex queries.

3 Specifies that a moderate amount of optimization is
performed to generate an access plan.

5 Specifies a significant amount of optimization is
performed to generate an access plan. For complex

SET CURRENT QUERY OPTIMIZATION

1012 SQL Reference

dynamic SQL queries, heuristic rules are used to limit the
amount of time spent selecting an access plan. Where
possible, queries will use summary tables instead of the
underlying base tables.

7 Specifies a significant amount of optimization is
performed to generate an access plan. Similar to 5 but
without the heuristic rules.

9 Specifies a maximal amount of optimization is performed
to generate an access plan. This can greatly expand the
number of possible access plans that are evaluated. This
class should be used to determine if a better access plan
can be generated for very complex and very long-running
queries using large tables. Explain and performance
measurements can be used to verify that a better plan has
been generated.

host-variable The data type is INTEGER. The value must be in the
range 0 to 9 (SQLSTATE 42815) but should be 0, 1, 2, 3, 5,
7, or 9 (SQLSTATE 01608). If host-variable has an associated
indicator variable, the value of that indicator variable
must not indicate a null value (SQLSTATE 42815).

Notes
v When the CURRENT QUERY OPTIMIZATION register is set to a particular

value, a set of query rewrite rules are enabled, and certain optimization
variables take on particular values. This class of optimization techniques is
then used during preparation of dynamic SQL statements.

v In general, changing the optimization class impacts the execution time of
the application, the compilation time, and resources required. Most
statements will be adequately optimized using the default query
optimization class. Lower query optimization classes, especially classes 1
and 2, may be appropriate for dynamic SQL statements for which the
resources consumed by the dynamic PREPARE are a significant portion of
those required to execute the query. Higher optimization classes should be
chosen only after considering the additional resources that may be
consumed and verifying that a better access plan has been generated. For
additional detail on the behavior associated with each query optimization
class see Administration Guide.

v Query optimization classes must be in the range 0 to 9. Classes outside this
range will return an error (SQLSTATE 42815). Unsupported classes within
this range will return a warning (SQLSTATE 01608) and will be replaced
with the next lowest query optimization class. For example, a query
optimization class of 6 will be replaced by 5.

v Dynamically prepared statements use the class of optimization that was set
by the most recently executed SET CURRENT QUERY OPTIMIZATION

SET CURRENT QUERY OPTIMIZATION

Chapter 6. SQL Statements 1013

statement. In cases where a SET CURRENT QUERY OPTIMIZATION
statement has not yet been executed, the query optimization class is
determined by the value of the database configuration parameter,
dft_queryopt.

v Statically bound statements do not use the CURRENT QUERY
OPTIMIZATION special register; therefore this statement has no effect on
them. The QUERYOPT option is used during preprocessing or binding to
specify the desired class of optimization for statically bound statements. If
QUERYOPT is not specified then, the default value specified by the
database configuration parameter, dft_queryopt, is used. Refer to the BIND
command in the Command Reference for details.

v The results of executing the SET CURRENT QUERY OPTIMIZATION
statement are not rolled back if the unit of work in which it is executed is
rolled back.

Examples
Example 1: This example shows how the highest degree of optimization can
be selected.

SET CURRENT QUERY OPTIMIZATION 9

Example 2: The following example shows how the CURRENT QUERY
OPTIMIZATION special register can be used within a query.

Using the SYSCAT.PACKAGES catalog view, find all plans that were bound
with the same setting as the current value of the CURRENT QUERY
OPTIMIZATION special register.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES
WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

SET CURRENT QUERY OPTIMIZATION

1014 SQL Reference

SET CURRENT REFRESH AGE

The SET CURRENT REFRESH AGE statement changes the value of the
CURRENT REFRESH AGE special register. It is not under transaction control.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��
=

SET CURRENT REFRESH AGE numeric-constant
ANY
host-variable

��

Description

numeric-constant
A DECIMAL(20,6) value representing a timestamp duration. The value
must be 0 or 99 999 999 999 999 (the microseconds portion of the value is
ignored and can therefore be any value).
0 Indicates that only summary tables

defined with REFRESH IMMEDIATE may
be used to optimize the processing of a
query.

99999999999999 Indicates that any summary tables defined
with REFRESH DEFERRED or REFRESH
IMMEDIATE may be used to optimize the
processing of a query. This value
represents 9 999 years, 99 months, 99 days,
99 hours, 99 minutes, and 99 seconds.

ANY
This is a shorthand for 99999999999999.

host-variable
A variable of type DECIMAL(20,6) or other type that is assignable to
DECIMAL(20,6). It cannot be set to null. If host-variable has an associated
indicator variable, the value of that indicator variable must not indicate a
null value (SQLSTATE 42815). The value of the host-variable must be 0 or
99 999 999 999 999.000000.

Notes
v The initial value of the CURRENT REFRESH AGE special register is zero.

SET CURRENT REFRESH AGE

Chapter 6. SQL Statements 1015

v Setting the CURRENT REFRESH AGE special register to a value other than
zero should be done with caution. By allowing a summary table that may
not represent the values of the underlying base table to be used to optimize
the processing of the query, the result of the query may NOT accurately
represent the data in the underlying table. This may be reasonable when
you know the underlying data has not changed or you are willing to accept
the degree of error in the results based on your knowledge of the data.

v The CURRENT REFRESH AGE value of 99 999 999 999 999 cannot be used
in timestamp arithmetic operations since the result would be outside the
valid range of dates (SQLSTATE 22008).

Examples
Example 1: The following statement sets the CURRENT REFRESH AGE
special register.

SET CURRENT REFRESH AGE ANY

Example 2:

The following example retrieves the current value of the CURRENT REFRESH
AGE special register into the host variable called CURMAXAGE.

EXEC SQL VALUES (CURRENT REFRESH AGE) INTO :CURMAXAGE;

The value would be 99999999999999.000000, set by the previous example.

SET CURRENT REFRESH AGE

1016 SQL Reference

SET EVENT MONITOR STATE
The SET EVENT MONITOR STATE statement activates or deactivates an
event monitor. The current state of an event monitor (active or inactive) is
determined by using the EVENT_MON_STATE built-in function. The SET
EVENT MONITOR STATE statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The authorization ID of the statement most hold either SYSADM or DBADM
authority (SQLSTATE 42815).

Syntax

�� SET EVENT MONITOR event-monitor-name STATE
=

0
1
host-variable

��

Description

event-monitor-name
Identifies the event monitor to activate or deactivate. The name must
identify an event monitor that exists in the catalog (SQLSTATE 42704).

new-state
new-state can be specified either as an integer constant or as the name of a
host variable that will contain the appropriate value at run time. The
following may be specified:

0 Indicates that the specified event monitor should be
deactivated.

1 Indicates that the specified event monitor should be
activated. The event monitor should not already be active;
otherwise a warning (SQLSTATE 01598) is issued.

host-variable The data type is INTEGER. The value specified must be 0
or 1 (SQLSTATE 42815). If host-variable has an associated
indicator variable, the value of that indicator variable
must not indicate a null value (SQLSTATE 42815).

SET EVENT MONITOR STATE

Chapter 6. SQL Statements 1017

Rules
v Although an unlimited number of event monitors may be defined, there is

a limit of 32 event monitors that can be simultaneously active (SQLSTATE
54030).

v In order to activate an event monitor, the transaction in which the event
monitor was created must have been committed (SQLSTATE 55033). This
rule prevents (in one unit of work) creating an event monitor, activating the
monitor, then rolling back the transaction.

v If the number or size of the event monitor files exceeds the values specified
for MAXFILES or MAXFILESIZE on the CREATE EVENT MONITOR
statement, an error (SQLSTATE 54031) is raised.

v If the target path of the event monitor (that was specified on the CREATE
EVENT MONITOR statement) is already in use by another event monitor,
an error (SQLSTATE 51026) is raised.

Notes
v Activating an event monitor performs a reset of any counters associated

with it.

Example
The following example activates an event monitor called SMITHPAY.

SET EVENT MONITOR SMITHPAY STATE = 1

SET EVENT MONITOR STATE

1018 SQL Reference

SET INTEGRITY
The SET INTEGRITY105 statement is used to do one of the following:
v Turn off integrity checking for one or more tables. This includes check

constraint and referential constraint checking, datalink integrity checking,
and generation of values for generated columns. If the table is a summary
table with REFRESH IMMEDIATE, the immediate refreshing of the data is
turned off. Note that this places the table(s) into a check pending state where
only limited access by a restricted set of statements and commands is
allowed. Primary key and unique constraints continue to be checked.

v Both turn the integrity checking back on for one or more tables and to carry
out all the deferred checking. If the table is a summary table, the data is
refreshed as necessary and, when defined with the REFRESH IMMEDIATE
attribute, immediate refreshing of the data is turned on.

v Turn on integrity checking for one or more tables without first carrying out
any deferred integrity checking. If the table is a summary table defined
with the REFRESH IMMEDIATE attribute, immediate refreshing of the data
is turned on.

v Place the table into check pending state if the table is already in DataLink
Reconcile Pending (DRP) or DataLink Reconcile Not Possible (DRNP) state.
If a table is not in either of those states, then unconditionally set the table to
DRP state and check pending state.

When the statement is used to check integrity for a table after it has been
loaded, the system will by default incrementally process the table by checking
only the append portion for constraint violations. However, there are some
situations in which the system will decide that full processing (by checking
the entire table for constraints violations) is necessary to ensure data integrity.
There is also a situation in which user needs to explicitly request incremental
processing by specifying the INCREMENTAL option. See “Notes” on
page 1024 for details.

The SET INTEGRITY statement is under transaction control.

Invocation
This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges required to execute SET INTEGRITY depend on the use of the
statement, as outlined below:

105. The SET INTEGRITY statement, rather than the SET CONSTRAINTS statement, is the preferred method for
working with integrity checking in DB2.

SET INTEGRITY

Chapter 6. SQL Statements 1019

1. Turn off integrity checking.
The privileges of the authorization ID of the statement must include at
least one of the following:
v CONTROL privilege on the tables and all their dependents and

descendants in referential integrity constraints
v SYSADM or DBADM authority
v LOAD authority

2. Both turn on integrity checking and carry out checking.
The privileges of the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v CONTROL privilege on the tables that are being checked and if

exceptions are being posted to one or more tables, INSERT privilege on
the exception tables

v LOAD authority and, if exceptions are being posted to one or more
tables:
– SELECT and DELETE privilege on each table being checked; and
– INSERT privilege on the exception tables.

3. Turn on integrity checking without first carrying out checking.
The authorization ID of the statement must have at least one of the
following:
v SYSADM or DBADM authority
v CONTROL privilege on the tables that are being checked
v LOAD authority

Syntax

��
(1)

SET INTEGRITY �

� �

�

,

FOR table-name OFF
TO DATALINK RECONCILE PENDING
IMMEDIATE CHECKED

check-options
,

FOR table-name integrity-options IMMEDIATE UNCHECKED

��

SET INTEGRITY

1020 SQL Reference

check-options:

*
INCREMENTAL

*
FORCE GENERATED

*
exception-clause

exception-clause:

FOR EXCEPTION �

,

IN table-name USE table-name

integrity-options:

�

ALL
,

FOREIGN KEY
CHECK
DATALINK RECONCILE PENDING
SUMMARY
GENERATED COLUMN

Notes:

1 For compatibility with previous versions, the keyword
CONSTRAINTS will continue to be supported.

Description

table-name
Identifies a table for integrity processing. It must be a table described in
the catalog and must not be a view, catalog table, or typed table.

OFF
Specifies that the tables are to have their foreign key constraints, check
constraints, and column generation turned off and are, therefore to be
placed into the check pending state. If it is a summary table, then
immediate refreshing is turned off (if applicable) and the summary table
is placed into check pending state.

Note that it is possible that a table may already be in the check pending
state with only one type of integrity checking turned off; in such a
situation the other type of integrity checking will also be turned off.

If any table in the list is a parent table, the check pending state for foreign
key constraints is extended to all dependent and descendent tables.

SET INTEGRITY

Chapter 6. SQL Statements 1021

If any table in the list is an underlying table of a summary table, the
check pending state is extended to such summary tables.

Only very limited activity is allowed on a table that is in the check
pending state. “Notes” on page 1024 lists the restrictions.

TO DATALINK RECONCILE PENDING
Specifies that the tables are to have DATALINK integrity constraint
checking turned off and the tables placed in check pending state. If the
table is already in DataLink Reconcile Not Possible (DRNP) state, it
remains in this state with check pending. Otherwise, the table is set to
DataLink Reconcile Pending (DRP) state.

Dependent and descendent table are not affected when this option is
specified.

IMMEDIATE CHECKED
Specifies that the table is to have its integrity checking turned on and that
the integrity checking that was deferred is to be carried out. This is done
in accordance with the information set in the STATUS and
CONST_CHECKED columns of the SYSCAT.TABLES catalog. That is:
v The value in STATUS must be C (the table is in the check pending

state) or an error (SQLSTATE 51027) is returned.
v The value in CONST_CHECKED indicates which integrity options are

to be checked.

If it is a summary table, then the data is checked against the query and
refreshed as necessary.

DATALINK values are not checked, even when the table is in DRP or
DRNP state. The RECONCILE command or API should be used to
perform the reconciliation of DATALINK values. The table will be taken
out of check pending state but continue to have the DRP or DRNP flag
set. This makes the table usable while the reconciliation of DATALINK
values can be deferred to another time.

check-options

FORCE GENERATED
If the table includes generated columns, the values are computed
based on the expression and stored in the column. If this clause is not
specified, the current values are compared to the computed value of
the expression as if an equality check constraint existed.

INCREMENTAL
Specifies the application of deferred integrity checks on the appended
portion (if any) of the table. If such a request cannot be satisfied (i.e.
the system detects that the whole table needs to be checked for data
integrity), an error (SQLSTATE 55019) will be returned. If the attribute

SET INTEGRITY

1022 SQL Reference

is not specified, the system will determine if incremental processing is
possible; if not, the whole table will be checked. See Notes for
situations in which system will favor full processing (checking whole
table for integrity) over incremental processing. Also, see Notes for
situations in which the INCREMENTAL option is necessary and
situations in which it cannot be specified.

If the table is not in the check pending state, an error (SQLSTATE
55019) is returned.

exception-clause

FOR EXCEPTION
Indicates that any row that is in violation of a foreign key
constraint or a check constraint will be copied to an exception
table and deleted from the original table. See “Appendix N.
Exception Tables” on page 1335 for more information on these
user-defined tables. Even if errors are detected the constraints are
turned back on again and the table is taken out of the check
pending state. A warning (SQLSTATE 01603) is issued to indicate
that one or more rows have been moved to the exception tables.

If the FOR EXCEPTION clause is not specified and any constraints
are violated, then only the first violation detected is returned to
the user (SQLSTATE 23514). In the case of a violation in any table,
all the tables are left in the check pending state, as they were
before the execution of the statement. This clause cannot be
specified if the table-name is a summary table (SQLSTATE 42997).

IN table-name
Specifies the table from which rows that violate constraints are to
be copied. There must be one exception table specified for each
table being checked.

USE table-name
Specifies the exception table into which error rows are to be
copied.

integrity-options
Used to define the integrity options that are set to IMMEDIATE
UNCHECKED.

ALL
This indicates that all integrity-options are to be turned on.

FOREIGN KEY
This indicates that foreign key constraints are to be turned on.

CHECK
This indicates that check constraints are to be turned on.

SET INTEGRITY

Chapter 6. SQL Statements 1023

DATALINK RECONCILE PENDING
This indicates that DATALINK integrity constraints are to be turned
on.

SUMMARY
This indicates that immediate refreshing should be turned on for a
summary table with the REFRESH IMMEDIATE attribute.

GENERATED COLUMN
This indicates that generated columns are to be turned on.

IMMEDIATE UNCHECKED
Specifies one of the following:
v The table is to have its integrity checking turned on (and, thus, are to

be taken out of the check pending state) without having the table
checked for integrity violations or the summary table is to have
immediate refreshing turned on and be taken out of check pending
state.
This is specified for a given table either by specifying ALL, or by
specifying CHECK when only check constraints are off for that table, or
by specifying FOREIGN KEY when only foreign key constraints are off
for that table, or by specifying DATALINK RECONCILE PENDING
when only DATALINK integrity constraints are off for that table or by
specifying SUMMARY when only summary table query checking is off
for that summary table, or by specifying GENERATED COLUMN when
only column generation is off for that table.

v The table is to have one type of integrity checking turned on, but is to
be left in the check pending state.
This is specified for a given table by specifying only CHECK, FOREIGN
KEY, SUMMARY, GENERATED COLUMN, or DATALINK
RECONCILE PENDING when any of those types of constraints are off
for that table.

The state change is not extended to any tables not explicitly included in
the list.

If the parent of a dependent table is in the check pending state, the
foreign key constraints of a dependent table cannot be marked to bypass
checking (the check constraints checking can be bypassed).

The implications with respect to data integrity should be considered
before using this option. See “Notes”.

Notes
v Effects on tables in the check pending state:

– Use of SELECT, INSERT, UPDATE, or DELETE is disallowed on a table
that is either:

SET INTEGRITY

1024 SQL Reference

- in the check pending state itself
- or requires access to another table that is in the check pending state.

For example, a DELETE of a row in a parent table that cascades to a
dependent table that is in the check pending state is not allowed.

– New constraints added to a table are normally enforced immediately.
However, if the table is in check pending state the checking of any new
constraints is deferred until the table is taken out of the check pending
state.

– The CREATE INDEX statement cannot reference any tables that are in
the check pending state. Similarly, ALTER TABLE to add a primary key
or unique constraint cannot reference any tables that are in the check
pending state.

– The utilities EXPORT, IMPORT, REORG, and REORGCHK are not
allowed to operate on a table in the check pending state. Note that the
IMPORT utility differs from the LOAD utility in that it always checks the
constraints immediately.

– The utilities LOAD, BACKUP, RESTORE, ROLLFORWARD, UPDATE
STATISTICS, RUNSTATS, LIST HISTORY, and ROLLFORWARD are
allowed on a table in the check pending state.

– The statements ALTER TABLE, COMMENT ON, DROP TABLE, CREATE
ALIAS, CREATE TRIGGER, CREATE VIEW, GRANT, REVOKE, and SET
INTEGRITY can reference a table that is in the check pending state.

– Packages, views and any other objects that depend on a table that is in
the check pending state will return an error when the table is accessed at
run time.

The removal of violating rows by the SET INTEGRITY statement is not a
delete event. Therefore, triggers are never activated by a SET INTEGRITY
statement. Similarly, updating generated columns using the FORCE
GENERATED option does not activate triggers.

v Because incremental processing is the default behavior, the INCREMENTAL
option is not needed in most cases. It is needed, however, in two cases:
– To force incremental processing on a table that was previously taken out

of the check pending state with the IMMEDIATE UNCHECKED option.
By default, the system chooses full processing to verify integrity of ALL
data. This default behavior can be overridden by specifying the
INCREMENTAL option to check only the newly appended portion.
(Refer to the bullet ″Warning about the use of IMMEDIATE
UNCHECKED clause″ for further details.)

– To ensure that integrity checks are indeed processed incrementally. By
specifying the INCREMENTAL option, the system returns an error
(SQLSTATE 55019) when the system detects that full processing is
needed to ensure data integrity.

SET INTEGRITY

Chapter 6. SQL Statements 1025

v Warning about the use of the IMMEDIATE UNCHECKED clause:
– This clause is intended to be used by utility programs and its use by

application programs is not recommended.
The fact that integrity checking was turned on without doing deferred
checking will be recorded in the catalog (the value in the
CONST_CHECKED column in the SYSCAT.TABLES view will be set to
’U’). This indicates that the user has assumed responsibility for data
integrity with respect to the specific constraints. This value remains until
either:
- The table is put back into the check pending state (by referencing the

table in a SET INTEGRITY statement with the OFF clause), at which
time the ’U’ values in the CONST_CHECKED column will be changed
to the ’W’ values, indicating that the user had previously assumed
responsibility for data integrity and the system needs to verify the
data.

- All unchecked constraints for the table are dropped.
- A REFRESH TABLE statement is issued for a summary table.

The ’W’ state differs from the ’N’ state in that it records the fact that the
integrity was previously checked by the user and not yet by the system,
and if given a choice, the systems rechecks the whole table for data
integrity and then changes it to the ’Y’ state. If no choice is given (e.g.
when IMMEDIATE UNCHECKED or INCREMENTAL is specified) it is
changed back to the ’U’ state to record that some data is still not verified
by the system. In the latter (INCREMENTAL) case, a warning
(SQLSTATE 01636) is returned.

v After appending data using Load Insert, the SET INTEGRITY ...
IMMEDIATE CHECKED statement checks the table for constraint violation
and then brings the table out of the check pending state. The system
determines if incrementally processing on the table is possible. If so, only
the appended portion is checked for integrity violations. If not, the system
will check the whole table for integrity violations (see below for situations
when the system favors full processing).

v Situations where the system checks the whole table for integrity when the
user did not specify the INCREMENTAL option for the statement SET
INTEGRITY for T IMMEDIATE CHECKED are:
1. when the table T has one or more ’W’ values in its CONST_CHECKED

column in the SYSCAT.TABLES catalog.
v Situations in which the system must check the whole table for integrity

(INCREMENTAL option cannot be specified) for the statement SET
INTEGRITY for T IMMEDIATE CHECKED are:
1. when new constraints have been added to T itself, or to any of its

parents which are in check pending state

SET INTEGRITY

1026 SQL Reference

2. when a Load Replace has taken place into T, or the NOT LOGGED
INITIALLY WITH EMPTY TABLE option has been activated after the
last integrity check on T

3. (cascading effect of full processing) when any parent of T has been Load
Replaced or checked for integrity non-incrementally

4. if the table was in check pending state before migration, full processing
is required the first time the table is checked for integrity after
migration

5. if the table space containing the table or its parent has been rolled
forward to a point in time.

v A table that is in DataLink Reconcile Not Possible (DRNP) state requires
corrective action to be taken (possibly outside of the database). Once
corrective action is completed, the table is taken out of DRNP state using
the IMMEDIATE UNCHECKED option. The RECONCILE command or API
should then be used to check the DATALINK integrity constraints. For
more details refer on removing a table from DataLink Reconcile Not
Possible state refer to Administration Guide.

v While integrity is being checked an exclusive lock is held on each table
specified in the SET INTEGRITY invocation.

v A shared lock is acquired on each table that is not listed in the SET
INTEGRITY invocation but is a parent table of one of the dependent tables
being checked.

v If an error occurs during integrity checking, all the effects of the checking
including deleting from the original and inserting into the exception tables
will be rolled back.

v If a SET INTEGRITY statement issued with a FORCE GENERATED clause
fails because of a lack of log space, and log space cannot be sufficiently
increased, the db2gncol command can be used to generate the values by
using intermittent commits. SET INTEGRITY can then be rerun, without the
FORCE GENERATED clause.

Example
Example 1: The following is an example of a query that gives us information
about the check pending state of tables. SUBSTR is used to extract the first 2
bytes of the CONST_CHECKED column of SYSCAT.TABLES. The first byte
represents foreign key constraints, and the second byte represents check
constraints.

SELECT TABNAME,
SUBSTR(CONST_CHECKED, 1, 1) AS FK_CHECKED,
SUBSTR(CONST_CHECKED, 2, 1) AS CC_CHECKED
FROM SYSCAT.TABLES
WHERE STATUS = 'C'

Example 2: Set tables T1 and T2 in the check pending state:
SET INTEGRITY FOR T1, T2 OFF

SET INTEGRITY

Chapter 6. SQL Statements 1027

Example 3: Check the integrity for T1 and get the first violation only:
SET INTEGRITY FOR T1 IMMEDIATE CHECKED

Example 4: Check the integrity for T1 and T2 and put the violating rows into
exception tables E1 and E2:

SET INTEGRITY FOR T1, T2 IMMEDIATE CHECKED
FOR EXCEPTION IN T1 USE E1,

IN T2 USE E2

Example 5: Enable FOREIGN KEY constraint checking in T1 and CHECK
constraint checking in T2 to be bypassed with the IMMEDIATE CHECKED
option:

SET INTEGRITY FOR T1 FOREIGN KEY,
T2 CHECK IMMEDIATE UNCHECKED

Example 6: Add a check constraint and a foreign key to the EMP_ACT table,
using two ALTER TABLE statements. To perform constraint checking in a
single pass of the table, integrity checking is turned off before the ALTER
statements and checked after execution.

SET INTEGRITY FOR EMP_ACT OFF;
ALTER TABLE EMP_ACT ADD CHECK (EMSTDATE <= EMENDATE);
ALTER TABLE EMP_ACT ADD FOREIGN KEY (EMPNO) REFERENCES EMPLOYEE;
SET INTEGRITY FOR EMP_ACT IMMEDIATE CHECKED

Example 7: Set integrity for generated columns.
SET INTEGRITY FOR T1 IMMEDIATE CHECKED

FORCE GENERATED

SET INTEGRITY

1028 SQL Reference

SET PASSTHRU
The SET PASSTHRU statement opens and closes a session for submitting a
data source’s native SQL directly to that data source. The statement is not
under transaction control.

Invocation
This statement can be issued interactively. It is an executable statement that
can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must provide
authorization to:
v Pass through to the data source.
v Satisfy security measures at the data source.

Syntax

�� SET PASSTHRU server-name
RESET

��

Description

server-name
Names the data source for which a pass-through session is to be opened.
server-name must identify a data source that is described in the catalog.

RESET
Closes a pass-through session.

Notes
Refer to “Pass-Through Facility Processing” on page 1256 for guidelines and
restrictions on using pass-through.

Examples
Example 1: Start a pass-through session to data source BACKEND.

strcpy (PASS_THRU,"SET PASSTHRU BACKEND");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;

Example 2: Start a pass-through session with a PREPARE statement.
strcpy (PASS_THRU,"SET PASSTHRU BACKEND");
EXEC SQL PREPARE STMT FROM :PASS_THRU;
EXEC SQL EXECUTE STMT;

Example 3: End a pass-through session.
strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

SET PASSTHRU

Chapter 6. SQL Statements 1029

Example 4: Use the PREPARE and EXECUTE statements to end a pass-through
session.

strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");
EXEC SQL PREPARE STMT FROM :PASS_THRU_RESET;
EXEC SQL EXECUTE STMT;

Example 5: Open a session to pass through to a data source, create a clustered
index for a table at this data source, and close the pass-through session.
strcpy (PASS_THRU,"SET PASSTHRU BACKEND");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;
EXEC SQL PREPARE STMT pass-through mode

FROM "CREATE UNIQUE
CLUSTERED INDEX TABLE_INDEX
ON USER2.TABLE table is not an
WITH IGNORE DUP KEY"; alias

EXEC SQL EXECUTE STMT;
STRCPY (PASS_THRU_RESET,"SET PASSTHRU RESET");
EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

SET PASSTHRU

1030 SQL Reference

SET PATH
The SET PATH statement changes the value of the CURRENT PATH special
register. It is not under transaction control.

Invocation
This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��

FUNCTION
CURRENT

SET PATH
=

�

� �

,

schema-name
SYSTEM PATH
USER

FUNCTION
CURRENT PATH
host-variable
string-constant

��

Description

schema-name
This one-part name identifies a schema that exists at the application
server. No validation that the schema exists is made at the time that the
path is set. If a schema-name is, for example, misspelled, it will not be
caught, and it could affect the way subsequent SQL operates.

SYSTEM PATH
This value is the same as specifying the schema names
″SYSIBM″,″SYSFUN″.

USER
The value in the USER special register.

CURRENT PATH
The value of the CURRENT PATH before the execution of this statement.
CURRENT FUNCTION PATH may also be specified.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of the
host-variable must not exceed 30 bytes (SQLSTATE 42815). It cannot be set

SET PATH

Chapter 6. SQL Statements 1031

to null. If host-variable has an associated indicator variable, the value of
that indicator variable must not indicate a null value (SQLSTATE 42815).

The characters of the host-variable must be left justified. When specifying
the schema-name with a host-variable, all characters must be specified in the
exact case intended as there is no conversion to uppercase characters.

string-constant
A character string constant with a maximum length of 8.

Rules
v A schema name cannot appear more than once in the function path

(SQLSTATE 42732).
v The number of schemas that can be specified is limited by the total length

of the CURRENT PATH special register. The special register string is built
by taking each schema name specified and removing trailing blanks,
delimiting with double quotes, doubling quotes within the schema name as
necessary, and then separating each schema name by a comma. The length
of the resulting string cannot exceed 254 bytes (SQLSTATE 42907).

Notes
v The initial value of the CURRENT PATH special register is

″SYSIBM″,″SYSFUN″,″X″ where X is the value of the USER special register.
v The schema SYSIBM does not need to be specified. If it is not included in

the SQL path, it is implicitly assumed as the first schema (in this case, it is
not included in the CURRENT PATH special register).

v The CURRENT PATH special register specifies the SQL path used to resolve
user-defined data types, procedures and functions in dynamic SQL
statements. The FUNCPATH bind option specifies the SQL path to be used
for resolving user-defined data types and functions in static SQL
statements. See the Command Reference for further information on the use of
FUNCPATH option in BIND command.

Example
Example 1: The following statement sets the CURRENT FUNCTION PATH
special register.

SET PATH = FERMAT, "McDrw #8", SYSIBM

Example 2: The following example retrieves the current value of the
CURRENT PATH special register into the host variable called CURPATH.

EXEC SQL VALUES (CURRENT PATH) INTO :CURPATH;

The value would be ″FERMAT″,″McDrw #8″,″SYSIBM″ if set by the previous
example.

SET PATH

1032 SQL Reference

SET SCHEMA
The SET SCHEMA statement changes the value of the CURRENT SCHEMA
special register. It is not under transaction control. If the package is bound
with DYNAMICRULES BIND option, this statement has no effect.

Invocation
The statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��
CURRENT =

SET SCHEMA schema-name
USER
host-variable
string-constant

��

Description

schema-name
This one-part name identifies a schema that exists at the application
server. The length must not exceed 30 bytes (SQLSTATE 42815). No
validation that the schema exists is made at the time that the schema is
set. If a schema-name is misspelled, it will not be caught, and it could affect
the way subsequent SQL operates.

USER
The value in the USER special register.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of the
host-variable must not exceed 30 (SQLSTATE 42815). It cannot be set to
null. If host-variable has an associated indicator variable, the value of that
indicator variable must not indicate a null value (SQLSTATE 42815).

The characters of the host-variable must be left justified. When specifying
the schema-name with a host-variable, all characters must be specified in the
exact case intended as there is no conversion to uppercase characters.

string-constant
A character string constant with a maximum length of 30.

Rules
v If the value specified does not conform to the rules for a schema-name, an

error (SQLSTATE 3F000) is raised.

SET SCHEMA

Chapter 6. SQL Statements 1033

v The value of the CURRENT SCHEMA special register is used as the schema
name in all dynamic SQL statements, with the exception of the CREATE
SCHEMA statement, where an unqualified reference to a database object
exists.

v The QUALIFIER bind option specifies the schema name for use as the
qualifier for unqualified database object names in static SQL statements (see
the Command Reference for further information on use of the QUALIFIER
option).

Notes
v The initial value of the CURRENT SCHEMA special register is equivalent to

USER.
v Setting the CURRENT SCHEMA special register does not effect the

CURRENT PATH special register. Hence, the CURRENT SCHEMA will not
be included in the SQL path and functions, procedures and user-defined
type resolution may not find these objects. To include the current schema
value in the SQL path, whenever the SET SCHEMA statement is issued,
also issue the SET PATH statement including the schema name from the
SET SCHEMA statement.

v CURRENT SQLID is accepted as a synonym for CURRENT SCHEMA and
the effect of a SET CURRENT SQLID statement will be identical to that of a
SET CURRENT SCHEMA statement. No other effects, such as statement
authorization changes, will occur.

Examples
Example 1: The following statement sets the CURRENT SCHEMA special
register.

SET SCHEMA RICK

Example 2: The following example retrieves the current value of the
CURRENT SCHEMA special register into the host variable called
CURSCHEMA.

EXEC SQL VALUES (CURRENT SCHEMA) INTO :CURSCHEMA;

The value would be RICK, set by the previous example.

SET SCHEMA

1034 SQL Reference

SET SERVER OPTION
The SET SERVER OPTION statement specifies a server option setting that is
to remain in effect while a user or application is connected to the federated
database. When the connection ends, this server option’s previous setting is
reinstated. This statement is not under transaction control.

Invocation
This statement can be issued interactively. It is an executable statement that
can be dynamically prepared.

Authorization
The authorization ID of the statement must have either SYSADM or DBADM
authority on the federated database.

Syntax

�� SET SERVER OPTION server-option-name TO string-constant �

� FOR SERVER server-name ��

Description

server-option-name
Names the server option that is to be set. Refer to“Server Options” on
page 1249 for descriptions of the server options.

TO string-constant
Specifies the setting for server-option-name as a character string constant.
Refer to “Server Options” on page 1249 for descriptions of possible
settings.

SERVER server-name
Names the data source to which server-option-name applies. It must be a
server described in the catalog.

Notes
v Server option names can be entered in uppercase or lowercase.
v SET SERVER OPTION currently only supports the password, fold_id, and

fold_pw server options.
v One or more SET SERVER OPTION statements can be submitted when a

user or application connects to the federated database. The statement (or
statements) must be specified at the start of the first unit of work that is
processed after the connection is established.

SET SERVER OPTION

Chapter 6. SQL Statements 1035

Examples
Example 1: An Oracle data source called RATCHIT is defined to a federated
database called DJDB. RATCHIT is configured to disallow plan hints.
However, the DBA would like plan hints to be enabled for a test run of a new
application. When the run is over, plan hints will be disallowed again.

CONNECT TO DJDB;
strcpy(stmt,"set server option plan_hints to 'Y' for server ratchit");
EXEC SQL EXECUTE IMMEDIATE :stmt;
strcpy(stmt,"select c1 from ora_t1 where c1 > 100"); /*Generate plan hints*/
EXEC SQL PREPARE s1 FROM :stmt;
EXEC SQL DECLARE c1 CURSOR FOR s1;
EXEC SQL OPEN c1;
EXEC SQL FETCH c1 INTO :hv;

Example 2: You have set the server option PASSWORD to ‘Y’ (yes, validate
passwords at the data source) for all Oracle 8 data sources. However, for a
particular session in which an application is connected to the federated
database in order to access a specific Oracle 8 data source—one defined to the
federated database DJDB as ORA8A—passwords will not need to be
validated.

CONNECT TO DJDB;
strcpy(stmt,"set server option password to 'N' for server ora8a");
EXEC SQL PREPARE STMT_NAME FROM :stmt;
EXEC SQL EXECUTE STMT_NAME FROM :stmt;
strcpy(stmt,"select max(c1) from ora8a_t1");
EXEC SQL PREPARE STMT_NAME FROM :stmt;
EXEC SQL DECLARE c1 CURSOR FOR STMT_NAME;
EXEC SQL OPEN c1; /*Does not validate password at ora8a*/
EXEC SQL FETCH c1 INTO :hv;

SET SERVER OPTION

1036 SQL Reference

SET transition-variable
The SET transition-variable statement assigns values to new transition
variables. It is under transaction control.

Invocation
This statement can only be used as a triggered SQL statement in the triggered
action of a BEFORE trigger whose granularity is FOR EACH ROW (see
“CREATE TRIGGER” on page 780).

Authorization
The privileges held by the authorization ID of the creator of the trigger must
include at least one of the following:
v UPDATE of the columns referenced on the left hand side of the assignment

and SELECT for any columns referenced on the right hand side.
v CONTROL privilege on the table (subject table of the trigger)
v SYSADM or DBADM authority.

To execute this statement with a row-fullselect as the right hand side of the
assignment, the privileges held by the authorization ID of the creator of the
trigger must also include at least one of the following for each table or view
referenced:
v SELECT privilege
v CONTROL privilege
v SYSADM or DBADM.

Syntax

�� SET �

� �

� �

,

transition-variable = expression
NULL
DEFAULT

, ,
(1)

(transition-variable) = (expression)
NULL
DEFAULT

(2)
row-fullselect

��

transition-variable:

SET transition-variable

Chapter 6. SQL Statements 1037

column-name
correlation-name.

� ..attribute-name

Notes:

1 The number of expressions, NULLs and DEFAULTs must match the
number of transition-variables.

2 The number of columns in the select list must match the number of
transition-variables.

Description

transition-variable
Identifies a column in the set of affected rows for the trigger.

correlation-name
The correlation-name given for referencing the NEW transition
variables. This correlation-name must match the correlation name
specified following NEW in the REFERENCING clause of the
CREATE TRIGGER.

If OLD is not specified in the REFERENCING clause, the
correlation-name will default to the correlation-name specified following
NEW. If both NEW and OLD are specified in the REFERENCING
clause, then a correlation-name is required with each column-name
(SQLSTATE 42702).

column-name
Identifies the column to be updated. The column-name must identify a
column of the subject table of the trigger (SQLSTATE 42703). A
column must not be specified more than once (SQLSTATE 42701).

..attribute name
Specifies the attribute of a structured type that is set (referred to as an
attribute assignment). The column-name specified must be defined with a
user-defined structured type (SQLSTATE 428DP). The attribute-name must
be an attribute of the structured type of column-name (SQLSTATE 42703).
An assignment that does not involve the ..attribute name clause is referred
to as a conventional assignment.

expression
Indicates the new value of the column. The expression is any expression
of the type described in “Expressions” on page 157. The expression can
not include a column function except when it occurs within a scalar
fullselect (SQLSTATE 42903). An expression may contain references to OLD
and NEW transition variables and must be qualified by the
correlation-name to specify which transition variable (SQLSTATE 42702).

SET transition-variable

1038 SQL Reference

NULL
Specifies the null value and can only be specified for nullable columns
(SQLSTATE 23502). NULL cannot be the value in an attribute assignment
(SQLSTATE 429B9), unless it was specifically cast to the data type of the
attribute.

DEFAULT
Specifies that the default value should be used based on how the
corresponding column is defined in the table. The value that is inserted
depends on how the column was defined.
v If the column was defined using the WITH DEFAULT clause, then the

value is set to the default defined for the column (see default-clause in
“ALTER TABLE” on page 477).

v If the column was defined using the IDENTITY clause, the value is
generated by the database manager.

v If the column was defined without specifying the WITH DEFAULT
clause, the IDENTITY clause, or the NOT NULL clause, then the value
is NULL.

v If the column was defined using the NOT NULL clause and the
IDENTITY clause is not used, or the WITH DEFAULT clause was not
used or DEFAULT NULL was used, the DEFAULT keyword cannot be
specified for that column (SQLSTATE 23502).

row-fullselect
A fullselect that returns a single row with the number of columns
corresponding to the number of column-names specified for assignment.
The values are assigned to each corresponding column-name. If the result
of the row-fullselect is no rows, then null values are assigned. A
row-fullselect may contain references to OLD and NEW transition variables
which must be qualified by the correlation-name to specify which transition
variable to use. (SQLSTATE 42702). An error is returned if there is more
than one row in the result (SQLSTATE 21000).

Rules
v The number of values to be assigned from expressions, NULLs and

DEFAULTs or the row-fullselect must match the number of columns specified
for assignment (SQLSTATE 42802).

v If the statement is used in a BEFORE UPDATE trigger, the column-name
specified as a transition-variable cannot be a partitioning key column
(SQLSTATE 42997).

Notes
v If more than one assignment is included, all the expressions and

row-fullselects are evaluated before the assignments are performed. Thus

SET transition-variable

Chapter 6. SQL Statements 1039

references to columns in an expression or row fullselect are always the
value of the transition variable prior to any assignment in the single SET
transition-variable statement.

v When an identity column defined as a distinct type is updated, the entire
computation is done in the source type, and the result is cast to the distinct
type before the value is actually assigned to the column.106

v To have DB2 generate a value on a SET statement for an identity column,
use the DEFAULT keyword:

SET NEW.EMPNO = DEFAULT

In this example, NEW.EMPNO is defined as an identity column, and the
value used to update this column is generated by DB2.

v See “INSERT” on page 938 for more information on consuming values of a
generated sequence for an identity column.

v See “INSERT” on page 938 for more information on exceeding the
maximum value for an identity column.

Examples
Example 1: Set the salary column of the row for which the trigger action is
currently executing to 50000.

SET NEW_VAR.SALARY = 50000;
or
SET (NEW_VAR.SALARY) = (50000);

Example 2: Set the salary and the commission column of the row for
which the trigger action is currently executing to 50000 and 8000
respectively.

SET NEW_VAR.SALARY = 50000, NEW_VAR.COMM = 8000;
or
SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (50000, 8000);

Example 3: Set the salary and the commission column of the row for
which the trigger action is currently executing to the average of the salary
and of the commission of the employees of the updated row’s department
respectively.

SET (NEW_VAR.SALARY, NEW_VAR.COMM)
= (SELECT AVG(SALARY), AVG(COMM)

FROM EMPLOYEE E
WHERE E.WORKDEPT = NEW_VAR.WORKDEPT);

Example 4: Set the salary and the commission column of the row for
which the trigger action is currently executing to 10000 and the original
value of salary respectively (i.e., before the SET statement was executed).

SET NEW_VAR.SALARY = 10000, NEW_VAR.COMM = NEW_VAR.SALARY;
or
SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (10000, NEW_VAR.SALARY);

106. There is no casting of the previous value to the source type prior to the computation.

SET transition-variable

1040 SQL Reference

SIGNAL SQLSTATE
The SIGNAL SQLSTATE statement is used to signal an error. It causes an
error to be returned with the specified SQLSTATE and the specified
diagnostic-string.

Invocation
The SIGNAL SQLSTATE statement can only be used as a triggered SQL
statement within a trigger.

Authorization
No authorization is required to execute this statement.

Syntax

�� SIGNAL SQLSTATE string-constant (diagnostic-string) ��

Description

string-constant
The specified string-constant represents an SQLSTATE. It must be a
character string constant with exactly 5 characters that follow the rules for
application-defined SQLSTATEs as follows:
v Each character must be from the set of digits (’0’ through ’9’) or

non-accented upper case letters (’A’ through ’Z’)
v The SQLSTATE class (first two characters) cannot be ’00’, ’01’ or ’02’

since these are not error classes.
v If the SQLSTATE class (first two characters) starts with the character ’0’

through ’6’ or ’A’ through ’H’, then the subclass (last three characters)
must start with a letter in the range ’I’ through ’Z’

v If the SQLSTATE class (first two characters) starts with the character ’7’,
’8’, ’9’ or ’I’ though ’Z’, then the subclass (last three characters) can be
any of ’0’ through ’9’ or ’A’ through ’Z’.

If the SQLSTATE does not conform to these rules an error occurs
(SQLSTATE 428B3).

diagnostic-string
An expression with a type of CHAR or VARCHAR that returns a
character string of up to 70 bytes that describes the error condition. If the
string is longer than 70 bytes, it will be truncated.

Example
Consider an order system that records orders in an ORDERS table
(ORDERNO, CUSTNO, PARTNO, QUANTITY) only if there is sufficient stock
in the PARTS tables.

SIGNAL SQLSTATE

Chapter 6. SQL Statements 1041

CREATE TRIGGER check_avail
NO CASCADE BEFORE INSERT ON orders
REFERENCING NEW AS new_order
FOR EACH ROW MODE DB2SQL
WHEN (new_order.quantity > (SELECT on_hand FROM parts

WHERE new_order.partno=parts.partno))
BEGIN ATOMIC

SIGNAL SQLSTATE '75001' ('Insufficient stock for order');
END

SIGNAL SQLSTATE

1042 SQL Reference

UPDATE
The UPDATE statement updates the values of specified columns in rows of a
table or view. Updating a row of a view updates a row of its base table.

The forms of this statement are:
v The Searched UPDATE form is used to update one or more rows (optionally

determined by a search condition).
v The Positioned UPDATE form is used to update exactly one row (as

determined by the current position of a cursor).

Invocation
An UPDATE statement can be embedded in an application program or issued
through the use of dynamic SQL statements. It is an executable statement that
can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at
least one of the following:
v UPDATE privilege on the table or view where rows are to be updated
v UPDATE privilege on each of the columns to be updated.
v CONTROL privilege on the table or view where rows are to be updated
v SYSADM or DBADM authority.
v If a row-fullselect is included in the assignment, at least one of the following

for each referenced table or view:
– SELECT privilege
– CONTROL privilege
– SYSADM or DBADM authority.

For each table or view referenced by a subquery, the privileges held by the
authorization ID of the statement must also include at least one of the
following:
v SELECT privilege
v CONTROL privilege
v SYSADM or DBADM authority.

When the package is precompiled with SQL92 rules 107 and the searched form
of an UPDATE includes a reference to a column of the table or view in the

107. The package used to process the statement is precompiled using option LANGLEVEL with value SQL92E or
MIA.

UPDATE

Chapter 6. SQL Statements 1043

right side of the assignment-clause or anywhere in the search-condition, the
privileges held by the authorization ID of the statement must also include at
least one of the following:
v SELECT privilege
v CONTROL privilege
v SYSADM or DBADM authority.

When the specified table or view is preceded by the ONLY keyword, the
privileges held by the authorization ID of the statement must also include the
SELECT privilege for every subtable or subview of the specified table or view.

GROUP privileges are not checked for static UPDATE statements.

Syntax
Searched UPDATE:

�� UPDATE table-name
view-name
ONLY (table-name)

view-name

AS
correlation-name

�

� SET assignment-clause
WHERE search-condition

��

Positioned UPDATE:

�� UPDATE table-name
view-name
ONLY (table-name)

view-name

SET assignment-clause �

� WHERE CURRENT OF cursor-name ��

UPDATE

1044 SQL Reference

assignment-clause:

�

�

� �

�

,

column-name = expression
NULL
DEFAULT

..attribute-name
, ,

(1)
(column-name) = (expression)

NULL
DEFAULT

..attribute-name (2)
row-fullselect

Notes:

1 The number of expressions, NULLs and DEFAULTs must match the
number of column-names.

2 The number of columns in the select list must match the number of
column-names.

Description

table-name or view-name
Is the name of the table or view to be updated. The name must identify a
table or view described in the catalog, but not a catalog table, a view of a
catalog table (unless it is one of the updatable SYSSTAT views), a
summary table, read-only view, or a nickname. (For an explanation of
read-only views, see “CREATE VIEW” on page 823. For an explanation of
updatable catalog views, see “Appendix D. Catalog Views” on page 1127.)

If table-name is a typed table, rows of the table or any of its proper
subtables may get updated by the statement. Only the columns of the
specified table may be set or referenced in the WHERE clause. For a
positioned UPDATE, the associated cursor must also have specified the
same table or view in the FROM clause without using ONLY.

ONLY (table-name)
Applicable to typed tables, the ONLY keyword specifies that the statement
should apply only to data of the specified table and rows of proper
subtables cannot be updated by the statement. For a positioned UPDATE,
the associated cursor must also have specified the table in the FROM
clause using ONLY. If table-name is not a typed table, the ONLY keyword
has no effect on the statement.

ONLY (view-name)
Applicable to typed views, the ONLY keyword specifies that the statement
should apply only to data of the specified view and rows of proper
subviews cannot be updated by the statement. For a positioned UPDATE,

UPDATE

Chapter 6. SQL Statements 1045

the associated cursor must also have specified the view in the FROM
clause using ONLY. If view-name is not a typed view, the ONLY keyword
has no effect on the statement.

AS
Optional keyword to introduce the correlation-name.

correlation-name
May be used within search-condition to designate the table or view. (For
an explanation of correlation-name, see “Correlation Names” on page 127.)

SET
Introduces the assignment of values to column names.

assignment-clause

column-name
Identifies a column to be updated. The column-name must identify an
updatable column of the specified table or view.108 The object ID
column of a typed table is not updatable (SQLSTATE 428DZ). A
column must not be specified more than once, unless it is followed by
an attribute-name (SQLSTATE 42701).

For a Positioned UPDATE:
v If the UPDATE clause was specified in the select-statement of the

cursor, each column name in the assignment-clause must also
appear in the UPDATE clause.

v If the UPDATE clause was not specified in the select-statement of
the cursor and LANGLEVEL MIA or SQL92E was specified when
the application was precompiled, the name of any updatable
column may be specified.

v If the UPDATE clause was not specified in the select-statement of
the cursor and LANGLEVEL SAA1 was specified either explicitly or
by default when the application was precompiled, no columns may
be updated.

..attribute-name
Specifies the attribute of a structured type that is set (referred to as an
attribute assignment. The column-name specified must be defined with a
user-defined structured type (SQLSTATE 428DP). The attribute-name
must be an attribute of the structured type of column-name (SQLSTATE
42703). An assignment that does not involve the ..attribute-name clause
is referred to as a conventional assignment.

expression
Indicates the new value of the column. The expression is any

108. A column of a partitioning key is not updatable (SQLSTATE 42997). The row of data must be deleted and
inserted to change columns in a partitioning key.

UPDATE

1046 SQL Reference

expression of the type described in “Expressions” on page 157. The
expression can not include a column function except when it occurs
within a scalar fullselect (SQLSTATE 42903).

An expression may contain references to columns of the target table of
the UPDATE statement. For each row that is updated, the value of
such a column in an expression is the value of the column in the row
before the row is updated.

NULL
Specifies the null value and can only be specified for nullable columns
(SQLSTATE 23502). NULL cannot be the value in an attribute
assignment (SQLSTATE 429B9) unless it is specifically cast to the data
type of the attribute.

DEFAULT
Specifies that the default value should be used based on how the
corresponding column is defined in the table. The value that is
inserted depends on how the column was defined.
v If the column was defined as a generated column based on an

expression, the column value will be generated by the system,
based on the expression.

v If the column was defined using the IDENTITY clause, the value is
generated by the database manager.

v If the column was defined using the WITH DEFAULT clause, then
the value is set to the default defined for the column (see
default-clause in “ALTER TABLE” on page 477).

v If the column was defined without specifying the WITH DEFAULT
clause, the GENERATED clause, or the NOT NULL clause, then the
value used is NULL.

v If the column was defined using the NOT NULL clause and the
GENERATED clause was not used, or the WITH DEFAULT clause
was not used, or DEFAULT NULL was used, the DEFAULT
keyword cannot be specified for that column (SQLSTATE 23502).

The only value that a generated column defined with the
GENERATED ALWAYS clause can be set to is DEFAULT (SQLSTATE
428C9).

The DEFAULT keyword cannot be used as the value in an attribute
assignment (SQLSTATE 429B9).

row-fullselect
A fullselect that returns a single row with the number of columns
corresponding to the number of column-names specified for

UPDATE

Chapter 6. SQL Statements 1047

assignment. The values are assigned to each corresponding
column-name. If the result of the row-fullselect is no rows, then null
values are assigned.

A row-fullselect may contain references to columns of the target table of
the UPDATE statement. For each row that is updated, the value of
such a column in an expression is the value of the column in the row
before the row is updated. An error is returned if there is more than
one row in the result (SQLSTATE 21000).

WHERE
Introduces a condition that indicates what rows are updated. You can
omit the clause, give a search condition, or name a cursor. If the clause is
omitted, all rows of the table or view are updated.

search-condition
Is any search condition as described in “Chapter 3. Language
Elements” on page 63. Each column-name in the search condition, other
than in a subquery, must name a column of the table or view. When
the search condition includes a subquery in which the same table is
the base object of both the UPDATE and the subquery, the subquery is
completely evaluated before any rows are updated.

The search-condition is applied to each row of the table or view and
the updated rows are those for which the result of the
search-condition is true.

If the search condition contains a subquery, the subquery can be
thought of as being executed each time the search condition is applied
to a row, and the results used in applying the search condition. In
actuality, a subquery with no correlated references is executed only
once, whereas a subquery with a correlated reference may have to be
executed once for each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The
cursor-name must identify a declared cursor as explained in
“DECLARE CURSOR” on page 841. The DECLARE CURSOR
statement must precede the UPDATE statement in the program.

The table or view named must also be named in the FROM clause of
the SELECT statement of the cursor, and the result table of the cursor
must not be read-only. (For an explanation of read-only result tables,
see “DECLARE CURSOR” on page 841.)

When the UPDATE statement is executed, the cursor must be
positioned on a row; that row is updated.

UPDATE

1048 SQL Reference

This form of UPDATE cannot be used if the target of the update is a
view that includes an OLAP function in the select list of the fullselect
that defines the view (SQLSTATE 42828).

Rules
v Assignment: Update values are assigned to columns under the assignment

rules described in Chapter 3.
v Validity: The updated row must conform to any constraints imposed on

the table (or on the base table of the view) by any unique index on an
updated column.
If a view is used that is not defined using WITH CHECK OPTION, rows
can be changed so that they no longer conform to the definition of the view.
Such rows are updated in the base table of the view and no longer appear
in the view.
If a view is used that is defined using WITH CHECK OPTION, an updated
row must conform to the definition of the view. For an explanation of the
rules governing this situation, see “CREATE VIEW” on page 823.

v Check Constraint: Update value must satisfy the check-conditions of the
check constraints defined on the table.
An UPDATE to a table with check constraints defined has the constraint
conditions for each column updated evaluated once for each row that is
updated. When processing an UPDATE statement, only the check
constraints referring to the updated columns are checked.

v Referential Integrity: The value of the parent unique keys cannot be
changed if the update rule is RESTRICT and there are one or more
dependent rows. However, if the update rule is NO ACTION, parent
unique keys can be updated as long as every child has a parent key by the
time the update statement completes. A non-null update value of a foreign
key must be equal to a value of the primary key of the parent table of the
relationship.

Notes
v If an update value violates any constraints, or if any other error occurs

during the execution of the UPDATE statement, no rows are updated. The
order in which multiple rows are updated is undefined.

v When an UPDATE statement completes execution, the value of
SQLERRD(3) in the SQLCA is the number of rows updated. The
SQLERRD(5) field contains the number of rows inserted, deleted, or
updated by all activated triggers. For a description of the SQLCA, see
“Appendix B. SQL Communications (SQLCA)” on page 1107.

v Unless appropriate locks already exist, one or more exclusive locks are
acquired by the execution of a successful UPDATE statement. Until the
locks are released, the updated row can only be accessed by the application
process that performed the update (except for applications using the

UPDATE

Chapter 6. SQL Statements 1049

Uncommitted Read isolation level). For further information on locking, see
the descriptions of the COMMIT, ROLLBACK, and LOCK TABLE
statements.

v If the URL value of a DATALINK column is updated, this is the same as
deleting the old DATALINK value then inserting the new one. First, if the
old value was linked to a file, that file is unlinked. Then, unless the linkage
attributes of the DATALINK value are empty, the specified file is linked to
that column.
The comment value of a DATALINK column can be updated without
relinking the file by specifying an empty string as the URL path (for
example, as the data-location argument of the DLVALUE scalar function or
by specifying the new value to be the same as the old value).
If a DATALINK column is updated with a null, it is the same as deleting
the existing DATALINK value.
An error may occur when attempting to update a DATALINK value if the
file server of either the existing value or the new value is no longer
registered with the database server (SQLSTATE 55022).

v When updating the column distribution statistics for a typed table, the
subtable that first introduced the column must be specified.

v Multiple attribute assignments on the same structured type column occur in
the order specified in the SET clause and, within a parenthesized set clause,
in left-to-right order.

v An attribute assignment invokes the mutator method for the attribute of the
user-defined structured type. For example, the assignment st..a1=x has the
same effect as using the mutator method in the assignment st = st..a1(x).

v While a given column may be a target column in only one conventional
assignment, a column may be a target column in multiple attribute
assignments (but only if it is not also a target column in a conventional
assignment).

v When an identity column defined as a distinct type is updated, the entire
computation is done in the source type, and the result is cast to the distinct
type before the value is actually assigned to the column.109

v To have DB2 generate a value on a SET statement for an identity column,
use the DEFAULT keyword:

SET NEW.EMPNO = DEFAULT

In this example, NEW.EMPNO is defined as an identity column, and the
value used to update this column is generated by DB2.

v See “INSERT” on page 938 for more information on consuming values of a
generated sequence for an identity column.

109. There is no casting of the previous value to the source type prior to the computation.

UPDATE

1050 SQL Reference

v See “INSERT” on page 938 for more information on exceeding the
maximum value for an identity column.

Examples
v Example 1: Change the job (JOB) of employee number (EMPNO) ‘000290’ in

the EMPLOYEE table to ‘LABORER’.
UPDATE EMPLOYEE
SET JOB = 'LABORER'
WHERE EMPNO = '000290'

v Example 2: Increase the project staffing (PRSTAFF) by 1.5 for all projects
that department (DEPTNO) ‘D21’ is responsible for in the PROJECT table.

UPDATE PROJECT
SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = 'D21'

v Example 3: All the employees except the manager of department
(WORKDEPT) ‘E21’ have been temporarily reassigned. Indicate this by
changing their job (JOB) to NULL and their pay (SALARY, BONUS,
COMM) values to zero in the EMPLOYEE table.

UPDATE EMPLOYEE
SET JOB=NULL, SALARY=0, BONUS=0, COMM=0
WHERE WORKDEPT = 'E21' AND JOB <> 'MANAGER'

This statement could also be written as follows.
UPDATE EMPLOYEE
SET (JOB, SALARY, BONUS, COMM) = (NULL, 0, 0, 0)
WHERE WORKDEPT = 'E21' AND JOB <> 'MANAGER'

v Example 4: Update the salary and the commission column of the employee
with employee number 000120 to the average of the salary and of the
commission of the employees of the updated row’s department respectively.
UPDATE EMPLOYEE EU
SET (EU.SALARY, EU.COMM)
=

(SELECT AVG(ES.SALARY), AVG(ES.COMM)
FROM EMPLOYEE ES
WHERE ES.WORKDEPT = EU.WORKDEPT)
WHERE EU.EMPNO = '000120'

v Example 5: In a C program display the rows from the EMPLOYEE table
and then, if requested to do so, change the job (JOB) of certain employees
to the new job keyed in.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT *

FROM EMPLOYEE
FOR UPDATE OF JOB;

EXEC SQL OPEN C1;

EXEC SQL FETCH C1 INTO ... ;

UPDATE

Chapter 6. SQL Statements 1051

if (strcmp (change, "YES") == 0)
EXEC SQL UPDATE EMPLOYEE

SET JOB = :newjob
WHERE CURRENT OF C1;

EXEC SQL CLOSE C1;

v Example 6: These examples mutate attributes of column objects.
Assume that the following types and tables exist:

CREATE TYPE POINT AS (X INTEGER, Y INTEGER)
NOT FINAL WITHOUT COMPARISONS
MODE DB2SQL

CREATE TYPE CIRCLE AS (RADIUS INTEGER, CENTER POINT)
NOT FINAL WITHOUT COMPARISONS
MODE DB2SQL

CREATE TABLE CIRCLES (ID INTEGER, OWNER VARCHAR(50), C CIRCLE

The following example updates the CIRCLES table by changing the
OWNER column and the RADIUS attribute of the CIRCLE column where
the ID is 999:

UPDATE CIRCLES
SET OWNER = 'Bruce'

C..RADIUS = 5
WHERE ID = 999

The following example transposes the X and Y coordinates of the center of
the circle identified by 999:

UPDATE CIRCLES
SET C..CENTER..X = C..CENTER..Y,

C..CENTER..Y = C..CENTER..X
WHERE ID = 999

The following example is another way of writing both of the above
statements. This example combines the effects of both of the above
examples:

UPDATE CIRCLES
SET (OWNER,C..RADIUS,C..CENTER..X,C..CENTER..Y) =

('Bruce',5,C..CENTER..Y,C..CENTER..X)
WHERE ID = 999

UPDATE

1052 SQL Reference

VALUES
The VALUES statement is a form of query. It can be embedded in an
application program or issued interactively. For detailed information, see
“fullselect” on page 434.

VALUES

Chapter 6. SQL Statements 1053

VALUES INTO
The VALUES INTO statement produces a result table consisting of at most
one row and assigns the values in that row to host variables.

Invocation
This statement can be embedded only in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

�� VALUES

�

expression
,

(expression)

INTO �

,

host-variable ��

Description

VALUES
Introduces a single row consisting of one of more columns.

expression
An expression that defines a single value of a one column result table.

(expression,...)
One or more expressions that define the values for one or more
columns of the result table.

INTO
Introduces a list of host variables.

host-variable
Identifies a variable that is described in the program under the rules
for declaring host variables.

The first value in the result row is assigned to the first variable in the
list, the second value to the second variable, and so on. If the number
of host variables is less than the number of column values, the value
'W' is assigned to the SQLWARN3 field of the SQLCA. (See
“Appendix B. SQL Communications (SQLCA)” on page 1107.)

Each assignment to a variable is made according to the rules
described in “Assignments and Comparisons” on page 94.
Assignments are made in sequence through the list.

If an error occurs, no value is assigned to any host variable.

VALUES INTO

1054 SQL Reference

Examples
Example 1: This C example retrieves the value of the CURRENT PATH special
register into a host variable.

EXEC SQL VALUES(CURRENT PATH)
INTO :hvl;

Example 2: This C example retrieves a portion of a LOB field into a host
variable, exploiting the LOB locator for deferred retrieval.

EXEC SQL VALUES (substr(:locator1,35))
INTO :details;

VALUES INTO

Chapter 6. SQL Statements 1055

WHENEVER
The WHENEVER statement specifies the action to be taken when a specified
exception condition occurs.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. The statement is not supported in REXX.

Authorization
None required.

Syntax

�� WHENEVER NOT FOUND
SQLERROR
SQLWARNING

CONTINUE
GOTO host-label
GO TO :

��

Description
The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify
the type of exception condition.

NOT FOUND
Identifies any condition that results in an SQLCODE of +100 or an
SQLSTATE of '02000'.

SQLERROR
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARN0
is 'W'), or that results in a positive SQL return code other than +100.

The CONTINUE or GO TO clause is used to specify what is to happen when
the identified type of exception condition exists.

CONTINUE
Causes the next sequential instruction of the source program to be
executed.

GOTO or GO TO host-label
Causes control to pass to the statement identified by host-label. For
host-label, substitute a single token, optionally preceded by a colon. The
form of the token depends on the host language.

Notes
There are three types of WHENEVER statements:
v WHENEVER NOT FOUND
v WHENEVER SQLERROR

WHENEVER

1056 SQL Reference

v WHENEVER SQLWARNING

Every executable SQL statement in a program is within the scope of one
implicit or explicit WHENEVER statement of each type. The scope of a
WHENEVER statement is related to the listing sequence of the statements in
the program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of
each type that is specified before that SQL statement in the source program. If
a WHENEVER statement of some type is not specified before an SQL
statement, that SQL statement is within the scope of an implicit WHENEVER
statement of that type in which CONTINUE is specified.

Example
In the following C example, if an error is produced, go to HANDLERR. If a
warning code is produced, continue with the normal flow of the program. If
no data is returned, go to ENDDATA.

EXEC SQL WHENEVER SQLERROR GOTO HANDLERR;
EXEC SQL WHENEVER SQLWARNING CONTINUE;
EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA;

WHENEVER

Chapter 6. SQL Statements 1057

WHENEVER

1058 SQL Reference

Chapter 7. SQL Procedures

An SQL procedure consists of a CREATE PROCEDURE statement with a
procedure body.

This chapter contains the syntax and parameter descriptions for the procedure
body in an SQL Procedure Statement.

© Copyright IBM Corp. 1993, 2000 1059

SQL Procedure Statement
The procedure body in an SQL stored procedure definition contains the source
statements for the stored procedure.

This chapter contains syntax diagrams, semantic descriptions, rules, and
examples of the use of the statements that constitute the procedure body.

If an SQL control statement is specified as the SQL procedure body, multiple
statements can be specified within the control statement. These statements are
defined as SQL procedure statements.

Syntax

�� label: SQL-control-statement
SQL-statement

��

SQL-control-statement:

ALLOCATE CURSOR statement
assignment statement
ASSOCIATE LOCATORS statement
CASE statement
compound statement
FOR statement
GET DIAGNOSTICS statement
GOTO statement
IF statement
ITERATE statement
LEAVE statement
LOOP statement
REPEAT statement
RESIGNAL statement
RETURN statement
SIGNAL statement
WHILE statement

Description

label:
Specifies the label for an SQL procedure statement. The label must be
unique within a list of SQL procedure statements, including any
compound statements nested within the list. Note that compound
statements that are not nested may use the same label. A list of SQL
procedure statements is possible in a number of SQL control statements.

SQL-statement
All executable SQL statements can be contained within an SQL procedure
body with the exception of the following:

SQL Procedure Statement

1060 SQL Reference

v CONNECT
v CREATE any object other than indexes, tables, or views
v DESCRIBE
v DISCONNECT
v DROP any object other than indexes, tables, or views
v FLUSH EVENT MONITOR
v REFRESH TABLE
v RELEASE (connection only)
v RENAME TABLE
v RENAME TABLESPACE
v REVOKE
v SET CONNECTION
v SET INTEGRITY

Note: You may include CALL statements within an SQL procedure body,
but these CALL statements can only call another SQL procedure.
CALL statements within an SQL procedure body cannot call other
types of stored procedures.

SQL Procedure Statement

Chapter 7. SQL Procedures 1061

ALLOCATE CURSOR Statement
The ALLOCATE CURSOR statement allocates a cursor for the result set
identified by the result set locator variable. See “ASSOCIATE LOCATORS
Statement” on page 1066 for more information on result set locator variables.

Syntax

�� ALLOCATE cursor-name CURSOR FOR RESULT SET rs-locator-variable ��

Description

cursor-name
Specifies the cursor name. The name must not identify a cursor that has
already been declared in the source SQL procedure (SQLSTATE 24502).

CURSOR FOR RESULT SET rs-locator-variable

Specifies a result set locator variable that has been declared in the source
SQL procedure, according to the rules for host variables. For more
information on declaring SQL variables, see “SQL variable declaration” on
page 1071.

The result set locator variable must contain a valid result set locator value,
as returned by the ASSOCIATE LOCATORS SQL statement (SQLSTATE
24501).

Notes
v Dynamically prepared ALLOCATE CURSOR statements: The EXECUTE

statement with the USING clause must be used to execute a dynamically
prepared ALLOCATE CURSOR statement. In a dynamically prepared
statement, references to host variables are represented by parameter
markers (question marks).
In the ALLOCATE CURSOR statement, rs-locator-variable is always a host
variable. Thus, for a dynamically prepared ALLOCATE CURSOR statement,
the USING clause of the EXECUTE statement must identify the host
variable whose value is to be substituted for the parameter marker that
represents rs-locator-variable.

v You cannot prepare an ALLOCATE CURSOR statement with a statement
identifier that has already been used in a DECLARE CURSOR statement.
For example, the following SQL statements are invalid because the
PREPARE statement uses STMT1 as an identifier for the ALLOCATE
CURSOR statement and STMT1 has already been used for a DECLARE
CURSOR statement.

DECLARE CURSOR C1 FOR STMT1;

PREPARE STMT1 FROM
'ALLOCATE C2 CURSOR FOR RESULT SET ?';

ALLOCATE CURSOR Statement

1062 SQL Reference

Rules
v The following rules apply when using an allocated cursor:

– An allocated cursor cannot be opened with the OPEN statement
(SQLSTATE 24502).

– An allocated cursor can be closed with the CLOSE statement. Closing an
allocated cursor closes the associated cursor in the stored procedure.

– Only one cursor can be allocated to each result set.
v Allocated cursors last until a rollback operation, an implicit close, or an

explicit close.
v A commit operation destroys allocated cursors that are not defined WITH

HOLD by the stored procedure.
v Destroying an allocated cursor closes the associated cursor in the SQL

procedure.

Examples
This SQL procedure example defines and associates cursor C1 with the result
set locator variable LOC1 and the related result set returned by the SQL
procedure:

ALLOCATE C1 CURSOR FOR RESULT SET LOC1;

ALLOCATE CURSOR Statement

Chapter 7. SQL Procedures 1063

Assignment Statement
The assignment statement assigns a value to an output parameter, a local
variable, or a special register.

Syntax

�� SET parameter-name = expression
SQL-variable-name NULL
special-register

��

Description

parameter-name
Identifies the parameter that is the assignment target. The parameter must
be specified in parameter-declaration in the CREATE PROCEDURE
statement and must be defined as an OUT or INOUT parameter.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used. SQL variables can be defined in a
compound statement.

special-register
Identifies the special register that is the assignment target. If the special
register accepts a schema name as a value, including the CURRENT
FUNCTION PATH or CURRENT SCHEMA special registers, DB2
determines whether the assignment parameter is an SQL variable. If the
assignment parameter is an SQL variable, DB2 assigns the value of the
SQL variable to the special register. If the assignment parameter is not an
SQL variable, DB2 assumes that the assignment parameter is a schema
name and assigns that schema name to the special register.

The initial settings of special register values in an SQL procedure are
inherited from the caller of the procedure. The assignment of a new
setting is valid for the entire SQL procedure where it is set, and will be
inherited by any procedure that it subsequently calls. When a procedure
returns to its caller, the special registers are restored to the original
settings of the caller.

expression or NULL
Specifies the expression or value that is the source for the assignment.

Rules
v Assignment statements in SQL procedures must conform to the SQL

assignment rules.
v The data type of the target and source must be compatible.

Assignment Statement

1064 SQL Reference

v When a string is assigned to a fixed-length variable and the length of the
string is less than the length attribute of the target, the string is padded on
the right with the necessary number of single-byte, double-byte, or UCS-2
blanks.

v When a string is assigned to a variable and the string is longer than the
length attribute of the variable, an error is issued.

v A string assigned to a variable is first converted, if necessary, to the
codepage of the target.

v If truncation of the whole part of the number occurs on assignment to a
numeric variable, an error is raised.

Examples
Increase the SQL variable p_salary by 10 percent.

SET p_salary = p_salary + (p_salary * .10)

Set SQL variable p_salary to the null value.
SET p_salary = NULL

Assignment Statement

Chapter 7. SQL Procedures 1065

ASSOCIATE LOCATORS Statement
The ASSOCIATE LOCATORS statement gets the result set locator value for
each result set returned by a stored procedure.

Syntax

��
RESULT SET

ASSOCIATE LOCATOR
LOCATORS

�

� �

,

(rs-locator-variable) WITH PROCEDURE procedure-name ��

Description

rs-locator-variable
Specifies a result set locator variable that has been declared in a
compound statement.

WITH PROCEDURE
Identifies the stored procedure that returns result set locators by the
specified procedure name.

procedure-name
A procedure name is a qualified or unqualified name. Each part of the
name must be composed of SBCS characters.

A fully qualified procedure name is a two-part name. The first part is
an identifier that contains the schema name of the stored procedure.
The last part is an identifier that contains the name of the stored
procedure. A period must separate each of the parts. Any or all of the
parts can be a delimited identifier.

If the procedure name is unqualified, it has only one name because
the implicit schema name is not added as a qualifier to the procedure
name. Successful execution of the ASSOCIATE LOCATOR statement
only requires that the unqualified procedure name in the statement is
the same as the procedure name in the most recently executed CALL
statement that was specified with an unqualified procedure name. The
implicit schema name for the unqualified name in the CALL
statement is not considered in the match. The rules for how the
procedure name must be specified are described below.

When the ASSOCIATE LOCATORS statement is executed, the procedure
name or specification must identify a stored procedure that the requester
has already invoked using the CALL statement. The procedure name in
the ASSOCIATE LOCATORS statement must be specified the same way

ASSOCIATE LOCATORS Statement

1066 SQL Reference

that it was specified on the CALL statement. For example, if a two-part
name was specified on the CALL statement, you must use a two-part
name in the ASSOCIATE LOCATORS statement.

Rules
v More than one locator can be assigned to a result set. You can issue the

same ASSOCIATE LOCATORS statement more than once with different
result set locator variables.

v If the number of result set locator variables that are listed in the
ASSOCIATE LOCATORS statement is less than the number of locators
returned by the stored procedure, all variables in the statement are assigned
a value, and a warning is issued.

v If the number of result set locator variables that are listed in the
ASSOCIATE LOCATORS statement is greater than the number of locators
returned by the stored procedure, the extra variables are assigned a value of
0.

v If a stored procedure is called more than once from the same caller, only the
most recent result sets are accessible.

Examples
The statements in the following examples are assumed to be embedded in
SQL Procedures.

Example 1: Use result set locator variables LOC1 and LOC2 to get the result
set locator values for the two result sets returned by stored procedure P1.
Assume that the stored procedure is called with a one-part name.

CALL P1;
ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)

WITH PROCEDURE P1;

Example 2: Repeat the scenario in Example 1, but use a two-part name to
specify an explicit schema name for the stored procedure to ensure that stored
procedure P1 in schema MYSCHEMA is used.

CALL MYSCHEMA.P1;
ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)

WITH PROCEDURE MYSCHEMA.P1;

ASSOCIATE LOCATORS Statement

Chapter 7. SQL Procedures 1067

CASE Statement
The CASE statement selects an execution path based on multiple conditions.

Syntax

�� CASE searched-case-statement-when-clause
simple-case-statement-when-clause

END CASE ��

simple-case-statement-when-clause:

expression � �WHEN expression THEN SQL-procedure-statement ; �

�

�ELSE SQL-procedure-statement ;

searched-case-statement-when-clause:

� �WHEN search-condition THEN SQL-procedure-statement ; �

�

�ELSE SQL-procedure-statement ;

Description

CASE
Begins a case-expression.

simple-case-statement-when-clause
The value of the expression prior to the first WHEN keyword is tested for
equality with the value of each expression that follows the WHEN
keyword. If the search condition is true, the THEN statement is executed.
If the result is unknown or false, processing continues to the next search
condition. If the result does not match any of the search conditions, and
an ELSE clause is present, the statements in the ELSE clause are
processed.

CASE Statement

1068 SQL Reference

searched-case-statement-when-clause
The search-condition following the WHEN keyword is evaluated. If it
evaluates to true, the statements in the associated THEN clause are
processed. If it evaluates to false, or unknown, the next search-condition is
evaluated. If no search-condition evaluates to true and an ELSE clause is
present, the statements in the ELSE clause are processed.

SQL-procedure-statement
Specifies a statement that should be invoked.

END CASE
Ends a case-statement.

Notes
v If none of the conditions specified in the WHEN are true, and an ELSE

clause is not specified, an error is issued at runtime, and the execution of
the case statement is terminated (SQLSTATE 20000).

v Ensure that your CASE statement covers all possible execution conditions.

Examples
Depending on the value of SQL variable v_workdept, update column
DEPTNAME in table DEPARTMENT with the appropriate name.

The following example shows how to do this using the syntax for a
simple-case-statement-when-clause:

CASE v_workdept
WHEN'A00'

THEN UPDATE department
SET deptname = 'DATA ACCESS 1';

WHEN 'B01'
THEN UPDATE department
SET deptname = 'DATA ACCESS 2';

ELSE UPDATE department
SET deptname = 'DATA ACCESS 3';

END CASE

The following example shows how to do this using the syntax for a
searched-case-statement-when-clause:

CASE
WHEN v_workdept = 'A00'

THEN UPDATE department
SET deptname = 'DATA ACCESS 1';

WHEN v_workdept = 'B01'
THEN UPDATE department
SET deptname = 'DATA ACCESS 2';

ELSE UPDATE department
SET deptname = 'DATA ACCESS 3';

END CASE

CASE Statement

Chapter 7. SQL Procedures 1069

Compound Statement
A compound statement groups other statements together in an SQL
procedure. You can declare SQL variables, cursors, and condition handlers
within a compound statement.

Syntax

��
label:

BEGIN
NOT ATOMIC

ATOMIC
�

�

� SQL-variable-declaration ;
condition-declaration
return-codes-declaration

�

�

� DECLARE-CURSOR-statement ; � handler-declaration ;

�

� � SQL-procedure-statement ; END
label

��

SQL-variable-declaration:

DECLARE �

,

SQL-variable-name
DEFAULT NULL

data-type
DEFAULT constant

RESULT_SET_LOCATOR VARYING

condition-declaration:

DECLARE condition-name CONDITION FOR �

�

VALUE
SQLSTATE

string-constant

Compound Statement

1070 SQL Reference

return-codes-declaration:

DECLARE SQLSTATE CHAR (5)
SQLCODE INTEGER DEFAULT constant

handler-declaration:

DECLARE CONTINUE
EXIT
UNDO

HANDLER FOR �

,
VALUE

SQLSTATE string
condition-name
SQLEXCEPTION
SQLWARNING
NOT FOUND

�

� SQL-procedure-statement

Description

label
Defines the label for the code block. If the beginning label is specified, it
can be used to qualify SQL variables declared in the compound statement
and can also be specified on a LEAVE statement. If the ending label is
specified, it must be the same as the beginning label.

ATOMIC or NOT ATOMIC
ATOMIC indicates that if an error occurs in the compound statement, all
SQL statements in the compound statement will be rolled back. NOT
ATOMIC indicates that an error within the compound statement does not
cause the compound statement to be rolled back.

SQL-variable-declaration
Declares a variable that is local to the compound statement.

SQL-variable-name
Defines the name of a local variable. DB2 converts all SQL
variable names to uppercase. The name cannot be the same as
another SQL variable within the same compound statement and
cannot be the same as a parameter name. SQL variable names
should not be the same as column names. If an SQL statement
contains an identifier with the same name as an SQL variable and
a column reference, DB2 interprets the identifier as a column.

data-type
Specifies the data type of the variable. Refer to “Data Types” on
page 75 for a description of SQL data types. User-defined data
types, graphic types, and FOR BIT DATA are not supported.

Compound Statement

Chapter 7. SQL Procedures 1071

DEFAULT constant or NULL
Defines the default for the SQL variable. The variable is initialized
when the SQL procedure is called. If a default value is not
specified, the variable is initialized to NULL.

RESULT_SET_LOCATOR VARYING
Specifies the data type for a result set locator variable.

condition-declaration
Declares a condition name and corresponding SQLSTATE value.

condition-name
Specifies the name of the condition. The condition name must be
unique within the procedure body and can be referenced only
within the compound statement in which it is declared.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The
string-constant must be specified as five characters enclosed in
single quotes, and cannot be '00000'.

return-codes-declaration
Declares special variables called SQLSTATE and SQLCODE that are set
automatically to the value returned after processing an SQL statement.
Both the SQLSTATE and SQLCODE variables can only be declared in the
outermost compound statement of the SQL procedure body. These
variables may be declared only once per SQL procedure.

declare-cursor-statement
Declares a cursor in the procedure body. Each cursor must have a unique
name. The cursor can be referenced only from within the compound
statement. Use an OPEN statement to open the cursor, and a FETCH
statement to read rows using the cursor. To return result sets from the
SQL procedure to the client application, the cursor must be declared using
the WITH RETURN clause. The following example returns one result set
to the client application:

CREATE PROCEDURE RESULT_SET()
LANGUAGE SQL
RESULT SETS 1
BEGIN

DECLARE C1 CURSOR WITH RETURN FOR
SELECT id, name, dept, job

FROM staff;
OPEN C1;

END

Note: To process result sets, you must write your client application using
one of the DB2 Call Level Interface (DB2 CLI), Open Database
Connectivity (ODBC), Java Database Connectivity (JDBC), or embedded
SQL for Java (SQLJ) application programming interfaces.

Compound Statement

1072 SQL Reference

For more information on declaring a cursor, refer to “DECLARE
CURSOR” on page 841.

handler-declaration
Specifies a handler, a set of statements to execute when an exception or
completion condition occurs in the compound statement.
SQL-procedure-statement is a statement that executes when the handler
receives control.

A handler is active only within the compound statement in which it is
declared.

There are three types of condition handlers:

CONTINUE
After the handler is invoked successfully, control is returned to the
SQL statement that follows the statement that raised the exception. If
the error that raised the exception is a FOR, IF, CASE, WHILE, or
REPEAT statement (but not an SQL-procedure-statement within one of
these), then control returns to the statement that follows END FOR,
END IF, END CASE, END WHILE, or END REPEAT.

EXIT
After the handler is invoked successfully, control is returned to the
end of the compound statement that declared the handler.

UNDO
Before the handler is invoked, any SQL changes that were made in the
compound statement are rolled back. After the handler is invoked
successfully, control is returned to the end of the compound statement
that declared the handler. If UNDO is specified, then ATOMIC must
be specified.

The conditions under which the handler is activated:

SQLSTATE string
Specifies an SQLSTATE for which the handler is invoked. The
SQLSTATE cannot be '00000'.

condition-name
Specifies a condition name for which the handler is invoked. The
condition name must be previously defined in a condition declaration.

SQLEXCEPTION
Specifies that the handler is invoked when an SQLEXCEPTION
occurs. An SQLEXCEPTION is an SQLSTATE where the first two
characters are not "00", "01", or "02".

Compound Statement

Chapter 7. SQL Procedures 1073

SQLWARNING
Specifies that the handler is invoked when an SQLWARNING occurs.
An SQLWARNING is an SQLSTATE where the first two characters are
"01".

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition
occurs. NOT FOUND corresponds to an SQLSTATE where the first
two characters are "02".

Rules
v ATOMIC compound statements cannot be nested.
v The following rules apply to handler declarations:

– A handler declaration that contains SQLEXCEPTION, SQLWARNING, or
NOT FOUND cannot contain additional SQLSTATE or condition names.

– Handler declarations within the same compound statement cannot
contain duplicate conditions.

– A handler declaration cannot contain the same condition code or
SQLSTATE value more than once, and cannot contain an SQLSTATE
value and a condition name that represent the same SQLSTATE value.
For a list of SQLSTATE values and more information, refer to the Message
Reference.

– A handler is activated when it is the most appropriate handler for an
exception or completion condition. The most appropriate handler is a
handler (for the exception or completion condition) that is defined in the
compound statement, nearest in scope to the statement with the
exception or completion condition. If an exception occurs for which there
is no handler, execution of the compound statement is terminated.

Examples
Create a procedure body with a compound statement that performs the
following actions:
1. Declares SQL variables
2. Declares a cursor to return the salary of employees in a department

determined by an IN parameter. In the SELECT statement, casts the data
type of the salary column from a DECIMAL into a DOUBLE.

3. Declares an EXIT handler for the condition NOT FOUND (end of file)
which assigns the value '6666' to the OUT parameter medianSalary

4. Select the number of employees in the given department into the SQL
variable numRecords

5. Fetch rows from the cursor in a WHILE loop until 50% + 1 of the
employees have been retrieved

6. Return the median salary

Compound Statement

1074 SQL Reference

CREATE PROCEDURE DEPT_MEDIAN
(IN deptNumber SMALLINT, OUT medianSalary DOUBLE)
LANGUAGE SQL
BEGIN
DECLARE v_numRecords INTEGER DEFAULT 1;
DECLARE v_counter INTEGER DEFAULT 0;
DECLARE c1 CURSOR FOR

SELECT CAST(salary AS DOUBLE) FROM staff
WHERE DEPT = deptNumber
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

-- initialize OUT parameter
SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords FROM staff

WHERE DEPT = deptNumber;
OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1) DO

FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;

END

Compound Statement

Chapter 7. SQL Procedures 1075

FOR Statement
The FOR statement executes a statement or group of statements for each row
of a table.

Syntax

��
label:

FOR for-loop-name AS
cursor-name CURSOR FOR

�

� select-statement DO � SQL-procedure-statement ; END FOR
label

��

Description

label
Specifies the label for the FOR statement. If the beginning label is
specified, that label can be used in LEAVE and ITERATE statements. If the
ending label is specified, it must be the same as the beginning label.

for-loop-name
Specifies a label for the implicit compound statement generated to
implement the FOR statement. It follows the rules for the label of a
compound statement except that it cannot be used with and ITERATE or
LEAVE statement within the FOR statement. The for-loop-name is used to
qualify the column names returned by the specified select-statement.

cursor-name
Names the cursor that is used to select rows from the result table from the
SELECT statement. If not specified, DB2 generates a unique cursor name.

select-statement
Specifies the SELECT statement of the cursor. All columns in the select list
must have a name and there cannot be two columns with the same name.

SQL-procedure-statement
Specifies a statement (or statements) to be invoked for each row of the
table.

Rules
v The select list must consist of unique column names and the table specified

in the select list must exist when the procedure is created, or it must be a
table created in a previous SQL procedure statement.

v The cursor specified in a for-statement cannot be referenced outside the
for-statement and cannot be specified in an OPEN, FETCH, or CLOSE
statement.

FOR Statement

1076 SQL Reference

Examples
In the following example, the for-statement is used to iterate over the entire
employee table. For each row in the table, the SQL variable fullname is set to
the last name of the employee, followed by a comma, the first name, a blank
space, and the middle initial. Each value for fullname is inserted into table
tnames.

BEGIN
DECLARE fullname CHAR(40);
FOR vl AS

SELECT firstnme, midinit, lastname FROM employee
DO
SET fullname = lastname || ',' || firstnme ||' ' || midinit;
INSERT INTO tnames VALUE (fullname);

END FOR
END

FOR Statement

Chapter 7. SQL Procedures 1077

GET DIAGNOSTICS Statement
The GET DIAGNOSTICS statement obtains information about the previous
SQL statement invoked.

Syntax

�� GET DIAGNOSTICS SQL-variable-name = ROW_COUNT
RETURN_STATUS

��

Description

SQL-variable-name
Identifies the variable that is the assignment target. The variable must be
an integer variable. SQL variables can be defined in a compound
statement.

ROW_COUNT
Identifies the number of rows associated with the previous SQL statement
that was invoked. If the previous SQL statement is a DELETE, INSERT, or
UPDATE statement, ROW_COUNT identifies the number of rows deleted,
inserted, or updated by that statement, excluding rows affected by either
triggers or referential integrity constraints. If the previous statement is a
PREPARE statement, ROW_COUNT identifies the estimated number of
result rows in the prepared statement.

RETURN_STATUS
Identifies the status value returned from the stored procedure associated
with the previously executed SQL statement, provided that the statement
was a CALL statement invoking a procedure that returns a status. If the
previous statement is not such a statement, the value returned has no
meaning and could be any integer.

Rules
v The GET DIAGNOSTICS statement does not change the contents of the

diagnostics area (SQLCA). If an SQLSTATE or SQLCODE special variable is
declared in the SQL procedure, these are set to the SQLSTATE or SQLCODE
returned from issuing the GET DIAGNOSTICS statement.

Examples
In an SQL procedure, execute a GET DIAGNOSTICS statement to determine
how many rows were updated.

CREATE PROCEDURE sqlprocg (IN deptnbr VARCHAR(3))
LANGUAGE SQL
BEGIN

DECLARE SQLSTATE CHAR(5);
DECLARE rcount INTEGER;
UPDATE CORPDATA.PROJECT

SET PRSTAFF = PRSTAFF + 1.5

GET DIAGNOSTICS Statement

1078 SQL Reference

WHERE DEPTNO = deptnbr;
GET DIAGNOSTICS rcount = ROW_COUNT;

-- At this point, rcount contains the number of rows that were updated.
...

END

Within an SQL procedure, handle the returned status value from the
invocation of a stored procedure called TRYIT that could either explicitly
RETURN a positive value indicating a user failure, or encounter SQL errors
that would result in a negative return status value. If the procedure is
successful, it returns a value of zero.

CREATE PROCEDURE TESTIT ()
LANGUAGE SQL
A1:BEGIN

DECLARE RETVAL INTEGER DEFAULT 0;
...
CALL TRYIT;
GET DIAGNOSTICS RETVAL = RETURN_STATUS;
IF RETVAL <> 0 THEN

...
LEAVE A1;

ELSE
...

END IF;
END A1

GET DIAGNOSTICS Statement

Chapter 7. SQL Procedures 1079

GOTO Statement
The GOTO statement is used to branch to a user-defined label within an SQL
routine.

Syntax

�� GOTO label ��

Description

label
Specifies a labelled statement where processing is to continue. The
labelled statement and the GOTO statement must be in the same scope:
v If the GOTO statement is defined in a FOR statement, label must be

defined inside the same FOR statement, excluding a nested FOR
statement or nested compound statement

v If the GOTO statement is defined in a compound statement, label must
be defined inside the same compound statement, excluding a nested
FOR statement or nested compound statement

v If the GOTO statement is defined in a handler, label must be defined in
the same handler, following the other scope rules

v If the GOTO statement is defined outside of a handler, label must not be
defined within a handler.

If label is not defined within a scope that the GOTO statement can reach,
an error is returned (SQLSTATE 42736).

Rules
v It is recommended that the GOTO statement be used sparingly. This

statement interferes with normal processing sequences, thus making a
routine more difficult to read and maintain. Before using a GOTO
statement, determine whether another statement, such as IF or LEAVE, can
be used in place, to eliminate the need for a GOTO statement.

Examples
In the following compound statement, the parameters rating and v_empno are
passed into the procedure, which then returns the output parameter
return_parm as a date duration. If the employee’s time in service with the
company is less than 6 months, the GOTO statement transfers control to the
end of the procedure, and new_salary is left unchanged.

CREATE PROCEDURE adjust_salary
(IN v_empno CHAR(6),
IN rating INTEGER)
OUT return_parm DECIMAL (8,2))
MODIFIES SQL DATA
LANGUAGE SQL

GOTO Statement

1080 SQL Reference

BEGIN
DECLARE new_salary DECIMAL (9,2)
DECLARE service DECIMAL (8,2)

SELECT SALARY, CURRENT_DATE - HIREDATE
INTO new_salary, service
FROM EMPLOYEE
WHERE EMPNO = v_empno

IF service < 600
THEN GOTO EXIT

END IF
IF rating = 1

THEN SET new_salary = new_salary + (new_salary * .10)
ELSE IF rating = 2

THEN SET new_salary = new_salary + (new_salary * .05)
END IF
UPDATE EMPLOYEE

SET SALARY = new_salary
WHERE EMPNO = v_empno

EXIT: SET return_parm = service
END

GOTO Statement

Chapter 7. SQL Procedures 1081

IF Statement
The IF statement selects an execution path based on the evaluation of a
condition.

Syntax

�� IF search-condition THEN � SQL-procedure-statement ; �

� �

�ELSEIF search-condition THEN SQL-procedure-statement ;

�

�

�ELSE SQL-procedure-statement ;

END IF ��

Description

search-condition
Specifies the condition for which an SQL statement should be invoked. If
the condition is unknown or false, processing continues to the next search
condition, until either a condition is true or processing reaches the ELSE
clause.

SQL-procedure-statement
Specifies the statement to be invoked if the preceding search-condition is
true. If no search-condition evaluates to true, then the
SQL-procedure-statement following the ELSE keyword is invoked.

Examples
The following SQL procedure accepts two IN parameters: an employee
number employee_number and an employee rating rating. Depending on the
value of rating, the employee table is updated with new values in the salary
and bonus columns.

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6), INOUT rating SMALLINT)
LANGUAGE SQL
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found

SET rating = -1;
IF rating = 1

IF Statement

1082 SQL Reference

THEN UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

ELSEIF rating = 2
THEN UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END

IF Statement

Chapter 7. SQL Procedures 1083

ITERATE Statement
The ITERATE statement causes the flow of control to return to the beginning
of a labelled loop.

Syntax

�� ITERATE label ��

Description

label
Specifies the label of the FOR, LOOP, REPEAT, or WHILE statement to
which DB2 passes the flow of control.

Examples
This example uses a cursor to return information for a new department. If the
not_found condition handler was invoked, the flow of control passes out of the
loop. If the value of v_dept is 'D11', an ITERATE statement passes the flow of
control back to the top of the LOOP statement. Otherwise, a new row is
inserted into the DEPARTMENT table.

CREATE PROCEDURE ITERATOR()
LANGUAGE SQL
BEGIN

DECLARE v_dept CHAR(3);
DECLARE v_deptname VARCHAR(29);
DECLARE v_admdept CHAR(3);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE c1 CURSOR FOR

SELECT deptno, deptname, admrdept
FROM department
ORDER BY deptno;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
ins_loop:
LOOP

FETCH c1 INTO v_dept, v_deptname, v_admdept;
IF at_end = 1 THEN

LEAVE ins_loop;
ELSEIF v_dept = 'D11' THEN

ITERATE ins_loop;
END IF;
INSERT INTO department (deptno, deptname, admrdept)
VALUES ('NEW', v_deptname, v_admdept);

END LOOP;
CLOSE c1;

END

ITERATE Statement

1084 SQL Reference

LEAVE Statement
The LEAVE statement transfers program control out of a loop or a compound
statement.

Syntax

�� LEAVE label ��

Description

label
Specifies the label of the compound, FOR, LOOP, REPEAT, or WHILE
statement to exit.

Rules
When a LEAVE statement transfers control out of a compound statement, all
open cursors in the compound statement, except cursors that are used to
return result sets, are closed.

Examples
This example contains a loop that fetches data for cursor c1. If the value of
SQL variable at_end is not zero, the LEAVE statement transfers control out of
the loop.

CREATE PROCEDURE LEAVE_LOOP(OUT counter INTEGER)
LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER for not_found
SET at_end = 1;

SET v_counter = 0;
OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF at_end <> 0 THEN LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

LEAVE Statement

Chapter 7. SQL Procedures 1085

LOOP Statement
The LOOP statement repeats the execution of a statement or a group of
statements.

Syntax

��
label:

LOOP � SQL-procedure-statement ; END LOOP
label

��

Description

label
Specifies the label for the LOOP statement. If the beginning label is
specified, that label can be specified on LEAVE and ITERATE statements.
If the ending label is specified, a matching beginning label must be
specified.

SQL-procedure-statement
Specifies the statements to be invoked in the loop.

Examples
This procedure uses a LOOP statement to fetch values from the employee
table. Each time the loop iterates, the OUT parameter counter is incremented
and the value of v_midinit is checked to ensure that the value is not a single
space (' '). If v_midinit is a single space, the LEAVE statement passes the flow
of control outside of the loop.

CREATE PROCEDURE LOOP_UNTIL_SPACE(OUT counter INTEGER)
LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET counter = -1;

OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF v_midinit = ' ' THEN

LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

LOOP Statement

1086 SQL Reference

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

LOOP Statement

Chapter 7. SQL Procedures 1087

REPEAT Statement
The REPEAT statement executes a statement or group of statements until a
search condition is true.

Syntax

��
label:

REPEAT � SQL-procedure-statement ; UNTIL search-condition �

� END REPEAT
label

��

Description

label
Specifies the label for the REPEAT statement. If the beginning label is
specified, that label can be specified on LEAVE and ITERATE statements.
If an ending label is specified, a matching beginning label also must be
specified.

SQL-procedure-statement
Specifies the SQL statement to execute with the loop.

search-condition
Specifies a condition that is evaluated before each execution of the SQL
procedure statement. If the condition is false, DB2 executes the SQL
procedure statement in the loop.

Examples
A REPEAT statement fetches rows from a table until the not_found condition
handler is invoked.

CREATE PROCEDURE REPEAT_STMT(OUT counter INTEGER)
LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
fetch_loop:
REPEAT

REPEAT Statement

1088 SQL Reference

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
SET v_counter = v_counter + 1;
UNTIL at_end > 0

END REPEAT fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

REPEAT Statement

Chapter 7. SQL Procedures 1089

RESIGNAL Statement
The RESIGNAL statement is used to resignal an error or warning condition. It
causes an error or warning to be returned with the specified SQLSTATE, along
with optional message text.

Syntax

�� RESIGNAL
signal-value

signal-info

��

signal-value:

VALUE
SQLSTATE sqlstate-string-constant
condition-name

signal-info:

SET MESSAGE_TEXT = variable-name
diagnostic-string-constant

Description

SQLSTATE VALUE sqlstate-string-constant
The specified string constant represents an SQLSTATE. It must be a
character string constant with exactly 5 characters that follow the rules for
SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or

non-accented upper case letters ('A' through 'Z')
v The SQLSTATE class (first two characters) cannot be '00', since this

represents successful completion.

If the SQLSTATE does not conform to these rules, an error is raised
(SQLSTATE 428B3).

condition-name
Specifies the name of the condition.

SET MESSAGE_TEXT =
Specifies a string that describes the error or warning. The string is
returned in the SQLERRMC field of the SQLCA. If the actual string is

RESIGNAL Statement

1090 SQL Reference

longer than 70 bytes, it is truncated without warning. This clause can only
be specified if an SQLSTATE or condition-name is also specified
(SQLSTATE 42601).

variable-name
Identifies an SQL variable that must be declared within the compound
statement. The SQL variable must be defined as a CHAR or
VARCHAR data type.

diagnostic-string-constant
Specifies a character string constant that contains the message text.

Notes
v If the RESIGNAL statement is specified without a SQLSTATE clause or a

condition-name, the SQL routine returns to the caller with the identical
condition that invoked the handler.

v If a RESIGNAL statement is issued, and specifies a SQLSTATE or
condition-name, the SQLCODE assigned is:

+438 if the SQLSTATE begins with '01' or '02'
−438 otherwise

When a RESIGNAL statement is issued with no options, the SQLCODE is
unchanged from the exception that caused the handler to be invoked.

v If the SQLSTATE or condition indicates that an exception is signalled (an
SQLSTATE class other than ’01’ or ’02’):
– then, the exception is handled and control is transferred to a handler,

provided that a handler exists in the next outer compound statement (or
a compound statement even further out) from the compound statement
that includes the handler with the resignal statement, and the compound
statement contains a handler for the specified SQLSTATE,
condition-name, or SQLEXCEPTION;

– otherwise, the exception is not handled and control is immediately
returned to the end of the compound statement.

v If the SQLSTATE or condition indicates that a warning (SQLSTATE class
’01’) or not found condition (SQLSTATE class ’02’) is signalled:
– then the warning or not found condition is handled and control is

transferred to a handler, provided that a handler exists in the next outer
compound statement (or a compound statement even further out) from
the compound statement that includes the handler with the resignal
statement, and the compound statement contains a handler for the
specified SQLSTATE, condition-name, SQLWARNING (if the SQLSTATE
class is ’01’), or NOT FOUND (if the SQLSTATE class is ’02’);

– otherwise, the warning is not handled and processing continues with the
next statement.

RESIGNAL Statement

Chapter 7. SQL Procedures 1091

Examples
This example detects a division by zero error. The IF statement uses a
SIGNAL statement to invoke the overflow condition handler. The condition
handler uses a RESIGNAL statement to return a different SQLSTATE value to
the client application.

CREATE PROCEDURE divide (IN numerator INTEGER
IN denominator INTEGER
OUT result INTEGER

LANGUAGE SQL
CONTAINS SQL
BEGIN

DECLARE overflow CONDITION FOR SQLSTATE '22003';
DECLARE CONTINUE HANDLER FOR overflow
RESIGNAL SQLSTATE'22375' ;
IF denominator = 0 THEN
SIGNAL overflow;

ELSE
SET result = numerator / denominator;

END IF;
END

RESIGNAL Statement

1092 SQL Reference

RETURN Statement
The RETURN statement is used to return from the routine. For SQL functions
or methods, it returns the result of the function or method. For an SQL
procedure, it optionally returns an integer status value.

Syntax

�� RETURN
expression

��

Description

expression
Specifies a value that is returned from the routine:
v If the routine is a function or method, expression must be specified

(SQLSTATE 42630) and the data type of expression must be assignable to
the RETURNS type of the routine (SQLSTATE 42866).

v If the routine is a procedure, the data type of expression must be
INTEGER (SQLSTATE 428E2).

Notes
v When a value is returned from a procedure, the caller may access the value

using:
– the GET DIAGNOSTICS statement to retrieve the RETURN_STATUS

when the SQL procedure was called from another SQL procedure
– the parameter bound for the return value parameter marker in the

escape clause CALL syntax (?=CALL...) in a CLI application
– directly from the SQLCA returned from processing the CALL of an SQL

procedure by retrieving the value of SQLERRD[0] when the SQLCODE is
not less than zero (assume a value of −1 when SQLCODE is less than
zero).

Examples
Use a RETURN statement to return from an SQL stored procedure with a
status value of zero if successful, and −200 if not.

BEGIN
...

GOTO FAIL
...

SUCCESS: RETURN 0
FAIL: RETURN -200

END

RETURN Statement

Chapter 7. SQL Procedures 1093

SIGNAL Statement
The SIGNAL statement is used to signal an error or warning condition. It
causes an error or warning to be returned with the specified SQLSTATE, along
with optional message text.

Syntax

�� SIGNAL
VALUE

SQLSTATE sqlstate-string-constant
condition-name

�

�
SET MESSAGE_TEXT = variable-name

diagnostic-string-constant

��

Description

SQLSTATE VALUE sqlstate-string-constant
The specified string constant represents an SQLSTATE. It must be a
character string constant with exactly 5 characters that follow the rules for
SQLSTATEs:
v Each character must be from the set of digits ('0' through '9') or

non-accented upper case letters ('A' through 'Z')
v The SQLSTATE class (first two characters) cannot be '00', since this

represents successful completion.

If the SQLSTATE does not conform to these rules, an error is raised
(SQLSTATE 428B3).

condition-name
Specifies the name of the condition. The condition name must be unique
within the procedure and can only be referenced within the compound
statement in which it is declared.

SET MESSAGE_TEXT=
Specifies a string that describes the error or warning. The string is
returned in the SQLERRMC field of the SQLCA. If the actual string is
longer than 70 bytes, it is truncated without warning. This clause can only
be specified if a SQLSTATE or condition-name is also specified
(SQLSTATE 42601).

variable-name
Identifies an SQL variable that must be declared within the compound
statement. The SQL variable must be defined as a CHAR or
VARCHAR data type.

diagnostic-string-constant
Specifies a character string constant that contains the message text.

SIGNAL Statement

1094 SQL Reference

Notes
v If a SIGNAL statement is issued, the SQLCODE that is assigned is:

+438 if the SQLSTATE begins with '01' or '02'
−438 otherwise

v If the SQLSTATE or condition indicates that an exception (SQLSTATE class
other than ’01’ or ’02’) is signaled:
– then the exception is handled and control is transferred to a handler,

provided that a handler exists in the same compound statement (or an
outer compound statement) as the signal statement, and the compound
statement contains a handler for the specified SQLSTATE,
condition-name, or SQLEXCEPTION;

– otherwise, the exception is not handled and control is immediately
returned to the end of the compound statement.

v If the SQLSTATE or condition indicates that a warning (SQLSTATE class
’01’) or not found condition (SQLSTATE class ’02’) is signaled:
– then the warning or not found condition is handled and control is

transferred to a handler, provided that a handler exists in the same
compound statement (or an outer compound statement) as the signal
statement, and the compound statement contains a handler for the
specified SQLSTATE, condition-name, SQLWARNING (if the SQLSTATE
class is ’01’), or NOT FOUND (if the SQLSTATE class is ’02’);

– otherwise, the warning is not handled and processing continues with the
next statement.

v SQLSTATE values are comprised of a two-character class code value,
followed by a three-character subclass code value. Class code values
represent classes of successful and unsuccessful execution conditions.
Any valid SQLSTATE value can be used in the SIGNAL statement.
However, it is recommended that programmers define new SQLSTATEs
based on ranges reserved for applications. This prevents the unintentional
use of an SQLSTATE value that might be defined by the database manager
in a future release.
– SQLSTATE classes that begin with the characters '7' through '9', or 'I'

through 'Z' may be defined. Within these classes, any subclass may be
defined.

– SQLSTATE classes that begin with the characters '0' through '6', or 'A'
through 'H' are reserved for the database manager. Within these classes,
subclasses that begin with the characters '0' through 'H' are reserved for
the database manager. Subclasses that begin with the characters 'I'
through 'Z' may be defined.

SIGNAL Statement

Chapter 7. SQL Procedures 1095

Examples
An SQL procedure for an order system that signals an application error when
a customer number is not known to the application. The ORDERS table
includes a foreign key to the CUSTOMER table, requiring that the CUSTNO
exist before an order can be inserted.

CREATE PROCEDURE SUBMIT_ORDER
(IN ONUM INTEGER, IN CNUM INTEGER,
IN PNUM INTEGER, IN QNUM INTEGER)
SPECIFIC SUBMIT_ORDER
MODIFIES SQL DATA
LANGUAGE SQL
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE '23503'
SIGNAL SQLSTATE '75002'

SET MESSAGE_TEXT = 'Customer number is not known';
INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)

VALUES (ONUM, CNUM, PNUM, QNUM);
END

SIGNAL Statement

1096 SQL Reference

WHILE Statement
The WHILE statement repeats the execution of a statement or group of
statements while a specified condition is true.

Syntax

��
:label

WHILE search-condition DO � SQL-procedure-statement ; �

� END WHILE
label

��

Description

label
Specifies the label for the WHILE statement. If the beginning label is
specified, it can be specified in LEAVE and ITERATE statements. If the
ending label is specified, it must be the same as the beginning label.

search-condition
Specifies a condition that is evaluated before each execution of the loop. If
the condition is true, the SQL-procedure-statements in the loop are
processed.

SQL-procedure-statement
Specifies the SQL statement or statements to execute within the loop.

Examples
This example uses a WHILE statement to iterate through FETCH and SET
statements. While the value of SQL variable v_counter is less than half of
number of employees in the department identified by the IN parameter
deptNumber, the WHILE statement continues to perform the FETCH and SET
statements. When the condition is no longer true, the flow of control leaves
the WHILE statement and closes the cursor.

CREATE PROCEDURE DEPT_MEDIAN
(IN deptNumber SMALLINT, OUT medianSalary DOUBLE)
LANGUAGE SQL
BEGIN

DECLARE v_numRecords INTEGER DEFAULT 1;
DECLARE v_counter INTEGER DEFAULT 0;
DECLARE c1 CURSOR FOR

SELECT CAST(salary AS DOUBLE)
FROM staff
WHERE DEPT = deptNumber
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

SET medianSalary = 0;

WHILE Statement

Chapter 7. SQL Procedures 1097

SELECT COUNT(*) INTO v_numRecords
FROM staff
WHERE DEPT = deptNumber;

OPEN c1;
WHILE v_counter < (v_numRecords / 2 + 1) DO

FETCH c1 INTO medianSalary;
SET v_counter = v_counter + 1;

END WHILE;
CLOSE c1;

END

WHILE Statement

1098 SQL Reference

Appendix A. SQL Limits

The following tables describe certain SQL limits. Adhering to the most
restrictive case can help the programmer design application programs that are
easily portable.

Table 29. Identifier Length Limits

Description Limit in Bytes

1 Longest authorization name (can only be
single-byte characters)

30

2 Longest constraint name 18

3 Longest correlation name 128

4 Longest condition name 64

5 Longest cursor name 18

6 Longest data source column name 128

7 Longest data source index name 128

8 Longest data source name 128

9 Longest data source table name (remote-table-name) 128

10 Longest external program name 8

11 Longest host identifier a 255

12 Longest identifier of a data source user
(remote-authorization-name)

30

13 Longest label name 64

14 Longest method name 18

15 Longest parameter nameb 128

16 Longest password to access a data source 32

17 Longest savepoint name 128

18 Longest schema name c 30

19 Longest server (database alias) name 8

20 Longest SQL variable name 64

21 Longest statement name 18

22 Longest transform group name 18

23 Longest unqualified column name 30

24 Longest unqualified package name 8

© Copyright IBM Corp. 1993, 2000 1099

Table 29. Identifier Length Limits (continued)

Description Limit in Bytes

25 Longest unqualified user-defined type,
user-defined function, buffer pool, table space,
nodegroup, trigger, index, or index specification
name

18

26 Longest unqualified table name, view name,
stored procedure, nickname, or alias

128

27 Longest wrapper name 128

Notes:

a Individual host language compilers may have a more restrictive limit on
variable names.

b Parameter names in an SQL procdure are limited to 64 bytes.

c The schema name for a user-defined structured type is limited to 8 bytes.

Table 30. Numeric Limits

Description Limit

1 Smallest INTEGER value −2 147 483 648

2 Largest INTEGER value +2 147 483 647

3 Smallest BIGINT value −9 223 372 036 854 775 808

4 Largest BIGINT value +9 223 372 036 854 775 807

5 Smallest SMALLINT value −32 768

6 Largest SMALLINT value +32 767

7 Largest decimal precision 31

8 Smallest DOUBLE value −1.79769E+308

9 Largest DOUBLE value +1.79769E+308

10 Smallest positive DOUBLE value +2.225E−307

11 Largest negative DOUBLE value −2.225E−307

12 Smallest REAL value −3.402E+38

13 Largest REAL value +3.402E+38

14 Smallest positive REAL value +1.175E−37

15 Largest negative REAL value −1.175E−37

SQL Limits

1100 SQL Reference

Table 31. String Limits

Description Limit

1 Maximum length of CHAR (in bytes) 254

2 Maximum length of VARCHAR (in bytes) 32 672

3 Maximum length of LONG VARCHAR (in
bytes)

32 700

4 Maximum length of CLOB (in bytes) 2 147 483 647

5 Maximum length of GRAPHIC (in characters) 127

6 Maximum length of VARGRAPHIC (in
characters)

16 336

7 Maximum length of LONG VARGRAPHIC (in
characters)

16 350

8 Maximum length of DBCLOB (in characters) 1 073 741 823

9 Maximum length of BLOB (in bytes) 2 147 483 647

10 Maximum length of character constant 32 672

11 Maximum length of graphic constant 16 336

12 Maximum length of concatenated character
string

2 147 483 647

13 Maximum length of concatenated graphic
string

1 073 741 823

14 Maximum length of concatenated binary
string

2 147 483 647

15 Maximum number of hex constant digits 16 336

16 Maximum size of a catalog comment (in bytes) 254

17 Largest instance of a structured type column
object at runtime

1 GB

Table 32. Datetime Limits

Description Limit

1 Smallest DATE value 0001-01-01

2 Largest DATE value 9999-12-31

3 Smallest TIME value 00:00:00

4 Largest TIME value 24:00:00

5 Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

6 Largest TIMESTAMP value 9999-12-31-24.00.00.000000

SQL Limits

Appendix A. SQL Limits 1101

Table 33. Database Manager Limits

Description Limit

1 Most columns in a table g 1 012

2 Most columns in a view a 5 000

3 Maximum length of a row including all
overhead b g

32 677

4 Maximum size of a table per partition (in
gigabytes) c g

512

5 Maximum size of an index per partition (in
gigabytes)

512

6 Most rows in a table per partition 4 x 109

7 Longest index key including all overhead (in
bytes)

1 024

8 Most columns in an index key 16

9 Most indexes on a table 32 767 or storage

10 Most tables referenced in an SQL statement or
a view

storage

11 Most host variable declarations in a
precompiled program c

storage

12 Most host variable references in an SQL
statement

32 767

13 Longest host variable value used for insert or
update (in bytes)

2 147 483 647

14 Longest SQL statement (in bytes) 65 535

15 Most elements in a select listg 1 012

16 Most predicates in a WHERE or HAVING
clause

storage

17 Maximum number of columns in a GROUP
BY clause g

1 012

18 Maximum total length of columns in a
GROUP BY clause (in bytes)g

32 677

19 Maximum number of columns in an ORDER
BY clause g

1 012

20 Maximum total length of columns in an
ORDER BY clause (in bytes) g

32 677

21 Maximum size of an SQLDA (in bytes) storage

22 Maximum number of prepared statements storage

23 Most declared cursors in a program storage

SQL Limits

1102 SQL Reference

Table 33. Database Manager Limits (continued)

Description Limit

24 Maximum number of cursors opened at one
time

storage

25 Most tables in an SMS table space 65 534

26 Maximum number of constraints on a table storage

27 Maximum level of subquery nesting storage

28 Maximum number of subqueries in a single
statement

storage

29 Most values in an INSERT statement g 1 012

30 Most SET clauses in a single UPDATE
statement g

1 012

31 Most columns in a UNIQUE constraint
(supported via a UNIQUE index)

16

32 Maximum combined length of columns in a
UNIQUE constraint (supported via a UNIQUE
index) (in bytes)

1 024

33 Most referencing columns in a foreign key 16

34 Maximum combined length of referencing
columns in a foreign key (in bytes)

1 024

35 Maximum length of a check constraint
specification (in bytes)

65 535

36 Maximum number of columns in a
partitioning key e

500

37 Maximum number of rows changed in a unit
of work

storage

38 Maximum number of packages storage

39 Most constants in a statement storage

40 Maximum concurrent users of server d 64 000

41 Maximum number of parameters in a stored
procedure

32 767

42 Maximum number of parameters in a user
defined function

90

43 Maximum run-time depth of cascading
triggers

16

44 Maximum number of simultaneously active
event monitors

32

45 Maximum size of a regular DMS table space
(in gigabytes)c g

512

SQL Limits

Appendix A. SQL Limits 1103

Table 33. Database Manager Limits (continued)

Description Limit

46 Maximum size of a long DMS table space (in
terabytes)c

2

47 Maximum size of a temporary DMS table
space (in terabytes)c

2

48 Maximum number of databases per instance
concurrently in use

256

49 Maximum number of concurrent users per
instance

64 000

50 Maximum number of concurrent applications
per database

1 000

51 Maximum depth of cascaded triggers 16

52 Maximum partition number 999

53 Most table objects in DMS table space f 51 000

54 Longest variable index key part (in bytes) 255

55 Maximum number of columns in a data
source table or view that is referenced by a
nickname

5 000

56 Maximum NPAGES in a bufferpool for 32 bit
releases

524 288

57 Maximum NPAGES in a bufferpool for 64 bit
releases

2 147 483 647

58 Maximum number of nested levels for stored
procedures

16

59 Maximum number of tablespaces in a
database

4096

60 Maximum number of attributes in a structured
type

4082

SQL Limits

1104 SQL Reference

Table 33. Database Manager Limits (continued)

Description Limit

Notes:

a This maximum can be achieved using a join in the CREATE VIEW statement.
Selecting from such a view is subject to the limit of most elements in a select
list.

b The actual data for BLOB, CLOB, LONG VARCHAR, DBCLOB, and LONG
VARGRAPHIC columns is not included in this count. However information
about the location of that data does take up some space in the row.

c The numbers shown are architectural limits and approximations. The practical
limits may be less.

d The actual value will be the value of the MAXAGENTS configuration
parameter. See the Administration Guide for information on MAXAGENTS.

e This is an architectural limit. The limit on the most columns in an index key
should be used as a practical limit.

f Table objects include data, indexes, LONG VARCHAR/VARGRAPHIC
columns, and LOB columns. Table objects that are in the same table space as
the table data do not count extra toward the limit. However, each table object
that is in a different table space than the table data does contribute one
toward the limit for each table object type per table in the table space in
which the table object resides.

g For page size specific values, please refer to Table 34.

Table 34. Database Manager Page Size Specific Limits

Description 4K page size
limit

8K page size
limit

16K page size
limit

32K page size
limit

1 Most columns in a table 500 1 012 1 012 1 012

3 Maximum length of a row
including all overhead

4 005 8 101 16 293 32 677

4 Maximum size of a table per
partition (in gigabytes)

64 128 256 512

5 Maximum size of an index per
partition (in gigabytes)

64 128 256 512

15 Most elements in a select list 500 1 012 1 012 1 012

17 Maximum number of columns
in a GROUP BY clause

500 1 012 1 012 1 012

18 Maximum total length of
columns in a GROUP BY
clause (in bytes)

4 005 8 101 16 293 32 677

SQL Limits

Appendix A. SQL Limits 1105

Table 34. Database Manager Page Size Specific Limits (continued)

Description 4K page size
limit

8K page size
limit

16K page size
limit

32K page size
limit

19 Maximum number of columns
in an ORDER BY clause

500 1 012 1 012 1 012

20 Maximum total length of
columns in an ORDER BY
clause (in bytes)

4 005 8 101 16 293 32 677

29 Most values in an INSERT
statement

500 1 012 1 012 1 012

30 Most SET clauses in a single
UPDATE statement

500 1 012 1 012 1 012

45 Maximum size of a regular
DMS table space (in gigabytes)

64 128 256 512

SQL Limits

1106 SQL Reference

Appendix B. SQL Communications (SQLCA)

An SQLCA is a collection of variables that is updated at the end of the
execution of every SQL statement. A program that contains executable SQL
statements (except for DECLARE, INCLUDE, and WHENEVER) and is
precompiled with option LANGLEVEL SAA1 (the default) or MIA must
provide exactly one SQLCA, though more than one SQLCA is possible by
having one SQLCA per thread in a multi-threaded application.

When a program is precompiled with option LANGLEVEL SQL92E, an
SQLCODE or SQLSTATE variable may be declared in the SQL declare section
or an SQLCODE variable can be declared somewhere in the program.

An SQLCA should not be provided when using LANGLEVEL SQL92E. The
SQL INCLUDE statement can be used to provide the declaration of the
SQLCA in all languages but REXX. The SQLCA is automatically provided in
REXX.

Viewing the SQLCA Interactively

To display the SQLCA after each command you use in the command line
processor, use the command db2 -a. The SQLCA is then provided as part of
the output for subsequent commands. The SQLCA is also dumped in the
db2diag.log file.

SQLCA Field Descriptions

Table 35. Fields of SQLCA

Name110 Data Type Field Values

sqlcaid CHAR(8) An "eye catcher" for storage dumps containing 'SQLCA'. The
sixth byte is 'L' if line number information is returned from
parsing an SQL procedure body.

sqlcabc INTEGER Contains the length of the SQLCA, 136.

110. The field names shown are those present in an SQLCA that is obtained via an INCLUDE statement.

© Copyright IBM Corp. 1993, 2000 1107

Table 35. Fields of SQLCA (continued)

Name110 Data Type Field Values

sqlcode INTEGER Contains the SQL return code. For specific meanings of SQL
return codes, see the message section of the Message
Reference.

Code Means
0 Successful execution (although one or more

SQLWARN indicators may be set).
positive

Successful execution, but with a warning condition.
negative

Error condition.

sqlerrml SMALLINT Length indicator for sqlerrmc, in the range 0 through 70. 0
means that the value of sqlerrmc is not relevant.

sqlerrmc VARCHAR (70) Contains one or more tokens, separated by X'FF', that are
substituted for variables in the descriptions of error
conditions.

This field is also used when a successful connection is
completed.

When a NOT ATOMIC compound SQL statement is issued,
it may contain information on up to 7 errors.

For specific meanings of SQL return codes, see the message
section of the Message Reference.

sqlerrp CHAR(8) Begins with a three-letter identifier indicating the product,
followed by five digits indicating the version, release, and
modification level of the product. For example, SQL07010
means DB2 Universal Database Version 7 Release 1
Modification level 0.

If SQLCODE indicates an error condition, then this field
identifies the module that returned the error.

This field is also used when a successful connection is
completed.

sqlerrd ARRAY Six INTEGER variables that provide diagnostic information.
These values are generally empty if there are no errors,
except for sqlerrd(6) from a partitioned database.

SQLCA

1108 SQL Reference

Table 35. Fields of SQLCA (continued)

Name110 Data Type Field Values

sqlerrd(1) INTEGER If connection is invoked and successful, contains the
maximum expected difference in length of mixed character
data (CHAR data types) when converted to the database
code page from the application code page. A value of 0 or 1
indicates no expansion; a value greater than 1 indicates a
possible expansion in length; a negative value indicates a
possible contraction. a

On successful return from an SQL procedure, contains the
return status value from the SQL procedure.

sqlerrd(2) INTEGER If connection is invoked and successful, contains the
maximum expected difference in length of mixed character
data (CHAR data types) when converted to the application
code page from the database code page. A value of 0 or 1
indicates no expansion; a value greater than 1 indicates a
possible expansion in length; a negative value indicates a
possible contraction. a If the SQLCA results from a NOT
ATOMIC compound SQL statement that encountered one or
more errors, the value is set to the number of statements that
failed.

sqlerrd(3) INTEGER If PREPARE is invoked and successful, contains an estimate
of the number of rows that will be returned. After INSERT,
UPDATE, and DELETE, contains the actual number of rows
affected. If compound SQL is invoked, contains an
accumulation of all sub-statement rows. If CONNECT is
invoked, contains 1 if the database can be updated; 2 if the
database is read only.

If CREATE PROCEDURE for an SQL procedure is invoked
and an error is encountered parsing the SQL procedure body,
contains the line number where the error was encountered.
The sixth byte of sqlcaid must be ’L’ for this to be a valid
line number.

sqlerrd(4) INTEGER If PREPARE is invoked and successful, contains a relative
cost estimate of the resources required to process the
statement. If compound SQL is invoked, contains a count of
the number of successful sub-statements. If CONNECT is
invoked, contains 0 for a one-phase commit from a
down-level client; 1 for a one-phase commit; 2 for a
one-phase, read-only commit; and 3 for a two-phase commit.

SQLCA

Appendix B. SQL Communications (SQLCA) 1109

Table 35. Fields of SQLCA (continued)

Name110 Data Type Field Values

sqlerrd(5) INTEGER Contains the total number of rows deleted, inserted, or
updated as a result of both:
v The enforcement of constraints after a successful delete

operation
v The processing of triggered SQL statements from activated

triggers.

If compound SQL is invoked, contains an accumulation of
the number of such rows for all substatements. In some
cases when an error is encountered, this field contains a
negative value that is an internal error pointer. If CONNECT
is invoked, contains an authentication type value of 0 for a
server authentication; 1 for client authentication; 2 for
authentication using DB2 Connect; 3 for DCE security
services authentication; 255 for unspecified authentication.

sqlerrd(6) INTEGER For a partitioned database, contains the partition number of
the partition that encountered the error or warning. If no
errors or warnings were encountered, this field contains the
partition number of the coordinator node. The number in
this field is the same as that specified for the partition in the
db2nodes.cfg file.

sqlwarn Array A set of warning indicators, each containing a blank or W. If
compound SQL is invoked, contains an accumulation of the
warning indicators set for all substatements.

sqlwarn0 CHAR(1) Blank if all other indicators are blank; contains W if at least
one other indicator is not blank.

sqlwarn1 CHAR(1) Contains W if the value of a string column was truncated
when assigned to a host variable. Contains N if the null
terminator was truncated.

Contains A if the CONNECT or ATTACH is successful and
the authID for the connection is longer than 8 bytes.

sqlwarn2 CHAR(1) Contains W if null values were eliminated from the
argument of a function. b

sqlwarn3 CHAR(1) Contains W if the number of columns is not equal to the
number of host variables.

sqlwarn4 CHAR(1) Contains W if a prepared UPDATE or DELETE statement
does not include a WHERE clause.

sqlwarn5 CHAR(1) Reserved for future use.

sqlwarn6 CHAR(1) Contains W if the result of a date calculation was adjusted to
avoid an impossible date.

SQLCA

1110 SQL Reference

Table 35. Fields of SQLCA (continued)

Name110 Data Type Field Values

sqlwarn7 CHAR(1) Reserved for future use.

If CONNECT is invoked and successful, contains ’E’ if the
DYN_QUERY_MGMT database configuration parameter is
enabled.

sqlwarn8 CHAR(1) Contains W if a character that could not be converted was
replaced with a substitution character.

sqlwarn9 CHAR(1) Contains W if arithmetic expressions with errors were
ignored during column function processing.

sqlwarn10 CHAR(1) Contains W if there was a conversion error when converting
a character data value in one of the fields in the SQLCA.

sqlstate CHAR(5) A return code that indicates the outcome of the most
recently executed SQL statement.

Note:

a See the “Character Conversion Expansion Factor” section of the “Programming in Complex
Environments” chapter in the Application Development Guide for details.

b Some functions may not set SQLWARN2 to W even though null values were eliminated
because the result was not dependent on the elimination of null values.

Order of Error Reporting

The order of error reporting is as follows:
1. Severe error conditions are always reported. When a severe error is

reported, there are no additions to the SQLCA.
2. If no severe error occurs, a deadlock error takes precedence over other

errors.
3. For all other errors, the SQLCA for the first negative SQL code is returned.
4. If no negative SQL codes are detected, the SQLCA for the first warning

(that is, positive SQL code) is returned.
For DB2 Enterprise - Extended Edition, the exception to this rule occurs if
a data manipulation operation is issued on a table that is empty on one
partition, but has data on other nodes. The SQLCODE +100 is only
returned to the application if agents from all partitions return SQL0100W,
either because the table is empty on all partitions or there are no more
rows that satisfy the WHERE clause in an UPDATE statement.

SQLCA

Appendix B. SQL Communications (SQLCA) 1111

DB2 Enterprise - Extended Edition Usage of the SQLCA

In DB2 Universal Database Enterprise - Extended Edition, one SQL statement
may be executed by a number of agents on different partitions, and each
agent may return a different SQLCA for different errors or warnings. The
coordinator agent also has its own SQLCA.

To provide a consistent view for applications, all SQLCA values are merged
into one structure and SQLCA fields indicate global counts. For example:
v For all errors and warnings, the sqlwarn field contains the warning flags

received from all agents.
v Values in the sqlerrd fields indicating row counts are accumulations from all

agents.

Note that SQLSTATE 09000 may not be returned in all cases of an error
occurring while processing a triggered SQL statement.

SQLCA

1112 SQL Reference

Appendix C. SQL Descriptor Area (SQLDA)

An SQLDA is a collection of variables that is required for execution of the
SQL DESCRIBE statement. The SQLDA variables are options that can be used
by the PREPARE, OPEN, FETCH, EXECUTE, and CALL statements. An
SQLDA communicates with dynamic SQL; it can be used in a DESCRIBE
statement, modified with the addresses of host variables, and then reused in a
FETCH statement.

SQLDAs are supported for all languages, but predefined declarations are
provided only for C, REXX, FORTRAN, and COBOL. In REXX, the SQLDA is
somewhat different than in the other languages; for information on the use of
SQLDAs in REXX see the Application Development Guide.

The meaning of the information in an SQLDA depends on its use. In
PREPARE and DESCRIBE, an SQLDA provides information to an application
program about a prepared statement. In OPEN, EXECUTE, FETCH, and
CALL, an SQLDA describes host variables.

In DESCRIBE and PREPARE, if any one of the columns being described is
either a LOB type111, reference type, or a user-defined type, the number of
SQLVAR entries for the entire SQLDA will be doubled. For example:
v When describing a table with 3 VARCHAR columns and 1 INTEGER

column, there will be 4 SQLVAR entries
v When describing a table with 2 VARCHAR columns, 1 CLOB column, and 1

integer column, there will be 8 SQLVAR entries

In EXECUTE, FETCH, OPEN, and CALL, if any one of the variables being
described is a LOB type 111 or structured type, the number of SQLVAR entries
for the entire SQLDA needs to be doubled. 112

Field Descriptions

An SQLDA consists of four variables followed by an arbitrary number of
occurrences of a sequence of variables collectively named SQLVAR. In OPEN,
FETCH, EXECUTE, and CALL each occurrence of SQLVAR describes a host
variable. In DESCRIBE and PREPARE, each occurrence of SQLVAR describes a
column of a result table. There are two types of SQLVAR entries:

111. LOB locators and file reference variables do not require doubled SQLDAs.

112. Distinct types and reference types are not relevant in these cases, since the additional information in the double
entries is not required by the database.

© Copyright IBM Corp. 1993, 2000 1113

1. Base SQLVARs: These entries are always present. They contain the base
information about the column or host variable such as data type code,
length attribute, column name, host variable address, and indicator
variable address.

2. Secondary SQLVARs: These entries are only present if the number of
SQLVAR entries is doubled as per the rules outlined above. For
user-defined types (distinct or structured), they contain the user-defined
type name. For reference types, they contain that target type of the
reference. For LOBs, they contain the length attribute of the host variable
and a pointer to the buffer that contains the actual length. 113 If locators or
file reference variables are used to represent LOBs, these entries are not
necessary.

In SQLDAs that contain both types of entries, the base SQLVARs are in a
block before the block of secondary SQLVARs. In each, the number of entries
is equal to value in SQLD (even though many of the secondary SQLVAR
entries may be unused).

The circumstances under which the SQLVAR entries are set by DESCRIBE is
detailed in “Effect of DESCRIBE on the SQLDA” on page 1120.

113. The distinct type and LOB information does not overlap, so distinct types can be based on LOBs without forcing
the number of SQLVAR entries on a DESCRIBE to be tripled.

SQLDA

1114 SQL Reference

Fields in the SQLDA Header

Table 36. Fields in the SQLDA Header

C Name SQL Data
Type

Usage in DESCRIBE and PREPARE
(set by the database manager except
for SQLN)

Usage in FETCH, OPEN, EXECUTE,
and CALL (set by the application
prior to executing the statement)

sqldaid CHAR(8) The seventh byte of this field is a
flag byte named SQLDOUBLED. The
database manager sets
SQLDOUBLED to the character ’2’ if
two SQLVAR entries have been
created for each column; otherwise it
is set to a blank (X'20' in ASCII, X'40'
in EBCDIC). See “Effect of
DESCRIBE on the SQLDA” on
page 1120 for details on when
SQLDOUBLED is set.

The seventh byte of this field is used
when the number of SQLVARs is
doubled. It is named SQLDOUBLED.
If any of the host variables being
described is a structured type, BLOB,
CLOB, or DBCLOB, the seventh byte
must be set to the character ’2’;
otherwise it can be set to any
character but the use of a blank is
recommended.

When used with the CALL statement
and one or more SQLVARs define of
data field as FOR BIT DATA, the sixth
byte must be set to the ’+’ character;
otherwise it can be set to any
character but the use of a blank is
recommended.

sqldabc INTEGER For 32 bit, the length of the SQLDA,
equal to SQLN*44+16. For 64 bit, the
length of the SQLDA, equal to
SQLN*56+16

For 32 bit, the length of the SQLDA,
>= to SQLN*44+16. For 64 bit, the
length of the SQLDA, >= to
SQLN*56+16.

sqln SMALLINT Unchanged by the database manager.
Must be set to a value greater than
or equal to zero before the
DESCRIBE statement is executed.
Indicates the total number of
occurrences of SQLVAR.

Total number of occurrences of
SQLVAR provided in the SQLDA.
SQLN must be set to a value greater
than or equal to zero.

sqld SMALLINT Set by the database manager to the
number of columns in the result
table (or to zero if the statement
being described is not a
select-statement).

The number of host variables
described by occurrences of SQLVAR.

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 1115

Fields in an Occurrence of a Base SQLVAR

Table 37. Fields in a Base SQLVAR

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, EXECUTE,
and CALL

sqltype SMALLINT Indicates the data type of the column
and whether it can contain nulls.
Table 39 on page 1122 lists the
allowable values and their meanings.

Note that for a distinct or reference
type, the data type of the base type is
placed into this field. For a
structured type, the data type of the
result of the FROM SQL transform
function of the transform group
(based on the CURRENT DEFAULT
TRANSFORM GROUP special
register) for the type is placed into
this field. There is no indication in
the Base SQLVAR that it is part of
the description of a user-defined type
or reference type.

Same for host variable. Host
variables for datetime values must be
character string variables. For
FETCH, a datetime type code means
a fixed-length character string. If
sqltype is an even number value, the
sqlind field is ignored.

sqllen SMALLINT The length attribute of the column.
For datetime columns, the length of
the string representation of the
values. See Table 39 on page 1122.

Note that the value is set to 0 for
large object strings (even for those
whose length attribute is small
enough to fit into a two byte integer).

The length attribute of the host
variable. See Table 39 on page 1122.

Note that the value is ignored by the
database manager for CLOB,
DBCLOB, and BLOB columns. The
len.sqllonglen field in the Secondary
SQLVAR is used instead.

SQLDA

1116 SQL Reference

Table 37. Fields in a Base SQLVAR (continued)

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, EXECUTE,
and CALL

sqldata pointer For character-string SQLVARs,
sqldata contains 0 if the column is
defined with the FOR BIT DATA
attribute. If the column does not
have the FOR BIT DATA attribute,
the value depends on the encoding
of the data. For single-byte SBCS
encoded data, sqldata contains the
SBCS code page. For mixed DBCS
encoded data, sqldata contains the
SBCS code page associated with the
composite DBCS code page. For
Japanese or Traditional-Chinese EUC
encoded data, sqldata contains the
composite EUC code page.

For all other column types, sqldata is
undefined.

Contains the address of the host
variable (where the fetched data will
be stored).

sqlind pointer For character-string SQLVARs, sqlind
contains 0 except for mixed DBCS
encoded data when sqlind contains
the DBCS code page associated with
the composite DBCS code page.

For all other column types, sqlind is
undefined.

Contains the address of an associated
indicator variable, if there is one;
otherwise, not used. If sqltype is an
even number value, the sqlind field
is ignored.

sqlname VARCHAR
(30)

Contains the unqualified name of the
column.

For columns that have a system
generated name (the result column
was not directly derived from a
single column and did not specify a
name using the AS clause), the
thirtieth byte is set to X'FF'. For
column names specified by the AS
clause, this byte is X'00'.

When used with the CALL statement
to access a DRDA application server,
sqlname can be set to indicate a FOR
BIT DATA string as follows:
v the length of sqlname is 8
v the first four bytes of sqlname are

X'00000000'
v the remaining four bytes of

sqlname are reserved (and
currently ignored).

In addition, the sqltype must indicate
a CHAR, VARCHAR or LONG
VARCHAR and the sixth byte of the
sqldaid field is set to the ’+’
character.

This technique can also be used with
OPEN and EXECUTE when using
DB2 Connect to access the server.

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 1117

Fields in an Occurrence of a Secondary SQLVAR

Table 38. Fields in a Secondary SQLVAR

Name Data Type Usage in DESCRIBE
and PREPARE

Usage in FETCH, OPEN,
EXECUTE, and CALL

len.sqllonglen INTEGER The length attribute of a
BLOB, CLOB, or
DBCLOB column.

The length attribute of a BLOB,
CLOB, or DBCLOB host variable.
The database manager ignores
the SQLLEN field in the Base
SQLVAR for the data types. The
length attribute stores the
number of bytes for a BLOB or
CLOB, and the number of
characters for a DBCLOB.

reserve2 CHAR(3) for 32
bit, and
CHAR(11) for 64
bit.

Not used. Not used.

sqlflag4 CHAR(1) The value is X’01’ if the
SQLVAR represents a
reference type with a
target type named in
sqldatatype_name. The
value is X’12’ if the
SQLVAR represents a
structured type, with the
user-defined type name
in sqldatatype_name.
Otherwise, the value is
X’00’.

Set to X’01’ if the SQLVAR
represents a reference type with
a target type named in
sqldatatype_name. Set to X’12’ if
the SQLVAR represents a
structured type, with the
user-defined type name in
sqldatatype_name. Otherwise,
the value is X’00’.

SQLDA

1118 SQL Reference

Table 38. Fields in a Secondary SQLVAR (continued)

Name Data Type Usage in DESCRIBE
and PREPARE

Usage in FETCH, OPEN,
EXECUTE, and CALL

sqldatalen pointer Not used. Used for BLOB, CLOB, and
DBCLOB host variables only.

If this field is NULL, then the
actual length (in characters)
should be stored in the 4 bytes
immediately before the start of
the data and SQLDATA should
point to the first byte of the field
length.

If this field is not NULL, it
contains a pointer to a 4 byte
long buffer that contains the
actual length in bytes (even for
DBCLOB) of the data in the
buffer pointed to from the
SQLDATA field in the matching
Base SQLVAR.

Note that, whether or not this
field is used, the len.sqllonglen
field must be set.

sqldatatype_name VARCHAR(27) For a user-defined type
column, the database
manager sets this to the
fully qualified
user-defined type name.1

For a reference type, the
database manager sets
this to the fully qualified
type name of the target
type of the reference.

For structured types, set to the
fully qualified user-defined type
name in the format indicated in
the table note.1

reserved CHAR(3) Not used. Not used.

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 1119

Table 38. Fields in a Secondary SQLVAR (continued)

Name Data Type Usage in DESCRIBE
and PREPARE

Usage in FETCH, OPEN,
EXECUTE, and CALL

Note:

1. The first 8 bytes contain the schema name of the type (extended to the right with spaces, if
necessary). Byte 9 contains a dot (.). Bytes 10 to 27 contain the low order portion of the type name
which is not extended to the right with spaces.

Note that, although the prime purpose of this field is for the name of user-defined types, the field is also
set for IBM predefined data types. In this case, the schema name is SYSIBM and the low order portion
of the name is the name stored in TYPENAME column of the DATATYPES catalog view. For example:

type name length sqldatatype_name
--------- ------ ----------------
A.B 10 A .B
INTEGER 16 SYSIBM .INTEGER
"Frank's".SMINT 13 Frank's .SMINT
MY."type " 15 MY .type

Effect of DESCRIBE on the SQLDA

For a DESCRIBE or PREPARE INTO statement, the database manager always
sets SQLD to the number of columns in the result set.

The SQLVARs in the SQLDA are set in the following cases:
v SQLN >= SQLD and no column is either a LOB, user-defined type or

reference type
The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.

v SQLN >= 2*SQLD and at least one column is a LOB, user-defined type or
reference type
Two times SQLD SQLVAR entries are set and SQLDOUBLED is set to ’2’.

v SQLD <= SQLN < 2*SQLD and at least one column is a distinct type or
reference type but there are no LOB columns or structured type columns
The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.
If the SQLWARN bind option is YES, a warning SQLCODE +237
(SQLSTATE 01594) is issued.

The SQLVARs in the SQLDA are NOT set (requiring allocation of additional
space and another DESCRIBE) in the following cases:
v SQLN < SQLD and no column is either a LOB, user-defined type or

reference type
No SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +236 (SQLSTATE
01005) is issued.

SQLDA

1120 SQL Reference

Allocate SQLD SQLVARs for a successful DESCRIBE.
v SQLN < SQLD and at least one column is a distinct type or reference type

but there are no LOB columns or structured type columns
No SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +239 (SQLSTATE
01005) is issued.
Allocate 2*SQLD SQLVARs for a successful DESCRIBE including the names
of the distinct types and target types of reference types.

v SQLN < 2*SQLD and at least one column is a LOB or a structured type
No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning
SQLCODE +238 (SQLSTATE 01005) is issued (regardless of the setting of
the SQLWARN bind option).
Allocate 2*SQLD SQLVARs for a successful DESCRIBE.

References in the above lists to LOB columns include distinct type columns
whose source type is a LOB type.

The SQLWARN option of the BIND or PREP command is used to control
whether the DESCRIBE (or PREPARE INTO) will return the warning
SQLCODEs +236, +237, +239. It is recommended that your application code
always consider that these SQLCODEs could be returned. The warning
SQLCODE +238 is always returned when there are LOB or structured type
columns in the select list and there are insufficient SQLVARs in the SQLDA.
This is the only way the application can know that the number of SQLVARs
must be doubled because of a LOB or structured type column in the result set.

If a structured type column is being described, but no FROM SQL transform
is defined (either because no TRANSFORM GROUP was specified using the
CURRENT DEFAULT TRANSFORM GROUP special register (SQLSTATE
42741), or because the name group does not have a FROM SQL transform
function defined (SQLSTATE 42744), the DESCRIBE will return an error. This
error is the same error returned for a DESCRIBE of a table with a structured
type column.

SQLTYPE and SQLLEN

Table 39 on page 1122 shows the values that may appear in the SQLTYPE and
SQLLEN fields of the SQLDA. In DESCRIBE and PREPARE INTO, an even
value of SQLTYPE means the column does not allow nulls, and an odd value
means the column does allow nulls. In FETCH, OPEN, EXECUTE, and CALL,
an even value of SQLTYPE means no indicator variable is provided, and an
odd value means that SQLIND contains the address of an indicator variable.

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 1121

Table 39. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, EXECUTE, and CALL

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and
CALL

SQLTYPE Column Data Type SQLLEN Host Variable Data
Type

SQLLEN

384/385 date 10 fixed-length
character string
representation of a
date

length attribute of
the host variable

388/389 time 8 fixed-length
character string
representation of a
time

length attribute of
the host variable

392/393 timestamp 26 fixed-length
character string
representation of a
timestamp

length attribute of
the host variable

396/397 DATALINK length attribute of
the column

DATALINK length attribute of
the host variable

400/401 N/A N/A NUL-terminated
graphic string

length attribute of
the host variable

404/405 BLOB 0 * BLOB Not used. *

408/409 CLOB 0 * CLOB Not used. *

412/413 DBCLOB 0 * DBCLOB Not used. *

448/449 varying-length
character string

length attribute of
the column

varying-length
character string

length attribute of
the host variable

452/453 fixed-length
character string

length attribute of
the column

fixed-length
character string

length attribute of
the host variable

456/457 long varying-length
character string

length attribute of
the column

long varying-length
character string

length attribute of
the host variable

460/461 N/A N/A NUL-terminated
character string

length attribute of
the host variable

464/465 varying-length
graphic string

length attribute of
the column

varying-length
graphic string

length attribute of
the host variable

468/469 fixed-length
graphic string

length attribute of
the column

fixed-length
graphic string

length attribute of
the host variable

472/473 long varying-length
graphic string

length attribute of
the column

long graphic string length attribute of
the host variable

480/481 floating point 8 for double
precision, 4 for
single precision

floating point 8 for double
precision, 4 for
single precision

SQLDA

1122 SQL Reference

Table 39. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, EXECUTE, and
CALL (continued)

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and
CALL

SQLTYPE Column Data Type SQLLEN Host Variable Data
Type

SQLLEN

484/485 packed decimal precision in byte 1;
scale in byte 2

packed decimal precision in byte 1;
scale in byte 2

492/493 big integer 8 big integer 8

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

916/917 Not applicable Not applicable BLOB file reference
variable.

267

920/921 Not applicable Not applicable CLOB file reference
variable.

267

924/925 Not applicable Not applicable DBCLOB file
reference variable.

267

960/961 Not applicable Not applicable BLOB locator 4

964/965 Not applicable Not applicable CLOB locator 4

968/969 Not applicable Not applicable DBCLOB locator 4

Note:

v The len.sqllonglen field in the secondary SQLVAR contains the length attribute of the column.

v The SQLTYPE has changed from the previous version for portability in DB2. The values from the
previous version (see previous version SQL Reference) will continue to be supported.

Unrecognized and Unsupported SQLTYPES
The values that appear in the SQLTYPE field of the SQLDA are dependent on
the level of data type support available at the sender as well as at the receiver
of the data. This is particularly important as new data types are added to the
product.

New data types may or may not be supported by the sender or receiver of the
data and may or may not even be recognized by the sender or receiver of the
data. Depending on the situation, the new data type may be returned, or a
compatible data type agreed upon by both the sender and receiver of the data
may be returned or an error may result.

When the sender and receiver agree to use a compatible data type, the
following indicates the mapping that will take place. This mapping will take
place when at least one of the sender or the receiver does not support the
data type provided. The unsupported data type can be provided by either the

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 1123

application or the database manager.

Data Type Compatible Data Type

BIGINT DECIMAL(19, 0)

ROWID VARCHAR(40) FOR BIT DATA 114

Note that no indication is given in the SQLDA that the data type is
substituted.

Packed Decimal Numbers
Packed decimal numbers are stored in a variation of Binary Coded Decimal
(BCD) notation. In BCD, each nybble (four bits) represents one decimal digit.
For example, 0001 0111 1001 represents 179. Therefore, read a packed decimal
value nybble by nybble. Store the value in bytes and then read those bytes in
hexadecimal representation to return to decimal. For example, 0001 0111 1001
becomes 00000001 01111001 in binary representation. By reading this number
as hexadecimal, it becomes 0179.

The decimal point is determined by the scale. In the case of a DEC(12,5)
column, for example, the rightmost 5 digits are to the right of the decimal
point.

Sign is indicated by a nybble to the right of the nybbles representing the
digits. A positive or negative sign is indicated as follows:

Table 40. Values for Sign Indicator of a Packed Decimal Number

Sign

Representation

Binary Decimal Hexadecimal

Positive (+) 1100 12 C

Negative (-) 1101 13 D

In summary:
1. To store any value, allocate p/2+1 bytes, where p is precision.
2. Assign the nybbles from left to right to represent the value. If a number

has an even precision, a leading zero nybble is added. This assignment
includes leading (insignificant) and trailing (significant) zero digits.

3. The sign nybble will be the second nybble of the last byte.

There is an alternative way to perform packed decimal conversions, see
“CHAR” on page 260.

114. ROWID is supported by DB2 Universal Database for OS/390 Version 6.

SQLDA

1124 SQL Reference

For example:

Column Value Nybbles in Hexadecimal Grouped by Bytes

DEC(8,3) 6574.23 00 65 74 23 0C

DEC(6,2) -334.02 00 33 40 2D

DEC(7,5) 5.2323 05 23 23 0C

DEC(5,2) -23.5 02 35 0D

SQLLEN Field for Decimal
The SQLLEN field contains the precision (first byte) and scale (second byte) of
the decimal column. If writing a portable application, the precision and scale
bytes should be set individually, versus setting them together as a short
integer. This will avoid integer byte reversal problems.

For example, in C:
((char *)&(sqlda->sqlvar[i].sqllen))[0] = precision;
((char *)&(sqlda->sqlvar[i].sqllen))[1] = scale;

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 1125

SQLDA

1126 SQL Reference

Appendix D. Catalog Views

The database manager creates and maintains two sets of system catalog views.
This appendix contains a description of each system catalog view, including
column names and data types. All the system catalog views are created when
a database is created with the CREATE DATABASE command. The catalog
views cannot be explicitly created or dropped. The system catalog views are
updated during normal operation in response to SQL data definition
statements, environment routines, and certain utilities. Data in the system
catalog views is available through normal SQL query facilities. The system
catalog views cannot be modified using normal SQL data manipulation
commands with the exception of some specific updatable catalog views.

The catalog views are supported in addition to the catalog base tables from
Version 1. The views are within the SYSCAT schema and SELECT privilege on
all views is granted to PUBLIC by default. Application programs should be
written to these views rather than the base catalog tables. A second set of
views formed from a subset of those within the SYSCAT schema, contain
statistical information used by the optimizer. The views within the SYSSTAT
schema contain some updatable columns.

Warning: The intention is to enable applications to update certain columns
using the SYSSTAT views, but have the SYSCAT views read only.
Currently, the SYSCAT views are not read only. Applications
developers are warned to ensure that applications are written to
only update catalog information using the SYSSTAT views. The
SYSCAT views will become read only views after the next version
migration.

The catalog views are designed to use more consistent conventions than the
underlying catalog base tables. As such, the order of columns may change
from release to release. To protect from this affecting programming logic,
always specify explicitly the columns in a select list rather then letting them
default by using SELECT *. Columns have consistent names based on the type
of objects that they describe:

Described Object Column Names

Table TABSCHEMA, TABNAME
Index INDSCHEMA, INDNAME
View VIEWSCHEMA, VIEWNAME
Constraint CONSTSCHEMA, CONSTNAME
Trigger TRIGSCHEMA, TRIGNAME

© Copyright IBM Corp. 1993, 2000 1127

Package PKGSCHEMA, PKGNAME
Type TYPESCHEMA, TYPENAME, TYPEID
Function FUNCSCHEMA, FUNCNAME, FUNCID
Column COLNAME
Schema SCHEMANAME
Table Space TBSPACE
Nodegroup NGNAME
Buffer pool BPNAME
Event Monitor EVMONNAME
Creation Timestamp CREATE_TIME
v “Updatable Catalog Views”
v “‘Roadmap’ to Catalog Views”
v “‘Roadmap’ to Updatable Catalog Views” on page 1130

Updatable Catalog Views

The updatable views contain statistical information used by the optimizer.
Some columns in these views may be changed to investigate the performance
of hypothetical databases. An object (table, column, function, or index) will
appear in the updatable catalog view for a given user only if that user created
the object, holds CONTROL privilege on the object, or holds explicit DBADM
privilege. These views are found in the SYSSTAT schema. They are defined on
top of the system catalog base tables.

Before changing any statistics for the first time, it is advised to issue the
RUNSTATS command so that all statistics will reflect the current state.

‘Roadmap’ to Catalog Views

Description Catalog View Page

attributes of structured data types SYSCAT.ATTRIBUTES 1132

authorities on database SYSCAT.DBAUTH 1150

buffer pool configuration on
nodegroup

SYSCAT.BUFFERPOOLS 1135

buffer pool size on node SYSCAT.BUFFERPOOLNODES 1134

cast functions SYSCAT.CASTFUNCTIONS 1136

check constraints SYSCAT.CHECKS 1137

column privileges SYSCAT.COLAUTH 1138

columns SYSCAT.COLUMNS 1142

columns referenced by check
constraints

SYSCAT.COLCHECKS 1139

columns used in keys SYSCAT.KEYCOLUSE 1175

Catalog Views

1128 SQL Reference

Description Catalog View Page

detailed column options SYSCAT.COLOPTIONS 1141

detailed column statistics SYSCAT.COLDIST 1140

constraint dependencies SYSCAT.CONSTDEP 1147

datatypes SYSCAT.DATATYPES 1148

event monitor definitions SYSCAT.EVENTMONITORS 1152

events currently monitored SYSCAT.EVENTS 1154

hierarchies(types, tables,views) SYSCAT.FULLHIERARCHIES 1155

function dependencies SYSCAT.FUNCDEP 1156

function mapping SYSCAT.FUNCMAPPINGS 1159

function mapping options SYSCAT.FUNCMAPOPTIONS 1157

function mapping parameter options SYSCAT.FUNCMAPPARMOPTIONS 1158

function parameters SYSCAT.FUNCPARMS 1160

hierarchies (types, tables, views) SYSCAT.HIERARCHIES 1167

index privileges SYSCAT.INDEXAUTH 1168

Index columns SYSCAT.INDEXCOLUSE 1169

index dependencies SYSCAT.INDEXDEP 1170

indexes SYSCAT.INDEXES 1171

index options SYSCAT.INDEXOPTIONS 1174

nodegroup definitions SYSCAT.NODEGROUPS 1178

nodegroup nodes SYSCAT.NODEGROUPDEF 1177

object mapping SYSCAT.NAMEMAPPINGS 1176

package dependencies SYSCAT.PACKAGEDEP 1180

package privileges SYSCAT.PACKAGEAUTH 1179

packages SYSCAT.PACKAGES 1181

partitioning maps SYSCAT.PARTITIONMAPS 1185

pass-through privileges SYSCAT.PASSTHRUAUTH 1186

procedure options SYSCAT.PROCOPTIONS 1190

procedure parameter options SYSCAT.PROCPARMOPTIONS 1191

procedure parameters SYSCAT.PROCPARMS 1192

provides DB2 Universal Database for
OS/390 compatibility

SYSIBM.SYSDUMMY1 1131

referential constraints SYSCAT.REFERENCES 1194

remote table options SYSCAT.TABOPTIONS 1210

Catalog Views

Appendix D. Catalog Views 1129

Description Catalog View Page

reverse data type mapping SYSCAT.REVTYPEMAPPINGS 1195

schema privileges SYSCAT.SCHEMAAUTH 1197

schemas SYSCAT.SCHEMATA 1198

server options SYSCAT.SERVEROPTIONS 1199

server options values SYSCAT.USEROPTIONS 1216

statements in packages SYSCAT.STATEMENTS 1201

stored procedures SYSCAT.PROCEDURES 1187

system servers SYSCAT.SERVERS 1200

table constraints SYSCAT.TABCONST 1204

table privileges SYSCAT.TABAUTH 1202

tables SYSCAT.TABLES 1205

table spaces SYSCAT.TABLESPACES 1209

table spaces use privileges SYSCAT.TBSPACEAUTH 1211

trigger dependencies SYSCAT.TRIGDEP 1212

triggers SYSCAT.TRIGGERS 1213

type mapping SYSCAT.TYPEMAPPINGS 1214

user-defined functions SYSCAT.FUNCTIONS 1162

view dependencies SYSCAT.VIEWDEP 1217

views SYSCAT.TABLES 1205

SYSCAT.VIEWS 1218

wrapper options SYSCAT.WRAPOPTIONS 1219

wrappers SYSCAT.WRAPPERS 1220

‘Roadmap’ to Updatable Catalog Views

Description Catalog View Page

columns SYSSTAT.COLUMNS 1222

indexes SYSSTAT.INDEXES 1226

detailed column statistics SYSSTAT.COLDIST 1221

tables SYSSTAT.TABLES 1229

user-defined functions SYSSTAT.FUNCTIONS 1224

Catalog Views

1130 SQL Reference

SYSIBM.SYSDUMMY1

Contains one row. This view is available for applications that require
compatibility with DB2 Universal Database for OS/390.

Table 41. SYSCAT.DUMMY1 Catalog View

Column Name Data Type Nullable Description

IBMREQD CHAR(1) Y

SYSIBM.SYSDUMMY1

Appendix D. Catalog Views 1131

SYSCAT.ATTRIBUTES

Contains one row for each attribute (including inherited attributes where
applicable) that is defined for a user-defined structured data type.

Table 42. SYSCAT.ATTRIBUTES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR(128) Qualified name of the strucutred data type
that includes the attribute.TYPENAME VARCHAR(18)

ATTR_NAME VARCHAR(18) Attribute name.

ATTR_TYPESCHEMA VARCHAR(128) Contains the qualified name of the type of
the attribute.ATTR_TYPENAME VARCHAR(18)

TARGET_TYPESCHEMA VARCHAR(128) Qualified name of the target type, if the type
of the attribute is REFERENCE. Null value if
the type of the attribute is not REFERENCE.TARGET_TYPENAME VARCHAR(18)

SOURCE_TYPESCHEMA VARCHAR(128) Qualified name of the data type in the data
type hierarchy where the attribute was
introduced. For non-inherited attributes,
these columns are the same as
TYPESCHEMA and TYPENAME.

SOURCE_TYPENAME VARCHAR(18)

ORDINAL SMALLINT Position of the attribute in the definition of
the structured data type starting with zero.

LENGTH INTEGER Maximum length of data. 0 for distinct types.
The LENGTH column indicates precision for
DECIMAL fields.

SCALE SMALLINT Scale for DECIMAL fields; 0 if not
DECIMAL.

CODEPAGE SMALLINT Code page of the attribute. For
character-string attributes not defined with
FOR BIT DATA, the value is the database
code page. For graphic-string attributes, the
value is the DBCS code page implied by the
(composite) database code page. Otherwise,
the value is 0.

LOGGED CHAR(1) Applies only to attributes whose type is LOB
or distinct based on LOB (blank otherwise).

Y = Attribute is logged.

N = Attribute is not logged.

COMPACT CHAR(1) Applies only to attributes whose type is LOB
or distinct based on LOB (blank otherwise).

Y = Attribute is compacted in storage.

N = Attribute is not compacted.

SYSCAT.ATTRIBUTES

1132 SQL Reference

Table 42. SYSCAT.ATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

DL_FEATURES CHAR(10) Applies to DATALINK type attributes only.
Blank for REFERENCE type attributes. Null
otherwise. Encodes various DATALINK
features such as linktype, control mode,
recovery, and unlink properties.

SYSCAT.ATTRIBUTES

Appendix D. Catalog Views 1133

SYSCAT.BUFFERPOOLNODES

Contains a row for each node in the buffer pool for which the size of the
buffer pool on the node is different from the default size in
SYSCAT.BUFFERPOOLS column NPAGES.

Table 43. SYSCAT.BUFFERPOOLNODES Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier

NODENUM SMALLINT Node Number

NPAGES INTEGER Number of pages in this buffer pool on this
node

SYSCAT.BUFFERPOOLNODES

1134 SQL Reference

SYSCAT.BUFFERPOOLS

Contains a row for every buffer pool in every nodegroup.

Table 44. SYSCAT.BUFFERPOOLS Catalog View

Column Name Data Type Nullable Description

BPNAME VARCHAR(18) Name of buffer pool

BUFFERPOOLID INTEGER Internal buffer pool identifier

NGNAME VARCHAR(18) Yes Nodegroup name (NULL if the buffer pool
exists on all nodes in the database)

NPAGES INTEGER Number of pages in the buffer pool

PAGESIZE INTEGER Pagesize for this buffer pool

ESTORE CHAR(1) N = This buffer pool does not use extended
storage.

Y = This buffer pool uses extended storage.

SYSCAT.BUFFERPOOLS

Appendix D. Catalog Views 1135

SYSCAT.CASTFUNCTIONS

Contains a row for each cast function. It does not include built-in cast
functions.

Table 45. SYSCAT.CASTFUNCTIONS Catalog View

Column Name Data Type Nullable Description

FROM_TYPESCHEMA VARCHAR(128) Qualified name of the data type of the
parameter.FROM_TYPENAME VARCHAR(18)

TO_TYPESCHEMA VARCHAR(128) Qualified name of the data type of the result
after casting.TO_TYPENAME VARCHAR(18)

FUNCSCHEMA VARCHAR(128) Qualified name of the function.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance.

ASSIGN_FUNCTION CHAR(1) Y = Implicit assignment function

N = Not an assignment function

SYSCAT.CASTFUNCTIONS

1136 SQL Reference

SYSCAT.CHECKS

Contains one row for each CHECK constraint.

Table 46. SYSCAT.CHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint (unique within a
table.)

DEFINER VARCHAR(128) Authorization ID under which the check
constraint was defined.

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
constraint applies.TABNAME VARCHAR(128)

CREATE_TIME TIMESTAMP The time at which the constraint was defined.
Used in resolving functions that are used in this
constraint. No functions will be chosen that
were created after the definition of the
constraint.

QUALIFIER VARCHAR(128) Value of the default schema at time of object
definition. Used to complete any unqualified
references.

TYPE CHAR(1) Type of check constraint:

A = System generated check constraint for
GENERATED ALWAYS column

C = Check constraint

FUNC_PATH VARCHAR(254) The current SQL path that was used when the
constraint was created.

TEXT CLOB(64K) The text of the CHECK clause.

SYSCAT.CHECKS

Appendix D. Catalog Views 1137

SYSCAT.COLAUTH

Contains one or more rows for each user or group who is granted a column
level privilege, indicating the type of privilege and whether or not it is
grantable.

Table 47. SYSCAT.COLAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

TABSCHEMA VARCHAR(128) Qualified name of the table or view.

TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column to which this privilege
applies.

COLNO SMALLINT Number of this column in the table or view.

PRIVTYPE CHAR(1) Indicates the type of privilege held on the table
or view:

U = Update privilege

R = Reference privilege

GRANTABLE CHAR(1) Indicates if the privilege is grantable.

G = Grantable

N = Not grantable

SYSCAT.COLAUTH

1138 SQL Reference

SYSCAT.COLCHECKS

Each row represents some column that is referenced by a CHECK constraint.

Table 48. SYSCAT.COLCHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint. (Unique within a
table. May be system generated.)

TABSCHEMA VARCHAR(128) Qualified name of table containing referenced
column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of column.

USAGE CHAR(1) R = Column is referenced in the check
constraint.

S = Column is a source column in the system
generated check constraint that supports a
generated column.

T = Column is a target column in the system
generated check constraint that supports a
generated column.

SYSCAT.COLCHECKS

Appendix D. Catalog Views 1139

SYSCAT.COLDIST

Contains detailed column statistics for use by the optimizer. Each row
describes the Nth-most-frequent value of some column.

Table 49. SYSCAT.COLDIST Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table to which this entry
applies.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column to which this entry applies.

TYPE CHAR(1) F = Frequency (most frequent value)

Q = Quantile value

SEQNO SMALLINT v If TYPE = F, then N in this column identifies
the Nth most frequent value.

v If TYPE = Q, then N in this column identifies
the Nth quantile value.

COLVALUE VARCHAR(254) Yes The data value, as a character literal or a null
value.

VALCOUNT BIGINT v If TYPE = F, then VALCOUNT is the number
of occurrences of COLVALUE in the column.

v If TYPE = Q, then VALCOUNT is the number
of rows whose value is less than or equal to
COLVALUE.

DISTCOUNT BIGINT Yes If TYPE = Q, this column records the number of
distinct values that are less than or equal to
COLVALUE (null if unavailable).

SYSCAT.COLDIST

1140 SQL Reference

SYSCAT.COLOPTIONS

Each row contains column specific option values.

Table 50. SYSCAT.COLOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualifier of a nickname.

TABNAME VARCHAR(128) Nickname for the column.

COLNAME VARCHAR(128) Local column name.

OPTION VARCHAR(128) Name of column option.

SETTING VARCHAR(255) Values

SYSCAT.COLOPTIONS

Appendix D. Catalog Views 1141

SYSCAT.COLUMNS

Contains one row for each column (including inherited columns where
applicable) that is defined for a table or view. All of the catalog views have
entries in the SYSCAT.COLUMNS table.

Table 51. SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table or view that
contains the column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Column name.

COLNO SMALLINT Numerical place of column in table or view,
beginning at zero.

TYPESCHEMA VARCHAR(128) Contains the qualified name of the type, if
the data type of the column is distinct.
Otherwise TYPESCHEMA contains the value
SYSIBM and TYPENAME contains the data
type of the column (in long form, for
example, CHARACTER). If FLOAT or
FLOAT(n) with n greater than 24 is specified,
TYPENAME is renamed to DOUBLE. If
FLOAT(n) with n less than 25 is specified,
TYPENAME is renamed to REAL. Also,
NUMERIC is renamed to DECIMAL.

TYPENAME VARCHAR(18)

LENGTH INTEGER Maximum length of data. 0 for distinct types.
The LENGTH column indicates precision for
DECIMAL fields.

SCALE SMALLINT Scale for DECIMAL fields; 0 if not
DECIMAL.

DEFAULT VARCHAR(254) Yes Default value for the column of a table
expressed as a constant, special register, or
cast-function appropriate for the data type of
the column. May also be the keyword NULL.

Values may be converted from what was
specified as a default value. For example,
date and time constants are presented in ISO
format and cast-function names are qualified
with schema name and the identifiers are
delimited (see Note 3).

Null value if a DEFAULT clause was not
specified or the column is a view column.

SYSCAT.COLUMNS

1142 SQL Reference

Table 51. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

NULLS CHAR(1) Y = Column is nullable.

N = Column is not nullable.

The value can be N for a view column that is
derived from an expression or function.
Nevertheless, such a column allows nulls
when the statement using the view is
processed with warnings for arithmetic
errors.

See Note 1.

CODEPAGE SMALLINT Code page of the column. For
character-string columns not defined with the
FOR BIT DATA attribute, the value is the
database code page. For graphic-string
columns, the value is the DBCS code page
implied by the (composite) database code
page. Otherwise, the value is 0.

LOGGED CHAR(1) Applies only to columns whose type is LOB
or distinct based on LOB (blank otherwise).

Y=Column is logged.

N=Column is not logged.

COMPACT CHAR(1) Applies only to columns whose type is LOB
or distinct based on LOB (blank otherwise).

Y = Column is compacted in storage.

N = Column is not compacted.

COLCARD BIGINT Number of distinct values in the column; −1
if statistics are not gathered; −2 for inherited
columns and columns of H-tables.

HIGH2KEY VARCHAR(254) Yes Second highest value of the column. This
field is empty if statistics are not gathered
and for inherited columns and columns of
H-tables. See Note 2.

LOW2KEY VARCHAR(254) Yes Second lowest value of the column. This field
is empty if statistics are not gathered and for
inherited columns and columns of H-tables.
See Note 2.

AVGCOLLEN INTEGER Average column length. −1 if a long field or
LOB, or statistics have not been collected; −2
for inherited columns and columns of
H-tables.

SYSCAT.COLUMNS

Appendix D. Catalog Views 1143

Table 51. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

KEYSEQ SMALLINT Yes The column’s numerical position within the
table’s primary key. This field is null for
subtables and hierarchy tables.

PARTKEYSEQ SMALLINT Yes The column’s numerical position within the
table’s partitioning key. This field is null or 0
if the column is not part of the partitioning
key. This field is also null for subtables and
hierarchy tables.

NQUANTILES SMALLINT Number of quantile values recorded in
SYSCAT.COLDIST for this column; −1 if no
statistics; −2 for inherited columns and
columns of H-tables.

NMOSTFREQ SMALLINT Number of most-frequent values recorded in
SYSCAT.COLDIST for this column; −1 if no
statistics; −2 for inherited columns and
columns of H-tables.

NUMNULLS BIGINT Contains the number of nulls in a column. −1
if statistics are not gathered.

TARGET_TYPESCHEMA VARCHAR(128) Yes Qualified name of the target type, if the type
of the column is REFERENCE. Null value if
the type of the column is not REFERENCE.TARGET_TYPENAME VARCHAR(18) Yes

SCOPE_TABSCHEMA VARCHAR(128) Yes Qualified name of the scope (target table), if
the type of the column is REFERENCE. Null
value if the type of the column is not
REFERENCE or the scope is not defined.

SCOPE_TABNAME VARCHAR(128) Yes

SOURCE_TABSCHEMA VARCHAR(128) Qualified name of the table or view in the
respective hierarchy where the column was
introduced. For non-inherited columns, the
values are the same as TBCREATOR and
TBNAME. Null for columns of non-typed
tables and views

SOURCE_TABNAME VARCHAR(128)

SYSCAT.COLUMNS

1144 SQL Reference

Table 51. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

DL_FEATURES CHAR(10) Yes Applies to DATALINK type columns only.
Null otherwise. Each character position is
defined as follows:

1. Link type (U for URL)

2. Link control (F for file, N for no)

3. Integrity (A for all, N for none)

4. Read permission (F for file system, D for
database)

5. Write permission (F for file system, B for
blocked)

6. Recovery (Y for yes, N for no)

7. On unlink (R for restore, D for delete, N
for not applicable)

Characters 8 through 10 are reserved for
future use.

SPECIAL_PROPS CHAR(8) Yes Applies to REFERENCE type columns only.
Null otherwise. Each character position is
defined as follows:

Object identifier (OID) column (Y for yes,
N for no)

User generated or system generated (U
for user, S for system)

HIDDEN CHAR(1) Type of hidden column

S = System managed hidden column

Blank if column is not hidden

INLINE_LENGTH INTEGER Length of structured type column that can be
kept with base table row. 0 if no value
explicitly set by ALTER/CREATE TABLE
statement.

IDENTITY CHAR(1) ’Y’ indicates that the column is an identity
column; ’N’ indicates that the column is not
an identity column.

GENERATED CHAR(1) Type of generated column

A = Column value is always generated

D = Column value is generated by default

Blank if column is not generated

TEXT CLOB(64K) Contains the text of the generated column,
starting with the keyword AS.

REMARKS VARCHAR(254) Yes User-supplied comment.

SYSCAT.COLUMNS

Appendix D. Catalog Views 1145

Table 51. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

Note:

1. Starting with Version 2, value D (indicating not null with a default) is no longer used. Instead, use of
WITH DEFAULT is indicated by a non-null value in the DEFAULT column.

2. Starting with Version 2, representation of numeric data has been changed to character literals. The
size has been enlarged from 16 to 33 bytes.

3. For Version 2.1.0, cast-function names were not delimited and may still appear this way in the
DEFAULT column. Also, some view columns included default values which will still appear in the
DEFAULT column.

SYSCAT.COLUMNS

1146 SQL Reference

SYSCAT.CONSTDEP

Contains a row for every dependency of a constraint on some other object.

Table 52. SYSCAT.CONSTDEP Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint.

TABSCHEMA VARCHAR(128) Qualified name of the table to which the
constraint applies.TABNAME VARCHAR(128)

BTYPE CHAR(1) Type of object that the constraint depends on.
Possible values:

F = Function instance

I = Index instance

R = Structured type

BSCHEMA VARCHAR(128) Qualified name of object that the constraint
depends on.BNAME VARCHAR(18)

SYSCAT.CONSTDEP

Appendix D. Catalog Views 1147

SYSCAT.DATATYPES

Contains a row for every data type, including built-in and user-defined types.

Table 53. SYSCAT.DATATYPES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR(128) Qualified name of the data type (for built-in
types, TYPESCHEMA is SYSIBM).TYPENAME VARCHAR(18)

DEFINER VARCHAR(128) Authorization ID under which type was created.

SOURCESCHEMA VARCHAR(128) Yes Qualified name of the source type for distinct
types. Qualified name of the builtin type used
as the reference type that is used as the
representation for references to structured types.
Null for other types.

SOURCENAME VARCHAR(18) Yes

METATYPE CHAR(1) S = System predefined type

T = Distinct type

R = Structured type

TYPEID SMALLINT The system generated internal identifier of the
data type.

SOURCETYPEID SMALLINT Yes Internal type ID of source type (null for built-in
types). For user-defined structured types, this is
the internal type ID of the reference
representation type.

LENGTH INTEGER Maximum length of the type. 0 for system
predefined parameterized types (for example,
DECIMAL and VARCHAR). For user-defined
structured types, this indicates the length of the
reference representation type.

SCALE SMALLINT Scale for distinct types or reference
representation types based on the system
predefined DECIMAL type. 0 for all other types
(including DECIMAL itself). For user-defined
structured types, this indicates the length of the
reference representation type.

CODEPAGE SMALLINT Code page for character and graphic distinct
types or reference representation types; 0
otherwise.

CREATE_TIME TIMESTAMP Creation time of the data type.

ATTRCOUNT SMALLINT Number of attributes in data type.

INSTANTIABLE CHAR(1) Y = Type can be instantiated.

N = Type can not be instantiated.

SYSCAT.DATATYPES

1148 SQL Reference

Table 53. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

WITH_FUNC_ACCESS CHAR(1) Y = All the methods for this type can be
invoked using function notation.

N = Methods for this type can not be
invoked using function notation.

FINAL CHAR(1) Y = User-defined type can not have
subtypes.

N = User-defined type can have subtypes.

INLINE_LENGTH INTEGER Length of structured type that can be kept with
base table row. 0 if no value explicitly set by
CREATE TYPE statement.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.DATATYPES

Appendix D. Catalog Views 1149

SYSCAT.DBAUTH

Records the database authorities held by users.

Table 54. SYSCAT.DBAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) SYSIBM or authorization ID of the user who
granted the privileges.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

DBADMAUTH CHAR(1) Whether grantee holds DBADM authority over
the database:

Y = Authority is held.

N = Authority is not held.

CREATETABAUTH CHAR(1) Whether grantee can create tables in the
database (CREATETAB):

Y = Privilege is held.

N = Privilege is not held.

BINDADDAUTH CHAR(1) Whether grantee can create new packages in the
database (BINDADD):

Y = Privilege is held.

N = Privilege is not held.

CONNECTAUTH CHAR(1) Whether grantee can connect to the database
(CONNECT):

Y = Privilege is held.

N = Privilege is not held.

NOFENCEAUTH CHAR(1) Whether grantee holds privilege to create
non-fenced functions.

Y = Privilege is held.

N = Privilege is not held.

IMPLSCHEMAAUTH CHAR(1) Whether grantee can implicitly create schemas
in the database (IMPLICIT_SCHEMA):

Y = Privilege is held.

N = Privilege is not held.

LOADAUTH CHAR(1) Whether grantee holds LOAD authority over
the database:

Y = Authority is held.

N = Authority is not held.

SYSCAT.DBAUTH

1150 SQL Reference

SYSCAT.DBAUTH

Appendix D. Catalog Views 1151

SYSCAT.EVENTMONITORS

Contains a row for every event monitor that has been defined.

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor.

DEFINER VARCHAR(128) Authorization ID of definer of event monitor.

TARGET_TYPE CHAR(1) The type of the target to which event data is
written. Values:

F = File

P = Pipe

TARGET VARCHAR(246) Name of the target to which event data is
written. Absolute pathname of file, or absolute
name of pipe.

MAXFILES INTEGER Yes Maximum number of event files that this event
monitor permits in an event path. Null if there
is no maximum, or if the target-type is not FILE.

MAXFILESIZE INTEGER Yes Maximum size (in 4K pages) that each event file
can reach before the event monitor creates a
new file. Null if there is no maximum, or if the
target-type is not FILE.

BUFFERSIZE INTEGER Yes Size of buffers (in 4K pages) used by event
monitors with file targets; otherwise null.

IO_MODE CHAR(1) Yes Mode of file I/O.

B = Blocked

N = Not blocked

Null if target-type is not FILE.

WRITE_MODE CHAR(1) Yes Indicates how this monitor handles existing
event data when the monitor is activated.
Values:

A = Append

R = Replace

Null if target-type is not FILE.

AUTOSTART CHAR(1) The event monitor will be activated
automatically when the database starts.

Y = Yes

N = No

NODENUM SMALLINT The number of the partition (or node) on which
the event monitor runs and logs events.

SYSCAT.EVENTMONITORS

1152 SQL Reference

Column Name Data Type Nullable Description

MONSCOPE CHAR(1) Monitoring scope:

L = Local

G = Global

REMARKS VARCHAR(254) Yes Reserved for future use.

SYSCAT.EVENTMONITORS

Appendix D. Catalog Views 1153

SYSCAT.EVENTS

Contains a row for every event that is being monitored. An event monitor, in
general, monitors multiple events.

Table 55. SYSCAT.EVENTS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor that is monitoring this
event.

TYPE VARCHAR(18) Type of event being monitored. Possible values:

DATABASE

CONNECTIONS

TABLES

STATEMENTS

TRANSACTIONS

DEADLOCKS

TABLESPACES

FILTER CLOB(32K) Yes The full text of the WHERE-clause that applies
to this event.

SYSCAT.EVENTS

1154 SQL Reference

SYSCAT.FULLHIERARCHIES

Each row represents the relationship between a subtable and a supertable, a
subtype and a supertype, or a subview and a superview. All hierarchical
relationships, including immediate ones, are included in this view

Table 56. SYSCAT.FULLHIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR(1) Encodes the type of relationship:

R = Between structured types

U = Between typed tables

W = Between typed views

SUB_SCHEMA VARCHAR(128) Qualified name of subtype, subtable or subview.

SUB_NAME VARCHAR(128)

SUPER_SCHEMA VARCHAR(128) Qualified name of supertype, supertable or
superview.SUPER_NAME VARCHAR(128)

ROOT_SCHEMA VARCHAR(128) Qualified name of the table, view or type that is
at the root of the hierarchy.ROOT_NAME VARCHAR(128)

SYSCAT.FULLHIERARCHIES

Appendix D. Catalog Views 1155

SYSCAT.FUNCDEP

Each row represents a dependency of a function or method on some other
object.

Table 57. SYSCAT.FUNCDEP Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR(128) Qualified name of the function or name of the
method which has dependencies on another
object.FUNCNAME VARCHAR(18)

BTYPE CHAR(1) Type of object that the function or method is
dependent on.

A = Alias

F = Function instance or method instance

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of the object depended on by
the function or method (if BTYEPE='F', this is
the specific name of a function).BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE = O, S, T, U, V or W, then it encodes
the privileges on the table or view that are
required by the dependent function or the
dependent method. Otherwise null.

SYSCAT.FUNCDEP

1156 SQL Reference

SYSCAT.FUNCMAPOPTIONS

Each row contains function mapping option values.

Table 58. SYSCAT.FUNCMAPOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR(18) Function mapping name.

OPTION VARCHAR(128) Name of the function mapping option.

SETTING VARCHAR(255) Value.

SYSCAT.FUNCMAPOPTIONS

Appendix D. Catalog Views 1157

SYSCAT.FUNCMAPPARMOPTIONS

Each row contains function mapping parameter option values.

Table 59. SYSCAT.FUNCMAPPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR(18) Name of function mapping.

ORDINAL SMALLINT Position of parameter

LOCATION CHAR(1) L = Local

R = Remote

OPTION VARCHAR(128) Name of the function mapping parameter
option.

SETTING VARCHAR(255) Value.

SYSCAT.FUNCMAPPARMOPTIONS

1158 SQL Reference

SYSCAT.FUNCMAPPINGS

Each row contains function mappings.

Table 60. SYSCAT.FUNCMAPPINGS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR(18) Name of function mapping (may be system
generated).

FUNCSCHEMA VARCHAR(128) Yes Function schema. Null if system built-in
function.

FUNCNAME VARCHAR(1024) Yes Name of the local function (built-in or
user-defined).

FUNCID INTEGER Yes Internally assigned identifier.

SPECIFICNAME VARCHAR(18) Yes Name of the local function instance.

DEFINER VARCHAR(128) Authorization ID under which this mapping
was created.

WRAPNAME VARCHAR(128) Yes Wrapper name to which the mapping is applied.

SERVERNAME VARCHAR(128) Yes Name of the data source.

SERVERTYPE VARCHAR(30) Yes Type of data source to which mapping is
applied.

SERVERVERSION VARCHAR(18) Yes Version of the server type to which mapping is
applied.

CREATE_TIME TIMESTAMP Yes Time at which the mapping is created.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

SYSCAT.FUNCMAPPINGS

Appendix D. Catalog Views 1159

SYSCAT.FUNCPARMS

Contains a row for every parameter or result of a function or method defined
in SYSCAT.FUNCTIONS.

Table 61. SYSCAT.FUNCPARMS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR(128) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance (may be
system-generated).

ROWTYPE CHAR(1) P = Parameter

R = Result before casting

C = Result after casting

ORDINAL SMALLINT If ROWTYPE = P, the parameter’s numerical
position within the function signature. If
ROWTYPE = R and the function returns a
table, the column’s numerical position within
the result table. Otherwise 0.

PARMNAME VARCHAR(128) Name of parameter or result column, or null
if no name exists.

TYPESCHEMA VARCHAR(128) Qualified name of data type of parameter or
result.TYPENAME VARCHAR(18)

LENGTH INTEGER Length of parameter or result. 0 if parameter
or result is a distinct type. See Note 1.

SCALE SMALLINT Scale of parameter or result. 0 if parameter or
result is a distinct type. See Note 1.

CODEPAGE SMALLINT Code page of parameter. 0 denotes either not
applicable or a column for character data
declared with the FOR BIT DATA attribute.

CAST_FUNCID INTEGER Yes Internal function ID.

AS_LOCATOR CHAR(1) Y = Parameter or result is passed in the
form of a locator.

N = Not passed in the form of a locator.

TARGET_TYPESCHEMA VARCHAR(128) Qualified name of the target type, if the type
of the parameter or result is REFERENCE.
Null value if the type of the parameter or
result is not REFERENCE.

TARGET_TYPENAME VARCHAR(18)

SYSCAT.FUNCPARMS

1160 SQL Reference

Table 61. SYSCAT.FUNCPARMS Catalog View (continued)

Column Name Data Type Nullable Description

SCOPE_TABSCHEMA VARCHAR(128) Qualified name of the scope (target table), if
the type of the parameter or result is
REFERENCE. Null value if the type of the
parameter or result is not REFERENCE or the
scope is not defined.

SCOPE_TABNAME VARCHAR(128)

TRANSFORM_GRPNAME VARCHAR(18) Yes Name of transform group for a structured
type function parameter.

Note:

1. LENGTH and SCALE are set to 0 for sourced functions (functions defined with a reference to
another function) because they inherit the length and scale of parameters from their source.

SYSCAT.FUNCPARMS

Appendix D. Catalog Views 1161

SYSCAT.FUNCTIONS

Contains a row for each user-defined function (scalar, table or source),
system-generated method or user-defined method. Does not include built-in
functions.

Note: Descriptions that state ″functions″ also apply to methods, unless
otherwise stated.

Table 62. SYSCAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR(128) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance (may be
system-generated).

DEFINER VARCHAR(128) Authorization ID of function definer.

FUNCID INTEGER Internally-assigned function ID.

RETURN_TYPE SMALLINT Internal type code of return type of function.

ORIGIN CHAR(1) B = Built-in

E = User-defined, external

Q = User-defined, SQL

U = User-defined, based on a source

S = System-generated

TYPE CHAR(1) C = Column function

R = Row function

S = Scalar function

T = Table function

METHOD CHAR(1) Y = Method

N = Not a method

EFFECT CHAR(2) MU = mutator method

OB = observer method

CN = constructor method

Blanks = Not a system-generated method

PARM_COUNT SMALLINT Number of function parameters.

PARM_SIGNATURE VARCHAR(180)
FOR BIT DATA

Concatenation of up to 90 parameter types, in
internal format. Zero length if function takes
no parameters.

SYSCAT.FUNCTIONS

1162 SQL Reference

Table 62. SYSCAT.FUNCTIONS Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Timestamp of function creation. Set to 0 for
Version 1 functions.

QUALIFIER VARCHAR(128) Value of default schema at object definition
time.

WITH_FUNC_ACCESS CHAR(1) Y = This method can be invoked by using
functional notation

N = This method cannot be invoked by
using functional notation

TYPE_PRESERVING CHAR(1) Y = Return type is governed by a
″type-preserving″ parameter. All
system-generated mutator methods are
type-preserving.

N = Return type is the declared return type
of the method.

VARIANT CHAR(1) Y = Variant (results may differ)

N = Invariant (results are consistent)

Blank if ORIGIN is not E

SIDE_EFFECTS CHAR(1) E = Function has external side-effects
(number of invocations is important)

N = No side-effects

Blank if ORIGIN is not E

FENCED CHAR(1) Y = Fenced

N = Not fenced

Blank if ORIGIN is not E

NULLCALL CHAR(1) Y = CALLED ON NULL INPUT

N = RETURNS NULL ON NULL INPUT
(function result is implicitly null if
operand(s) are null).

Blank if ORIGIN is not E.

CAST_FUNCTION CHAR(1) Y = This is a cast function

N = This is not a cast function

ASSIGN_FUNCTION CHAR(1) Y = Implicit assignment function

N = Not an assignment function

SYSCAT.FUNCTIONS

Appendix D. Catalog Views 1163

Table 62. SYSCAT.FUNCTIONS Catalog View (continued)

Column Name Data Type Nullable Description

SCRATCHPAD CHAR(1) Y = This function has a scratch pad.

N = This function does not have a scratch
pad.

Blank if ORIGIN is not E

FINAL_CALL CHAR(1) Y = Final call is made to this function at
run time end-of-statement.

N = No final call is made.

Blank if ORIGIN is not E

PARALLELIZABLE CHAR(1) Y = Function can be executed in parallel.

N = Function cannot be executed in
parallel.

Blank if ORIGIN is not E

CONTAINS_SQL CHAR(1) Indicates whether a function or method
contains SQL.

C = CONTAINS SQL: only SQL that does
not read or modify SQL data is allowed.

N = NO SQL: SQL is not allowed.

R = READS SQL DATA: only SQL that
reads SQL data is allowed.

DBINFO CHAR(1) Indicates whether a DBINFO parameter is
passed to an external function.

Y = DBINFO is passed.

N = DBINFO is not passed.

Blank if ORIGIN is not E

RESULT_COLS SMALLINT For a table function (TYPE=T) contains the
number of columns in the result table;
otherwise contains 1.

LANGUAGE CHAR(8) Implementation language of function body.
Possible values are C, JAVA, OLE or OLEDB.
Blank if ORIGIN is not E or Q.

IMPLEMENTATION VARCHAR(254) Yes If ORIGIN = E, identifies the
path/module/function that implements this
function. If ORIGIN = U and the source
function is built-in, this column contains the
name and signature of the source function.
Null otherwise.

CLASS VARCHAR(128) Yes If LANGUAGE = JAVA, identifies the class
that implements this function. Null otherwise.

SYSCAT.FUNCTIONS

1164 SQL Reference

Table 62. SYSCAT.FUNCTIONS Catalog View (continued)

Column Name Data Type Nullable Description

JAR_ID VARCHAR(128) Yes If LANGUAGE = JAVA, identifies the jar file
that implements this function. Null otherwise.

PARM_STYLE CHAR(8) Indicates the parameter style declared in the
CREATE FUNCTION statement. Values:

DB2SQL

DB2GENRL

JAVA

Blank if ORIGIN is not E

SOURCE_SCHEMA VARCHAR(128) Yes If ORIGIN = U and the source function is a
user-defined function, contains the qualified
name of the source function. If ORIGIN = U
and the source function is built-in,
SOURCE_SCHEMA is 'SYSIBM' and
SOURCE_SPECIFIC is 'N/A for built-in'. Null
if ORIGIN is not U.

SOURCE_SPECIFIC VARCHAR(18) Yes

IOS_PER_INVOC DOUBLE Estimated number of I/Os per invocation; -1 if
not known (0 default).

INSTS_PER_INVOC DOUBLE Estimated number of instructions per
invocation; -1 if not known (450 default).

IOS_PER_ARGBYTE DOUBLE Estimated number of I/O’s per input
argument byte; -1 if not known (0 default).

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per input
argument byte; -1 if not known (0 default).

PERCENT_ARGBYTES SMALLINT Estimated average percent of input argument
bytes that the function will actually read; -1 if
not known (100 default).

INITIAL_IOS DOUBLE Estimated number of I/O’s performed the
first/last time the function is invoked; -1 if not
known (0 default).

INITIAL_INSTS DOUBLE Estimated number of instructions executed the
first/last time the function is invoked; -1 if not
known (0 default).

CARDINALITY BIGINT The predicted cardinality of a table function.
−1 if not known or if function is not a table
function.

SYSCAT.FUNCTIONS

Appendix D. Catalog Views 1165

Table 62. SYSCAT.FUNCTIONS Catalog View (continued)

Column Name Data Type Nullable Description

IMPLEMENTED CHAR(1) Y = function is implemented.

M = method is implemented and does not
have function access. See note 1.

H = method is implemented and has
function access. See note 1.

N = method specification without an
implementation.

SELECTIVITY DOUBLE Used for user-defined predicates. -1 if there are
no user-defined predicates. See Note 2.

OVERRIDEN_FUNCID INTEGER Yes Reserved for future use.

SUBJECT_TYPESCHEMA VARCHAR(128) Yes Subject type schema for the user defined
method.

SUBJECT_TYPENAME VARCHAR(18) Yes Subject type name for the user defined
method.

FUNC_PATH VARCHAR(254) Yes Function path at the time the function was
defined.

BODY CLOB(1M) Yes When language is SQL, the text of the
CREATE FUNCTION or CREATE METHOD
statement.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

Note:

1. This value may not appear in future versions of DB2

2. This column will be set to -1 during migration in the packed descriptor and system catalogs for all
user-defined functions. For a user-defined predicate, the selectivity in the system catalog will be -1.
In this case, the selectivity value used by the optimizer is 0.01.

SYSCAT.FUNCTIONS

1166 SQL Reference

SYSCAT.HIERARCHIES

Each row represents the relationship between a subtable and its immediate
supertable, a subtype and its immediate supertype, or a subview and its
immediate superview. Only immediate hierarchical relationships are included
in this view.

Table 63. SYSCAT.HIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR(1) Encodes the type of relationship:

R = Between structured types

U = Between typed tables

W = Between typed views

SUB_SCHEMA VARCHAR(128) Qualified name of subtype, subtable, or
subview.SUB_NAME VARCHAR(128)

SUPER_SCHEMA VARCHAR(128) Qualified name of supertype, supertable, or
superview.SUPER_NAME VARCHAR(128)

ROOT_SCHEMA VARCHAR(128) Qualified name of the table, view or type that is
at the root of the hierarchy.ROOT_NAME VARCHAR(128)

SYSCAT.HIERARCHIES

Appendix D. Catalog Views 1167

SYSCAT.INDEXAUTH

Contains a row for every privilege held on an index.

Table 64. SYSCAT.INDEXAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

INDSCHEMA VARCHAR(128) Name of the index.

INDNAME VARCHAR(18)

CONTROLAUTH CHAR(1) Whether grantee holds CONTROL privilege
over the index:

Y = Privilege is held.

N = Privilege is not held.

SYSCAT.INDEXAUTH

1168 SQL Reference

SYSCAT.INDEXCOLUSE

Lists all columns that participate in an index.

Table 65. SYSCAT.INDEXCOLUSE Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Qualified name of the index.

INDNAME VARCHAR(18)

COLNAME VARCHAR(128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the index
(initial position = 1).

COLORDER CHAR(1) Order of the values in this column in the index.
Values:

A = Ascending

D = Descending

I = INCLUDE column(ordering ignored)

SYSCAT.INDEXCOLUSE

Appendix D. Catalog Views 1169

SYSCAT.INDEXDEP

Each row represents a dependency of an index on some other object.

Table 66. SYSCAT.INDEXDEP Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Qualified name of the index which has
dependencies on another object.INDNAME VARCHAR(18)

BTYPE CHAR(1) Type of object that the index is dependent on.

A = Alias

F = Function instance

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of the object that the index has a
dependency on.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE = O, S, T, U, V or W then it encodes the
privileges on the table or view that are required
by the dependent index. Otherwise null.

SYSCAT.INDEXDEP

1170 SQL Reference

SYSCAT.INDEXES

Contains one row for each index (including inherited indexes where
applicable) that is defined for a table.

Table 67. SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Name of the index.

INDNAME VARCHAR(18)

DEFINER VARCHAR(128) User who created the index.

TABSCHEMA VARCHAR(128) Qualified name of the table or nickname on
which the index is defined.TABNAME VARCHAR(128)

COLNAMES VARCHAR(640) List of column names, each preceded by + or −
to indicate ascending or descending order
respectively. Warning: This column will be
removed in the future. Use
“SYSCAT.INDEXCOLUSE” on page 1169 for this
information.

UNIQUERULE CHAR(1) Unique rule:

D = Duplicates allowed

P = Primary index

U = Unique entries only allowed

MADE_UNIQUE CHAR(1) Y = Index was originally non-unique but
was converted to a unique index to support
a unique or primary key constraint. If the
constraint is dropped, the index will revert
to non-unique.

N = Index remains as it was created.

COLCOUNT SMALLINT Number of columns in the key plus the number
of include columns if any.

UNIQUE_COLCOUNT SMALLINT The number of columns required for a unique
key. Always <=COLCOUNT. < COLCOUNT
only if there a include columns. −1 if index has
no unique key (permits duplicates)

INDEXTYPE CHAR(4) Type of index.

CLUS = Clustering

REG = Regular

ENTRYTYPE CHAR(1) H = An index on a hierarchy table (H-table)

L = Logical index on a typed table

blank if an index on an untyped table

SYSCAT.INDEXES

Appendix D. Catalog Views 1171

Table 67. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

PCTFREE SMALLINT Percentage of each index leaf page to be
reserved during initial building of the index.
This space is available for future inserts after the
index is built.

IID SMALLINT Internal index ID.

NLEAF INTEGER Number of leaf pages; −1 if statistics are not
gathered.

NLEVELS SMALLINT Number of index levels; −1 if statistics are not
gathered.

FIRSTKEYCARD BIGINT Number of distinct first key values; −1 if
statistics are not gathered.

FIRST2KEYCARD BIGINT Number of distinct keys using the first two
columns of the index (−1 if no statistics or
inapplicable)

FIRST3KEYCARD BIGINT Number of distinct keys using the first three
columns of the index (−1 if no statistics or
inapplicable)

FIRST4KEYCARD BIGINT Number of distinct keys using the first four
columns of the index (−1 if no statistics or
inapplicable)

FULLKEYCARD BIGINT Number of distinct full key values; −1 if
statistics are not gathered.

CLUSTERRATIO SMALLINT Degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics are gathered (in which case,
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR DOUBLE Finer measurement of degree of clustering, or -1
if detailed index statistics have not been
gathered or if the index is defined on a
nickname.

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in index
key order with few or no large gaps between
them. (−1 if no statistics are available.)

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer between 0
and 100, −1 if no statistics are available.)

USER_DEFINED SMALLINT 1 if this index was defined by a user and has
not been dropped; otherwise 0.

SYSCAT.INDEXES

1172 SQL Reference

Table 67. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

SYSTEM_REQUIRED SMALLINT 1 if this index is required for primary key or
unique key constraint, OR if this is the index
on the object identifier (OID) column of a
typed table.

2 if this index is required for primary key or
unique key constraint, AND this is the index
on the object identifier (OID) column of a
typed table.

0 otherwise.

CREATE_TIME TIMESTAMP Time when the index was created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to
recorded statistics for this index. Null if no
statistics available.

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented in
character form. Each pair represents the number
of pages in a hypothetical buffer, and the
number of page fetches required to scan the
table with this index using that hypothetical
buffer. (Zero-length string if no data available.)

MINPCTUSED SMALLINT If not zero, then on-line index reorganization is
enabled and the value is the threshold of
minimum used space before merging pages.

REVERSE_SCANS CHAR(1) Y = Index supports reverse scans

N = Index does not support reverse scans

INTERNAL_FORMAT SMALLINT Encodes the internal representation of the index.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.INDEXES

Appendix D. Catalog Views 1173

SYSCAT.INDEXOPTIONS

Each row contains index specific option values.

Table 68. SYSCAT.INDEXOPTIONS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Schema name of the index.

INDNAME VARCHAR(18) Local name of the index.

OPTION VARCHAR(128) Name of the index option.

SETTING VARCHAR(255) Value.

SYSCAT.INDEXOPTIONS

1174 SQL Reference

SYSCAT.KEYCOLUSE

Lists all columns that participate in a key (including inherited primary or
unique keys where applicable) defined by a unique, primary key, or foreign
key constraint.

Table 69. SYSCAT.KEYCOLUSE Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a table).

TABSCHEMA VARCHAR(128) Qualified name of the table containing the
column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the key
(initial position=1).

SYSCAT.KEYCOLUSE

Appendix D. Catalog Views 1175

SYSCAT.NAMEMAPPINGS

Each row represents the mapping between logical objects and the
corresponding implementation objects that implement the logical objects.

Table 70. SYSCAT.NAMEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE CHAR(1) C = Column

I = Index

U = Typed table

LOGICAL_SCHEMA VARCHAR(128) Qualified name of the logical object.

LOGICAL_NAME VARCHAR(128)

LOGICAL_COLNAME VARCHAR(128) Yes If TYPE = C, then the name of the logical
column. Otherwise null.

IMPL_SCHEMA VARCHAR(128) Qualified name of the implementation object
that implements the logical object.IMPL_NAME VARCHAR(128)

IMPL_COLNAME VARCHAR(128) Yes If TYPE = C, then the name of the
implementation column. Otherwise null.

SYSCAT.NAMEMAPPINGS

1176 SQL Reference

SYSCAT.NODEGROUPDEF

Contains a row for each partition that is contained in a nodegroup.

Table 71. SYSCAT.NODEGROUPDEF Catalog View

Column Name Data Type Nullable Description

NGNAME VARCHAR(18) The name of the nodegroup that contains the
partition (or node).

NODENUM SMALLINT The partition (or node) number of a partition
contained in the nodegroup. A valid partition
number is between 0 and 999 inclusive.

IN_USE CHAR(1) Status of the partition (or node).

A = The newly added partition is not in the
partitioning map but the containers for the
table spaces in the nodegroup are created.
The partition is added to the partitioning
map when a Redistribute Nodegroup
operation is successfully completed.

D = The partition will be dropped when a
Redistribute Nodegroup operation is
completed.

T = The newly added partition is not in the
partitioning map and it was added using the
WITHOUT TABLESPACES clause.
Containers must be specifically added to the
table spaces for the nodegroup.

Y = The partition is in the partitioning map.

SYSCAT.NODEGROUPDEF

Appendix D. Catalog Views 1177

SYSCAT.NODEGROUPS

Contains a row for each nodegroup.

Table 72. SYSCAT.NODEGROUPS Catalog View

Column Name Data Type Nullable Description

NGNAME VARCHAR(18) Name of the nodegroup.

DEFINER VARCHAR(128) Authorization ID of the nodegroup definer.

PMAP_ID SMALLINT Identifier of the partitioning map in
SYSCAT.PARTITIONMAPS.

REBALANCE_PMAP_ID SMALLINT Identifier of the partitioning map currently
being used for redistribution. Value is -1 if
redistribution is currently not in progress.

CREATE_TIME TIMESTAMP Creation time of nodegroup.

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.NODEGROUPS

1178 SQL Reference

SYSCAT.PACKAGEAUTH

Contains a row for every privilege held on a package.

Table 73. SYSCAT.PACKAGEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

PKGSCHEMA VARCHAR(128) Name of the package on which the privileges
are held.PKGNAME CHAR(8)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL
privilege on the package:

Y = Privilege is held.

N = Privilege is not held.

BINDAUTH CHAR(1) Indicates whether grantee holds BIND privilege
on the package:

Y = Privilege is held.

N = Privilege is not held.

EXECUTEAUTH CHAR(1) Indicates whether grantee holds EXECUTE
privilege on the package:

Y = Privilege is held.

N = Privilege is not held.

SYSCAT.PACKAGEAUTH

Appendix D. Catalog Views 1179

SYSCAT.PACKAGEDEP

Contains a row for each dependency that packages have on indexes, tables,
views, functions, aliases, types, and hierarchies.

Table 74. SYSCAT.PACKAGEDEP Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR(128) Name of the package.

PKGNAME CHAR(8)

BINDER VARCHAR(128) Yes Binder of the package.

BTYPE CHAR(1) Type of object BNAME:

A = Alias

D = Server definition

F = Function instance

I = Index

M = Function mapping

N = Nickname

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

P = Page size

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

BSCHEMA VARCHAR(128) Qualified name of an object on which the
package is dependent.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE is O, S, T, U, V or W then it encodes
the privileges that are required by this package
(Select, Insert, Delete, Update).

Note: When a depended-on function-instance is dropped, the package is placed into an “inoperative”
state from which it must be explicitly rebound. When any other depended-on object is dropped, the
package is placed into an “invalid” state from which the system will attempt to rebind it automatically
when a package is first referenced.

SYSCAT.PACKAGEDEP

1180 SQL Reference

SYSCAT.PACKAGES

Contains a row for each package that has been created by binding an
application program.

Table 75. SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR(128) Name of the package.

PKGNAME CHAR(8)

BOUNDBY VARCHAR(128) Authorization ID (OWNER) of the binder of the
package.

DEFINER VARCHAR(128) Userid under which package was bound.

DEFAULT_SCHEMA VARCHAR(128) Default schema (QUALIFIER) name used for
unqualified names in static SQL statements.

VALID CHAR(1) Y = Valid

N = Not valid

X = Package is inoperative because some
function instance that it depends on has been
dropped. Explicit rebind is needed. See Note
1 on “SYSCAT.PACKAGEDEP” on page 1180

UNIQUE_ID CHAR(8) Internal date and time information indicating
when the package was first created.

TOTAL_SECT SMALLINT Total number of sections in the package.

FORMAT CHAR(1) Date and time format associated with the
package:

0 = Format associated with country code of
the database

1 = USA date and time

2 = EUR date, EUR time

3 = ISO date, ISO time

4 = JIS date, JIS time

5 = LOCAL date, LOCAL time

ISOLATION CHAR(2) Yes Isolation level:

RR = Repeatable read

RS = Read stability

CS = Cursor stability

UR = Uncommitted read

SYSCAT.PACKAGES

Appendix D. Catalog Views 1181

Table 75. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

BLOCKING CHAR(1) Yes Cursor blocking option:

N = No blocking

U = Block unambiguous cursors

B = Block all cursors

INSERT_BUF CHAR(1) Insert option used during bind:

Y = Inserts are buffered

N = Inserts are not buffered

LANG_LEVEL CHAR(1) Yes LANGLEVEL value used during BIND:

0 = SAA1

1 = SQL92E or MIA

FUNC_PATH VARCHAR(254) The SQL path used by the last BIND command
for this package. This is used as the default path
for REBIND. SYSIBM for pre-Version 2
packages.

QUERYOPT INTEGER Optimization class under which this package
was bound. Used for rebind. The classes are: 0,
1, 3, 5 and 9.

EXPLAIN_LEVEL CHAR(1) Indicates whether Explain was requested using
the EXPLAIN or EXPLSNAP bind option.

P = Plan Selection level

Blank if ’No’ Explain requested

EXPLAIN_MODE CHAR(1) Value of EXPLAIN bind option:

Y = Yes (static)

N = No

A = All (static and dynamic)

EXPLAIN_SNAPSHOT CHAR(1) Value of EXPLSNAP bind option:

Y = Yes (static)

N = No

A = All (static and dynamic)

SQLWARN CHAR(1) Are positive SQLCODEs resulting from dynamic
SQL statements returned to the application?

Y = Yes

N = No, they are suppressed.

SYSCAT.PACKAGES

1182 SQL Reference

Table 75. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

SQLMATHWARN CHAR(1) Value of database configuration parameter
DFT_SQLMATHWARN at time of bind. Are
arithmetic errors and retrieval conversion errors
in static SQL statements handled as nulls with a
warning?

Y = Yes

N = No, they are suppressed.

EXPLICIT_BIND_TIME TIMESTAMP The time at which this package was last
explicitly bound or rebound. When the package
is implicitly rebound, no function instance will
be selected that was created later than this time.

LAST_BIND_TIME TIMESTAMP Time at which the package last explicitly or
implicitly bound or rebound.

CODEPAGE SMALLINT Application codepage at bind time (-1 if not
known).

DEGREE CHAR(5) Indicates the limit on intra-partition parallelism
(as a bind option) when package was bound.

1 = No intra-partition parallelism.

2 - 32 767 = Degree of intra-partition
parallelism.

ANY = Degree was determined by the
database manager.

MULTINODE_PLANS CHAR(1) Y = Package was bound in a multiple
partition environment.

N =Package was bound in a single partition
environment.

INTRA_PARALLEL CHAR(1) Indicates the use of intra-partition parallelism
by static SQL statements within the package.

Y = one or more static SQL statement in
package uses intra-partition parallelism.

N = no static SQL statement in package uses
intra-partition parallelism.

F = one or more static SQL statement in
package can use intra-partition parallelism;
this parallelism has been disabled for use on
a system that is not configured for
intra-partition parallelism.

VALIDATE CHAR(1) B = All checking must be performed during
BIND

R = Reserved

SYSCAT.PACKAGES

Appendix D. Catalog Views 1183

Table 75. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

DYNAMICRULES CHAR(1) B = Dynamic SQL statements are handled
like static SQL statements at run time;
binder’s authid is used.

R = Dynamic SQL statements are handled
like dynamic SQL statements at run time;
executer’s authid is used.

Initial value is R.

SQLERROR CHAR(1) Indicates SQLERROR option on the most recent
subcommand that bound or rebound the
package.

C = Reserved

N = No package

REFRESHAGE DECIMAL (20,6) Timestamp duration indicating the maximum
length of time between when a REFRESH
TABLE statement is run for a summary table
and when the summary table is used in place of
a base table.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.PACKAGES

1184 SQL Reference

SYSCAT.PARTITIONMAPS

Contains a row for each partitioning map that is used to distribute the rows
of tables among the partitions in a nodegroup, based on hashing the tables
partitioning key.

Table 76. SYSCAT.PARTITIONMAPS Catalog View

Column Name Data Type Nullable Description

PMAP_ID SMALLINT Identifier of the partitioning map.

PARTITIONMAP LONG VARCHAR
FOR BIT DATA

The actual partitioning map, a vector of 4 096
two-byte integers for a multiple node
nodegroup. For a single node nodegroup, there
is one entry denoting the partition (or node)
number of the single node.

SYSCAT.PARTITIONMAPS

Appendix D. Catalog Views 1185

SYSCAT.PASSTHRUAUTH

This catalog view contains information about authorizations to query data
sources in pass-through sessions. A constraint on the base table requires that
the values in SERVER correspond to the values in the SERVER column of
SYSCAT.SERVERS. None of the fields in SYSCAT.PASSTHRUAUTH are
nullable.

Table 77. Columns in SYSCAT.PASSTHRUAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privilege.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privilege.

GRANTEETYPE CHAR(1) A letter that specifies the type of grantee:

U = Grantee is an individual user.

G = Grantee is a group.

SERVERNAME VARCHAR(128) Name of the data source that the user or group
is being granted authorization to.

SYSCAT.PASSTHRUAUTH

1186 SQL Reference

SYSCAT.PROCEDURES

Contains a row for each stored procedure that is created.

Table 78. SYSCAT.PROCEDURES Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualified procedure name.

PROCNAME VARCHAR(128)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be
system generated).

PROCEDURE_ID INTEGER Internal ID of stored procedure.

DEFINER VARCHAR(128) Authorization of the procedure definer.

PARM_COUNT SMALLINT Number of procedure parameters.

PARM_SIGNATURE VARCHAR(180)
FOR BIT DATA

Concatenation of up to 90 parameter types, in
internal format. Zero length if procedure takes
no parameters.

ORIGIN CHAR(1) Always ’E’ = User defined, external

CREATE_TIME TIMESTAMP Timestamp of procedure registration.

DETERMINISTIC CHAR(1) Y = Results are deterministic.

N = Results are not deterministic.

FENCED CHAR(1) Y = Fenced

N = Not Fenced

NULLCALL CHAR(1) Always Y = NULLCALL

LANGUAGE CHAR(8) Implementation language of procedure body.
Possible values are:

C

COBOL

JAVA

SQL

IMPLEMENTATION VARCHAR(254) Yes Identifies the path/module/function
(LANGUAGE = C or COBOL) or method
(LANGUAGE = JAVA) that implements the
procedure.

CLASS VARCHAR(128) Yes If LANGUAGE = JAVA then it identifies the
class that implements this procedure. Null
otherwise.

JAR_ID VARCHAR(128) Yes If LANGUAGE = JAVA then identifies the jar
file that implements this procedure. Null
otherwise.

SYSCAT.PROCEDURES

Appendix D. Catalog Views 1187

Table 78. SYSCAT.PROCEDURES Catalog View (continued)

Column Name Data Type Nullable Description

PARM_STYLE CHAR(8) DB2DARI = Language is C

DB2GENRL = Language is Java

DB2SQL = Language is C or COBOL

JAVA = Language is Java or SQL

GENERAL = Language is C or COBOL

GNLRNULL = Language is C or COBOL

CONTAINS_SQL CHAR(1) Indicates whether a procedure contains SQL.

C = CONTAINS SQL: only SQL that does
not read or modify SQL data is allowed.

M = MODIFY SQL DATA: all SQL allowed
in procedures is allowed

N = NO SQL: SQL is not allowed

R = READS SQL DATA: only SQL that reads
SQL data is allowed

DBINFO CHAR(1) Indicates whether a DBINFO parameter is
passed to the procedure

N = DBINFO is not passed

Y = DBINFO is passed

PROGRAM_TYPE CHAR(1) Indicates how procedure is invoked.

M = Main

S = Subroutine

RESULT_SETS SMALLINT Estimated upper limit of returned result sets.

VALID CHAR(1) blank = not an SQL procedure

Y = SQL procedure is valid

N = SQL procedure is invalid

X = SQL procedure is inoperative because
some function instance it requires has been
dropped. The SQL procedure must be
explicitly dropped and recreated.

TEXT_BODY_OFFSET INTEGER If this is an SQL procedure, this column
contains the offset to the start of the SQL
procedure body in the full text of the CREATE
PROCEDURE statement. If this is an external
procedure, the value is 0.

TEXT CLOB (1M) Yes If this is an SQL procedure, this column
contains the full text of the CREATE
PROCEDURE statement, exactly as typed. It is
null if the full text is longer than 1M, or if this
is an external procedure.

SYSCAT.PROCEDURES

1188 SQL Reference

Table 78. SYSCAT.PROCEDURES Catalog View (continued)

Column Name Data Type Nullable Description

REMARKS VARCHAR(254) Yes User supplied comment, or null.

SYSCAT.PROCEDURES

Appendix D. Catalog Views 1189

SYSCAT.PROCOPTIONS

Each row contains procedure specific option values.

Table 79. SYSCAT.PROCOPTIONS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualifier for the stored procedure name or
nickname.

PROCNAME VARCHAR(128) Name or nickname of the stored procedure.

OPTION VARCHAR(128) Name of the stored procedure option.

SETTING VARCHAR(255) Value of the stored procedure option.

SYSCAT.PROCOPTIONS

1190 SQL Reference

SYSCAT.PROCPARMOPTIONS

Each row contains procedure parameter specific option values.

Table 80. SYSCAT.PROCPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualified procedure name or nickname.

PROCNAME VARCHAR(128)

ORDINAL SMALLINT The parameter’s numerical position within the
procedure signature.

OPTION VARCHAR(128) Name of the stored procedure option.

SETTING VARCHAR(255) Value.

SYSCAT.PROCPARMOPTIONS

Appendix D. Catalog Views 1191

SYSCAT.PROCPARMS

Contains a row for each parameter of a stored procedure.

Table 81. SYSCAT.PROCPARMS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualified procedure name.

PROCNAME VARCHAR(128)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be
system generated).

SERVERNAME VARCHAR(128) Yes Name of the data source on which the stored
procedure resides.

ORDINAL SMALLINT The parameter’s numerical position within the
procedure signature.

PARMNAME VARCHAR(18) Parameter name.

TYPESCHEMA VARCHAR(128) Qualified name of data type of the parameter.

TYPENAME VARCHAR(18)

TYPEID SMALLINT Yes Internal type ID.

SOURCETYPEID SMALLINT Yes Internal type ID of source type. Null for
built-in types.

NULLS CHAR(1) federated database nullable rule:

Y = Nullable

N = Not nullable

LENGTH INTEGER Length of the parameter.

SCALE SMALLINT Scale of the parameter.

PARM_MODE VARCHAR(5) IN = Input

OUT = Output

INOUT = Input/output

CODEPAGE SMALLINT Code page of parameter. 0 denotes either not
applicable or a parameter for character data
declared with the FOR BIT DATA attribute.

DBCS_CODEPAGE SMALLINT Yes DBCS codepage. Null for numeric fields.

AS_LOCATOR CHAR(1) Always ’N’

TARGET_TYPESCHEMA VARCHAR(128) Yes If type of parameter is reference then contains
qualified name of target rowtype. Null
otherwise.TARGET_TYPENAME VARCHAR(18)

SYSCAT.PROCPARMS

1192 SQL Reference

Table 81. SYSCAT.PROCPARMS Catalog View (continued)

Column Name Data Type Nullable Description

SCOPE_TABSCHEMA VARCHAR(128) Yes If type of parameter is reference then contains
qualified name of scope (target table). Null
otherwise.SCOPE_TABNAME VARCHAR(128)

SYSCAT.PROCPARMS

Appendix D. Catalog Views 1193

SYSCAT.REFERENCES

Contains a row for each defined referential constraint.

Table 82. SYSCAT.REFERENCES Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of constraint.

TABSCHEMA VARCHAR(128) Qualified name of the constraint.

TABNAME VARCHAR(128)

DEFINER VARCHAR(128) User who created the constraint.

REFKEYNAME VARCHAR(18) Name of parent key.

REFTABSCHEMA VARCHAR(128) Name of the parent table.

REFTABNAME VARCHAR(128)

COLCOUNT SMALLINT Number of columns in the foreign key.

DELETERULE CHAR(1) Delete rule:

A = NO ACTION

C = CASCADE

N = SET NULL

R = RESTRICT

UPDATERULE CHAR(1) Update rule:

A = NO ACTION

R = RESTRICT

CREATE_TIME TIMESTAMP The timestamp when the referential constraint
was defined.

FK_COLNAMES VARCHAR (640) List of foreign key column names. Warning:
This column will be removed in the future. Use
“SYSCAT.KEYCOLUSE” on page 1175 for this
information.

PK_COLNAMES VARCHAR (640) List of parent key column names. Warning: This
column will be removed in the future. Use
“SYSCAT.KEYCOLUSE” on page 1175 for this
information.

Note:

1. The SYSCAT.REFERENCES view is based on the SYSIBM.SYSRELS table from Version 1.

SYSCAT.REFERENCES

1194 SQL Reference

SYSCAT.REVTYPEMAPPINGS

Each row contains reverse data type mappings (mappings from data types
defined locally to data source data types). No data in this version. Defined for
possible future use with data type mappings.

Table 83. SYSCAT.REVTYPEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE_MAPPING VARCHAR(18) Name of the reverse type mapping (may be
system-generated).

TYPESCHEMA VARCHAR(128) Yes Schema name of the type. Null for system
built-in types.

TYPENAME VARCHAR(18) Name of the local type in a reverse type
mapping.

TYPEID SMALLINT Type identifier.

SOURCETYPEID SMALLINT Source type identifier.

DEFINER VARCHAR(128) Authorization ID under which this type
mapping was created.

LOWER_LEN INTEGER Yes Lower bound of the length/precision of the
local type.

UPPER_LEN INTEGER Yes Upper bound of the length/precision of the
local type. If null then the system determines
the best length/precision attribute.

LOWER_SCALE SMALLINT Yes Lower bound of the scale for local decimal
data types.

UPPER_SCALE SMALLINT Yes Upper bound of the scale for local decimal
data types. If null, then the system
determines the best scale attribute.

S_OPR_P CHAR(2) Yes Relationship between local scale and local
precision. Basic comparison operators can be
used. A null indicates that no specific
relationship is required.

BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

WRAPNAME VARCHAR(128) Yes Mapping applies to this data access protocol.

SERVERNAME VARCHAR(128) Yes Name of the data source.

SERVERTYPE VARCHAR(30) Yes Mapping applies to this type of data source.

SYSCAT.REVTYPEMAPPINGS

Appendix D. Catalog Views 1195

Table 83. SYSCAT.REVTYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

SERVERVERSION VARCHAR(18) Yes Mapping applies to this version of
SERVERTYPE.

REMOTE_TYPESCHEMA VARCHAR(128) Yes Schema name of the remote type.

REMOTE_TYPENAME VARCHAR(128) Name of the data type as defined on the data
source(s).

REMOTE_META_TYPE CHAR(1) Yes S = Remote type is a system built-in type.

T = Remote type is a distinct type.

REMOTE_LENGTH INTEGER Yes Maximum number of digits for remote
decimal type, and maximum number of
characters for remote character type.
Otherwise null.

REMOTE_SCALE SMALLINT Yes Maximum number of digits allowed to the
right of the decimal point (for remote
decimal types). Otherwise null.

REMOTE_BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

USER_DEFINED CHAR(1) Defined by user.

CREATE_TIME TIMESTAMP Time when this mapping was created.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.REVTYPEMAPPINGS

1196 SQL Reference

SYSCAT.SCHEMAAUTH

Contains one or more rows for each user or group who is granted a privilege
on a particular schema in the database. All schema privileges for a single
schema granted by a specific grantor to a specific grantee appear in a single
row.

Table 84. SYSCAT.SCHEMAAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.
G = Grantee is a group.

SCHEMANAME VARCHAR(128) Name of the schema.

ALTERINAUTH CHAR(1) Indicates whether grantee holds ALTERIN
privilege on the schema:

Y = Privilege is held.
G = Privilege is held and grantable.
N = Privilege is not held.

CREATEINAUTH CHAR(1) Indicates whether grantee holds CREATEIN
privilege on the schema:

Y = Privilege is held.
G = Privilege is held and grantable.
N = Privilege is not held.

DROPINAUTH CHAR(1) Indicates whether grantee holds DROPIN
privilege on the schema:

Y = Privilege is held.
G = Privilege is held and grantable.
N = Privilege is not held.

SYSCAT.SCHEMAAUTH

Appendix D. Catalog Views 1197

SYSCAT.SCHEMATA

Contains a row for each schema.

Table 85. SYSCAT.SCHEMATA Catalog View

Column Name Data Type Nullable Description

SCHEMANAME VARCHAR(128) Name of the schema.

OWNER VARCHAR(128) Authorization id of the schema. The value for
implicitly created schemas is SYSIBM.

DEFINER VARCHAR(128) User who created the schema.

CREATE_TIME TIMESTAMP Timstamp indicating when the object was
created.

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.SCHEMATA

1198 SQL Reference

SYSCAT.SERVEROPTIONS

Each row contains configuration options at the server level.

Table 86. Columns in SYSCAT.SERVEROPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Yes Wrapper name.

SERVERNAME VARCHAR(128) Yes Name of the server.

SERVERTYPE VARCHAR(30) Yes Server type.

SERVERVERSION VARCHAR(18) Yes Server version.

CREATE_TIME TIMESTAMP Time when entry is created.

OPTION VARCHAR(128) Name of the server option.

SETTING VARCHAR(2048) Value of the server option.

SERVEROPTIONKEY VARCHAR(18) Uniquely identifies a row.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.SERVEROPTIONS

Appendix D. Catalog Views 1199

SYSCAT.SERVERS

Each row represents a data source. Catalog entries are not necessary for tables
that are stored in the same instance that contains this catalog table.

Table 87. Columns in SYSCAT.SERVERS Catalog View

Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Wrapper name.

SERVERNAME VARCHAR(128) Name of data source as it is known to the
system.

SERVERTYPE VARCHAR(30) Yes Type of data source (always uppercase).

SERVERVERSION VARCHAR(18) Yes Version of data source.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.SERVERS

1200 SQL Reference

SYSCAT.STATEMENTS

Contains one or more rows for each SQL statement in each package in the
database.

Table 88. SYSCAT.STATEMENTS Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR(128) Name of the package.

PKGNAME CHAR(8)

STMTNO INTEGER Line number of the SQL statement in the source
module of the application program.

SECTNO SMALLINT Number of the package section containing the
SQL statement.

SEQNO SMALLINT Always 1.

TEXT CLOB (64K) Text of the SQL statement.

SYSCAT.STATEMENTS

Appendix D. Catalog Views 1201

SYSCAT.TABAUTH

Contains one or more rows for each user or group who is granted a privilege
on a particular table or view in the database. All the table privileges for a
single table or view granted by a specific grantor to a specific grantee appear
in a single row.

Table 89. SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

TABSCHEMA VARCHAR(128) Qualified name of the table or view.

TABNAME VARCHAR(128)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

ALTERAUTH CHAR(1) Indicates whether grantee holds ALTER
privilege on the table:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

DELETEAUTH CHAR(1) Indicates whether grantee holds DELETE
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

INDEXAUTH CHAR(1) Indicates whether grantee holds INDEX
privilege on the table:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SYSCAT.TABAUTH

1202 SQL Reference

Table 89. SYSCAT.TABAUTH Catalog View (continued)

Column Name Data Type Nullable Description

INSERTAUTH CHAR(1) Indicates whether grantee holds INSERT
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SELECTAUTH CHAR(1) Indicates whether grantee holds SELECT
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

REFAUTH CHAR(1) Indicates whether grantee holds REFERENCE
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

UPDATEAUTH CHAR(1) Indicates whether grantee holds UPDATE
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SYSCAT.TABAUTH

Appendix D. Catalog Views 1203

SYSCAT.TABCONST

Each row represents a table constraint of type CHECK, UNIQUE, PRIMARY
KEY, or FOREIGN KEY.

Table 90. SYSCAT.TABCONST Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a table).

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
constraint applies.TABNAME VARCHAR(128)

DEFINER VARCHAR(128) Authorization ID under which the constraint
was defined.

TYPE CHAR(1) Indicates the constraint type:

F = FOREIGN KEY

K = CHECK

P = PRIMARY KEY

U = UNIQUE

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.TABCONST

1204 SQL Reference

SYSCAT.TABLES

Contains one row for each table, view, nickname or alias that is created. All of
the catalog tables and views have entries in the SYSCAT.TABLES catalog view.

Table 91. SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table, view, nickname or
alias.TABNAME VARCHAR(128)

DEFINER VARCHAR(128) User who created the table, view, nickname or
alias.

TYPE CHAR(1) The type of object:

A = Alias

H = Hierarchy table

N = Nickname

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

STATUS CHAR(1) The type of object:

N = Normal table, view, alias or nickname

C = Check pending on table or nickname

X = Inoperative view or nickname

BASE_TABSCHEMA VARCHAR(128) Yes If TYPE = A, these columns identify the table,
view, alias or nickname that is referenced by
this alias; otherwise they are null.BASE_TABNAME VARCHAR(128) Yes

ROWTYPESCHEMA VARCHAR(128) Yes Contains the qualified name of the rowtype of
this table, where applicable. Null otherwise.ROWTYPENAME VARCHAR(18)

CREATE_TIME TIMESTAMP The timestamp indicating when the object was
created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to
recorded statistics for this table. Null if no
statistics available.

COLCOUNT SMALLINT Number of columns in table.

TABLEID SMALLINT Internal table identifier.

TBSPACEID SMALLINT Internal identifier of primary table space for this
table.

SYSCAT.TABLES

Appendix D. Catalog Views 1205

Table 91. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

CARD BIGINT Total number of rows in the table. For tables in
a table hierarchy, its the number of rows at the
given level of the hierarchy −1 if statistics are
not gathered or the row describes a view or
alias; −2 for hierarchy tables (H-tables)

NPAGES INTEGER Total number of pages on which the rows of the
table exist; −1 if statistics are not gathered or the
row describes a view or alias; −2 for subtables
or H-tables.

FPAGES INTEGER Total number of pages; −1 if statistics are not
gathered or the row describes a view or alias;
−2 for subtables or H-tables.

OVERFLOW INTEGER Total number of overflow records in the table;
−1 if statistics are not gathered or the row
describes a view or alias; −2 for subtables or
H-tables.

TBSPACE VARCHAR(18) Yes Name of primary table space for the table. If no
other table space is specified, all parts of the
table are stored in this table space. Null for
aliases and views.

INDEX_TBSPACE VARCHAR(18) Yes Name of table space that holds all indexes
created on this table. Null for aliases and views,
or if the INDEX IN clause was omitted or
specified with the same value as the IN clause
of the CREATE TABLE statement.

LONG_TBSPACE VARCHAR(18) Yes Name of table space that holds all long data
(LONG or LOB column types) for this table.
Null for aliases and views, or if the LONG IN
clause was omitted or specified with the same
value as the IN clause of the CREATE TABLE
statement.

PARENTS SMALLINT Yes Number of parent tables of this table (the
number of referential constraints in which this
table is a dependent).

CHILDREN SMALLINT Yes Number of dependent tables of this table (the
number of referential constraints in which this
table is a parent).

SELFREFS SMALLINT Yes Number of self-referencing referential
constraints for this table (the number of
referential constraints in which this table is both
a parent and a dependent).

SYSCAT.TABLES

1206 SQL Reference

Table 91. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

KEYCOLUMNS SMALLINT Yes Number of columns in the primary key of the
table.

KEYINDEXID SMALLINT Yes Index ID of the primary index. This field is null
or 0 if there is no primary key.

KEYUNIQUE SMALLINT Number of unique constraints (other than
primary key) defined on this table.

CHECKCOUNT SMALLINT Number of check constraints defined on this
table.

DATACAPTURE CHAR(1) Y = Table participates in data replication

N = Does not participate

L = Table participates in data replication,
including replication of LONG VARCHAR
and LONG VARGRAPHIC columns

CONST_CHECKED CHAR(32) Byte 1 represents foreign key constraints. Byte 2
represents check constraints. Byte 5 represents
summary table. Byte 6 represents generated
columns. Other bytes are reserved. Encodes
constraint information on checking. Values:

Y = Checked by system

U = Checked by user

N = Not checked (pending)

W = Was in a ’U’ state when the table was
placed in check pending (pending)

PMAP_ID SMALLINT Yes Identifier of the partitioning map used by this
table. Null for aliases and views.

PARTITION_MODE CHAR(1) Mode used for tables in a partitioned database.

H = Hash on the partitioning key

R = Table replicated across database
partitions

Blank for aliases, views and tables in single
partition nodegroups with no partitioning
key defined. Also blank for nicknames.

LOG_ATTRIBUTE CHAR(1) 0 = Default logging

1 = Table created not logged initially

PCTFREE SMALLINT Percentage of each page to be reserved for
future inserts. Can be changed by ALTER
TABLE.

SYSCAT.TABLES

Appendix D. Catalog Views 1207

Table 91. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

APPEND_MODE CHAR(1) Controls how rows are inserted on pages:

N = New rows are inserted into existing
spaces if available

Y = New rows are appended at end of data

Initial value is N.

REFRESH CHAR(1) Refresh mode

D = Deferred

I = Immeidate

O = Once

Blank if not a summary table

REFRESH_TIME TIMESTAMP Yes For REFRESH = D or O, timestamp of the
REFRESH TABLE statement that last refreshed
the data. Otherwise null.

LOCKSIZE CHAR(1) Indicates preferred lock granularity for tables
when accessed by DML statements. Only
applies to tables. Possible values are:

R = Row

T = Table

Blank if not applicable

Initial value is R.

VOLATILE CHAR(1) C = Cardinality of the table is volatile

Blank if not applicable

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.TABLES

1208 SQL Reference

SYSCAT.TABLESPACES

Contains a row for each table space.

Table 92. SYSCAT.TABLESPACES Catalog View

Column Name Data Type Nullable Description

TBSPACE VARCHAR(18) Name of table space.

DEFINER VARCHAR(128) Authorization ID of table space definer.

CREATE_TIME TIMESTAMP Creation time of table space.

TBSPACEID INTEGER Internal table space identifier.

TBSPACETYPE CHAR(1) The type of the table space:

S = System managed space

D = Database managed space

DATATYPE CHAR(1) Type of data that can be stored:

A = All types of permanent data

L = Long data only

T = System temporary tables only

U = Declared temporary tables only

EXTENTSIZE INTEGER Size of extent, in pages of size PAGESIZE. This
many pages are written to one container in the
table space before switching to the next
container.

PREFETCHSIZE INTEGER Number of pages of size PAGESIZE to be read
when prefetch is performed.

OVERHEAD DOUBLE Controller overhead and disk seek and latency
time in milliseconds.

TRANSFERRATE DOUBLE Time to read one page of size PAGESIZE into
the buffer.

PAGESIZE INTEGER Size (in bytes) of pages in the table space.

NGNAME VARCHAR(18) Name of the nodegroup for the table space.

BUFFERPOOLID INTEGER ID of buffer pool used by this tablespace (1
indicates default buffer pool).

DROP_RECOVERY CHAR(1) N = table is not recoverable after a DROP
TABLE statement

Y = table is recoverable after a DROP TABLE
statement

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.TABLESPACES

Appendix D. Catalog Views 1209

SYSCAT.TABOPTIONS

Each row contains option associated with a remote table.

Table 93. SYSCAT.TABOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of table, view, alias or
nickname.TABNAME VARCHAR(128)

OPTION VARCHAR(128) Name of the table, view, alias or nickname
option.

SETTING VARCHAR(255) Value.

SYSCAT.TABOPTIONS

1210 SQL Reference

SYSCAT.TBSPACEAUTH

Contains one row for each user or group who is granted USE privilege on a
particular table space in the database.

Table 94. SYSCAT.TBSPACEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(128) Authorization ID of the user who granted the
privileges or SYSIBM.

GRANTEE CHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1) U = Grantee is an individual user.

G = Grantee is a group.

TBSPACE VARCHAR(18) Name of the table space.

USEAUTH CHAR(1) Indicates whether grantee holds USE privilege
on the table space:

G = Privilege is held and grantable.

N = Privilege is not held.

Y = Privilege is held.

SYSCAT.TBSPACEAUTH

Appendix D. Catalog Views 1211

SYSCAT.TRIGDEP

Contains a row for every dependency of a trigger on some other object.

Table 95. SYSCAT.TRIGDEP Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR(128) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

BTYPE CHAR(1) Type of object BNAME:

A = Alias

F = Function instance

N = Nickname

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of object depended on by a
trigger.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE= O, S, T, U, V or W encodes the
privileges on the table or view that are required
by this trigger; otherwise null.

SYSCAT.TRIGDEP

1212 SQL Reference

SYSCAT.TRIGGERS

Contains one row for each trigger. For table hierarchies, each trigger is
recorded only at the level of the hierarchy where it was created.

Table 96. SYSCAT.TRIGGERS Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR(128) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

DEFINER VARCHAR(128) Authorization ID under which the trigger was
defined.

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
trigger applies.TABNAME VARCHAR(128)

TRIGTIME CHAR(1) Time when triggered actions are applied to the
base table, relative to the event that fired the
trigger:

A = Trigger applied after event

B = Trigger applied before event

TRIGEVENT CHAR(1) Event that fires the trigger.

I = Insert

D = Delete

U = Update

GRANULARITY CHAR(1) Trigger is executed once per:

S = Statement

R = Row

VALID CHAR(1) Y = Trigger is valid

X = Trigger is inoperative; must be
re-created.

CREATE_TIME TIMESTAMP Time at which the trigger was defined. Used
in resolving functions and types.

QUALIFIER VARCHAR(128) Contains value of the default schema at the
time of object definition.

FUNC_PATH VARCHAR(254) Function path at the time the trigger was
defined. Used in resolving functions and
types.

TEXT CLOB(64K) The full text of the CREATE TRIGGER
statement, exactly as typed.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.TRIGGERS

Appendix D. Catalog Views 1213

SYSCAT.TYPEMAPPINGS

Each row contains a user-defined mapping of a remote built-in data type to a
local built-in data type.

Table 97. SYSCAT.TYPEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE_MAPPING VARCHAR(18) Name of the type mapping (may be
system-generated).

TYPESCHEMA VARCHAR(128) Yes Schema name of the type. Null for system
built-in types.

TYPENAME VARCHAR(18) Name of the local type in a data type
mapping.

TYPEID SMALLINT Type identifier.

SOURCETYPEID SMALLINT Source type identifier.

DEFINER VARCHAR(128) Authorization ID under which this type
mapping was created.

LENGTH INTEGER Yes Maximum length or precision of the data
type. If null, the system determines the best
length/precision.

SCALE SMALLINT Yes Scale for DECIMAL fields. If null, the system
determines the best scale attribute.

BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

WRAPNAME VARCHAR(128) Yes Mapping applies to this data access protocol.

SERVERNAME VARCHAR(128) Yes Name of the data source.

SERVERTYPE VARCHAR(30) Yes Mapping applies to this type of data source.

SERVERVERSION VARCHAR(18) Yes Mapping applies to this version of
SERVERTYPE.

REMOTE_TYPESCHEMA VARCHAR(128) Yes Schema name of the remote type.

REMOTE_TYPENAME VARCHAR(128) Name of the data type as defined on the data
source(s).

REMOTE_META_TYPE CHAR(1) Yes S = Remote type is a system built-in type.

T = Remote type is a distinct type.

REMOTE_LOWER_LEN INTEGER Yes Lower bound of the length/precision of the
remote decimal type. For character data
types, this field indicates the number of
character.

SYSCAT.TYPEMAPPINGS

1214 SQL Reference

Table 97. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

REMOTE_UPPER_LEN INTEGER Yes Upper bound of the length/precision of the
remote decimal type. For character data
types, this field indicates the number of
character.

REMOTE_LOWER_SCALE SMALLINT Yes Lower bound of the scale of the remote type.

REMOTE_UPPER_SCALE SMALLINT Yes Upper bound of the scale of the remote type.

REMOTE_S_OPR_P CHAR(2) Yes Relationship between remote scale and
remote precision. Basic comparison operators
can be used. A null indicated that no specific
relationship is required.

REMOTE_BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

USER_DEFINED CHAR(1) Definition supplied by user.

CREATE_TIME TIMESTAMP Time when this mapping was created.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.TYPEMAPPINGS

Appendix D. Catalog Views 1215

SYSCAT.USEROPTIONS

Each row contains server specific option values.

Table 98. SYSCAT.USEROPTIONS Catalog View

Column Name Data Type Nullable Description

AUTHID VARCHAR(128) Local authorization ID (always uppercase)

SERVERNAME VARCHAR(128) Name of the server for which the user is
defined.

OPTION VARCHAR(128) Name of the user options.

SETTING VARCHAR(255) Value.

SYSCAT.USEROPTIONS

1216 SQL Reference

SYSCAT.VIEWDEP

Contains a row for every dependency of a view or a summary table on some
other object. Also encodes how privileges on this view depend on privileges
on underlying tables and views.

Table 99. SYSCAT.VIEWDEP Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA VARCHAR(128) Name of the view or the name of a summary
table having dependencies on a base table.VIEWNAME VARCHAR(128)

DTYPE CHAR(1) S = Summary table

V = View (untyped)

W = Typed view

DEFINER VARCHAR(128) Yes Authorization ID of the creator of the view.

BTYPE CHAR(1) Type of object BNAME:

A = Alias

F = Function instance

N = Nickname

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

I = Index if recording dependency on a base
table

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

BSCHEMA VARCHAR(128) Qualified name of object depended on by the
view.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE= O, S, T, U, V, W then encodes the
privileges on the underlying table or view that
this view depends on. Otherwise null.

SYSCAT.VIEWDEP

Appendix D. Catalog Views 1217

SYSCAT.VIEWS

Contains one or more rows for each view that is created.

Table 100. SYSCAT.VIEWS Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA VARCHAR(128) Name of the view or the name of a table used
to define a summary table.VIEWNAME VARCHAR(128)

DEFINER VARCHAR(128) Authorization ID of the creator of the view.

SEQNO SMALLINT Always 1.

VIEWCHECK CHAR(1) States the type of view checking:

N = No check option

L = Local check option

C = Cascaded check option

READONLY CHAR(1) Y = View is read-only because of its
definition.

N = View is not read-only.

VALID CHAR(1) Y = View or summary table definition is
valid.

X = View or summary table definition is
inoperative; must be re-created.

QUALIFIER VARCHAR(128) Contains value of the default schema at the time
of object definition.

FUNC_PATH VARCHAR(254) The SQL path of the view creator at the time the
view was defined. When the view is used in
data manipulation statements, this path must be
used to resolve function calls in the view.
SYSIBM for views created before Version 2.

TEXT CLOB(64k) Text of the CREATE VIEW statement.

SYSCAT.VIEWS

1218 SQL Reference

SYSCAT.WRAPOPTIONS

Each row contains wrapper specific options.

Table 101. SYSCAT.WRAPOPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Wrapper name.

OPTION VARCHAR(128) Name of wrapper option.

SETTING VARCHAR(255) Value.

SYSCAT.WRAPOPTIONS

Appendix D. Catalog Views 1219

SYSCAT.WRAPPERS

Each row contains information on the registered wrapper.

Table 102. SYSCAT.WRAPPERS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Wrapper name.

WRAPTYPE CHAR(1) N = Non-relational

R = Relational

WRAPVERSION INTEGER Version of the wrapper.

LIBRARY VARCHAR(255) Name of the file that contains the code used to
communicate with the data sources associated
with this wrapper.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

SYSCAT.WRAPPERS

1220 SQL Reference

SYSSTAT.COLDIST

Each row describes the Nth-most-frequent value or Nth quantile value of
some column. Statistics are not recorded for inherited columns of typed tables.

Table 103. SYSSTAT.COLDIST Catalog View

Column
Name

Data Type Nullable Description Updatable

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
entry applies.

TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column to which this entry
applies.

TYPE CHAR(1) Type of statistic collected:

F = Frequency (most frequent value)

Q = Quantile value

SEQNO SMALLINT If TYPE = F, then N in this column
identifies the Nth most frequent value. If
TYPE = Q, then N in this column
identifies the Nth quantile value.

COLVALUE VARCHAR(254)Yes The data value, as a character literal or a
null value.

This column can be updated with a valid
representation of the value appropriate to
the column that the statistic is associated
with. If null is the required frequency
value, the column should be set to NULL.

Yes

VALCOUNT BIGINT If TYPE = F, then VALCOUNT is the
number of occurrences of COLVALUE in
the column. If TYPE = Q, then
VALCOUNT is the number of rows whose
value is less than or equal to COLVALUE.

This column can be only updated with
the following values:

v >= 0 (zero)

Yes

DISTCOUNT BIGINT If TYPE = q, this column records the
number of distinct values that are less
than or equal to COLVALUE (null if
unavailable.) the number of rows whose
value is less than or equal to COLVALUE.

Yes

SYSSTAT.COLDIST

Appendix D. Catalog Views 1221

SYSSTAT.COLUMNS

Contains one row for each column for which statistics can be updated.
Statistics are not recorded for inherited columns of typed tables.

Table 104. SYSSTAT.COLUMNS Catalog View

Column Name Data Type Nullable Description Updatable

TABSCHEMA VARCHAR(128) Qualified name of the table that
contains the column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Column name.

COLCARD BIGINT Number of distinct values in the
column; −1 if statistics are not
gathered; −2 for inherited columns
and columns of H-tables.

For any column, COLCARD cannot
have a value higher than the
cardinality of the table containing
that column.

This column can only be updated
with the following values:

v −1 or >= 0 (zero)

Yes

HIGH2KEY VARCHAR(33)Yes Second highest value of the column.
This field is empty if statistics are
not gathered and for inherited
columns and columns of H-tables.

This column can be updated with a
valid representation of the value
appropriate to the column that the
statistic is associated with.

LOWKEY2 should not be greater
than HIGH2KEY.

Yes

LOW2KEY VARCHAR(33)Yes Second lowest value of the column.
Empty if statistics not gathered and
for inherited columns and columns
of H-tables.

This column can be updated with a
valid representation of the value
appropriate to the column that the
statistic is associated with.

Yes

SYSSTAT.COLUMNS

1222 SQL Reference

Table 104. SYSSTAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description Updatable

AVGCOLLEN INTEGER Average column length. −1 if a long
field or LOB, or statistics have not
been collected; −2 for inherited
columns and columns of H-tables.

This column can only be updated
with the following values:

v −1 or >= 0 (zero)

Yes

NUMNULLS BIGINT Contains the number of nulls in a
column. −1 if statistics are not
gathered.

This column can only be updated
with the following values:

v −1 or >= 0 (zero)

Yes

SYSSTAT.COLUMNS

Appendix D. Catalog Views 1223

SYSSTAT.FUNCTIONS

Contains a row for each user-defined function (scalar or aggregate). Does not
include built-in functions. Statistics are not recorded for inherited columns of
typed tables.

Table 105. SYSSTAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description Updatable

FUNCSCHEMA VARCHAR(128) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) Function specific (instance) name.

IOS_PER_INVOC DOUBLE Estimated number of I/Os per
invocation; −1 if not known (0 default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

INSTS_PER_INVOC DOUBLE Estimated number of instructions per
invocation; −1 if not known (450
default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

IOS_PER_ARGBYTE DOUBLE Estimated number of I/O’s per input
argument byte; −1 if not known (0
default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per
input argument byte; −1 if not known
(0 default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

SYSSTAT.FUNCTIONS

1224 SQL Reference

Table 105. SYSSTAT.FUNCTIONS Catalog View (continued)

Column Name Data Type Nullable Description Updatable

PERCENT_ARGBYTES SMALLINT Estimated average percent of input
argument bytes that the function will
actually read; −1 if not known (100
default).

This column can only be updated with
the following values:

v −1 or between 100 and 0 (zero)

Yes

INITIAL_IOS DOUBLE Estimated number of I/O’s performed
the first/last time the function is
invoked; −1 if not known (0 default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

INITIAL_INSTS DOUBLE Estimated number of instructions
executed the first/last time the function
is invoked; −1 if not known (0 default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

CARDINALITY BIGINT The predicted cardinality of a table
function. −1 if not known, or if function
is not a table function.

Yes

SELECTIVITY DOUBLE Used for user defined predicates.
Default = −1 if there are no user
defined predicates. See Note 1.

Note:

1. This column will be set to -1 during migration from DB2 Version 5.2 to 6.1 in the system
catalogs for all user defined functions. For a user defined predicate, the selectivity in the
system catalog will be -1. In this case, the selectivity value used by the optimizer is 0.01.

SYSSTAT.FUNCTIONS

Appendix D. Catalog Views 1225

SYSSTAT.INDEXES

Contains one row for each index that is defined for a table.

Table 106. SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Description Updatable

INDSCHEMA VARCHAR(128) Qualified name of the index.

INDNAME VARCHAR(18)

TABSCHEMA VARCHAR(128) Qualifier of the table name.

TABNAME VARCHAR(128) Name of the table or nickname on
which the index is defined.

COLNAMES CLOB(1M) List of column names with + or −
prefixes.

NLEAF INTEGER Number of leaf pages; −1 if statistics
are not gathered.

This column can only be updated with
the following values:

v −1 or > 0 (zero)

Yes

NLEVELS SMALLINT Number of index levels; −1 if statistics
are not gathered.

This column can only be updated with
the following values:

v −1 or > 0 (zero)

Yes

FIRSTKEYCARD BIGINT Number of distinct first key values; −1
if statistics are not gathered.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

FIRST2KEYCARD BIGINT Number of distinct keys using the first
two columns of the index (−1 if no
statistics or inapplicable)

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

SYSSTAT.INDEXES

1226 SQL Reference

Table 106. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description Updatable

FIRST3KEYCARD BIGINT Number of distinct keys using the first
three columns of the index (−1 if no
statistics or inapplicable)

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

FIRST4KEYCARD BIGINT Number of distinct keys using the first
four columns of the index (−1 if no
statistics or inapplicable)

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

FULLKEYCARD BIGINT Number of distinct full key values; −1 if
statistics are not gathered.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

CLUSTERRATIO SMALLINT This is used by the optimizer. It
indicates the degree of data clustering
with the index; −1 if statistics are not
gathered or if detailed index statistics
have been gathered.

This column can only be updated with
the following values:

v −1 or between 0 and 100

Yes

CLUSTERFACTOR DOUBLE This is used by the optimizer. It is a
finer measurement of degree of
clustering, or −1 if detailed index
statistics have not been gathered.

This column can only be updated with
the following values:

v −1 or between 0 and 1

Yes

SYSSTAT.INDEXES

Appendix D. Catalog Views 1227

Table 106. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description Updatable

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in
index key order with few or no large
gaps between them. (−1 if no statistics
are available.)

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to
number of pages in the range of pages
occupied by the index, expressed as a
percent (integer between 0 and 100, −1
if no statistics are available.)

This column can only be updated with
the following values:

v −1 or between 0 and 100

Yes

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented
in character form. Each pair represents
the number of pages in a hypothetical
buffer, and the number of page fetches
required to scan the index using that
hypothetical buffer. (Zero-length string
if no data available.)

This column can be updated with the
following input values:
v The pair delimiter and pair separator

characters are the only non-numeric
characters accepted

v Blanks are the only characters
recognized as a pair delimiter and
pair separator

v Each number entry must have an
accompanying partner number entry
with the two being separated by the
pair separator character

v Each pair must be separated from
any other pairs by the pair delimiter
character

v Each expected number entry must
between 0-9 (only positive values)

Yes

SYSSTAT.INDEXES

1228 SQL Reference

SYSSTAT.TABLES

Contains one row for each base table. Views or aliases are, therefore, not
included. For typed tables, only the root table of a table hierarchy is included
in this view. Statistics are not recorded for inherited columns of typed tables.
The CARD value applies to the root table only while the other statistics apply
to the entire table hierarchy.

Table 107. SYSSTAT.TABLES Catalog View

Column
Name

Data Type Nullable Description Updatable

TABSCHEMA VARCHAR(128) Qualified name of the table.

TABNAME VARCHAR(128)

CARD BIGINT Total number of rows in the table; −1 if
statistics are not gathered.

An update to CARD for a table should
not attempt to assign it a value less than
the COLCARD value of any of the
columns in that table. This column can
only be updated with the following
values: 115.

v −1 or >= 0 (zero)

Yes

NPAGES INTEGER Total number of pages on which the rows
of the table exist; −1 if statistics are not
gathered; −2 for subtables and H-tables.

This column can only be updated with
the following values: 115

v −1 or >= 0 (zero)

Yes

FPAGES INTEGER Total number of pages in the file; −1 if
statistics are not gathered; −2 for
subtables and H-tables.

This column can only be updated with
the following values: 115

v −1 or >= 0 (zero)

Yes

115. A value of −2 can not be changed and a column value can not be directly set to −2.

SYSSTAT.TABLES

Appendix D. Catalog Views 1229

Table 107. SYSSTAT.TABLES Catalog View (continued)

Column
Name

Data Type Nullable Description Updatable

OVERFLOW INTEGER Total number of overflow records in the
table; −1 if statistics are not gathered; −2
for subtables and H-tables.

This column can only be updated with
the following values: 115

v −1 or >= 0 (zero)

Yes

SYSSTAT.TABLES

1230 SQL Reference

Appendix E. Catalog Views For Use With Structured Types

When using extended indexes, additional catalog views provide useful
information complementing the SYSCAT catalog views. These views are not
created automatically. The views are created in the OBJCAT schema and
SELECT privilege on all views is granted to PUBLIC by default.

WARNING: This set of views is for temporary use only until the next version
that supports catalog migration. Applications should not
presume that these views exist in every database and should
consider that these catalog views may not be provided in future
versions. The information from these views will be supported
through the SYSCAT views in a future version.

The views can be created by following these steps:
v Using the Command Line Processor, connect to the database with an

authorization ID that has SYSADM or DBADM authority.
v Ensure that you are in the home directory of the DB2 instance.
v In a UNIX-based system, issue the command:

db2 -tvf sqllib/bin/objcat.db2

v In an OS/2 or Windows based system, issue the command:
db2 -tvf sqllib\bin\objcat.db2

The views created by objcat.db2 can be removed by following these steps:
v Using the Command Line Processor, connect to the database with an

authorization ID that has SYSADM or DBADM authority.
v Ensure that you are in the home directory of the DB2 instance.
v In a UNIX-based system, issue the command:

db2 -tvf sqllib/bin/objcatdp.db2

v In an OS/2 or Windows based system, issue the command:
db2 -tvf sqllib\bin\objcatdp.db2

Note: If the database already includes a schema called OBJCAT, you may
need to make your own copy of the file objcat.db2 and change the
schema names in the second and third CREATE SCHEMA statements to
suitable names.

The statements in the OBJCAT.DB2 file will create all additional OBJCAT
catalog views.

© Copyright IBM Corp. 1993, 2000 1231

This appendix contains a description of each of the OBJCAT catalog views.
For the associated SYSCAT views, see “Appendix D. Catalog Views” on
page 1127.

The catalog views are updated during normal operation, in response to SQL
data definition statements, environment routines, and certain utilities. Data in
the catalog views is available through normal SQL query facilities. Columns
have consistent names based on the type of objects that they describe:

Described Object Column Names

Table TABSCHEMA, TABNAME

Index INDSCHEMA, INDNAME

View VIEWSCHEMA, VIEWNAME

Constraint CONSTSCHEMA, CONSTNAME

Trigger TRIGSCHEMA, TRIGNAME

Package PKGSCHEMA, PKGNAME

Type TYPESCHEMA, TYPENAME, TYPEID

Function FUNCSCHEMA, FUNCNAME, FUNCID

Column COLNAME

Attribute ATTR_NAME

Schema SCHEMANAME

Table Space TBSPACE

Nodegroup NGNAME

Buffer pool BPNAME

Event Monitor EVMONNAME

Creation Timestamp CREATE_TIME

‘Roadmap’ to Catalog Views

Description Catalog View Page

indexes OBJCAT.INDEXES 1234

index exploitation rules OBJCAT.INDEXEXPLOITRULES 1237

index extension
dependencies

OBJCAT.INDEXEXTENSIONDEP 1238

index extension methods OBJCAT.INDEXEXTENSIONMETHODS 1239

1232 SQL Reference

Description Catalog View Page

index extension parameters OBJCAT.INDEXEXTENSIONPARMS 1240

index extensions OBJCAT.INDEXEXTENSIONS 1241

predicate specifications OBJCAT.PREDICATESPECS 1242

transforms OBJCAT.TRANSFORMS 1243

Appendix E. Catalog Views For Use With Structured Types 1233

OBJCAT.INDEXES

Table 108. OBJCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Name of the index.

INDNAME VARCHAR(18)

DEFINER VARCHAR(128) User who created the index.

TABSCHEMA VARCHAR(128) Qualified name of the table or nickname on
which the index is defined.TABNAME VARCHAR(128)

COLNAMES VARCHAR(640) List of column names, each preceded by + or
− to indicate ascending or descending order
respectively. Warning: This column will be
removed in the future. Use
“SYSCAT.INDEXCOLUSE” on page 1169 for
this information.

UNIQUERULE CHAR(1) Unique rule:

D = Duplicates allowed

P = Primary index

U = Unique entries only allowed

MADE_UNIQUE CHAR(1) Y = Index was originally non-unique, but
was converted to a unique index to
support a unique or primary key
constraint. If the constraint is dropped,
the index will revert to non-unique.

N = Index remains as it was created.

COLCOUNT SMALLINT Number of columns in key plus number of
include columns, if any.

UNIQUE_COLCOUNT SMALLINT The number of columns required for a
unique key. Always less than or equal to
COLCOUNT. Less than COLCOUNT only if
there are include columns. −1 if index has no
unique key (permits duplicates).

INDEXTYPE CHAR(4) Type of index.

CLUS = Clustering

REG = Regular

ENTRYTYPE CHAR(1) H = An index on a hierarchy table
(H-table)

L = Logical index on a typed table

blank if an index on an untyped table

OBJCAT.INDEXES

1234 SQL Reference

Table 108. OBJCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

PCTFREE SMALLINT Percentage of each index leaf page to be
reserved during initial building of the index.
This space is available for future inserts after
the index is built.

IID SMALLINT Internal index ID

NLEAF INTEGER Number of leaf pages; −1 if statistics are not
gathered.

NLEVELS SMALLINT Number of index levels; −1 if statistics are
not gathered.

FIRSTKEYCARD BIGINT Number of distinct first-key values (−1 if
statistics are not gathered).

FIRST2KEYCARD BIGINT Number of distinct keys using the first two
columns of the index (−1 if statistics are not
gathered, or inapplicable).

FIRST3KEYCARD BIGINT Number of distinct keys using the first three
columns of the index (−1 if statistics are not
gathered, or inapplicable).

FIRST4KEYCARD BIGINT Number of distinct keys using the first four
columns of the index (−1 if statistics are not
gathered, or inapplicable).

FULLKEYCARD BIGINT Number of distinct full-key values; −1 if
statistics are not gathered.

CLUSTERRATIO SMALLINT Degree of data clustering with the index; −1
if statistics are not gathered or if detailed
index statistics are gathered (in which case
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR DOUBLE Finer measurement of degree of clustering, or
−1 if detailed index statistics have not been
gathered, or if the index is defined on a
nickname.

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in
index key order with few or no large gaps
between them (−1 if statistics are not
available).

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer
between 0 and 100, −1 if no statistics are
available).

USER_DEFINED SMALLINT 1 if this index was defined by a user and has
not been dropped; otherwise 0.

OBJCAT.INDEXES

Appendix E. Catalog Views For Use With Structured Types 1235

Table 108. OBJCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

SYSTEM_REQUIRED SMALLINT 1 if this index is required for primary or
unique key constraint, OR if this is the
index on the object identifier (OID)
column of a typed table.

2 if this index is required for primary key
or unique key constraint, AND this is the
index on the object identifier (OID)
column of a typed table.

0 otherwise.

CREATE_TIME TIMESTAMP Time when the index was created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to
recorded statistics for this index. Null if no
statistics available.

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented in
character form. Each pair represents the
number of pages in a hypothetical buffer, and
the number of page fetches required to scan
the table with this index using that
hypothetical buffer. (Zero-length string if no
data available).

MINPCTUSED SMALLINT If not zero, then on-line index reorganization
is enabled and the value is the threshold of
minimum used space before merging pages.

REVERSE_SCANS CHAR(1) Y = Index supports reverse scans

N = Index does not support reverse scans

INTERNAL_FORMAT SMALLINT Encodes the internal representation of the
index.

IESCHEMA VARCHAR(128) Yes Qualified name of index extension. Null for
ordinary indexes.IENAME VARCHAR(18) Yes

IEARGUMENTS CLOB(32K) Yes External information of the parameter
specified when the index is created. Null for
ordinary indexes.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

OBJCAT.INDEXES

1236 SQL Reference

OBJCAT.INDEXEXPLOITRULES

Each row represents an index exploitation.

Table 109. OBJCAT.INDEXEXPLOITRULES Catalog View

Column Name Data Type Nullable Description

FUNCID INTEGER Function ID.

SPECID SMALLINT Number of the predicate specification in the
CREATE FUNCTION statement.

IESCHEMA VARCHAR(128) Qualified name of index extension.

IENAME VARCHAR(18)

RULEID SMALLINT Unique exploitation rule ID.

SEARCHMETHODID SMALLINT The search method ID in the specific index
extension.

SEARCHKEY VARCHAR(320) Key used to exploit index.

SEARCHARGUMENT VARCHAR(1800) Search arguments used in the index
exploitation.

OBJCAT.INDEXEXPLOITRULES

Appendix E. Catalog Views For Use With Structured Types 1237

OBJCAT.INDEXEXTENSIONDEP

Contains a row for each dependency that index extensions have on various
database objects.

Table 110. OBJCAT.INDEXEXTENSIONDEP Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR(128) Qualified name of index extension which has
dependencies on another object.IENAME VARCHAR(18)

BTYPE CHAR(1) Type of object that the index extension is
dependent on:

A = Alias

F = Function instance or method instance

J = Server definition

O = "Outer" dependency on hierarchic
SELECT privilege

R = Structured type

S = Summary table

T = Table (not typed)

U = Typed table

V = View (not typed)

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of object depended on by the
index extension (if BTYPE='F', this is the
specific name of a function).BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE='O', 'T', 'U', 'V', or 'W', encodes the
privileges on the table (or view) that are
required by a dependent trigger; otherwise
null.

OBJCAT.INDEXEXTENSIONDEP

1238 SQL Reference

OBJCAT.INDEXEXTENSIONMETHODS

Each row represents a search method. One index extension may include
multiple search methods.

Table 111. OBJCAT.INDEXEXTENSIONMETHODS Catalog View

Column Name Data Type Nullable Description

METHODNAME VARCHAR(18) Name of search method.

METHODID SMALLINT Number of the method in the index
extension.

IESCHEMA VARCHAR(128) Qualified name of index extension.

IENAME VARCHAR(18)

RANGEFUNCSCHEMA VARCHAR(128) Qualified name of range-through function.

RANGEFUNCNAME VARCHAR(18)

RANGESPECIFICNAME VARCHAR(18) Range-through function specific name.

FILTERFUNCSCHEMA VARCHAR(128) Qualified name of filter function.

FILTERFUNCNAME VARCHAR(18)

FILTERSPECIFICNAME VARCHAR(18) Function specific name of filter function.

REMARKS VARCHAR(254) Yes User-supplied or null.

OBJCAT.INDEXEXTENSIONMETHODS

Appendix E. Catalog Views For Use With Structured Types 1239

OBJCAT.INDEXEXTENSIONPARMS

Each row represents an index extension instance parameter or source key
definition.

Table 112. OBJCAT.INDEXEXTENSIONPARMS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR(128) Qualified name of index extension.

IENAME VARCHAR(18)

ORDINAL SMALLINT Sequence number of parameter or source key.

PARMNAME VARCHAR(18) Name of parameter or source key.

TYPESCHEMA VARCHAR(128) Qualified name of the instance parameter or
souce key data type.TYPENAME VARCHAR(18)

LENGTH INTEGER Length of the instance parameter or source
key data type.

SCALE SMALLINT Scale of the instance parameter or source key
data type. Zero (0) when not applicable.

PARMTYPE CHAR(1) Type represented by the row:

P = index extension parameter

K = key column

CODEPAGE SMALLINT Codepage of the index extension parameter.
Zero if not a string type.

OBJCAT.INDEXEXTENSIONPARMS

1240 SQL Reference

OBJCAT.INDEXEXTENSIONS

Contains a row for each index extension.

Table 113. OBJCAT.INDEXEXTENSIONS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR(128) Qualified name of index extension.

IENAME VARCHAR(18)

DEFINER VARCHAR(128) Authorization ID under which the index
extension was defined.

CREATE_TIME TIMESTAMP Time at which the index extension was
defined.

KEYGENFUNCSCHEMA VARCHAR(128) Qualified name of key generation function.

KEYGENFUNCNAME VARCHAR(18)

KEYGENSPECIFICNAME VARCHAR(18) Key generation function specific name.

TEXT CLOB(64K) The full text of the CREATE INDEX
EXTENSION statement.

REMARKS VARCHAR(254) User-supplied comment, or null.

OBJCAT.INDEXEXTENSIONS

Appendix E. Catalog Views For Use With Structured Types 1241

OBJCAT.PREDICATESPECS

Table 114. OBJCAT.PREDICATESPECS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR(128) Qualified name of function.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance.

FUNCID INTEGER Function ID.

SPECID SMALLINT ID of this predicate specification.

CONTEXTOP CHAR(8) Comparison operator is one of the built-in
relational operators (=,<,>=, etc.).

CONTEXTEXP CLOB(32K) Constant, or an SQL expression.

FILTERTEXT CLOB(32K) Yes Text of data filter expression.

OBJCAT.PREDICATESPECS

1242 SQL Reference

OBJCAT.TRANSFORMS

Contains a row for each transform function type within a user-defined type
contained in a named transform group.

Table 115. OBJCAT.TRANSFORMS Catalog View

Column Name Data Type Nullable Description

TYPEID SMALLINT Internal type ID as defined in
SYSCAT.DATATYPES

TYPESCHEMA VARCHAR(128) Qualified name of the given user-defined
structured type.TYPENAME VARCHAR(18)

GROUPNAME VARCHAR(18) Transform group name.

FUNCID INTEGER Yes Internal function ID for the associated
transform function, as defined in
SYSCAT.FUNCTIONS. Null only for internal
system functions.

FUNCSCHEMA VARCHAR(128) Qualified name of the associated transform
functions.FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) Function specific (instance) name.

TRANSFORMTYPE VARCHAR(8) 'FROM SQL' = Transform function
transforms a structured type from SQL

'TO SQL' = Transform function transforms
a structured type to SQL

FORMAT CHAR(1) 'U' = User defined

MAXLENGTH INTEGER Yes Maximum length (in bytes) of output from
the FROM SQL transform. Null for TO SQL
transforms.

ORIGIN CHAR(1) 'I' = Inherited down type hierarchy.

'U' = User defined.

REMARKS VARCHAR(254) Yes User-supplied comment or null.

OBJCAT.TRANSFORMS

Appendix E. Catalog Views For Use With Structured Types 1243

OBJCAT.TRANSFORMS

1244 SQL Reference

Appendix F. Federated Systems

This appendix documents:
v The server types that can be defined in the SQL statements for establishing

and using DB2 federated systems
v The options that can be defined in the SQL statements for establishing and

using DB2 federated systems
v Default mappings between data types supported by the federated server

and data types supported by data sources
v Factors to consider and restrictions to observe when using pass-through

Server Types

Server types indicate what kind of data source the server will represent.
Server types vary by vendor, purpose, and platform. Supported values
depend on the wrapper being used.
v DRDA wrapper

DB2 Family

Table 116. IBM DB2 Universal Database
Server Type Data Source

DB2/UDB IBM DB2 Universal Database
DataJoiner IBM DB2 DataJoiner V2.1 and V2.1.1
DB2/6000 IBM DB2 for AIX
DB2/HPUX IBM DB2 for HP-UX V1.2
DB2/NT IBM DB2 for Windows NT
DB2/EEE IBM DB2 Enterprise-Extended Edition
DB2/SUN IBM DB2 for Solaris V1 and V1.2
DB2/2 IBM DB2 for OS/2
DB2/LINUX IBM DB2 for Linux
DB2/PTX IBM DB2 for NUMA-Q
DB2/SCO IBM DB2 for SCO Unixware

Table 117. IBM DB2 Universal Database for AS/400

Server Type Data Source

DB2/400 IBM DB2 for AS/400

© Copyright IBM Corp. 1993, 2000 1245

Table 118. IBM DB2 Universal Database for OS/390

Server Type Data Source

DB2/390 IBM DB2 for OS/390

DB2/MVS IBM DB2 for MVS

Table 119. IBM DB2 Server for VM and VSE

Server Type Data Source

DB2/VM IBM DB2 for VM

DB2/VSE IBM DB2 for VSE

SQL/DS IBM SQL/DS

v SQLNET wrapper

Oracle data sources supported by Oracle SQL*Net V1 or V2 client software.

Server Type Data Source

ORACLE Oracle V7.0.13 or later

v NET8 wrapper

Oracle data sources supported by Oracle Net8 client software.

Server Type Data Source

ORACLE Oracle V7.0.13 or later

v OLE DB wrapper

OLE DB providers compliant with Microsoft OLE DB 2.0 or later.

Server Type Data Source

– Any OLE DB provider

v Other wrappers

Please consult the documentation included with the wrapper.

SQL Options for Federated Systems

This section documents:
v The column options that can be specified in the ALTER NICKNAME

statement.
v The function mapping options that can be specified in the CREATE

FUNCTION MAPPING statement

1246 SQL Reference

v The server options that can be specified in the CREATE SERVER, ALTER
SERVER, and SET SERVER OPTION statements

v The user options that can be specified in the CREATE USER MAPPING and
ALTER USER MAPPING statements

Column Options
The primary purpose of column options is to provide information about
nickname columns to the SQL compiler. Setting column options for one or
more columns to ’Y’ allows the compiler to consider additional push-down
possibilities for predicates that perform evaluation operations. See
Administration Guide: Performance for more information on push-down
processing.

Table 120. Column Options and Their Settings

Option Valid Settings Default
Setting

numeric_string
‘Y’ Yes, this column contains only strings of numeric data.

IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘Y’.

‘N’ No, this column is not limited to strings of numeric
data.

By setting numeric_string to ‘Y’ for a column, you are
informing the optimizer that this column contains no blanks
that could interfere with sorting of the column’s data. This
option is helpful when the collating sequence of a data source is
different from DB2. Columns marked with this option will not
be excluded from local (data source) evaluation because of a
different collating sequence.

‘N’

Appendix F. Federated Systems 1247

Table 120. Column Options and Their Settings (continued)

Option Valid Settings Default
Setting

varchar_no_trailing_blanks Indicates whether trailing blanks are absent from a specific
VARCHAR column:

‘Y’ Yes, trailing blanks are absent from this VARCHAR
column.

‘N’ No, trailing blanks are not absent from this VARCHAR
column.

If data source VARCHAR columns contain no padded blanks,
then the optimizer’s strategy for accessing them depends in part
on whether they contain trailing blanks. By default, the
optimizer “assumes” that they actually do contain trailing
blanks. On this assumption, it develops an access strategy that
involves modifying queries so that the values returned from
these columns are the ones that the user expects. If, however, a
VARCHAR column has no trailing blanks, and you let the
optimizer know this, it can develop a more efficient access
strategy. To tell the optimizer that a specific column has no
trailing blanks, specify that column in the ALTER NICKNAME
statement (for syntax, see the SQL Reference).

‘N‘

Function Mapping Options
The primary purpose of function mapping options is to provide information
about the potential cost of executing a data source function at the data source.
If pushdown analysis determines that either of two functions within a
mapping can be called, the statistical information provided in the mapping
definition helps the optimizer to compare the estimated cost of executing the
data source function with the estimated cost of executing the DB2 function.

Table 121. Function Mapping Options and Their Settings

Option Valid Settings Default
Setting

disable Disable a default function mapping. Valid values are ‘Y’ and
‘N’.

‘N’

initial_insts Estimated number of instructions processed the first and last
time that the data source function is invoked.

‘0’

initial_ios Estimated number of I/Os performed the first and last time
that the data source function is invoked.

‘0’

ios_per_argbyte Estimated number of I/Os expended for each byte of the
argument set that’s passed to the data source function.

‘0’

ios_per_invoc Estimated number of I/Os per invocation of a data source
function.

‘0’

1248 SQL Reference

Table 121. Function Mapping Options and Their Settings (continued)

Option Valid Settings Default
Setting

insts_per_argbyte Estimated number of instructions processed for each byte of the
argument set that’s passed to the data source function.

‘0’

insts_per_invoc Estimated number of instructions processed per invocation of
the data source function.

‘450’

percent_argbytes Estimated average percent of input argument bytes that the
data source function will actually read.

‘100’

remote_name Name of the data source function. local
name

Server Options
Server options are used to describe a server. In addition to location
information (such as the data source machine name), options can specify
security and performance attributes for a data source. The security options
provide control over password communication (sent or not sent to data
sources) and authentication information case (uppercase and/or lowercase IDs
and passwords). The performance options help the optimizer determine if
evaluation operations can be done at data sources and the best cost model for
completing queries that retrieve data from data sources.

Appendix F. Federated Systems 1249

Table 122. Server Options and Their Settings

Option Valid Settings Default
Setting

collating_sequence Specifies whether the data source uses the same default
collating sequence as the federated database, based on the
code set and the country information. If a data source has a
collating sequence that differs from DB2’s collating sequence,
most operations depending on DB2’s collating sequence
cannot be remotely evaluated at a data source. An example is
executing MAX column functions against a nickname
character column at a data source with a different collating
sequence. Because results might differ if the MAX function is
evaluated at the remote data source, DB2 will perform the
aggregate operation and the MAX function locally.

If your query contains an equal sign, it is possible to
push-down that portion of the query even if the collating
sequences are different (set to ’N’). For example, the predicate
C1 = ’A’ could be pushed-down to a data source. Of course,
such queries cannot be pushed-down when the collating
sequence at the data source is case-insensitive. When a data
source is case-insensitive, the results from C1= ’A’ and C1 =
’a’ are the same, which is not acceptable in a case-sensitive
environment (DB2).

Administrators can create federated databases with a
particular collating sequence that matches the data source
collating sequence. This approach may speed performance if
all data sources use the same collating sequence or if most or
all column functions are directed against data sources that use
the same collating sequence.

’Y’ Data source’s collating sequence is the same as
federated database’s.

’N’ Data source’s collating sequence is not the same as
federated database’s.

’I’ Data source’s collating sequence is different from
federated database’s and is case-insensitive (for
example, ’TOLLESON’ and ’TolLESon’ are considered
equal).

’N’

comm_rate Specifies the communication rate between a federated server
and its associated data sources. Expressed in megabytes per
second.

Valid values are greater than 0 and less than 2147483648.
Values may be expressed as whole numbers only, for example
12.

’2’

1250 SQL Reference

Table 122. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

connectstring Specifies initialization properties needed to connect to an OLE
DB provider. For the complete syntax and semantics of the
connection string, see the ″Data Link API of the OLE DB Core
Components″ in the Microsoft OLE DB 2.0 Programmer’s
Reference and Data Access SDK, Microsoft Press, 1998.

None

cpu_ratio Indicates how much faster or slower a data source’s CPU runs
than the federated server’s CPU.

Valid values are greater than 0 and less than 1x1023 . Values
may be expressed in any valid double notation, for example
123E10, 123, or 1.21E4.

’1.0’

dbname Name of the data source database that you want the federated
server to access. Required for DB2 family data sources; does
not apply to Oracle** data sources because Oracle instances
contain only one database. For DB2, this value corresponds to
a specific database within an instance or, if DB2 for OS/390,
the database LOCATION value.

None.

fold_id (See notes 1 and 4
at the end of this table.)

Applies to user IDs that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the user ID to uppercase
before sending it to the data source. This is a logical
choice for DB2 family and Oracle** data sources (See
note 2 at end of this table.)

’N’ The federated server does nothing to the user ID
before sending it to the data source. (See note 2 at
end of this table.)

’L’ The federated server folds the user ID to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the user ID to the data source in uppercase. If the user
ID fails, the server tries sending it in lowercase.

None.

Appendix F. Federated Systems 1251

Table 122. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

fold_pw (See notes 1, 3
and 4 at the end of this
table.)

Applies to passwords that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the password to uppercase
before sending it to the data source. This is a logical
choice for DB2 family and Oracle** data sources.

’N’ The federated server does nothing to the password
before sending it to the data source.

’L’ The federated server folds the password to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the password to the data source in uppercase. If the
password fails, the server tries sending it in lowercase.

None.

io_ratio Denotes how much faster or slower a data source’s I/O
system runs than the federated server’s I/O system.

Valid values are greater than 0 and less than 1x1023 . Values
may be expressed in any valid double notation, for example
123E10, 123, or 1.21E4.

’1.0’

node Name by which a data source is defined as an instance to its
RDBMS. Required for all data sources.

For a DB2 family data source, this name is the node specified
in the federated database’s DB2 node directory. To view this
directory, issue the db2 list node directory command.

For an Oracle** data source, this name is the server name
specified in the Oracle** tnsnames.ora file. To access this name
on the Windows NT platform, specify the View
Configuration Information option of the Oracle** SQL Net
Easy Configuration tool.

None.

password Specifies whether passwords are sent to a data source.

’Y’ Passwords are always sent to the data source and
validated. This is the default value.

’N’ Passwords are not sent to the data source (regardless
of any user mappings) and not validated.

’ENCRYPTION’
Passwords are always sent to the data source in
encrypted form and validated. Valid only for DB2
family data sources that support encrypted
passwords.

’Y’

1252 SQL Reference

Table 122. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

plan_hints Specifies whether plan hints are to be enabled. Plan hints are
statement fragments that provide extra information for data
source optimizers. This information can, for certain query
types, improve query performance. The plan hints can help
the data source optimizer decide whether to use an index,
which index to use, or which table join sequence to use.

’Y’ Plan hints are to be enabled at the data source if the
data source supports plan hints.

’N’ Plan hints are not to be enabled at the data source.

’N’

pushdown
’Y’ DB2 will consider letting the data source evaluate

operations.

’N’ DB2 will retrieve only columns from the remote data
source and will not let the data source evaluate other
operations, such as joins.

’Y’

varchar_no_trailing_blanks Specifies if this data source uses non-blank padded varchar
comparison semantics. For varying-length character strings
that contain no trailing blanks, some DBMS’ s
non-blank-padded comparison semantics return the same
results as DB2’s comparison semantics. If you are certain that
all VARCHAR table/view columns at a data source contain no
trailing blanks, consider setting this server option to ’Y’ for a
data source. This option is often used with Oracle** data
sources. Ensure that you consider all objects that can
potentially have nicknames (including views).

’Y’ This data source has non-blank-padded comparison
semantics similar to DB2’s.

’N’ This data source does not have the same
non-blank-padded comparison semantics as DB2’s.

’N’

Notes on Table 122 on page 1250:
1. This field is applied regardless of the value specified for authentication.
2. Because DB2 stores user IDs in uppercase, the values ‘N’ and ‘U’ are

logically equivalent to each other.
3. The setting for fold_pw has no effect when the setting for password is ‘N’.

Because no password is sent, case cannot be a factor.

Appendix F. Federated Systems 1253

4. Avoid null settings for either of these options. A null setting may seem
attractive because DB2 will make multiple attempts to resolve user IDs
and passwords; however, performance might suffer (it is possible that DB2
will send a user ID and password four times before successfully passing
data source authentication).

User Options
User options provide authorization and accounting string information for user
mappings. Use them to specify the ID and password used to represent a DB2
authentication ID when authenticating at a data source.

Table 123. User Options and Their Settings

Option Valid Settings Default
Setting

remote_authid Indicates the authorization ID used at the data source. Valid
settings include any string of length 255 or less. If this option is
not specified, the ID used to connect to database is used.

None.

remote_domain Indicates the Windows NT domain used to authenticate users
connecting to this data source. Valid settings include any valid
Windows NT domain name. If this option is not specified, the
data source will authenticate using the default authentication
domain for that database.

None.

remote_password Indicates the authorization password used at the data source.
Valid settings include any string of length 32 or less. If this
option is not specified, the password used to connect to the
database is used.

None.

accounting_string Used to specify a DRDA accounting string. Valid settings
include any string of length 255 or less. This option is required
only if accounting information needs to be passed. See the DB2
Connect User’s Guide

None.

Default Data Type Mappings

This section shows default mappings between DB2 data types supported by
the federated server and data type supported by the following data sources:
v DB2 Universal Database for OS/390 and DB2 for MVS/ESA
v DB2 Universal Database for AS/400 and DB2 for OS/400
v Oracle
v DB2 for VM and VSE; SQL/DS

The mappings shown are between non-identical data types. Mappings
between identical data types are not shown.

1254 SQL Reference

Default Type Mappings between DB2 and DB2 Universal Database for
OS/390 (and DB2 for MVS/ESA) Data Sources

Table 124. Default Type Mappings between DB2 and DB2 Universal Database for
OS/390 (and DB2 for MVS/ESA) Data Sources

DB2 for MVS, DB2 for OS/390 DB2

varchar(n), n <= 32672 varchar(n)

vargraphic(n), n <= 16336 vargraphic(n)

char(255) varchar(255)

char(255) for bit data varchar(255) for bit data

Default Type Mappings between DB2 and 2 Universal Database for AS/400
(and DB2 for OS/400) Data Sources

Table 125. Default Type Mappings between DB2 and DB2 Universal Database for
AS/400 (and DB2 for OS/400) Data Sources

DB2 for OS/400, DB2 for AS/400 DB2

char(n), n <= 254 char(n)

char(n), n between 255 and 32672 varchar(n)

varchar(n), n <= 32672 varchar(n)

graphic(n), n <= 127 graphic(n)

graphic(n), n between 127 and 16336 vargraphic(n)

vargraphic(n), n <= 16336 vargraphic(n)

Default Type Mappings between DB2 and Oracle Data Sources

Table 126. Default Type Mappings between DB2 and Oracle Data Sources

Oracle DB2

rowid char(18)

char(n), n <= 254 char(n)

nchar(n), n <= 254 char(n)

char(255) varchar(255)

varchar2(n), n <= 32672 varchar(n)

nvarchar2(n), n <= 32672 varchar(n)

number(p,s), p <= 4 and s = 0 smallint

number(p,s), 4 <= p <= 9 and s = 0 integer

number(p,s), 10 <= p <= 18 and s = 0 bigint

Appendix F. Federated Systems 1255

Table 126. Default Type Mappings between DB2 and Oracle Data Sources (continued)

Oracle DB2

number(p,s), p <= 31 and 0 <= s <= p and
previous two cases don’t match

decimal

number(p,s), all cases other than the
previous 4

double

raw(n), n <= 254 char(n) for bit data

raw(255) varchar(255) for bit data

date (char(9)) timestamp

Default Type Mappings between DB2 and DB2 for VM and VSE (and
SQL/DS) Data Sources

Table 127. Default Type Mappings between DB2 and DB2 for VM and VSE (and
SQL/DS) Data Sources

DB2 for OS/390, SQL/DS DB2

varchar(n), n <= 32672 varchar(n)

vargraphic(n), n <= 16336 vargraphic(n)

Pass-Through Facility Processing

A facility called pass-through can be used to query a data source in the SQL
that is native to that data source. This section:
v States what kind of SQL statements a federated server and its associated

data sources process in pass-through sessions.
v Lists considerations and restrictions to be aware of when using

pass-through.

SQL Processing in Pass-Through Sessions
The following rules specify whether an SQL statement is processed by DB2 or
by a data source:
v If a SQL statement is submitted to a data source for processing in a

pass-through session, it must be prepared dynamically in the session and
executed while the session is still open. There are several ways to do this:
– If a SELECT statement is submitted, use the PREPARE statement to

prepare it, then use the OPEN, FETCH, and CLOSE statements to access
the results of the query.

– For supported statements other than SELECT, either:
- Use the PREPARE statement to prepare the supported statement; then

use the EXECUTE statement to have it executed.

1256 SQL Reference

- Use the EXECUTE IMMEDIATE statement to prepare it and have it
executed.

v If a static statement is submitted in a pass-through session, it is sent to the
federated server for processing.

v If a COMMIT or ROLLBACK command is issued during a pass-through
session, this command will complete the current unit of work (UOW).

Considerations and Restrictions
There are a number of considerations and restrictions that apply to
pass-through. Some of them are of a general nature; others concern Oracle
data sources only.

Using Pass-Through with All Data Sources
The following information applies to all data sources:
v Statements prepared within a pass-through session must be executed within

the same pass-through session. Statements prepared within a pass-through
session, but executed outside of the same pass-through session will fail
(SQLSTATE 56098).

v Users and applications can use pass-through to write to data sources; for
example, to insert, update, and delete table rows. Note that a cursor cannot
be opened directly against a data source object in a pass-through session
(SQLSTATE 25000).

v An application can have several SET PASSTHRU statements in effect at the
same time to different data sources. Although the application might have
issued multiple SET PASSTHRU statements, the pass-through sessions are
not truly nested. The federated server will not pass through one data source
to access another. Rather, the server accesses each data source directly.

v If multiple pass-through sessions are open at the same time, each unit of
work within each session must be concluded with a COMMIT or
ROLLBACK statement. The sessions can then be ended in one operation
with the SET PASSTHRU statement and its RESET option.

v It is not possible pass through to more than one data source at a time.
v Pass-through does not support stored procedure calls.
v Pass-through does not support the SELECT INTO statement.

Using Pass-Through with Oracle Data Sources
The following information applies to Oracle data sources:
v The following restriction applies when a remote client issues a SELECT

statement from a command line processor (CLP) in pass-through mode: If
the client code is a DB2 SDK prior to DB2 Universal Database Version 5, the
SELECT will elicit SQLSTATE 25000. To avoid this error, remote clients
must use a DB2 SDK that is at Version 5 or greater.

Appendix F. Federated Systems 1257

v Any DDL statement issued against an Oracle server is performed at parse
time and is not subject to transaction semantics. The operation, when
complete, is automatically committed by Oracle. If a rollback occurs, the
DDL is not rolled back.

v When a SELECT statement is issued from raw data types, the RAWTOHEX
function should be invoked to receive the hexadecimal values. When an
INSERT into raw data types is performed, the hexadecimal representation
should be provided.

1258 SQL Reference

Appendix G. Sample Database Tables

This appendix shows the information contained in the sample tables of the
sample database SAMPLE, and how to create and remove them.

Additional sample databases are provided with DB2 Universal Database to
demonstrate business intelligence functions, and are used in the business
intelligence tutorial. However, only the contents of the sample database
SAMPLE are described in this appendix. Refer to the Data Warehouse Center
Administration Guide for more information about the business intelligence
sample databases.

The sample tables are used in the examples that appear in this manual and
other manuals in this library. In addition, the data contained in the sample
files with BLOB and CLOB data types is shown.

The following sections are included in this appendix:.
“The Sample Database” on page 1260
“To Create the Sample Database” on page 1260
“To Erase the Sample Database” on page 1260
“CL_SCHED Table” on page 1260
“DEPARTMENT Table” on page 1261
“EMPLOYEE Table” on page 1261
“EMP_ACT Table” on page 1264
“EMP_PHOTO Table” on page 1266
“EMP_RESUME Table” on page 1266
“IN_TRAY Table” on page 1267
“ORG Table” on page 1267
“PROJECT Table” on page 1268
“SALES Table” on page 1269
“STAFF Table” on page 1270
“STAFFG Table” on page 1271
“Sample Files with BLOB and CLOB Data Type” on page 1272
“Quintana Photo” on page 1272
“Quintana Resume” on page 1272
“Nicholls Photo” on page 1273
“Nicholls Resume” on page 1274
“Adamson Photo” on page 1275
“Adamson Resume” on page 1275
“Walker Photo” on page 1276
“Walker Resume” on page 1277.

In the sample tables, a dash (-) indicates a null value.

© Copyright IBM Corp. 1993, 2000 1259

The Sample Database

The examples in this book use a sample database. To use these examples, you
must create the SAMPLE database. To use it, the database manager must be
installed.

To Create the Sample Database
An executable file creates the sample database.116 To create a database you
must have SYSADM authority.
v When Using UNIX-based platforms

If you are using the operating system command prompt, type:
sqllib/bin/db2sampl <path>

from the home directory of the database manager instance owner, where
path is an optional parameter specifying the path where the sample
database is to be created. Press Enter.117 The schema for DB2SAMPL is the
CURRENT SCHEMA special register value.

v When using OS/2 or Windows platforms

If you are using the operating system command prompt, type:

db2sampl e

where e is an optional parameter specifying the drive where the database is
to be created. Press Enter.118

If you are not logged on to your workstation through User Profile
Management, you will be prompted to do so.

To Erase the Sample Database
If you do not need to access the sample database, you can erase it by using
the DROP DATABASE command:

db2 drop database sample

CL_SCHED Table

Name: CLASS_CODE DAY STARTING ENDING

Type: char(7) smallint time time

Desc: Class Code
(room:teacher)

Day # of 4 day
schedule

Class Start Time Class End Time

116. For information related to this command, see the DB2SAMPL command in the Command Reference.

117. If the path parameter is not specified, the sample database is created in the default path specified by the
DFTDBPATH parameter in the database manager configuration file.

118. If the drive parameter is not specified, the sample database is created on the same drive as DB2.

Sample Database Tables

1260 SQL Reference

DEPARTMENT Table

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: char(3) not null varchar(29) not null char(6) char(3) not null char(16)

Desc: Department
number

Name describing general
activities of department

Employee
number
(EMPNO) of
department
manager

Department
(DEPTNO) to
which this
department
reports

Name of the
remote location

Values: A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 -

B01 PLANNING 000020 A00 -

C01 INFORMATION CENTER 000030 A00 -

D01 DEVELOPMENT CENTER - A00 -

D11 MANUFACTURING SYSTEMS 000060 D01 -

D21 ADMINISTRATION SYSTEMS 000070 D01 -

E01 SUPPORT SERVICES 000050 A00 -

E11 OPERATIONS 000090 E01 -

E21 SOFTWARE SUPPORT 000100 E01 -

EMPLOYEE Table

Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: char(6) not
null

varchar(12)
not null

char(1) not
null

varchar(15)
not null

char(3) char(4) date

Desc: Employee
number

First name Middle
initial

Last name Department
(DEPTNO)
in which the
employee
works

Phone
number

Date of hire

JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

char(8) smallint not null char(1) date dec(9,2) dec(9,2) dec(9,2)

Job Number of years of
formal education

Sex (M
male, F
female)

Date of birth Yearly salary Yearly bonus Yearly
commission

See the following page for the values in the EMPLOYEE table.

Sample Database Tables

Appendix G. Sample Database Tables 1261

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

ch
ar

(6
)

no
t

nu
ll

va
rc

ha
r(

12
)

no
t

nu
ll

ch
ar

(1
)

no
t

nu
ll

va
rc

ha
r(

15
)

no
t

nu
ll

ch
ar

(3
)

ch
ar

(4
)

d
at

e
ch

ar
(8

)
sm

al
lin

t
no

t
nu

ll
ch

ar
(1

)
d

at
e

d
ec

(9
,2

)
d

ec
(9

,2
)

d
ec

(9
,2

)

00
00

10
C

H
R

IS
T

IN
E

I
H

A
A

S
A

00
39

78
19

65
-0

1-
01

PR
E

S
18

F
19

33
-0

8-
24

52
75

0
10

00
42

20

00
00

20
M

IC
H

A
E

L
L

T
H

O
M

PS
O

N
B

01
34

76
19

73
-1

0-
10

M
A

N
A

G
E

R
18

M
19

48
-0

2-
02

41
25

0
80

0
33

00

00
00

30
SA

L
LY

A
K

W
A

N
C

01
47

38
19

75
-0

4-
05

M
A

N
A

G
E

R
20

F
19

41
-0

5-
11

38
25

0
80

0
30

60

00
00

50
JO

H
N

B
G

E
Y

E
R

E
01

67
89

19
49

-0
8-

17
M

A
N

A
G

E
R

16
M

19
25

-0
9-

15
40

17
5

80
0

32
14

00
00

60
IR

V
IN

G
F

ST
E

R
N

D
11

64
23

19
73

-0
9-

14
M

A
N

A
G

E
R

16
M

19
45

-0
7-

07
32

25
0

50
0

25
80

00
00

70
E

V
A

D
PU

L
A

SK
I

D
21

78
31

19
80

-0
9-

30
M

A
N

A
G

E
R

16
F

19
53

-0
5-

26
36

17
0

70
0

28
93

00
00

90
E

IL
E

E
N

W
H

E
N

D
E

R
SO

N
E

11
54

98
19

70
-0

8-
15

M
A

N
A

G
E

R
16

F
19

41
-0

5-
15

29
75

0
60

0
23

80

00
01

00
T

H
E

O
D

O
R

E
Q

SP
E

N
SE

R
E

21
09

72
19

80
-0

6-
19

M
A

N
A

G
E

R
14

M
19

56
-1

2-
18

26
15

0
50

0
20

92

00
01

10
V

IN
C

E
N

Z
O

G
L

U
C

C
H

E
SS

I
A

00
34

90
19

58
-0

5-
16

SA
L

E
SR

E
P

19
M

19
29

-1
1-

05
46

50
0

90
0

37
20

00
01

20
SE

A
N

O
’C

O
N

N
E

L
L

A
00

21
67

19
63

-1
2-

05
C

L
E

R
K

14
M

19
42

-1
0-

18
29

25
0

60
0

23
40

00
01

30
D

O
L

O
R

E
S

M
Q

U
IN

TA
N

A
C

01
45

78
19

71
-0

7-
28

A
N

A
LY

ST
16

F
19

25
-0

9-
15

23
80

0
50

0
19

04

00
01

40
H

E
A

T
H

E
R

A
N

IC
H

O
L

L
S

C
01

17
93

19
76

-1
2-

15
A

N
A

LY
ST

18
F

19
46

-0
1-

19
28

42
0

60
0

22
74

00
01

50
B

R
U

C
E

A
D

A
M

SO
N

D
11

45
10

19
72

-0
2-

12
D

E
SI

G
N

E
R

16
M

19
47

-0
5-

17
25

28
0

50
0

20
22

00
01

60
E

L
IZ

A
B

E
T

H
R

PI
A

N
K

A
D

11
37

82
19

77
-1

0-
11

D
E

SI
G

N
E

R
17

F
19

55
-0

4-
12

22
25

0
40

0
17

80

00
01

70
M

A
SA

TO
SH

I
J

Y
O

SH
IM

U
R

A
D

11
28

90
19

78
-0

9-
15

D
E

SI
G

N
E

R
16

M
19

51
-0

1-
05

24
68

0
50

0
19

74

00
01

80
M

A
R

IL
Y

N
S

SC
O

U
T

T
E

N
D

11
16

82
19

73
-0

7-
07

D
E

SI
G

N
E

R
17

F
19

49
-0

2-
21

21
34

0
50

0
17

07

00
01

90
JA

M
E

S
H

W
A

L
K

E
R

D
11

29
86

19
74

-0
7-

26
D

E
SI

G
N

E
R

16
M

19
52

-0
6-

25
20

45
0

40
0

16
36

00
02

00
D

A
V

ID
B

R
O

W
N

D
11

45
01

19
66

-0
3-

03
D

E
SI

G
N

E
R

16
M

19
41

-0
5-

29
27

74
0

60
0

22
17

00
02

10
W

IL
L

IA
M

T
JO

N
E

S
D

11
09

42
19

79
-0

4-
11

D
E

SI
G

N
E

R
17

M
19

53
-0

2-
23

18
27

0
40

0
14

62

00
02

20
JE

N
N

IF
E

R
K

L
U

T
Z

D
11

06
72

19
68

-0
8-

29
D

E
SI

G
N

E
R

18
F

19
48

-0
3-

19
29

84
0

60
0

23
87

00
02

30
JA

M
E

S
J

JE
FF

E
R

SO
N

D
21

20
94

19
66

-1
1-

21
C

L
E

R
K

14
M

19
35

-0
5-

30
22

18
0

40
0

17
74

00
02

40
SA

LV
A

TO
R

E
M

M
A

R
IN

O
D

21
37

80
19

79
-1

2-
05

C
L

E
R

K
17

M
19

54
-0

3-
31

28
76

0
60

0
23

01

00
02

50
D

A
N

IE
L

S
SM

IT
H

D
21

09
61

19
69

-1
0-

30
C

L
E

R
K

15
M

19
39

-1
1-

12
19

18
0

40
0

15
34

00
02

60
SY

B
IL

P
JO

H
N

SO
N

D
21

89
53

19
75

-0
9-

11
C

L
E

R
K

16
F

19
36

-1
0-

05
17

25
0

30
0

13
80

00
02

70
M

A
R

IA
L

PE
R

E
Z

D
21

90
01

19
80

-0
9-

30
C

L
E

R
K

15
F

19
53

-0
5-

26
27

38
0

50
0

21
90

00
02

80
E

T
H

E
L

R
SC

H
N

E
ID

E
R

E
11

89
97

19
67

-0
3-

24
O

PE
R

A
TO

R
17

F
19

36
-0

3-
28

26
25

0
50

0
21

00

00
02

90
JO

H
N

R
PA

R
K

E
R

E
11

45
02

19
80

-0
5-

30
O

PE
R

A
TO

R
12

M
19

46
-0

7-
09

15
34

0
30

0
12

27

00
03

00
PH

IL
IP

X
SM

IT
H

E
11

20
95

19
72

-0
6-

19
O

PE
R

A
TO

R
14

M
19

36
-1

0-
27

17
75

0
40

0
14

20

00
03

10
M

A
U

D
E

F
SE

T
R

IG
H

T
E

11
33

32
19

64
-0

9-
12

O
PE

R
A

TO
R

12
F

19
31

-0
4-

21
15

90
0

30
0

12
72

00
03

20
R

A
M

L
A

L
V

M
E

H
TA

E
21

99
90

19
65

-0
7-

07
FI

E
L

D
R

E
P

16
M

19
32

-0
8-

11
19

95
0

40
0

15
96

Sample Database Tables

1262 SQL Reference

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

00
03

30
W

IN
G

L
E

E
E

21
21

03
19

76
-0

2-
23

FI
E

L
D

R
E

P
14

M
19

41
-0

7-
18

25
37

0
50

0
20

30

00
03

40
JA

SO
N

R
G

O
U

N
O

T
E

21
56

98
19

47
-0

5-
05

FI
E

L
D

R
E

P
16

M
19

26
-0

5-
17

23
84

0
50

0
19

07

Sample Database Tables

Appendix G. Sample Database Tables 1263

EMP_ACT Table

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: char(6) not null char(6) not null smallint not
null

dec(5,2) date date

Desc: Employee
number

Project number Activity
number

Proportion of
employee’s

time spent on
project

Date activity
starts

Date activity
ends

Values: 000010 AD3100 10 .50 1982-01-01 1982-07-01

000070 AD3110 10 1.00 1982-01-01 1983-02-01

000230 AD3111 60 1.00 1982-01-01 1982-03-15

000230 AD3111 60 .50 1982-03-15 1982-04-15

000230 AD3111 70 .50 1982-03-15 1982-10-15

000230 AD3111 80 .50 1982-04-15 1982-10-15

000230 AD3111 180 1.00 1982-10-15 1983-01-01

000240 AD3111 70 1.00 1982-02-15 1982-09-15

000240 AD3111 80 1.00 1982-09-15 1983-01-01

000250 AD3112 60 1.00 1982-01-01 1982-02-01

000250 AD3112 60 .50 1982-02-01 1982-03-15

000250 AD3112 60 .50 1982-12-01 1983-01-01

000250 AD3112 60 1.00 1983-01-01 1983-02-01

000250 AD3112 70 .50 1982-02-01 1982-03-15

000250 AD3112 70 1.00 1982-03-15 1982-08-15

000250 AD3112 70 .25 1982-08-15 1982-10-15

000250 AD3112 80 .25 1982-08-15 1982-10-15

000250 AD3112 80 .50 1982-10-15 1982-12-01

000250 AD3112 180 .50 1982-08-15 1983-01-01

000260 AD3113 70 .50 1982-06-15 1982-07-01

000260 AD3113 70 1.00 1982-07-01 1983-02-01

000260 AD3113 80 1.00 1982-01-01 1982-03-01

000260 AD3113 80 .50 1982-03-01 1982-04-15

000260 AD3113 180 .50 1982-03-01 1982-04-15

000260 AD3113 180 1.00 1982-04-15 1982-06-01

000260 AD3113 180 .50 1982-06-01 1982-07-01

000270 AD3113 60 .50 1982-03-01 1982-04-01

000270 AD3113 60 1.00 1982-04-01 1982-09-01

000270 AD3113 60 .25 1982-09-01 1982-10-15

000270 AD3113 70 .75 1982-09-01 1982-10-15

000270 AD3113 70 1.00 1982-10-15 1983-02-01

Sample Database Tables

1264 SQL Reference

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000270 AD3113 80 1.00 1982-01-01 1982-03-01

000270 AD3113 80 .50 1982-03-01 1982-04-01

000030 IF1000 10 .50 1982-06-01 1983-01-01

000130 IF1000 90 1.00 1982-01-01 1982-10-01

000130 IF1000 100 .50 1982-10-01 1983-01-01

000140 IF1000 90 .50 1982-10-01 1983-01-01

000030 IF2000 10 .50 1982-01-01 1983-01-01

000140 IF2000 100 1.00 1982-01-01 1982-03-01

000140 IF2000 100 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-10-01 1983-01-01

000010 MA2100 10 .50 1982-01-01 1982-11-01

000110 MA2100 20 1.00 1982-01-01 1982-03-01

000010 MA2110 10 1.00 1982-01-01 1983-02-01

000200 MA2111 50 1.00 1982-01-01 1982-06-15

000200 MA2111 60 1.00 1982-06-15 1983-02-01

000220 MA2111 40 1.00 1982-01-01 1983-02-01

000150 MA2112 60 1.00 1982-01-01 1982-07-15

000150 MA2112 180 1.00 1982-07-15 1983-02-01

000170 MA2112 60 1.00 1982-01-01 1983-06-01

000170 MA2112 70 1.00 1982-06-01 1983-02-01

000190 MA2112 70 1.00 1982-02-01 1982-10-01

000190 MA2112 80 1.00 1982-10-01 1983-10-01

000160 MA2113 60 1.00 1982-07-15 1983-02-01

000170 MA2113 80 1.00 1982-01-01 1983-02-01

000180 MA2113 70 1.00 1982-04-01 1982-06-15

000210 MA2113 80 .50 1982-10-01 1983-02-01

000210 MA2113 180 .50 1982-10-01 1983-02-01

000050 OP1000 10 .25 1982-01-01 1983-02-01

000090 OP1010 10 1.00 1982-01-01 1983-02-01

000280 OP1010 130 1.00 1982-01-01 1983-02-01

000290 OP1010 130 1.00 1982-01-01 1983-02-01

000300 OP1010 130 1.00 1982-01-01 1983-02-01

000310 OP1010 130 1.00 1982-01-01 1983-02-01

000050 OP2010 10 .75 1982-01-01 1983-02-01

000100 OP2010 10 1.00 1982-01-01 1983-02-01

000320 OP2011 140 .75 1982-01-01 1983-02-01

Sample Database Tables

Appendix G. Sample Database Tables 1265

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000320 OP2011 150 .25 1982-01-01 1983-02-01

000330 OP2012 140 .25 1982-01-01 1983-02-01

000330 OP2012 160 .75 1982-01-01 1983-02-01

000340 OP2013 140 .50 1982-01-01 1983-02-01

000340 OP2013 170 .50 1982-01-01 1983-02-01

000020 PL2100 30 1.00 1982-01-01 1982-09-15

EMP_PHOTO Table

Name: EMPNO PHOTO_FORMAT PICTURE

Type: char(6) not null varchar(10) not null blob(100k)

Desc: Employee number Photo format Photo of employee

Values: 000130 bitmap db200130.bmp

000130 gif db200130.gif

000130 xwd db200130.xwd

000140 bitmap db200140.bmp

000140 gif db200140.gif

000140 xwd db200140.xwd

000150 bitmap db200150.bmp

000150 gif db200150.gif

000150 xwd db200150.xwd

000190 bitmap db200190.bmp

000190 gif db200190.gif

000190 xwd db200190.xwd

v “Quintana Photo” on page 1272 shows the picture of the employee, Delores
Quintana.

v “Nicholls Photo” on page 1273 shows the picture of the employee, Heather
Nicholls.

v “Adamson Photo” on page 1275 shows the picture of the employee, Bruce
Adamson.

v “Walker Photo” on page 1276 shows the picture of the employee, James
Walker.

EMP_RESUME Table

Name: EMPNO RESUME_FORMAT RESUME

Type: char(6) not null varchar(10) not null clob(5k)

Desc: Employee number Resume Format Resume of employee

Values: 000130 ascii db200130.asc

Sample Database Tables

1266 SQL Reference

Name: EMPNO RESUME_FORMAT RESUME

000130 script db200130.scr

000140 ascii db200140.asc

000140 script db200140.scr

000150 ascii db200150.asc

000150 script db200150.scr

000190 ascii db200190.asc

000190 script db200190.scr

v “Quintana Resume” on page 1272 shows the resume of the employee,
Delores Quintana.

v “Nicholls Resume” on page 1274 shows the resume of the employee,
Heather Nicholls.

v “Adamson Resume” on page 1275 shows the resume of the employee, Bruce
Adamson.

v “Walker Resume” on page 1277 shows the resume of the employee, James
Walker.

IN_TRAY Table

Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: timestamp char(8) char(64) varchar(3000)

Desc: Date and Time
received

User id of person
sending note

Brief description The note

ORG Table

Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

Type: smallint not null varchar(14) smallint varchar(10) varchar(13)

Desc: Department
number

Department name Manager number Division of
corporation

City

Values: 10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

Sample Database Tables

Appendix G. Sample Database Tables 1267

PROJECT Table

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: char(6) not
null

varchar(24)
not null

char(3) not
null

char(6) not
null

dec(5,2) date date char(6)

Desc: Project
number

Project name Department
responsible

Employee
responsible

Estimated
mean
staffing

Estimated
start date

Estimated
end date

Major
project, for a
subproject

Values: AD3100 ADMIN
SERVICES

D01 000010 6.5 1982-01-01 1983-02-01 -

AD3110 GENERAL
ADMIN
SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

AD3111 PAYROLL
PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

AD3112 PERSONNEL
PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

AD3113 ACCOUNT
PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

IF1000 QUERY
SERVICES

C01 000030 2 1982-01-01 1983-02-01 -

IF2000 USER
EDUCATION

C01 000030 1 1982-01-01 1983-02-01 -

MA2100 WELD LINE
AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 -

MA2110 W L
PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

MA2111 W L
PROGRAM
DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

MA2112 W L ROBOT
DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

MA2113 W L PROD
CONT
PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

OP1000 OPERATION
SUPPORT

E01 000050 6 1982-01-01 1983-02-01 -

OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

OP2000 GEN
SYSTEMS
SERVICES

E01 000050 5 1982-01-01 1983-02-01 -

OP2010 SYSTEMS
SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

OP2011 SCP
SYSTEMS
SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

OP2012 APPLICATIONS
SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

OP2013 DB/DC
SUPPORT

E21 000340 1 1982-01-01 1983-02-01 OP2010

PL2100 WELD LINE
PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

Sample Database Tables

1268 SQL Reference

SALES Table

Name: SALES_DATE SALES_PERSON REGION SALES

Type: date varchar(15) varchar(15) int

Desc: Date of sales Employee’s last name Region of sales Number of sales

Values: 12/31/1995 LUCCHESSI Ontario-South 1

12/31/1995 LEE Ontario-South 3

12/31/1995 LEE Quebec 1

12/31/1995 LEE Manitoba 2

12/31/1995 GOUNOT Quebec 1

03/29/1996 LUCCHESSI Ontario-South 3

03/29/1996 LUCCHESSI Quebec 1

03/29/1996 LEE Ontario-South 2

03/29/1996 LEE Ontario-North 2

03/29/1996 LEE Quebec 3

03/29/1996 LEE Manitoba 5

03/29/1996 GOUNOT Ontario-South 3

03/29/1996 GOUNOT Quebec 1

03/29/1996 GOUNOT Manitoba 7

03/30/1996 LUCCHESSI Ontario-South 1

03/30/1996 LUCCHESSI Quebec 2

03/30/1996 LUCCHESSI Manitoba 1

03/30/1996 LEE Ontario-South 7

03/30/1996 LEE Ontario-North 3

03/30/1996 LEE Quebec 7

03/30/1996 LEE Manitoba 4

03/30/1996 GOUNOT Ontario-South 2

03/30/1996 GOUNOT Quebec 18

03/30/1996 GOUNOT Manitoba 1

03/31/1996 LUCCHESSI Manitoba 1

03/31/1996 LEE Ontario-South 14

03/31/1996 LEE Ontario-North 3

03/31/1996 LEE Quebec 7

03/31/1996 LEE Manitoba 3

03/31/1996 GOUNOT Ontario-South 2

03/31/1996 GOUNOT Quebec 1

04/01/1996 LUCCHESSI Ontario-South 3

04/01/1996 LUCCHESSI Manitoba 1

04/01/1996 LEE Ontario-South 8

04/01/1996 LEE Ontario-North -

04/01/1996 LEE Quebec 8

04/01/1996 LEE Manitoba 9

04/01/1996 GOUNOT Ontario-South 3

Sample Database Tables

Appendix G. Sample Database Tables 1269

Name: SALES_DATE SALES_PERSON REGION SALES

04/01/1996 GOUNOT Ontario-North 1

04/01/1996 GOUNOT Quebec 3

04/01/1996 GOUNOT Manitoba 7

STAFF Table

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

varchar(9) smallint char(5) smallint dec(7,2) dec(7,2)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

Sample Database Tables

1270 SQL Reference

Name: ID NAME DEPT JOB YEARS SALARY COMM

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

STAFFG Table

Note: STAFFG is only created for double-byte code pages.

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

vargraphic(9) smallint graphic(5) smallint dec(9,0) dec(9,0)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

Sample Database Tables

Appendix G. Sample Database Tables 1271

Name: ID NAME DEPT JOB YEARS SALARY COMM

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

Sample Files with BLOB and CLOB Data Type

This section shows the data found in the EMP_PHOTO files (pictures of
employees) and EMP_RESUME files (resumes of employees).

Quintana Photo

Quintana Resume
The following text is found in the db200130.asc and db200130.scr files.

Resume: Delores M. Quintana

Personal Information

Figure 15. Delores M. Quintana

Sample Database Tables

1272 SQL Reference

Address: 1150 Eglinton Ave Mellonville, Idaho 83725
Phone: (208) 555-9933
Birthdate: September 15, 1925
Sex: Female
Marital Status: Married
Height: 5’2″
Weight: 120 lbs.

Department Information
Employee Number: 000130
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-4578
Hire Date: 1971-07-28

Education

1965 Math and English, B.A. Adelphi University

1960 Dental Technician Florida Institute of
Technology

Work History

10/91 - present Advisory Systems Analyst Producing
documentation tools for engineering
department.

12/85 - 9/91 Technical Writer Writer, text programmer, and
planner.

1/79 - 11/85 COBOL Payroll Programmer Writing payroll
programs for a diesel fuel company.

Interests
v Cooking
v Reading
v Sewing
v Remodeling

Nicholls Photo

Sample Database Tables

Appendix G. Sample Database Tables 1273

Nicholls Resume
The following text is found in the db200140.asc and db200140.scr files.

Resume: Heather A. Nicholls

Personal Information
Address: 844 Don Mills Ave Mellonville, Idaho 83734
Phone: (208) 555-2310
Birthdate: January 19, 1946
Sex: Female
Marital Status: Single
Height: 5’8″
Weight: 130 lbs.

Department Information
Employee Number: 000140
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-1793
Hire Date: 1976-12-15

Education

1972 Computer Engineering, Ph.D. University of
Washington

1969 Music and Physics, M.A. Vassar College

Work History

Figure 16. Heather A. Nicholls

Sample Database Tables

1274 SQL Reference

2/83 - present Architect, OCR Development Designing the
architecture of OCR products.

12/76 - 1/83 Text Programmer Optical character recognition
(OCR) programming in PL/I.

9/72 - 11/76 Punch Card Quality Analyst Checking punch
cards met quality specifications.

Interests
v Model railroading
v Interior decorating
v Embroidery
v Knitting

Adamson Photo

Adamson Resume
The following text is found in the db200150.asc and db200150.scr files.

Resume: Bruce Adamson

Personal Information
Address: 3600 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-4489
Birthdate: May 17, 1947
Sex: Male
Marital Status: Married
Height: 6’0″
Weight: 175 lbs.

Department Information

Figure 17. Bruce Adamson

Sample Database Tables

Appendix G. Sample Database Tables 1275

Employee Number: 000150
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-4510
Hire Date: 1972-02-12

Education

1971 Environmental Engineering, M.Sc. Johns
Hopkins University

1968 American History, B.A. Northwestern
University

Work History

8/79 - present Neural Network Design Developing neural
networks for machine intelligence products.

2/72 - 7/79 Robot Vision Development Developing
rule-based systems to emulate sight.

9/71 - 1/72 Numerical Integration Specialist Helping bank
systems communicate with each other.

Interests
v Racing motorcycles
v Building loudspeakers
v Assembling personal computers
v Sketching

Walker Photo

Figure 18. James H. Walker

Sample Database Tables

1276 SQL Reference

Walker Resume
The following text is found in the db200190.asc and db200190.scr files.

Resume: James H. Walker

Personal Information
Address: 3500 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-7325
Birthdate: June 25, 1952
Sex: Male
Marital Status: Single
Height: 5’11″
Weight: 166 lbs.

Department Information
Employee Number: 000190
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-2986
Hire Date: 1974-07-26

Education

1974 Computer Studies, B.Sc. University of
Massachusetts

1972 Linguistic Anthropology, B.A. University of
Toronto

Work History

6/87 - present Microcode Design Optimizing algorithms for
mathematical functions.

4/77 - 5/87 Printer Technical Support Installing and
supporting laser printers.

9/74 - 3/77 Maintenance Programming Patching assembly
language compiler for mainframes.

Interests
v Wine tasting
v Skiing
v Swimming
v Dancing

Sample Database Tables

Appendix G. Sample Database Tables 1277

Sample Database Tables

1278 SQL Reference

Appendix H. Reserved Schema Names and Reserved
Words

This appendix describes the restrictions of certain names used by the database
manager. In some cases, names are reserved and cannot be used by
application programs. In other cases, certain names are not recommended for
use by application programs though not prevented by the database manager.

Reserved Schemas

The following schema names are reserved:
v SYSCAT
v SYSFUN
v SYSIBM
v SYSSTAT

In addition, it is strongly recommended that schema names never begin with
the SYS prefix, as SYS is by convention used to indicate an area reserved by
the system.

No user-defined functions, user-defined types, triggers, or aliases can be
placed into a schema whose name starts with SYS (SQLSTATE 42939).

It is also recommended not to use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION, so it is possible to have an
application declare a temporary table with a name identical to that of a
persistent table, complicating the application logic. To avoid this possibility,
avoid using the schema SESSION except when dealing with declared
temporary tables.

Reserved Words

There are no words that are specifically reserved words in DB2 Version 7.

Keywords can be used as ordinary identifiers, except in a context where they
could also be interpreted as SQL keywords. In such cases, the word must be
specified as a delimited identifier. For example, COUNT cannot be used as a
column name in a SELECT statement unless it is delimited.

IBM SQL and ISO/ANSI SQL92 include reserved words, listed in the
following section. These reserved words are not enforced by DB2 Universal
Database, however it is recommended that they not be used as ordinary

© Copyright IBM Corp. 1993, 2000 1279

identifiers, since this reduces portability.

Reserved Schema Names and Reserved Words

1280 SQL Reference

IBM SQL Reserved Words

The IBM SQL reserved words are as follows.

ACQUIRE CONNECT EDITPROC IN
ADD CONNECTION ELSE INDEX
AFTER CONSTRAINT ELSEIF INDICATOR
ALIAS CONTAINS END INNER
ALL CONTINUE END-EXEC INOUT
ALLOCATE COUNT ERASE INSENSITIVE
ALLOW COUNT_BIG ESCAPE INSERT
ALTER CREATE EXCEPT INTEGRITY
AND CROSS EXCEPTION INTERSECT
ANY CURRENT EXCLUSIVE INTO
AS CURRENT_DATE EXECUTE IS
ASC CURRENT_LC_PATH EXISTS ISOBID
ASUTIME CURRENT_PATH EXIT ISOLATION
AUDIT CURRENT_SERVER EXPLAIN
AUTHORIZATION CURRENT_TIME EXTERNAL JAVA
AUX CURRENT_TIMESTAMP JOIN
AUXILIARY CURRENT_TIMEZONE FENCED
AVG CURRENT_USER FETCH KEY

CURSOR FIELDPROC
BEFORE FILE LABEL
BEGIN DATA FINAL LANGUAGE
BETWEEN DATABASE FOR LC_CTYPE
BINARY DATE FOREIGN LEAVE
BUFFERPOOL DAY FREE LEFT
BY DAYS FROM LIKE

DBA FULL LINKTYPE
CALL DBINFO FUNCTION LOCAL
CALLED DBSPACE LOCALE
CAPTURE DB2GENERAL GENERAL LOCATOR
CASCADED DB2SQL GENERATED LOCATORS
CASE DECLARE GO LOCK
CAST DEFAULT GOTO LOCKSIZE
CCSID DELETE GRANT LONG
CHAR DESC GRAPHIC LOOP
CHARACTER DESCRIPTOR GROUP
CHECK DETERMINISTIC MAX
CLOSE DISALLOW HANDLER MICROSECOND
CLUSTER DISCONNECT HAVING MICROSECONDS
COLLECTION DISTINCT HOUR MIN
COLLID DO HOURS MINUTE
COLUMN DOUBLE MINUTES
COMMENT DROP IDENTIFIED MODE
COMMIT DSSIZE IF MODIFIES
CONCAT DYNAMIC IMMEDIATE MONTH
CONDITION MONTHS

Reserved Schema Names and Reserved Words

Appendix H. Reserved Schema Names and Reserved Words 1281

NAME PACKAGE SCHEDULE UNDO
NAMED PAGE SCHEMA UNION
NHEADER PAGES SCRATCHPAD UNIQUE
NO PARAMETER SECOND UNTIL
NODENAME PART SECONDS UPDATE
NODENUMBER PARTITION SECQTY USAGE
NOT PATH SECURITY USER
NULL PCTFREE SELECT USING
NULLS PCTINDEX SET
NUMPARTS PIECESIZE SHARE VALIDPROC

PLAN SIMPLE VALUES
OBID POSITION SOME VARIABLE
OF PRECISION SOURCE VARIANT
ON PREPARE SPECIFIC VCAT
ONLY PRIMARY SQL VIEW
OPEN PRIQTY STANDARD VOLUMES
OPTIMIZATION PRIVATE STATIC
OPTIMIZE PRIVILEGES STATISTICS WHEN
OPTION PROCEDURE STAY WHERE
OR PROGRAM STOGROUP WHILE
ORDER PSID STORES WITH
OUT PUBLIC STORPOOL WLM
OUTER STYLE WORK

QUERYNO SUBPAGES WRITE
SUBSTRING

READ SUM YEAR
READS SYNONYM YEARS
RECOVERY
REFERENCES TABLE
RELEASE TABLESPACE
RENAME THEN
REPEAT TO
RESET TRANSACTION
RESOURCE TRIGGER
RESTRICT TRIM
RESULT TYPE
RETURN
RETURNS
REVOKE
RIGHT
ROLLBACK
ROW
ROWS
RRN
RUN

Reserved Schema Names and Reserved Words

1282 SQL Reference

ISO/ANS SQL92 Reserved Words

The ISO/ANS SQL92 reserved words that are not also in the IBM SQL list are
as follows.

ABSOLUTE EXEC NAMES SCROLL
ACTION EXTRACT NATIONAL SECTION
ARE NATURAL SESSION
ASSERTION FALSE NCHAR SESSION_USER
AT FIRST NEXT SIZE

FLOAT NULLIF SMALLINT
BIT_LENGTH FOUND NUMERIC SPACE
BOTH FULL SQLCODE

OCTET_LENGTH SQLERROR
CATALOG GET OUTPUT SQLSTATE
CHAR_LENGTH GLOBAL OVERLAPS SYSTEM_USER
CHARACTER_LENGTH
COALESCE IDENTITY PAD TEMPORARY
COLLATE INITIALLY PARTIAL TIMEZONE_HOUR
COLLATION INPUT PRESERVE TIMEZONE_MINUTE
CONSTRAINTS INTERVAL PRIOR TRAILING
CONVERT TRANSLATION
CORRESPONDING LAST REAL TRUE

LEADING RELATIVE
DEALLOCATE LEVEL UNKNOWN
DEC LOWER UPPER
DECIMAL
DEFERRABLE MATCH VALUE
DEFERRED MODULE VARCHAR
DESCRIBE VARYING
DIAGNOSTICS
DOMAIN WHENEVER

ZONE

Reserved Schema Names and Reserved Words

Appendix H. Reserved Schema Names and Reserved Words 1283

Reserved Schema Names and Reserved Words

1284 SQL Reference

Appendix I. Comparison of Isolation Levels

The following table summarizes information about isolation levels described
in “Isolation Level” on page 27.

UR CS RS RR

Can the application see uncommitted changes made
by other application processes?

Yes No No No

Can the application update uncommitted changes
made by other application processes?

No No No No

Can the re-execution of a statement be affected by
other application processes? See phenomenon P3
(phantom) below.

Yes Yes Yes No

Can “updated” rows be updated by other application
processes?

No No No No

Can “updated” rows be read by other application
processes that are running at an isolation level other
than UR?

No No No No

Can “updated” rows be read by other application
processes that are running at the UR isolation level?

Yes Yes Yes Yes

Can “accessed” rows be updated by other application
processes? See phenomenon P2 (nonrepeatable read) below.

Yes Yes No No

Can “accessed” rows be read by other application
processes?

Yes Yes Yes Yes

Can “current” row be updated or deleted by other
application processes? See phenomenon P1 (dirty-read)
below.

See Note
below

See Note
below

No No

Note:

1. If the cursor is not updatable, with CS the current row may be updated or deleted by other
application processes in some cases.

© Copyright IBM Corp. 1993, 2000 1285

UR CS RS RR

Examples of Phenomena:

P1 Dirty Read. Unit of work UW1 modifies a row. Unit of work UW2 reads that row before UW1
performs a COMMIT. If UW1 then performs a ROLLBACK, UW2 has read a nonexistent row.

P2 Nonrepeatable Read. Unit of work UW1 reads a row. Unit of work UW2 modifies that row and
performs a COMMIT. If UW1 then re-reads the row, it might receive a modified value.

P3 Phantom. Unit of work UW1 reads the set of n rows that satisfies some search condition. Unit of
work UW2 then INSERTs one or more rows that satisfies the search condition. If UW1 then
repeats the initial read with the same search condition, it obtains the original rows plus the
inserted rows.

Isolation Levels

1286 SQL Reference

Appendix J. Interaction of Triggers and Constraints

This appendix describes the interaction of triggers with referential constraints
and check constraints that may result from an update operation. Figure 19 and
the associated description are representative of the processing that is
performed for an SQL statement that updates data in the database.

Figure 19 shows the general order of processing for an SQL statement that
updates a table. It assumes a situation where the table includes before
triggers, referential constraints, check constraints and after triggers that
cascade. The following is a description of the boxes and other items found in
Figure 19.
v SQL statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process.
The SQL statement S1 identifies a table (or an updatable view over some
table) referred to as the target table throughout this description.

v Determine set of affected rows (SAR)
This step is the starting point for a process that repeats for referential
constraint delete rules of CASCADE and SET NULL and for cascaded SQL
statements from after triggers.

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 19. Processing an SQL statement with associated triggers and constraints

© Copyright IBM Corp. 1993, 2000 1287

The purpose of this step is to determine the set of affected rows for the SQL
statement. The set of rows included in SAR is based on the statement:
– for DELETE, all rows that satisfy the search condition of the statement

(or the current row for a positioned DELETE)
– for INSERT, the rows identified by the VALUES clause or the fullselect
– for UPDATE, all rows that satisfy the search condition (or the current

row for a positioned update).

If SAR is empty, there will be no BEFORE triggers, changes to apply to the
target table, or constraints to process for the SQL statement.

v Process BEFORE triggers
All BEFORE triggers are processed in ascending order of creation. Each
BEFORE trigger will process the triggered action once for each row in SAR.
An error may occur during the processing of a triggered action in which
case all changes made as a result of the original SQL statement S1 (so far)
are rolled back.
If there are no BEFORE triggers or the SAR is empty, this step is skipped.

v Apply SAR to the target table
The actual delete, insert, or update is applied using SAR to the target table
in the database.
An error may occur when applying SAR (such as attempting to insert a row
with a duplicate key where a unique index exists) in which case all changes
made as a result of the original SQL statement S1 (so far) are rolled back.

v Apply Constraints
The constraints associated with the target table are applied if SAR is not
empty. This includes unique constraints, unique indexes, referential
constraints, check constraints and checks related to the WITH CHECK
OPTION on views. Referential constraints with delete rules of cascade or
set null may cause additional triggers to be activated.
A violation of any constraint or WITH CHECK OPTION results in an error
and all changes made as a result of S1 (so far) are rolled back.

v Process AFTER triggers
All AFTER triggers activated by S1 are processed in ascending order of
creation.
FOR EACH STATEMENT triggers will process the triggered action exactly
once, even if SAR is empty. FOR EACH ROW triggers will process the
triggered action once for each row in SAR.
An error may occur during the processing of a triggered action in which
case all changes made as a result of the original S1 (so far) are rolled back.
The triggered action of a trigger may include triggered SQL statements that
are DELETE, INSERT or UPDATE statements. For the purposes of this
description, each such statement is considered a cascaded SQL statement.

Interaction of Triggers and Constraints

1288 SQL Reference

A cascaded SQL statement is a DELETE, INSERT, or UPDATE statement
that is processed as part of the triggered action of an AFTER trigger. This
statement starts a cascaded level of trigger processing. This can be thought
of as assigning the triggered SQL statement as a new S1 and performing all
of the steps described here recursively.
Once all triggered SQL statements from all AFTER triggers activated by
each S1 have been processed to completion, the processing of the original S1

is completed.
v �R� = roll back changes to before S1

Any error (including constraint violations) that occurs during processing
results in a roll back of all the changes made directly or indirectly as a
result of the original SQL statement S1. The database is therefore back in the
same state as immediately prior to the execution of the original SQL
statement S1

Interaction of Triggers and Constraints

Appendix J. Interaction of Triggers and Constraints 1289

Interaction of Triggers and Constraints

1290 SQL Reference

Appendix K. Explain Tables and Definitions

The Explain tables capture access plans when the Explain facility is activated.
The following Explain tables and definitions are described in this section:
v “EXPLAIN_ARGUMENT Table” on page 1292
v “EXPLAIN_INSTANCE Table” on page 1296
v “EXPLAIN_OBJECT Table” on page 1298
v “EXPLAIN_OPERATOR Table” on page 1300
v “EXPLAIN_PREDICATE Table” on page 1302
v “EXPLAIN_STATEMENT Table” on page 1305
v “EXPLAIN_STREAM Table” on page 1307
v “ADVISE_INDEX Table” on page 1309
v “ADVISE_WORKLOAD Table” on page 1312

The Explain tables must be created before Explain can be invoked. To create
them, use the sample command line processor input script provided in the
EXPLAIN.DDL file located in the 'misc' subdirectory of the 'sqllib' directory.
Connect to the database where the Explain tables are required. Then issue the
command: db2 -tf EXPLAIN.DDL and the tables will be created. See “Table
Definitions for Explain Tables” on page 1312 for more information.

The population of the Explain tables by the Explain facility will neither
activate any triggers nor activate any referential or check constraints. For
example, if an insert trigger were defined on the EXPLAIN_INSTANCE table
and an eligible statement were explained, the trigger would not be activated.

For more details on the Explain facility, see the Administration Guide.

Legend for the Explain Tables:

Heading Explanation
Column name Name of the column
Data Type Data type of the column
Nullable? Yes: Nulls are permitted

No: Nulls are not permitted
Key? PK: Column is part of a primary key

FK: Column is part of a foreign key
Description Description of the column

© Copyright IBM Corp. 1993, 2000 1291

EXPLAIN_ARGUMENT Table

The EXPLAIN_ARGUMENT table represents the unique characteristics for
each individual operator, if there are any.

For the definition of this table, see “EXPLAIN_ARGUMENT Table Definition”
on page 1314.

Table 128. EXPLAIN_ARGUMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the
dynamic statement was explained or name of
the source file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain
request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row
is relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

ARGUMENT_TYPE CHAR(8) No No The type of argument for this operator.

ARGUMENT_VALUE VARCHAR(1024) Yes No The value of the argument for this operator.
NULL if the value is in
LONG_ARGUMENT_VALUE.

LONG_ARGUMENT_VALUE CLOB(1M) Yes No The value of the argument for this operator,
when the text will not fit in
ARGUMENT_VALUE. NULL if the value is in
ARGUMENT_VALUE.

Table 129. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

AGGMODE COMPLETE
PARTIAL
INTERMEDIATE
FINAL

Partial aggregation indicators.

BITFLTR TRUE
FALSE

Hash Join will use a bit filter to enhance
performance.

CSETEMP TRUE
FALSE

Temporary Table over Common
Subexpression Flag.

DIRECT TRUE Direct fetch indicator.

Explain Tables

1292 SQL Reference

Table 129. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

DUPLWARN TRUE
FALSE

Duplicates Warning flag.

EARLYOUT TRUE
FALSE

Early out indicator.

ENVVAR Each row of this type will contain:

v Environment variable name

v Environment variable value

Environment variable affecting the optimizer

FETCHMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
FETCH operator.

GROUPBYC TRUE
FALSE

Whether Group By columns were provided.

GROUPBYN Integer Number of comparison columns.

GROUPBYR Each row of this type will contain:

v Ordinal value of column in group by
clause (followed by a colon and a space)

v Name of Column

Group By requirement.

INNERCOL Each row of this type will contain:

v Ordinal value of column in order (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Inner order columns.

ISCANMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
ISCAN operator.

JN_INPUT INNER
OUTER

Indicates if operator is the operator feeding
the inner or outer of a join.

LISTENER TRUE
FALSE

Listener Table Queue indicator.

MAXPAGES ALL
NONE
INTEGER

Maximum pages expected for Prefetch.

MAXRIDS NONE
INTEGER

Maximum Row Identifiers to be included in
each list prefetch request.

NUMROWS INTEGER Number of rows expected to be sorted.

ONEFETCH TRUE
FALSE

One Fetch indicator.

Explain Tables

Appendix K. Explain Tables and Definitions 1293

Table 129. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

OUTERCOL Each row of this type will contain:

v Ordinal value of column in order (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Outer order columns.

OUTERJN LEFT
RIGHT

Outer join indicator.

PARTCOLS Name of Column Partitioning columns for operator.

PREFETCH LIST
NONE
SEQUENTIAL

Type of Prefetch Eligible.

RMTQTEXT Query text Remote Query Text

ROWLOCK EXCLUSIVE
NONE
REUSE
SHARE
SHORT (INSTANT) SHARE
UPDATE

Row Lock Intent.

ROWWIDTH INTEGER Width of row to be sorted.

SCANDIR FORWARD
REVERSE

Scan Direction.

SCANGRAN INTEGER Intra-partition parallelism, granularity of the
intra-partition parallel scan, expressed in
SCANUNITs.

SCANTYPE LOCAL PARALLEL intra-partition parallelism, Index or Table
scan.

SCANUNIT ROW
PAGE

Intra-partition parallelism, scan granularity
unit.

SERVER Remote server Remote server

SHARED TRUE Intra-partition parallelism, shared TEMP
indicator.

SLOWMAT TRUE
FALSE

Slow Materialization flag.

SNGLPROD TRUE
FALSE

Intra-partition parallelism sort or temp
produced by a single agent.

Explain Tables

1294 SQL Reference

Table 129. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

SORTKEY Each row of this type will contain:

v Ordinal value of column in key (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Sort key columns.

SORTTYPE PARTITIONED
SHARED
ROUND ROBIN
REPLICATED

Intra-partition parallelism, sort type.

TABLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Table Lock Intent.

TQDEGREE INTEGER intra-partition parallelism, number of
subagents accessing Table Queue.

TQMERGE TRUE
FALSE

Merging (sorted) Table Queue indicator.

TQREAD READ AHEAD
STEPPING
SUBQUERY STEPPING

Table Queue reading property.

TQSEND BROADCAST
DIRECTED
SCATTER
SUBQUERY DIRECTED

Table Queue send property.

TQTYPE LOCAL Intra-partition parallelism, Table Queue.

TRUNCSRT TRUE Truncated sort (limits number of rows
produced).

UNIQUE TRUE
FALSE

Uniqueness indicator.

UNIQKEY Each row of this type will contain:

v Ordinal value of column in key (followed
by a colon and a space)

v Name of Column

Unique key columns.

VOLATILE TRUE Volatile table

Explain Tables

Appendix K. Explain Tables and Definitions 1295

EXPLAIN_INSTANCE Table

The EXPLAIN_INSTANCE table is the main control table for all Explain
information. Each row of data in the Explain tables is explicitly linked to one
unique row in this table. The EXPLAIN_INSTANCE table gives basic
information about the source of the SQL statements being explained as well as
information about the environment in which the explanation took place.

For the definition of this table, see “EXPLAIN_INSTANCE Table Definition”
on page 1315.

Table 130. EXPLAIN_INSTANCE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK Schema, or qualifier, of source of Explain request.

EXPLAIN_OPTION CHAR(1) No No Indicates what Explain Information was requested
for this request.

Possible values are:
P PLAN SELECTION

SNAPSHOT_TAKEN CHAR(1) No No Indicates whether an Explain Snapshot was taken
for this request.

Possible values are:
Y Yes, an Explain Snapshot(s) was taken

and stored in the
EXPLAIN_STATEMENT table. Regular
Explain information was also captured.

N No Explain Snapshot was taken.
Regular Explain information was
captured.

O Only an Explain Snapshot was taken.
Regular Explain information was not
captured.

DB2_VERSION CHAR(7) No No Product release number for DB2 Universal
Database which processed this explain request.
Format is vv.rr.m, where:
vv Version Number
rr Release Number
m Maintenance Release Number

Explain Tables

1296 SQL Reference

Table 130. EXPLAIN_INSTANCE Table (continued)

Column Name Data Type Nullable? Key? Description

SQL_TYPE CHAR(1) No No Indicates whether the Explain Instance was for
static or dynamic SQL.

Possible values are:
S Static SQL
D Dynamic SQL

QUERYOPT INTEGER No No Indicates the query optimization class used by the
SQL Compiler at the time of the Explain
invocation. The value indicates what level of
query optimization was performed by the SQL
Compiler for the SQL statements being explained.

BLOCK CHAR(1) No No Indicates what type of cursor blocking was used
when compiling the SQL statements. For more
information, see the BLOCK column in
SYSCAT.PACKAGES.

Possible values are:
N No Blocking
U Block Unambiguous Cursors
B Block All Cursors

ISOLATION CHAR(2) No No Indicates what type of isolation was used when
compiling the SQL statements. For more
information, see the ISOLATION column in
SYSCAT.PACKAGES.

Possible values are:
RR Repeatable Read
RS Read Stability
CS Cursor Stability
UR Uncommitted Read

BUFFPAGE INTEGER No No Contains the value of the BUFFPAGE database
configuration setting at the time of the Explain
invocation.

AVG_APPLS INTEGER No No Contains the value of the AVG_APPLS
configuration parameter at the time of the
Explain invocation.

SORTHEAP INTEGER No No Contains the value of the SORTHEAP database
configuration setting at the time of the Explain
invocation.

LOCKLIST INTEGER No No Contains the value of the LOCKLIST database
configuration setting at the time of the Explain
invocation.

MAXLOCKS SMALLINT No No Contains the value of the MAXLOCKS database
configuration setting at the time of the Explain
invocation.

Explain Tables

Appendix K. Explain Tables and Definitions 1297

Table 130. EXPLAIN_INSTANCE Table (continued)

Column Name Data Type Nullable? Key? Description

LOCKS_AVAIL INTEGER No No Contains the number of locks assumed to be
available by the optimizer for each user. (Derived
from LOCKLIST and MAXLOCKS.)

CPU_SPEED DOUBLE No No Contains the value of the CPUSPEED database
manager configuration setting at the time of the
Explain invocation.

REMARKS VARCHAR(254) Yes No User-provided comment.

DBHEAP INTEGER No No Contains the value of the DBHEAP database
configuration setting at the time of Explain
invocation.

COMM_SPEED DOUBLE No No Contains the value of the COMM_BANDWIDTH
database configuration setting at the time of
Explain invocation.

PARALLELISM CHAR(2) No No Possible values are:

v N = No parallelism

v P = Intra-partition parallelism

v IP = Inter-partition parallelism

v BP = Intra-partition parallelism and
inter-partition parallelism

DATAJOINER CHAR(1) No No Possible values are:

v N = Non-federated systems plan

v Y = Federated systems plan

EXPLAIN_OBJECT Table

The EXPLAIN_OBJECT table identifies those data objects required by the
access plan generated to satisfy the SQL statement.

For the definition of this table, see “EXPLAIN_OBJECT Table Definition” on
page 1316.

Table 131. EXPLAIN_OBJECT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

Explain Tables

1298 SQL Reference

Table 131. EXPLAIN_OBJECT Table (continued)

Column Name Data Type Nullable? Key? Description

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OBJECT_SCHEMA VARCHAR(128) No No Schema to which this object belongs.

OBJECT_NAME VARCHAR(128) No No Name of the object.

OBJECT_TYPE CHAR(2) No No Descriptive label for the type of object.

CREATE_TIME TIMESTAMP Yes No Time of Object’s creation; null if a table function.

STATISTICS_TIME TIMESTAMP Yes No Last time of update to statistics for this object;
null if statistics do not exist for this object.

COLUMN_COUNT SMALLINT No No Number of columns in this object.

ROW_COUNT INTEGER No No Estimated number of rows in this object.

WIDTH INTEGER No No The average width of the object in bytes. Set to -1
for an index.

PAGES INTEGER No No Estimated number of pages that the object
occupies in the buffer pool. Set to -1 for a table
function.

DISTINCT CHAR(1) No No Indicates if the rows in the object are distinct (i.e.
no duplicates)

Possible values are:

Y Yes

N No

TABLESPACE_NAME VARCHAR(128) Yes No Name of the table space in which this object is
stored; set to null if no table space is involved.

OVERHEAD DOUBLE No No Total estimated overhead, in milliseconds, for a
single random I/O to the specified table space.
Includes controller overhead, disk seek, and
latency times. Set to -1 if no table space is
involved.

TRANSFER_RATE DOUBLE No No Estimated time to read a data page, in
milliseconds, from the specified table space. Set to
-1 if no table space is involved.

PREFETCHSIZE INTEGER No No Number of data pages to be read when prefetch is
performed. Set to -1 for a table function.

EXTENTSIZE INTEGER No No Size of extent, in data pages. This many pages are
written to one container in the table space before
switching to the next container. Set to -1 for a
table function.

CLUSTER DOUBLE No No Degree of data clustering with the index. If >= 1,
this is the CLUSTERRATIO. If >= 0 and < 1, this
is the CLUSTERFACTOR. Set to -1 for a table,
table function, or if this statistic is not available.

Explain Tables

Appendix K. Explain Tables and Definitions 1299

Table 131. EXPLAIN_OBJECT Table (continued)

Column Name Data Type Nullable? Key? Description

NLEAF INTEGER No No Number of leaf pages this index object’s values
occupy. Set to -1 for a table, table function, or if
this statistic is not available.

NLEVELS INTEGER No No Number of index levels in this index object’s tree.
Set to -1 for a table, table function, or if this
statistic is not available.

FULLKEYCARD BIGINT No No Number of distinct full key values contained in
this index object. Set to -1 for a table, table
function, or if this statistic is not available.

OVERFLOW INTEGER No No Total number of overflow records in the table. Set
to -1 for an index, table function, or if this statistic
is not available.

FIRSTKEYCARD BIGINT No No Number of distinct first key values. Set to −1 for a
table, table function or if this statistic is not
available.

FIRST2KEYCARD BIGINT No No Number of distinct first key values using the first
{2,3,4} columns of the index. Set to −1 for a table,
table function or if this statistic is not available.

FIRST3KEYCARD BIGINT No No

FIRST4KEYCARD BIGINT No No

SEQUENTIAL_PAGES INTEGER No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
Set to −1 for a table, table function or if this
statistic is not available.

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percentage (integer between
0 and 100). Set to −1 for a table, table function or
if this statistic is not available.

Table 132. Possible OBJECT_TYPE Values

Value Description

IX Index

TA Table

TF Table Function

EXPLAIN_OPERATOR Table

The EXPLAIN_OPERATOR table contains all the operators needed to satisfy
the SQL statement by the SQL compiler.

For the definition of this table, see “EXPLAIN_OPERATOR Table Definition”
on page 1317.

Explain Tables

1300 SQL Reference

Table 133. EXPLAIN_OPERATOR Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

OPERATOR_TYPE CHAR(6) No No Descriptive label for the type of operator.

TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
executing the chosen access plan up to and
including this operator.

IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page
I/Os) of executing the chosen access plan up to
and including this operator.

CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions) of
executing the chosen access plan up to and
including this operator.

FIRST_ROW_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the first row for the access plan up to and
including this operator. This value includes any
initial overhead required.

RE_TOTAL_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the next row for the chosen access plan
up to and including this operator.

RE_IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page
I/Os) of fetching the next row for the chosen
access plan up to and including this operator.

RE_CPU_COST DOUBLE No No Estimated cumulative CPU cost (in timerons) of
fetching the next row for the chosen access plan
up to and including this operator.

COMM_COST DOUBLE No No Estimated cumulative communication cost (in
TCP/IP frames) of executing the chosen access
plan up to and including this operator.

FIRST_COMM_COST DOUBLE No No Estimated cumulative communications cost (in
TCP/IP frames) of fetching the first row for the
chosen access plan up to and including this
operator. This value includes any initial overhead
required.

Explain Tables

Appendix K. Explain Tables and Definitions 1301

Table 133. EXPLAIN_OPERATOR Table (continued)

Column Name Data Type Nullable? Key? Description

BUFFERS DOUBLE No No Estimated buffer requirements for this operator
and its inputs.

REMOTE_TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
performing operation(s) on remote database(s).

REMOTE_COMM_COST DOUBLE No No Estimated cumulative communication cost of
executing the chosen remote access plan up to and
including this operator.

Table 134. OPERATOR_TYPE Values

Value Description

DELETE Delete

FETCH Fetch

FILTER Filter rows

GENROW Generate Row

GRPBY Group By

HSJOIN Hash Join

INSERT Insert

IXAND Dynamic Bitmap Index ANDing

IXSCAN Index Scan

MSJOIN Merge Scan Join

NLJOIN Nested loop Join

RETURN Result

RIDSCN Row Identifier (RID) Scan

RQUERY Remote Query

SORT Sort

TBSCAN Table Scan

TEMP Temporary Table Construction

TQ Table Queue

UNION Union

UNIQUE Duplicate Elimination

UPDATE Update

EXPLAIN_PREDICATE Table

The EXPLAIN_PREDICATE table identifies which predicates are applied by a
specific operator.

For the definition of this table, see “EXPLAIN_PREDICATE Table Definition”
on page 1318.

Explain Tables

1302 SQL Reference

Table 135. EXPLAIN_PREDICATE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

PREDICATE_ID INTEGER No No Unique ID for this predicate for the specified
operator.

HOW_APPLIED CHAR(5) No No How predicate is being used by the specified
operator.

WHEN_EVALUATED CHAR(3) No No Indicates when the subquery used in this
predicate is evaluated.

Possible values are:

blank This predicate does not contain a
subquery.

EAA The subquery used in this predicate is
evaluated at application (EAA). That is,
it is re-evaluated for every row
processed by the specified operator, as
the predicate is being applied.

EAO The subquery used in this predicate is
evaluated at open (EAO). That is, it is
re-evaluated only once for the specified
operator, and its results are re-used in
the application of the predicate for each
row.

MUL There is more than one type of
subquery in this predicate.

RELOP_TYPE CHAR(2) No No The type of relational operator used in this
predicate.

Explain Tables

Appendix K. Explain Tables and Definitions 1303

Table 135. EXPLAIN_PREDICATE Table (continued)

Column Name Data Type Nullable? Key? Description

SUBQUERY CHAR(1) No No Whether or not a data stream from a subquery is
required for this predicate. There may be multiple
subquery streams required.

Possible values are:

N No subquery stream is required

Y One or more subquery streams is
required

FILTER_FACTOR DOUBLE No No The estimated fraction of rows that will be
qualified by this predicate.

PREDICATE_TEXT CLOB(1M) Yes No The text of the predicate as recreated from the
internal representation of the SQL statement.

Null if not available.

Table 136. Possible HOW_APPLIED Values

Value Description

JOIN Used to join tables

RESID Evaluated as a residual predicate

SARG Evaluated as a sargable predicate for index or data page

START Used as a start condition

STOP Used as a stop condition

Table 137. Possible RELOP_TYPE Values

Value Description

blanks Not Applicable

EQ Equals

GE Greater Than or Equal

GT Greater Than

IN In list

LE Less Than or Equal

LK Like

LT Less Than

NE Not Equal

NL Is Null

NN Is Not Null

Explain Tables

1304 SQL Reference

EXPLAIN_STATEMENT Table

The EXPLAIN_STATEMENT table contains the text of the SQL statement as it
exists for the different levels of Explain information. The original SQL
statement as entered by the user is stored in this table along with the version
used (by the optimizer) to choose an access plan to satisfy the SQL statement.
The latter version may bear little resemblance to the original as it may have
been rewritten and/or enhanced with additional predicates as determined by
the SQL Compiler.

For the definition of this table, see “EXPLAIN_STATEMENT Table Definition”
on page 1319.

Table 138. EXPLAIN_STATEMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK,
FK

Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK,
FK

Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK,
FK

Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK,
FK

Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No PK Level of Explain information for which this row
is relevant.

Valid values are:
O Original Text (as entered by user)
P PLAN SELECTION

STMTNO INTEGER No PK Statement number within package to which this
explain information is related. Set to 1 for
dynamic Explain SQL statements. For static SQL
statements, this value is the same as the value
used for the SYSCAT.STATEMENTS catalog view.

SECTNO INTEGER No PK Section number within package that contains this
SQL statement. For dynamic Explain SQL
statements, this is the section number used to
hold the section for this statement at runtime. For
static SQL statements, this value is the same as
the value used for the SYSCAT.STATEMENTS
catalog view.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP or
CLI, the default value is a sequentially
incremented value. Otherwise, the default value
is the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

Explain Tables

Appendix K. Explain Tables and Definitions 1305

Table 138. EXPLAIN_STATEMENT Table (continued)

Column Name Data Type Nullable? Key? Description

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through CLP
(excluding the EXPLAIN SQL statement), the
default value is 'CLP'. For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
'CLI'. Otherwise, the default value used is blanks.

STATEMENT_TYPE CHAR(2) No No Descriptive label for type of query being
explained.

Possible values are:
S Select
D Delete
DC Delete where current of cursor
I Insert
U Update
UC Update where current of cursor

UPDATABLE CHAR(1) No No Indicates if this statement is considered
updatable. This is particularly relevant to SELECT
statements which may be determined to be
potentially updatable.

Possible values are:
’ ’ Not applicable (blank)
N No
Y Yes

DELETABLE CHAR(1) No No Indicates if this statement is considered deletable.
This is particularly relevant to SELECT statements
which may be determined to be potentially
deletable.

Possible values are:
’ ’ Not applicable (blank)
N No
Y Yes

TOTAL_COST DOUBLE No No Estimated total cost (in timerons) of executing the
chosen access plan for this statement; set to 0
(zero) if EXPLAIN_LEVEL is O (original text)
since no access plan has been chosen at this time.

STATEMENT_TEXT CLOB(1M) No No Text or portion of the text of the SQL statement
being explained. The text shown for the Plan
Selection level of Explain has been reconstructed
from the internal representation and is SQL-like
in nature; that is, the reconstructed statement is
not guaranteed to follow correct SQL syntax.

Explain Tables

1306 SQL Reference

Table 138. EXPLAIN_STATEMENT Table (continued)

Column Name Data Type Nullable? Key? Description

SNAPSHOT BLOB(10M) Yes No Snapshot of internal representation for this SQL
statement at the Explain_Level shown.

This column is intended for use with DB2 Visual
Explain. Column is set to null if
EXPLAIN_LEVEL is 0 (original statement) since
no access plan has been chosen at the time that
this specific version of the statement is captured.

QUERY_DEGREE INTEGER No No Indicates the degree of intra-partition parallelism
at the time of Explain invocation. For the original
statement, this contains the directed degree of
intra-partition parallelism. For the PLAN
SELECTION, this contains the degree of
intra-partition parallelism generated for the plan
to use.

EXPLAIN_STREAM Table

The EXPLAIN_STREAM table represents the input and output data streams
between individual operators and data objects. The data objects themselves
are represented in the EXPLAIN_OBJECT table. The operators involved in a
data stream are to be found in the EXPLAIN_OPERATOR table.

For the definition of this table, see “EXPLAIN_STREAM Table Definition” on
page 1320.

Table 139. EXPLAIN_STREAM Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

STREAM_ID INTEGER No No Unique ID for this data stream within the
specified operator.

Explain Tables

Appendix K. Explain Tables and Definitions 1307

Table 139. EXPLAIN_STREAM Table (continued)

Column Name Data Type Nullable? Key? Description

SOURCE_TYPE CHAR(1) No No Indicates the source of this data stream:

O Operator

D Data Object

SOURCE_ID SMALLINT No No Unique ID for the operator within this query that
is the source of this data stream. Set to -1 if
SOURCE_TYPE is ’D’.

TARGET_TYPE CHAR(1) No No Indicates the target of this data stream:

O Operator

D Data Object

TARGET_ID SMALLINT No No Unique ID for the operator within this query that
is the target of this data stream. Set to -1 if
TARGET_TYPE is ’D’.

OBJECT_SCHEMA VARCHAR(128) Yes No Schema to which the affected data object belongs.
Set to null if both SOURCE_TYPE and
TARGET_TYPE are ’O’.

OBJECT_NAME VARCHAR(128) Yes No Name of the object that is the subject of data
stream. Set to null if both SOURCE_TYPE and
TARGET_TYPE are ’O’.

STREAM_COUNT DOUBLE No No Estimated cardinality of data stream.

COLUMN_COUNT SMALLINT No No Number of columns in data stream.

PREDICATE_ID INTEGER No No If this stream is part of a subquery for a predicate,
the predicate ID will be reflected here, otherwise
the column is set to -1.

COLUMN_NAMES CLOB(1M) Yes No This column contains the names and ordering
information of the columns involved in this
stream.

These names will be in the format of:

NAME1(A)+NAME2(D)+NAME3+NAME4

Where (A) indicates a column in ascending order,
(D) indicates a column in descending order, and
no ordering information indicates that either the
column is not ordered or ordering is not relevant.

PMID SMALLINT No No Partitioning map ID.

Explain Tables

1308 SQL Reference

Table 139. EXPLAIN_STREAM Table (continued)

Column Name Data Type Nullable? Key? Description

SINGLE_NODE CHAR(5) Yes No Indicates if this data stream is on a single or
multiple partitions:

MULT On multiple partitions

COOR On coordinator node

HASH Directed using hashing

RID Directed using the row ID

FUNC Directed using a function (PARTITION()
or NODENUMBER())

CORR Directed using a correlation value

Numberic
Directed to predetermined single node

PARTITION_COLUMNS CLOB(64K) Yes No List of columns this data stream is partitioned on.

ADVISE_INDEX Table

The ADVISE_INDEX table represents the recommended indexes.

For the definition of this table, see “ADVISE_INDEX Table Definition” on
page 1321.

Table 140. ADVISE_INDEX Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic
statement was explained or name of the source
file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is
relevant.

STMTNO INTEGER No No Statement number within package to which this
explain information is related.

SECTNO INTEGER No No Section number within package to which this
explain information is related.

Explain Tables

Appendix K. Explain Tables and Definitions 1309

Table 140. ADVISE_INDEX Table (continued)

Column Name Data Type Nullable? Key? Description

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP or
CLI, the default value is a sequentially
incremented value. Otherwise, the default value is
the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through CLP
(excluding the EXPLAIN SQL statement), the
default value is 'CLP'. For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
'CLI'. Otherwise, the default value used is blanks.

NAME VARCHAR(128) No No Name of the index.

CREATOR VARCHAR(128) No No Qualifier of the index name.

TBNAME VARCHAR(128) No No Name of the table or nickname on which the
index is defined.

TBCREATOR VARCHAR(128) No No Qualifier of the table name.

COLNAMES CLOB(64K) No No List of column names.

UNIQUERULE CHAR(1) No No Unique rule:

D = Duplicates allowed

P = Primary index

U = Unique entries only allowed

COLCOUNT SMALLINT No No Number of columns in the key plus the number of
include columns if any.

IID SMALLINT No No Internal index ID.

NLEAF INTEGER No No Number of leaf pages; −1 if statistics are not
gathered.

NLEVELS SMALLINT No No Number of index levels; −1 if statistics are not
gathered.

FULLKEYCARD BIGINT No No Number of distinct full key values; −1 if statistics
are not gathered.

FIRSTKEYCARD BIGINT No No Number of distinct first key values; −1 if statistics
are not gathered.

CLUSTERRATIO SMALLINT No No Degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics are gathered (in which case,
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR DOUBLE No No Finer measurement of degree of clustering, or −1
if detailed index statistics have not been gathered
or if the index is defined on a nickname.

USERDEFINED SMALLINT No No Defined by the user.

Explain Tables

1310 SQL Reference

Table 140. ADVISE_INDEX Table (continued)

Column Name Data Type Nullable? Key? Description

SYSTEM_REQUIRED SMALLINT No No 1 if this index is required for primary key or
unique key constraint, OR if this is the index
on the object identifier (OID) column of a
typed table.

2 if this index is required for primary key or
unique key constraint, AND this is the index
on the object identifier (OID) column of a
typed table.

0 otherwise.

CREATE_TIME TIMESTAMP No No Time when the index was created.

STATS_TIME TIMESTAMP Yes No Last time when any change was made to recorded
statistics for this index. Null if no statistics
available.

PAGE_FETCH_PAIRS VARCHAR(254) No No A list of pairs of integers, represented in character
form. Each pair represents the number of pages in
a hypothetical buffer, and the number of page
fetches required to scan the table with this index
using that hypothetical buffer. (Zero-length string
if no data available.)

REMARKS VARCHAR(254) Yes No User-supplied comment, or null.

DEFINER VARCHAR(128) No No User who created the index.

CONVERTED CHAR(1) No No Reserved for future use.

SEQUENTIAL_PAGES INTEGER No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
(−1 if no statistics are available.)

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer between 0
and 100, −1 if no statistics are available.)

FIRST2KEYCARD BIGINT No No Number of distinct keys using the first two
columns of the index (−1 if no statistics or
inapplicable)

FIRST3KEYCARD BIGINT No No Number of distinct keys using the first three
columns of the index (−1 if no statistics or
inapplicable)

FIRST4KEYCARD BIGINT No No Number of distinct keys using the first four
columns of the index (−1 if no statistics or
inapplicable)

PCTFREE SMALLINT No No Percentage of each index leaf page to be reserved
during initial building of the index. This space is
available for future inserts after the index is built.

UNIQUE_COLCOUNT SMALLINT No No The number of columns required for a unique key.
Always <=COLCOUNT. < COLCOUNT only if
there a include columns. −1 if index has no
unique key (permits duplicates)

Explain Tables

Appendix K. Explain Tables and Definitions 1311

Table 140. ADVISE_INDEX Table (continued)

Column Name Data Type Nullable? Key? Description

MINPCTUSED SMALLINT No No If not zero, then on-line index reorganization is
enabled and the value is the threshold of
minimum used space before merging pages.

REVERSE_SCANS CHAR(1) No No Y = Index supports reverse scans

N = Index does not support reverse scans

USE_INDEX CHAR(1) Yes No Y = index recommended or evaluated

N = index not to be recommended

CREATION_TEXT CLOB(1M) No No The SQL statement used to create the index.

PACKED_DESC BLOB(20M) Yes No Internal description of the table.

ADVISE_WORKLOAD Table

The ADVISE_WORKLOAD table represents the statement that makes up the
workload. For more details on workload refer to Administration Guide:
Performance.

For the definition of this table, see “ADVISE_WORKLOAD Table Definition”
on page 1323.

Table 141. ADVISE_WORKLOAD Table

Column Name Data Type Nullable? Key? Description

WORKLOAD_NAME CHAR(128) No No Name of the collection of SQL statements
(workload) that this statments belongs to.

STATEMENT_NO INTEGER No No Statement number within the workload to which
this explain information is related.

STATEMENT_TEXT CLOB(1M) No No Content of the SQL statement.

STATEMENT_TAG VARCHAR(256) No No Identifier tag for each explained SQL statement.

FREQUENCY INTEGER No No The number of times this statement appears
within the workload.

IMPORTANCE DOUBLE No No Importance of the statement.

COST_BEFORE DOUBLE Yes No The cost (in timerons) of the query if the
recommended indexes are not created.

COST_AFTER DOUBLE Yes No The cost (in timerons) of the query if the
recommended indexes are created.

Table Definitions for Explain Tables

The Explain tables must be created before Explain can be invoked. The
following definitions specify how to create the necessary Explain tables:
v “EXPLAIN_ARGUMENT Table Definition” on page 1314
v “EXPLAIN_INSTANCE Table Definition” on page 1315

Explain Tables

1312 SQL Reference

v “EXPLAIN_OBJECT Table Definition” on page 1316
v “EXPLAIN_OPERATOR Table Definition” on page 1317
v “EXPLAIN_PREDICATE Table Definition” on page 1318
v “EXPLAIN_STATEMENT Table Definition” on page 1319
v “EXPLAIN_STREAM Table Definition” on page 1320
v “ADVISE_INDEX Table Definition” on page 1321
v “ADVISE_WORKLOAD Table Definition” on page 1323

Alternately, create them by using the sample command line processor input
script provided in the EXPLAIN.DDL file located in the 'misc' subdirectory of
the 'sqllib' directory. Connect to the database where the Explain tables are
required. Then issue the command: db2 -tf EXPLAIN.DDL and the tables will
be created.

Explain Tables

Appendix K. Explain Tables and Definitions 1313

EXPLAIN_ARGUMENT Table Definition
CREATE TABLE EXPLAIN_ARGUMENT (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OPERATOR_ID INTEGER NOT NULL,
ARGUMENT_TYPE CHAR(8) NOT NULL,
ARGUMENT_VALUE VARCHAR(1024) NOT NULL,
LONG_ARGUMENT_VALUE CLOB(1M) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

1314 SQL Reference

EXPLAIN_INSTANCE Table Definition
CREATE TABLE EXPLAIN_INSTANCE (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_OPTION CHAR(1) NOT NULL,
SNAPSHOT_TAKEN CHAR(1) NOT NULL,
DB2_VERSION CHAR(7) NOT NULL,
SQL_TYPE CHAR(1) NOT NULL,
QUERYOPT INTEGER NOT NULL,
BLOCK CHAR(1) NOT NULL,
ISOLATION CHAR(2) NOT NULL,
BUFFPAGE INTEGER NOT NULL,
AVG_APPLS INTEGER NOT NULL,
SORTHEAP INTEGER NOT NULL,
LOCKLIST INTEGER NOT NULL,
MAXLOCKS SMALLINT NOT NULL,
LOCKS_AVAIL INTEGER NOT NULL,
CPU_SPEED DOUBLE NOT NULL,
REMARKS VARCHAR(254),
DBHEAP INTEGER NOT NULL,
COMM_SPEED DOUBLE NOT NULL,
PARALLELISM CHAR(2) NOT NULL,
DATAJOINER CHAR(1) NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA))

Explain Tables

Appendix K. Explain Tables and Definitions 1315

EXPLAIN_OBJECT Table Definition
CREATE TABLE EXPLAIN_OBJECT (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OBJECT_SCHEMA VARCHAR(128) NOT NULL,
OBJECT_NAME VARCHAR(128) NOT NULL,
OBJECT_TYPE CHAR(2) NOT NULL,
CREATE_TIME TIMESTAMP,
STATISTICS_TIME TIMESTAMP,
COLUMN_COUNT SMALLINT NOT NULL,
ROW_COUNT INTEGER NOT NULL,
WIDTH INTEGER NOT NULL,
PAGES INTEGER NOT NULL,
DISTINCT CHAR(1) NOT NULL,
TABLESPACE_NAME VARCHAR(128),
OVERHEAD DOUBLE NOT NULL,
TRANSFER_RATE DOUBLE NOT NULL,
PREFETCHSIZE INTEGER NOT NULL,
EXTENTSIZE INTEGER NOT NULL,
CLUSTER DOUBLE NOT NULL,
NLEAF INTEGER NOT NULL,
NLEVELS INTEGER NOT NULL,
FULLKEYCARD BIGINT NOT NULL,
OVERFLOW INTEGER NOT NULL,
FIRSTKEYCARD BIGINT NOT NULL,
FIRST2KEYCARD BIGINT NOT NULL,
FIRST3KEYCARD BIGINT NOT NULL,
FIRST4KEYCARD BIGINT NOT NULL,
SEQUENTIAL_PAGES INTEGER NOT NULL,
DENSITY INTEGER NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

1316 SQL Reference

EXPLAIN_OPERATOR Table Definition

CREATE TABLE EXPLAIN_OPERATOR (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,
EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OPERATOR_ID INTEGER NOT NULL,
OPERATOR_TYPE CHAR(6) NOT NULL,
TOTAL_COST DOUBLE NOT NULL,
IO_COST DOUBLE NOT NULL,
CPU_COST DOUBLE NOT NULL,
FIRST_ROW_COST DOUBLE NOT NULL,
RE_TOTAL_COST DOUBLE NOT NULL,
RE_IO_COST DOUBLE NOT NULL,
RE_CPU_COST DOUBLE NOT NULL,
COMM_COST DOUBLE NOT NULL,
FIRST_COMM_COST DOUBLE NOT NULL,
REMOTE_TOTAL_COST DOUBLE NOT NULL,
REMOTE_COMM_COST DOUBLE NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

Appendix K. Explain Tables and Definitions 1317

EXPLAIN_PREDICATE Table Definition
CREATE TABLE EXPLAIN_PREDICATE (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OPERATOR_ID INTEGER NOT NULL,
PREDICATE_ID INTEGER NOT NULL,
HOW_APPLIED CHAR(5) NOT NULL,
WHEN_EVALUATED CHAR(3) NOT NULL,
RELOP_TYPE CHAR(2) NOT NULL,
SUBQUERY CHAR(1) NOT NULL,
FILTER_FACTOR DOUBLE NOT NULL,
PREDICATE_TEXT CLOB(1M) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

1318 SQL Reference

EXPLAIN_STATEMENT Table Definition
CREATE TABLE EXPLAIN_STATEMENT (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
QUERYNO INTEGER NOT NULL,
QUERYTAG CHAR(20) NOT NULL,
STATEMENT_TYPE CHAR(2) NOT NULL,
UPDATABLE CHAR(1) NOT NULL,
DELETABLE CHAR(1) NOT NULL
TOTAL_COST DOUBLE NOT NULL,
STATEMENT_TEXT CLOB(1M) NOT NULL

NOT LOGGED,
SNAPSHOT BLOB(10M) NOT LOGGED,
QUERY_DEGREE INTEGER NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO),

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA)

REFERENCES EXPLAIN_INSTANCE
ON DELETE CASCADE)

Explain Tables

Appendix K. Explain Tables and Definitions 1319

EXPLAIN_STREAM Table Definition
CREATE TABLE EXPLAIN_STREAM (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
STREAM_ID INTEGER NOT NULL,
SOURCE_TYPE CHAR(1) NOT NULL,
SOURCE_ID SMALLINT NOT NULL,
TARGET_TYPE CHAR(1) NOT NULL,
TARGET_ID SMALLINT NOT NULL,
OBJECT_SCHEMA VARCHAR(128),
OBJECT_NAME VARCHAR(128),
STREAM_COUNT DOUBLE NOT NULL,
COLUMN_COUNT SMALLINT NOT NULL,
PREDICATE_ID INTEGER NOT NULL,
COLUMN_NAMES CLOB(1M) NOT LOGGED,
PMID SMALLINT NOT NULL,
SINGLE_NODE CHAR(5),
PARTITION_COLUMNS CLOB(64K) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

1320 SQL Reference

ADVISE_INDEX Table Definition
CREATE TABLE ADVISE_INDEX (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL

WITH DEFAULT '',
EXPLAIN_TIME TIMESTAMP NOT NULL

WITH DEFAULT CURRENT TIMESTAMP,
SOURCE_NAME VARCHAR(128) NOT NULL

WITH DEFAULT '',
SOURCE_SCHEMA VARCHAR(128) NOT NULL

WITH DEFAULT '',
EXPLAIN_LEVEL CHAR(1) NOT NULL

WITH DEFAULT '',
STMTNO INTEGER NOT NULL

WITH DEFAULT 0,
SECTNO INTEGER NOT NULL

WITH DEFAULT 0,
QUERYNO INTEGER NOT NULL

WITH DEFAULT 0,
QUERYTAG CHAR(20) NOT NULL

WITH DEFAULT '',
NAME VARCHAR(128) NOT NULL,
CREATOR VARCHAR(128) NOT NULL

WITH DEFAULT '',
TBNAME VARCHAR(128) NOT NULL,
TBCREATOR VARCHAR(128) NOT NULL

WITH DEFAULT '',
COLNAMES CLOB(64K) NOT NULL,
UNIQUERULE CHAR(1) NOT NULL

WITH DEFAULT '',
COLCOUNT SMALLINT NOT NULL

WITH DEFAULT 0,
IID SMALLINT NOT NULL

WITH DEFAULT 0,
NLEAF INTEGER NOT NULL

WITH DEFAULT 0,
NLEVELS SMALLINT NOT NULL

WITH DEFAULT 0,
FIRSTKEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
FULLKEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
CLUSTERRATIO SMALLINT NOT NULL

WITH DEFAULT 0,
CLUSTERFACTOR DOUBLE NOT NULL

WITH DEFAULT 0,
USERDEFINED SMALLINT NOT NULL

WITH DEFAULT 0,
SYSTEM_REQUIRED SMALLINT NOT NULL

WITH DEFAULT 0,
CREATE_TIME TIMESTAMP NOT NULL

WITH DEFAULT CURRENT TIMESTAMP,
STATS_TIME TIMESTAMP

WITH DEFAULT CURRENT TIMESTAMP,
PAGE_FETCH_PAIRS VARCHAR(254) NOT NULL

WITH DEFAULT '',
REMARKS VARCHAR(254)

Explain Tables

Appendix K. Explain Tables and Definitions 1321

WITH DEFAULT '',
DEFINER VARCHAR(128) NOT NULL

WITH DEFAULT '',
CONVERTED CHAR(1) NOT NULL

WITH DEFAULT '',
SEQUENTIAL_PAGES INTEGER NOT NULL

WITH DEFAULT 0,
DENSITY INTEGER NOT NULL

WITH DEFAULT 0,
FIRST2KEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
FIRST3KEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
FIRST4KEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
PCTFREE SMALLINT NOT NULL

WITH DEFAULT -1,
UNIQUE_COLCOUNT SMALLINT NOT NULL

WITH DEFAULT -1,
MINPCTUSED SMALLINT NOT NULL

WITH DEFAULT 0,
REVERSE_SCANS CHAR(1) NOT NULL

WITH DEFAULT 'N',
USE_INDEX CHAR(1),
CREATION_TEXT CLOB(1M) NOT NULL

NOT LOGGED WITH DEFAULT '',
PACKED_DESC BLOB(1M) NOT LOGGED)

Explain Tables

1322 SQL Reference

ADVISE_WORKLOAD Table Definition
CREATE TABLE ADVISE_WORKLOAD (WORKLOAD_NAME CHAR(128) NOT NULL

WITH DEFAULT 'WK0',
STATEMENT_NO INTEGER NOT NULL

WITH DEFAULT 1,
STATEMENT_TEXT CLOB(1M) NOT NULL NOT LOGGED,
STATEMENT_TAG VARCHAR(256) NOT NULL

WITH DEFAULT '',
FREQUENCY INTEGER NOT NULL

WITH DEFAULT 1,
IMPORTANCE DOUBLE NOT NULL

WITH DEFAULT 1,
COST_BEFORE DOUBLE,
COST_AFTER DOUBLE)

Explain Tables

Appendix K. Explain Tables and Definitions 1323

Explain Tables

1324 SQL Reference

Appendix L. Explain Register Values

This appendix describes the interaction of the CURRENT EXPLAIN MODE
and CURRENT EXPLAIN SNAPSHOT special register values with each other
and with the PREP and BIND commands.

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special register values interact in the following way for dynamic SQL.

Table 142. Interaction of Explain Special Register Values for Dynamic SQL

EXPLAIN
SNAPSHOT

values

EXPLAIN MODE values

NO YES EXPLAIN RECOMMEND
INDEXES

EVALUATE
INDEXES

NO v Results
of query
returned.

v Explain tables
populated

v Results of
query
returned.

v Explain tables
populated.

v Results of
query not
returned
(Dynamic
statements not
executed).

v Explain tables
populated.

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
recommended.

v Explain tables
populated.

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
evaluated.

YES v Explain
Snapshot
taken.

v Results
of query
returned.

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query
returned.

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
recommended.

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
evaluated.

© Copyright IBM Corp. 1993, 2000 1325

Table 142. Interaction of Explain Special Register Values for Dynamic SQL (continued)

EXPLAIN
SNAPSHOT

values

EXPLAIN MODE values

NO YES EXPLAIN RECOMMEND
INDEXES

EVALUATE
INDEXES

EXPLAIN v Explain
Snapshot
taken

v Results
of query
not
returned
(Dynamic
statements
not
executed).

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
recommended.

v Explain tables
populated

v Explain
Snapshot
taken

v Results of
query not
returned
(Dynamic
statements not
executed).

v Indexes
evaluated.

The CURRENT EXPLAIN MODE special register interacts with the EXPLAIN
bind option in the following way for dynamic SQL.

Table 143. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE

EXPLAIN
MODE
values

EXPLAIN Bind option values

NO YES ALL

NO v Results of query returned. v Explain tables populated
for static SQL

v Results of query returned.

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query returned.

YES v Explain tables populated
for dynamic SQL

v Results of query returned.

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query returned.

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query returned.

EXPLAIN v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

1326 SQL Reference

Table 143. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE (continued)

EXPLAIN
MODE
values

EXPLAIN Bind option values

NO YES ALL

RECOMMEND
INDEXES

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Recommend indexes

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Recommend indexes

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Recommend indexes

EVALUATE
INDEXES

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Evaluate indexes

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Evaluate indexes

v Explain tables populated
for static SQL

v Explain tables populated
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Evaluate indexes

The CURRENT EXPLAIN SNAPSHOT special register interacts with the
EXPLSNAP bind option in the following way for dynamic SQL.

Table 144. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT

EXPLAIN
SNAPSHOT

values

EXPLSNAP Bind option values

NO YES ALL

NO v Results of query returned. v Explain Snapshot taken
for static SQL

v Results of query returned.

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query returned.

YES v Explain Snapshot taken
for dynamic SQL

v Results of query returned.

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query returned.

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query returned.

EXPLAIN v Explain Snapshot taken
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

v Explain Snapshot taken
for static SQL

v Explain Snapshot taken
for dynamic SQL

v Results of query not
returned (Dynamic
statements not executed).

Appendix L. Explain Register Values 1327

1328 SQL Reference

Appendix M. Recursion Example: Bill of Materials

Bill of materials (BOM) applications are a common requirement in many
business environments. To illustrate the capability of a recursive common
table expression for BOM applications, consider a table of parts with
associated subparts and the quantity of subparts required by the part. For this
example, create the table as follows.

CREATE TABLE PARTLIST
(PART VARCHAR(8),
SUBPART VARCHAR(8),
QUANTITY INTEGER);

In order to give query results for this example, assume the PARTLIST table is
populated with the following values.

PART SUBPART QUANTITY
-------- -------- -----------
00 01 5
00 05 3
01 02 2
01 03 3
01 04 4
01 06 3
02 05 7
02 06 6
03 07 6
04 08 10
04 09 11
05 10 10
05 11 10
06 12 10
06 13 10
07 14 8
07 12 8

Example 1: Single Level Explosion

The first example is called single level explosion. It answers the question,
“What parts are needed to build the part identified by ’01’?”. The list will
include the direct subparts, subparts of the subparts and so on. However, if a
part is used multiple times, its subparts are only listed once.
WITH RPL (PART, SUBPART, QUANTITY) AS

(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '01'

UNION ALL
SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD

© Copyright IBM Corp. 1993, 2000 1329

WHERE PARENT.SUBPART = CHILD.PART
)

SELECT DISTINCT PART, SUBPART, QUANTITY
FROM RPL
ORDER BY PART, SUBPART, QUANTITY;

The above query includes a common table expression, identified by the name
RPL, that expresses the recursive part of this query. It illustrates the basic
elements of a recursive common table expression.

The first operand (fullselect) of the UNION, referred to as the initialization
fullselect, gets the direct children of part ’01’. The FROM clause of this
fullselect refers to the source table and will never refer to itself (RPL in this
case). The result of this first fullselect goes into the common table expression
RPL (Recursive PARTLIST). As in this example, the UNION must always be a
UNION ALL.

The second operand (fullselect) of the UNION uses RPL to compute subparts
of subparts by having the FROM clause refer to the common table expression
RPL and the source table with a join of a part from the source table (child) to
a subpart of the current result contained in RPL (parent). The result goes back
to RPL again. The second operand of UNION is then used repeatedly until no
more children exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same
part/subpart is not listed more than once.

The result of the query is as follows:
PART SUBPART QUANTITY
-------- -------- -----------
01 02 2
01 03 3
01 04 4
01 06 3
02 05 7
02 06 6
03 07 6
04 08 10
04 09 11
05 10 10
05 11 10
06 12 10
06 13 10
07 12 8
07 14 8

Observe in the result that from part ’01’ we go to ’02’ which goes to ’06’ and
so on. Further, notice that part ’06’ is reached twice, once through ’01’ directly

Recursion Example: Bill of Materials

1330 SQL Reference

and another time through ’02’. In the output, however, its subcomponents are
listed only once (this is the result of using a SELECT DISTINCT) as required.

It is important to remember that with recursive common table expressions it is
possible to introduce an infinite loop. In this example, an infinite loop would
be created if the search condition of the second operand that joins the parent
and child tables was coded as:

PARENT.SUBPART = CHILD.SUBPART

This example of causing an infinite loop is obviously a case of not coding
what is intended. However, care should also be exercised in determining what
to code so that there is a definite end of the recursion cycle.

The result produced by this example query could be produced in an
application program without using a recursive common table expression.
However, this approach would require starting of a new query for every level
of recursion. Furthermore, the application needs to put all the results back in
the database to order the result. This approach complicates the application
logic and does not perform well. The application logic becomes even harder
and more inefficient for other bill of material queries, such as summarized
and indented explosion queries.

Example 2: Summarized Explosion

The second example is a summarized explosion. The question posed here is,
what is the total quantity of each part required to build part ’01’. The main
difference from the single level explosion is the need to aggregate the
quantities. The first example indicates the quantity of subparts required for
the part whenever it is required. It does not indicate how many of the
subparts are needed to build part ’01’.
WITH RPL (PART, SUBPART, QUANTITY) AS

(
SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '01'

UNION ALL
SELECT PARENT.PART, CHILD.SUBPART, PARENT.QUANTITY*CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"
FROM RPL
GROUP BY PART, SUBPART
ORDER BY PART, SUBPART;

In the above query, the select list of the second operand of the UNION in the
recursive common table expression, identified by the name RPL, shows the
aggregation of the quantity. To find out how much of a subpart is used, the

Recursion Example: Bill of Materials

Appendix M. Recursion Example: Bill of Materials 1331

quantity of the parent is multiplied by the quantity per parent of a child. If a
part is used multiple times in different places, it requires another final
aggregation. This is done by the grouping over the common table expression
RPL and using the SUM column function in the select list of the main
fullselect.

The result of the query is as follows:
PART SUBPART Total Qty Used
-------- -------- --------------
01 02 2
01 03 3
01 04 4
01 05 14
01 06 15
01 07 18
01 08 40
01 09 44
01 10 140
01 11 140
01 12 294
01 13 150
01 14 144

Looking at the output, consider the line for subpart ’06’. The total quantity
used value of 15 is derived from a quantity of 3 directly for part ’01’ and a
quantity of 6 for part ’02’ which is needed 2 times by part ’01’.

Example 3: Controlling Depth

The question may come to mind, what happens when there are more levels of
parts in the table than you are interested in for your query? That is, how is a
query written to answer the question, “What are the first two levels of parts
needed to build the part identified by ’01’?” For the sake of clarity in the
example, the level is included in the result.
WITH RPL (LEVEL, PART, SUBPART, QUANTITY) AS

(
SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '01'

UNION ALL
SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

AND PARENT.LEVEL < 2
)

SELECT PART, LEVEL, SUBPART, QUANTITY
FROM RPL;

This query is similar to example 1. The column LEVEL was introduced to
count the levels from the original part. In the initialization fullselect, the value

Recursion Example: Bill of Materials

1332 SQL Reference

for the LEVEL column is initialized to 1. In the subsequent fullselect, the level
from the parent is incremented by 1. Then to control the number of levels in
the result, the second fullselect includes the condition that the parent level
must be less than 2. This ensures that the second fullselect only processes
children to the second level.

The result of the query is:
PART LEVEL SUBPART QUANTITY
-------- ----------- -------- -----------
01 1 02 2
01 1 03 3
01 1 04 4
01 1 06 3
02 2 05 7
02 2 06 6
03 2 07 6
04 2 08 10
04 2 09 11
06 2 12 10
06 2 13 10

Recursion Example: Bill of Materials

Appendix M. Recursion Example: Bill of Materials 1333

Recursion Example: Bill of Materials

1334 SQL Reference

Appendix N. Exception Tables

Exception tables are user-created tables that mimic the definition of the tables
that are specified to be checked using SET INTEGRITY with the IMMEDIATE
CHECKED option. They are used to store copies of the rows that violate
constraints in the tables being checked.

The exception tables used with LOAD are identical to the ones used here.
They can therefore be reused during checking with the SET INTEGRITY
statement.

Rules for Creating an Exception Table

The rules for creating an exception table are as follows:
1. The first “n” columns of the exception table are the same as the columns

of the table being checked. All column attributes including name, type
and length should be identical.

2. All the columns of the exception table must be free of any constraints
and triggers. Constraints include referential integrity, check constraints as
well as unique index constraints that could cause errors on insert.

3. The “(n+1)” column of the exception table is an optional TIMESTAMP
column. This serves to identify successive invocations of checking by the
SET INTEGRITY statement on the same table, if the rows within the
exception table have not been deleted before issuing the SET INTEGRITY
statement to check the data.

4. The “(n+2)” column should be of type CLOB(32K) or larger. This column
is optional but recommended, and will be used to give the names of the
constraints that the data within the row violates. If this column is not
provided (as could be warranted if, for example, the original table had
the maximum number of columns allowed), then only the row where the
constraint violation was detected is copied.

5. The exception table should be created with both “(n+1)” and the “(n+2)”
columns.

6. There is no enforcement of any particular name for the above additional
columns. However, the type specification must be exactly followed.

7. No additional columns are allowed.
8. If the original table has DATALINK columns, the corresponding columns

in the exception table should specify NO LINK CONTROL. This ensures
that a file is not linked when a row (with DATALINK column) is inserted
and an access token is not generated when rows are selected from the
exception table.

© Copyright IBM Corp. 1993, 2000 1335

9. If the original table has generated columns (including the IDENTITY
property), the corresponding columns in the exception table should not
specify the generated property.

10. It should also be noted that users invoking SET INTEGRITY to check the
data must have INSERT privilege on the exception tables.

The information in the “message” column will be according to the following
structure:

Table 145. Exception Table Message Column Structure

Field
number

Contents Size Comments

1 Number of constraint violations 5 characters Right justified padded with ’0’

2 Type of first constraint violation 1 character ’K’ - Check Constraint violation
’F’ - Foreign Key violation
’G’ - Generated Column violation
’I’ - Unique Index violationa

’L’ - DATALINK load violation

3 Length of constraint/columnb

/index IDc/DLVDESCd
5 characters Right justified padded with ’0’

4 Constraint name/Column
nameb/index IDc/DLVDESCd

length from the previous
field

5 Separator 3 characters <space><colon><space>

6 Type of next constraint violation 1 character ’K’ - Check Constraint violation
’F’ - Foreign Key violation
’G’ - Generated Column violation
’I’ - Unique Index violation
’L’ - DATALINK load violation

7 Length of
constraint/column/index ID/
DLVDESC

5 characters Right justified padded with ’0’

8 Constraint name/Column
name/Index ID/ DLVDESC

length from the previous
field

..... Repeat Field 5 through 8 for each
violation

1336 SQL Reference

Table 145. Exception Table Message Column Structure (continued)

Field
number

Contents Size Comments

v a Unique index violations will not occur with checking using SET INTEGRITY. This will be reported,
however, when running LOAD if the FOR EXCEPTION option is chosen. LOAD, on the other hand,
will not report check constraint, generated column, and foreign key violations in the exception tables.

v b To retrieve the expression of a generated column from the catalog views, use a select statement. For
example, if field 4 is MYSCHEMA.MYTABLE.GEN_1, then SELECT SUBSTR(TEXT, 1, 50) FROM
SYSCAT.COLUMNS WHERE TABSCHEMA=’MYSCHEMA’ AND TABNAME=’MYNAME’ AND
COLNAME=’GEN_1’; will return the first fifty characters of the expression, in the form ″AS
(<expression>)″

v c To retrieve an index ID from the catalog views, use a select statement. For example, if field 4 is 1234,
then SELECT INDSCHEMA, INDNAME FROM SYSCAT.INDEXES WHERE IID=1234.

v dDLVDESC is a DATALINK Load Violation DESCriptor described below.

Table 146. DATALINK Load Violation DESCriptor (DLVDESC)

Field
number

Contents Size Comments

1 Number of violating DATALINK
columns

4 characters Right justified padded with ’0’

2 DATALINK column number of
the first violating column

4 characters Right justified padded with ’0’

2 DATALINK column number of
the second violating column

4 characters Right justified padded with ’0’

..... Repeat for each violating column
number

Note:
v DATALINK column number is COLNO in SYSCAT.COLUMNS for the appropriate table.

Handling Rows in the Exception Tables

The information in the exception tables can be processed in any manner
desired. The rows could be used to correct the data and re-insert the rows into
the original tables.

If there are no INSERT triggers on the original table, transfer the corrected
rows by issuing an INSERT statement with a subquery on the exception table.

If there are INSERT triggers and you wish to complete the load with the
corrected rows from exception tables without firing the triggers, the following
ways are suggested:
v Design the INSERT triggers to be fired depending on the value in a column

defined explicitly for the purpose.

Appendix N. Exception Tables 1337

v Unload the data from the exception tables and append them using LOAD.
In this case if we re-check the data, it should be noted that in DB2 Version 7
the constraint violation checking is not confined to the appended rows only.

v Save the trigger text from the relevant catalog table. Then drop the INSERT
trigger and use INSERT to transfer the corrected rows from the exception
tables. Finally recreate the trigger using the saved information.

In DB2 Version 7, no explicit provision is made to prevent the firing of
triggers when inserting rows from the exception tables.

Only one violation per row will be reported for unique index violations.

If values with long string or LOB data types are in the table, the values will
not be inserted into the exception table in case of unique index violation.

Querying the Exception Tables

The message column structure in an exception table is a concatenated list of
constraint names, lengths and delimiters as described earlier. You may wish to
write a query on this information.

For example, let’s write a query to obtain a list of all the violations, repeating
each row with only the constraint name along with it. Let us assume that our
original table T1 had two columns C1 and C2. Assume also, that the
corresponding exception table E1 has columns C1, C2 pertaining to those in
T1 and MSGCOL as the message column. The following query (using
recursion) will list one constraint name per row (repeating the row for more
than one violation):
WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS
(SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, 12,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

1,
15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))
FROM E1

UNION ALL
SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, J+6,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

I+1,
J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

FROM IV
WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV;

If we want all the rows that violated a particular constraint, we could extend
this query as follows:

1338 SQL Reference

WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS
(SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, 12,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

1,
15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

FROM E1
UNION ALL
SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, J+6,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

I+1,
J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

FROM IV
WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTNAME = 'constraintname';

To obtain all the Check Constraint violations, one could execute the following:
WITH IV (C1, C2, MSGCOL, CONSTNAME, CONSTTYPE, I, J) AS

(SELECT C1, C2, MSGCOL,
CHAR(SUBSTR(MSGCOL, 12,

INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),
CHAR(SUBSTR(MSGCOL, 6, 1)),
1,
15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

FROM E1
UNION ALL
SELECT C1, C2, MSGCOL,

CHAR(SUBSTR(MSGCOL, J+6,
INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

CHAR(SUBSTR(MSGCOL, J, 1)),
I+1,
J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

FROM IV
WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTTYPE = 'K';

Appendix N. Exception Tables 1339

1340 SQL Reference

Appendix O. Japanese and Traditional-Chinese EUC
Considerations

Extended Unix Code (EUC) for Japanese and Traditional-Chinese defines a set
of encoding rules that can support from 1 to 4 character sets. In some cases,
such as Japanese EUC (eucJP) and Traditional-Chinese EUC (eucTW), a
character may be encoded using more than two bytes. Use of such an
encoding scheme has implications when used as the code page of the
database server or the database client. The key considerations involve the
following:
v expansion or contraction of strings when converting between EUC code

pages and double-byte code pages
v use of Universal Character Set-2 (UCS-2) as the code page for graphic data

stored in a database server defined with the eucJP (Japanese) or eucTW
(Traditional-Chinese) code pages.

With the exception of these considerations, the use of EUC is consistent with
the double-byte character set (DBCS) support. Throughout this book (and
others), references to double-byte have been changed to multi-byte to reflect
support for encoding rules that allow for character representations that require
more than 2 bytes. Detailed considerations for support of Japanese and
Traditional-Chinese EUC are included here, organized in the same way as the
contents of the chapters of this book. This information should be considered
by anyone using SQL with an EUC database server or an EUC database client
and used in conjunction with application development information in the
Application Development Guide

Language Elements

Characters
Each multi-byte character is considered a letter with the exception of the
double-byte blank character which is considered a special character.

Tokens
Multi-byte lowercase alphabetic letters are not folded to uppercase. This
differs from the single byte lowercase alphabetic letters in tokens which are
generally folded to uppercase.

Identifiers

SQL Identifiers
Conversion between a double-byte code page and an EUC code page may
result in the conversion of double-byte characters to multi-byte characters

© Copyright IBM Corp. 1993, 2000 1341

encoded with more than 2 bytes. As a result, an identifier that fits the length
maximum in the double-byte code page may exceed the length in the EUC
code page. Selecting identifiers for this type of environment must be done
carefully to avoid expansion beyond the maximum identifier length.

Data Types

Character Strings
In an MBCS database, character strings may contain a mixture of characters
from a single-byte character set (SBCS) and from multi-byte character sets
(MBCS). When using such strings, operations may provide different results if
they are character based (treat the data as characters) or byte based (treat the
data as bytes). Check the function or operation description to determine how
mixed strings are processed.

Graphic Strings
A graphic string is defined as a sequence of double-byte character data. In
order to allow Japanese or Traditional-Chinese EUC data to be stored in
graphic columns, EUC characters are encoded in UCS-2. Characters that are
not double-byte characters under all supported encoding schemes (for
example, PC or EBCDIC DBCS) should not be used with graphic columns.
The results of using other than double-byte characters may result in
replacement by substitution characters during conversion. Retrieval of such
data will not return the same value as was entered. Refer to the Application
Development Guide programming language sections for details on handling
graphic data in host variables.

Assignments and Comparisons

String Assignments
Conversion of a string is performed prior to the assignment. In cases
involving an eucJP/eucTW code page and a DBCS code page, a character
string may become longer (DBCS to eucJP/eucTW) or shorter (eucJP/eucTW
to DBCS). This may result in errors on storage assignment and truncation on
retrieval assignment. When the error on storage assignment is due to
expansion during conversion, SQLSTATE 22524 is returned instead of
SQLSTATE 22001.

Similarly, assignments involving graphic strings may result in the conversion
of a UCS-2 encoded double-byte character to a substitution character in a PC
or EBCDIC DBCS code page for characters that do not have a corresponding
double-byte character. Assignments that replace characters with substitution
characters will indicate this by setting the SQLWARN10 field of the SQLCA to
’W’.

In cases of truncation during retrieval assignment involving multi-byte
character strings, the point of truncation may be part of a multi-byte character.

Japanese and Traditional-Chinese EUC Considerations

1342 SQL Reference

In this case, each byte of the character fragment is replaced with a single-byte
blank. This means that more than one single-byte blank may appear at the
end of a truncated character string.

String Comparisons
String comparisons are performed on a byte basis. Character strings also use
the collating sequence defined for the database. Graphic strings do not use the
collating sequence and, in an eucJP or eucTW database, are encoded using
UCS-2. Thus, the comparison of two mixed character strings may have a
different result from the comparison of two graphic strings even though they
contain the same characters. Similarly, the resulting sort order of a mixed
character column and a graphic column may be different.

Rules for Result Data Types
The resulting data type for character strings is not affected by the possible
expansion of the string. For example, a union of two CHAR operands will still
be a CHAR. However, if one of the character string operands will be
converted such that the maximum expansion makes the length attribute the
largest of the two operands, then the resulting character string length attribute
is affected. For example, consider the result expressions of a CASE expression
that have data types of VARCHAR(100) and VARCHAR(120). Assume the
VARCHAR(100) expression is a mixed string host variable (that may require
conversion) and the VARCHAR(120) expression is a column in the eucJP
database. The resulting data type is VARCHAR(200) since the VARCHAR(100)
is doubled to allow for possible conversion. The same scenario without the
involvement of an eucJP or eucTW database would have a result type of
VARCHAR(120).

Notice that the doubling of the host variable length is based on the fact that
the database server is Japanese EUC or Traditional-Chinese EUC. Even if the
client is also eucJP or eucTW, the doubling is still applied. This allows the
same application package to be used by double-byte or multi-byte clients.

Rules for String Conversions
The types of operations listed in the corresponding section of the SQL
Reference may convert operands to either the application or the database code
page.

If such operations are done in a mixed code page environment that includes
Japanese or Traditional-Chinese EUC, expansion or contraction of mixed
character string operands may occur. Therefore the resulting data type has a
length attribute that accomodates the maximum expansion, if possible. In the
cases where there are restrictions on the length attribute of the data type, the
maximum allowed length for the data type is used. For example in an
environment where maximum growth is double, a VARCHAR(200) host
variable is treated as if it is a VARCHAR(400), but CHAR(200) host variable is
treated as if it is a CHAR(254). A run-time error may occur when conversion

Japanese and Traditional-Chinese EUC Considerations

Appendix O. Japanese and Traditional-Chinese EUC Considerations 1343

is performed if the converted string would exceed the maximum length for
the data type. For example, the union of CHAR(200) and CHAR(10) would
have a result type of CHAR(254). When the value from the left side of the
UNION is converted, if more than 254 characters are required, an error occurs.

In some cases, allowing for the maximum growth for conversion will cause
the length attribute to exceed a limit. For example, UNION only allows
columns up to 254 bytes. Thus, a query with a union that included a host
variable in the column list (call it :hv1) that was a DBCS mixed character
string defined as a varying length character string 128 bytes long, would set
the data type to VARCHAR(256) resulting in an error preparing the query,
even though the query in the application does not appear to have any
columns greater than 254. In a situation where the actual string is not likely to
cause expansion beyond 254 bytes the following can be used to prepare the
statement.

SELECT CAST(:hv1 CONCAT ' AS VARCHAR(254)), C2 FROM T1
UNION
SELECT C1, C2 FROM T2

The concatenation of the null string with the host variable will force the
conversion to occur before the cast is done. This query can be prepared in the
DBCS to eucJP/eucTW environment although a truncation error may occur at
run-time.

This technique (null string concat with cast) can be used to handle the similar
254 byte limit for SELECT DISTINCT or use of the column in ORDER BY or
GROUP BY clauses.

Constants

Graphic String Constants
Japanese or Traditional-Chinese EUC client, may contain single or multi-byte
characters (like a mixed character string). The string should not contain more
than 2 000 characters. It is recommended that only characters that convert to
double-byte characters in all related PC and EBCDIC double-byte code pages
be used in graphic constants. A graphic string constant in an SQL statement is
converted from the client code page to the double-byte encoding at the
database server. For a Japanese or Traditional-Chinese EUC server, the
constant is converted to UCS-2, the double-byte encoding used for graphic
strings. For a double-byte server, the constant is converted from the client
code page to the DBCS code page of the server.

Functions
The design of user-defined functions should consider the impact of
supporting Japanese or Tradition-Chinese EUC on the parameter data types.
One part of function resolution considers the data types of the arguments to a

Japanese and Traditional-Chinese EUC Considerations

1344 SQL Reference

function call. Mixed character string arguments involving a Japanese or
Traditional-Chinese EUC client may require additional bytes to specify the
argument. This may require that the data type change to allow the increased
length. For example, it may take 4001 bytes to represent a character string in
the application (a LONG VARCHAR) that fits into a VARCHAR(4000) string
at the server. If a function signature is not included that allows the argument
to be a LONG VARCHAR, function resolution will fail to find a function.

Some functions exist that do not allow long strings for various reasons. Use of
LONG VARCHAR or CLOB arguments with such functions will not succeed.
For example, LONG VARCHAR as the second argument of the built-in
POSSTR function, will fail function resolution (SQLSTATE 42884).

Expressions

With the Concatenation Operator
The potential expansion of one of the operands of concatenation may cause
the data type and length of concatenated operands to change when in an
environment that includes a Japanese or Traditional-Chinese EUC database
server. For example, with an EUC server where the value from a host variable
may double in length, consider the following example.

CHAR200 CONCAT :char50

The column CHAR200 is of type CHAR(200). The host variable char50 is
defined as CHAR(50). The result type for this concatenation operation would
normally be CHAR(250). However, given an eucJP or eucTW database server,
the assumption is that the string may expand to double the length. Hence
char50 is treated as a CHAR(100) and the resulting data type is
VARCHAR(300). Note that even though the result is a VARCHAR, it will
always have 300 bytes of data including trailing blanks. If the extra trailing
blanks are not desired, define the host variable as VARCHAR(50) instead of
CHAR(50).

Predicates

LIKE Predicate
For a LIKE predicate involving mixed character strings in an EUC database:
v single-byte underscore represents any one single-byte character
v single-byte percent represents a string of zero or more characters

(single-byte or multi-byte characters).
v double-byte underscore represents any one multi-byte character
v double-byte percent represents a string of zero or more characters

(single-byte or multi-byte characters).

The escape character must be one single-byte character or one double-byte
character.

Japanese and Traditional-Chinese EUC Considerations

Appendix O. Japanese and Traditional-Chinese EUC Considerations 1345

Note that use of the underscore character may produce different results
depending on the code page of the LIKE operation. For example, Katakana
characters in Japanese EUC are multi-byte characters (CS2) but in the Japanese
DBCS code page they are single-byte characters. A query with the single-byte
underscore in the pattern-expression would return occurrences of Katakana
character in the position of the underscore from a Japanese DBCS server.
However, the same rows from the equivalent table in a Japanese EUC server
would not be returned, since the Katakana characters will only match with a
double-byte underscore.

For a LIKE predicate involving graphic strings in an EUC database:
v the character used for underscore and percent must map to the underscore

and percent character respectively
v underscore represents any one UCS-2 character
v percent represents a string of zero or more UCS-2 characters.

Functions

LENGTH
The processing of this function is no different for mixed character strings in
an EUC environment. The value returned is the length of the string in the
code page of the argument. When using this function to determine the length
of a value, careful consideration should be given to how the length is used.
This is especially true for mixed string constants since the length is given in
bytes, not characters. For example, the length of a mixed string column in a
DBCS database returned by the LENGTH function may be less than the length
of the retrieved value of that column on an eucJP or eucTW client due to the
conversion of some DBCS characters to multi-byte eucJP or eucTW characters.

SUBSTR
The SUBSTR function operates on mixed character strings on a byte basis. The
resulting string may therefore include fragments of multi-byte characters at
the beginning or end of the resulting string. No processing is provided to
detect or process fragments of characters.

TRANSLATE
The TRANSLATE function supports mixed character strings including
multi-byte characters. The corresponding characters of the to-string-exp and the
from-string-exp must have the same number of bytes and cannot end with part
of a multi-byte character.

The pad-char-exp must result in a single-byte character when the char-string-exp
is a character string. Since TRANSLATE is performed in the code page of the
char-string-exp, the pad-char-exp may be converted from a multi-byte character
to a single-byte character.

Japanese and Traditional-Chinese EUC Considerations

1346 SQL Reference

A char-string-exp that ends with part of a multi-byte character will not have
those bytes translated.

VARGRAPHIC
The VARGRAPHIC function on a character string operand in a Japanese or
Traditional-Chinese EUC code page returns a graphic string in the UCS-2 code
page.
v Single-byte characters are converted first to their corresponding double-byte

character in the code set to which they belong (eucJP or eucTW). Then, they
are converted to the corresponding UCS-2 representation. If there is no
double-byte representation, the character is converted to the double-byte
substitution character defined for that code set before being converted to
UCS-2 representation.

v Characters from eucJP that are Katakana (eucJP CS2) are actually single
byte characters in some encoding schemes. They are thus converted to
corresponding double-byte characters in eucJP or to the double-byte
substitution character before converting to UCS-2.

v Multi-byte characters are converted to their UCS-2 representations.

Statements

CONNECT
The processing of a successful CONNECT statement returns information in
the SQLCA that is important when the possibility exists for applications to
process data in an environment that includes a Japanese or
Traditional-Chinese EUC code page at the client or server. The SQLERRD(1)
field gives the maximum expansion of a mixed character string when
converted from the application code page to the database code page. The
SQLERRD(2) field gives the maximum expansion of a mixed character string
when converted from the database code page to the application code page.
The value is positive if expansion could occur and negative if contraction
could occur. If the value is negative, the value is always -1 since the worst
case is that no contraction occurs and the full length of the string is required
after conversion. Positive values may be as large as 2, meaning that in the
worst case, double the string length may be required for the character string
after conversion.

The code page of the application server and the application client are also
available in the SQLERRMC field of the SQLCA.

PREPARE
The data types determined for untyped parameter markers (as described in
Table 28 on page 957) are not changed in an environment that includes
Japanese or Traditional-Chinese EUC. As a result, it may be necessary in some
cases to use typed parameter markers to provide sufficient length for mixed

Japanese and Traditional-Chinese EUC Considerations

Appendix O. Japanese and Traditional-Chinese EUC Considerations 1347

character strings in eucJP or eucTW. For example, consider an insert to a
CHAR(10) column. Preparing the statement:

INSERT INTO T1 (CH10) VALUES (?)

would result in a data type of CHAR(10) for the parameter marker. If the
client was eucJP or eucTW, more than 10 bytes may be required to represent
the string to be inserted but the same string in the DBCS code page of the
database is not more than 10 bytes. In this case, the statement to prepare
should include a typed parameter marker with a length greater than 10. Thus,
preparing the statement:

INSERT INTO T1 (CH10) VALUES (CAST(? AS VARCHAR(20))

would result in a data type of VARCHAR(20) for the parameter marker.

Japanese and Traditional-Chinese EUC Considerations

1348 SQL Reference

Appendix P. BNF Specifications for DATALINKs

A DATALINK value is an encapsulated value that contains a logical reference
from the database to a file stored outside the database.

The data-location attribute of this encapsulated value is a logical reference to a
file in the form of a Uniform Resource Locator (URL). The value of this
attribute conforms to the syntax for URLs as specified by the following
BNF119, based on RFC 1738 : Uniform Resource Locators (URL), T.
Berners-Lee, L. Masinter, M. McCahill, December 1994

The following conventions are used in the BNF specification:
v "|" is used to designate alternatives
v brackets [] are used around optional or repeated elements
v literals are quoted with ""
v elements may be preceded with [n]* to designate n or more repetitions of

the following element; if n is not specified, the default is 0

The BNF specification for DATALINKs:
URL
url = httpurl | fileurl | uncurl | dfsurl | emptyurl

HTTP
httpurl = "http://" hostport ["/" hpath]
hpath = hsegment *["/" hsegment]
hsegment = *[uchar | ";" | ":" | "@" | "&" | "="]

Note that the search element from the original BNF in RFC1738 has been
removed, because it is not an essential part of the file reference and does
not make sense in DATALINKs context.
FILE
fileurl = "file://" host "/" fpath
fpath = fsegment *["/" fsegment]
fsegment = *[uchar | "?" | ":" | "@" | "&" | "="]

Note that host is not optional and the ″localhost″ string does not have
any special meaning, in contrast with RFC1738. This avoids confusing
interpretations of ″localhost″ in client/server and EEE configurations.
UNC

119. BNF is an acronym for ″Backus Naur Form″ - a formal notation to describe the syntax of a given language

© Copyright IBM Corp. 1993, 2000 1349

uncurl = "unc:\\" hostname "\" sharename "\" uncpath
sharename = *uchar
uncpath = fsegment *["\" fsegment]

Supports the commonly used UNC naming convention on NT. This is not
a standard scheme in RFC1738.
DFS
dfsurl = "dfs://.../" cellname "/" fpath
cellname = hostname

Supports the DFS naming scheme. This is not a standard scheme in
RFC1738.
EMPTYURL
emptyurl = ""
hostport = host [":" port]
host = hostname | hostnumber
hostname = *[domainlabel "."] toplabel
domainlabel = alphadigit | alphadigit *[alphadigit | "-"] alphadigit
toplabel = alpha | alpha *[alphadigit | "-"] alphadigit
alphadigit = alpha | digit
hostnumber = digits "." digits "." digits "." digits
port = digits

Empty (zero-length) URLs are also supported for DATALINK values.
These are useful to update DATALINK columns when reconcile exceptions
are reported and non-nullable DATALINK columns are involved. A
zero-length URL is used to update the column and cause unlink
Miscellaneous Definitions
lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |

"i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |
"q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |
"y" | "z"

hialpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |
"I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |
"Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" |
"Y" | "Z"

alpha = lowalpha | hialpha
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |

"8" | "9"
safe = "$" | "-" | "_" | "." | "+"
extra = "!" | "*" | "'" | "(" | ")" | ","
hex = digit | "A" | "B" | "C" | "D" | "E" | "F" |

"a" | "b" | "c" | "d" | "e" | "f"
escape = "%" hex hex
unreserved = alpha | digit | safe | extra
uchar = unreserved | escape
digits = 1*digit

1350 SQL Reference

Leading and trailing blank characters are trimmed by DB2 while parsing.
Also, the scheme names (’HTTP’, ’FILE’, ’UNC’, ’DFS’) and host are
case-insensitive, and are always stored in the database in uppercase.

Appendix P. BNF Specifications for DATALINKs 1351

1352 SQL Reference

Appendix Q. Glossary

A

abend. See abnormal end of task.

abend reason code. A 4-byte hexadecimal code that uniquely identifies a problem with DB2 UDB for
OS/390.

abnormal end of task (abend). In DB2 UDB for OS/390, the termination of a task, job, or subsystem
because of an error condition that recovery facilities cannot resolve during execution.

abnormal termination. (1) A system failure or operator action that causes a job to end unsuccessfully.
(2) In DB2, exits that are not under program control, such as a trap or segv.

absolute path. The full path name of an object. Absolute path names begin at the highest level, or
″root″ directory (which is identified by the forward slash (/) or back slash (\) character).

access function. A user-provided function that converts the data type of text stored in a column to a
type that can be processed by the Text Extender.

access method services. A facility that is used to define and reproduce VSAM key-sequenced data sets.

access path. (1) The method that is selected by the optimizer for retrieving data from a specific table.
For example, an access path can involve the use of an index, a sequential scan, or a combination of the
two. (2) The path that is used to locate data that is specified in SQL statements. An access path can be
indexed or sequential.

access plan. The set of access paths that are selected by the optimizer to evaluate a particular SQL
statement. The access plan specifies the order of operations to resolve the execution plan, the
implementation methods (such as JOIN), and the access path for each table referenced in the statement.

accounting string. User-defined accounting information that is sent to DRDA® servers by DB2 Connect.
This information can be specified at one of these locations:

v The client workstation using the SQLESACT API or the DB2ACCOUNT environment variable

v The DB2 Connect workstation using the DFT_ACCOUNT_STR database manager configuration
parameter.

active log. (1) In DB2 UDB, the primary and secondary log files that are currently needed for recovery
and rollback. Contrast with archive log. (2) The portion of the DB2 UDB for OS/390 log to which log
records are written as they are generated. The active log always contains the most recent log records,
whereas the archive log holds records that are older and no longer fit on the active log.

adjacent nodes. Two nodes connected by at least one path that connects no other nodes.

administrative authority. A level of authority that gives a user privileges over a set of objects. For
example, DBADM authority gives privileges over all objects in a database, and SYSADM authority gives
privileges over all objects in a system.

© Copyright IBM Corp. 1993, 2000 1353

administrative support table. A table that is used by a DB2 extender to process user requests on image,
audio, and video objects. Some administrative support tables identify user tables and columns that are
enabled for an extender. Other administrative support tables contain attribute information about objects
in enabled columns. Also called a metadata table.

ADSM. See Tivoli Storage Manager.

Advanced Peer-to-Peer Networking (APPN). An extension to SNA that features distributed network
control, dynamic definition of network resources, and automated resource registration and directory
lookup.

Advanced Peer-to-Peer Networking (APPN) network. A collection of interconnected network nodes
and their client end nodes.

Advanced program-to-program communication (APPC). The general facility that characterizes the LU
6.2 architecture and its various implementations in products.

after-image. In DB2 replication, the updated content of a source table element that is recorded in a
change data table or in a database log or journal. Contrast with before-image.

agent. (1) A separate process or thread that carries out all DB2 requests that are made by a particular
client application. (2) In DB2 UDB for OS/390, the structure that associates all processes that are
involved in a DB2 UDB for OS/390 unit of work. An allied agent is generally synonymous with an allied
thread. System agents are units of work that process independently of the allied agent, such as prefetch
processing, deferred writes, and service tasks.

agent site. In the Data Warehouse Center, the location, defined by a single network host name, where
an agent application is installed.

aggregate function. Synonym for column function.

alert. An action, such as a beep or warning, that is generated when a performance variable exceeds or
falls below its warning or alarm threshold.

alias. An alternative name used to identify a table, view, database, or nickname. An alias can be used
in SQL statements to refer to a table or view in the same DB2 subsystem or a remote DB2 subsystem.

alias chain. A series of table aliases that refer to each other in a sequential, nonrepeating fashion.

allied address space. In DB2 UDB for OS/390, an area of storage that is external to and connected to
DB2 UDB for OS/390. An allied address space is capable of requesting DB2 UDB for OS/390 services.

allied thread. A thread that originates at the local DB2 UDB for OS/390 subsystem and that can access
data at a remote DB2 UDB for OS/390 subsystem.

allocated cursor. In DB2 UDB for OS/390, a cursor that is defined for stored procedure result sets by
using the SQL statement ALLOCATE CURSOR.

already verified. An LU 6.2 security option that allows DB2 UDB for OS/390 to provide the user’s
verified authorization ID when allocating a conversation. The user is not validated by the partner
subsystem.

Glossary

1354 SQL Reference

ambiguous cursor. (1) A cursor that cannot be determined to be updatable or read-only from its
definition or context. (2) In DB2 UDB for OS/390, a database cursor that is not defined with the FOR
FETCH ONLY clause or the FOR UPDATE OF clause, is not defined on a read-only result table, is not
the target of a WHERE CURRENT clause on an SQL UPDATE or DELETE statement, and is in a plan or
package that contains either PREPARE or EXECUTE IMMEDIATE SQL statements.

APF. See authorized program facility.

API. See application programming interface.

APPC. See advanced program-to-program communication.

APPL. A VTAM® network definition statement that is used to define DB2 UDB for OS/390 to VTAM as
an application program that uses SNA LU 6.2 protocols.

application. A program or set of programs that performs a task; for example, a payroll application.

application ID. A string that uniquely identifies an application across networks. An ID is generated at
the time that the application connects to the database. This ID is known on both the client and the
server and can be used to correlate the two parts of the application.

application plan. The control structure that is produced during the bind process. DB2 UDB for OS/390
uses the application plan to process SQL statements that it encounters during statement execution.

application process. The unit to which resources and locks are allocated. An application process
involves the running of one or more programs.

application programming interface (API). (1) A functional interface supplied by the operating system
or by a separately orderable licensed program. An API allows an application program that is written in a
high-level language to use specific data or functions of the operating system or the licensed programs.
(2) In DB2, a function within the interface, for example, the get error message API.

application requester. A facility that accepts a database request from an application process and passes
it to an application server.

application server. The local or remote database manager to which the application process is
connected.

Apply program. In DB2 replication, a program that is used to refresh or update a target table,
depending on the applicable source-to-target rules. Contrast with Capture program and Capture trigger.

Apply qualifier. In DB2 replication, a character string that identifies subscription definitions that are
unique to each instance of the Apply program.

APPN. See Advanced Peer-to-Peer Networking

archive log. (1) The set of log files that are closed and are no longer needed for normal processing.
These files are retained for use in roll-forward recovery. Contrast with active log. (2) The portion of the
DB2 UDB for OS/390 log that contains log records that are copied from the active log.

argument. A value passed to or returned from a function or procedure at run time.

Glossary

Appendix Q. Glossary 1355

asynchronous. Without regular time relationship; unexpected and unpredictable with respect to the
processing of program instructions. Contrast with synchronous.

asynchronous batched update. A process in which all changes to the source are recorded and applied
to existing target data at specified intervals. Contrast with asynchronous continuous update.

asynchronous continuous update. A process in which all changes to the source are recorded and
applied to existing target data after being committed in the base table. Contrast with asynchronous batched
update.

attach. In DB2, to remotely access objects at the instance level.

attachment facility. An interface between DB2 UDB for OS/390 and TSO, IMS™, CICS, or batch
address spaces. An attachment facility allows application programs to access DB2 UDB for OS/390.

attribute. In SQL database design, a characteristic of an entity. For example, the phone number of an
employee is one of that employee’s attributes.

authority. See administrative authority.

authorization ID. (1) A character string in a statement that designates a set of privileges. It is used by
the database manager for authorization checking and as an implicit qualifier for the names of objects
such as tables, views, and indexes. (2) A string that can be verified for connection to DB2 UDB for
OS/390 and to which a set of privileges is allowed. An authorization ID can represent an individual, an
organizational group, or a function, but DB2 UDB for OS/390 does not determine this representation.

authorized program facility (APF). In DB2 UDB for OS/390, a facility that permits the identification of
programs that are authorized to use restricted functions.

autocommit. To automatically commit the current unit of work after each SQL statement.

automatic rebind. (1) A feature that automatically rebinds an invalidated package without requiring a
bind command to be entered manually or a bind file to be present. (2) In DB2 UDB for OS/390, a
process by which SQL statements are bound automatically (without a user issuing a BIND command)
when an application process begins execution and the bound application plan or package it requires is
not valid. See also bind.

auxiliary index. In DB2 UDB for OS/390, an index on an auxiliary table in which each index entry
refers to an LOB.

auxiliary table. In DB2 UDB for OS/390, a table that stores columns outside the table in which they are
defined. Contrast with base table.

B

backup pending. The state of a database or table space that prevents an operation from being
performed until the database or table space is backed up.

backward log recovery. The fourth and final phase of restart processing during which DB2 UDB for
OS/390 scans the log in a backward direction to apply UNDO log records for all aborted changes.

Glossary

1356 SQL Reference

base aggregate table. In DB2 replication, a type of target table that contains data aggregated from a
source table or a point-in-time table at intervals.

base table. (1) A table created with the CREATE TABLE statement. Such a table has both its description
and data physically stored in the database. Contrast with view. (2) In DB2 UDB for OS/390: (a) A table
that is created by the SQL CREATE TABLE statement and that holds persistent data. Contrast with result
table and temporary table. (b) A table that contains an LOB column definition. The actual LOB column
data is not stored with the base table. The base table contains a row ID for each row and an indicator
column for each of its LOB columns. Contrast with auxiliary table.

base table space. In DB2 UDB for OS/390, a table space that contains base tables.

basic conversation. An LU 6.2 conversation between two transaction programs using the APPC basic
conversation API. Contrast with mapped conversation.

basic predicate. A predicate that compares two values.

basic sequential access method (BSAM). An access method that DB2 UDB for OS/390 uses for storing
or retrieving data blocks in a continuous sequence, using either a sequential access or a direct access
device.

before-image. In DB2 replication, the content of a source table column prior to a refresh, as recorded in
a change data table or in a database log or journal. Contrast with after-image.

before trigger. In DB2 UDB for OS/390, a trigger that is defined with the trigger activation time
BEFORE.

binary integer. A basic data type that can be further classified as small integer or large integer.

binary large object (BLOB). A sequence of bytes with a size ranging from 0 bytes to 2 gigabytes. This
string does not have an associated code page and character set. Image, audio, and video objects are
stored in BLOBs. Compare to character large object (CLOB).

binary string. In DB2 UDB for OS/390, a sequence of bytes that is not associated with a CCSID. For
example, the BLOB data type is a binary string.

bind. (1) In SQL, the process by which the output from the SQL precompiler is converted to a usable
structure called an access plan. During this process, access paths to the data are selected and some
authorization checking is performed. (2) In DB2 UDB for OS/390, the process by which the output from
the DBMS precompiler is converted to a usable control structure (which is called a package or an
application plan). During the process, access paths to the data are selected and some authorization
checking is performed. See also automatic rebind, dynamic bind, incremental bind, static bind.

bindery object name. A 48-byte character string that contains the name of a bindery object on the
NetWare file server. The database manager configuration field, objectname, uniquely represents a DB2
server instance, and is stored as an object in the bindery on a NetWare file server.

bind file. A file produced by the precompiler when the bind command or API is used with the
BINDFILE option. This file includes information about all SQL statements in the application program.

bit data. Data with character type CHAR or VARCHAR that is not associated with a coded character
set and therefore is never converted.

Glossary

Appendix Q. Glossary 1357

BLOB. See binary large object.

block. A string of data elements recorded or transmitted as a unit.

blocking. An option that is specified when binding an application. It allows caching of multiple rows
of information by the communications subsystem so that each FETCH statement does not require the
transmission of one row for each request across the network. Contrast with data blocking.

bootstrap data set (BSDS). A VSAM data set that contains name and status information for DB2 UDB
for OS/390, as well as RBA range specifications, for all active and archive log data sets. It also contains
passwords for the DB2 UDB for OS/390 directory and catalog, and lists of conditional restart and
checkpoint records.

broadcast join. A join in which all partitions of a table are sent to all nodes.

browser. A Text Extender function that enables you to display text on a computer monitor.

BSAM. See basic sequential access method.

BSDS. See bootstrap data set.

buffer pool. In DB2 UDB for OS/390, main storage that is reserved to satisfy the buffering
requirements for one or more table spaces or indexes.

built-in function. An SQL function that is provided by DB2 and appears in the SYSIBM schema.
Contrast with user-defined function.

business metadata. Data that describes information assets in business terms. Business metadata is
stored in the information catalog and accessed by users to find and understand the information they
need. For example, business metadata for a program would contain a description of what the program
does and what tables it uses. Contrast with technical metadata.

business name. In the Data Warehouse Center, a name that refers to a step. Each step has a business
name and a DB2 table name that is associated with the step. Business names are generally used by
warehouse users; DB2 table names are used in SQL statements.

byte reversal. A technique in which numeric data is stored with the least significant byte first.

C

cache. A buffer that contains frequently accessed instructions and data; it is used to reduce access time.

Cache Manager. In Net.Data®, the program that manages a cache for one workstation. The Cache
Manager can manage multiple caches.

cache structure. A coupling facility structure that stores data that can be available to all members of a
Parallel Sysplex®. A DB2 UDB for OS/390 data sharing group uses cache structures as group buffer
pools.

caching. The process of storing frequently used results from a request to the Web server locally for
quick retrieval, until it is time to refresh the information.

CAF. See call attachment facility.

Glossary

1358 SQL Reference

call attachment facility (CAF). A DB2 UDB for OS/390 attachment facility for application programs
that run in TSO or MVS™ batch. The CAF is an alternative to the DSN command processor and provides
greater control over the execution environment.

call level interface (CLI). A callable API for database access, which is an alternative to an embedded
SQL API. In contrast to embedded SQL, the CLI does not require precompiling or binding by the user,
but instead provides a standard set of functions to process SQL statements and related services at run
time.

Capture program. In DB2 replication, a program that reads database log or journal records to capture
data about changes made to DB2 source tables. Contrast with Apply program and Capture trigger.

Capture trigger. In DB2 replication, a mechanism that captures delete, update, and insert operations
performed on non-IBM source tables. Contrast with Capture program and Apply program.

cardinality. The number of rows in a database table.

cascade. In the Data Warehouse Center, to run a sequence of events. When a step cascades to another
step, the steps run sequentially or concurrently. A step can also cascade to a program, which runs after
the step finishes running.

cascade delete. The way in which DB2 UDB for OS/390 enforces referential constraints when it deletes
all descendent rows of a deleted parent row.

cascade rejection. In DB2 replication, the process of rejecting a replication transaction because it is
associated with a transaction that had a conflict detected and was itself rejected.

CASE expression. In DB2 UDB for OS/390, an expression that allows another expression to be selected
based on the evaluation of one or more conditions.

cast function. A function used to convert instances of a data type (origin) into instances of a different
data type (target). In general, cast functions have the name of the target data type. They have a single
argument whose type is the origin data type; their return type is the target data type.

catalog. A set of tables and views maintained by the database manager. These tables and views contain
information about the database, such as descriptions of tables, views, and indexes.

catalog node. The node at which the catalog tables reside. The catalog node can be a different node for
each database.

catalog table. Any table in the DB2 UDB for OS/390 catalog.

catalog view. A view of a system table created by the Text Extender for administration purposes. A
catalog view contains information about the tables and columns that are enabled for use by the Text
Extender.

CCD table. See consistent-change-data table.

CCSID. See coded character set identifier.

CDB. See communications database.

CDRA. See Character Data Representation Architecture.

Glossary

Appendix Q. Glossary 1359

CD table. See change data table.

CEC. Central electronic complex. See central processor complex.

central processor complex (CPC). A physical collection of hardware (such as an ES/3090) that consists
of main storage, one or more central processors, timers, and channels.

CFRM policy. In DB2 UDB for OS/390, a declaration by an MVS administrator regarding the allocation
rules for a coupling facility structure.

change aggregate table. In DB2 replication, a type of target table that contains data aggregations based
on changes recorded for a source table.

change data (CD) table. A replication control table at the source server that contains changed data for a
replication source table.

Character Data Representation Architecture (CDRA). An architecture used to achieve consistent
representation, processing, and interchange of string data.

character large object (CLOB). A sequence of characters (single-byte, multibyte, or both) up to 2
gigabytes. A CLOB can be used to store large text objects. Also called character large object string.
Compare to binary large object (BLOB).

character string. A sequence of bytes or characters.

character string delimiter. The characters used to enclose character strings in delimited ASCII files that
are imported or exported. See delimiter.

CHECK clause. In SQL, an extension to the SQL CREATE TABLE and SQL ALTER TABLE statements
that specifies a table check constraint.

check condition. A restricted form of search condition used in check constraints.

check constraint. A constraint that specifies a check condition that is not false for each row of the table
on which the constraint is defined.

check integrity. In DB2 UDB for OS/390, the condition that exists when each row in a table conforms
to the table check constraints that are defined on that table. Maintaining check integrity requires DB2
UDB for OS/390 to enforce table check constraints on operations that add or change data.

check pending. A state into which a table can be put where only limited activity is allowed on the
table and constraints are not checked when the table is updated.

checkpoint. A point at which DB2 UDB for OS/390 records internal status information on the log; the
recovery process uses this information if the subsystem abnormally terminates.

CI. See control interval.

CICS. An IBM® licensed program that provides online transaction-processing services and management
for critical business appliations. In DB2 UDB for OS/390 information, this term represents the following
products:

CICS Transaction Server for OS/390®: Customer Information Control Center Transaction Server for
OS/390

Glossary

1360 SQL Reference

CICS/ESA: Customer Information Control System/Enterprise Systems Architecture
CICS/MVS: Customer Information Control System/Multiple Virtual Storage

CICS attachment facility. A DB2 UDB for OS/390 subcomponent that uses the MVS subsystem
interface (SSI) and cross storage linkage to process requests from CICS to DB2 UDB for OS/390 and to
coordinate resource commitment.

CIDF. See control interval definition field.

circular log. A database log in which records are overwritten if they are no longer needed by an active
database. Consequently, if a failure occurs, lost data cannot be restored during forward recovery.
Contrast with recoverable log.

claim. In DB2 UDB for OS/390, a notification to the DBMS that an object is being accessed. Claims
prevent drains from occurring until the claim is released, which usually occurs at a commit point. See
also drain.

claim class. In DB2 UDB for OS/390, a specific type of object access that can be one of the following
types: cursor stability (CS), repeatable read (RR), write.

claim count. In DB2 UDB for OS/390, a count of the number of agents that are accessing an object.

class of service. In DB2 UDB for OS/390, a VTAM term for a list of routes through a network,
arranged in an order of preference for their use.

clause. In DB2 UDB for OS/390 SQL, a distinct part of a statement, such as a SELECT clause or a
WHERE clause.

cleanse. The process of manipulating the data extracted from operational systems so as to make it
usable by the data warehouse.

CLI. See call level interface.

client. (1) Any program (or workstation that it is running on) that communicates with and accesses a
database server. (2) See requester.

cliette. A long-running process in Net.Data Live Connection that serves requests from the Web server.
The Connection Manager schedules cliette processes to serve these requests.

CLIST. Command list. A language that DB2 UDB for OS/390 uses to perform TSO tasks.

CLOB. See character large object.

CLP. See Command Line Processor.

CLPA. See create link pack area.

clustered index. An index whose sequence of key values closely corresponds to the sequence of rows
stored in a table. The degree to which this correspondence exists is measured by statistics that are used
by the optimizer.

coded character set. A set of unambiguous rules that establishes a character set and the one-to-one
relationships between the characters of the set and their coded representations.

Glossary

Appendix Q. Glossary 1361

coded character set identifier (CCSID). A number that includes an encoding scheme identifier,
character set identifiers, code page identifiers, and other information that uniquely identifies the coded
graphic character representation.

code page. A set of assignments of characters to code points.

code point. In CDRA, a unique bit pattern that represents a character in a code page.

code set. Encoding values for a character set that provides the interface between the system and its
input and output devices. ISO uses code set as the term equivalent to the IBM-defined term code page.

cold start. (1) The process of starting a system or program using an initial program load procedure.
Contrast with warm start. (2) A process by which DB2 UDB for OS/390 restarts without processing any
log records.

collating sequence. The sequence in which the characters are ordered for the purpose of sorting,
merging, comparing, and processing indexed data sequentially.

collection. In DB2 UDB for OS/390, a group of packages that have the same qualifier.

collocated join. The result of two tables being joined in which the following conditions are met:

v The tables reside in a single-partition nodegroup in the same database partition; or they are in the
same partitioned nodegroup and have the same number of partitioning columns, the columns are
partition-compatible, and both tables use the same partitioning function.

v All pairs of the corresponding partitioning key columns participate in the equijoin predicates.

column distribution value. Statistics describing the most frequent values of some column or the
quantile values. These values are used in the optimizer to help determine the best access plan.

column function. (1) An operation used in queries that applies to the values from several rows.
Column functions include SUM, AVG, MIN, MAX, COUNT, STDDEV, and VARIANCE. Synonym for
aggregate function. (2) In DB2 UDB for OS/390, an SQL operation that derives its result from a collection
of values across one or more rows. Contrast with scalar function.

"come from" checking. An LU 6.2 security option that defines a list of authorization IDs that are
allowed to connect to DB2 UDB for OS/390 from a partner LU.

command. A DB2 UDB for OS/390 operator command or a DSN subcommand. A command is distinct
from an SQL statement.

Command Line Processor (CLP). A character-based interface for entering SQL statements and database
manager commands.

command prefix. In DB2 UDB for OS/390, a one- to eight-character command identifier. The command
prefix distinguishes the command as belonging to an application or subsystem rather than to OS/390.

command recognition character (CRC). A character that permits an MVS console operator or an IMS
subsystem user to route DB2 commands to specific DB2 UDB for OS/390 subsystems.

command scope. In DB2 UDB for OS/390, the scope of command operation in a data sharing group. If
a command has member scope, the command displays information only from the one member or affects
only non-shared resources that are owned locally by that member. If a command has group scope, the

Glossary

1362 SQL Reference

command displays information from all members, affects non-shared resources that are owned locally by
all members, displays information on sharable resources, or affects sharable resources.

commit. The operation that ends a unit of work by releasing locks so that the database changes made
by that unit of work can be perceived by other processes. This operation makes the data changes
permanent.

commitment control. The establishment of a boundary within the process under which Net.Data is
running, where operations on resources are part of a unit of work.

commit point. A point in time when data is considered to be consistent. Synonym for point of
consistency.

committed phase. In DB2 UDB for OS/390, the second phase of the multi-site update process that
requests all participants to commit the effects of the logical unit of work.

common-index table. A DB2 table whose text columns share a common text index. See also multi-index
table.

Common Programming Interface Communications (CPI-C). An API for applications that require
program-to-program communication, using SNA LU 6.2 to create a set of interprogram services.

common service area (CSA). In OS/390, a part of the common area that contains data areas that can be
addressed by all address spaces.

common table expression. An expression that defines a result table with a name (qualified SQL
identifier) that can be specified as a table name in any FROM clause in the fullselect that follows the
WITH clause.

communications database (CDB). A set of tables in the DB2 UDB for OS/390 catalog that are used to
establish conversations with remote database management systems.

comparison operator. An infix operator used in comparison expressions. Comparison operators are ¬<
(not less than), <= (less than or equal to), ¬= (not equal to), = (equal to), >= (greater than or equal to), >
(greater than), and ¬> (not greater than).

complete. A table attribute that indicates that the table contains a row for every primary key value of
interest. As a result, a complete source table can be used to perform a refresh of a target table.

complete CCD table. A CCD table that contains all the rows that satisfy the source view and predicates
from the source table or view. Contrast with noncomplete CCD table.

composite key. An ordered set of key columns of the same table.

compound SQL statement. A block of SQL statements that are executed in a single call to the
application server.

compression dictionary. In DB2 UDB for OS/390, the dictionary that controls the process of
compression and decompression. This dictionary is created from the data in the table space or table
space partition.

concurrency. The shared use of resources by multiple interactive users or application processes at the
same time.

Glossary

Appendix Q. Glossary 1363

condensed. A table attribute indicating that the table contains current data rather than a history of
changes to the data. A condensed table includes no more than one row for each primary key value in
the table. As a result, a condensed table can be used to supply current information for a refresh.

condensed CCD table. In DB2 replication, a CCD table that contains only the most current value for a
row. This type of table is useful for staging changes to remote locations and for summarizing hot-spot
updates. Contrast with noncondensed CCD table.

conditional restart. A DB2 UDB for OS/390 restart that is directed by a user-defined conditional restart
control record (CRCR).

conflict detection. In update-anywhere replication configurations:

v The process of detecting constraint errors.

v The process of detecting if the same row was updated in the source and target tables during the same
replication cycle. When a conflict is detected, the transaction that caused the conflict is rejected. See
also enhanced conflict detection, standard conflict detection, and row-replica conflict detection.

connect. In DB2, to access objects at the database level.

connection. (1) An association between an application process and an application server. (2) In data
communications, an association established between functional units for conveying information. (3) In
SNA, the existence of a communication path between two partner LUs that allows information to be
exchanged (for example, two DB2 UDB for OS/390 subsystems that are connected and communicating
by way of a conversation).

connection handle. Within the CLI, the data object that contains information associated with a
connection. This information includes general status information, transaction status, and diagnostic
information.

connection ID. In DB2 UDB for OS/390, an identifier that is supplied by the attachment facility and
that is associated with a specific address space connection.

Connection Manager. An executable file, dtwcm, in Net.Data that is needed to support Live
Connection.

consistency token. In DB2 UDB for OS/390, a timestamp that is used to generate the version identifier
for an application.

consistent-change-data (CCD) table. In DB2 replication, a type of target table that is used for auditing
or staging data or both. See also complete CCD table, condensed CCD table, external CCD table, internal CCD
table, noncomplete CCD table, and noncondensed CCD table.

constant. A language element that specifies an unchanging value. Constants are classified as string
constants or numeric constants. Contrast with variable.

constraint. A rule that limits the values that can be inserted, deleted, or updated in a table. See check
constraint, referential constraint, and unique constraint.

container. See table space container.

contention. In the database manager, a situation in which a transaction attempts to lock a row or table
that is already locked.

Glossary

1364 SQL Reference

Control Center. A graphical interface that shows database objects (such as databases and tables) and
their relationship to each other. From the Control Center, you can perform the tasks provided by the
DBA Utility, Visual Explain, and Performance Monitor tools. Contrast with DataJoiner Replication
Administration (DJRA) tool.

control interval (CI). In VSAM, a fixed-length area of direct access storage in which VSAM stores
records and creates distributed free space. Also, in a key-sequenced data set or file, the set of records
pointed to by an entry in the sequence-set index record. The control interval is the unit of information
that VSAM transmits to or from direct access storage. A control interval always includes an integral
number of physical records.

control interval definition field (CIDF). In VSAM, a field located in the 4 bytes at the end of each
control interval; it describes the free space, if any, in the control interval.

control metadata. In the Data Warehouse Center, information about changes to the warehouse, such as
the date and time that a table is updated by the processing of a step.

control point. (1) In APPN, a component of a node that manages resources of that node and optionally
provides services to other nodes in the network. Examples are a system services control point (SSCP) in
a type 5 node, a physical unit control point (PUCP) in a type 4 node, a network node control point
(NNCP) in a type 2.1 (T2.1) network node, and an end node control point (ENCP) in a T2.1 end node.
An SSCP and an NNCP can provide services to other nodes. (2) A component of a T2.1 node that
manages the resources of that node. If the T2.1 node is an APPN node, the control point is capable of
engaging in control point-to-control point sessions with other APPN nodes. If the T2.1 node is a network
node, the control point also provides services to adjacent end nodes in the T2.1 network. See also
physical unit.

control privilege. The authority to completely control an object. This includes the authority to access,
drop, or alter an object, and the authority to extend or revoke privileges on the object to other users.

control server. In DB2 replication, the database location of the applicable subscription definitions and
Apply program control tables.

control table. In DB2 replication, a table in which replication source and subscription definitions or
other replication control information is stored.

conversation. In APPC, a connection between two transaction programs over a logical unit-logical unit
(LU-to-LU) session that allows them to communicate with each other while processing a transaction.

conversational transaction. In APPC, two or more programs communicating using the services of
logical units (LUs).

conversation security. In APPC, a process that allows validation of a user ID or group ID and
password before establishing a connection.

conversation security profile. The set of user IDs or group IDs and passwords that are used by APPC
for conversation security.

Coordinated Universal Time (UTC). Synonym for Greenwich Mean Time.

coordinating agent. The agent that is started when a request is received by the database manager from
an application. It remains associated with the application during the life of the application. This agent
coordinates subagents that work for the application. See also subagent.

Glossary

Appendix Q. Glossary 1365

coordinator. In DB2 UDB for OS/390, the system component that coordinates the commit or rollback of
a unit of work that includes work that is done on one or more other systems.

coordinator node. The node to which the application originally connected and on which the
coordinating agent resides.

coordinator subsection. The subsection of an application that starts other subsections (if any) and
returns results to the application.

correlated columns. In SQL, a relationship between the value of one column and the value of another
column.

correlated reference. A reference to a column of a table that is outside a subquery.

correlated subquery. A subquery that contains a correlated reference to a column of a table that is
outside the subquery.

correlation ID. In DB2 UDB for OS/390, an identifier that is associated with a specific thread. In TSO,
it is either an authorization ID or the job name.

correlation name. An identifier designating a table or view within a single SQL statement. It can be
defined in any FROM clause or in the first clause of an UPDATE or DELETE statement.

cost category. A category into which DB2 UDB for OS/390 places cost estimates for SQL statements at
the time the statement is bound. A cost estimate can be placed in either of the following cost categories:
v A: Indicates that DB2 UDB for OS/390 had enough information to make a cost estimate without using

default values.
v B: Indicates that some condition exists for which DB2 UDB for OS/390 was forced to use default

values for its estimate.

The cost category is externalized in the COST_CATEGORY column of DSN_STATEMNT_TABLE when a
statement is explained.

country code. When accessing the database, the country code of the application is used to determine
the date and time presentation (display and print) formats. It is also used with the code page to
determine the default collating sequence for the database.

coupling facility. In an OS/390 environment, a special PR/SM™ LPAR logical partition that runs the
coupling facility control program and provides high-speed caching, list processing, and locking functions
in a Parallel Sysplex.

CP. See control point.

CPC. See central processor complex.

CPI-C. See Common Programming Interface Communications.

CPI-C side information profile. In SNA, the profile that specifies the conversation characteristics to use
when allocating a conversation with a remote transaction program. The profile is used by local
transaction programs that communicate through CPI Communications. It specifies the partner LU name
(the name of the connection profile that contains the remote LU name), the mode name, and the remote
transaction program name.

Glossary

1366 SQL Reference

CP name. Control point name. A network-qualified name of a control point that consists of a network
ID qualifier that identifies the network to which the control point node belongs.

crash recovery. The process of recovering from an immediate failure.

CRC. See command recognition character.

CRCR. In DB2 UDB for OS/390, conditional restart control record. See conditional restart.

create link pack area (CLPA). An option used during IPL to initialize the link pack pageable area.

cross-memory linkage. In an OS/390 environment, a method for invoking a program in a different
address space. The invocation is synchronous with respect to the caller.

cross-system coupling facility (XCF). A component of OS/390 that provides functions to support
cooperation between authorized programs running within a Parallel Sysplex.

cross-system extended services (XES). A set of OS/390 services that enable multiple instances of an
application or subsystem, running on different systems in a Parallel Sysplex environment, to implement
high-performance, high-availability data sharing by using a coupling facility.

CS. See cursor stability.

CSA. See common service area.

CT. See cursor table.

current data. In DB2 UDB for OS/390, data within a host structure that is current with (identical to) the
data within the base table.

current function path. An ordered list of schema names used in the resolution of unqualified references
to functions and data types. In dynamic SQL, the current function path is found in the CURRENT
FUNCTION PATH special register. In static SQL, it is defined in the FUNCPATH option for PREP and
BIND commands.

current status rebuild. In DB2 UDB for OS/390, the second phase of restart processing during which
the status of the subsystem is reconstructed from information on the log.

current working directory. The default directory of a process from which all relative path names are
resolved.

cursor. A named control structure used by an application program to point to a specific row within
some ordered set of rows. The cursor is used to retrieve rows from a set.

cursor stability (CS). An isolation level that locks any row accessed by a transaction of an application
while the cursor is positioned on the row. The lock remains in effect until the next row is fetched or the
transaction is terminated. If any data is changed in a row, the lock is held until the change is committed
to the database.

cursor table (CT). In DB2 UDB for OS/390, the copy of the skeleton cursor table that is used by an
executing application process.

Glossary

Appendix Q. Glossary 1367

cycle. In DB2 UDB for OS/390, a set of tables that can be ordered so that each table is a descendent of
the one before it, and the first table is a descendent of the last table. A self-referencing table is a cycle
with a single member.

D

DARI. Database Application Remote Interface. Obsolete term for stored procedure.

data area. A memory area used by a program to hold information.

database access thread. In DB2 UDB for OS/390, a thread that accesses data at the local subsystem on
behalf of a remote subsystem.

database administrator (DBA). A person who is responsible for the design, development, operation,
safeguarding, maintenance, and use of a database.

Database Application Remote Interface (DARI). Obsolete term for stored procedure.

database catalog. In the Data Warehouse Center, a collection of tables that contains descriptions of
database objects such as tables, views, and indexes.

database client. A workstation used to access a database that is on a database server.

database connection services (DCS) directory. A directory that contains entries for remote databases
and the corresponding application requester used to access them.

database descriptor (DBD). An internal representation of a DB2 UDB for OS/390 database definition,
which reflects the data definition that is in the DB2 UDB for OS/390 catalog. The objects that are defined
in a database descriptor are table spaces, tables, indexes, index spaces, and relationships.

database directory. A directory that contains database access information for all databases to which a
client can connect.

database engine. The part of the database manager providing the base functions and configuration files
needed to use the database.

database log. A set of primary and secondary log files consisting of log records that record all changes
to a database. The database log is used to roll back changes for units of work that are not committed
and to recover a database to a consistent state.

database-managed space (DMS) table space. A table space whose space is managed by the database.
Contrast with system-managed space (SMS) table space.

database management system (DBMS). Synonym for database manager.

database manager. A computer program that manages data by providing the services of centralized
control, data independence, and complex physical structures for efficient access, integrity, recovery,
concurrency control, privacy, and security.

database manager instance. A logical database manager environment similar to an image of the actual
database manager environment. You can have several instances of the database manager product on the

Glossary

1368 SQL Reference

same workstation. You can use these instances to separate the development environment from the
production environment, tune the database manager to a particular environment, and protect sensitive
information from a particular group of people.

database node. See database partition.

database object. Anything that can be created or manipulated with SQL—for example, tables, views,
indexes, packages, triggers, or table spaces.

database partition. A part of the database that consists of its own user data, indexes, configuration
files, and transaction logs. Sometimes called a node or database node.

database request module (DBRM). A data set member that is created by the DB2 UDB for OS/390
precompiler and that contains information about SQL statements. DBRMs are used in the bind process.

database server. A functional unit that provides database services for databases.

database system monitor. A collection of programming APIs that monitor performance and status
information about the database manager, databases, and applications using the database manager and
DB2 Connect.

data blocking. The process of specifying how many minutes worth of change data will be replicated
during a subscription cycle. Contrast with blocking.

data currency. In DB2 UDB for OS/390, the state in which data that is retrieved into a host variable in
your program is a copy of data in the base table.

data definition language (DDL). A language for describing data and its relationships in a database.
Synonym for data description language.

data definition name (ddname). In DB2 UDB for OS/390, the name of a data definition (DD) statement
that corresponds to a data control block that contains the same name.

data description language. Synonym for data definition language.

DataJoiner. A separately available product that provides client applications integrated access to
distributed data and provides a single database image of a heterogeneous environment. With DataJoiner,
a client application can join data (using a single SQL statement) that is distributed across multiple
database management systems or update a single remote data source as if the data were local.

DataJoiner Replication Administration (DJRA) tool. A database administration tool that you can use
to perform various replication administration tasks. Unlike the Control Center, the DJRA tool can be
used to administer replication for non-IBM databases. Contrast with Control Center.

DATALINK. A DB2 data type that enables logical references from the database to a file stored outside
the database.

data link control (DLC). In SNA, the protocol layer that consists of the link stations that schedule data
transfer over a link between two nodes and perform error control for the link.

data manipulation language (DML). A subset of SQL statements used to manipulate data.

Glossary

Appendix Q. Glossary 1369

datamart. A subset of a data warehouse that contains data tailored for the specific needs of a
department or team. A datamart can be a subset of a warehouse for your entire organization, such as
data contained in OLAP tools.

data partition. In an OS/390 environment, a VSAM data set that is contained within a partitioned table
space.

data sharing. The ability of two or more DB2 UDB for OS/390 subsystems to directly access and
change a single set of data.

data sharing group. A collection of one or more DB2 UDB for OS/390 subsystems that directly access
and change the same data while maintaining data integrity.

data sharing member. A DB2 UDB for OS/390 subsystem that is assigned by XCF services to a data
sharing group.

data space. In DB2 UDB for OS/390, a range of up to 2 gigabytes of contiguous virtual storage
addresses that a program can directly manipulate. Unlike an address space, a data space can hold only
data; it does not contain common areas, system data, or programs.

data type. In SQL, an attribute of columns, literals, host variables, special registers, and the results of
functions and expressions.

Data Warehouse Center. A graphical interface, and the software behind it, that enables you to work
with the components of the warehouse. You can use the Data Warehouse Center to define and manage
the warehouse data and the processes that create the data in the warehouse.

Data Warehouse Center administrative interface. The user interface to the administration functions of
the Data Warehouse Center. The interface can be on the Data Warehouse Center server or on different
machines for multiple administrators.

Data Warehouse Center program. A program, supplied with the Data Warehouse Center, that can be
started from the Data Warehouse Center and that is automatically defined, for example, DB2 Load
programs and transformers.

Data Warehouse Center property. An attibute that applies across sessions of the Data Warehouse
Center, such as the warehouse control database that contains the technical metadata. See also property.

date. A three-part value that designates a day, month, and year.

date duration. A DECIMAL(8,0) value that represents a number of years, months, and days.

datetime value. A value of the data type DATE, TIME, or TIMESTAMP.

DBA. See database administrator.

DBA Utility. A tool that lets DB2 users configure databases and database manager instances, manage
the directories necessary for accessing local and remote databases, back up and recover databases or
table spaces, and manage media on a system using a graphical interface. The tasks provided by this tool
can be accessed from the Control Center.

DBCLOB. See double-byte character large object.

Glossary

1370 SQL Reference

DBCS. See double-byte character set.

DBD. See database descriptor.

DBID. Database identifier.

DBMS. Database management system. See database manager.

DBMS instance connection. A logical connection between an application and an agent process or
thread owned by a DB2 instance.

DBRM. See database request module.

DB2 CLI. DB2 Call Level Interface. An alternative SQL interface for the DB2 family of products that
takes full advantage of DB2 capability.

DB2 command. An instruction to the DB2 UDB for OS/390 subsystem allowing a user to start or stop
DB2 UDB for OS/390, to display information on current users, to start or stop databases, to display
information on the status of databases, and so on.

DB2 Connect. A product that provides the function necessary (DRDA application requester support) for
client applications to read and update data stored in DRDA application servers.

DB2 extender. A program that you can use to store and retrieve data types beyond the traditional
numeric and character data, such as image, audio, and video data, and complex documents.

DB2I. In DB2 UDB for OS/390, DATABASE 2 Interactive.

DB2I Kanji Feature. In DB2 UDB for OS/390, the tape that contains the panels and jobs that allow a
site to display DB2I panels in Kanji.

DB2 PM. In DB2 UDB for OS/390, DATABASE 2 Performance Monitor.

DB2 SDK. See DB2 Application Development Client.

DB2 Application Development Client (DB2 SDK). A collection of tools that help developers create
database applications.

DB2 thread. The DB2 UDB for OS/390 structure that describes an application’s connection, traces its
progress, processes resource functions, and delimits its accessibility to DB2 UDB for OS/390 resources
and services.

DB2UEXIT. An optional, user-written executable program that the database manager invokes to move
or retrieve archive log files.

DCE. See Distributed Computing Environment.

DCE ticket. In an OS/390 environment, a transparent application mechanism that transmits the identity
of an initiating principal to its target. A simple ticket contains the principal’s identity, a session key, a
timestamp, and other information, which is sealed using the target’s secret key.

DCLGEN. See declarations generator.

DDF. See distributed data facility.

Glossary

Appendix Q. Glossary 1371

DDL. See data definition language.

ddname. See data definition name.

deadlock. A condition under which a transaction cannot proceed because it is dependent on exclusive
resources that are locked by some other transaction, which in turn is dependent on exclusive resources
in use by the original transaction.

deadlock detector. A process within the database manager that monitors the states of the locks to
determine if a deadlock condition exists. When a deadlock condition is detected, the detector stops one
of the transactions involved in the deadlock. This transaction is rolled back and the other transactions
proceed.

declarations generator (DCLGEN). A subcomponent of DB2 UDB for OS/390 that generates SQL table
declarations and COBOL, C, or PL/I data structure declarations that conform to the table. The
declarations are generated from DB2 UDB for OS/390 system catalog information. DCLGEN is also a
DSN subcommand.

deferred embedded SQL. In DB2 UDB for OS/390, SQL statements that are neither fully static nor
fully dynamic. Like static statements, they are embedded within an application, but like dynamic
statements, they are prepared during the execution of the application.

definition metadata. In the Data Warehouse Center, information about the format of the data
warehouse (the schema), the sources of the data, and the transformations applied in loading the data.

degree of parallelism. In DB2 UDB for OS/390, the number of concurrently executed operations that
are initiated to process a query.

delete-connected. In SQL, a table that is a dependent of table P or a dependent of a table to which
delete operations from table P cascade.

delete rule. A rule associated with a referential constraint that either restricts the deletion of a parent
row or specifies the effect of such a deletion on the dependent rows.

delete trigger. In DB2 UDB for OS/390, a trigger that is defined with the triggering SQL operation
DELETE.

delimited identifier. A sequence of characters enclosed within double quotation marks. The sequence
must consist of a letter followed by zero or more characters, each of which is a letter, digit, or the
underscore character.

delimiter. A character or flag that groups or separates items of data.

delimiter token. A string constant, a delimited identifier, an operator symbol, or any of the special
characters shown in syntax diagrams.

dependent. In SQL, an object (row, table, or table space) that has at least one parent. See parent row,
parent table, parent table space.

dependent logical unit (DLU). A logical unit that requires assistance from a system services control
point (SSCP) to instantiate an LU-to-LU session.

Glossary

1372 SQL Reference

dependent row. A row that contains a foreign key that matches the value of a parent key in the parent
row. The foreign key value represents a reference from the dependent row to the parent row.

dependent table. A table that is a dependent in at least one referential constraint.

descendent. An object that is a dependent of an object or is the dependent of a descendent of an object.

descendent row. A row that is dependent on another row or a row that is a descendent of a dependent
row.

descendent table. A table that is a dependent of another table or a descendent of a dependent table.

deterministic function. See not-variant function.

device name. A name reserved by the system, or a device driver that refers to a specific device.

DFHSM. In an OS/390 environment, Data Facility Hierarchical Storage Manager.

DFP. In an OS/390 environment, Data Facility Product.

dictionary. A collection of language-related linguistic information that the Text Extender uses during
text analysis, indexing, retrieval, and highlighting of documents in a particular language.

differential refresh. In DB2 replication, a process in which only changed data is copied to the target
table, replacing existing data. Contrast with full refresh.

dimension. In the OLAP Starter Kit, a data category, such as time, accounts, products, or markets.
Dimensions represent the highest consolidation level in a multidimensional database outline.

directed join. A relational operation in which all of the rows in one or both of the joined tables are
rehashed and directed to new database partitions based on the join predicate. If all of the partitioning
key columns in a table participate in the equijoin predicates, the other table is rehashed; otherwise (if
there is at least one equijoin predicate), both tables are rehashed.

directory. The DB2 UDB for OS/390 system database that contains internal objects such as database
descriptors and skeleton cursor tables.

directory services. A portion of the APPN protocols that maintains information about the location of
resources in an APPN network.

disable. To restore a database, a text table, or a text column to its condition before it was enabled for
the Text Extender by removing the items created during the enabling process.

distinct type. A user-defined data type that is internally represented as an existing type (its source
type), but is considered to be a separate and incompatible type for semantic purposes.

Distributed Computing Environment (DCE). A set of services and tools that support the creation, use,
and maintenance of distributed applications in a heterogeneous computing environment. DCE is
independent of the operating system and network; it provides interoperability and portability across
heterogeneous platforms.

distributed data facility (DDF). A set of DB2 UDB for OS/390 components through which DB2 UDB
for OS/390 communicates with another RDBMS.

Glossary

Appendix Q. Glossary 1373

distributed directory database. The complete listing of all the resources in the network as maintained
in the individual directories scattered throughout an APPN network. Each node has a piece of the
complete directory, but it is not necessary for any one node to have the entire list. Entries are created,
modified, and deleted through system definition, operator action, automatic registration, and ongoing
network search procedures. Synonym for distributed network directory.

distributed network directory. See distributed directory database.

distributed relational database. A database whose tables are stored on different but interconnected
computing systems.

Distributed Relational Database Architecture (DRDA). The architecture that defines formats and
protocols for providing transparent access to remote data. DRDA defines two types of functions, the
application requester function and the application server function.

distributed request. In a federated database system, an SQL query directed to two or more data
sources.

distributed unit of work (DUOW). A unit of work that allows SQL statements to be submitted to
multiple relational database management systems, but no more than one system per SQL statement.

DJRA tool. A database administration tool that you can use to perform various replication
administration tasks. Unlike the Control Center, the DJRA tool can also be used to administer replication
for non-IBM databases. Contrast with Control Center.

DLC. See data link control.

DLU. See dependent logical unit.

DML. See data manipulation language.

DMS table space. See database-managed space table space.

DNS. See domain name system.

Document Access Definition (DAD). A definition that is used to enable an XML Extender column of
an XML collection, which is XML formatted.

document model. The definition of the structure of a document in terms of the sections that it contains.
The Text Extender uses a document model when indexing.

domain name. The name by which TCP/IP applications refer to a TCP/IP host within a TCP/IP
network. A domain name consists of a sequence of names separated by dots.

domain name server (DNS). A TCP/IP network server that manages a distributed directory that is
used to map TCP/IP host names to IP addresses.

domain name system. The distributed database system used by TCP/IP to map human-readable
machine names into IP addresses.

Domino™ Go Web server. The Web server offered by Lotus® Corp. and IBM, that offers both regular
and secure connections. ICAPI and GWAPI are the interfaces provided with this server.

Glossary

1374 SQL Reference

double-byte character large object (DBCLOB). A sequence of double-byte characters, where the size
can be up to 2 gigabytes. A data type that can be used to store large double-byte text objects. Also called
double-byte character large object string. Such a string always has an associated code page.

double-byte character set (DBCS). A set of characters in which each character is represented by two
bytes.

double-precision floating point number. In SQL, a 64-bit approximate representation of a real number.

drain. In DB2 UDB for OS/390, the act of acquiring a locked resource by quiescing access to that object.

drain lock. In DB2 UDB for OS/390, a lock on a claim class that prevents a claim from occurring.

DRDA. See Distributed Relational Database Architecture.

DRDA access. In DB2 UDB for OS/390, a method of accessing distributed data by which you can
connect to another location, using an SQL statement, to execute packages that were previously bound at
that location. The SQL CONNECT or three-part name statement is used to identify application servers,
and SQL statements are executed using packages that were previously bound at those servers. Contrast
with private protocol access.

DSN. (1) The default subsystem name for DB2 UDB for OS/390. (2) The name of the TSO command
processor of DB2 UDB for OS/390. (3) The first three characters of the names of DB2 UDB for OS/390
modules and macros.

DUOW. See distributed unit of work.

duration. In SQL, a number that represents an interval of time. See date duration, labeled duration, and
time duration.

dynamic bind. A process by which SQL statements are bound as they are entered. See also bind.

dynamic SQL. SQL statements that are prepared and run within a running program. In dynamic SQL,
the SQL source is contained in host language variables rather than being coded into the program. The
SQL statement might change several times while the program is running.

E

EA-enabled table space. In DB2 UDB for OS/390, a table space or index space that is enabled for
extended addressability and that contains individual partitions (or pieces, for LOB table spaces) that are
greater than 4 GB.

EBCDIC. Extended binary-coded decimal interchange code. A coded character set of 256 8-bit
characters.

EDM pool. In DB2 UDB for OS/390, a pool of main storage that is used for database descriptors,
application plans, authorization cache, application packages, and dynamic statement caching.

EID. Event identifier.

embedded SQL. SQL statements coded within an application program. See static SQL.

EN. See end node.

Glossary

Appendix Q. Glossary 1375

enable. To prepare a database, a text table, or a text column for use by the Text Extender.

enclave. In Language Environment (which is used by DB2 UDB for OS/390), an independent collection
of routines, one of which is designated as the main routine. An enclave is similar to a program or run
unit.

encoding scheme. A set of rules to represent character data.

end node (EN). In APPN, a node that supports sessions between its local control point and the control
point in an adjacent network node.

enhanced conflict detection. Conflict detection that guarantees data integrity among all replicas and
the source table. The Apply program locks all replicas or user tables in the subscription set against
further transactions. It begins detection after all changes made prior to locking have been captured. See
also conflict detection, standard conflict detection, and row-replica conflict detection.

environment handle. A handle that identifies the global context for database access. All data that is
pertinent to all objects in the environment is associated with this handle.

environment profile. A script that is provided with the Text Extender that contains settings for
environment variables.

EOM. End of memory.

EOT. End of task.

equijoin. A join in which the predicate contains an equals operator, for example, T1.C1 = T2.C2.

error page range. A range of pages that are considered to be physically damaged. DB2 UDB for OS/390
does not allow users to access any pages that fall within this range.

escape character. The symbol that is used to enclose an SQL delimited identifier. The escape character
is the double quotation mark, except in COBOL applications, where the user assigns the symbol, which
is either a double quotation mark or an apostrophe.

ESDS. In an OS/390 environment, entry sequenced data set.

ESMT. In the OS/390 environment, the external subsystem module table of IMS.

EUC. See Extended UNIX® Code.

event monitor. A database object for monitoring and collecting data on database activities over a period
of time.

event timing. In DB2 replication, the most precise method of controlling when to start a subscription
cycle. It requires that you specify an event and the time when you want the event processed. Contrast
with interval timing and on-demand timing.

exception table. In DB2 UDB for OS/390, a table that holds rows that violate referential constraints or
table check constraints that the CHECK DATA utility finds.

exclusive lock. A lock that prevents concurrently executing application processes from accessing
database data.

Glossary

1376 SQL Reference

executable statement. An SQL statement that can be embedded in an application program, dynamically
prepared and executed, or issued interactively.

exit routine. A program that receives control from another program (such as DB2 UDB for OS/390) to
perform specific functions.

explain. To capture detailed information about the access plan that was chosen by the SQL compiler to
resolve an SQL statement. The information describes the decision criteria used to choose the access plan.

explainable statement. An SQL statement for which the explain operation can be performed.
Explainable statements are SELECT, UPDATE, INSERT, DELETE, and VALUES.

explained statement. An SQL statement for which an explain operation was performed.

explained statistics. Statistics for a database object that was referenced in an SQL statement at the time
that the statement was explained.

explain snapshot. A capture of the current internal representation of an SQL query and related
information. This information is required by the Visual Explain tool.

explicit hierarchical locking. In DB2 UDB for OS/390, locking that is used to make the parent-child
relationship between resources known to IRLM. This kind of locking avoids global locking overhead
when no inter-DB2 interest exists on a resource.

explicit privilege. A privilege that has a name and is held as the result of SQL GRANT and REVOKE
statements, for example, the SELECT privilege. Contrast with implicit privilege.

export. To copy data from database manager tables to a file using formats such as PC/IXF, DEL, WSF,
or ASC. Contrast with import.

exposed name. A correlation name, a table, or a view name specified in a FROM clause for which a
correlation name is not specified.

expression. An SQL operand or a collection of operators and operands that yields a single value.

extended recovery facility (XRF). In an OS/390 environment, a facility that minimizes the effect of
failures in MVS, VTAM, the host processor, or high-availability applications during sessions between
high-availability applications and designated terminals. This facility provides an alternative subsystem to
take over sessions from the failing subsystem.

Extended UNIX Code (EUC). A protocol that can support sets of characters from 1 to 4 bytes in length.
EUC is a means of specifying a collection of code pages rather than actually being a code page encoding
scheme itself. This is the UNIX alternative to the PC double-byte (DBCS) code page encoding schemes.

extent. An allocation of space, within a container of a table space, to a single database object. This
allocation consists of multiple pages.

extent map. A metadata structure stored within a table space that records the allocation of extents to
each object in the table space.

external CCD table. In DB2 replication, a CCD table that can be subscribed to directly because it is a
registered replication source. It has its own row in the register table, where it is referenced as
SOURCE_OWNER and SOURCE_TABLE. Contrast with internal CCD table.

Glossary

Appendix Q. Glossary 1377

external function. In DB2 UDB for OS/390, a function for which the body is written in a programming
language that takes scalar argument values and produces a scalar result for each invocation. Contrast
with sourced function and built-in function.

external routine. In DB2 UDB for OS/390, a user-defined function or stored procedure that is based on
code that is written in an external programming language.

F

fact table. In the OLAP Starter Kit, a table, or in many cases a set of four tables, in DB2 that contains
all data values for a relational cube.

failed member state. In DB2 UDB for OS/390, a state of a member of a data sharing group. When a
member fails, the XCF permanently records the failed member state. This state usually means that the
member’s task, address space, or MVS system terminated before the state changed from active to
quiesced.

fallback. The process of returning to a previous release of DB2 UDB for OS/390 after attempting or
completing migration to a current release.

false global lock contention. In DB2 UDB for OS/390, an indication of contention from the coupling
facility when multiple lock names are hashed to the same indicator and when no real contention exists.

fast communication manager (FCM). A group of functions that provide internodal communication
support.

federated database system. (1) A DB2 server and multiple data sources that the server sends queries to.
In a federated database system, a client application can join data that is distributed across multiple
database management systems using a single SQL statement and view the data as if it were local. (2) A
distributed computing system that consists of:

v A DB2 server, called a federated server.

v Multiple data sources to which the federated server sends queries.

Each data source consists of an instance of a relational database management system plus the
database or databases that the instance supports.

The data sources are semi-autonomous. For example, the federated server can send queries to Oracle
data sources at the same time that Oracle applications are accessing these data sources.

fenced. Pertaining to a type of user-defined function or stored procedure that is defined to protect the
DBMS from modifications by the function. The DBMS is isolated from the function or stored procedure
by a barrier. Contrast with not-fenced.

field procedure. In DB2 UDB for OS/390, a user-written exit routine that is designed to receive a single
value and transform (encode or decode) it in any way that the user can specify.

file reference variable. A host variable that is used to indicate that data resides in a file on the client
rather than in a client memory buffer.

file server. A workstation that runs the NetWare operating system software and acts as a network
server. DB2 uses the file server to store DB2 server address information, which a DB2 client retrieves to
establish an IPX/SPX client-server connection.

Glossary

1378 SQL Reference

filter factor. In DB2 UDB for OS/390, a number between zero and one that estimates the proportion of
rows in a table for which a predicate is true.

first failure service log. A file (db2diag.log) that contains diagnostic messages, diagnostic data, alert
information, and related dump information. This file is used by database administrators.

fixed-length string. A character or graphic string whose length is specified and cannot be changed.
Contrast with varying-length string.

flagger. A precompiler option that identifies SQL statements in applications that do not conform to
selected validation criteria (for example, the ISO/ANSI SQL92 entry-level standard).

flat file interface. A set of Net.Data built-in functions that let you read and write data from plain-text
files.

foreign update. An update that was applied to a target table and replicated to the local table.

forward log recovery. The third phase of restart processing during which DB2 UDB for OS/390
processes the log in a forward direction to apply all REDO log records.

forward recovery. A process used to roll forward a database or table space. It allows a restored
database or table space to be rebuilt to a specified point in time by applying the changes recorded in the
database log.

free space. In DB2 UDB for OS/390, the total amount of unused space in a page. The space that is not
used to store records or control information is free space.

full outer join. The result of an SQL join operation that includes the matched rows of both tables that
are being joined and preserves the unmatched rows of both tables. See join.

full refresh. In DB2 replication, a process in which all of the data of interest in a user table is copied to
the target table, replacing existing data. Contrast with differential refresh.

fullselect. A subselect, a values-clause, or a number of both that are combined by set operators.

fully qualified LU name. See network-qualified name.

function. (1) A mapping, embodied as a program (the function body), that can be invoked by using
zero or more input values (arguments) to a single value (the result). (2) In DB2 UDB for OS/390, a
specific purpose of an entity or its characteristic action such as a column function or scalar function.
Functions can be user-defined, built-in, or generated by DB2 UDB for OS/390.

function body. The piece of code that implements a function.

function definer. In DB2 UDB for OS/390, the authorization ID of the owner of the schema of the
function that is specified in the CREATE FUNCTION statement.

function family. A set of functions with the same function name. The context determines whether the
usage refers to a set of functions within a particular schema, or all the relevant functions with the same
name within the current function path.

function implementer. In DB2 UDB for OS/390, the authorization ID of the owner of the function
program and function package.

Glossary

Appendix Q. Glossary 1379

function invocation. The use of a function together with any argument values being passed to the
function body. The function is invoked by its name.

function package. In DB2 UDB for OS/390, a package that results from binding the DBRM for a
function program.

function package owner. In DB2 UDB for OS/390, the authorization ID of the user who binds the
function program’s DBRM into a function package.

function path. An ordered list of schema names that restricts the search scope for unqualified function
invocations and provides a final arbiter for the function selection process.

function path family. All the functions of the given name in all the schemas identified (or used by
default) in the user’s function path.

function resolution. The process, internal to the DBMS, for which a particular function instance is
selected for invocation. The function name, the data types of the arguments, and the function path are
used to make the selection. Synonym for function selection.

function selection. See function resolution.

function shipping. The shipping of the subsections of a request to the specific node that contains the
applicable data.

function signature. The logical concatenation of a fully qualified function name with the data types of
all of its parameters. Each function in a schema must have a unique signature.

function template. In a federated database, a partial function that has no executable code. The user
maps it to a data source function, so that the data source function can be invoked from the federated
server.

G

gap. In DB2 replication, a situation in which the Capture program is not able to read a range of log or
journal records, so there is potential loss of change data.

GBP. Group buffer pool.

GBP-dependent. In DB2 UDB for OS/390, the status of a page set or page set partition that is
dependent on the group buffer pool. Either read/write interest is active among DB2 subsystems for this
page set, or the page set has changed pages in the group buffer pool that are not yet cast out to DASD.

generalized trace facility (GTF). In an OS/390 environment, a service program that records significant
system events such as I/O interrupts, SVC interrupts, program interrupts, or external interrupts.

generic resource name. In an OS/390 environment, a name that VTAM uses to represent several
application programs that provide the same function in order to handle session distribution and
balancing in a Parallel Sysplex environment.

getpage. An operation in which DB2 UDB for OS/390 accesses a data page.

Glossary

1380 SQL Reference

GIMSMP. In an OS/390 environment, the load module name for the System Modification
Program/Extended, a basic tool for installing, changing, and controlling changes to programming
systems.

global lock. In DB2 UDB for OS/390, a lock that provides concurrency control within and among DB2
subsystems. The scope of the lock is across all DB2 subsystems of a data sharing group.

global lock contention. Conflicts on locking requests between different DB2 UDB for OS/390 members
of a data sharing group when those members are trying to serialize shared resources.

global table lock. A table lock that is acquired on all nodes in a table’s nodegroup.

global transaction. A unit of work in a distributed transaction processing environment in which
multiple resource managers are required.

governor. See resource limit facility.

grant. To give a privilege or authority to an authorization ID.

graphic character. A DBCS character.

graphic string. A sequence of DBCS characters.

gross lock. In DB2 UDB for OS/390, the shared, update, or exclusive mode locks on a table, partition, or
table space.

group. (1) A logical organization of users that have IDs according to activity or resource access
authority. (2) In Satellite Edition, a collection of satellites that share characteristics such as database
configuration and the application that runs on the satellite.

group buffer pool duplexing. In an OS/390 environment, the ability to write data to two instances of a
group buffer pool structure: a primary group buffer pool and a secondary group buffer pool. OS/390
publications refer to these instances as the ″old″ (for primary) and ″new″ (for secondary) structures.

group name. In an OS/390 environment, the XCF identifier for a data sharing group.

group restart. In an OS/390 environment, a restart of at least one member of a data sharing group after
the loss of either locks or the shared communications area.

group scope. See command scope.

GTF. See generalized trace facility.

GWAPI. Domino Go Web server API.

H

handle. (1) A variable that represents an internal structure within a software system. (2) A character
string that is created by an extender that is used to represent an image, audio, or video object in a table.
A handle is stored for an object in a user table and in administrative support tables. In this way, an
extender can link the handle that is stored in a user table with information about the object that is stored

Glossary

Appendix Q. Glossary 1381

in the administrative support tables. (3) A binary value that identifies a text document. A handle is
created for each text document in a text column when that column is enabled for use by the Text
Extender.

hash partitioning. A partitioning strategy in which a hash function is applied to the partitioning key
value to determine the database partition to which the row is assigned.

hiperspace. In an OS/390 environment, a range of up to 2 GB of contiguous virtual storage addresses
that a program can use as a buffer. Like a data space, a hiperspace can hold user data; it does not
contain common areas or system data. Unlike an address space or a data space, data in a hiperspace is
not directly addressable. To manipulate data in a hiperspace, you bring the data into the address space
in 4-KB blocks.

home address space. In an OS/390 environment, the area of storage that OS/390 currently recognizes
as dispatched.

hop. In APPN, a portion of a route that has no intermediate nodes. A hop consists of a single
transmission group connecting adjacent nodes.

host. In TCP/IP, any system that has at least one Internet address associated with it.

host computer. (1) In a computer network, a computer that provides services such as computation,
database access, and network control functions. (2) The primary or controlling computer in a multiple
computer installation.

host identifier. A name declared in the host program.

host language. Any programming language in which you can embed SQL statements.

host node. In SNA, a subarea node that contains a system services control point (SSCP), for example,
an IBM System/390® computer with MVS and VTAM.

host program. A program written in a host language that contains embedded SQL statements.

host structure. In an application program, a structure that is referred to by embedded SQL statements.

host variable. In an application host program, a variable that is referred to by embedded SQL
statements. Host variables are programming variables in the application program and are the primary
mechanism for transmitting data between tables in the database and application program work areas.

HSM. In an OS/390 environment, hierarchical storage manager.

I

ICAPI. Internet Connection API.

ICF. In an OS/390 environment, integrated catalog facility.

IDCAMS. In an OS/390 environment, an IBM program that is used to process access method services
commands. It can be invoked as a job or jobstep, from a TSO terminal or from within a user’s
application program.

Glossary

1382 SQL Reference

IDCAMS LISTCAT. In an OS/390 environment, a facility for obtaining information that is contained in
the access method services catalog.

identify. A request that an attachment service program (in an address space that is separate from DB2
UDB for OS/390) issues through the MVS subsystem interface to inform DB2 UDB for OS/390 of its
existence and to initiate the process of becoming connected to DB2.

IFCID. In DB2 UDB for OS/390, instrumentation facility component identifier.

IFI. In DB2 UDB for OS/390, instrumentation facility interface.

IFI call. In DB2 UDB for OS/390, an invocation of the instrumentation facility interface (IFI) by means
of one of its defined functions.

IFP. In an OS/390 environment, IMS Fast Path.

ILU. See independent logical unit.

image copy. An exact reproduction of all or part of a table space. DB2 UDB for OS/390 provides utility
programs to make full image copies (to copy the entire table space) or incremental image copies (to copy
only those pages that were modified since the last image copy).

implicit privilege. A privilege that accompanies the ownership of an object, such as the privilege to
drop a synonym one owns or the holding of an authority, such as the privilege of SYSADM authority to
terminate any utility job.

import. To copy data from an external file, using formats such as PC/IXF, DEL, WSF or ASC, into
database manager tables. Contrast with export.

import metadata. The process of bringing metadata into the Data Warehouse Center, either dynamically
(from the user interface) or in batch.

import utility. Transactional utility that inserts user-supplied record data into a table. Contrast with load
utility.

IMS. Information Management System.

IMS attachment facility. A DB2 UDB for OS/390 subcomponent that uses OS/390 subsystem interface
(SSI) protocols and cross-memory linkage to process requests from IMS to DB2 UDB for OS/390 and to
coordinate resource commitment.

IMS DB. Information Management System Database.

IMS TM. Information Management System Transaction Manager.

in-abort. A status of a unit of recovery. If DB2 UDB for OS/390 fails after a unit of recovery begins to
be rolled back, but before the process is completed, DB2 UDB for OS/390 continues to back out the
changes during restart.

in-commit. A status of a unit of recovery. If DB2 UDB for OS/390 fails after beginning its two-phase
commit processing, it “knows,” when restarted, that changes made to data are consistent.

Glossary

Appendix Q. Glossary 1383

incremental bind. A process by which SQL statements are bound during the execution of an
application process, because they could not be bound during the bind process, and VALIDATE(RUN)
was specified. See also bind.

independent. In DB2 UDB for OS/390, an object (row, table, or table space) that is neither a parent nor
a dependent of another object.

independent logical unit (ILU). A logical unit that is able to activate an LU-to-LU session without
assistance from a system services control point (SSCP). An ILU does not have an SSCP-to-LU session.
Contrast with dependent logical unit.

index. A set of pointers that are logically ordered by the values of a key. Indexes provide quick access
to data and can enforce uniqueness on the rows in the table.

index file. A file that contains indexing information used by the Video Extender to find a shot or an
individual frame in a video clip.

index key. The set of columns in a table used to determine the order of index entries.

index partition. The part of an index that is associated with a table partition at a given node. An index
defined on a table is implemented by multiple index partitions, one per table partition.

index sargable predicates. SQL predicates that are applied to index entries in index leaf pages to
reduce the number of index entries that qualify the SQL request. They help reduce the number of data
rows accessed.

index space. In DB2 UDB for OS/390, a page set that is used to store the entries of one index.

index specification. In a federated database system, a set of metadata that pertains to a data source
table. This metadata is made up of information that an index definition typically contains, for example,
which column or columns to search in order to retrieve information quickly. The user might supply the
federated server with this metadata if the table has no index or if it has an index that is unknown to the
federated server. The purpose of the metadata is to facilitate retrieval of the table’s data.

indicator column. In DB2 UDB for OS/390, a 4-byte value that is stored in a base table in place of an
LOB column.

indicator variable. A variable used to represent the null value in an application program. If the value
for the selected column is null, a negative value is placed in the indicator variable.

indoubt. A status of a unit of recovery. If DB2 UDB for OS/390 fails after it finishes its phase 1 commit
processing and before it starts phase 2, only the commit coordinator knows if an individual unit of
recovery is to be committed or rolled back. At emergency restart, if DB2 UDB for OS/390 lacks the
information that it needs to make this decision, the status of the unit of recovery is indoubt until DB2
UDB for OS/390 obtains this information from the coordinator. More than one unit of recovery can be
indoubt at restart.

indoubt resolution. In DB2 UDB for OS/390, the process of resolving the status of an indoubt logical
unit of work to either the committed or the rollback state.

indoubt transaction. A transaction in which one phase of a two-phase commit completes successfully
but the system fails before a subsequent phase can complete.

Glossary

1384 SQL Reference

inflight. A status of a unit of recovery. If DB2 UDB for OS/390 fails before its unit of recovery
completes phase 1 of the commit process, it merely backs out the updates of its unit of recovery at
restart. These units of recovery are termed inflight.

information catalog. The database, managed by the Information Catalog Manager, that contains
descriptive data (business metadata) that helps users identify and locate data and information that is
available to them in the organization. The information catalog also contains some technical metadata.

Information Catalog Manager. An application for organizing, maintaining, finding, and using business
information.

inheritance. The passing of class resources or attributes from a parent class downstream in the class
hierarchy to a child class.

initialization fullselect. The first fullselect in a recursive common table expression that gets the direct
children of the initial value from the source table.

inner join. A join method in which a column that is not common to all of the tables being joined is
dropped from the resultant table. Contrast with outer join.

inoperative package. A package that cannot be used because a function that it depends on has been
dropped. Such a package must be explicitly rebound. Contrast with invalid package.

inoperative trigger. A trigger that depends on an object that has been dropped or made inoperative or
on a privilege that has been revoked.

inoperative view. A view that is no longer usable because one of the following situations occurs:

v SELECT privilege on a table or view that the view is dependent on is revoked from the definer of the
view.

v An object on which the view definition is dependent was dropped (or possibly made inoperative in
the case of another view).

insert rule. A condition enforced by the database manager that must be met before a row can be
inserted into a table.

insert trigger. In DB2 UDB for OS/390, a trigger that is defined with the triggering SQL operation
INSERT.

install. The process of preparing a DB2 UDB for OS/390 subsystem to operate as an OS/390
subsystem.

installation verification scenario. A sequence of operations that exercises the main DB2 UDB for
OS/390 functions and tests whether DB2 UDB for OS/390 was correctly installed.

instance. (1) See database manager instance. (2) A logical DB2 extender server environment. You can have
several instances of DB2 extenders server on the same workstation, but only one instance for each DB2
instance.

instrumentation facility component identifier (IFCID). In DB2 UDB for OS/390, a value that names
and identifies a trace record of an event that can be traced. As a parameter on the START TRACE and
MODIFY TRACE commands, it specifies that the corresponding event is to be traced.

Glossary

Appendix Q. Glossary 1385

instrumentation facility interface (IFI). A programming interface that enables programs to obtain
online trace data about DB2 UDB for OS/390, to submit DB2 UDB for OS/390 commands, and to pass
data to DB2 UDB for OS/390.

Interactive System Productivity Facility (ISPF). In an OS/390 environment, an IBM licensed program
that provides interactive dialog services.

inter-DB2 R/W interest. In DB2 UDB for OS/390, a property of data in a table space, index, or partition
that has been opened by more than one member of a data sharing group and that has been opened for
writing by at least one of those members.

intermediate network node. In APPN, a node that is part of a route between an origin logical unit
(OLU) and a destination logical unit (DLU) but that neither contains the OLU or the DLU nor serves as
the network server for either the OLU or DLU.

internal CCD table. A CCD table that cannot be subscribed to directly. It does not have its own row in
the register table; it is referenced as CCD_OWNER and CCD_TABLE in the row for the associated
replication source. Contrast with external CCD table.

internal resource lock manager (IRLM). In an OS/390 environment, a subsystem that DB2 UDB for
OS/390 uses to control communication and database locking.

Internet Protocol (IP). A protocol used to route data from its source to its destination in an Internet
environment.

Internetwork Packet Exchange (IPX). A connectionless datagram protocol, used in a NetWare LAN
environment, to transfer data to a remote node. IPX makes a best-effort attempt to send data packets,
but does not guarantee reliable delivery of the data.

inter-partition parallelism. The ability to perform multiple database operations (such as index creation,
database load, and SQL queries) at the same time across multiple partitions of a partitioned database.
Contrast with intra-partition parallelism.

Inter-Process Communication (IPC). A mechanism of an operating system that allows processes to
communicate with each other.

interval timing. In DB2 replication, the simplest method of controlling when to start a subscription
cycle. You must specify a date and a time for a subscription cycle to start, and set a time interval that
describes how frequently you want the subscription cycle to run. Contrast with event timing and
on-demand timing.

intra-partition parallelism. The ability to perform multiple database operations (such as index creation,
database load, SQL queries) at the same time within a single database partition. Contrast with
inter-partition parallelism.

intra-query parallelism;. The ability to process parts of a single query at the same time using either
intra-partition parallelism, inter-partition parallelism, or both.

invalid package. A package that becomes invalid when an object that the package depends on is
dropped. (The object is of a type other than function, for example, index.) Such a package is implicitly
rebound upon invocation. Contrast with inoperative package.

Glossary

1386 SQL Reference

invariant character set. In DB2 UDB for OS/390, (1) a character set, such as the syntactic character set,
whose code point assignments do not change from code page to code page; (2) a minimum set of
characters that is available as part of all character sets.

I/O parallelism. See parallel I/O.

IP. See Internet Protocol.

IP address. A 4-byte value that uniquely identifies a TCP/IP host.

IPX. Internetwork Packet Exchange.

IRLM. In DB2 UDB for OS/390, internal resource lock manager.

ISAPI. Microsoft® Internet Server API.

isolation level. An attribute that defines the degree to which an application process is isolated from
other concurrently executing application processes.

ISPF. In an OS/390 environment, Interactive System Productivity Facility.

ISPF/PDF. In an OS/390 environment, Interactive System Productivity Facility/Program Development
Facility.

J

JCL. See job control language.

JES. See Job Entry Subsystem.

job control language (JCL). A control language that is used to identify a job to an operating system
and to describe the job’s requirements.

Job Entry Subsystem (JES). An IBM licensed program that receives jobs into the system and processes
all output data that is produced by jobs.

job scheduler. A program used to automate certain tasks for running and managing database jobs.

join. An SQL relational operation that allows retrieval of data from two or more tables based on
matching column values.

K

key. A column or an ordered collection of columns that are identified in the description of a table,
index, or referential constraint.

key-sequenced data set (KSDS). In an OS/390 environment, a VSAM file or data set whose records are
loaded in key sequence and controlled by an index.

key-value based partitioning strategy. A strategy for assigning rows in a table to database partitions.
Rows are assigned based on the values of the partitioning key columns.

Glossary

Appendix Q. Glossary 1387

keyword. (1) One of the predefined words of a computer, command language, or an application. (2) A
name that identifies an option used in an SQL statement.

KSDS. See key-sequenced data set.

L

labeled duration. A number that represents a duration of years, months, days, hours, minutes, seconds,
or microseconds.

Language Environment®. A module that provides access from a Net.Data macro to an external data
source, such as DB2, or to a programming language, such as Perl.

large object (LOB). A sequence of bytes with a length of up to 2 gigabytes. It can be any of three types:
BLOB (binary), CLOB (single-byte character or mixed) or DBCLOB (double-byte character).

latch. A DB2 UDB for OS/390 internal mechanism for controlling concurrent events or the use of
system resources.

LCID. In an OS/390 environment, log control interval definition.

LDS. See linear data set.

leaf page. In DB2 UDB for OS/390, a page that contains pairs of keys and RIDs and that points to
actual data. Contrast with nonleaf page.

left outer join. In DB2 UDB for OS/390, the result of a join operation that includes the matched rows
of both tables that are being joined and that preserves the unmatched rows of the first table. See join and
right outer join.

length attribute. A value associated with a string that represents the declared fixed length or maximum
length of the string.

LEN node. See low-entry networking node.

linear data set (LDS). In an OS/390 environment, a VSAM data set that contains data but no control
information. A linear data set can be accessed as a byte-addressable string in virtual storage.

linkage editor. A computer program for creating load modules from one or more object modules or
load modules by resolving cross-references among the modules and, if necessary, adjusting addresses.

link-edit. In DB2 UDB for OS/390, the action of creating a loadable computer program using a linkage
editor.

list prefetch. An access method that takes advantage of prefetching even in queries that do not access
data sequentially. This is done by scanning the index and collecting RIDs in advance of accessing any
data pages. These RIDs are then sorted, and data is prefetched using this list.

list structure. In an OS/390 environment, a coupling facility structure that lets data be shared and
manipulated as elements of a queue.

Live Connection. A Net.Data component that consists of a Connection Manager and multiple cliettes.
Live Connection manages the reuse of database and Java® virtual machine connections.

Glossary

1388 SQL Reference

L-lock. See logical lock.

load copy. A backup image of data that was loaded at a previous time and can be restored during
roll-forward recovery.

load module. A program unit that is suitable for loading into main storage for execution. The output of
a linkage editor.

load utility. A nontransactional utility that performs block updates of table data. Contrast with import
utility.

LOB. See large object.

LOB locator. A mechanism that allows an application program to manipulate a large object (LOB) value
in the database system. An LOB locator is a simple token value that represents a single LOB value. An
application program retrieves an LOB locator into a host variable and can then apply SQL functions to
the associated LOB value using the locator.

LOB lock. In DB2 UDB for OS/390, a lock on an LOB value.

LOB table space. In DB2 UDB for OS/390, a table space that contains all the data for a particular LOB
column in the related base table.

local. A way of referring to any object that the local subsystem maintains. In DB2 UDB for OS/390, for
example, a local table is a table that is maintained by the local DB2 subsystem. Contrast with remote.

local database. A database that is physically located on the workstation in use. Contrast with remote
database.

local database directory. A directory where a database physically resides. Databases that are displayed
in the local database directory are located on the same node as the system database directory.

locale. In DB2 UDB for OS/390, the definition of a subset of a user’s environment that combines
characters that are defined for a specific language and country, and a CCSID.

local lock. A lock that provides intra-DB2 concurrency control, but not inter-DB2 concurrency control;
its scope is a single DB2 UDB for OS/390 system.

local subsystem. The unique RDBMS to which the user or application program is directly connected (in
the case of DB2 UDB for OS/390, by one of the DB2 UDB for OS/390 attachment facilities).

local table lock. A table lock that is acquired only on a single database partition.

local update. An update to the base table, not to the replica.

location name. The name by which DB2 UDB for OS/390 refers to a particular DB2 subsystem in a
network of subsystems. Contrast with LU name.

location path. A subset of the abbreviated syntax of the location path defined by XPath. A sequence of
XML tags to identify an XML element or attribute. It is used in extracting user-defined functions to
identify the subject to be extracted, and it is used in the Text Extender’s search user-defined functions to
identify the search criteria.

Glossary

Appendix Q. Glossary 1389

locator. See LOB locator.

lock. (1) A means of serializing events or access to data. (2) A means of preventing uncommitted
changes made by one application process from being perceived by another application process and for
preventing one application process from updating data that is being accessed by another process. (3) A
means of controlling concurrent events or access to data. DB2 UDB for OS/390 locking is performed by
the IRLM.

lock duration. The interval over which a DB2 UDB for OS/390 lock is held.

lock escalation. In the database manager, the response that occurs when the number of locks issued for
one agent exceeds the limit specified in the database configuration; the limit is defined by the
MAXLOCKS configuration parameter. During a lock escalation, locks are freed by converting locks on
rows of a table into one lock on a table. This is repeated until the limit is no longer exceeded.

locking. The mechanism used by the database manager to ensure the integrity of data. Locking
prevents concurrent users from accessing inconsistent data.

lock mode. A representation for the type of access that concurrently running programs can have to a
resource that a DB2 UDB for OS/390 lock is holding.

lock object. The resource that is controlled by a DB2 UDB for OS/390 lock.

lock parent. For explicit hierarchical locking in DB2 UDB for OS/390, a lock that is held on a resource
that has child locks that are lower in the hierarchy; usually, the table space or partition intent locks are
the parent locks.

lock promotion. The process of changing the size or mode of a DB2 UDB for OS/390 lock to a higher
level.

lock size. The amount of data controlled by a DB2 UDB for OS/390 lock on table data; the value can
be a row, a page, an LOB, a partition, a table, or a table space.

lock structure. In DB2 UDB for OS/390, a coupling facility data structure that is composed of a series
of lock entries to support shared and exclusive locking for logical resources.

log. (1) A file used to record changes made in a system. (2) A collection of records that describe the
events that occur during DB2 UDB for OS/390 execution and that indicate their sequence. The
information thus recorded is used for recovery in the event of a failure during DB2 UDB for OS/390
execution. (3) See database log.

log head. The oldest written log record in the active log.

logical claim. In DB2 UDB for OS/390, a claim on a logical partition of a nonpartitioning index.

logical drain. In DB2 UDB for OS/390, a drain on a logical partition of a nonpartitioning index.

logical index partition. In DB2 UDB for OS/390, the set of all keys that reference the same data
partition.

logical lock (L-lock). In DB2 UDB for OS/390, the lock type that transactions use to control intra-DB2
and inter-DB2 data concurrency between transactions. Contrast with physical lock.

Glossary

1390 SQL Reference

logical node. A node on a processor that has more than one node assigned to it. See also node.

logical operator. A keyword that specifies how multiple search conditions are to be evaluated (AND,
OR) or if the logical sense of a search condition is to be inverted (NOT).

logical page list (LPL). In DB2 UDB for OS/390, a list of pages that are in error and that cannot be
referenced by applications until the pages are recovered. The page is in logical error, because the actual
media (coupling facility or DASD) might not contain any errors. Usually a connection to the media has
been lost.

logical partition. In DB2 UDB for OS/390, a set of key or RID pairs in a nonpartitioning index that are
associated with a particular partition.

logical recovery pending (LRECP). In DB2 UDB for OS/390, the state in which the data and the index
keys that refer to the data are inconsistent.

logical unit (LU). (1) In SNA, a port through which an end user accesses the SNA network to
communicate with another end user. An LU is capable of supporting many sessions with other LUs. (2)
In an OS/390 environment, an access point through which an application program accesses the SNA
network in order to communicate with another application program. See also LU name.

logical unit 6.2 (LU 6.2). The LU type that supports sessions between two applications using APPC.

logical unit of work (LUW). The processing that a program performs between synchronization points.

logical unit of work identifier (LUWID). In an OS/390 environment, a name that uniquely identifies a
thread within a network. This name consists of a fully-qualified LU network name, an LUW instance
number, and an LUW sequence number.

log initialization. The first phase of restart processing during which DB2 UDB for OS/390 attempts to
locate the current end of the log.

log partition. The log file on each database partition that records database activity for that database
partition.

log record. A record of an update to a database performed during a unit of work. This record is written
after the log tail of the active log.

log record sequence number (LRSN). A number that DB2 UDB for OS/390 generates and associates
with each log record. The LRSN is also used for page versioning. The LRSNs that a particular DB2 UDB
for OS/390 data sharing group generates form a strictly increasing sequence for each DB2 log and a
strictly increasing sequence for each page across the data sharing group.

log table. A table created by the Text Extender that contains information about which text documents
are to be indexed.

log tail. The log record that was written most recently in an active log.

log truncation. In DB2 UDB for OS/390, a process by which an explicit starting RBA is established.
This RBA is the point at which the next byte of log data is to be written.

Glossary

Appendix Q. Glossary 1391

long string. (1) A varying-length string whose maximum length is greater than 254 bytes. (2) In DB2
UDB for OS/390, a string whose actual length, or a varying-length string whose maximum length, is
greater than 255 bytes or 127 double-byte characters. Any LOB column, LOB host variable, or expression
that evaluates to a LOB is considered a long string.

long table space. A table space that can store only long string or large object (LOB) data.

low-entry networking node (LEN node). A type 2.1 node that supports independent LU protocols but
does not support CP to CP sessions. It can be a peripheral node attached to a boundary node in a
subarea network, an end node attached to an APPN network node in an APPN network, or a
peer-connected node directly attached to another LEN node or APPN end node.

LPL. See logical page list.

LRECP. See logical recovery pending.

LRH. In DB2 UDB for OS/390, log record header.

LRSN. See log record sequence number.

LU. See logical unit.

LU name. In an OS/390 environment, the name by which VTAM refers to a node in a network.
Contrast with location name.

LU 6.2. See logical unit 6.2.

LU type. The classification of a logical unit in terms of the specific subset of SNA protocols and options
that it supports for a given session, specifically:

v The values allowed in the session activation request

v The usage of data stream controls, function management headers, request unit parameters, and sense
data values

v Presentation services protocols such as those associated with function management headers

LUW. See logical unit of work.

LUWID. See logical unit of work identifier.

M

mapped conversation. In APPC, a conversation between two transaction programs (TPs) using the
APPC mapped conversation API. In typical situations, end-user TPs use mapped conversation, and
service TPs use basic conversations. Either type of program can use either type of conversation. Contrast
with basic conversation.

masking character. A character used to represent optional characters at the front, middle, and end of a
search term. Masking characters are normally used for finding variations of a term in a precise index.

materialize. In DB2 UDB for OS/390, (1) The process of putting rows from a view or nested table
expression into a work file for additional processing by a query.

Glossary

1392 SQL Reference

(2) The placement of an LOB value into contiguous storage. Because LOB values can be very large, DB2
UDB for OS/390 avoids materializing LOB data until doing so becomes absolutely necessary.

MBCS. See multi-byte character set.

member. (1) For DB2, subscription-set member. (2) In the OLAP Starter Kit, a method of referencing data
through three or more dimensions. An individual data value in a fact table is the intersection of one
member from each dimension.

member name. The XCF identifier for a particular DB2 UDB for OS/390 subsystem in a data sharing
group.

member scope. See command scope.

menu. In DB2 UDB for OS/390, a displayed list of available functions for selection by the operator. A
menu is sometimes called a menu panel.

metadata. Data that describes the characteristics of stored data; descriptive data. For example, the
metadata for a database table might include the name of the table, the name of the database that
contains the table, the names of the columns in the table, and the column descriptions, either in technical
terms or business terms.

metadata publication process. A process created by the Data Warehouse Center that contains all the
steps created after publication to keep the published metadata synchronized with the original metadata.

migration. (1) The process of moving data from one computer system to another without converting
the data. (2) Installation of a new version or release of a program to replace an earlier version or release.
(3) The process of converting an existing DB2 UDB for OS/390 subsystem to an updated or current
release. In this process, you can acquire the functions of the updated or current release without losing
the data that you created on the previous release.

mixed-character string. A string containing a mixture of single-byte and multi-byte characters. Also
called mixed data string.

mixed-data string. See mixed-character string.

mobile client. The node, usually a laptop computer, where the mobile enabler, replication source, and
target tables used in a mobile environment are located. The mobile replication mode is invoked from the
mobile client.

mobile replication enabler. A replication program that starts the mobile replication mode at the mobile
client.

mobile replication mode. A mode of replication in which the Capture and Apply programs operate as
needed rather than autonomously and continuously. This mode is invoked from the mobile client and
allows data to be replicated when the mobile client is available for a connection to the source or target
server.

mode. In the Data Warehouse Center, the stage of development of a step, such as development, test, or
production.

Glossary

Appendix Q. Glossary 1393

MODEENT. In an OS/390 environment, a VTAM macro instruction that associates a logon mode name
with a set of parameters that represent session protocols. A set of MODEENT macro instructions defines
a logon mode table.

modeled statistics. Statistics for a database object that may or may not be referenced in an SQL
statement, yet currently exist in an explain model. The object may or may not currently exist in the
database.

mode name. (1) In APPC, the name used by the initiator of a session to designate the characteristics
desired for the session, such as message length limits, sync point, class of service within the transport
network, and session routing and delay characteristics. (2) In an OS/390 environment, a VTAM name for
the collection of physical and logical characteristics and attributes of a session.

modify locks. In DB2 UDB for OS/390, an L-lock or P-lock with a MODIFY attribute. A list of these
active locks is kept at all times in the coupling facility lock structure. If the requesting subsystem fails,
that subsystem’s modify locks are converted to retained locks.

monitoring session. The act of monitoring a database manager or of playing back information from a
previously monitored database manager. The DB2 Performance Monitor is used for creating a
monitoring session and for selecting which database objects to monitor.

monitor switch. Database manager parameters manipulated by the user to control the type of
information and the quantity of information returned in performance snapshots.

MPP. (1) Massively parallel processing. (2) In an OS/390 environment with IMS, message processing
program.

MSS. In an OS/390 environment, Mass Storage Subsystem.

MTO. In an OS/390 environment, master terminal operator.

multi-byte character set (MBCS). A set of characters in which each character is represented by 2 or
more bytes. Character sets that use only two bytes are more commonly known as double-byte character
sets.

multidimensional. In the OLAP Starter Kit, a method of referencing data through three or more
dimensions. An individual data value in a fact table is the intersection of one member from each
dimension.

multidimensional database. In the OLAP Starter Kit, a nonrelational database into which you copy
relational data for OLAP analysis.

multi-site update. In DB2 UDB for OS/390, distributed relational database processing in which data is
updated in more than one location within a single unit of work.

multitasking. A mode of operation that provides for concurrent performance or interleaved execution
of two or more tasks.

must-complete. A state during DB2 UDB for OS/390 processing in which the entire operation must be
completed to maintain data integrity.

MVS. Multiple Virtual Storage, which is part of OS/390.

Glossary

1394 SQL Reference

MVS/ESA™. Multiple Virtual Storage/Enterprise Systems Architecture, which is part of OS/390.

N

NAU. See network addressable unit.

NDS. See Network Directory Services.

negotiable lock. In DB2 UDB for OS/390, a lock whose mode can be downgraded, by agreement
among contending users, to be compatible to all. A physical lock is an example of a negotiable lock.

nested table expression. (1) A result table obtained directly or indirectly from one or more other tables
through the evaluation of a fullselect that is specified in the FROM clause. (2) In DB2 UDB for OS/390, a
subselect in a FROM clause (surrounded by parentheses).

NETID. Network identifier. See network name.

network address. An identifier for a node in a network.

network addressable unit (NAU). The origin or the destination of information transmitted by the path
control network. An NAU may be a logical unit (LU), physical unit (PU), control point (CP), or system
services control point (SSCP). See also network name.

Network Directory Services (NDS). A global, distributed, replicated database NetWare that maintains
information about, and provides access to, every resource on the network. The NetWare Directory
database organizes objects, independent of their physical location, in a hierarchical tree structure called
the directory tree.

network identifier (NID). In an OS/390 environment, the network ID that is assigned by IMS or CICS,
or if the connection type is RRSAF, the OS/390 RRS unit of recovery ID (URID).

network name. In SNA, a symbolic name by which end users refer to a network addressable unit
(NAU), a link station, or a link. Synonym for NETID.

network node (NN). In APPN, a node on the network that provides distributed directory services,
topology database exchanges with other APPN network nodes, and session and routing services.
Synonym for APPN network node.

network node server. An APPN network node that provides network services for its local logical units
and adjacent end nodes.

network-qualified name. The name by which an LU is known throughout an interconnected SNA
network. A network-qualified name consists of a network name identifying the individual subnetwork,
and a network LU name. Network-qualified names are unique throughout an interconnected network.
Also known as the network-qualified LU name, or fully qualified LU name.

network services. The services within network addressable units that control network operation
through SSCP-to-SSCP, SSCP-to-PU, SSCP-to-LU, and CP-to-CP sessions.

nickname. (1) An identifier that a federated server uses to refer to a data source table or view. (2) A
name that is defined in a DB2 DataJoiner database to represent a physical database object (such as a
table or stored procedure) in a non-IBM database.

Glossary

Appendix Q. Glossary 1395

NID. See network identifier.

NN. See network node.

node. (1) In database partitioning, a synonym for database partition. (2) In hardware, a uniprocessor or
symmetric multiprocessor (SMP) computer that is part of a clustered system or a massively parallel
processing (MPP) system. For example, RS/6000® SP™ is an MPP system that consists of a number of
nodes connected by a high-speed network. (3) In communications, an end point of a communications
link, or a junction common to two or more links in a network. Nodes can be processors, communication
controllers, cluster controllers, terminals, or workstations. Nodes can vary in routing and other
functional capabilities.

node directory. A directory that contains information necessary to establish communications from a
client workstation to all applicable database servers.

nodegroup. A named group of one or more database partitions.

noncomplete CCD table. In DB2 replication, a CCD table that is empty when it is created and has rows
appended to it as changes are made to the source. Contrast with complete CCD table.

noncondensed attribute. A table attribute indicating that the table contains a history of changes to the
data, not current data. A table that has this attribute set includes more than one row for each key value.

noncondensed CCD table. In DB2 replication, a CCD table that contains the history of changes to the
values for a row. This type of table is useful for auditing purposes. Contrast with condensed CCD table.

nondelimited ASCII (ASC) format. A file format used to import data. Nondelimited ASCII is a
sequential ASCII file with row delimiters used for data exchange with any ASCII product.

nonleaf page. In DB2 UDB for OS/390, a page that contains keys and page numbers of other pages in
the index (either leaf or nonleaf pages). Nonleaf pages never point to actual data. Contrast with leaf page.

nonpartitioning index. In DB2 UDB for OS/390, any index that is not a partitioning index.

normalization. In databases, the process of restructuring a data model by reducing its relations to their
simplest forms.

not-deterministic function. In DB2 UDB for OS/390, a user-defined function whose result is not solely
dependent on the values of the input arguments. Successive invocations with the same argument values
can produce a different answer. This type of function is sometimes called a variant function. Contrast
with a deterministic function (sometimes called a not-variant function), which always produces the same
result for the same input.

not-fenced. A type of user-defined function or stored procedure that is defined to be run in the DBMS
process. Contrast with fenced.

notification process. A process created by the Data Warehouse Center that contains all the steps created
for notification when a step completes.

not-variant function. A user-defined function whose result is solely dependent on the values of the
input arguments. Successive invocations with the same argument values always produce the same
results. Contrast with variant function.

Glossary

1396 SQL Reference

NRE. In an OS/390 environment, network recovery element.

NSAPI. Netscape API.

NUL. In C language, a single character that denotes the end of the string.

NULLIF. In DB2 UDB for OS/390, a scalar function that evaluates two passed expressions, returning
either NULL if the arguments are equal or the value of the first argument if they are not.

null. In DB2 UDB for OS/390, a value that indicates the absence of information.

nullable. The condition in which a value for a column, function parameter, or result can have an
absence of a value. For example, a field for a person’s middle initial does not require a value and is
considered nullable.

null value. A parameter position for which no value is specified.

NUL-terminated host variable. In DB2 UDB for OS/390, a varying-length host variable in which the
end of the data is indicated by the presence of a NUL terminator.

NUL terminator. In C language, the value that indicates the end of a string. For character strings, the
NUL terminator is X'00'.

O

OASN (origin application schedule number). In an OS/390 environment with IMS, a 4-byte number
that is assigned sequentially to each IMS schedule since the last cold start of IMS. The OASN is used as
an identifier for a unit of work. In an 8-byte format, the first 4 bytes contain the schedule number and
the last 4 bytes contain the number of IMS sync points (commit points) during the current schedule. The
OASN is part of the NID for an IMS connection.

OBID. In DB2 UDB for OS/390, data object identifier.

object. (1) Anything that can be created or manipulated with SQL—for example, tables, views, indexes,
or packages. (2) In object-oriented design or programming, an abstraction consisting of data and
operations associated with that data. (3) For NetWare, an entity that is defined on the network and thus
given access to the file server.

object property. A property that identifies a category of information that is associated with an object. A
NetWare bindery object can be assigned one or more properties. The DB2 server instance object has an
object property, NET_ADDR, which denotes the location of the record within the object.

object type. (1) A 2-byte number that classifies an object in the bindery on a NetWare file server. 062B
represents the DB2 database server object type. (2) A categorization or grouping of object instances that
share similar behaviors and characteristics.

ODBC. See Open Database Connectivity.

ODBC driver. A driver that implements ODBC function calls and interacts with a data source.

offline backup. A backup of the database or table space that was made when the database or table
space was not being accessed by applications. The Backup Database utility acquires exclusive use of the
database until the backup is complete. Contrast with online backup.

Glossary

Appendix Q. Glossary 1397

offline restore. A restoration of a copy of a database or table space from a backup. The Backup
Database utility has exclusive use of the database until the restore is completed. Contrast with online
restore.

OLAP. See online analytical processing.

on-demand timing. A method for controlling the timing of replication for occasionally connected
systems. Requires that you use the ASNSAT program to operate the Capture and Apply programs.
Contrast with event timing and interval timing.

online analytical processing (OLAP). In the OLAP Starter Kit, a multidimensional, multi-user, client
server computing environment for users who need to analyze consolidated enterprise data in real time.

online backup. A backup of the database or table space that is made while the database or table space
is being accessed by other applications. Contrast with offline backup.

online monitor. See Performance Monitor.

online restore. A restoration of a copy of a database or table space while the database or table space is
being accessed by other applications. Contrast with offline restore.

Open Database Connectivity (ODBC). An API that allows access to database management systems
using callable SQL, which does not require the use of an SQL preprocessor. The ODBC architecture
allows users to add modules, called database drivers, that link the application to their choice of database
management systems at run time. Applications do not need to be linked directly to the modules of all
the supported database management systems.

operand. An entity on which an operation is performed.

optimized SQL text. SQL text, produced by the Explain facility, that is based on the query actually
used by the optimizer to choose the access plan. This query is supplemented and rewritten by the
various components of the SQL compiler during statement compilation. The text is reconstructed from
its internal representation, and differs from the original SQL text. The optimized statement produces the
same result as the original statement.

optimizer. A component of the SQL compiler that chooses an access plan for a data manipulation
language statement by modeling the execution cost of many alternative access plans and choosing the
one with the minimal estimated cost.

ordinary identifier. (1) In SQL, a letter followed by zero or more characters, each of which is a letter
(a-z and A-Z), a symbol, a number, or the underscore character, used to form a name. (2) In DB2 UDB
for OS/390, an uppercase letter followed by zero or more characters, each of which is an uppercase letter, a
number, or the underscore character. An ordinary identifier must not be a reserved word.

ordinary token. A numeric constant, an ordinary identifier, a host identifier, or a keyword.

originating task. In DB2 UDB for OS/390, the primary agent in a parallel group that receives data from
other execution units (referred to as parallel tasks) that are executing portions of the query in parallel.

outer join. (1) A join method in which a column that is not common to all of the tables being joined
becomes part of the resultant table. Contrast with inner join. (2) In DB2 UDB for OS/390, the result of a
join operation that includes the matched rows of both tables that are being joined and preserves some or
all of the unmatched rows of the tables that are being joined. See also join.

Glossary

1398 SQL Reference

outline. In the OLAP Starter Kit, the structure that defines all elements of a database within the OLAP
Starter Kit. For example, an outline contains definitions of dimensions, members, and formulas.

output file. A database or device file that is opened with the option to allow the writing of records.

overflow record. (1) On an indirectly addressed file, a record whose key is randomized to the address
of a full track or to the address of a home record. (2) In DB2, an updated record that is too large to fit on
the page it is currently stored in. The record is copied to a different page and its original location is
replaced with a pointer to the new location. (3) In the Database Monitor, a record inserted in the event
monitor data stream to indicate that records were discarded because the named pipe was full and
records were not processed in time. An overflow record indicates how many records were discarded.

overloaded function name. A function name for which multiple functions exist within a function path
or schema. Those within the same schema must have different signatures.

P

package. A control structure produced during program preparation that is used to execute SQL
statements.

package list. In DB2 UDB for OS/390, an ordered list of package names that can be used to extend an
application plan.

package name. In DB2 UDB for OS/390, the name of an object that is created by a BIND PACKAGE or
REBIND PACKAGE command. The object is a bound version of a database request module (DBRM). The
name consists of a location name, a collection ID, a package ID, and a version ID.

packet. In data communication, a sequence of binary digits, including data and control signals, that is
transmitted and switched as a composite whole.

page. (1) A block of storage within a table or index whose size is 4096 bytes (4 KB). (2) In DB2 UDB for
OS/390, a unit of storage within a table space (4 KB, 8 KB, 16 KB, or 32 KB) or index space (4 KB). In a
table space, a page contains one or more rows of a table. In an LOB table space, an LOB value can span
more than one page, but no more than one LOB value is stored on a page.

page set. In an OS/390 environment, another way to refer to a table space or index space. Each page
set consists of a collection of VSAM data sets.

page set recovery pending (PSRCP). In DB2 UDB for OS/390, a restrictive state of an index space in
which the entire page set must be recovered. Recovery of a logical part is prohibited.

panel. In DB2 UDB for OS/390, a predefined display image that defines the locations and
characteristics of display fields on a display surface (for example, a menu panel).

parallel group. In an OS/390 environment, a set of consecutive operations that execute in parallel and
that have the same number of parallel tasks.

parallel I/O. The process of reading from or writing to two or more I/O devices at the same time to
reduce response time.

Glossary

Appendix Q. Glossary 1399

parallel I/O processing. A form of I/O processing in which DB2 UDB for OS/390 initiates multiple
concurrent requests for a single user query and performs I/O processing concurrently (in parallel) on
multiple data partitions.

parallelism. The ability to perform multiple database operations at the same time (in parallel). See
inter-partition parallelism, intra-partition parallelism, and parallel I/O.

parallel session. In SNA, two or more concurrently active sessions between the same two logical units.
Each session can have different session parameters. See session.

Parallel Sysplex. A set of OS/390 systems that communicate and cooperate with each other through
certain multisystem hardware components and software services.

parallel task. In an OS/390 environment, the execution unit that is dynamically created to process a
query in parallel. It is implemented by an MVS service request block.

parameterized data type. A data type that can be defined with a specific length, scale, or precision.
String and decimal data types are parameterized.

parameter marker. A question mark (?) that appears in a statement string of a dynamic SQL statement.
The question mark can appear where a host variable might appear if the statement string was a static
SQL statement.

parent key. A primary key or unique key that is used in a referential constraint. The values of a parent
key determine the valid values of the foreign key in the constraint.

parent row. A row that has at least one dependent row.

parent table. A table that is a parent in at least one referential constraint.

parent table space. In DB2 UDB for OS/390, a table space that contains a parent table. A table space
that contains a dependent of that table is a dependent table space.

participant. In an OS/390 environment, an entity other than the commit coordinator that takes part in
the commit process. Synonym for agent in SNA.

partition. In an OS/390 environment, a portion of a page set. Each partition corresponds to a single,
independently extendable data set. Partitions can be extended to a maximum size of 1, 2, or 4 GB,
depending on the number of partitions in the partitioned page set. All partitions of a given page set
have the same maximum size.

partition compatible join. A join where all of the rows that are joined reside in the same database
partition.

partitioned database. A database with two or more database partitions. Data in user tables can be
located in one or more database partitions. When a table is on multiple partitions, some of its rows are
stored in one partition and others are stored in other partitions. See database partition.

partitioned data set (PDS). In an OS/390 environment, a data set in direct-access storage that is
divided into partitions, which are called members. Each partition can contain a program, part of a
program, or data. Synonym for program library.

Glossary

1400 SQL Reference

partitioned page set. In an OS/390 environment, a partitioned table space or index space. Header
pages, space map pages, data pages, and index pages refer to data only within the scope of the partition.

partitioned table space. In an OS/390 environment, a table space that is subdivided into parts (based
on index key range), each of which can be processed independently by utilities.

partitioned function. A function that takes a partitioning key value of a row as input and produces a
partition number as output.

partitioning key. (1) An ordered set of one or more columns in a given table. For each row in the table,
the values in the partitioning key columns are used to determine on which database partition the row
belongs. (2) In replication, an ordered set of one or more columns in a given table. For each row in the
source table, the values in the partitioning key columns are used to determine in which target table the
row belongs.

partitioning map. A vector of partition numbers that maps a partitioning map index to database
partitions in the nodegroup.

partitioning map index. A number assigned to a hash partition or range partition.

partner logical unit (LU). (1) In SNA, the remote participant in a session. (2) An access point in the
SNA network that is connected to the local DB2 UDB for OS/390 subsystem by way of a VTAM
conversation.

pass-through. In a federated database system, a facility by which users can communicate with data
sources in the SQL dialect of the data source.

path. See SQL path.

PCT. In CICS, program control table.

PDS. See partitioned data set.

peer-to-peer communication. Communication between two SNA logical units (LUs) that is not
managed by a host; commonly used when referring to LU 6.2 nodes.

performance metrics. A collection of all performance variables belonging to the same database object.

Performance Monitor. A tool that lets database administrators use a graphical interface to monitor the
performance of a DB2 system for tuning purposes. This tool can be accessed from the Control Center.

performance snapshot. Performance data for a set of database objects that is retrieved from the
database manager at a point in time.

performance variable. A statistic derived from performance data obtained from the database manager.
The expression for this variable can be user defined.

performance variable profile. A flat file that contains definitions of performance variables. This file can
be edited, copied, and shared. Different profiles can be used by the same Performance Monitor so that
different calculations can be performed.

Glossary

Appendix Q. Glossary 1401

persistence. In Net.Data, the state of keeping an assigned value for an entire transaction, where a
transaction spans multiple Net.Data invocations. Only variables can be persistent. In addition, operations
on resources affected by commitment control are kept active until an explicit commit or rollback is done,
or when the transaction completes.

phantom row. A table row that can be read by application processes that are executing with any
isolation level except repeatable read. When an application process issues the same query multiple times
within a single unit of work, additional rows can appear between queries because of the data being
inserted and committed by application processes that are running concurrently.

physical claim. In DB2 UDB for OS/390, a claim on an entire nonpartitioning index.

physical consistency. In DB2 UDB for OS/390, the state of a page that is not in a partially changed
state.

physical drain. In DB2 UDB for OS/390, a drain on an entire nonpartitioning index.

physical lock (P-lock). A lock type that DB2 UDB for OS/390 acquires to provide consistency of data
that is cached in different DB2 UDB for OS/390 subsystems. Physical locks are used only in data sharing
environments. Contrast with logical lock (L-lock).

physical lock contention. In DB2 UDB for OS/390, conflicting states of the requesters for a physical
lock. See also negotiable lock.

physically complete. In DB2 UDB for OS/390, the state in which the concurrent copy process is
completed and the output data set has been created.

physical unit (PU). The component that manages and monitors the resources (such as attached links
and adjacent link stations) associated with a node, as requested by an SSCP through an SSCP-to-PU
session. An SSCP activates a session with the PU in order to indirectly manage, through the PU,
resources of the node such as attached links. This term applies to types 2.0, 4, and 5 nodes only. See also
control point.

piece. In an OS/390 environment, a data set of a nonpartitioned page set.

plan. See application plan.

plan allocation. The process of allocating DB2 UDB for OS/390 resources to a plan in preparation to
execute it.

plan name. In DB2 UDB for OS/390, the name of an application plan.

plan segmentation. In DB2 UDB for OS/390, the dividing of each plan into sections. When a section is
needed, it is independently brought into the EDM pool.

P-lock. See physical lock.

PLT. In CICS, program list table.

point-in-time table. In DB2 replication, a type of target table whose content matches all or part of a
source table, with an added system column that identifies the approximate time when the particular row
was inserted or updated at the source system.

Glossary

1402 SQL Reference

point of consistency. A point in time when all the recoverable data a program accesses is consistent.
The point of consistency occurs when updates, inserts, and deletions are either committed to the
physical database or rolled back. Synonym for commit point and sync point.

policy. See CFRM policy.

postponed abort UR. In DB2 UDB for OS/390, a unit of recovery that was inflight or in-abort, was
interrupted by system failure or cancellation, and did not complete backout during restart.

PPT. (1) In CICS, processing program. (2) In OS/390, program properties table.

precision. In numeric data types, the total number of binary or decimal digits, excluding the sign.

precompile. To process programs that contain SQL statements before they are compiled. SQL
statements are replaced with statements that will be recognized by the host language compiler. The
output from a precompile process includes source code that can be submitted to the compiler and used
in the bind process.

predicate. An element of a search condition that expresses or implies a comparison operation.

prefetch. To read data ahead of, and in anticipation of, its use.

prepare. (1) To convert an SQL statement from text form to an executable form, by submitting it to the
SQL compiler. (2) In DB2 UDB for OS/390, the first phase of a two-phase commit process in which all
participants are requested to prepare for commit.

prepared SQL statement. In SQL, a named object that is the executable form of an SQL statement that
has been processed by the PREPARE statement.

primary authorization ID. The authorization ID used to identify the application process to DB2 UDB
for OS/390.

primary group buffer pool. For a duplexed group buffer pool, the DB2 UDB for OS/390 structure that
is used to maintain the coherency of cached data. This structure is used for page registration and
cross-invalidation. The OS/390 equivalent is old structure. Compare with secondary group buffer pool.

primary index. In DB2 UDB for OS/390, an index that enforces the uniqueness of a primary key.

primary key. A unique key that is part of the definition of a table. A primary key is the default parent
key of a referential constraint definition.

primary log. A set of one or more log files used to record changes to a database. Storage for these files
is allocated in advance. Contrast with secondary log.

principal. In an OS/390 environment, an entity that can communicate securely with another entity. In
the DCE, principals are represented as entries in the DCE registry database and include users, servers,
computers, and others.

principal name. In an OS/390 environment, the name by which a principal is known to the DCE
security services.

private connection. A communications connection that is specific to DB2 UDB for OS/390.

Glossary

Appendix Q. Glossary 1403

private protocol access. A method of accessing distributed data by which you can direct a query to
another DB2 system. Contrast with DRDA access.

private protocol connection. A DB2 private connection of the application process. See also private
connection.

privilege. (1) The right to access a specific database object in a specific way. These rights are controlled
by users with SYSADM (system administrator) authority or DBADM (database administrator) authority
or by creators of objects. Privileges include rights such as creating, deleting, and selecting data from
tables. (2) In DB2 UDB for OS/390, the capability of performing a specific function, sometimes on a
specific object. See also explicit privilege and implicit privilege.

privilege set. For the installation SYSADM ID, the set of all possible privileges. For any other
authorization ID, the set of all privileges that are recorded for that ID in the DB2 UDB for OS/390
catalog.

procedure. See stored procedure.

process. (1) In the Data Warehouse Center, a series of steps, which commonly operates on source data,
that changes data from its original form into a form conducive to decision support. A Data Warehouse
Center process commonly consists of one or more sources, one or more steps, and one or more targets.
(2) In DB2 UDB for OS/390, the unit to which DB2 UDB for OS/390 allocates resources and locks. A
process involves the execution of one or more programs. The execution of an SQL statement is always
associated with some process. The means of initiating and terminating a process are dependent on the
environment. Synonym for application process.

property. In the Data Warehouse Center, a characteristic or attribute that describes a unit of
information. Each object type has a set of associated properties. For each object, a set of values is
assigned to the properties.

protected conversation. In an OS/390 environment, a VTAM conversation that supports two-phase
commit flows.

protocol.ini. A file that contains LAN configuration and binding information for all the protocol and
medium-access control (MAC) system modules.

PSRCP. In DB2 UDB for OS/390, page set recovery pending.

PU. See physical unit.

public authority. The authority for an object granted to all users.

PU type. In SNA, the classification of a physical unit according to the type of node on which it resides.

Q

QSAM. Queued sequential access method.

quantified predicate. A predicate that compares a value with a set of values.

Glossary

1404 SQL Reference

query. (1) A request for information from the database based on specific conditions, for example, a
request for a list of all customers in a customer table whose balance is greater than $1000. (2) In DB2
UDB for OS/390, a component of certain SQL statements that specifies a result table.

query block. In DB2 UDB for OS/390, the part of a query that is represented by one of the FROM
clauses. Each FROM clause can have multiple query blocks, depending on how DB2 UDB for OS/390
internally processes the query.

Query by Image Content (QBIC). A capability that is provided by the Image Extender that allows
users to search images by their visual characteristics, such as average color and texture.

query CP parallelism. In DB2 UDB for OS/390, parallel execution of a single query, which is
accomplished by using multiple tasks. Compare with Sysplex query parallelism.

query I/O parallelism. In DB2 UDB for OS/390, parallel access of data, which is accomplished by
triggering multiple I/O requests within a single query.

queued sequential access method (QSAM). An extended version of the basic sequential access method
(BSAM). When this method is used, a queue is formed of input data blocks that are awaiting processing
or of output data blocks that are awaiting transfer to auxiliary storage or to an output device.

quiesce. To end a process by allowing operations to complete normally, while rejecting any new
requests for work.

quiesced member state. In DB2 UDB for OS/390, a state of a member of a data sharing group. An
active member becomes quiesced when a STOP DB2 command takes effect without a failure. If the
member task, address space, or OS/390 system fails before the command takes effect, the member state
is failed.

quoted name. See delimited identifier.

R

RACF®. In an OS/390 environment, Resource Access Control Facility.

RAMAC®. In an OS/390 environment, the IBM family of enterprise disk storage system products.

RBA. See relative byte address.

RCT. In DB2 UDB for OS/390 with the CICS attachment facility, the resource control table.

RDB. See relational database.

RDBMS. See relational database management system.

RDBNAM. See relational database name.

RDF. In DB2 UDB for OS/390, record definition field.

read stability (RS). An isolation level that locks only the rows that an application retrieves within a
transaction. Read stability ensures that any qualifying row that is read during a transaction is not
changed by other application processes until the transaction is completed, and that any row changed by

Glossary

Appendix Q. Glossary 1405

another application process is not read until the change is committed by that process. Read stability
allows more concurrency than repeatable read, and less than cursor stability.

rebind. To create a package for an application program that was previously bound. For example, if an
index is added for a table that is accessed by a program, the package must be rebound for it to take
advantage of the new index.

record. The storage representation of a single row of a table or other data.

record identifier (RID). A number that is used internally by DB2 to uniquely identify a record in a
table. The RID contains enough information to address the page in which the record is stored. Compare
with row ID.

record identifier (RID) pool. In DB2 UDB for OS/390, an area of main storage above the 16-MB line
that is reserved for sorting record identifiers during list prefetch processing.

recording. The information from performance snapshots that can be viewed at a later time.

recoverable log. A database log in which all log records are retained so that, in the event of a failure,
lost data can be recovered during forward recovery. Contrast with circular log.

recovery. (1) The act of resetting a system, or data that is stored in a system, to an operable state
following damage. (2) The process of rebuilding databases by restoring a backup and rolling forward the
logs associated with it.

recovery log. See database log.

recovery pending. A state of the database or table space. A database or table space is put in recovery
pending state when it is restored from a backup. While the database or table space is in this state, its
data cannot be accessed.

recovery token. In DB2 UDB for OS/390, an identifier for an element that is used in recovery (for
example, NID or URID).

RECP. In DB2 UDB for OS/390, recovery pending.

recursion cycle. The cycle that occurs when a fullselect within a common table expression includes the
name of the common table expression in a FROM clause.

recursive common table expression. A common table expression that refers to itself in a FROM clause
from the fullselect. Recursive common table expressions are used to write recursive queries.

recursive query. A fullselect that uses a recursive common table expression.

redo. In DB2 UDB for OS/390, a state of a unit of recovery that indicates that changes are to be
reapplied to the DASD media to ensure data integrity.

referential constraint. The referential integrity rule that the nonnull values of the foreign key are valid
only if they also appear as values of a parent key.

referential integrity. (1) The state of a database in which all values of all foreign keys are valid. (2) The
condition that exists when all intended references from data in one column of a table to data in another

Glossary

1406 SQL Reference

column of the same or a different table are valid. Maintaining referential integrity requires that DB2
UDB for OS/390 enforce referential constraints on all LOAD, RECOVER, INSERT, UPDATE, and
DELETE operations.

referential structure. In DB2 UDB for OS/390, a set of tables and relationships that includes at least
one table and, for every table in the set, all the relationships in which that table participates and all the
tables to which it is related.

refresh. A process in which all of the data of interest in a user table is copied to the target table,
replacing existing data. See also full refresh and differential refresh.

registration. See replication source.

registration process. In DB2 replication, the process of defining a replication source. Contrast with
subscription process.

registry database. In an OS/390 environment, a database of security information about principals,
groups, organizations, accounts, and security policies. The DCE security component maintains the
registry database.

regular table space. A table space that can store any nontemporary data.

rejected transaction. In DB2 replication, a transaction that contains one or more updates from replica
tables that are out of date in comparison to the source table.

relational cube. A set of data and metadata that together define a multidimensional database. A
relational cube is the portion of a multidimensional database that is stored in a relational database. See
also multidimensional database.

relational database. A database that can be perceived as a set of tables and manipulated in accordance
with the relational model of data.

relational database management system (RDBMS). In DB2 UDB for OS/390, a collection of hardware
and software that organizes and provides access to a relational database.

relational database name (RDBNAM). A unique identifier for an RDBMS within a network. In DB2
UDB for OS/390, this must be the value in the LOCATION column of table SYSIBM.LOCATIONS in the
CDB. DB2 UDB for OS/390 publications refer to the name of another RDBMS as a LOCATION value or
a location name.

relationship. In DB2 UDB for OS/390, a defined connection between the rows of a table or the rows of
two tables. A relationship is the internal representation of a referential constraint.

relative byte address (RBA). In an OS/390 environment, the offset of a data record or control interval
from the beginning of the storage space that is allocated to the data set or file to which it belongs.

remigration. The process of returning to a current release of DB2 UDB for OS/390 following a fallback
to a previous release. This procedure constitutes another migration process.

remote. In DB2 UDB for OS/390, any object that is maintained by a remote DB2 subsystem. A remote
view, for example, is a view that is maintained by a remote DB2 subsystem. Contrast with local.

Glossary

Appendix Q. Glossary 1407

remote attach request. In DB2 UDB for OS/390, a request made by a remote location to attach to the
local DB2 subsystem. Specifically, the request that is sent is an SNA Function Management Header 5.

remote database. A database that is physically located on a workstation other than the one in use.
Contrast with local database.

remote subsystem. In DB2 UDB for OS/390, any RDBMS, except the local subsystem, with which the
user or application can communicate. The subsystem need not be remote in any physical sense, and
might even operate on the same processor under the same OS/390 system.

remote unit of work (RUOW). A unit of work that allows for the remote preparation and execution of
SQL statements.

reoptimization. The DB2 UDB for OS/390 process of reconsidering the access path of an SQL statement
at run time; during reoptimization, DB2 UDB for OS/390 uses the values of host variables, parameter
markers, or special registers.

REORG pending (REORP). In DB2 UDB for OS/390, a condition that restricts SQL access and most
utility access to an object that must be reorganized.

REORP. See REORG pending.

repeatable read (RR). An isolation level that locks all the rows in an application that are referenced
within a transaction. When a program uses repeatable read protection, rows referenced by the program
cannot be changed by other programs until the program ends the current transaction.

replica. A type of target table that can be updated locally and receives updates from a user table
through a subscription definition. It can be a source for updating the user table or read-only target
tables.

replica target table. A replication table at the target server that is a type of update-anywhere target
table.

replication. The process of maintaining a defined set of data in more than one location. It involves
copying designated changes for one location (a source) to another (a target), and synchronizing the data
in both locations.

replication administrator. The user responsible for defining replication sources and subscriptions. This
user can also run the Capture and Apply programs.

replication source. A database table or view that can accept copy requests and is the source table in a
subscription set. See also subscription set.

replication subscription. A specification for copying changed data from replication sources to target
tables at a specified time and frequency, with the option of enhancing data. It defines all of the
information that is required by the Apply program to copy data.

request commit. In DB2 UDB for OS/390, the vote that is submitted to the prepare phase if the
participant has modified data and is prepared to commit or roll back.

requester. In DB2 UDB for OS/390, the source of a request to a remote RDBMS, the system that
requests the data. Synonym for application requester.

Glossary

1408 SQL Reference

reserved word. (1) A word used in a source program to describe an action to be taken by the program
or compiler. It must not appear in the program as a user-defined name or a system name. (2) A word
that has been set aside for special use in the SQL standard.

resource. In DB2 UDB for OS/390, the object of a lock or claim, which could be a table space, an index
space, a data partition, an index partition, or a logical partition.

resource allocation. In DB2 UDB for OS/390, the part of plan allocation that deals specifically with the
database resources.

resource control table (RCT). In DB2 UDB for OS/390 with CICS, a construct of the CICS attachment
facility, created by site-provided macro parameters, that defines authorization and access attributes for
transactions or transaction groups.

resource definition online. In an OS/390 environment with CICS, a feature that you use to define
CICS resources online without assembling tables.

resource limit facility (RLF). A portion of DB2 UDB for OS/390 code that prevents dynamic
manipulative SQL statements from exceeding specified time limits. Synonym for governor.

resource limit specification table. In DB2 UDB for OS/390, a site-defined table that specifies the limits
to be enforced by the resource limit facility.

restart pending (RESTP). In DB2 UDB for OS/390, a restrictive state of a page set or partition that
indicates that restart (backout) work needs to be performed on the object. All access to the page set or
partition is denied except for access by the RECOVER POSTPONED command or the automatic online
backout, which DB2 UDB for OS/390 invokes after restart if the system parameter LBACKOUT=AUTO.

RESTP. See restart pending.

restore. To return a backup copy to the active storage location for use.

restore set. A backup copy of a database or table space plus zero or more log files that, when restored
and rolled forward, bring the database or table space back to a consistent state.

result set. The set of rows that a stored procedure returns.

result set locator. A 4-byte value that DB2 UDB for OS/390 uses to uniquely identify a query result set
that a stored procedure returns.

result table. The set of rows produced by the evaluation of a SELECT statement.

retained lock. A MODIFY lock that a DB2 UDB for OS/390 subsystem was holding at the time of a
subsystem failure. The lock is retained in the coupling facility lock structure across a DB2 UDB for
OS/390 failure.

revoke. To remove a privilege or authority from an authorization ID.

RID. See record identifier.

RID pool. See record identifier pool.

Glossary

Appendix Q. Glossary 1409

right outer join. In DB2 UDB for OS/390, the result of a join operation that includes the matched rows
of both tables that are being joined and preserves the unmatched rows of the second join operand. See
join.

RLF. See resource limit facility.

RO. In DB2 UDB for OS/390, read-only access.

rollback. The process of restoring data changed by SQL statements to the state at its last commit point.
See point of consistency.

roll-forward. The process of updating the data in a restored database by applying changes recorded in
the database log. See forward recovery.

root page. In DB2 UDB for OS/390, the page of an index page set that follows the first index space
map page. A root page is the highest level (or the beginning point) of the index.

routine. In DB2 UDB for OS/390, a user-defined function or a stored procedure.

row. The horizontal component of a table consisting of a sequence of values, one for each column of the
table.

ROWID. See row identifier.

row identifier (ROWID). In DB2 UDB for OS/390, a value that uniquely identifies a row. This value is
stored with the row and does not change.

row lock. In DB2 UDB for OS/390, a lock on a single row of data.

row-replica. In DB2 replication, a type of update-anywhere replica maintained by DataPropagator for
Microsoft Jet without transaction semantics.

row-replica conflict detection. In DB2 replication, conflict detection that is performed row by row, not
transaction by transaction, as is done for DB2 replicas.

row trigger. In DB2 UDB for OS/390, a trigger that is defined with the trigger granularity FOR EACH
ROW.

RR. See repeatable read.

RRE. In an OS/390 environment with IMS, residual recovery entry.

RS. See read stability.

RRSAF. Recoverable Resource Manager Services attachment facility, which is a DB2 UDB for OS/390
subcomponent that uses OS/390 Transaction Management and Recoverable Resource Manager Services
to coordinate resource commitment between DB2 UDB for OS/390 and all other resource managers that
also use OS/390 RRS in an OS/390 system.

RUOW. See remote unit of work.

Glossary

1410 SQL Reference

S

sargable. A predicate that can be evaluated as a search argument.

satellite. An occasionally connected client that has a DB2 server that synchronizes with its group at the
satellite control database.

Satellite Administration Center. A user interface that provides centralized administrative support for
satellites.

satellite control server. A DB2 Universal Database system that contains the satellite control database,
SATCTLDB.

SBCS. See single-byte character set.

SCA. In DB2 UDB for OS/390, the shared communications area.

scalar fullselect. A fullselect that returns a single value—one row of data that consists of exactly one
column.

scalar function. An SQL operation that produces a single value from another value and is expressed as
a function name followed by a list of arguments enclosed in parentheses. Contrast with column function.

scale. The number of digits in the fractional part of a number.

schema. (1) A collection of database objects such as tables, views, indexes, or triggers. A database
schema provides a logical classification of database objects. (2) In DB2 UDB for OS/390, a logical
grouping for user-defined functions, distinct types, triggers, and stored procedures. When an object of
one of these types is created, it is assigned to one schema, which is determined by the name of the
object. (3) In the Data Warehouse Center, a collection of warehouse target tables and the relationships
between the warehouse target table columns, where the target tables can come from one or more
warehouse targets.

SDK. See Software Developer’s Kit.

SDWA. In an OS/390 environment, the system diagnostic work area.

search condition. A criterion for selecting rows from a table. A search condition consists of one or more
predicates.

secondary authorization ID. In DB2 UDB for OS/390, an authorization ID that is associated with a
primary authorization ID by an authorization exit routine.

secondary group buffer pool. For a duplexed group buffer pool in a DB2 UDB for OS/390
environment, the structure that is used to back up changed pages that are written to the primary group
buffer pool. No page registration or cross-invalidation occurs using the secondary group buffer pool. The
OS/390 equivalent is new structure. Compare to primary group buffer pool.

secondary log. A set of one or more log files used to record changes to a database. Storage for these
files is allocated as needed when the primary log is full. Contrast with primary log.

section. In DB2 UDB for OS/390, the segment of a plan or package that contains the executable
structures for a single SQL statement. For most SQL statements, one section in the plan exists for each

Glossary

Appendix Q. Glossary 1411

SQL statement in the source program. However, for cursor-related statements, the DECLARE, OPEN,
FETCH, and CLOSE statements reference the same section because, they each refer to the SELECT
statement that is named in the DECLARE CURSOR statement. SQL statements such as COMMIT,
ROLLBACK, and some SET statements do not use a section.

segmented table space. In DB2 UDB for OS/390, a table space that is divided into equal-sized groups
of pages called segments. Segments are assigned to tables so that rows of different tables are never
stored in the same segment.

self-referencing constraint. In DB2 UDB for OS/390, a referential constraint that defines a relationship
in which a table is a dependent of itself.

self-referencing row. A row that is a parent of itself.

self-referencing subquery. A subselect or fullselect within a DELETE, INSERT, or UPDATE statement
that refers to the same table that is the object of the SQL statement.

self-referencing table. A table that is both a parent and a dependent table in the same referential
constraint.

sequential data set. A non-DB2 UDB for OS/390 data set whose records are organized on the basis of
their successive physical positions, such as on magnetic tape. Several of the DB2 UDB for OS/390
database utilities require sequential data sets.

sequential prefetch. In DB2 UDB for OS/390, a mechanism that triggers consecutive asynchronous I/O
operations. Pages are fetched before they are required, and several pages are read with a single I/O
operation.

server. (1) In a network, a node that provides facilities to other stations, for example, a file server, a
printer server, a mail server. (2) In a federated database system, a unit of information that identifies a
data source to a federated server. This information can include the server’s name, its type, its version,
and the name of the wrapper that the federated server uses to communicate with and retrieve data from
the data source. (3) A functional unit that provides services to one or more clients over a network. In the
DB2 UDB for OS/390 environment, a server is the target for a request from a remote RDBMS and is the
RDBMS that provides the data. See also application server.

service class. In DB2 UDB for OS/390, an 8-character identifier that is used by MVS Workload Manager
to associate customer performance goals with a particular DDF thread or stored procedure. A service
class is also used to classify work on parallelism assistants.

service name. A name that provides a symbolic method of specifying the port number to be used at a
remote node. The TCP/IP connection requires the address of the remote node and the port number to be
used on the remote node to identify an application.

session. A logical connection between two stations or SNA network addressable units (NAUs) that
allows the two stations or NAUs to communicate.

session limit. In SNA, the maximum number of concurrently active logical unit to logical unit
(LU-to-LU) sessions that a particular logical unit (LU) can support.

session partner. In SNA, one of the two network addressable units (NAUs) participating in an active
session.

Glossary

1412 SQL Reference

session protocols. In DB2 UDB for OS/390, the available set of SNA communication requests and
responses.

session security. For LU 6.2, partner LU verification and session data encryption. A Systems Network
Architecture (SNA) function that allows data to be transmitted in encrypted form.

set operator. The SQL operators UNION, EXCEPT, and INTERSECT corresponding to the relational
operators union, difference, and intersection. A set operator derives a result table by combining two
other result tables.

shadowing. A recovery technique in which current page contents are never overwritten. Instead, new
pages are allocated and written while the pages whose values are being replaced are retained as shadow
copies until they are no longer needed to support the restoration of the system state due to a transaction
rollback.

shared communications area (SCA). A coupling facility list structure that a DB2 UDB for OS/390 data
sharing group uses for inter-DB2 communication.

shared lock. A lock that limits concurrently executing application processes to read-only operations on
database data. Contrast with exclusive lock.

shift-in character. A special control character (X'0F') that is used in EBCDIC systems to denote that the
subsequent bytes represent SBCS characters. Contrast with shift-out character.

shift-out character. A special control character (X'0E') that is used in EBCDIC systems to denote that
the subsequent bytes, up to the next shift-in control character, represent DBCS characters. Contrast with
shift-in character.

short string. (1) A fixed-length string or a variable-length string whose maximum length is less than or
equal to 254 bytes. (2) In DB2 UDB for OS/390, a string whose actual length, or a variable-length string
whose maximum length, is 255 bytes (or 127 double-byte characters) or less. Regardless of length, an
LOB string is not a short string.

sign-on. A request that is made on behalf of an individual CICS or IMS application process by an
attachment facility to enable DB2 UDB for OS/390 to verify that it is authorized to use DB2 UDB for
OS/390 resources.

simple page set. In DB2 UDB for OS/390, a nonpartitioned page set. A simple page set initially consists
of a single data set (page set piece). If that data set is extended to 2 GB, another data set is created, and
so on up to a total of 32 data sets. DB2 UDB for OS/390 considers the data sets to be a single contiguous
linear address space that contains a maximum of 64 GB. Data is stored in the next available location
within this address space without regard to any partitioning scheme.

simple table space. In DB2 UDB for OS/390, a table space that is neither partitioned nor segmented.

single-byte character set (SBCS). A character set in which each character is represented by a one-byte
code.

single-precision floating point number. A 32-bit approximate representation of a real number.

SMF. In an OS/390 environment, system management facility.

SMS. In an OS/390 environment, Storage Management Subsystem.

Glossary

Appendix Q. Glossary 1413

SMS table space. See system-managed space table space.

SNA. See Systems Network Architecture.

SNA network. The part of the user application network that conforms to the formats and protocols of
Systems Network Architecture (SNA). It enables reliable transfer of data among users and provides
protocols for controlling the resources of various network configurations. The SNA network consists of
network addressable units (NAUs), gateway function, intermediate session routing function components,
and the transport network.

snapshot. See performance snapshot and explain snapshot.

socket. A callable TCP/IP programming interface that is used by TCP/IP network applications to
communicate with remote TCP/IP partners.

soft checkpoint. The process of writing some information to the log file header; this information is
used to determine the starting point in the log in case a database restart is required.

Software Developer’s Kit (SDK). An application development product that allows applications to be
developed on a client workstation to access remote database servers including host relational databases
through the DB2 Connect products.

source. In the Data Warehouse Center, a table, view, or file that is input to a step.

source function. A user-defined function (UDF) that is used to implement one or more other UDFs.

sourced function. In DB2 UDB for OS/390, a function that is implemented by another built-in or
user-defined function that is already known to the database manager. This function can be a scalar
function or a column (aggregating) function; it returns a single value from a set of values (for example,
MAX or AVG). Contrast with external function and built-in function.

source program. A set of host language statements and SQL statements that is processed by an SQL
precompiler.

source server. In DB2 replication, the database location of the replication source and the Capture
program.

source table. In DB2 replication, a table that contains the data that is to be copied to a target table. The
source table can be a replication source table, a change data table, or a consistent-change-data table.
Contrast with target table.

source type. An existing type that is used to internally represent a distinct type.

special register. A storage area that is defined for an application process by the database manager and
is used to store information that can be referenced in SQL statements. Examples are USER and
CURRENT DATE.

specific function name. (1) The name that uniquely identifies a function to the system. (2) In DB2 UDB
for OS/390, a particular user-defined function that is known to the database manager by its specific
name. Many specific user-defined functions can have the same function name. When a user-defined
function is defined to the database, every function is assigned a specific name that is unique within its
schema. Either the user can provide this name, or a default name is used.

Glossary

1414 SQL Reference

spill file. In DB2 replication, a temporary file created by the Apply program that is used as the source
for updating data to multiple target tables.

Spreadsheet Add-in. In the OLAP Starter Kit, software that merges with Microsoft Excel and Lotus
1-2-3 to allow multidimensional analysis of data. The software library appears as a menu add-in to the
spreadsheet and provides such multidimensional analysis features as connect, zoom-in, and calculate.

SPUFI. In DB2 UDB for OS/390, SQL Processor Using File Input.

SQL. See Structured Query Language.

SQL authorization ID (SQL ID). In DB2 UDB for OS/390, the authorization ID that is used for
checking dynamic SQL statements in some situations.

SQLCA. See SQL communication area.

SQL communication area (SQLCA). A set of variables that provides an application program with
information about the execution of its SQL statements or its requests from the database manager.

SQL connection. In DB2 UDB for OS/390, an association between an application process and a local or
remote application server.

SQLDA. See SQL descriptor area.

SQL descriptor area (SQLDA). (1) A set of variables that is used in the processing of certain SQL
statements. The SQLDA is intended for dynamic SQL programs. (2) A structure that describes input
variables, output variables, or the columns of a result table.

SQL escape character. In DB2 UDB for OS/390, the symbol that is used to enclose an SQL delimited
identifier. This symbol is the double quotation mark ("). Compare to escape character.

SQL ID. See SQL authorization ID.

SQL path. In DB2 UDB for OS/390, an ordered list of schema names that are used in the resolution of
unqualified references to user-defined functions, distinct types, and stored procedures. In dynamic SQL,
the current path is found in the CURRENT PATH special register. In static SQL, it is defined in the
PATH bind option.

SQL processing conversation. Any conversation that requires access of DB2 UDB for OS/390 data,
either through an application or by dynamic query requests.

SQL Processor Using File Input (SPUFI). In DB2 UDB for OS/390, SQL Processor Using File Input. A
facility of the TSO attachment subcomponent that enables the DB2I user to execute SQL statements
without embedding them in an application program.

SQL return code. Either SQLCODE or SQLSTATE.

SQL routine. In DB2 UDB for OS/390, a user-defined function or stored procedure that is based on
code that is written in SQL.

SQL string delimiter. In DB2 UDB for OS/390, a symbol that is used to enclose an SQL string constant.
The SQL string delimiter is the apostrophe ('), except in COBOL applications, where the user assigns the
symbol, which is either an apostrophe or a double quotation mark (").

Glossary

Appendix Q. Glossary 1415

SSCP. See system services control point.

SSI. In an OS/390 environment, subsystem interface.

SSM. In DB2 UDB for OS/390, subsystem member.

stack. An area in memory that stores temporary register information, parameters, and return addresses
of subroutines.

staging table. In DB2 replication, a CCD table that can be used as the source for updating data to
multiple target tables.

stand-alone. An attribute of a program that means it is capable of executing separately from DB2 UDB
for OS/390, without using DB2 UDB for OS/390 services.

standard conflict detection. Conflict detection in which the Apply program searches for conflicts in
rows that are already captured in the change data tables of the replica or user table. See also conflict
detection, enhanced conflict detection, and row-replica conflict detection.

star schema. The type of relational database schema used by the OLAP Starter Kit, often created in the
Data Warehouse Center.

statement. An instruction in a program or procedure.

statement handle. In CLI, a handle that refers to the data object that contains information about an
SQL statement. This includes information such as dynamic arguments, bindings for dynamic arguments
and columns, cursor information, result values, and status information. Each statement handle is
associated with a connection handle.

statement string. For a dynamic SQL statement in a DB2 UDB for OS/390 environment, the character
string form of the statement.

static bind. A process by which SQL statements are bound after they are precompiled. All static SQL
statements are prepared for execution at the same time. See also bind.

statement trigger. In DB2 UDB for OS/390, a trigger that is defined with the trigger granularity FOR
EACH STATEMENT.

static SQL. SQL statements that are embedded within a program, and are prepared during the program
preparation process before the program is executed. After being prepared, a static SQL statement does
not change, although values of host variables specified by the statement can change.

status. In the Data Warehouse Center, the work-in-progress processing condition of a step, such as
scheduled, populating, or successful.

step. In the Data Warehouse Center, a single operation on data in a warehouse process. In most cases, a
step includes a warehouse source, a description of the transformation or movement of data, and a target.
A step can be run according to a schedule, or it can cascade from another step.

step edition. In the Data Warehouse Center, a snapshot of the data in a warehouse source at a
particular time.

storage group. A named set of DASD volumes on which DB2 UDB for OS/390 data can be stored.

Glossary

1416 SQL Reference

stored procedure. (1) A block of procedural constructs and embedded SQL statements that is stored in
a database and can be called by name. Stored procedures allow an application program to be run in two
parts. One part runs on the client and the other on the server. This allows one call to produce several
accesses to the database. Synonym for procedure. (2) In DB2 UDB for OS/390, a user-written application
program that can be started through the use of the SQL CALL statement.

Stored Procedure Builder. A tool for creating stored procedures, building stored procedures on local
and remote DB2 servers, modifying and rebuilding existing stored procedures, and testing and
debugging the execution of installed stored procedures using a graphical interface. This tool is
standalone or can be accessed from various integrated development environments.

Stored Procedure Builder project. A file that is created by the Stored Procedure Builder that contains
connection information and stored procedure objects that have not been successfully built in the
database.

storyboard. A visual summary of a video. The Video Extender includes features that can be used to
identify and store video frames that are representative of the shots in a video. These representative
frames can be used to build a storyboard.

string. In programming languages, the form of data used for storing and manipulating text.

strong typing. In DB2 UDB for OS/390, a process that guarantees that only user-defined functions and
operations that are defined on a distinct type can be applied to that type. For example, you cannot
directly compare two currency types, such as Canadian dollars and US dollars. But you can provide a
user-defined function to convert one currency to the other and then do the comparison.

Structured Query Language (SQL). A standardized language for defining and manipulating data in a
relational database.

subagent. A type of agent that works on subrequests. A single application can make many requests,
and each request can be broken into many subrequests. Therefore, there can be multiple subagents
working on behalf of the same application. All subagents working for the application are coordinated by
the coordinating agent for that application.

subcomponent. A group of closely related DB2 UDB for OS/390 modules that work together to provide
a general function.

subject area. In the Data Warehouse Center, a set of processes that create warehouse data for a
particular logical business area. Processes in a subject area operate on data for a particular subject to
create the detail data, data summaries, and cubes needed by that subject.

subordinate agent. See subagent.

subpage. In DB2 UDB for OS/390, the unit into which a physical index page can be divided.

subquery. A SELECT statement within the WHERE or HAVING clause of another SQL statement; a
nested SQL statement.

subscription. See subscription set.

subscription cycle. In DB2 replication, a process in which the Apply program retrieves changed data
for a given subscription set, replicates the changes to the target table, and updates the appropriate
replication control tables to reflect the progress it made.

Glossary

Appendix Q. Glossary 1417

subscription process. In DB2 replication, a process in which you define subscription sets and
subscription-set members. Contrast with registration process.

subscription set. In DB2 replication, the specification of a group of source tables, target tables, and the
control information that governs the replication of changed data. See also subscription-set member.

subscription-set member. In DB2 replication, a member of a subscription set. There is one member for
each source-target pair. Each member defines the structure of the target table and which rows and
columns will be replicated from the source table.

subselect. That form of a query that does not include an ORDER BY clause, an UPDATE clause, or
UNION operators.

substitution character. In SQL, a unique character that is substituted during character conversion for
any characters in the source program that do not have a match in the target coding representation.

subsystem. In DB2 UDB for OS/390, a distinct instance of a relational database management system
(RDBMS).

symbolic destination name. Specifies the name of a remote partner. The name corresponds to an entry
in the CPI Communications side information table that contains the necessary information (partner LU
name, mode name, partner TP name) for the client to set up an APPC connection to the server.

synchronization level. In APPC, the specification indicating whether the corresponding transaction
programs exchange confirmation requests and replies.

synchronous. Pertaining to two or more processes that depend upon the occurrences of specific events,
such as a common timing signal. Contrast with asynchronous.

sync point. See point of consistency.

synonym. In DB2 UDB for OS/390, an alternative name, in SQL, for a table or view. Synonyms can
only be used to refer to objects at the subsystem in which the synonym is defined.

syntactic character set. A set of 81 graphic characters that are registered in the IBM registry as character
set 00640. This set was originally recommended to the programming language community to be used for
syntactic purposes toward maximizing portability and interchangeability across systems and country
boundaries. It is contained in most of the primary registered character sets, with a few exceptions.
Compare to invariant character set.

Sysplex. See Parallel Sysplex.

Sysplex query parallelism. Parallel execution of a single query that is accomplished by using multiple
tasks on more than one DB2 UDB for OS/390 subsystem. See also query CP parallelism.

system administrator. The person at a computer installation who designs, controls, and manages the
use of the computer system.

system agent. A work request that DB2 UDB for OS/390 creates internally, such as prefetch processing,
deferred writes, and service tasks.

system catalog. See catalog.

Glossary

1418 SQL Reference

system conversation. The conversation that two DB2 UDB for OS/390 subsystems must establish to
process system messages before any distributed processing can begin.

system database directory. A directory that contains entries for every database that can be accessed
using the database manager. It is created when the first database is created or cataloged on the system.

system diagnostic work area (SDWA). In an OS/390 environment, the data that is recorded in a
SYS1.LOGREC entry that describes a program or hardware error.

system-managed space (SMS) table space. A table space whose space is managed by the operating
system. This storage model is based on files created under subdirectories, and managed by the file
system. Contrast with database managed space (DMS) table space.

system services control point (SSCP). The control point in a SNA network that provides network
services for dependent nodes.

Systems Network Architecture (SNA). The description of the logical structure, formats, protocols, and
operational sequences for transmitting information units through the networks and also the operational
sequences for controlling the configuration and operation of networks.

SYS1.DUMPxx data set. In an OS/390 environment, a data set that contains a system dump.

SYS1.LOGREC. In an OS/390 environment, a service aid that contains important information about
program and hardware errors.

T

table. A named data object consisting of a specific number of columns and some unordered rows. See
also base table.

table check constraint. In DB2 UDB for OS/390, a user-defined constraint that specifies the values that
specific columns of a base table can contain.

table designator. A column name qualifier that designates a specific object table.

table function. In DB2 UDB for OS/390, a function that receives a set of arguments and returns a table
to the SQL statement that refers to the function. A table function can be referenced only in the FROM
clause of a subselect.

table locator. In DB2 UDB for OS/390, a mechanism that allows access to trigger transition tables in the
FROM clause of SELECT statements, the subselect of INSERT statements, or from within user-defined
functions. A table locator is a fullword integer value that represents a transition table.

table queue. A mechanism for transferring rows between database nodes. Table queues are distributed
row streams with simplified rules for the insertion and removal of rows. Table queues can also be used
to deliver rows between different processes in the serial database.

table space. (1) An abstraction of a collection of containers into which database objects are stored. A
table space provides a level of indirection between a database and the tables stored within the database.
A table space:

v Has space on media storage devices assigned to it.

Glossary

Appendix Q. Glossary 1419

v Has tables created within it. These tables use space in the containers that belong to the table space.
The data, index, long field, and LOB portions of a table can be stored in the same table space, or can
be individually broken out into separate table spaces.

(2) In DB2 UDB for OS/390, a page set that is used to store the records in one or more tables.

table space container. A generic term describing an allocation of space to a table space. Depending on
the table space type, the container can be a directory, device, or file.

table space set. In DB2 UDB for OS/390, a set of table spaces and partitions that should be recovered
together for one of these reasons:
v Each of them contains a table that is a parent or descendent of a table in one of the others.
v The set contains a base table and associated auxiliary tables.

A table space set can contain both types of relationships.

target. In the Data Warehouse Center, a table, view, or file that is produced or populated by a step; the
output of a step.

target server. In DB2 replication, the database location of the target table. Normally this is also the
location of the Apply program.

target table. In DB2 replication, the table on the target server to which data is copied. It can be a user
copy table, a point-in-time table, a base aggregate table, a change aggregate table, a consistent-change-
data table, or a replica table.

task control block (TCB). A control block that is used to communicate information about tasks within
an address space that are connected to DB2 UDB for OS/390. An address space can support many task
connections (as many as one per task), but only one address space connection.

TCB. See task control block.

TCP/IP. See Transmission Control Protocol/Internet Protocol.

TCP/IP port. A 2-byte value that identifies an end user or a TCP/IP network application within a
TCP/IP host.

technical metadata. In the Data Warehouse Center, data that describes the technical aspects of the data,
such as its database type and length. Technical metadata includes information about where the data
comes from and the rules used to extract, clean, and transform the data. Much of the metadata in the
Data Warehouse Center is technical metadata. Contrast with business metadata.

temporary table. A table created during the processing of an SQL statement to hold intermediate
results. Contrast with result table.

temporary table space. A table space that can store only temporary tables.

territory. A portion of the POSIX locale that is mapped to the country code for internal processing by
the database manager.

thread. (1) In some operating systems, the smallest unit of operation to be performed in a process. (2)
The DB2 UDB for OS/390 structure that describes an application’s connection, traces its progress,

Glossary

1420 SQL Reference

processes resource functions, and delimits its accessibility to DB2 UDB for OS/390 resources and
services. Most DB2 UDB for OS/390 functions execute under a thread structure. Compare to allied thread
and database access thread.

three-part name. The full name of a table, view, or alias. It consists of a location name, authorization
ID, and an object name, separated by periods.

threshold trigger. An event that occurs when the value of a performance variable exceeds or falls
below a user-defined threshold value. The action that occurs as a result of a threshold trigger can be:

v Logging information in an alert log file.

v Displaying information in an alert log window.

v Generating an audio alarm.

v Issuing a message window.

v Invoking a predefined command or program.

time. A three-part value that designates a time of day in hours, minutes, and seconds.

time duration. A DECIMAL(6,0) value that represents a number of hours, minutes, and seconds.

timeron. A unit of measurement used to give a rough relative estimate of the resources, or cost,
required by the database server to execute two plans for the same query. The resources calculated in the
estimate include weighted processor and I/O costs.

timeout. Abnormal termination of either the DB2 UDB for OS/390 subsystem or of an application
because of the unavailability of resources. Installation specifications are set to determine both the
amount of time DB2 UDB for OS/390 is to wait for IRLM services after starting, and the amount of time
IRLM is to wait if a resource that an application requests is unavailable. If either of these time
specifications is exceeded, a timeout is declared.

timestamp. A seven-part value that consists of a date and time expressed in years, months, days, hours,
minutes, seconds, and microseconds.

timestamp duration. A DECIMAL(20,6) value that represents a number of years, months, days, hours,
minutes, seconds, and microseconds.

Tivoli Storage Manager (TSM). A client/server product that provides storage management and data
access services in a heterogeneous environment. TSM supports various communication methods,
provides administrative facilities to manage the backup and storage of files, and provides facilities for
scheduling backup operations.

TM Database. See Transaction Manager Database.

TMP. In an OS/390 environment, Terminal Monitor Program.

to-do. A state of a unit of recovery that indicates that the changes by the unit of recovery to recoverable
DB2 UDB for OS/390 resources are indoubt and must be either applied to the DASD media or backed
out, as determined by the commit coordinator.

token. The basic syntactic unit of a computing language. A token consists of one or more characters,
excluding the blank character and excluding characters within a string constant or delimited identifier.

Glossary

Appendix Q. Glossary 1421

topology and routing services (TRS). An APPN control point component that manages the topology
database and computes routes.

TP. See transaction program.

trace. A DB2 UDB for OS/390 facility that provides the ability to monitor and collect DB2 UDB for
OS/390 monitoring, auditing, performance, accounting, statistics, and serviceability (global) data.

transaction. (1) An exchange between a workstation and a program, two workstations, or two
programs that accomplish a particular action or result. An example is the entry of a customer’s deposit
and the update of the customer’s balance. Synonym for unit of work. (2) One Net.Data invocation. If
persistent Net.Data is used, then a transaction can span multiple Net.Data invocations.

transaction compensation. A process that restores rows that are affected by a committed transaction
that is rejected. When a committed transaction is rejected, the rows are restored to the state that they
were in before the transaction was committed.

transaction lock. In DB2 UDB for OS/390, a lock that is used to control concurrent execution of SQL
statements.

transaction manager. A function that assigns identifiers to transactions, monitors their progress, and
takes responsibility for transaction completion and failure recovery.

Transaction Manager Database (TM Database). A database that is used to log transactions when a
two-phase commit (SYNCPOINT TWOPHASE) is used with DB2 databases. In the event of transaction
failure, the TM Database information can be accessed to resynchronize databases involved in the failed
transaction.

transaction program (TP). An application program that uses APPC to communicate with a partner
application program.

transaction program name. In SNA LU 6.2 conversations, the name of the program at the remote
logical unit that is to be the other half of the conversation.

transformation. In the Data Warehouse Center, an operation performed on data. Pivot and cleanse are
types of transformations.

transformer. A program that operates on warehouse data. The Data Warehouse Center provides two
types of transformers: statistical transformers, which provide statistics about the data in one or more
tables; and warehouse transformers, which prepare the data for analysis. Each step has a type that
corresponds to the transformer used in a process that performs types of data manipulation. For example,
a clean step uses the Clean transformer.

transition table. A named temporary table that contains the transition values for each row affected by
the triggering modification. An old transition table contains the values of affected rows before the
modification is applied, and a new transition table contains the values of the affected rows after the
modification is applied.

transition variable. A variable that is valid only in FOR EACH ROW triggers. It allows access to the
transition values for the current row. An old transition variable is the value of the row before the
modification is applied, and the new transition variable is the value of the row after the modification is
applied.

Glossary

1422 SQL Reference

Transmission Control Protocol/Internet Protocol (TCP/IP). A set of communications protocols that
provide peer-to-peer connectivity functions for both local and wide area networks.

trigger. (1) In DB2, an object in a database that is invoked indirectly by the database manager when a
particular SQL statement is run. (2) A set of SQL statements that are stored in a DB2 UDB for OS/390
database and executed when a certain event occurs in a DB2 UDB for OS/390 table.

trigger activation. In DB2 UDB for OS/390, the process that occurs when the trigger event that is
defined in a trigger definition is executed. Trigger activation consists of the evaluation of the triggered
action condition and conditional execution of the triggered SQL statements.

trigger activation time. In DB2 UDB for OS/390, an indication in a trigger definition of whether the
trigger should be activated before or after the triggered event.

trigger body. In DB2 UDB for OS/390, the set of SQL statements that is executed when a trigger is
activated and its triggered action condition evaluates to true.

trigger cascading. In DB2 UDB for OS/390, the process that occurs when the triggered action of a
trigger causes the activation of another trigger.

triggered action. (1) The action that is executed when the trigger event occurs. (2) In DB2 UDB for
OS/390, the SQL logic that is performed when a trigger is activated. The triggered action consists of an
optional triggered action condition and a set of triggered SQL statements that are executed only if the
condition evaluates to true.

triggered-action condition. (1) The search condition that controls the execution of the SQL statements
within the triggered action. (2) In DB2 UDB for OS/390, an optional part of the triggered action. This
Boolean condition appears as a WHEN clause and specifies a condition that DB2 evaluates to determine
if the triggered SQL statements should be executed.

triggered SQL statements. In DB2 UDB for OS/390, the set of SQL statements that is executed when a
trigger is activated and its triggered action condition evaluates to true. Triggered SQL statements are also
called the trigger body.

trigger event. In a trigger definition, an update operation (INSERT, UPDATE, or DELETE statement)
that causes the trigger to be run.

trigger granularity. In DB2 UDB for OS/390, a characteristic of a trigger, which determines whether the
trigger is activated:
v Only once for the triggering SQL statement.
v Once for each row that the SQL statement modifies.

trigger package. In DB2 UDB for OS/390, a package that is created when a CREATE TRIGGER
statement is executed. The package is executed when the trigger is activated.

triggering event. In DB2 UDB for OS/390, the specified operation in a trigger definition that causes the
activation of that trigger. The triggering event is comprised of a triggering operation (INSERT, UPDATE,
or DELETE) and a triggering table on which the operation is performed.

triggering SQL operation. In DB2 UDB for OS/390, the SQL operation that causes a trigger to be
activated when performed on the triggering table.

Glossary

Appendix Q. Glossary 1423

triggering table. In DB2 UDB for OS/390, the table for which a trigger is created. When the defined
triggering event occurs on this table, the trigger is activated.

truncation. The process of discarding part of a result from an operation when it exceeds memory or
storage capacity.

TSO. In an OS/390 environment, Time-Sharing Option.

TSO attachment facility. A DB2 UDB for OS/390 facility consisting of the DSN command processor
and DB2I. Applications that are not written for the CICS or IMS environments can run under the TSO
attachment facility.

tuning parameters table. A table at the source server that contains timing information used by the
Capture program. The information includes:

v How long to keep rows in the change data table.

v How much time can elapse before changes are stored in a database log or journal.

v How often to commit changed data to the unit of work tables.

two-phase commit. A two-step process by which recoverable resources and an external subsystem are
committed. During the first step, the database manager subsystems are polled to ensure that they are
ready to commit. If all subsystems respond positively, the database manager instructs them to commit.

typed parameter marker. A parameter marker that is specified along with its target data type. It has the
general form:

CAST(? AS data-type)

type 1 indexes. Indexes that were created by a release of DB2 before DB2 for MVS/ESA Version 4 or
that are specified as type 1 indexes in Version 4. Contrast with type 2 indexes. As of DB2 UDB for OS/390
Version 7, type 1 indexes are no longer supported.

type 2 indexes. Indexes that are created on a release of DB2 after DB2 for OS/390 Version 6 or that are
specified as type 2 indexes in Version 4 or Version 6. Contrast with type 1 indexes.

U

UDF. See user-defined function.

UDT. See user-defined type.

unambiguous cursor. A cursor that allows a relational database to determine whether blocking can be
used with the answer set. A cursor defined FOR FETCH ONLY or FOR READ ONLY can be used with
blocking, whereas a cursor defined FOR UPDATE cannot.

unbind session (UNBIND). A request to deactivate a session between two logical units (LUs).

uncommitted read (UR). An isolation level that allows an application to access uncommitted changes
of other transactions. The application does not lock other applications out of the row it is reading, unless
the other application attempts to drop or alter the table.

uncoordinated transaction. A transaction that accesses more than one resource, but its commit or
rollback is not being coordinated by a transaction manager.

Glossary

1424 SQL Reference

underlying view. In DB2 UDB for OS/390, the view on which another view is directly or indirectly
defined.

undo. A state of a unit of recovery that indicates that the changes that the unit of recovery made to
recoverable DB2 UDB for OS/390 resources must be backed out.

Unicode. An international character encoding scheme that is a subset of the ISO 10646 standard. Each
character supported is defined using a unique 2-byte code.

unique constraint. The rule that no two values in a primary key or key of a unique index can be the
same. Also referred to as uniqueness constraint.

unique index. An index that ensures that no identical key values are stored in a table.

unique key. A key that is constrained so that no two of its values are equal.

unit of recovery. A recoverable sequence of operations within a single resource manager, such as an
instance of DB2 UDB for OS/390. Contrast with unit of work.

unit of work. A recoverable sequence of operations within an application process. At any time, an
application process is a single unit of work, but the life of an application process can involve many units
of work as a result of commit or rollback operations. In a DB2 UDB for OS/390 multi-site update
operation, a single unit of work can include several units of recovery. Synonym for transaction.

unit-of-work table. A replication control table at the source server that contains commit records read
from the database log or journal. The records include a unit-of-recovery ID that can be used to join the
unit-of-work table and the change data table to produce transaction-consistent change data. For DB2, the
unit-of-work table optionally includes the correlation ID, which can be useful for auditing purposes.

unlock. The act of releasing an object or system resource that was previously locked and returning it to
general availability within DB2 UDB for OS/390.

untyped parameter marker. A parameter marker that is specified without its target data type. It has the
form of a single question mark.

update rule. A condition enforced by the database manager that must be met before a column can be
updated.

update trigger. In DB2 UDB for OS/390, a trigger that is defined with the triggering SQL operation
UPDATE.

upstream. In DB2 UDB for OS/390, the node in the syncpoint tree that is responsible, in addition to
other recovery or resource managers, for coordinating the execution of a two-phase commit.

UR. See uncommitted read.

URE. In DB2 UDB for OS/390, unit of recovery element.

URID (unit of recovery ID). In DB2 UDB for OS/390, the LOGRBA of the first log record for a unit of
recovery. The URID also appears in all subsequent log records for that unit of recovery.

user copy table. In DB2 replication, a target table whose content matches all or part of a source table
and contains only user data columns.

Glossary

Appendix Q. Glossary 1425

user-defined data type (UDT). See distinct type.

user-defined distinct type. See distinct type.

user-defined function (UDF). A function that is defined to the database management system and can
be referred to in SQL queries. It can be one of the following functions:

v An external function, in which the body of the function is written in a programming language whose
arguments are scalar values and a scalar result is produced for each invocation.

v A sourced function, implemented by another built-in or user-defined function already known to the
DBMS. This function can be either a scalar function or column (aggregating) function, and returns a
single value from a set of values (for example, MAX or AVG).

user-defined performance variable. A performance variable created by a user and added to the
performance variable profile.

user-defined program. A program that a user supplies and defines to the Data Warehouse Center, as
contrasted with supplied programs, which are included with and defined automatically in the Data
Warehouse Center.

user-defined type (UDT). A data type that is not native to the database manager and was created by a
user. In DB2 UDB for OS/390, the term distinct type is used instead of user-defined type.

user mapping. An association between the authorization under which a user connects to a federated
server and the authorization under which the user connects to a data source.

user table. In DB2 replication, a table created for and used by an application before it is defined as a
replication source. It is used as the source for updates to read-only target tables, consistent-change-data
tables, replicas, and row-replica tables.

UT. In DB2 UDB for OS/390, utility-only access.

UTC. See Coordinated Universal Time.

V

value. (1) The smallest unit of data manipulated in SQL. (2) A specific data item at the intersection of a
column and a row.

variable. A data element that specifies a value that can be changed.

variant function. A user-defined function whose result is dependent on its input parameter values as
well as other factors. Successive invocations with the same parameter values might produce different
results. Contrast with not-variant function.

varying-length string. A character, graphic, or binary string whose length is not fixed but can range
within set limits. Also referred to as a variable-length string.

version. In DB2 UDB for OS/390, a member of a set of similar programs, DBRMs, packages, or LOBs.
v A version of a program is the source code that is produced by precompiling the program. The

program version is identified by the program name and a timestamp (consistency token).
v A version of a DBRM is the DBRM that is produced by precompiling a program. The DBRM version

is identified by the same program name and timestamp as a corresponding program version.

Glossary

1426 SQL Reference

v A version of a package is the result of binding a DBRM within a particular database system. The
package version is identified by the same program name and consistency token as the DBRM.

v A version of a LOB is a copy of a LOB value at a point in time. The version number for a LOB is
stored in the auxiliary index entry for the LOB.

view. A logical table that consists of data that is generated by a query. Contrast with base table.

view check option. In DB2 UDB for OS/390, an option that specifies whether every row that is inserted
or updated through a view must conform to the definition of that view. A view check option can be
specified with the WITH CASCADED CHECK OPTION, WITH CHECK OPTION, or WITH LOCAL
CHECK OPTION clauses of the CREATE VIEW statement.

Virtual Storage Access Method (VSAM). An access method for direct or sequential processing of
fixed-length and varying-length records on direct access devices. The records in a VSAM data set or file
can be organized in logical sequence by a key field (key sequence), in the physical sequence in which
they are written on the data set or file (entry-sequence), or by relative-record number.

Virtual Telecommunications Access Method (VTAM). In an OS/390 environment, an IBM licensed
program that controls communication and the flow of data in an SNA network.

Visual Explain. A tool that lets database administrators and application programmers use a graphical
interface to display and analyze detailed information on the access plan of a given SQL statement. The
tasks provided by this tool can be accessed from the Control Center.

VSAM. See Virtual Storage Access Method.

VTAM. See Virtual Telecommunication Access Method.

W

warehouse. A subject-oriented nonvolatile collection of data used to support strategic decision making.
The warehouse is the central point of data integration for business intelligence. It is the source of data
for datamarts within an enterprise and delivers a common view of enterprise data.

warehouse agent. In the Data Warehouse Center, a run-time process that manages data movement and
transformation.

warehouse control database. The Data Warehouse Center database that contains the control tables that
are required to store Data Warehouse Center metadata.

warehouse program group. In the Data Warehouse Center, a container (folder) that holds program
objects.

warehouse source. A subset of tables and views from a single database, or a set of files, that have been
defined to the Data Warehouse Center.

warehouse target. A subset of tables, indexes, and aliases from a single database that are managed by
the Data Warehouse Center.

warm start. (1) A restart that allows reuse of previously initialized input and output work queues.
Contrast with cold start. (2) In DB2 replication, a start of the Capture program that allows reuse of
previously initialized input and output work queues.

Glossary

Appendix Q. Glossary 1427

well known address. An address used to uniquely identify a particular node in the network to
establish connections between nodes. The well known address is a combination of the network address
and the port used on the logical node.

WLM application environment. An MVS Workload Manager attribute that is associated with one or
more stored procedures. The WLM application environment determines the address space in which a
given DB2 UDB for OS/390 stored procedure runs.

work file. In DB2 replication, a temporary file used by the Apply program when processing a
subscription set.

wrapper. In a federated database system, the mechanism by which the federated server invokes
routines to communicate with, and retrieve data from, a data source. The routines are contained in a
library called a wrapper module.

write to operator (WTO). An optional user-coded service that allows a message to be written to the
system console operator informing the operator of errors and unusual system conditions that may need
to be corrected.

WTO. See write to operator.

WTOR. A write to operator (WTO) with reply.

X

XCF. See cross-system coupling facility.

XID. Exchange station ID.

XRF. See extended recovery facility.

Glossary

1428 SQL Reference

Appendix R. Using the DB2 Library

The DB2 Universal Database library consists of online help, books (PDF and
HTML), and sample programs in HTML format. This section describes the
information that is provided, and how you can access it.

To access product information online, you can use the Information Center. For
more information, see “Accessing Information with the Information Center”
on page 1443. You can view task information, DB2 books, troubleshooting
information, sample programs, and DB2 information on the Web.

DB2 PDF Files and Printed Books

DB2 Information
The following table divides the DB2 books into four categories:

DB2 Guide and Reference Information
These books contain the common DB2 information for all platforms.

DB2 Installation and Configuration Information
These books are for DB2 on a specific platform. For example, there are
separate Quick Beginnings books for DB2 on OS/2, Windows, and
UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs that are
installed with the Application Development Client. The samples are
for informational purposes and do not replace the actual programs.

Release notes
These files contain late-breaking information that could not be
included in the DB2 books.

The installation manuals, release notes, and tutorials are viewable in HTML
directly from the product CD-ROM. Most books are available in HTML on the
product CD-ROM for viewing and in Adobe Acrobat (PDF) format on the DB2
publications CD-ROM for viewing and printing. You can also order a printed
copy from IBM; see “Ordering the Printed Books” on page 1439. The following
table lists books that can be ordered.

On OS/2 and Windows platforms, you can install the HTML files under the
sqllib\doc\html directory. DB2 information is translated into different

© Copyright IBM Corp. 1993, 2000 1429

languages; however, all the information is not translated into every language.
Whenever information is not available in a specific language, the English
information is provided

On UNIX platforms, you can install multiple language versions of the HTML
files under the doc/%L/html directories, where %L represents the locale. For
more information, refer to the appropriate Quick Beginnings book.

You can obtain DB2 books and access information in a variety of ways:
v “Viewing Information Online” on page 1442
v “Searching Information Online” on page 1446
v “Ordering the Printed Books” on page 1439
v “Printing the PDF Books” on page 1438

Table 147. DB2 Information

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Guide and Reference Information

Administration Guide Administration Guide: Planning provides
an overview of database concepts,
information about design issues (such as
logical and physical database design),
and a discussion of high availability.

Administration Guide: Implementation
provides information on implementation
issues such as implementing your
design, accessing databases, auditing,
backup and recovery.

Administration Guide: Performance
provides information on database
environment and application
performance evaluation and tuning.

You can order the three volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8934.

SC09-2946
db2d1x70

SC09-2944
db2d2x70

SC09-2945
db2d3x70

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures that you can use to manage
your databases. This book also explains
how to call APIs from your applications.

SC09-2947

db2b0x70

db2b0

1430 SQL Reference

Table 147. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

SC09-2948

db2axx70

db2ax

APPC, CPI-C, and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.

Available in HTML format only.

No form number

db2apx70

db2ap

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or Java (JDBC and
SQLJ). Discussion topics include writing
stored procedures, writing user-defined
functions, creating user-defined types,
using triggers, and developing
applications in partitioned environments
or with federated systems.

SC09-2949

db2a0x70

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2950

db2l0x70

db2l0

Command Reference Explains how to use the Command Line
Processor and describes the DB2
commands that you can use to manage
your database.

SC09-2951

db2n0x70

db2n0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers. This book
also details how to use DRDA
application servers with DB2 Connect
application requesters.

Available in HTML and PDF only.

No form number

db2h1x70

db2h1

Appendix R. Using the DB2 Library 1431

Table 147. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Data Movement Utilities
Guide and Reference

Explains how to use DB2 utilities, such
as import, export, load, AutoLoader, and
DPROP, that facilitate the movement of
data.

SC09-2955

db2dmx70

db2dm

Data Warehouse Center
Administration Guide

Provides information on how to build
and maintain a data warehouse using
the Data Warehouse Center.

SC26-9993

db2ddx70

db2dd

Data Warehouse Center
Application Integration
Guide

Provides information to help
programmers integrate applications with
the Data Warehouse Center and with the
Information Catalog Manager.

SC26-9994

db2adx70

db2ad

DB2 Connect User’s Guide Provides concepts, programming, and
general usage information for the DB2
Connect products.

SC09-2954

db2c0x70

db2c0

DB2 Query Patroller
Administration Guide

Provides an operational overview of the
DB2 Query Patroller system, specific
operational and administrative
information, and task information for the
administrative graphical user interface
utilities.

SC09-2958

db2dwx70

db2dw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patroller.

SC09-2960

db2wwx70

db2ww

Glossary Provides definitions for terms used in
DB2 and its components.

Available in HTML format and in the
SQL Reference.

No form number

db2t0x70

db2t0

Image, Audio, and Video
Extenders Administration
and Programming

Provides general information about DB2
extenders, and information on the
administration and configuration of the
image, audio, and video (IAV) extenders
and on programming using the IAV
extenders. It includes reference
information, diagnostic information
(with messages), and samples.

SC26-9929

dmbu7x70

dmbu7

Information Catalog
Manager Administration
Guide

Provides guidance on managing
information catalogs.

SC26-9995

db2dix70

db2di

1432 SQL Reference

Table 147. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Information Catalog
Manager Programming
Guide and Reference

Provides definitions for the architected
interfaces for the Information Catalog
Manager.

SC26-9997

db2bix70

db2bi

Information Catalog
Manager User’s Guide

Provides information on using the
Information Catalog Manager user
interface.

SC26-9996

db2aix70

db2ai

Installation and
Configuration Supplement

Guides you through the planning,
installation, and setup of
platform-specific DB2 clients. This
supplement also contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, the
configuration of distributed requests,
and accessing heterogeneous data
sources.

GC09-2957

db2iyx70

db2iy

Message Reference Lists messages and codes issued by DB2,
the Information Catalog Manager, and
the Data Warehouse Center, and
describes the actions you should take.

You can order both volumes of the
Message Reference in the English
language in North America with the
form number SBOF-8932.

Volume 1
GC09-2978

db2m1x70
Volume 2
GC09-2979

db2m2x70

db2m0

OLAP Integration Server
Administration Guide

Explains how to use the Administration
Manager component of the OLAP
Integration Server.

SC27-0787

db2dpx70

n/a

OLAP Integration Server
Metaoutline User’s Guide

Explains how to create and populate
OLAP metaoutlines using the standard
OLAP Metaoutline interface (not by
using the Metaoutline Assistant).

SC27-0784

db2upx70

n/a

OLAP Integration Server
Model User’s Guide

Explains how to create OLAP models
using the standard OLAP Model
Interface (not by using the Model
Assistant).

SC27-0783

db2lpx70

n/a

OLAP Setup and User’s
Guide

Provides configuration and setup
information for the OLAP Starter Kit.

SC27-0702

db2ipx70

db2ip

OLAP Spreadsheet Add-in
User’s Guide for Excel

Describes how to use the Excel
spreadsheet program to analyze OLAP
data.

SC27-0786

db2epx70

db2ep

Appendix R. Using the DB2 Library 1433

Table 147. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

OLAP Spreadsheet Add-in
User’s Guide for Lotus
1-2-3

Describes how to use the Lotus 1-2-3
spreadsheet program to analyze OLAP
data.

SC27-0785

db2tpx70

db2tp

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9920

db2e0x70

db2e0

Spatial Extender User’s
Guide and Reference

Provides information about installing,
configuring, administering,
programming, and troubleshooting the
Spatial Extender. Also provides
significant descriptions of spatial data
concepts and provides reference
information (messages and SQL) specific
to the Spatial Extender.

SC27-0701

db2sbx70

db2sb

SQL Getting Started Introduces SQL concepts and provides
examples for many constructs and tasks.

SC09-2973

db2y0x70

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. This book also
includes information about
release-to-release incompatibilities,
product limits, and catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8933.

Volume 1
SC09-2974

db2s1x70

Volume 2
SC09-2975

db2s2x70

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. This book explains
how to use the information to
understand database activity, improve
performance, and determine the cause of
problems.

SC09-2956

db2f0x70

db2f0

Text Extender
Administration and
Programming

Provides general information about DB2
extenders and information on the
administration and configuring of the
text extender and on programming using
the text extenders. It includes reference
information, diagnostic information
(with messages) and samples.

SC26-9930

desu9x70

desu9

1434 SQL Reference

Table 147. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

GC09-2850

db2p0x70

db2p0

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 7.

SC09-2976

db2q0x70

db2q0

DB2 Installation and Configuration Information

DB2 Connect Enterprise
Edition for OS/2 and
Windows Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2953

db2c6x70

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Enterprise
Edition on UNIX-based platforms. This
book also contains installation and setup
information for many supported clients.

GC09-2952

db2cyx70

db2cy

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Personal
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for all supported clients.

GC09-2967

db2c1x70

db2c1

DB2 Connect Personal
Edition Quick Beginnings
for Linux

Provides planning, installation,
migration, and configuration information
for DB2 Connect Personal Edition on all
supported Linux distributions.

GC09-2962

db2c4x70

db2c4

DB2 Data Links Manager
Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX and
Windows 32-bit operating systems.

GC09-2966

db2z6x70

db2z6

Appendix R. Using the DB2 Library 1435

Table 147. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2964

db2v3x70

db2v3

DB2 Enterprise - Extended
Edition for Windows Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows 32-bit operating systems. This
book also contains installation and setup
information for many supported clients.

GC09-2963

db2v6x70

db2v6

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. This book also
contains installation and setup
information for many supported clients.

GC09-2968

db2i2x70

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2970

db2ixx70

db2ix

DB2 for Windows Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on Windows
32-bit operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2971

db2i6x70

db2i6

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2 and Windows 32-bit
operating systems.

GC09-2969

db2i1x70

db2i1

DB2 Personal Edition
Quick Beginnings for
Linux

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on all supported Linux
distributions.

GC09-2972

db2i4x70

db2i4

1436 SQL Reference

Table 147. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Query Patroller
Installation Guide

Provides installation information about
DB2 Query Patroller.

GC09-2959

db2iwx70

db2iw

DB2 Warehouse Manager
Installation Guide

Provides installation information for
warehouse agents, warehouse
transformers, and the Information
Catalog Manager.

GC26-9998

db2idx70

db2id

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2. The
sample programs are provided for
informational purposes only. Not all
samples are available in all
programming languages. The HTML
samples are only available when the DB2
Application Development Client is
installed.

For more information on the programs,
refer to the Application Building Guide.

No form number db2hs

Release Notes

DB2 Connect Release
Notes

Provides late-breaking information that
could not be included in the DB2
Connect books.

See note #2. db2cr

DB2 Installation Notes Provides late-breaking
installation-specific information that
could not be included in the DB2 books.

Available on
product
CD-ROM only.

DB2 Release Notes Provides late-breaking information about
all DB2 products and features that could
not be included in the DB2 books.

See note #2. db2ir

Notes:

1. The character x in the sixth position of the file name indicates the
language version of a book. For example, the file name db2d0e70 identifies
the English version of the Administration Guide and the file name db2d0f70
identifies the French version of the same book. The following letters are
used in the sixth position of the file name to indicate the language version:

Language Identifier
Brazilian Portuguese b

Appendix R. Using the DB2 Library 1437

Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

2. Late breaking information that could not be included in the DB2 books is
available in the Release Notes in HTML format and as an ASCII file. The
HTML version is available from the Information Center and on the
product CD-ROMs. To view the ASCII file:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L represents the locale
name and DB2DIR represents:
– /usr/lpp/db2_07_01 on AIX
– /opt/IBMdb2/V7.1 on HP-UX, PTX, Solaris, and Silicon Graphics

IRIX
– /usr/IBMdb2/V7.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed. On OS/2 platforms, you can
also double-click the IBM DB2 folder and then double-click the Release
Notes icon.

Printing the PDF Books
If you prefer to have printed copies of the books, you can print the PDF files
found on the DB2 publications CD-ROM. Using the Adobe Acrobat Reader,
you can print either the entire book or a specific range of pages. For the file
name of each book in the library, see Table 147 on page 1430.

1438 SQL Reference

You can obtain the latest version of the Adobe Acrobat Reader from the
Adobe Web site at http://www.adobe.com.

The PDF files are included on the DB2 publications CD-ROM with a file
extension of PDF. To access the PDF files:
1. Insert the DB2 publications CD-ROM. On UNIX-based platforms, mount

the DB2 publications CD-ROM. Refer to your Quick Beginnings book for
the mounting procedures.

2. Start the Acrobat Reader.
3. Open the desired PDF file from one of the following locations:

v On OS/2 and Windows platforms:
x:\doc\language directory, where x represents the CD-ROM drive and
language represent the two-character country code that represents your
language (for example, EN for English).

v On UNIX-based platforms:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

You can also copy the PDF files from the CD-ROM to a local or network drive
and read them from there.

Ordering the Printed Books

You can order the printed DB2 books either individually or as a set (in North
America only) by using a sold bill of forms (SBOF) number. To order books,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada. You can
also order the books from the Publications Web page at
http://www.elink.ibmlink.ibm.com/pbl/pbl.

Two sets of books are available. SBOF-8935 provides reference and usage
information for the DB2 Warehouse Manager. SBOF-8931 provides reference
and usage information for all other DB2 Universal Database products and
features. The contents of each SBOF are listed in the following table:

Appendix R. Using the DB2 Library 1439

Table 148. Ordering the printed books

SBOF Number Books Included

SBOF-8931 v Administration Guide: Planning

v Administration Guide: Implementation

v Administration Guide: Performance

v Administrative API Reference

v Application Building Guide

v Application Development Guide

v CLI Guide and Reference

v Command Reference

v Data Movement Utilities Guide and
Reference

v Data Warehouse Center Administration
Guide

v Data Warehouse Center Application
Integration Guide

v DB2 Connect User’s Guide

v Installation and Configuration
Supplement

v Image, Audio, and Video Extenders
Administration and Programming

v Message Reference, Volumes 1 and 2

v OLAP Integration Server
Administration Guide

v OLAP Integration Server Metaoutline
User’s Guide

v OLAP Integration Server Model User’s
Guide

v OLAP Integration Server User’s Guide

v OLAP Setup and User’s Guide

v OLAP Spreadsheet Add-in User’s
Guide for Excel

v OLAP Spreadsheet Add-in User’s
Guide for Lotus 1-2-3

v Replication Guide and Reference

v Spatial Extender Administration and
Programming Guide

v SQL Getting Started

v SQL Reference, Volumes 1 and 2

v System Monitor Guide and Reference

v Text Extender Administration and
Programming

v Troubleshooting Guide

v What’s New

SBOF-8935 v Information Catalog Manager
Administration Guide

v Information Catalog Manager User’s
Guide

v Information Catalog Manager
Programming Guide and Reference

v Query Patroller Administration Guide

v Query Patroller User’s Guide

DB2 Online Documentation

Accessing Online Help
Online help is available with all DB2 components. The following table
describes the various types of help.

1440 SQL Reference

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command represents a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

Client Configuration
Assistant Help

Command Center Help

Control Center Help

Data Warehouse Center
Help

Event Analyzer Help

Information Catalog
Manager Help

Satellite Administration
Center Help

Script Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
overview and prerequisite
information you need to
know, and it describes how
to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message and any action you
should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn represents a valid message
identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext represents the file where you
want to save the message help.

Appendix R. Using the DB2 Library 1441

Type of Help Contents How to Access...

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the
SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL
state and class code represents the first two digits
of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Viewing Information Online
The books included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs:
v If you are running DB2 administration tools, use the Information Center.
v From a browser, click File —>Open Page. The page you open contains

descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

INSTHOME/sqllib/doc/%L/html/index.htm

where %L represents the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

1442 SQL Reference

If you have not installed the Information Center, you can open the page
by double-clicking the DB2 Information icon. Depending on the system
you are using, the icon is in the main product folder or the Windows
Start menu.

Installing the Netscape Browser
If you do not already have a Web browser installed, you can install Netscape
from the Netscape CD-ROM found in the product boxes. For detailed
instructions on how to install it, perform the following:
1. Insert the Netscape CD-ROM.
2. On UNIX-based platforms only, mount the CD-ROM. Refer to your Quick

Beginnings book for the mounting procedures.
3. For installation instructions, refer to the CDNAVnn.txt file, where nn

represents your two character language identifier. The file is located at the
root directory of the CD-ROM.

Accessing Information with the Information Center
The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

You can open the Information Center by double-clicking the Information
Center icon. Depending on the system you are using, the icon is in the
Information folder in the main product folder or the Windows Start menu.

You can also access the Information Center by using the toolbar and the Help
menu on the DB2 Windows platform.

The Information Center provides six types of information. Click the
appropriate tab to look at the topics provided for that type.

Tasks Key tasks you can perform using DB2.

Reference DB2 reference information, such as keywords, commands, and
APIs.

Books DB2 books.

Troubleshooting
Categories of error messages and their recovery actions.

Sample Programs
Sample programs that come with the DB2 Application
Development Client. If you did not install the DB2
Application Development Client, this tab is not displayed.

Web DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from
your system.

Appendix R. Using the DB2 Library 1443

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides a find feature, so you can look for a specific
topic without browsing the lists.

For a full text search, follow the hypertext link in the Information Center to
the Search DB2 Online Information search form.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server
using one of the following methods:

On Windows
Click Start and select Programs —> IBM DB2 —> Information —>
Start HTML Search Server.

On OS/2
Double-click the DB2 for OS/2 folder, and then double-click the Start
HTML Search Server icon.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: The Search function is not available in the Linux, PTX, and Silicon
Graphics IRIX environments.

Using DB2 Wizards
Wizards help you complete specific administration tasks by taking you
through each task one step at a time. Wizards are available through the
Control Center and the Client Configuration Assistant. The following table
lists the wizards and describes their purpose.

Note: The Create Database, Create Index, Configure Multisite Update, and
Performance Configuration wizards are available for the partitioned
database environment.

Wizard Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Backup Database Determine, create, and schedule a backup
plan.

From the Control Center, right-click
the database you want to back up
and select Backup —> Database
Using Wizard.

1444 SQL Reference

Wizard Helps You to... How to Access...

Configure Multisite
Update

Configure a multisite update, a distributed
transaction, or a two-phase commit.

From the Control Center, right-click
the Databases folder and select
Multisite Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, right-click
the Databases folder and select
Create —> Database Using
Wizard.

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, right-click
the Tables icon and select Create
—> Table Using Wizard.

Create Table Space Create a new table space. From the Control Center, right-click
the Table Spaces icon and select
Create —> Table Space Using
Wizard.

Create Index Advise which indexes to create and drop for
all your queries.

From the Control Center, right-click
the Index icon and select Create
—> Index Using Wizard.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, right-click
the database you want to tune and
select Configure Performance
Using Wizard.

For the partitioned database
environment, from the Database
Partitions view, right-click the first
database partition you want to
tune and select Configure
Performance Using Wizard.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, right-click
the database you want to restore
and select Restore —> Database
Using Wizard.

Setting Up a Document Server
By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, perform
the following steps:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory that contains
all the necessary HTML and GIF files that make up the book. Ensure that
the directory structure remains the same.

Appendix R. Using the DB2 Library 1445

2. Configure the Web server to look for the files in the new location. For
information, refer to the NetQuestion Appendix in the Installation and
Configuration Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. When you are able to view the book files, you can bookmark commonly
viewed topics. You will probably want to bookmark the following pages:
v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about how you can serve the DB2 Universal Database online
documentation files from a central machine, refer to the NetQuestion
Appendix in the Installation and Configuration Supplement.

Searching Information Online
To find information in the HTML files, use one of the following methods:
v Click Search in the top frame. Use the search form to find a specific topic.

This function is not available in the Linux, PTX, or Silicon Graphics IRIX
environments.

v Click Index in the top frame. Use the index to find a specific topic in the
book.

v Display the table of contents or index of the help or the HTML book, and
then use the find function of the Web browser to find a specific topic in the
book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 1443 for
details.

1446 SQL Reference

Appendix S. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993, 2000 1447

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

1448 SQL Reference

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix S. Notices 1449

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

1450 SQL Reference

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Appendix S. Notices 1451

1452 SQL Reference

Index

Special Characters
* (asterisk)

in subselect column names 395
naming columns, use in

select 395
? (question mark) 895

A
ABS or ABSVAL function 210

detailed format description 251
values and arguments, rules

for 251
ACOS function 210

detailed format description 252
values and arguments, rules

for 252
ADD clause in ALTER TABLE 483
ADD column clause, order of

processing 497
add database wizard 1444, 1445
ADVISE_INDEX table 1309
ADVISE_INDEX table

definition 1321
ADVISE_WORKLOAD table 1312
ADVISE_WORKLOAD table

definition 1323
alias

comment descriptions, adding to
catalog 532

CREATE ALIAS statement 566
deleting, using DROP

statement 868
description 15, 71
TABLE_NAME function 362
TABLE_SCHEMA function 364

ALIAS clause
COMMENT ON statement 534
DROP statement 871

alias-name 67
ALL clause

SELECT statement, use in 395,
409

ALL in quantified predicate 188
ALL option

comparison, set operator, effect
on 436

ALL PRIVILEGES clause
GRANT statement (table, view or

nickname) 927

ALL PRIVILEGES clause (continued)
REVOKE statement, table, view

or nickname privileges 985
ALLOCATE 1062
ALLOCATE CURSOR

statement 1062, 1063
ALTER BUFFERPOOL

statement 464, 465
ALTER clause

GRANT statement (table or
view) 927

REVOKE statement, removing
privilege for 985

ALTER NICKNAME statement 466
ALTER NODEGROUP

statement 469, 472
ALTER SERVER statement 473
ALTER TABLE statement 503

authorization required,
summary 477

examples of usage 500
syntax diagram 483

ALTER TABLESPACE
statement 503, 508

ALTER TYPE (Structured)
statement 509, 515

ALTER USER MAPPING
statement 516

ALTER VIEW statement 519
authorization required,

summary 518
syntax diagram 518

ambiguous cursor 845
ambiguous reference, error

conditions for 131
AND truth table 205
ANY in quantified predicate 188
application process, definition of 24
application program

concurrency 24
uses SQLDA 1113

application requester, overview 29
application server

overview 29
role of in connections 30

arguments of COALESCE
result data type 107

arithmetic
AVG function, operation of 229

arithmetic (continued)
columns, adding values

(SUM) 248
constants

definition of 115
NOT NULL, required

attribute for 115
CORRELATION function,

operation of 231
COVARIANCE function,

operation of 236
date operations, rules for 168
datetime, SQL rules for 165
decimal operations, scale and

precision formulas 163
decimal value, precision and

scale 82
decimal values from numeric

expressions 280
distinct type operands 163
expressions, adding values

(SUM) 248
floating point, range and

precision 82
floating point operands

rules and precision
values 163

with integers, result of 163
floating point values from

numeric expressions 296, 344
integer

large integer, range and
precision 82

small integer, range and
precision 82

integer values, returning from
expressions 257, 310

maximum value, finding 239
minimum value, finding 241
operators, summary of

results 161
parameter marker, syntax and

operations 956
REGRESSION Functions function,

operation of 243
remote use of, conversions,

overview 41
small integer values, returning

from expressions 354

© Copyright IBM Corp. 1993, 2000 1453

arithmetic (continued)
STDDEV function, operation

of 247
time operations, rules for 168
timestamp operations, rules

for 169
unary minus sign, effect on

operand 161
unary plus sign, effect on

operand 161
VARIANCE function, operation

of 249
AS clause

CREATE VIEW statement 826
in SELECT clause 395, 398
ORDER BY clause 443

ASC clause
CREATE INDEX statement 665
of select-statement 444

ASCII function 210
detailed format description 253
values and arguments, rules

for 253
ASIN function 210

detailed format description 254
values and arguments, rules

for 254
Assembler application host

variable 900
assigning a string to a column, rules

for 96
assignments

character strings to datetime
columns, rules for 94

DATALINK type 99
datetime to character string

value 99
datetime values, rules for 99
fragmenting a MBCS character,

rules for 98
mixed character string blank

padding 97
mixed character string to host

variables 97
mixed character string

truncation 97
numbers 96
reference type 102
retrieval 97
storage 96, 174
strings, basic rules for 96
user-defined type 101

ASSOCIATE LOCATORS
statement 1066, 1067

asterisk (*)
in COUNT 232
in COUNT_BIG 234
in subselect column names 395

ATAN function 210
detailed format description 255
values and arguments, rules

for 255
ATAN2 function 211

detailed format description 256
values and arguments, rules

for 256
attribute-name 67

in dereference operation 176
authority level

authorization name, syntax rules
for 67

authorization
definition 55
granting control on database

operations 913
granting control on index 916
granting create on schema 921
public control on index 916
public create on schema 921

authorization ID, overview of 72
authorization ID at run time 75
authorization ID in dynamic

statements, overview of 73
authorization-name

restrictions governing 67
use of in BIND 75
use of in Grant and Revoke 72,

73
AVG function 211
AVG function, detailed

description 229

B
backup database wizard 1444
base table 13
basic operations in SQL 94
basic predicate, detailed format 187
BEGIN DECLARE SECTION

statement 520, 521
authorization required 520
invocation rules for 520

BETWEEN clause, using in OLAP
functions 177

BETWEEN predicate, detailed format
diagram 191

big integers 81
BIGINT data type 726

description 81
precision 81
range 81

BIGINT function 211
BIGINT function, integer values

from expressions 257
binary integer, as data type 75
Binary Large OBject 77
BINDADD parameter, GRANT...ON

DATABASE statement 913
binding 918

bound statement, overview
of 31

data retrieval, role in
optimizing 9

revoking all privileges 977
binding semantics

functions 155
methods 155

bit data
BLOB string 77
definition 80

blank 64
blanks

definition of 63
BLOB

data type 727
scalar function description 258
string 77

BLOB function 211
books 1429, 1439
bound statement, use of 31
buffer insert 942
buffer pool

deleting, using DROP
statement 868

description 58
extended storage use 464, 465,

571
page size 571
setting size 464, 570

bufferpool
naming conventions 67

BUFFERPOOL clause
ALTER TABLESPACE

statement 505
CREATE TABLESPACE

statement 770
DROP statement 871

built-in function 209
description 142

byte length values, list for data
types 315

C
caching

EXECUTE statement 897
call level interface 10
CALL statement 522, 529

1454 SQL Reference

cancelling a unit of work 992
CASCADE delete rule 748

description 20
case

expression 171
case sensitive identifiers, SQL 65
CASE statement 1068
CAST

expression as operand 173
NULL as operand 174
parameter marker as

operand 174
CAST specification 173
casting

between data types 91
reference types 92
user-defined types 91

catalog
adding comments on tables,

views, columns 532
COMMENT ON, detailed

syntax 532
catalog views

BUFFERPOOLNODES 1134
BUFFERPOOLS 1135
CASTFUNCTIONS 1136
CHECKS 1137
COLAUTH 1138
COLCHECKS 1139
COLDIST 1140
COLOPTIONS 1141
COLUMNS 1142
CONSTDEP 1147
DATATYPES 1148
DBAUTH 1150
definition 24
EVENTMONITORS 1152
EVENTS 1154
FUNCDEP 1156
FUNCMAPOPTIONS 1157
FUNCMAPPARMOPTIONS 1158
FUNCMAPPINGS 1159
FUNCPARMS 1160
FUNCTIONS 1162
INDEXAUTH 1168
INDEXCOLUSE 1169
INDEXDEP 1170
INDEXES 1171, 1234
INDEXEXPLOITRULES 1237
INDEXEXTENSIONDEP 1238
INDEXEXTENSIONMETHODS 1239
INDEXEXTENSIONPARMS 1240
INDEXEXTENSIONS 1241
INDEXOPTIONS 1174
KEYCOLUSE 1175

catalog views (continued)
NAMEMAPPINGS 1176
NODEGROUPDEF 1177
NODEGROUPS 1178
overview 1127
PACKAGEAUTH 1179
PACKAGEDEP 1180
PACKAGES 1181
PARTITIONMAPS 1185
PASSTHRUAUTH 1186
PREDICATESPECS 1242
PROCEDURES 1187
PROCOPTIONS 1190
PROCPARMOPTIONS 1191
PROCPARMS 1192
read-only 1128
REFERENCES 1194
REVTYPEMAPPINGS 1195
SCHEMAAUTH 1197
SCHEMATA 1198
SERVEROPTIONS 1199
SERVERS 1200
STATEMENTS 1201
SYSDUMMY1 1131
SYSSTAT.COLDIST 1221
SYSSTAT.COLUMNS 1222
SYSSTAT.FUNCTIONS 1224
SYSSTAT.INDEXES 1226
SYSSTAT.TABLES 1229
TABAUTH 1202
TABCONST 1204
TABLES 1205
TABLESPACES 1209
TABOPTIONS 1210
TBSPACEAUTH 1211
TRANSFORMS 1243
TRIGDEP 1212
TRIGGERS 1213
TYPEMAPPINGS 1214
updatable 1128
USEROPTIONS 1216
VIEWDEP 1217
VIEWS 1218
WRAPOPTIONS 1219
WRAPPERS 1220

catalog views (structured types)
ATTRIBUTES 1132
FULLHIERARCHIES 1155
HIERARCHIES 1167

catalog views for structured
types 1231

overview 1231
CEIL or CEILING function 211
CEILING or CEIL function

detailed format description 259

CEILING or CEIL function
(continued)

values and arguments, rules
for 259

CHAR
function description 260

CHAR function 211
CHAR

function(SYSFUN.CHAR) 211
CHAR VARYING data type 726
character conversion

character set 53
code page 53
code point 53
encoding scheme 53
rules for assignments 97
rules for comparison 104
rules for operations combining

strings 111
rules when comparing

strings 111
CHARACTER data type 726
Character Large OBject 77
character set 53
character string

arithmetic operators, prohibited
use of 161

as data type 75
assignment, overview 96
bit data

definition 80
BLOB string representation 258
CLOB 77
comparisons, rules for 102
constants, range and

precision 116
detailed description 78
double byte character string,

returning 384
empty, compared to null

value 78
equality, collating sequence

examples 103
equality, definition of 103
fixed length 75
fixed length, description 79
hexadecimal constant 117
mixed data 80
POSSTR scalar function 336
returning from host variable

name 373
SBCS data, definition 80
SQL statement, execution as 900
SQL statement string, rules for

creating 900

Index 1455

character string (continued)
translating string syntax 373
VARCHAR scalar function,

using 382
VARGRAPHIC scalar function,

using 384
varying length 75
varying length, description 79

CHARACTER VARYING data
type 726

characters, SQL, range of 63
CHECK clause in CREATE VIEW

statement 830
check constraint

ALTER TABLE statement 486,
491

CREATE TABLE statement 750
INSERT statement 941

check pending state 21, 1019
CHR function 211

detailed format description 265
values and arguments, rules

for 265
CL_SCHED sample table 1260
CLI 10
client/server

server name, description of 70
CLOB data type 727
CLOB function 211

detailed format description 266
values and arguments, rules

for 266
CLOB string 77
CLOSE statement 530, 531
closed state of cursor 951
CLUSTER clause

CREATE INDEX statement 665
COALESCE

function description 267
COALESCE function 212
code page 53
code point 53
collating sequence, string

comparison, rules for 102
collating_sequence server

option 1250
column

adding, privileges for,
granting 927

adding to a table, ALTER
TABLE 483

adding values (SUM) 248
adding with ALTER TABLE

statement 477

column (continued)
ambiguous name reference, error

conditions 131
averaging a column set of values

(AVG) 229
BASIC predicate, use in matching

strings 187
BETWEEN predicate, use in

matching strings 191
column name, qualified,

conditions for 132
column name, unqualified,

conditions for 132
comment descriptions, adding to

catalog 532
constraint name, FOREIGN KEY,

rules 748
correlation between a set of

number pairs
(CORRELATION) 231

covariance of a column set of
number pairs
(COVARIANCE) 236

definition of 13
DISTINCT keyword, queries, role

of 228
EXISTS predicate, use in

matching strings 193
fixed length character strings,

attributes 79
GROUP BY, use in limiting in

SELECT clause 396
grouping column name, use in

GROUP BY 409
HAVING, use in limiting in

SELECT clause 396
HAVING clause, search names,

rules for 416
IN predicate, fullselect, values

returned 194
index key, column-name, use

in 664
inserting values, INSERT

statement 939
LIKE predicate, use in matching

strings 197
maximum value, finding 239
minimum value, finding 241
naming conventions 67
naming conventions, applications

of
in CREATE INDEX

statement 127
in CREATE TABLE

statement 127

column (continued)
naming conventions, applications

of (continued)
in expressions 127
in GROUP BY or ORDER BY

statements 127
nested table expression, use

of 132
null values, ALTER TABLE,

prevention of 485
null values in result columns,

rules for 397
qualified column names, rules

for 127
result data, expression type, table

of 399
scalar fullselect, use of 132
searching using WHERE

clause 408
SELECT clause, select list

notation 395
standard deviation of a column

set of values (STDDEV) 247
string assignment, basic rules

for 96
subquery, use of 132
undefined name reference, error

conditions 131
updating row values, UPDATE

statement 1043
variance of a column set of

values (VARIANCE) 249
varying length character strings,

attributes 79
COLUMN clause

COMMENT ON statement 534
column function, arguments for 210
column name

in ORDER BY clause 443
rules for 67

column-name
in INSERT statement 939

column name, uses for 127
column name qualification in the

COMMENT ON statement 127
column options

CREATE TABLE statement 730
numeric string 1247
varchar_no_trailing_blanks 1248

combining grouping sets 414
comm_rate server option 1250, 1251
comment

SQL static statements, use
in 463

comment in catalog table 532

1456 SQL Reference

COMMENT ON statement 532, 542
comments

host language, format for 65
SQL, format for 65

commit processing
locks, relation to uncommitted

changes 25
COMMIT statement 543, 544

pass-through 1257
common table expression 440

description 23
recursive 441

common-table-expression
select-statement 440

comparing a value with a
collection 191

comparing LONG VARGRAPHIC
strings, restricted use of 105

comparing two predicates, truth
conditions 187, 203

comparison
compatibility rules 94
compatibility rules, data types,

summary 94
datetime values, rules for 106
graphic strings, rules for 105
LONG VARGRAPHIC, restricted

use of 105
numbers, rules for 102
reference type 107
SBCS/MBCS, rules for 105
strings, rules for 102
user-defined type 106

compatibility
data types 94
data types, summary 94
rules 94
rules for operation types 94

compensation 43
composite column value 413
composite key 15
Compound SQL (Embedded)

statement
combining statements into a

block 545
Compound SQL statement 549
compound statement 1070
CONCAT function

detailed format description 268
values and arguments, rules

for 268
CONCAT or || function 212
concatenation

distinct type 161
operator 158

concatenation (continued)
result data type 159
result length 159

concurrency
application 24
prevention of

LOCK TABLE statement 947
tables with NOT LOGGED

INITIALLY parameter,
restriction 745

condition
naming conventions 67

condition handler
declaring 1073

condition name
rules for 67

configure multisite update
wizard 1444

CONNECT parameter, GRANT...ON
DATABASE statement 913

CONNECT statement
disconnecting from current

server 556
implicit connect 550
IMPLICIT connect, diagram of

state transitions 33
information on application server,

getting 556
information on setting a new

password 557
non-IMPLICIT connect, diagram

of state transitions 35
overview 31
with no operand, returning

information 556
CONNECT statement (Type 1) 550,

557
CONNECT statement (Type 2) 558,

565
CONNECT TO statement

successful connection, detailed
description 552, 558

unsuccessful connection, detailed
description 555, 559

connected state 38
connection states

application process 37
distributed unit of work 36
remote unit of work 31

constants
character string, range and

precision 116
decimal 116
floating-point, rules for 116
hexadecimal 117

constants (continued)
integer, definition of 115
with user-defined types 117

constants, overview of 115
constraint

comment descriptions, adding to
catalog 532

Explain tables 1291
referential 16, 17
table check 16, 21
unique 16, 17

CONSTRAINT clause
COMMENT ON statement 534

constraints
adding or dropping, ALTER

TABLE 477
container

CREATE TABLESPACE
statement 767

description 58
container-clause

CREATE TABLESPACE
statement 767

CONTINUE clause in WHENEVER
statement 1056

CONTROL clause
GRANT statement (table, view or

nickname) 928
CONTROL clause in GRANT

statement, revoking 985
CONTROL parameter

revoking privileges for
packages 978

conversion
character string to executable

SQL 900
datetime to character string

variable 99
integer to decimal, mixed

expression, rules 162
conversion rules

for assignments 97
for comparison 104
for operations combining

strings 111
for string comparisons 111

conversions
CHAR, returning converted

datetime values 260
character string to

timestamp 368
DBCS from mixed SBCS and

DBCS 384
decimal values from numeric

expressions 280

Index 1457

conversions (continued)
double byte character string,

returning 384
floating point values from

numeric expressions 296, 344
numeric, scale and precision,

summary 96
correlated reference 408
correlated reference, use in nested

table expression 132
correlated reference, use in scalar

fullselect 132
correlated reference, use in

subquery 132
CORRELATION function, detailed

description 231
correlation name

FROM clause, subselect, rules for
use 400

correlation-name
detailed description 67
in SELECT clause, syntax

diagram 395
qualified reference of column

name 127
correlation-name, rules for 127
CORRELATION or CORR 212
COS function 212

detailed format description 269
values and arguments, rules

for 269
COT function 212

detailed format description 270
values and arguments, rules

for 270
COUNT_BIG function 212, 234

detailed format description 234
values and arguments, rules

for 234
COUNT function 212

detailed format description 232
values and arguments, rules

for 232
COVARIANCE function, detailed

description 236
COVARIANCE or COVAR

function 212
cpu_ratio server option 1251
CREATE ALIAS statement 566, 569
CREATE BUFFERPOOL

statement 569, 571
create database wizard 1445
CREATE DISTINCT TYPE

statement 572, 578

CREATE EVENT MONITOR
statement 579, 588

CREATE FUNCTION (External
Scalar) statement 590

CREATE FUNCTION (External
Table) statement 615

CREATE FUNCTION (OLE DB
External Table) statement 631

CREATE FUNCTION (Source)
statement 648

CREATE FUNCTION (Source or
Template) statement 639

CREATE FUNCTION (SQL Scalar,
Table or Row) statement 649

CREATE FUNCTION
statement 589, 630, 638, 656

CREATE INDEX EXTENSION
statement 669

CREATE INDEX statement 662, 668
column-name, rules for key

creation 664
CREATE METHOD statement 676
CREATE NODEGROUP

statement 684, 686
CREATE PROCEDURE

statement 687
assignment statement 1064
CASE statement 1068
compound statement 1070
condition handlers 1073
DECLARE statement 1070
FOR statement 1076
GET DIAGNOSTICS

statement 1078
GOTO statement 1080
handler statement 1073
IF statement 1082
ITERATE statement 1084
LEAVE statement 1085
LOOP statement 1086
REPEAT statement 1088
RESIGNAL statement 1090
RETURN statement 1093
SIGNAL statement 1094
SQL procedure statement 1060
variables 1070
WHILE statement 1097

CREATE SCHEMA statement 704,
707

CREATE SERVER statement 708
create table space wizard 1445
CREATE TABLE statement 712, 764

syntax diagram 712
create table wizard 1445

CREATE TABLESPACE
statement 764, 773

CREATE TRANSFORM
statement 774

CREATE TRIGGER statement 780,
791

CREATE TYPE (Structured)
statement 792, 816

CREATE TYPE MAPPING
statement 816

CREATE USER MAPPING
statement 821

CREATE VIEW statement 823, 838
CREATE VIEW statement, definition

of 14
CREATE WRAPPER statement 839
CREATETAB parameter,

GRANT...ON DATABASE
statement 913

creating a database, granting
authority for 914

creating the sample database 1260
cross tabulation rows 412
CS (cursor stability) isolation

level 29, 1285
cube

examples of 425
CUBE 412
current connection state 38
CURRENT DATE special

register 118
CURRENT DEFAULT TRANSFORM

GROUP special register 118
CURRENT DEGREE special

register 119
SET CURRENT DEGREE

statement 1004
CURRENT EXPLAIN MODE special

register 120
SET CURRENT EXPLAIN MODE

statement 1006
CURRENT EXPLAIN SNAPSHOT

special register 121
SET CURRENT EXPLAIN

SNAPSHOT statement 1008
CURRENT FUNCTION PATH

special register 122
SET CURRENT FUNCTION

PATH statement 1031
SET CURRENT PATH

statement 1031
SET PATH statement 1031

CURRENT NODE special
register 122

1458 SQL Reference

CURRENT PATH special
register 122

SET CURRENT FUNCTION
PATH statement 1031

SET CURRENT PATH
statement 1031

SET PATH statement 1031
CURRENT QUERY OPTIMIZATION

special register 123
SET CURRENT QUERY

OPTIMIZATION
statement 1012

CURRENT REFRESH AGE special
register 124

CURRENT SCHEMA special
register 124

CURRENT SERVER special
register 125

CURRENT SQLID special
register 124

CURRENT TIME special
register 125

CURRENT TIMESTAMP special
register 125

CURRENT TIMEZONE special
register 126

cursor
active set, associated with 949
ambiguous 845
closed state, pre-conditions

for 951
closing, CLOSE statement 530
current row 910
declaring, SQL statement syntax

for 841
defining 841
deleting, search condition

details 857
location in table, results of

FETCH 908
moving position, using

FETCH 908
opening a cursor, OPEN

statement 949
positions for open 910
preparing for application

use 949
program usage, rules for 843
read-only status, conditions

for 844
result table, relation to 841
terminating for unit of work,

ROLLBACK 992
unit of work, conditional states

of 841

cursor (continued)
updatability, determining 844
WITH HOLD lock clause,

COMMIT statement, effect 543
CURSOR FOR RESULT SET 1062
cursor-name, ALLOCATE 1062
cursor-name, definition of 67
cursor stability 29, 1285

D
data integrity

concurrent updates, preventing,
LOCK TABLE 947

point of consistency, example
of 26

data representation
considerations 41

data sources in federated systems
using pass-through to

query 1256
data structure

column, definition of 13
constants

character string, rules for 116
decimal, rules for 116
floating point, rules for 116
graphic string (DBCS), rules

for 116
integer, rules for 116

date syntax and range 82
index, derived values of 15
numeric data, overview 81
packed decimal 1124
row, definition of 13
time syntax and range 82
value, definition of 13
values

data types 75
sources 75

data type 114
abstract 509, 792
ALTER TYPE (Structured)

statement 509
character string 78
CREATE TYPE (Structured)

statement 792
datalink 85
datetime 82
distinct 87, 572
overview 75
partition compatibility 114
reference 89
result column data, SELECT,

table of 399
result columns 398
row 509, 792

data type 114 (continued)
structured 88, 509, 792
TYPE_ID function 377
TYPE_NAME function 378
TYPE_SCHEMA function 379
user-defined 87

data type mapping 42
data types

casting between 91
promotion 90

database access
authority to access database,

granting 913
database administration

privilege 57
database-containers

CREATE TABLESPACE
statement 767

database managed space 58
database management

control, granting authority, SQL
statement for 913

database loading authority,
granting 914

DBADM creation authority,
granting 914

saving changes, COMMIT
statement 543

switching tasks, COMMIT
statement 543

database manager
catalog views

overview of 24
distributed relational database,

use in 29
limits 1099
SQL, interpretation of 9

database manager limits 1102
database manager page size specific

limits 1105
datalink

BNF specifications 1349
building 294
extracting comment 287
extracting complete URL 289
extracting file server 293
extracting linktype 288
extracting path and file

name 290, 291
extracting scheme 292
INSERT statement 942

datalink type
description 85

Index 1459

date
CHAR, use of in format

conversion 260
day, returning from value (DAY

function) 273
day durations, finding from

range (DAYS) 278
duration, format of 165
month, returning from datetime

value 329
strings 83
value to date, format conversion

(DATE) 271
year, using in expressions 388

DATE
arithmetic operations 166
WEEK_ISO scalar function,

using 387
WEEK scalar function,

using 386
DATE data type 728
DATE function 212
DATE function, returning dates from

values 271
datetime

arithmetic operations 165
data types

description 82
string representation 83

format
EUR, ISO, JIS, LOCAL,

USA 83
limits 1101
VARCHAR scalar function,

using 382
datetime format 83
DAY function 212
DAY function, returning day part of

values 273
DAYNAME function 212

detailed format description 274
values and arguments, rules

for 274
DAYOFWEEK function 213

detailed format description 275
values and arguments, rules

for 275
DAYOFWEEK_ISO function 213

detailed format description 276
values and arguments, rules

for 276
DAYOFYEAR function 213

detailed format description 277
values and arguments, rules

for 277

DAYS function 213
DAYS function, returning integer

durations 278
DB2 federated system 41

compensation 41
data type mapping 41
distributed requests 41
federated server 41
function mapping 41
index specification 41
nickname 41
pass-through 41
user mapping 41
wrapper 41
wrapper module 41

DB2 library
books 1429
Information Center 1443
language identifier for

books 1437
late-breaking information 1438
online help 1440
ordering printed books 1439
printing PDF books 1438
searching online

information 1446
setting up document

server 1445
structure of 1429
viewing online information 1442
wizards 1444

db2nodes.cfg
ALTER NODEGROUP 470
CONNECT (Type 1) 557
CREATE NODEGROUP 684
CURRENT NODE 122
NODENUMBER function 331

DBADM parameter, GRANT...ON
DATABASE statement 914

DBCLOB data type 727
DBCLOB function 213

detailed format description 279
values and arguments, rules

for 279
DBCLOB string 77
dbname server option 1251
decimal

arithmetic formulas, scale and
precision 163

constants, range and
precision 116

data type, overview 82
implicit decimal point 82
numbers 82
packed decimal 82

decimal, as data type 75
decimal conversion from integer,

summary 96
DECIMAL function, returning

decimal values 280
DECIMAL or DEC function 213
declaration

inserting into a program 936
DECLARE

BEGIN DECLARE SECTION
statement 520

END DECLARE SECTION
statement 894

DECLARE CURSOR statement 841,
845

authorization, conditions for 841
program usage, notes for 843

DECLARE GLOBAL TEMPORARY
TABLE statement 846

DECLARE statement 1070
declared temporary tables>

schema names in 69
decrementing a date, rules for 167
decrementing a time, rules for 168
default value

column
ALTER TABLE

statement 486
CREATE TABLE

statement 736
DEGREES function 213

detailed format description 283
values and arguments, rules

for 283
deletable

view 832
DELETE clause

GRANT statement (table or
view) 928

REVOKE statement, revoking
privilege for 985

delete-connected table 20
delete rule for referential

constraint 20
DELETE statement 855, 859

authorization, searched or
positioned format 855

deleting SQL objects 868
delimited identifier, SQL

statement 65
delimited identifier in SQL 66
delimiter tokens, definition of 64
DENSE_RANK

OLAP function 177

1460 SQL Reference

DENSERANK
OLAP function 177

DEPARTMENT sample table 1261
dependency

of objects on each other 884
dependent row 18
dependent table 18
DEREF function 214

reference type 284
dereference operation 176

attribute-name operand 176
scoped-ref-expression 176

DESC clause
CREATE INDEX statement 665
of select-statement 444

descendent row 18
descendent table 18
DESCRIBE statement 860, 864

prepared statements, destruction
conditions 862

DESCRIPTOR
host variables, parameter

substitution list 895
descriptor-name 67

in FETCH statement 909
diagnostic string

in RAISE_ERROR function 341
in SIGNAL SQLSTATE

statement 1041
DIFFERENCE function 214

detailed format description 285
values and arguments, rules

for 285
digits, range of 64
DIGITS function 214, 286
dirty read 1286
DISCONNECT statement 865, 867
DISTINCT clause

of subselect 395
DISTINCT keyword

AVG function, relation to 229
column function 228
COUNT_BIG function,

relationship to 234
COUNT function, relationship

to 232
MAX function, restriction

for 239
MIN function 241
STDDEV function, relation

to 247
SUM function 248
VARIANCE function, relation

to 249
DISTINCT keyword, overview 228

distinct type
as arithmetic operands 163
comparison 106
concatenation 161
constants 117
CREATE DISTINCT TYPE

statement 572
description 67, 87
DROP statement 868

DISTINCT TYPE clause
COMMENT ON statement 540
DROP statement 881

distributed relation database,
definition 29

distributed relational database
application requester,

overview 29
application server, overview 29
data representation

considerations 41
environment, illustration of 30
remote unit of work,

overview 31
requester-server protocols,

overview 29
distributed relational database

architecture (DRDA) 29
distributed requests 43
DLCOMMENT function 214
DLCOMMENT function, extracting

comment from DATALINK
value 287

DLLINKTYPE function 214
DLLINKTYPE function, extracting

linktype from DATALINK
value 288

DLURLCOMPLETE function 214
DLURLCOMPLETE function,

extracting complete URL from
DATALINK value 289

DLURLPATH function 214
DLURLPATH function, extracting

path and file name from
DATALINK value 290

DLURLPATHONLY function 214
DLURLPATHONLY function,

extracting path and file name from
DATALINK value 291

DLURLSCHEME function 214
DLURLSCHEME function, extracting

scheme from DATALINK
value 292

DLURLSERVER function 214

DLURLSERVER function, extracting
file server from DATALINK
value 293

DLVALUE function 214
DLVALUE function, building a

DATALINK value 294
DMS table space

CREATE TABLESPACE
statement 767

description 58
dormant connection state 38
DOUBLE

CHAR, use of in format
conversion 260

double-byte character
truncated during assignment 98

Double-Byte Character Large
OBject 77

double byte character string (DBCS),
returning 384

DOUBLE data type 726
precision 82
range 82

DOUBLE function 214
DOUBLE function, double precision

conversion 296
DOUBLE or DOUBLE_PRECISION

function 214
DOUBLE PRECISION data

type 726
double precision float data

type 726
double-precision floating-point 82
DRDA (Distributed Relational

Database Architecture) 29
DROP CHECK clause of ALTER

TABLE statement 493
DROP CONSTRAINT clause of

ALTER TABLE statement 493
DROP FOREIGN KEY clause 493
DROP PARTITIONING KEY clause

of ALTER TABLE statement 493
DROP PRIMARY KEY clause 493
DROP statement 868, 894
DROP TRANSFORM 868
DROP UNIQUE clause 493
duration

adding, results of 167
date, format of 165
labeled 164
subtracting, results of 167
time, format of 165
timestamp 165

durations 164

Index 1461

dynamic select
host variables, restrictions

on 460
parameter markers, usage

in 460
dynamic SQL 10, 1113

DECLARE CURSOR statement,
usage in 460

definition of 9
description, preparation

methods 458
execution 459
FETCH statement, usage in 460
OPEN statement, usage in 460
preparation 459
PREPARE statement, execution

of 954
PREPARE statement, usage

in 460
prepared statement information,

using DESCRIBE 860
preparing and executing,

commands for 9
SQLDA used with 1113

E
embedded SQL, requirements

overview 458
embedded SQL for Java (SQLJ)

Programs 11
embedded SQL statement

executing character strings,
EXECUTE IMMEDIATE 900

embedding SQL statements
SQL Procedures 459

EMP_ACT sample table 1264
EMP_PHOTO sample table 1266
EMP_RESUME sample table 1266
EMPLOYEE sample table 1261
empty character string 78
encoding scheme 53
END DECLARE SECTION

statement 894
erasing the sample database 1260
error

closes cursor 951
during FETCH 910
during UPDATE, 1049
return code, language

overview 461
errors

executing triggers 787
escape character in SQL 66
ESCAPE clause

LIKE predicate 199

EUC considerations 1341
EUR 83
European (EUR) date format 83
European (EUR) time format 84
evaluation order, expressions 170
EVENT_MON_STATE function 214,

298
event monitor

CREATE EVENT MONITOR
statement 579

description 23
DROP statement 868
EVENT_MON_STATE

function 298
FLUSH EVENT MONITOR

statement 911
name description 68
SET EVENT MONITOR STATE

statement 1017
EXCEPT clause of fullselect 435
except-on-nodes-clause

CREATE BUFFERPOOL
statement 570

exception tables
SET INTEGRITY statement 1023
structure 1335

EXCLUSIVE
IN EXCLUSIVE MODE 550

exclusive locks 27
EXCLUSIVE option, LOCK TABLE

statement 947
executable statement, methods

overview 457
executable statement, processing

summary 458
EXECUTE IMMEDIATE

statement 902
detailed instructions for 900
embedded usage, detailed

description 459
use in dynamic SQL 9

EXECUTE statement 899
detailed instructions for 895
embedded usage, detailed

description 459
use in dynamic SQL 9

executing, revoking package
privileges 977

execution
package, necessary privileges,

granting 918
EXISTS predicate, detailed format

description 193
EXP function 215

detailed format description 299

EXP function 215 (continued)
values and arguments, rules

for 299
EXPLAIN_ARGUMENT table 1292
EXPLAIN_ARGUMENT table

definition 1314
EXPLAIN_INSTANCE table 1296
EXPLAIN_INSTANCE table

definition 1315
EXPLAIN_OBJECT table 1298
EXPLAIN_OBJECT table

definition 1316
EXPLAIN_OPERATOR table 1300
EXPLAIN_OPERATOR table

definition 1317
EXPLAIN_PREDICATE table 1302
EXPLAIN_PREDICATE table

definition 1318
EXPLAIN statement 903, 907
EXPLAIN_STATEMENT table 1305
EXPLAIN_STATEMENT table

definition 1319
EXPLAIN_STREAM table 1307
EXPLAIN_STREAM table

definition 1320
explainable statement

definition 903
exposed name, correlation-name,

FROM clause 128
expression

case 171
CAST specification 173
concatenation operator 158
datetime operands, summary

of 164
decimal operands 162
dereference operation 176
floating-point operands, rules

for 163
format and rules 157
grouping-expression, use in

GROUP BY 409
in CAST specification 173
in DIGITS function 286
in ORDER BY clause 444
in SELECT clause, syntax

diagram 395
in subselect 395
integer operands 162
method invocation 183
OLAP Functions 177
operators, mathematical,

listing 157
precedence of operation 170

1462 SQL Reference

expression (continued)
scalar fullselect, summary

of 164
sign of, values 157
string 158
substitution operators,

listing 157
subtype treatment 184
with arithmetic operators 161
without operators 158

EXTEND USING clause
CREATE INDEX statement 666

extended character set 64
extended storage 465, 571
external function

description 143

F
federated server 41
federated systems

pass-through 1256
FETCH statement 908, 910

cursor prerequisites for
executing 908

file reference variables
BLOB 138
CLOB 138
DBCLOB 138

FLOAT data type 81, 82, 726
FLOAT function 215
FLOAT function, double precision

conversion 300
floating-point constants 116
floating point numbers

as data type 75
precision 81, 82
range 81, 82

floating-point to decimal
conversion 96

FLOOR function 215
detailed format description 301
values and arguments, rules

for 301
FLUSH EVENT MONITOR

statement 911
fold_id server option 1251
fold_pw server option 1252
FOR BIT DATA clause

CREATE TABLE statement 726
FOR FETCH ONLY clause

select-statement 447
FOR READ ONLY clause

select-statement 447
FOR statement 1076
foreign key 16, 17

foreign key 16, 17 (continued)
adding or dropping, ALTER

TABLE 477
constraint name, conventions

for 748
view, referential constraints

in 14
FOREIGN KEY clause

CASCADE clause, propagation
summary 749

constraint name, conventions
for 748

CREATE TABLE statement 748
delete rule, conventions for 749
multiple paths, consequences of

using 749
RESTRICT clause,

prohibition 749
SET NULL clause, operation

of 749
fragments in SUBSTR function,

warning 361
FREE LOCATOR statement 912
FROM clause

correlation name, use of,
example 128

exposed and non-exposed names,
explanation 128

PREPARE statement 954
subselect syntax 400

FROM clause, use in
correlation-name, example 128

FROM clause in DELETE
statement 856

fullselect
examples of 437
multiple operations, order of

execution 436
ORDER BY clause 443
scalar 164
subquery role, search condition,

overview 132
table-reference 401
used in CREATE VIEW

statement 828
fullselect, detailed syntax 434
function 142, 209, 234, 250

arguments 209
built-in 142
column 228

AVG 211
AVG, options and results 229
CORR, options and

results 231

function 142, 209, 234, 250
(continued)

column 228 (continued)
CORRELATION, options and

results 231
CORRELATION or

CORR 212, 231
COUNT 212, 232
COUNT, values returned 232
COUNT_BIG 212, 234
COUNT_BIG, values

returned 234
COVAR, options and

results 236
COVARIANCE, options and

results 236
COVARIANCE or

COVAR 212, 236
MAX 217, 239
MAX, values returned 239
MIN 217, 241
REGR_AVGX 219
REGR_AVGY 219
REGR_COUNT 219
REGR_INTERCEPT OR

REGR_ICPT 219
REGR_R2 219
REGR_SLOPE 219
REGR_SXX 219
REGR_SXY 219
REGR_SYY 219
REGRESSION Function 243
REGRESSION Function,

options and results 243
STDDEV 221, 247
STDDEV, options and

results 247
SUM 221, 248
VAR, options and results 249
VARIANCE, options and

results 249
VARIANCE or VAR 224, 249

comment descriptions, adding to
catalog 532

description 142, 209
expression 209
external

description 143
name description 68
nesting 250
OLAP

DENSE_RANK 177
DENSERANK 177
RANK 177
ROW_NUMBER 177

Index 1463

function 142, 209, 234, 250
(continued)

ROWNUMBER 177
resolution 144
scalar

ABS or ABSVAL 210, 251
ACOS 210, 252
ASCII 210, 253
ASIN 210, 254
ATAN 210, 255
ATAN2 211, 256
AVG 229
BIGINT 211, 257
BIGINT, returning integer

values 257
BLOB 211, 258
CEIL or CEILING 211
CEILING or CEIL 259
CHAR 211, 260
CHAR (SYSFUN

schema) 211
CHAR, use in datetime

conversion 260
CHR 211, 265
CLOB 211, 266
COALESCE 212, 267
CONCAT 268
CONCAT or || 212
COS 212, 269
COT 212, 270
DATE 212, 271
DATE, returning dates from

values 271
DAY 212, 273
DAY, returning day part of

value 273
DAYNAME 212, 274
DAYOFWEEK 213, 275
DAYOFWEEK_ISO 213, 276
DAYOFYEAR 213, 277
DAYS 213, 278
DAYS, returning integer

durations 278
DBCLOB 213, 279
DECIMAL, returning decimal

equivalents 280
DECIMAL or DEC 213, 280
definition 250
DEGREES 213, 283
DEREF 214, 284
DIFFERENCE 214, 285
DIGITS 214, 286
DLCOMMENT 214, 287

function 142, 209, 234, 250
(continued)

scalar (continued)
DLCOMMENT, extracting

comment from DATALINK
value 287

DLLINKTYPE 214, 288
DLLINKTYPE, extracting

linktype from DATALINK
value 288

DLURLCOMPLETE 214, 289
DLURLCOMPLETE,

extracting complete URL
from DATALINK value 289

DLURLPATH 214, 290
DLURLPATH, extracting path

and file name from
DATALINK value 290

DLURLPATHONLY 214, 291
DLURLPATHONLY, extracting

path and file name from
DATALINK value 291

DLURLSCHEME 214, 292
DLURLSCHEME, extracting

scheme from DATALINK
value 292

DLURLSERVER 214, 293
DLURLSERVER, extracting

file server from DATALINK
value 293

DLVALUE 214, 294
DLVALUE, building a

DATALINK value 294
DOUBLE 214
DOUBLE, returning floating

point values 296
DOUBLE or

DOUBLE_PRECISION 214,
296

EVENT_MON_STATE 214,
298

EVENT_MON_STATE,
returning event monitor
states 298

EXP 215, 299
FLOAT 215, 300
FLOAT, returning floating

point values 300
FLOOR 215, 301
GENERATE_UNIQUE 215,

302
GRAPHIC 215, 304
GROUPING 215, 237
HEX 215, 305
HOUR 215, 307

function 142, 209, 234, 250
(continued)

scalar (continued)
HOUR, returning hour part of

values 307
INSERT 215, 308
INTEGER, returning integer

values 310
INTEGER or INT 216, 310
JULIAN_DAY 216, 311
LCASE 216
LCASE (SYSFUN

schema) 216, 313
LCASE or LOWER 312
LEFT 216, 314
LENGTH 216, 315
LENGTH, length values from

expressions 315
LN 216, 317
LOCATE 216, 318
LOG 217, 319
LOG10 217, 320
LONG_VARCHAR 217, 321
LONG_VARGRAPHIC 217,

322
LTRIM 217, 323
LTRIM (SYSFUN.LTRIM) 324
LTRIM (SYSFUN

schema) 217
MICROSECOND 217, 325
MICROSECOND, returning

microsecond part of
values 325

MIDNIGHT_SECONDS 217,
326

MINUTE 217, 327
MINUTE, returning minute

part of values 327
MOD 218, 328
MONTH 218, 329
MONTH, returning month

part of values 329
MONTHNAME 218, 330
NODENUMBER 218, 331
NULLIF 218, 333
PARTITION 218, 334
POSSTR 218, 336
POWER 218, 338
QUARTER 218, 339
RADIANS 219, 340
RAISE_ERROR 219, 341
RAND 219, 343
REAL 219, 344
REAL, returning floating

point values 344

1464 SQL Reference

function 142, 209, 234, 250
(continued)

REPEAT 219, 345
REPLACE 220, 346
restrictions, overview of 250
RIGHT 220, 347
ROUND 220, 348
RTRIM 220, 349
RTRIM (SYSFUN

schema) 220, 350
SECOND 220, 351
SECOND, returning second

from values 351
SIGN 220, 352
SIN 221, 353
SMALLINT 221, 354
SMALLINT, returning small

integer values 354
SOUNDEX 221, 355
SPACE 221, 356
SQRT 221, 357
SUBSTR 221, 358
SUBSTR, returning substring

from string 358
TABLE_NAME 221, 362
TABLE_SCHEMA 221, 364
TAN 221, 366
TIME 222, 367
TIME, using time in an

expression 367
TIMESTAMP 222, 368
TIMESTAMP, returning

timestamp from values 368
TIMESTAMP_ISO 222, 370
TIMESTAMPDIFF 222, 371
TRANSLATE 223, 373
TRUNC or TRUNCATE 223
TRUNCATE or TRUNC 376
TYPE_ID 223, 377
TYPE_NAME 223, 378
TYPE_SCHEMA 223, 379
UCASE 223, 380
UCASE (SYSFUN

schema) 223
UPPER 380
user-defined 391
VALUE 223, 381
VALUE, returning non-null

result 381
VARCHAR 224, 382
VARGRAPHIC 224, 384
WEEK 224, 386
WEEK_ISO 224, 387
YEAR 224, 388

function 142, 209, 234, 250
(continued)

scalar (continued)
YEAR, returning values based

on year 388
signature 144
sourced

description 143
SQL

description 143
SQL path 144
table 389

SQLCACHE_SNAPSHOT 221,
390

SQLCACHE_SNAPSHOT,
options and results 390

user-defined 142
FUNCTION clause

COMMENT ON statement 534
function mapping 43

name description 68
function path 87
function templates 657

G
GENERATE_UNIQUE function 215,

302
detailed format description 302

generated columns
CREATE TABLE statement 735

GET DIAGNOSTICS
statement 1078

Glossary 1353
GO TO clause

WHENEVER statement 1056
GOTO statement 1080
grand total row 414
GRANT

CONTROL ON INDEX 916
CREATE ON SCHEMA 921
Database Authorities 913
Nickname Privileges 933
Package Privileges 918
Table Privileges 926, 933
View Privileges 926, 933

GRANT (Schema Privileges)
statement 921, 923

grant statement
authorization name, use in 72,

73
GRAPHIC data type

for CREATE TABLE 728
GRAPHIC function 215

detailed format description 304
values and arguments, rules

for 304

graphic string
returning from host variable

name 373
translating string syntax 373

graphic string, as data type
fixed length 75
varying length 75

graphic strings
fixed length, description 80
varying length, description 80

GROUP BY clause
of subselect, rules and

syntax 409
results with subselect 397

group-by-clause, rules and
syntax 409

grouping-expression 409
GROUPING function 215, 237
grouping sets

examples of 425
grouping-sets 410

H
handlers

declaring 1073
hash partitioning 60
hashing on partition keys 745
HAVING clause

of subselect, use of search
conditions 416

results with subselect 397
held connection state 38
HEX

function 305
hexadecimal 305

HEX function 215
host identifier

definition 66
in a host variable 68
SQL statement 65

host-identifier
in host variable 136

host-label 1056
host variable

active set, linking with
cursor 949

assigning values from a
row 998, 1054

BLOB 137
CLOB 137
DBCLOB 137
declaration rules, related to

cursor 843
description 135
description of 68

Index 1465

host variable (continued)
embedded SQL statements, end

declaration 894
embedded statements, usage

in 458
embedded use, BEGIN

DECLARE SECTION,
rules 520

EXECUTE IMMEDIATE
statement 900

FETCH statement,
identifying 908

host identifier in 68
indicator variable, uses of 136
inserting in rows, INSERT

statement 940
PREPARE statement 954
REXX applications, special

case 520
statement string, restricted listing,

PREPARE statement 955
substitution for parameter

markers 895
syntax, diagram of 135

HOUR function 215
HOUR function, returning hour part

of values 307
HTML

sample programs 1437

I
identifiers

limits 1099
identifiers in SQL

description 65
host identifiers, syntax for 65
ordinary 65

IF statement 1082
IMMEDIATE

EXECUTE IMMEDIATE
statement 900, 902

implicit connect
CONNECT statement 550

implicit decimal number 82
implicit schema

GRANT (Database Authorities)
statement 914

REVOKE (Database Authorities)
statement 973

IMPLICIT_SCHEMA authority 12
IN EXCLUSIVE MODE clause,

LOCK TABLE statement 947
IN predicate, detailed format

description 194

IN SHARE MODE clause, LOCK
TABLE statement 947

IN_TRAY sample table 1267
INCLUDE clause

CREATE INDEX statement 665
INCLUDE statement 936
incrementing a date, rules for 167
incrementing a time, rules for 168
index

authorization ID, use in
name 72

comment descriptions, adding to
catalog 532

control, granting 928
control (to drop), granting, SQL

statement for 916
correspondence to inserted row

values, rules for 941
definition of 15
deleting, using DROP

statement 868
primary key, use in

matching 490
unique key, use in matching 490
uses of 15
view, relationship to 15

INDEX clause
COMMENT ON statement 536
CREATE INDEX statement 662,

664
DROP statement 873
GRANT statement (table, view or

nickname) 928
REVOKE statement, removing

privileges for 985
index name

primary key constraint 747
unique constraint 746

index-name, qualified and
unqualified naming 68

index specification 43
index wizard 1445
indicator

variable 136, 900
indicator variable

host variable, uses in
declaring 136

infix operators 161
Information Center 1443
inoperative trigger

CREATE TRIGGER
statement 786

inoperative view
CREATE VIEW statement 833

INSERT clause
GRANT statement (table or

view) 928
REVOKE statement, removing

privileges for 985
values, restrictions leading to

failure 941
INSERT function 215

detailed format description 308
values and arguments, rules

for 308
insert rule with referential

constraint 19
INSERT statement 938, 946
insertable

view 832
installing

Netscape browser 1443
integer

in ORDER BY clause 444
integer constants

definition of 115
syntax example 115

INTEGER data type 726
description 81
precision 81
range 81

INTEGER function, integer values
from expressions 310

INTEGER or INT function 216
integer to decimal conversion,

summary 96
interactive entry of SQL

statements 460
interactive SQL 12

CLOSE, use in, example 12
DECLARE CURSOR, use in,

example 12
DESCRIBE, use in, example 12
FETCH, use in, example 12
OPEN, use in, example 12
PREPARE, use in, example 12
SELECT statement, dynamic

example 12
interactive SQL, definition of 9
intermediate result table 400, 408,

409, 416
International Standards Organization

(ISO) date format 83
International Standards Organization

(ISO) time format 84
INTERSECT clause

duplicate rows, use of ALL, effect
of 435

1466 SQL Reference

INTERSECT clause (continued)
of fullselect, role in

comparison 435
INTO clause

DESCRIBE statement, SQLDA
area name 860

FETCH statement, host variable
substitution 908

FETCH statement, use in host
variable 135

INSERT statement, naming table
or view 939

PREPARE statement 954
restrictions on using, list of 939
SELECT INTO statement 998
SELECT INTO statement, use in

host variable 135
values from applications

programs 135
VALUES INTO statement 1054

invoking SQL statements 457
io_ratio server option 1252
IS clause

COMMENT ON statement 541
ISO 83
ISO/ANSI standards

SQLCODE, use of SQL 461
SQLSTATE, use of SQL92 461

isolation level
comparison 1285
cursor stability 29, 1285
declared temporary tables, lack

of 27
description 27
none 1285
read stability 28, 1285
repeatable read 28, 1285
uncommitted read 29, 1285

ITERATE statement 1084

J
Japanese Industrial Standard (JIS)

date format 83
Japanese Industrial Standard (JIS)

time format 84
Java Database Connectivity (JDBC)

Programs 11
JIS 83
join

examples of 421
examples of a subselect 418
full outer 406
inner 406
left outer 406
partitioning key

considerations 754

join (continued)
right outer 406
table collocation 61

joined-table 405
table-reference 401

JULIAN_DAY function 216
detailed format description 311
values and arguments, rules

for 311

K
key

composite 15
foreign 16, 17
parent 18
partitioning 16
primary 16
unique 15, 16, 17

key, start 673
key, stop 673

L
label

naming conventions 68
label, GOTO 1080
labeled duration, detailed

description 164
labelled durations, in expressions,

diagram
labelled duration values,

listing 164
language identifier

books 1437
large integers 81
large object location, definition 77
late-breaking information 1438
LCASE function 216
LCASE

function(SYSFUN.LCASE) 216
detailed format description 313
values and arguments, rules

for 313
LCASE or LOWER function

detailed format description 312
values and arguments, rules

for 312
LEAVE statement 1085
LEFT function 216

detailed format description 314
values and arguments, rules

for 314
length attributes of columns 79
LENGTH function 216
LENGTH function, length values

from expressions 315
lengths of expressions, rules for 315

letters, range of 64
LIKE predicate, rules for 197
limits

database manager 1102, 1105
datetime 1101
identifier 1099
numeric 1100
SQL 1099
string 1101

literals, overview of 115
LN function 216

detailed format description 317
values and arguments, rules

for 317
LOAD parameter, GRANT...ON

DATABASE statement 914
loading a database, granting

authority for 914
LOB

locator, definition 77
string, definition 77

LOCAL 83
LOCAL datetime format 83
LOCAL time format 84
LOCATE function 216

detailed format description 318
values and arguments, rules

for 318
locator

definition 77
FREE LOCATOR statement 912

locator variable
description 138

LOCATORS 1066
LOCK TABLE statement 947, 948
locking

COMMIT statement, effect
on 543

definition of 24
LOCK TABLE statement 947
table rows and columns,

restricting access 947
locks

declared temporary tables, lack
of 27

during UPDATE 1049
exclusive 27
INSERT statement, default rules

for 945
share 27
terminating for unit of work,

ROLLBACK 992
update 27

LOG function 217
detailed format description 319

Index 1467

LOG function 217 (continued)
values and arguments, rules

for 319
LOG10 function 217

detailed format description 320
values and arguments, rules

for 320
logging

creating table without initial
logging 745

logical operators, rules for search
conditions 205

LONG VARCHAR data type
for CREATE TABLE 726

LONG_VARCHAR function 217
detailed format description 321
values and arguments, rules

for 321
LONG VARCHAR strings

attributes, summary 79
restrictions on usage 79

LONG_VARGRAPHIC function 217
detailed format description 322
values and arguments, rules

for 322
LONG VARGRAPHIC strings

attributes, summary 80
restrictions on usage 80

LOOP statement 1086
LTRIM function 217

detailed format description 323
values and arguments, rules

for 323
LTRIM

function(SYSFUN.LTRIM) 217
detailed format description 324
values and arguments, rules

for 324

M
MANAGED BY clause

CREATE TABLESPACE
statement 764

MAX function 217
detailed format description 239
values and arguments, rules

for 239
MBCS (double-byte character set)

data
within mixed data 80

method
description 149
invocation 183
naming conventions 68
user-defined 150

METHOD clause
DROP statement 874

Method invocation 183
method name, syntax for 68
MICROSECOND function 217
MICROSECOND function, returning

microsecond from value 325
MIDNIGHT_SECONDS

function 217
detailed format description 326
values and arguments, rules

for 326
MIN function 217

detailed format description 241
values and arguments, rules

for 241
MINUTE function 217
MINUTE function, returning minute

from value 327
mixed data

description 80
LIKE predicate 199

MOD function 218
detailed format description 328
values and arguments, rules

for 328
MODE keyword, LOCK TABLE

statement 947
MONTH function 218
MONTH function, returning month

from value 329
MONTHNAME function 218

detailed format description 330
values and arguments, rules

for 330
multi-byte character set (MBCS),

support for 64
multiple row VALUES clause

result data type 108

N
name

identifying columns in
subselect 396

name, use of in deleting a row 857
names, qualified column, rules

for 127
names for columns, rules

governing 67
names for conditions, rules

governing 67
names for labels, rules

governing 68
names in SQL, rules for,

summary 66

naming conventions in SQL 66
nested table expression 402
Netscape browser

installing 1443
new unit of work, initiating 992
nickname 43

control privilege, granting 928
exposed or non-exposed names,

FROM clause 128
FROM clause, subselect, naming

conventions 400
in FROM clause 400
in SELECT clause, syntax

diagram 395
privileges, granting 926
qualifying a column name 127
revoking privileges for 984

NICKNAME clause
DROP statement 876

NO ACTION delete rule 748
node number of row, obtaining 331
node server option 1252
nodegroup

adding a node 469
adding a partition 469
creation 684
description 58
dropping a node 469
dropping a partition 469
naming conventions 68
partitioning map created

with 685
NODEGROUP clause

COMMENT ON statement 536
CREATE BUFFERPOOL

statement 570
DROP statement 876

nodegroup name, syntax for 68
nodegroups

comment descriptions, adding to
catalog 532

NODENUMBER function 218, 331
non-exposed name, re.

correlation-name, FROM
clause 128

nonexecutable statement
precompiler requirements

summary 459
nonexecutable statement, methods

overview 457
nonrepeatable read 1286
NOT FOUND clause

WHENEVER statement 1056
NOT NULL, use in NULL

predicate 202

1468 SQL Reference

NOT NULL clause
CREATE TABLE statement 730

NULL
in CAST specification 174
keyword SET NULL delete rule

description 20
NULL predicate, rules for 202
null value in SQL

assignment, rules governing 95
column names in a result 397
in duplicate rows 395
in grouping-expressions,

allowable uses 409
in result columns 397
specified by indicator

variable 136
unknown condition 205

null value in SQL, definition of 76
NULLIF

function description 333
NULLIF function 218
numbers, summary of types 81
numeric

assignments in SQL
operations 95

comparisons, rules for 102
limits 1100

numeric data
data types, overview 81

numeric data, remote conversions
of 41

numeric string column option 1247

O
object identifier (OID) 741

CREATE TABLE statement 741
CREATE VIEW statement 826

object table 130
ODBC 10
OF clause

CREATE VIEW statement 826
OID column 741
OLAP 177
OLAP Functions

BETWEEN clause 177
CURRENT ROW clause 177
ORDER BY clause 177
OVER clause 177
PARTITION BY clause 177
RANGE clause 177
ROW clause 177
UNBOUNDED clause 177

ON clause
CREATE INDEX statement 664

On-line Analytical Processing 177

on-nodes-clause
CREATE TABLESPACE

statement 767, 768, 769
ON TABLE clause

GRANT statement 930
REVOKE statement 986

ON UPDATE clause 750
online help 1440
online information

searching 1446
viewing 1442

ONLY clause in DELETE
statement 856

ONLY clause in UPDATE
statement 1045

open database connectivity 10
OPEN statement 949, 953
operand

string 158
operands

datetime
date duration 164
labelled duration 164
time duration 164

decimal 162
decimal, rules governing 162
floating-point, rules for 163
integer 162
integer, rules governing 162

operands of in list
result data type 107

operation
assignment 94, 99
assignments, general

description 94
comparison 102, 107
comparisons, general

description 94
datetime, SQL rules for 165
dereference 176

operators
arithmetic, summary of

results 161
OPTION clause

CREATE VIEW statement 830
OR truth table 205
order-by-clause 443
ORDER BY clause

of select-statement 443
ORDER BY clause, using in OLAP

functions 177
order of evaluation,

expressions 170
ordinary identifier, SQL

statement 65

ordinary tokens, definition of 64
ORG sample table 1267
outer join

joined-table 401, 405
OVER clause, using in OLAP

functions 177

P
package

access plan, relation to term 24
authority to create, granting 913
authorization ID, use in

name 72
authorization ID and binding 75
authorization ID in dynamic

statements 73
binding, overview of

relationship 31
comment descriptions, adding to

catalog 532
COMMIT statement, effect on

cursor 543
definition of 24
deleting, using DROP

statement 868
DROP FOREIGN KEY, effect on

dependencies 498
DROP PRIMARY KEY, effect on

dependencies 498
DROP UNIQUE key, effect on

dependencies 498
naming conventions 68
necessary privileges,

granting 918
plan, relation to term 24
revoking all privileges 977
validity and usage rules when

revoking privilege 987
PACKAGE clause

COMMENT ON statement 536
DROP statement 876

package name, syntax for 68
packed decimal number, locating

decimal point 82
parameter

naming conventions 68
parameter marker

host variables in dynamic
SQL 135

in CAST specification 174
in EXECUTE statement 895
in OPEN statement 950
in PREPARE statement 956
rules, syntax and operations 956
substitution for, OPEN

statement 949

Index 1469

parameter marker (continued)
typed 956
untyped 956
usage in expressions, predicates

and functions 956
parameter name, syntax for 68
parent key 18
parent row 18
parent table 18
parentheses

precedence of operation,
use 170

partial declustering 60
PARTITION BY clause, using in

OLAP functions 177
partition compatibility

definition 114
PARTITION function 218, 334
partition number of row,

obtaining 331
partitioned relational database,

definition 9
partitioning data

compatibility table 114
description 59
hash partitioning 60
partial declustering 60
partition compatibility 114
partitioning map, definition 60

partitioning key 16
adding or dropping, ALTER

TABLE 477
ALTER TABLE statement 491
considerations 754
defining when creating

table 744
purpose 59

partitioning map
created with nodegroup 685

partitioning map index of row,
obtaining 334

partitioning of data 9
pass-through 42

COMMIT statement 1257
considerations, restrictions 1257
SET PASSTHRU statement 1257
SQL processing 1256

password server option 1252
PCTFREE clause

CREATE INDEX statement 666
PDF 1438
performance

partitioning key
recommendation 754

performance configuration
wizard 1445

phantom row 28, 1286
plan_hints server option 1253
positional updating of columns by

row 1046
POSSTR function 218
POSSTR scalar function

description 336
POWER function 218

detailed format description 338
values and arguments, rules

for 338
precedence

level operators, rules for 170
operation, order of

evaluating 170
precision, as a numeric attribute 81
precision-integer, DECIMAL function

default values for data
types 280

precision of numbers
determined by SQLLEN

variable 1121
precompiler

INCLUDE statement, trigger
for 936

non-executable statements, usage
overview 459

static SQL, use in Run-Time
Service calls 10

precompiling
including external text file 936
initiating and setting up SQLDA

and SQLCA 936
predicate

basic, detailed format,
diagram 187

BETWEEN, detailed format
diagram 191

description 186
EXISTS, detailed format

description 193
IN, detailed format

description 194
LIKE 197
NULL, detailed format,

diagram 202
quantified, usage and rules 188
TYPE, detailed format,

diagram 203
prefix operator 161
PREPARE statement 954, 963

embedded usage, detailed
description 459

PREPARE statement 954, 963
(continued)

use in dynamic SQL 9
prepared SQL statement 1113

dynamically declaring, PREPARE
statement 954

dynamically prepared by
PREPARE 963

executing 895, 899
host variables, substitution

of 895
information, obtaining with

DESCRIBE 860
prepared statement

OPEN statement, use in variable
substitution 949

SQLDA provides information
about 1113

primary key 16
adding, privileges for,

granting 927
adding or dropping, ALTER

TABLE 477
dropping, privileges for,

granting 927
PRIMARY KEY

CREATE TABLE statement 734
PRIMARY KEY clause

ALTER TABLE statement 490
CREATE TABLE statement 747

printing PDF books 1438
privilege 985
privileges

CONTROL privilege, overview
of 55

database, effects of
revoking 974, 981

DBADM, scope of 57
definition 55
index, effects of revoking 976
overview 55
package, effects of revoking 979
packages, validity rules when

revoking 986
SYSADM, scope of 57
SYSCTRL, scope of 57
SYSMAINT, scope of 57
table or view, effects of

revoking 988
views, cascading effects of

revoking 986
procedure

authorization for creating 687
creating, SQL statement

instructions 687

1470 SQL Reference

procedure (continued)
naming conventions 68

PROCEDURE clause
COMMENT ON statement 537

procedure name, syntax for 68
PROJECT sample table 1268
promotion

of data types 90
PUBLIC clause

GRANT statement 915, 917, 919,
922, 931

REVOKE statement 974, 976,
978, 981

REVOKE statement, removing
privileges for 986

pushdown server option 1253

Q
qualified column names, rules

for 127
qualifier

reserved 1279
quantified predicate, detailed rules

for 188
QUARTER function 218

detailed format description 339
values and arguments, rules

for 339
query 393, 453

authorization IDs required for
issuing 393

definition 393
recursive 441

example 1329
query (SQL)

subquery, use in WHERE
clause 408

question mark (?) 895

R
RADIANS function 219

detailed format description 340
values and arguments, rules

for 340
RAISE_ERROR function 219, 341
raising errors

RAISE_ERROR function 341
SIGNAL SQLSTATE

statement 1041
RAND function 219

detailed format description 343
values and arguments, rules

for 343
RANGE clause, using in OLAP

functions 177

RANK
OLAP function 177

read-only
view 833

read-only cursor
ambiguous 845

read stability 28, 1285
REAL data type 726

precision 81
range 81

REAL function 219
REAL function, single precision

conversion 344
Record Blocking

locks to row data, INSERT
statement 945

recovery of applications 24
recursion

example 1329
query 441

recursive common table
expression 441

reference type
comparison 107
DEREF function 284
description 89

reference types
casting 92

REFERENCES clause
GRANT statement 928
REVOKE statement, removing

privileges for 985
referential constraint 17
referential cycle 18
referential integrity 17, 18
REFRESH TABLE statement 964

REFRESH DEFERRED 964
REFRESH IMMEDIATE 964

register 118
REGR_AVGX function 219
REGR_AVGY function 219
REGR_COUNT function 219
REGR_INTERCEPT or REGR_ICPT

function 219
REGR_R2 function 219
REGR_SLOPE function 219
REGR_SXX function 219
REGR_SXY function 219
REGR_SYY function 219
REGRESSION Function function,

detailed description 243
REGRESSION Functions

REGR_AVGX 243
REGR_AVGY 243
REGR_COUNT 243

REGRESSION Functions (continued)
REGR_ICPT 243
REGR_INTERCEPT 243
REGR_R2 243
REGR_SLOPE 243
REGR_SXX 243
REGR_SXY 243
REGR_SYY 243

relational database, definition 9
release notes 1438
release-pending connection state 38
RELEASE SAVEPOINT 967
RELEASE SAVEPOINT

statement 967
RELEASE statement 966
remote access

application server, role in 30
character strings, conversions 41
CONNECT statement

EXCLUSIVE MODE,
dedicated connection 556

ON SINGLE NODE,
dedicated connection 556

server information only, no
operand 556

SHARE MODE, read-only for
non-connector 556

IMPLICIT connect, diagram of
state transitions 33

non-IMPLICIT connect, diagram
of state transitions 35

numeric data, conversions 41
successful connection, detailed

description 552
unsuccessful connection, detailed

description 555
remote execution of SQL 35
remote unit of work, overview 31
RENAME TABLE statement 968,

969
RENAME TABLESPACE

statement 970, 971
REPEAT function 219

detailed format description 345
values and arguments, rules

for 345
REPEAT statement 1088
repeatable read 28, 1285
REPLACE function 220

detailed format description 346
values and arguments, rules

for 346
reserved

qualifiers 1279
schema names 1279

Index 1471

reserved (continued)
words 1279

Reserved Schemas 1279
Reserved Words 1279
Reserved Words, SQL 1281
RESIGNAL statement 1090
restore wizard 1445
RESTRICT delete rule 748

description 20
result columns of subselect 398
result data type

arguments of COALESCE 107
multiple row VALUES

clause 108
operands of in list 107
result expressions of CASE

expression 107
set operator 107

result expressions of CASE
expression

result data type 107
result sets

returning from a SQL
procedure 1072

RESULT_STATUS
GET DIAGNOSTICS

statement 1078
result table 13
result table, result from query 393
return code

embedded statements, language
instructions for 461

executable statements, usage
summary 458

RETURN statement 1093
returning result sets 1072
REVOKE

CONTROL ON INDEX 975
CREATEIN ON SCHEMA 980
Database Authorities 972
DROPIN ON SCHEMA 980
Nickname Privileges 984, 989
Package Privileges 977
Table Privileges 984, 989
Table Space Privileges 990
View Privileges 984, 989

REVOKE (Schema Privileges)
statement 980, 981

revoke statement
authorization-name, use in 72,

73
REXX

END DECLARE SECTION,
prohibition 894

RIGHT function 220

RIGHT function 220 (continued)
detailed format description 347
values and arguments, rules

for 347
ROLLBACK

cursor, effect on 993
SQL statement, detailed usage

instructions for 993
rollback description 25
ROLLBACK statement 994

detailed syntax instructions 992
ROLLBACK TO SAVEPOINT

atomic execution contexts 993
cursor, effect on 993
dynamic SQL caching, effect

on 993
prepared statements, effect

on 993
SQL statement, detailed usage

instructions for 993
temporary tables, use with 993

ROLLBACK TO SAVEPOINT
statement

detailed syntax instructions 992
rollup

examples of 425
ROLLUP 411
ROUND function 220

detailed format description 348
values and arguments, rules

for 348
row

as syntax component,
diagram 395

assigning values to host variable,
SELECT INTO 998

assigning values to host variable,
VALUES INTO 1054

COUNT_BIG function, values
returned 234

COUNT function, values
returned 232

cursor, effect of closing on
FETCH 530

cursor, FETCH statement, relation
to 951

cursor, location in result
table 842

definition of 13
deleting, privilege for,

granting 928
deleting, SQL statement,

details 855
dependent 18
descendent 18

row (continued)
exporting row data, privilege for,

granting 929
FETCH request, cursor row

selection 842
GROUP BY, use in limiting in

SELECT clause 396
GROUP BY clause, result table

from 409
HAVING, use in limiting in

SELECT clause 396
HAVING clause, results from

search, rules for 416
importing values, privilege for,

granting 928
index, role of key 662
inserting, privilege for,

granting 928
inserting into table or view 938
inserting values, INSERT

statement 940
locks, effect on cursor of WITH

HOLD 842
locks to row data, INSERT

statement 945
parent 18
retrieving row data, privilege for,

granting 929
search conditions, detailed

syntax 205
SELECT clause, select list

notation 395
self-referencing 18
UNIQUE clause, table index,

effect on key 663
updating column values,

UPDATE statement 1043
values, insertion, restrictions

leading to failure 941
ROW clause, using in OLAP

functions 177
ROW_COUNT

GET DIAGNOSTICS
statement 1078

row fullselect
UPDATE statement 1047

ROW_NUMBER
OLAP function 177

ROWNUMBER
OLAP function 177

RR (repeatable read) isolation
level 28, 1285

RS (read stability) isolation
level 28, 1285

RTRIM function 220

1472 SQL Reference

RTRIM function 220 (continued)
detailed format description 349
values and arguments, rules

for 349
RTRIM

function(SYSFUN.RTRIM) 220
detailed format description 350
values and arguments, rules

for 350
run-time authorization ID 72
Run-Time Services, static SQL

support for 10

S
SALES sample table 1269
sample database

creating 1260
erasing 1260

Sample Database 1259
sample programs

cross-platform 1437
HTML 1437

sample tables 1259, 1279
savepoint 967

naming conventions 69
ROLLBACK TO

SAVEPOINT 992
savepoint name, syntax for 69
SAVEPOINT statement 995, 996
SBCS (single-byte character set) data

within mixed data 80
SBCS (single-byte character set) data,

description 80
scalar fullselect 164
scalar function 250
scalar function, arguments for 210
scale-integer, DECIMAL

function 280
scale of data 1113

comparisons in SQL,
overview 102

conversion of numbers in
SQL 96

determined by SQLLEN
variable 1117

in results of arithmetic
operations 162

scale of numbers
determined by SQLLEN

variable 1121
schema

controlling use of 12
CREATE SCHEMA

statement 704
creating implicit schema, granting

authority for 914

schema (continued)
creating implicit schema,

revoking authority for 973
definition of 12
privileges 13

SCHEMA clause
COMMENT ON statement 538
DROP statement 878

schema-name
description 68
reserved names 1279

schema-name, description of 69
schemas

comment descriptions, adding to
catalog 532

definition of 12
Schemas, Reserved 1279
scope

adding with ALTER TABLE
statement 492

adding with ALTER VIEW
statement 518

defining in CAST
specification 174

defining with added
column 485

defining with CREATE TABLE
statement 733

defining with CREATE VIEW
statement 827

definition of 89
dereference operation 176

SCOPE clause
ALTER TABLE statement 485,

492
ALTER VIEW statement 518
CREATE TABLE statement 733
CREATE VIEW statement 827,

828
in CAST specification 174

scoped-ref-expression
in dereference operation 176

search condition
AND, logical operator 205
description 205
HAVING clause, arguments and

rules 416
NOT, logical operator 205
OR, logical operator 205
order of evaluation 205
using WHERE clause, rules

for 408
with DELETE, row selection 857
with UPDATE, applying changes

to a match 1048

searching
online information 1444, 1446

SECOND function 220
SECOND function, returning second

from value 351
security

CONNECT statement 556
SELECT clause

DISTINCT keyword, use in 395
GRANT statement (table or

view) 929
list notation, column

reference 395
REVOKE statement, removing

privileges for 985
SELECT INTO statement 998, 999
select list

application of, rules and
syntax 397

description 395
notation rules and

conventions 395
select-statement

examples of 450
SELECT statement

cursor, rules regarding parameter
markers 843

dynamic invocation, execution
overview 459

embedding in SQL
Procedures 459

fullselect, detailed syntax 434
interactive invocation, limitations

on 460
invoking, usage summary 457
result table, OPEN statement,

relation to cursor 949
select-statement 439
static invocation, execution

overview 459
subselect 394
VALUES clause 434

SELECTIVITY 205
self-referencing row 18
self-referencing table 18
sequence values

generating 302
server definition 42
server-name, description of 70
server options

collating_sequence 1250
comm_rate 1250
connectstring 1251
cpu_ratio 1251
dbname 1251

Index 1473

server options (continued)
fold_id 1251
fold_pw 1252
io_ratio 1252
node 1252
password 1252
plan_hints 1253
pushdown 1253
varchar_no_trailing_blanks 1253

SET clause
UPDATE statement, column

names and values 1046
SET CONNECTION

statement 1000, 1001
successful connection, detailed

description 1000
unsuccessful connection, detailed

description 1001
SET CONSTRAINTS

statement 1019
SET CURRENT DEFAULT

TRANSFORM GROUP
statement 1002

SET CURRENT DEGREE
statement 1004, 1005

SET CURRENT EXPLAIN MODE
statement 1006, 1007

SET CURRENT EXPLAIN
SNAPSHOT statement 1008, 1009

SET CURRENT FUNCTION PATH
statement 1031

SET CURRENT PATH
statement 1031

SET CURRENT QUERY
OPTIMIZATION statement 1012,
1014

SET CURRENT SQLID
statement 1033

SET DEFAULT delete rule
description 20

SET EVENT MONITOR STATE
statement 1017, 1018

SET INTEGRITY statement 1019,
1028

SET NULL delete rule 748
description 20

set operator
EXCEPT, comparing differences

only 435
INTERSECT, role of AND in

comparisons 435
result data type 107
UNION, correspondence to

OR 435

SET PASSTHRU statement 1029,
1257

independence from COMMIT
statement 543

independence from ROLLBACK
statement 992

SET PATH statement 1031
SET SCHEMA statement 1033
SET SERVER OPTION

statement 1035
independence from COMMIT

statement 543
independence from ROLLBACK

statement 992
SET statement 1064
SET transition-variable

statement 1037, 1041
setting up document server 1445
SHARE

IN SHARE MODE 550
share locks 27
SHARE option, LOCK TABLE

statement 947
shift-in character

not truncated by assignments 98
sign, as a numeric attribute 81
SIGN function 220

detailed format description 352
values and arguments, rules

for 352
SIGNAL SQLSTATE

statement 1041, 1042
SIGNAL statement 1094
SIN function 221

detailed format description 353
values and arguments, rules

for 353
single-byte character set (SBCS) 80
single-byte character set (SBCS),

support for 64
single precision float data type 726
single-precision floating-point 81
single row select 998
small integer

description 81
precision 81
range 81

SMALLINT data type 725
description 81
precision 81
range 81

SMALLINT function 221
SMALLINT function, small integer

values from expressions 354

SmartGuides
wizards 1444

SMS table space
CREATE TABLESPACE

statement 766
description 58

SOME in quantified predicate 188
sorting

ordering of results 104
string comparisons 103

SOUNDEX function 221
detailed format description 355
values and arguments, rules

for 355
sourced function

description 143
space 64
SPACE function 221

detailed format description 356
values and arguments, rules

for 356
spaces

rules governing 65
special characters, range of 64
special register 118

CURRENT DATE 118, 125
CURRENT DEFAULT

TRANSFORM GROUP 118
CURRENT DEGREE 119
CURRENT EXPLAIN

MODE 120
CURRENT EXPLAIN

SNAPSHOT 121
CURRENT FUNCTION

PATH 122
CURRENT NODE 122
CURRENT PATH 122
CURRENT QUERY

OPTIMIZATION 123
CURRENT REFRESH AGE 124
CURRENT SCHEMA 124
CURRENT SERVER 125
CURRENT SQLID 124
CURRENT TIME 125
CURRENT TIMESTAMP 125
CURRENT TIMEZONE 126
interaction of Explain special

registers 1325
USER 126

specific function
comment descriptions, adding to

catalog 532
SPECIFIC FUNCTION clause

COMMENT ON statement 535
specific-name, description of 70

1474 SQL Reference

SPECIFIC PROCEDURE clause
COMMENT ON statement 538

specification
CAST 173

SQL (Structured Query Language)
numbers 81
tokens 64

SQL comments, static statements,
rules for 463

SQL error code 1107
SQL function

description 143
SQL identifiers

database identifier 66
SQL path 87

CURRENT PATH special
register 122

resolution 144
SQL procedure

assignment statement 1064
CASE statement 1068
compound statement 1070
condition handler

statement 1073
condition handlers 1073
DECLARE statement 1070
FOR statement 1076
GET DIAGNOSTICS

statement 1078
GOTO statement 1080
IF statement 1082
ITERATE statement 1084
LEAVE statement 1085
LOOP statement 1086
REPEAT statement 1088
RESIGNAL statement 1090
RETURN statement 1093
SET statement 1064
SIGNAL statement 1094
variables 1070
WHILE statement 1097

SQL Reserved Words 1281
SQL return code 461
SQL statement

ALLOCATE CURSOR 1062,
1063

ALTER BUFFERPOOL 464, 465
ALTER NICKNAME 466
ALTER NODEGROUP 469, 472
ALTER SERVER 473
ALTER TABLE 477, 503
ALTER TABLESPACE 503, 508
ALTER TYPE (Structured) 509,

515
ALTER USER MAPPING 516

SQL statement (continued)
ALTER VIEW 519
ASSOCIATE LOCATORS 1066,

1067
BEGIN DECLARE

SECTION 520, 521
CALL 522, 529
CLOSE 530, 531
COMMENT ON 532, 542
COMMIT 543, 544
Compound SQL 549
Compound SQL

(Embedded) 545
CONNECT (Type 1) 550, 557
CONNECT (Type 2) 558, 565
CONTINUE, response to

exception 1056
CREATE ALIAS 566, 569
CREATE BUFFERPOOL 569,

571
CREATE DISTINCT TYPE 572,

578
CREATE EVENT

MONITOR 579, 588
CREATE FUNCTION 589, 630,

638, 656
CREATE FUNCTION (External

Scalar) 590
CREATE FUNCTION (External

Table) 615
CREATE FUNCTION (OLE DB

External Table) 631
CREATE FUNCTION

(Source) 648
CREATE FUNCTION (Source or

Template) 639
CREATE FUNCTION (SQL

Scalar, Table or Row) 649
CREATE INDEX 662, 668
CREATE INDEX

EXTENSION 669
CREATE METHOD 676
CREATE NODEGROUP 684,

686
CREATE PROCEDURE 687
CREATE SCHEMA 704, 707
CREATE SERVER 708
CREATE TABLE 712, 764
CREATE TABLESPACE 764, 773
CREATE TRANSFORM 774
CREATE TRIGGER 780, 791
CREATE TYPE (Structured) 792,

816
CREATE TYPE MAPPING 816
CREATE USER MAPPING 821

SQL statement (continued)
CREATE VIEW 823, 838
CREATE WRAPPER 839
DECLARE CURSOR 841, 845
DECLARE GLOBAL

TEMPORARY TABLE 846
DELETE 855, 859
DESCRIBE 860, 864
DISCONNECT 865, 867
DROP 868, 894
DROP TRANSFORM 868
dynamic SQL, definition of 9
END DECLARE SECTION 894
EXECUTE 895, 899
EXECUTE IMMEDIATE 900,

902
EXPLAIN 903, 907
FETCH 908, 910
FLUSH EVENT MONITOR 911
FREE LOCATOR 912
GRANT (Nickname

Privileges) 926, 933
GRANT (Schema

Privileges) 921, 923
GRANT (Table Privileges) 926,

933
GRANT (View Privileges) 926,

933
immediate execution of dynamic

SQL 9
INCLUDE 936
INSERT 938, 946
interactive SQL, definition of 9
LOCK TABLE 947, 948
OPEN 949, 953
PREPARE 954, 963
preparing and executing dynamic

SQL 9
REFRESH TABLE 964
RELEASE 966
RELEASE SAVEPOINT 967
RENAME TABLE 968, 969
RENAME TABLESPACE 970,

971
REVOKE (Nickname

Privileges) 984, 989
REVOKE (Schema

Privileges) 980, 981
REVOKE (Table Privileges) 984,

989
REVOKE (Table Space

Privileges) 990
REVOKE (View Privileges) 984,

989
ROLLBACK 992, 994

Index 1475

SQL statement (continued)
ROLLBACK TO

SAVEPOINT 992
SAVEPOINT 995, 996
SELECT INTO 998, 999
SET CONNECTION 1000, 1001
SET CONSTRAINTS 1019
SET CURRENT DEFAULT

TRANSFORM GROUP 1002
SET CURRENT DEGREE 1004,

1005
SET CURRENT EXPLAIN

MODE 1006, 1007
SET CURRENT EXPLAIN

SNAPSHOT 1008, 1009
SET CURRENT FUNCTION

PATH 1031
SET CURRENT PATH 1031
SET CURRENT QUERY

OPTIMIZATION 1012, 1014
SET EVENT MONITOR

STATE 1017, 1018
SET INTEGRITY 1019, 1028
SET INTEGRITY or SET

CONSTRAINTS 1019
SET PASSTHRU 1029
SET PATH 1031
SET SCHEMA 1033, 1034
SET SERVER OPTION 1035
SET transition-variable 1037,

1041
SIGNAL SQLSTATE 1041, 1042
specific-name, conventions

for 70
SQL-variable-name, conventions

for 70
statement name, conventions

for 70
static SQL, definition of 9
syntax conventions for 3
UPDATE 1043, 1052
VALUES INTO 1054, 1055
WHENEVER 1056, 1057
WITH HOLD, cursor

attribute 842

SQL statement syntax

case sensitive identifiers, rule
for 65

cursor-name, definition of 67
escape character 66
specific-name, conventions

for 70
SQL–variable-name, conventions

for 70

SQL statement syntax (continued)
statement name, conventions

for 70

SQL syntax

AVG function, results on column
set 229

basic predicate, detailed
diagram 187

comparing two predicates, truth
conditions 187, 203

CORRELATION function, results
on set of number pairs 231

COUNT_BIG function, arguments
and results 234

COUNT function, arguments and
results 232

COVARIANCE function, results
on set number pairs 236

DISTINCT keyword, queries, role
of 228

executable statements, embedded
usage 459

EXISTS predicate, detailed format
description 193

GENERATE_UNIQUE function,
arguments and results 302

GROUP BY clause, use in
subselect 409

IN predicate, detailed format
description 194

multiple operations, order of
execution 436

naming conventions, listing of,
definitions 66

non-executable statements,
embedded usage 459

null value, definition of 76
REGRESSION Functions function,

results on column set 243
search conditions, detailed

formats and rules 205
SELECT clause, detailed

description 395
SELECT statement, invocation

methods 457
SQLCACHE_SNAPSHOT

function, results on set number
pairs 390

STDDEV function, results on
column set 247

TYPE predicate, detailed
diagram 203

values, overview 75
VARIANCE function, results on

column set 249

SQL syntax (continued)
WHERE clause, search conditions

for 408
SQL Syntax

BETWEEN predicate, rules
for 191

data types, overview 75
dates, detailed description 82
LIKE predicate, rules for 197
scale of data in SQL 82
times, detailed description 82

SQL variables 1070
SQL92

setting rules for dynamic
SQL 1033

SQLCA (SQL communication
area) 1107

entry changed by UPDATE 1049
SQLCA (SQL communication area)

clause
INCLUDE statement 936

SQLCA structure, overview 461
SQLCACHE_SNAPSHOT

function 221
SQLCACHE_SNAPSHOT function,

detailed description 390
SQLCODE

description 461
return code values, table 461

SQLD field in SQLDA 1113
description 1115

SQLDA
host variable descriptions, OPEN

statement 950
prepared statement information,

storing 954
SQLDA (SQL descriptor area) 1113

contents 1113
FETCH statement 909

SQLDA (SQL descriptor area) clause
INCLUDE statement,

specifying 936
SQLDA area, required variables for

DESCRIBE 860
SQLDABC field in SQLDA 1113

description 1115
SQLDAID field in SQLDA

description 1115
SQLDATALEN field in SQLDA

description 1119
SQLDATATYPE_NAME field in

SQLDA
description 1119

SQLERROR clause
WHENEVER statement 1056

1476 SQL Reference

SQLIND field in SQLDA 1113
description 1117

SQLLEN field in SQLDA 1113
description 1116

SQLLONGLEN field in SQLDA
description 1118

SQLN field in SQLDA 1113
description 1115

SQLNAME field in SQLDA 1113
description 1117

sqlstate
in RAISE_ERROR function 341
in SIGNAL SQLSTATE

statement 1041
SQLSTATE

description 461
ISO/ANSI SQL92 standard,

relation to 461
SQLTYPE field in SQLDA 1113

description 1116
SQLVAR field in SQLDA 1113

base 1116
secondary 1118

SQLWARNING clause
WHENEVER statement 1056

SQRT function 221
detailed format description 357
values and arguments, rules

for 357
STAFF sample table 1270
STAFFG sample table 1271
standards

setting rules for dynamic
SQL 1033

starting a new unit of work 992
statement-name, description of 70
statement string, PREPARE

statement, rules for 955
statement string, rules for

creating 900
states

connection 38
static select 459
static SQL

DECLARE CURSOR statement,
usage in 459

definition of 9
FETCH statement, usage in 459
invoking 458, 459
OPEN statement, usage in 459
source code, differences from

dynamic SQL 10
statistics

updating 1221, 1231
STDDEV function 221

STDDEV function, detailed
description 247

storage
backing out, unit of work,

ROLLBACK 992
storage structures

ALTER BUFFERPOOL
statement 464

ALTER TABLESPACE
statement 503

buffer pool 58
CREATE BUFFERPOOL

statement 569
CREATE TABLESPACE

statement 764
description 58
nodegroup 58
table space 58

stored procedures
CALL statement 522

string
assignment

conversion rules 97
BLOB 77
CLOB 77
constant

character 116
hexadecimal 117

definition 52
expression 158
LOB 76
operand 158

string limits 1101
Structured Query Language (SQL)

assignment operation,
overview 94

basic operands, assignments and
comparisons 94

character strings, overview
of 78

characters, range of 63
comments, rules for 63
comparison operation,

overview 94
constants, definition of 115
double byte character set (DBCS),

considerations 63
identifiers, definition of

delimited identifier,
description 65

ordinary identifiers,
description 65

spaces, definition of 63
tokens, definition of

delimiter tokens 63

Structured Query Language (SQL)
(continued)

tokens, definition of (continued)
ordinary tokens 63

values
data types for 75
overview 75
sources of 75

variable names used 66
structured type

description 88
DROP statement 868
host variables 141
method invocation 183
subtype treatment 184

structured type catalog 1231
sub-total rows 411
subject table of trigger 22
subquery

HAVING clause 416
in HAVING clause, execution

of 417
in WHERE clause 408

subquery, fullselect use as, search
conditions 132

subselect 394
definition 394
examples of 418
FROM clause, relation to

subselect 394
sequence of operations,

example 394
SUBSTR function 221
SUBSTR function, returning

substring from string 358
substrings

cautions and restrictions 361
length, defining 358
locating in string 358
start, setting 358

Subtype Treatment 184
SUM function 221

detailed format description 248
values and arguments, rules

for 248
SUMMARY table

in CREATE TABLE
statement 719

summary tables
REFRESH TABLE statement 964

super-aggregate rows 412
super-groups 411
supertype

supertype name, conventions
for 70

Index 1477

supertype-name, description 70
symmetric super-aggregate

rows 412
synonym

CREATE ALIAS statement 566
DROP ALIAS statement 871
qualifying a column name 127

syntax diagrams
description 3

system administration privilege 57
system-containers

CREATE TABLESPACE
statement 767

system control privilege 57
system maintenance privilege 57
system managed space 58

T
table 9

adding a column, ALTER
TABLE 483

alias 566, 871
authorization for creating 712
authorization ID, use in

name 72
base table 13
catalog views on system

tables 1127
changing definition 477
collocation 61
comment descriptions, adding to

catalog 532
common table expression 23
control privilege, granting 928
correlation name 127
creating, SQL statement

instructions 712
creating a table, granting

authority for 913
declared global temporary

table 13
declared temporary table 13
definition of 13
deleting, using DROP

statement 868
dependent 18
descendent 18
designator, use to avoid

ambiguity 130
exception 1023, 1335
exposed or non-exposed names,

FROM clause 128
foreign key 16
FROM clause, subselect, naming

conventions 400
generated columns 477

table 9 (continued)
index creation, requirements

of 662
nested table expression, use

of 132
parent 18
partitioning key 16
partitioning map 60
primary key 16
privileges, granting 926
qualifying a column name 127
renaming, requirements of 968
restricting shared access, LOCK

TABLE statement 947
result table 13
revoking privileges for 984
row, inserting 938
Sample Database 1259
scalar fullselect, use of 132
schema 704
self-referencing 18
space 58, 569, 764, 880
subquery, use of 132
table name, conventions for 70
table-reference 401
temporary, OPEN statement, use

of 951
typed, and triggers 787
unique correlation names as table

designators 132
unique key 16
updating by row and column,

UPDATE statement 1043
table check constraint

description 21
TABLE clause

COMMENT ON statement 539
CREATE FUNCTION (External

Table) statement 615
DROP statement 878
table-reference 401

table expression
common-table-expression 440
description 23

TABLE HIERARCHY clause
DROP statement 879

table join
partitioning key

considerations 754
table-name

in ALTER TABLE statement 483
in CREATE TABLE

statement 719
in FROM clause 400
in LOCK TABLE statement 947

table-name (continued)
in SELECT clause, syntax

diagram 395
table-name, description 70
TABLE_NAME function 221

alias 362
table-reference

alias 402
nested table expressions 402
nickname 401
table-name 401
view-name 401

TABLE_SCHEMA function 221
alias 364

table space
comment descriptions, adding to

catalog 532
deleting, using DROP

statement 868
description 58
identification

CREATE TABLE
statement 742

index
CREATE TABLE

statement 743
name description 70
renaming, requirements of 970
revoking privileges for 990

tables
distributed relational database,

use in 29
tablespace

pagesize 766
TABLESPACE clause

COMMENT ON statement 540
tablespace-name, description 70
TAN function 221

detailed format description 366
values and arguments, rules

for 366
temporary tables in OPEN 951
terminating

unit of work 543, 992
terminating a unit of work 992
time

arithmetic operations, rules
for 168

as data type 75
CHAR, use of in format

conversion 260
duration, format of 165
expression, using in 367
hour values, using in an

expression (HOUR) 307

1478 SQL Reference

time (continued)
microsecond, returning from

datetime value 325
minute, returning from datetime

value 327
returning values based on

time 367
second, returning from datetime

value 351
strings 84
timestamp

internal representation of 83
length of string 83

timestamp, as data type 75
timestamp, returning from

values 368
time data type 82
TIME data type 728
TIME function 222
TIME function, using time in an

expression 367
timestamp

arithmetic operations 169
as data type 75
data definition 83
duration 165
from GENERATE_UNIQUE

result 302
multi-byte character string

(MBCS) restriction 85
string representation format 85

TIMESTAMP
WEEK_ISO scalar function,

using 387
WEEK scalar function,

using 386
TIMESTAMP data type 728
TIMESTAMP function 222
TIMESTAMP function, returning

from values 368
TIMESTAMP_ISO function 222

detailed format description 370
values and arguments, rules

for 370
TIMESTAMPDIFF function 222

detailed format description 371
values and arguments, rules

for 371
TO clause

GRANT statement 915, 916, 919,
922, 930

tokens
as language element 63
delimiter tokens, definition

of 64

tokens (continued)
ordinary tokens, definition of 64
spaces, rules governing 65
upper and lower case, support

for 65
transform

DROP statement 868
transition tables in triggers 22
transition variables in triggers 22
TRANSLATE function 223

character string, using with 373
graphic string, using with 373
rules and restrictions 373

translation table 373
trigger

and constraints 1287
CREATE TRIGGER

statement 780
DROP statement 881
errors executing 787
Explain tables 1291
inoperative 786
interactions 1287
name description 70
typed tables and 787

TRIGGER clause
COMMENT ON statement 540

triggered SQL statement
SET transition-variable

statement 1037
SIGNAL SQLSTATE

statement 1041
triggers

activation 21
activation time 22
cascading 23
comment descriptions, adding to

catalog 532
description 21
event 22
granularity 22
INSERT statement 941
set of affected rows 22
subject table 22
triggered action 22
uses of 21

TRUNC or TRUNCATE
function 223

TRUNCATE or TRUNC function
detailed format description 376
values and arguments, rules

for 376
truncation of numbers 95
truth table 205

truth valued logic, search conditions,
rules for 205

type
type name, conventions for 70

TYPE clause
COMMENT ON statement 540
DROP statement 881

TYPE_ID function 223
data type 377

type mapping
name description 70

type-name, description 70
TYPE_NAME function 223

data type 378
TYPE predicate, detailed

format 203
TYPE_SCHEMA function 223

data type 379
typed-table

typed-table name, conventions
for 70

typed-table-name, description 70
typed-view

typed-view name, conventions
for 70

typed-view-name, description 70

U
UCASE function 223
UCASE

function(SYSFUN.UCASE) 223
UCASE or UPPER function

detailed format description 380
values and arguments, rules

for 380
unary

minus sign, results of 161
plus sign, results of 161

uncommitted changes, relation to
locks 25

uncommitted read 29, 1285
unconnected state 38
undefined reference, error conditions

for 131
UNDER clause

CREATE VIEW statement 826
UNION clause, role in comparison

of fullselect 435
UNIQUE clause

ALTER TABLE statement 489
CREATE INDEX statement 663
CREATE TABLE statement 746

unique constraint 16, 17
adding or dropping, ALTER

TABLE 477
ALTER TABLE statement 489

Index 1479

unique constraint 16, 17
(continued)

CREATE TABLE statement 746
unique correlation names as table

designators 132
unique key 15, 16, 17
UNIQUE key

ALTER TABLE statement 486
CREATE TABLE statement 734

unique values
generating 302

unit of work
COMMIT 543
description 25
destroying prepared

statements 963
initiating closes cursors 951
referring to prepared

statements 954
ROLLBACK statement, effect

of 992
terminating 543
terminating destroys prepared

statements 963
terminating without saving

changes 992
unknown condition

null value 205
updatable

view 832
UPDATE clause

GRANT statement 929
REVOKE statement, removing

privileges for 986
update locks 27
UPDATE statement 1043, 1052

row fullselect 1047
updating statistics 1221, 1231
uppercase, folding to 65
UR (uncommitted read) isolation

level 29, 1285
USA 83
USA date format 83
USA time format 84
user-defined data type

distinct-type-name
CREATE TABLE

statement 729
structured-type-name

CREATE TABLE
statement 729

user-defined function 391
CREATE FUNCTION (External

Scalar) statement 590

user-defined function 391
(continued)

CREATE FUNCTION (External
Table) statement 615

CREATE FUNCTION (OLE DB
External Table) statement 631

CREATE FUNCTION (Source or
Template) statement 639

CREATE FUNCTION (SQL
Scalar, Table or Row)
statement 649

CREATE FUNCTION
statement 589

description 142
DROP statement 868
GRANT (Database Authorities)

statement 914
REVOKE (Database Authorities)

statement 973
user-defined method

description 150
user-defined type

comment descriptions, adding to
catalog 532

description 87
user-defined types

casting 91
user mapping 42
USER special register 126
USING clause

EXECUTE statement 895
FETCH statement 909
OPEN statement, listing host

variables 949
USING DESCRIPTOR 895
USING DESCRIPTOR clause

EXECUTE statement 895
OPEN statement 950

V
value, data definition of 13
VALUE function 223, 381
value in SQL 75
VALUES clause

fullselect 434
INSERT statement, loading one

row 940
number of values, rules for 940

VALUES INTO statement 1054,
1055

VARCHAR
DOUBLE scalar function,

using 296
function 382

VARCHAR(26)
WEEK_ISO scalar function,

using 387
WEEK scalar function,

using 386
VARCHAR data type 726
VARCHAR function 224
varchar_no_trailing_blanks column

option 1248
varchar_no_trailing_blanks server

option 1253
VARCHAR strings

attributes, summary 79
restrictions on usage 79

VARGRAPHIC
function 384

VARGRAPHIC function 224
VARGRAPHIC strings

attributes, summary 80
restrictions on usage 80

VARIANCE function, detailed
description 249

VARIANCE or VAR function 224
view

alias 566, 871
authorization ID, use in

name 72
comment descriptions, adding to

catalog 532
control privilege

granting 928
limitations on 928

creating 823
deletable 832
deleting, using DROP

statement 868
description 14
exposed or non-exposed names,

FROM clause 128
foreign key, referential

constraints 14
FROM clause, subselect, naming

conventions 400
index, relation to view 15
inoperative 833
insertable 832
preventing view definition loss,

WITH CHECK OPTION 1049
privileges, granting 926
qualifying a column name 127
read-only 833
revoking privileges for 984
row, inserting in viewed

table 938
schema 704

1480 SQL Reference

view (continued)
updatable 832
updating rows by columns,

UPDATE statement 1043
validity and usage rules when

revoking privilege 986
view name, conventions for 70
WITH CHECK OPTION, effect

on UPDATE 1049
VIEW clause

CREATE VIEW statement 823
DROP statement 883

VIEW HIERARCHY clause
DROP statement 883

view-name
description of 70
in ALTER VIEW statement 518
in FROM clause 400
in SELECT clause, syntax

diagram 395
viewing

online information 1442

W
warning return code 461
WEEK

function 386
WEEK function 224
WEEK_ISO

function 387
WEEK_ISO function 224
WHENEVER statement 1056, 1057
WHENEVER statement, changing

flow of control 458
WHERE clause

DELETE statement, row
selection 857

search function, subselect, rules
for 408

UPDATE statement, conditional
search 1048

WHERE CURRENT OF clause
DELETE statement, use of

DECLARE CURSOR 857
UPDATE statement 1048

WHILE statement 1097
wildcard character

LIKE predicate, values for 197
WITH CHECK OPTION clause

CREATE VIEW statement 830
WITH clause

CREATE VIEW statement 828
INSERT statement 940

WITH common-table-
expression 439

WITH DEFAULT clause

ALTER TABLE statement 485

WITH GRANT OPTION clause

GRANT statement 931

WITH HOLD clause

DECLARE CURSOR
statement 842

WITH OPTIONS clause

CREATE VIEW statement 827

wizards

add database 1444, 1445
backup database 1444
completing tasks 1444
configure multisite update 1444
create database 1445
create table 1445
create table space 1445
index 1445
performance configuration 1445
restore database 1445

Words, Reserved 1279

Words, SQL Reserved 1281

WORK

in COMMIT statement 543
in ROLLBACK statement 992

wrapper 42

name description 70

wrapper module 43

Y
YEAR function 224

YEAR function, using in
expressions 388

Index 1481

1482 SQL Reference

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1993, 2000 1483

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

1484 SQL Reference

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2974-00, SC09-2975-00

	Contents
	Chapter 1. Introduction
	Who Should Use This Book
	How To Use This Book
	How This Book is Structured

	How to Read the Syntax Diagrams
	Conventions Used in This Manual
	Error Conditions
	Highlighting Conventions

	Related Documentation for This Book

	Chapter 2. Concepts
	Relational Database
	Structured Query Language (SQL)
	Embedded SQL
	Static SQL
	Dynamic SQL

	DB2 Call Level Interface (CLI) & Open Database Connectivity (ODBC)
	Java Database Connectivity (JDBC) and Embedded SQL for Java (SQLJ)Programs
	Interactive SQL
	Schemas
	Controlling Use of Schemas

	Tables
	Views
	Aliases
	Indexes
	Keys
	Unique Keys
	Primary Keys
	Foreign Keys
	Partitioning Keys

	Constraints
	Unique Constraints
	Referential Constraints
	Insert Rule
	Update Rule
	Delete Rule

	Table Check Constraints
	Triggers
	Event Monitors
	Queries
	Table Expressions
	Common Table Expressions

	Packages
	Catalog Views
	Application Processes, Concurrency, and Recovery
	Isolation Level
	Repeatable Read (RR)
	Read Stability (RS)
	Cursor Stability (CS)
	Uncommitted Read (UR)
	Comparison of Isolation Levels

	Distributed Relational Database
	Application Servers
	CONNECT (Type 1) and CONNECT (Type 2)
	Remote Unit of Work
	Remote Unit of Work Connection Management

	Application-Directed Distributed Unit of Work
	Application-Directed Distributed Unit of Work Connection Management
	Overview of Application Process and Connection States
	Options that Govern Distributed Unit of Work Semantics

	Data Representation Considerations

	DB2 Federated Systems
	The Federated Server, Federated Database, and Data Sources
	Tasks to Perform in a DB2 Federated System
	Wrappers and Wrapper Modules
	Server Definitions and Server Options
	Introduction to Server Definitions
	SQL Statements for Setting Server Options
	Three Meanings for “Server”

	User Mappings and User Options
	Data Type Mappings
	Function Mappings, Function Templates, and Function Mapping Options
	Nicknames and Column Options
	Index Specifications
	Distributed Requests
	A Request with a Subquery
	A Request for a Join

	Compensation
	Pass-Through

	Character Conversion
	Character Sets and Code Pages
	Code Page Attributes
	String Code Page Attributes

	Authorization and Privileges
	Table Spaces and Other Storage Structures
	Data Partitioning Across Multiple Partitions
	Partitioning Maps
	Table Collocation

	Chapter 3. Language Elements
	Characters
	MBCS Considerations

	Tokens
	MBCS Considerations

	Identifiers
	SQL Identifiers
	Host Identifiers

	Naming Conventions and Implicit Object Name Qualifications
	Aliases
	Authorization IDs and authorization-names
	Dynamic SQL Characteristics at run-time
	Authorization IDs and Statement Preparation

	Data Types
	Nulls
	Large Objects (LOBs)
	Character Large Object (CLOB) Strings
	Double-Byte Character Large Object (DBCLOB) Strings
	Binary Large Objects (BLOBs)
	Manipulating Large Objects (LOBs) with Locators

	Character Strings
	Fixed-Length Character Strings
	Varying-Length Character Strings
	NUL-Terminated Character Strings
	Character Subtypes

	Graphic Strings
	Fixed-Length Graphic Strings
	Varying-Length Graphic Strings
	NUL-Terminated Graphic Strings

	Binary String
	Numbers
	Small Integer (SMALLINT)
	Large Integer (INTEGER)
	Big Integer (BIGINT)
	Single-Precision Floating-Point (REAL)
	Double-Precision Floating-Point (DOUBLE or FLOAT)
	Decimal (DECIMAL or NUMERIC)

	Datetime Values
	Date
	Time
	Timestamp
	String Representations of Datetime Values
	Date Strings
	Time Strings
	Timestamp Strings
	MBCS Considerations

	DATALINK Values
	User Defined Types
	Distinct Types
	Structured Types
	Reference (REF) Types

	Promotion of Data Types
	Casting Between Data Types
	Assignments and Comparisons
	Numeric Assignments
	Decimal or Integer to Floating-Point
	Floating-Point or Decimal to Integer
	Decimal to Decimal
	Integer to Decimal
	Floating-Point to Decimal

	String Assignments
	Storage Assignment
	Retrieval Assignment
	Conversion Rules for String Assignments
	MBCS Considerations for Character String Assignments
	DBCS Considerations for Graphic String Assignments

	Datetime Assignments
	DATALINK Assignments
	User-defined Type Assignments
	Reference Type Assignments
	Numeric Comparisons
	String Comparisons
	Conversion Rules for Comparison
	Ordering of Results
	MBCS Considerations for String Comparisons

	Datetime Comparisons
	User-defined Type Comparisons
	Reference Type Comparisons

	Rules for Result Data Types
	Character Strings
	Graphic Strings
	Binary Large Object (BLOB)
	Numeric
	DATE
	TIME
	TIMESTAMP
	DATALINK
	User-defined Types
	Distinct Types
	Reference Types
	Structured Types

	Nullable Attribute of Result

	Rules for String Conversions
	Partition Compatibility
	Constants
	Integer Constants
	Floating-Point Constants
	Decimal Constants
	Character String Constants
	Unequal Code Page Considerations

	Hexadecimal Constants
	Graphic String Constants
	MBCS Considerations

	Using Constants with User-defined Types

	Special Registers
	CURRENT DATE
	Example

	CURRENT DEFAULT TRANSFORM GROUP
	Example

	CURRENT DEGREE
	CURRENT EXPLAIN MODE
	CURRENT EXPLAIN SNAPSHOT
	Example

	CURRENT NODE
	Example

	CURRENT PATH
	Example

	CURRENT QUERY OPTIMIZATION
	Example

	CURRENT REFRESH AGE
	CURRENT SCHEMA
	Example

	CURRENT SERVER
	Example

	CURRENT TIME
	Example

	CURRENT TIMESTAMP
	Example

	CURRENT TIMEZONE
	Example

	USER
	Example

	Column Names
	Qualified Column Names
	Correlation Names
	Column Name Qualifiers to Avoid Ambiguity
	Table Designators
	Avoiding Undefined or Ambiguous References

	Column Name Qualifiers in Correlated References

	References to Host Variables
	Host Variables in Dynamic SQL
	Example

	References to BLOB, CLOB, and DBCLOB Host Variables
	References to Locator Variables
	References to BLOB, CLOB, and DBCLOB File Reference Variables
	Example of an Output File Reference Variable (in C)
	Example of an Input File Reference Variable (in C)

	References to Structured Type Host Variables
	Example

	Functions
	External, SQL and Sourced User-Defined Functions
	Scalar, Column, Row and Table User-Defined Functions
	Function signatures
	SQL Path
	Function Resolution
	Method of Choosing the Best Fit
	Function Path Considerations for Built-in Functions
	Example of Function Resolution

	Function Invocation

	Methods
	External and SQL User-Defined Methods
	Method Signatures
	Method Invocation
	Method Resolution
	Method of Choosing the Best Fit
	Example of Method Resolution
	Method Invocation

	Conservative Binding Semantics
	Expressions
	Without Operators
	With the Concatenation Operator
	User-defined Types

	With Arithmetic Operators
	Arithmetic Errors

	Two Integer Operands
	Integer and Decimal Operands
	Two Decimal Operands
	Decimal Arithmetic in SQL
	Addition and Subtraction
	Multiplication
	Division

	Floating-Point Operands
	User-defined Types as Operands
	Scalar Fullselect
	Datetime Operations and Durations
	Labeled Durations
	Date Duration
	Time Duration
	Timestamp duration

	Datetime Arithmetic in SQL
	Date Arithmetic
	Time Arithmetic
	Timestamp Arithmetic

	Precedence of Operations
	CASE Expressions
	Examples:

	CAST Specifications
	Examples:

	Dereference Operations
	Examples:

	OLAP Functions
	Examples:

	Method Invocation
	Examples:

	Subtype Treatment
	Examples:

	Predicates
	Basic Predicate
	Quantified Predicate
	BETWEEN Predicate
	EXISTS Predicate
	IN Predicate
	LIKE Predicate
	Examples

	NULL Predicate
	TYPE Predicate

	Search Conditions
	Examples

	Chapter 4. Functions
	Column Functions
	AVG
	CORRELATION
	COUNT
	COUNT_BIG
	COVARIANCE
	GROUPING
	MAX
	MIN
	REGRESSION Functions
	STDDEV
	SUM
	VARIANCE

	Scalar Functions
	ABS or ABSVAL
	ACOS
	ASCII
	ASIN
	ATAN
	ATAN2
	BIGINT
	BLOB
	CEILING or CEIL
	CHAR
	CHR
	CLOB
	COALESCE
	CONCAT
	COS
	COT
	DATE
	DAY
	DAYNAME
	DAYOFWEEK
	DAYOFWEEK_ISO
	DAYOFYEAR
	DAYS
	DBCLOB
	DECIMAL
	DEGREES
	DEREF
	DIFFERENCE
	DIGITS
	DLCOMMENT
	DLLINKTYPE
	DLURLCOMPLETE
	DLURLPATH
	DLURLPATHONLY
	DLURLSCHEME
	DLURLSERVER
	DLVALUE
	DOUBLE
	EVENT_MON_STATE
	EXP
	FLOAT
	FLOOR
	GENERATE_UNIQUE
	GRAPHIC
	HEX
	HOUR
	INSERT
	INTEGER
	JULIAN_DAY
	LCASE or LOWER
	LCASE (SYSFUN schema)
	LEFT
	LENGTH
	LN
	LOCATE
	LOG
	LOG10
	LONG_VARCHAR
	LONG_VARGRAPHIC
	LTRIM
	LTRIM (SYSFUN schema)
	MICROSECOND
	MIDNIGHT_SECONDS
	MINUTE
	MOD
	MONTH
	MONTHNAME
	NODENUMBER
	NULLIF
	PARTITION
	POSSTR
	POWER
	QUARTER
	RADIANS
	RAISE_ERROR
	RAND
	REAL
	REPEAT
	REPLACE
	RIGHT
	ROUND
	RTRIM
	RTRIM (SYSFUN schema)
	SECOND
	SIGN
	SIN
	SMALLINT
	SOUNDEX
	SPACE
	SQRT
	SUBSTR
	TABLE_NAME
	TABLE_SCHEMA
	TAN
	TIME
	TIMESTAMP
	TIMESTAMP_ISO
	TIMESTAMPDIFF
	TRANSLATE
	TRUNCATE or TRUNC
	TYPE_ID
	TYPE_NAME
	TYPE_SCHEMA
	UCASE or UPPER
	VALUE
	VARCHAR
	VARGRAPHIC
	WEEK
	WEEK_ISO
	YEAR

	Table Functions
	SQLCACHE_SNAPSHOT

	User-Defined Functions

	Chapter 5. Queries
	subselect
	select-clause
	Select List Notation:
	Limitations on String Columns
	Applying the Select List

	from-clause
	table-reference
	Table Function References
	Correlated References in table-references

	joined-table
	Join Operations

	where-clause
	group-by-clause
	grouping-sets
	super-groups
	Combining Grouping Sets

	having-clause

	Examples of subselects
	Examples of Joins
	Examples of Grouping Sets, Cube, and Rollup
	fullselect
	Examples of a fullselect

	select-statement
	common-table-expression
	order-by-clause
	Notes

	update-clause
	read-only-clause
	fetch-first-clause
	optimize-for-clause
	Examples of a select-statement

	Chapter 6. SQL Statements
	How SQL Statements Are Invoked
	Embedding a Statement in an Application Program
	Executable statements
	Nonexecutable statements
	Embedding a Statement in an SQL Procedure

	Dynamic Preparation and Execution
	Static Invocation of a select-statement
	Dynamic Invocation of a select-statement
	Interactive Invocation

	SQL Return Codes
	SQLCODE
	SQLSTATE

	SQL Comments
	ALTER BUFFERPOOL
	ALTER NICKNAME
	ALTER NODEGROUP
	ALTER SERVER
	ALTER TABLE
	ALTER TABLESPACE
	ALTER TYPE (Structured)
	ALTER USER MAPPING
	ALTER VIEW
	BEGIN DECLARE SECTION
	CALL
	CLOSE
	COMMENT ON
	COMMIT
	Compound SQL (Embedded)
	CONNECT (Type 1)
	CONNECT (Type 2)
	CREATE ALIAS
	CREATE BUFFERPOOL
	CREATE DISTINCT TYPE
	CREATE EVENT MONITOR
	CREATE FUNCTION
	CREATE FUNCTION (External Scalar)
	CREATE FUNCTION (External Table)
	CREATE FUNCTION (OLE DB External Table)
	CREATE FUNCTION (Source or Template)
	CREATE FUNCTION (SQL Scalar, Table or Row)
	CREATE FUNCTION MAPPING
	CREATE INDEX
	CREATE INDEX EXTENSION
	CREATE METHOD
	CREATE NICKNAME
	CREATE NODEGROUP
	CREATE PROCEDURE
	CREATE SCHEMA
	CREATE SERVER
	CREATE TABLE
	CREATE TABLESPACE
	CREATE TRANSFORM
	CREATE TRIGGER
	CREATE TYPE (Structured)
	CREATE TYPE MAPPING
	CREATE USER MAPPING
	CREATE VIEW
	CREATE WRAPPER
	DECLARE CURSOR
	DECLARE GLOBAL TEMPORARY TABLE
	DELETE
	DESCRIBE
	DISCONNECT
	DROP
	END DECLARE SECTION
	EXECUTE
	EXECUTE IMMEDIATE
	EXPLAIN
	FETCH
	FLUSH EVENT MONITOR
	FREE LOCATOR
	GRANT (Database Authorities)
	GRANT (Index Privileges)
	GRANT (Package Privileges)
	GRANT (Schema Privileges)
	GRANT (Server Privileges)
	GRANT (Table, View, or Nickname Privileges)
	GRANT (Table Space Privileges)
	INCLUDE
	INSERT
	LOCK TABLE
	OPEN
	PREPARE
	REFRESH TABLE
	RELEASE (Connection)
	RELEASE SAVEPOINT
	RENAME TABLE
	RENAME TABLESPACE
	REVOKE (Database Authorities)
	REVOKE (Index Privileges)
	REVOKE (Package Privileges)
	REVOKE (Schema Privileges)
	REVOKE (Server Privileges)
	REVOKE (Table, View, or Nickname Privileges)
	REVOKE (Table Space Privileges)
	ROLLBACK
	SAVEPOINT
	SELECT
	SELECT INTO
	SET CONNECTION
	SET CURRENT DEFAULT TRANSFORM GROUP
	SET CURRENT DEGREE
	SET CURRENT EXPLAIN MODE
	SET CURRENT EXPLAIN SNAPSHOT
	SET CURRENT PACKAGESET
	SET CURRENT QUERY OPTIMIZATION
	SET CURRENT REFRESH AGE
	SET EVENT MONITOR STATE
	SET INTEGRITY
	SET PASSTHRU
	SET PATH
	SET SCHEMA
	SET SERVER OPTION
	SET transition-variable
	SIGNAL SQLSTATE
	UPDATE
	VALUES
	VALUES INTO
	WHENEVER

	Chapter 7. SQL Procedures
	SQL Procedure Statement
	ALLOCATE CURSOR Statement
	Assignment Statement
	ASSOCIATE LOCATORS Statement
	CASE Statement
	Compound Statement
	FOR Statement
	GET DIAGNOSTICS Statement
	GOTO Statement
	IF Statement
	ITERATE Statement
	LEAVE Statement
	LOOP Statement
	REPEAT Statement
	RESIGNAL Statement
	RETURN Statement
	SIGNAL Statement
	WHILE Statement

	Appendix A. SQL Limits
	Appendix B. SQL Communications (SQLCA)
	Viewing the SQLCA Interactively
	SQLCA Field Descriptions
	Order of Error Reporting
	DB2 Enterprise - Extended Edition Usage of the SQLCA

	Appendix C. SQL Descriptor Area (SQLDA)
	Field Descriptions
	Fields in the SQLDA Header
	Fields in an Occurrence of a Base SQLVAR
	Fields in an Occurrence of a Secondary SQLVAR

	Effect of DESCRIBE on the SQLDA
	SQLTYPE and SQLLEN
	Unrecognized and Unsupported SQLTYPES
	Packed Decimal Numbers
	SQLLEN Field for Decimal

	Appendix D. Catalog Views
	Updatable Catalog Views
	‘Roadmap’ to Catalog Views
	‘Roadmap’ to Updatable Catalog Views
	SYSIBM.SYSDUMMY1
	SYSCAT.ATTRIBUTES
	SYSCAT.BUFFERPOOLNODES
	SYSCAT.BUFFERPOOLS
	SYSCAT.CASTFUNCTIONS
	SYSCAT.CHECKS
	SYSCAT.COLAUTH
	SYSCAT.COLCHECKS
	SYSCAT.COLDIST
	SYSCAT.COLOPTIONS
	SYSCAT.COLUMNS
	SYSCAT.CONSTDEP
	SYSCAT.DATATYPES
	SYSCAT.DBAUTH
	SYSCAT.EVENTMONITORS
	SYSCAT.EVENTS
	SYSCAT.FULLHIERARCHIES
	SYSCAT.FUNCDEP
	SYSCAT.FUNCMAPOPTIONS
	SYSCAT.FUNCMAPPARMOPTIONS
	SYSCAT.FUNCMAPPINGS
	SYSCAT.FUNCPARMS
	SYSCAT.FUNCTIONS
	SYSCAT.HIERARCHIES
	SYSCAT.INDEXAUTH
	SYSCAT.INDEXCOLUSE
	SYSCAT.INDEXDEP
	SYSCAT.INDEXES
	SYSCAT.INDEXOPTIONS
	SYSCAT.KEYCOLUSE
	SYSCAT.NAMEMAPPINGS
	SYSCAT.NODEGROUPDEF
	SYSCAT.NODEGROUPS
	SYSCAT.PACKAGEAUTH
	SYSCAT.PACKAGEDEP
	SYSCAT.PACKAGES
	SYSCAT.PARTITIONMAPS
	SYSCAT.PASSTHRUAUTH
	SYSCAT.PROCEDURES
	SYSCAT.PROCOPTIONS
	SYSCAT.PROCPARMOPTIONS
	SYSCAT.PROCPARMS
	SYSCAT.REFERENCES
	SYSCAT.REVTYPEMAPPINGS
	SYSCAT.SCHEMAAUTH
	SYSCAT.SCHEMATA
	SYSCAT.SERVEROPTIONS
	SYSCAT.SERVERS
	SYSCAT.STATEMENTS
	SYSCAT.TABAUTH
	SYSCAT.TABCONST
	SYSCAT.TABLES
	SYSCAT.TABLESPACES
	SYSCAT.TABOPTIONS
	SYSCAT.TBSPACEAUTH
	SYSCAT.TRIGDEP
	SYSCAT.TRIGGERS
	SYSCAT.TYPEMAPPINGS
	SYSCAT.USEROPTIONS
	SYSCAT.VIEWDEP
	SYSCAT.VIEWS
	SYSCAT.WRAPOPTIONS
	SYSCAT.WRAPPERS
	SYSSTAT.COLDIST
	SYSSTAT.COLUMNS
	SYSSTAT.FUNCTIONS
	SYSSTAT.INDEXES
	SYSSTAT.TABLES

	Appendix E. Catalog Views For Use With Structured Types
	‘Roadmap’ to Catalog Views
	OBJCAT.INDEXES
	OBJCAT.INDEXEXPLOITRULES
	OBJCAT.INDEXEXTENSIONDEP
	OBJCAT.INDEXEXTENSIONMETHODS
	OBJCAT.INDEXEXTENSIONPARMS
	OBJCAT.INDEXEXTENSIONS
	OBJCAT.PREDICATESPECS
	OBJCAT.TRANSFORMS

	Appendix F. Federated Systems
	Server Types
	SQL Options for Federated Systems
	Column Options
	Function Mapping Options
	Server Options
	User Options

	Default Data Type Mappings
	Default Type Mappings between DB2 and DB2 Universal Database forOS/390 (and DB2 for MVS/ESA) Data Sources
	Default Type Mappings between DB2 and 2 Universal Database for AS/400(and DB2 for OS/400) Data Sources
	Default Type Mappings between DB2 and Oracle Data Sources
	Default Type Mappings between DB2 and DB2 for VM and VSE (andSQL/DS) Data Sources

	Pass-Through Facility Processing
	SQL Processing in Pass-Through Sessions
	Considerations and Restrictions
	Using Pass-Through with All Data Sources
	Using Pass-Through with Oracle Data Sources

	Appendix G. Sample Database Tables
	The Sample Database
	To Create the Sample Database
	To Erase the Sample Database
	CL_SCHED Table
	DEPARTMENT Table
	EMPLOYEE Table
	EMP_ACT Table
	EMP_PHOTO Table
	EMP_RESUME Table
	IN_TRAY Table
	ORG Table
	PROJECT Table
	SALES Table
	STAFF Table
	STAFFG Table

	Sample Files with BLOB and CLOB Data Type
	Quintana Photo
	Quintana Resume
	Nicholls Photo
	Nicholls Resume
	Adamson Photo
	Adamson Resume
	Walker Photo
	Walker Resume

	Appendix H. Reserved Schema Names and ReservedWords
	Reserved Schemas
	Reserved Words
	IBM SQL Reserved Words
	ISO/ANS SQL92 Reserved Words

	Appendix I. Comparison of Isolation Levels
	Appendix J. Interaction of Triggers and Constraints
	Appendix K. Explain Tables and Definitions
	EXPLAIN_ARGUMENT Table
	EXPLAIN_INSTANCE Table
	EXPLAIN_OBJECT Table
	EXPLAIN_OPERATOR Table
	EXPLAIN_PREDICATE Table
	EXPLAIN_STATEMENT Table
	EXPLAIN_STREAM Table
	ADVISE_INDEX Table
	ADVISE_WORKLOAD Table
	Table Definitions for Explain Tables
	EXPLAIN_ARGUMENT Table Definition
	EXPLAIN_INSTANCE Table Definition
	EXPLAIN_OBJECT Table Definition
	EXPLAIN_OPERATOR Table Definition
	EXPLAIN_PREDICATE Table Definition
	EXPLAIN_STATEMENT Table Definition
	EXPLAIN_STREAM Table Definition
	ADVISE_INDEX Table Definition
	ADVISE_WORKLOAD Table Definition

	Appendix L. Explain Register Values
	Appendix M. Recursion Example: Bill of Materials
	Example 1: Single Level Explosion
	Example 2: Summarized Explosion
	Example 3: Controlling Depth

	Appendix N. Exception Tables
	Rules for Creating an Exception Table
	Handling Rows in the Exception Tables
	Querying the Exception Tables

	Appendix O. Japanese and Traditional-Chinese EUCConsiderations
	Language Elements
	Characters
	Tokens
	Identifiers
	SQL Identifiers

	Data Types
	Character Strings
	Graphic Strings

	Assignments and Comparisons
	String Assignments
	String Comparisons

	Rules for Result Data Types
	Rules for String Conversions
	Constants
	Graphic String Constants

	Functions
	Expressions
	With the Concatenation Operator

	Predicates
	LIKE Predicate

	Functions
	LENGTH
	SUBSTR
	TRANSLATE
	VARGRAPHIC

	Statements
	CONNECT
	PREPARE

	Appendix P. BNF Specifications for DATALINKs
	Appendix Q. Glossary
	Appendix R. Using the DB2 Library
	DB2 PDF Files and Printed Books
	DB2 Information
	Printing the PDF Books
	Ordering the Printed Books

	DB2 Online Documentation
	Accessing Online Help
	Viewing Information Online
	Installing the Netscape Browser
	Accessing Information with the Information Center

	Using DB2 Wizards
	Setting Up a Document Server
	Searching Information Online

	Appendix S. Notices
	Trademarks

	Index
	Contacting IBM
	Product Information

