
©Springer International Publishing AG, 2018. This is the author’s version of the work.
The final authenticated version is available online at (DOI)

PIAnalyzer: A precise approach for
PendingIntent vulnerability analysis

Sascha Groß, Abhishek Tiwari, Christian Hammer

University of Potsdam, Potsdam, Germany
{saschagross,tiwari}@uni-potsdam.de

hammer@cs.uni-potsdam.de

Abstract. PendingIntents are a powerful and universal feature of An-
droid for inter-component communication. A PendingIntent holds a base
intent to be executed by another application with the creator’s permis-
sions and identity without the creator necessarily residing in memory.
While PendingIntents are useful for many scenarios, e.g., for setting an
alarm or getting notified at some point in the future, insecure usage of
PendingIntents causes severe security threats in the form of denial-of-
service, identity theft, and privilege escalation attacks. An attacker may
gain up to SYSTEM privileges to perform the most sensitive operations,
e.g., deleting user’s data on the device. However, so far no tool can detect
these PendingIntent vulnerabilities.

In this work we propose PIAnalyzer, a novel approach to analyze Pend-
ingIntent related vulnerabilities. We empirically evaluate PIAnalyzer on
a set of 1000 randomly selected applications from the Google Play Store
and find 1358 insecure usages of PendingIntents, including 70 severe vul-
nerabilities. We manually inspected ten reported vulnerabilities out of
which nine correctly reported vulnerabilities, indicating a high precision.
The evaluation shows that PIAnalyzer is efficient with an average exe-
cution time of 13 seconds per application.

Keywords: Android · Intent analysis · information flow control · static
analysis.

1 Introduction

The usage of mobile devices is rapidly growing with Android being the most
prevalent mobile operating system (global market share of 74.39% as of Jan-
uary 2018 [22]). Android phones are used for a plenitude of highly security
critical tasks, and a lot of sensitive information—including session tokens of on-
line services—are saved on these devices. As the official Google Play Store and
other alternative Android app marketplaces are not strongly regulated, the main
defense against malware that aims to steal sensitive information is the Android
sandbox and permission system.

In our study we discover that the Android permission system can be circum-
vented in many cases in the form of denial-of-service, identity theft, and privilege

https://doi.org/10.1007/978-3-319-98989-1_3

2 S. Groß et al.

escalation attacks. By exploiting vulnerable but benign applications that are in-
securely using PendingIntents, a malicious application without any permissions
can perform many critical operations, such as sending text messages (SMS) to
a premium number. PendingIntents are a widespread Android callback mecha-
nism and reference token. While the concept of PendingIntents is flexible and
powerful, insecure usage can lead to severe vulnerabilities. Yu et al. [24] report
a PendingIntent vulnerability in Android’s official Settings app, which made a
privilege escalation attack up to SYSTEM privileges possible for every installed
application. Thus, given the severe security implications, the official Android
documentation on PendingIntents [11] now warns against insecure usage. How-
ever, to the best of our knowledge, to-date no analysis tool detects the described
PendingIntent vulnerabilities. Thus, an automated analysis tool is envisioned
that scales to a large number of applications.

In this work we propose a novel approach to detect PendingIntent related
vulnerabilities in Android applications. We implemented our approach in a tool
called PIAnalyzer. In multiple analysis steps, PIAnalyzer computes the relevant
information of the potentially vulnerable code based on program slicing [26].
PIAnalyzer is fully automated and does not require the source code of the appli-
cation under inspection. PIAnalyzer assists human analysts by computing and
presenting vulnerability details in easily understandable log files. We evaluated
PIAnalyzer on 1000 randomly selected applications from the Google Play Store.
We discover 435 applications that wrap at least one implicit base intent with
a PendingIntent object, out of which 1358 insecure usages of PendingIntents
arise. These include 70 PendingIntent vulnerabilities leading up to the execution
of critical operations from unprivileged applications. We manually investigate
multiple findings and inspect reports on examples known to be vulnerable. Our
investigation show that PIAnalyzer is highly precise and sound. Technically, we
provide the following contributions:

– PendingIntent analysis. We propose a novel method based on program slicing
for the detection of PendingIntent related vulnerabilities.

– Implementation. We implemented a program slicer for SMALI intermediate
code and the proposed PendingIntent analysis in a tool called PIAnalyzer.

– Evaluation of PIAnalyzer. We empirically evaluate PIAnalyzer on a set of
1000 randomly selected applications from the Google Play Store and find
1358 insecure usages of PendingIntents. These include 70 severe vulnerabili-
ties. We find critical vulnerabilities in widely used libraries such as, TapJoy
and Google Cloud Messaging. PIAnalyzer is efficient and only takes 13 sec-
onds per application on average.

– Validation of PIAnalyzer. We manually validated multiple reports of PIAn-
alyzer. Our validation confirms PIAnalyzer’s high precision and recall.

2 Background

Android applications are written in Kotlin [3], Java and C++. From an archi-
tectural point of view they may consist of four types of components: Activities,

PIAnalyzer: A precise approach for PendingIntent vulnerability analysis 3

Services, Broadcast Receivers, and Content Providers. Each of these components
acts as an entry point through which a user or the system can interact. Activi-
ties are a single screen with a user interface, e.g., the login screen in a banking
application. Services run in the background without a user interface, and are
intended to perform long-term operations, e.g., Internet downloads. Broadcast
receivers are components that receive system or application events to be noti-
fied, e.g., when an external power source has been connected. Finally, Content
Providers dispense data to applications via various storage mechanisms.

Each component in an Android application is defined in a mandatory mani-
fest file, AndroidManifest.xml. The manifest file proclaims essential information
about the application, e.g., permissions that are required by the application.

Android applications are compiled from source code to Dalvik bytecode [10],
which is specially designed for Android. Finally, the compiled classes along with
additional metadata are compressed into an Android Package (APK). APKs are
made available in different marketplaces such as the official Google Play Store.

As Dalvik bytecode is complex and non-human-readable, a widely used in-
termediate representation has become the de-facto standard to analyze Android
applications: Smali [8] improves code readability and eases the analysis.

2.1 Intents

Android promotes communication between different components via a message
passing mechanism: Intents are messages sent from one component to another to
invoke a certain functionality, e.g., to start an Activity of another component.
Intents can be sent from the system to applications or vice versa, from one
application to another (inter-app communication) or even from one component
to another within the same application (intra-app-communication) [9].

Central pieces of information associated with intents are a target component,
an intent action and extra data. The intent action represents the general action
to be performed by the receiving component, e.g., ACTION MAIN is used to
launch the home screen. The extra data contains additional information similar
to parameters, which can be used by the receiving component, such as passing
user input data from one component to another.

Depending on the target component or action, one distinguishes explicit from
implicit intents. An explicit intent defines a target component and thus is only
delivered to the specified component. Conversely, an implicit intent can be deliv-
ered to all components that register a matching intent filter in their manifest file.
An implicit intent gives an user flexibility to choose among different supported
components, e.g., users can opt among different browsers to open a specific web-
page. In the event of multiple components registering the same intent filter, the
intent resolution asks the user to select, e.g., between multiple browsers to open
a particular webpage. In contrast, a broadcast intent is broadcast to every regis-
tered component instead of only one. Lastly, Android offers PendingIntents. A
PendingIntent is intended for another application to perform a certain action in
the context of the sending application. The usage and security implications of
PendingIntents are discussed in the following.

4 S. Groß et al.

Listing 1.1. A simple PendingIntent Usage

1 //Component A: Create the base Intent with a target component

2 Intent baseIntent = new Intent("TARGET_COMPONENT");

3 //Create a PendingIntent object wrapping the base Intent

4 PendingIntent pendingIntent = PendingIntent.getActivity(this, 1,

baseIntent, PendingIntent.FLAG_UPDATE_CURRENT);

5 //Component B (may be in another application or within a system manager):

6 //Execute the PendingIntent (internally launches the base intent)

7 try {

8 pendingIntent.send();

9 } catch (PendingIntent.CanceledException e) {}

2.2 PendingIntent

A PendingIntent is a special kind of intent which stores a base intent that is to
be executed at some later point in time by another component/application, but
with the original app’s identity and permissions. The point is that the original
app is not required to be in memory or active at that point of time, as the
receiver will execute it as if executed by the original application. Thus Pend-
ingIntent is applicable in cases where normal intents are not. “A PendingIntent
itself is simply a reference to a token maintained by the system describing the
original data used to retrieve it. This means that even if its owning application’s
process is killed, the PendingIntent itself will remain usable from other processes
that have been given it” [11]. A possible usage scenario for PendingIntent is a
notification. If an application wishes to get notified by the system at a later
point of time, it can create a PendingIntent and pass this PendingIntent to the
Notification Manager. The Notification Manager will trigger this PendingIntent
in the future, and so a predefined component of the application will be notified
and gets executed.

Programmatically, the usage of a PendingIntent is a three step process (List-
ing 1.1). First, the so called base intent is created. The base intent is an ordinary
intent which defines the action to be performed on the execution of the Pending-
Intent. The PendingIntent object wraps the base intent using the factory meth-
ods getActivity(), getActivities(), getBroadcast() or getService(). These factory
methods define the nature of the base intent, e.g., PendingIntent.getBroadcast()
will launch the base intent as a broadcast intent. The PendingIntent object
returned by these methods can be passed to another application or system com-
ponent, e.g., it can be embedded in another intent object (the wrapping intent)
as extra data to make it available to other applications. It is also common to
pass a PendingIntent object to a system component, e.g., the AlarmManager,
for callback purposes.

Security Implications: Whenever a PendingIntent is triggered, the associ-
ated base intent is executed in the context (with the same privileges and name)
of the application that created it. However, the three main pieces of data of the
base intent may be changed even after the PendingIntent has been handed to

PIAnalyzer: A precise approach for PendingIntent vulnerability analysis 5

Listing 1.2. App A - Vulnerable Activity

1 protected void onCreate(Bundle savedInstanceState) {

2 super.onCreate(savedInstanceState);

3 setContentView(R.layout.activity_main_vuln);

4 Intent baseIntent = new Intent();

5 PendingIntent pendingIntent = PendingIntent.getActivity(this, 1,

baseIntent, PendingIntent.FLAG_UPDATE_CURRENT);

6 Intent implicitWrappingIntent = new Intent(Intent.ACTION_SEND);

7 implicitWrappingIntent.putExtra("vulnPI", pendingIntent);

8 sendBroadcast(implicitWrappingIntent);

9 }

another component, which may alter the semantics of the base intent that is to
be executed with the original app’s identity and permissions. While the Target
Component or Action of the base Intent cannot be overridden by an attacker if
already defined by the sender, an undefined Action or Target Component may be
defined after handing it to the receiver. Finally, extra data, which is effectively
a key-value store, can always be added after the fact. The implications include
that an implicit intent (with no target component defined) can be altered by the
receiving app to target any component it desires (and with the original app’s
permission support), including system features like wiping the phone.

As a consequence, the Android documentation of PendingIntent [11] explic-
itly warns about potential vulnerabilities caused by misusage: ”By giving a Pend-
ingIntent to another application, you are granting it the right to perform the
operation you have specified as if the other application was yourself (with the
same permissions and identity) (but just for a predefined piece of code). As such,
you should be careful about how you build the PendingIntent: almost always,
for example, the base Intent you supply should have the component name ex-
plicitly set to one of your own components, to ensure it is ultimately sent there
and nowhere else.” In fact, if a malicious application can retrieve a Pending-
Intent from another application with an implicit base intent, it may perform
a restricted form of arbitrary code execution in the context of the application
that created the PendingIntent object: As many (but not all) permission-clad
functionalities are accessible via intents, the attacker can reroute the base intent
to such functions. The next section will exemplify the attack opportunities via
PendingIntents.

3 Motivation

3.1 A Potential Vulnerable Example

We demonstrate PendingIntent-related vulnerabilities and exploitation via a sim-
plified example (Listings 1.2 and 1.3). In this example, the vulnerable applica-
tion has the permission to perform phone calls, while the malicious application
does not. In listing 1.2, the vulnerable application creates an empty base intent

6 S. Groß et al.

Listing 1.3. App B - Malicious Activity

1 public void onReceive(Context context, Intent intent) {

2 Bundle extras = intent.getExtras();

3 PendingIntent pendingIntent = (PendingIntent) extras.get("vulnPI");

4 Intent vunlnIntent = new Intent(Intent.ACTION_CALL, Uri.parse("tel:" +

"0900123456789"));

5 try {

6 pendingIntent.send(context, 2, vunlnIntent, null, null);

7 } catch (PendingIntent.CanceledException e) { e.printStackTrace(); }

8 }

(line 4), wraps it into a PendingIntent (line 5), and sends it as an extra of the
broadcast intent implicitWrappingIntent (line 6, 7, 8). Any application that de-
fines a corresponding intent filter in their manifest file can receive implicitWrap-
pingIntent. In listing 1.3, a malicious application which is capable of receiving
implicitWrappingIntent, extracts the PendingIntent (line 3) and creates a new
intent (with the motivation to manipulate the base intent) (line 4) such that it
triggers a phone call to some arbitrary number, e.g., to a premium number. On
line 6, an invocation of the send method of this PendingIntent object causes the
execution of the base intent but with all empty properties updated to the values
specified in vulnIntent, which results in calling the premium number.

While this example is simplified for better understanding, PendingIntent vul-
nerabilities can occur in various forms and lead to different types of severe secu-
rity implications. In our study we find that at least 435 out of 1000 applications
wrap at least one implicit base intent into a PendingIntent object. The vulner-
able application can accidentally send the PendingIntent object in numerous
ways. Instead of broadcasting, it can also be sent out via an implicit wrapping
intent. If more than one application has a matching intent filter, the user will
be asked to choose a destination. This case can be abused by an intent phishing
application. In the majority of the cases the PendingIntent is not sent out by
wrapping it into another intent, but by passing it to system components such as
the AlarmManager or the NotificationManager. These components will eventu-
ally call the send method of the PendingIntent object, which triggers the base
intent. A malicious app can register a component to retrieve the base intent to
perform a denial of service attack, as these intents are then not passed to the
intended component.

This situation becomes even more critical when the described PendingIntent
vulnerability occurs in system components. Tao et al. [24] found this type of
vulnerability in the Android Settings application. In the following subsection we
elaborate on the details of this vulnerability.

3.2 A Real-world PendingIntent Vulnerability

For all subversions of Android 4, the Settings application triggered a Pending-
Intent with an empty base intent [24]. In February 2018, 17.4% of all Android

PIAnalyzer: A precise approach for PendingIntent vulnerability analysis 7

Listing 1.4. Android Settings: AddAccountSettings.java

1 private void addAccount(String accountType) {

2 Bundle addAccountOptions=new Bundle();

3 mPendingIntent=PendingIntent.getBroadcast(this, 0, new Intent(), 0);

4 addAccountOptions.putParcelable(KEY_CALLER_IDENTITY, mPendingIntent);

5 addAccountOptions.putBoolean(EXTRA_HAS_MULTIPLE_USERS,

Utils.hasMultipleUsers(this));

6 AccountManager.get(this).addAccount(accountType, null,

7 /* authTokenType */ null, /* requiredFeatures */ addAccountOptions,

8 null, mCallback, null /* handler */);

9 mAddAccountCalled = true;

10 }

Listing 1.5. Malicious Application A: Activity 1

1 Intent intent = new Intent();

2 intent.setComponent(new ComponentName("com.android.settings",

"com.android.settings.accounts.AddAccountSettings"));

3 intent.setAction(Intent.ACTION_RUN);

4 intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

5 String authTypes[] = {AccountGeneral.ACCOUNT_TYPE};

6 intent.putExtra("account_types", authTypes);

7 startActivity(intent);

devices still run such an Android version [12], rendering them vulnerable to a
privilege escalation attack up to system privileges. This vulnerability occurred
due to unawareness of the PendingIntent security implications. The fix in An-
droid version 5.0 makes the base intent explicit.

Listing 1.4 shows the code snippet of the corresponding vulnerable method
addAccount. In this method a PendingIntent object, mPendingIntent, is created
(line 3) with an empty base intent. Whenever an application requests to add an
account of the requested (custom) type, the addAccount method gets invoked
and the vulnerable PendingIntent (mPendingIntent) is returned to this appli-
cation if it registers to receive android.accounts.AccountAuthenticator intents
(see Listing 1.6). As this application executes mPendingIntent in the context of
the Settings application (with SYSTEM level permissions), it can maliciously
overwrite the (empty) action and extra data in the base intent.

Listing 1.5 and 1.6 describe the code snippets of a malicious application A,
targeting the vulnerability of the Settings application. In listing 1.5, A initi-
ates an intent to add an account type (line 7). Upon reception of this intent,
the Settings application invokes the addAccount method (cf. Listing 1.4) and
sends mPendingIntent out. As A has registered as AccountAuthenticator, it re-
ceives this PendingIntent (line 2 of Listing 1.6). On line 3, it creates an intent
vunlnIntent to perform a Factory Reset1. Later it triggers the PendingIntent

1 A factory reset resets the device to its factory setting, i.e., deletes all data.

8 S. Groß et al.

Listing 1.6. Malicious Application A: Activity 2

1 public Bundle addAccount(AccountAuthenticatorResponse response, String

accountType, String authTokenType, String[] requiredFeatures, Bundle

options) throws NetworkErrorException {

2 PendingIntent pi = (PendingIntent)options.getParcelable("pendingIntent");

3 Intent vunlnIntent = new Intent("android.intent.action.MASTER_CLEAR");

4 try {

5 pi.send(mContext, 0, vunlnIntent, null, null);

6 } catch (CanceledException e) { e.printStackTrace(); }

with vunlnIntent as the updated base intent (line 5). As A executes the Pend-
ingIntent in the same context as the Settings application (with SYSTEM level
permissions), a Factory Reset is performed.

As previously described, the key cause of this type of vulnerability is the usage
of implicit base intents for PendingIntents. Therefore, in this work we provide
a novel analysis mechanism which detects implicit base intents in PendingIn-
tents, analyzes their usage and gives a security warning in case of an actual
vulnerability.

4 Methodology

4.1 SMALI and SMALI Slicing

PIAnalyzer analyzes the SMALI intermediate representation (IR) of the Dex
bytecode extracted from an APK. SMALI is an intermediate representation of
Dalvik bytecode that improves readability and analyzability. As background in-
formation, Listing A.1 (in the appendix) shows a simplified example of the cre-
ation of an Intent object in SMALI code. Similar to Dalvik bytecode, SMALI
is register based. As known from assembly languages, registers are universally
used for holding values. For example, on line 15 the register v3 is used to store
a String variable, while on line 18 an Intent object is saved in the register v0.
Please consider the comments in the listing for a more detailed explanation of
the code.

PIAnalyzer transforms the bytecode of an APK to its SMALI IR using APK-
Tool [18]. The core of the analysis of PIAnalyzer is performed through program
slicing [26] the SMALI representation. Conceptually, a slice is a list of statements
that influence a statement (backward slice), or get influenced by a statement
(forward slice). For this purpose we design a SMALI slicer. Our SMALI slicer
can create both forward and backward slices that are required for the analysis
of PIAnalyzer. As registers are SMALI’s universal storage mechanism for hold-
ing any kind of values, our SMALI slicer is register based. The SMALI slicer
is initialized with an arbitrary start position in the code as well as with a set
of relevant registers. After completion it returns a set of influencing statements.
For example, in Listing A.1 the backward slice of the registers v0 and v3, start-
ing from line 21 will return the statements on lines 15, 18 and 21 as backward

PIAnalyzer: A precise approach for PendingIntent vulnerability analysis 9

Fig. 1. The workflow of PIAnalyzer

slice. We would like to stress that the PendingIntent analysis described in the
following is just one usage of our developed slicer. In fact, our slicer is universal
and can be used for various program analysis purposes. The software architec-
ture of PIAnalyzer is designed in a modular way that facilitates the extension
by further analysis approaches. Similar to the analysis of PendingIntents, these
approaches can easily make use of our generic SMALI slicer.

4.2 PendingIntent Analysis

PIAnalyzer is designed for the efficient analysis of a large number of APKs and
therefore accepts as input an arbitrarily large set of APKs. Figure 1 depicts the
workflow of PIAnalyzer per APK. The analysis of PIAnalyzer consists of the
following steps.

PendingIntent extraction. PIAnalyzer decompiles the DEX bytecode of a
given APK to the SMALI IR using APKTool [18]. It then parses the content
of each SMALI file together with the application’s manifest. PendingIntents can
only be created by four methods: getActivity(), getActivities(), getBroadcast()
and getService() [11]. PIAnalyzer searches in the parsed SMALI files for calls to
these methods, leading to a complete list of all PendingIntent creations in the
application.

Base Intent analysis. In the next step PIAnalyzer extracts the base Intent
object used for creating the PendingIntent. It builds the backward slice from the
PendingIntent creation site to the creation site(s) of the base Intent leveraging
our universal SMALI slicer. Based on this backward slice, PIAnalyzer determines
whether the base Intent is potentially implicit, meaning no target component was
definitely set. For determining whether an Intent may be implicit, PIAnalyzer
first confirms that an implicit constructor, i.e., a constructor without a specified
target component was used to create the base Intent. It then examines whether
an explicit transformation method was invoked on the base Intent object. Ex-
plicit transformation methods set the target component of an Intent object after
it has been constructed, transforming an implicit Intent into an explicit one. To
the best of our knowledge only five explicit transformation functions exist at the
time of this writing: setClass(), setClassName(), setComponent() setPackage()
and setSelector(). If an Intent has been created by an implicit constructor and
no explicit transformation has definitely been invoked on the Intent, it is consid-
ered implicit. In the following steps, PIAnalyzer only considers occurrences of
PendingIntents with implicit base Intents, as only these can lead to the described
security issues (see discussion in section 2.2).

10 S. Groß et al.

PendingIntent analysis. The severity of the vulnerability depends on the us-
age of the PendingIntent. Concretely, it depends on the sink functions to which
the PendingIntent object is passed. A PendingIntent can either be sent to a
trusted system component, e.g. Alarm manager, or wrapped into another Intent.
PIAnalyzer therefore computes the forward slice from the creation of the Pend-
ingIntent object to either of the mentioned APIs, using our universal SMALI
slicer.

WrappingIntent analysis. The most dangerous class of attacks can occur if
the PendingIntent object itself is intercepted by a malicious application. This
can happen if the PendingIntent is wrapped in another intent (referred to in the
sequel as wrapping Intent) as Intent extra data. If the wrapping Intent is implicit
it can be received by a malicious application to extract its wrapped PendingIn-
tent and manipulate the base Intent. To detect this particularly dangerous class
of vulnerabilities, PIAnalyzer examines all wrapping Intents whether they are
implicit, as only in this case they can be received by a malicious application. To
that end, PIAnalyzer creates the backward slice for all wrapping Intents using
our universal SMALI slicer. From the resulting slice it determines whether the
wrapping Intent is implicit (in analogy to the base Intent analysis phase), in
which case it reports a vulnerability.

Call Graph generation. PIAnalyzer is designed to facilitate the analysis of
human security experts. PIAnalyzer assists human investigation of a reported
vulnerability via a generated the call graph, which leads to the method in which
it has been detected. Thus human experts may determine the events that lead
to the execution of the vulnerable code spot. The generated call graph can track
control flow between the main application and its used libraries. Additionally, it
handles recursive functions.

Reporting. In the last phase, PIAnalyzer logs the results of the analysis. PIAn-
alyzer creates two types of log files: For each detected vulnerability, it creates
a vulnerability log file that reports details of that vulnerability. Additionally, it
creates a summary log file that summarizes the findings in the whole APK batch
and gives general statistics:

– Vulnerability Log File This file contains the slice from the creation of the
base intent, over the creation of the PendingIntent object, to the final sink
function. Additionally, each vulnerability log file contains the slice from the
base Intent to the PendingIntent, as well as the PendingIntent forward slice.
Finally, the call graph to the method containing the vulnerability is logged.

– Summary Log File For each batch of APKs one summary log file is created.
Apart from some hardware specifications, this summary log file contains the
total number of warnings and vulnerabilities, as well as some statistics over
the batch of APKs.

4.3 Vulnerability severity levels

PIAnalyzer distinguishes the following levels of severity (in increasing order):

PIAnalyzer: A precise approach for PendingIntent vulnerability analysis 11

Table 1. Distribution of vulnerabilities and warnings

vuln. 0 1 2 4

apps 938 56 5 1

warn. 0 1 2 3 4 5 6 7 8 9 10 13

apps 565 104 101 96 61 33 16 16 2 2 3 1

– Secure PendingIntents with explicit base Intents are considered secure as a
known and apparently trusted component is invoked. We respect this trust
relation and create no report for these cases.

– Warning If a PendingIntent with an implicit base Intent is created, but this
PendingIntent is only passed to System managers that are supposed to be
benign, it is considered a Warning. As a System manager will not redefine
the base Intent of the PendingIntent, the only possible attack scenario in this
case is a denial of service attack if a malicious application catches the implicit
base Intent after the System manager has triggered the send() method of
the PendingIntent.

– Vulnerability PIAnalyzer reports a Vulnerability if a PendingIntent has been
created with an implicit base Intent and the PendingIntent has been wrapped
in another implicit WrappingIntent. In this scenario a malicious application
can receive the PendingIntent, and redefine its base Intent resulting in a
privilege escalation attack.

5 Evaluation

We applied PIAnalyzer to 1000 randomly selected applications from the Google
Play Store. All experiments were performed on a MacBook Pro with MacOS
High Sierra 10.13.3 installed, a 2,9 GHz Intel Core i7 processor and 16 GB
DDR3 RAM.

PIAnalyzer reports 70 PendingIntent vulnerabilities and 1288 PendingIn-
tent warnings2. We statistically analyzed the distribution of vulnerabilities and
warnings among the inspected applications. Table 1 depicts the distribution ra-
tios. In the vast majority of the cases a vulnerability does not occur more than
once per application. However, the situation is different for warnings. Our find-
ings show that it is likely for an application to include more than one warning.
PendingIntents are thus more likely to be delivered to system components (e.g.,
AlarmManager).

Additionally, we analyzed the proportion of vulnerabilities and warnings that
were contained in third party libraries. Remarkably, we find that 80% of the
reported vulnerabilities and 98% of the reported warnings occur in third party
libraries. Third party libraries thereby act as a multiplier for vulnerabilities, as
they are used by a large number of applications. We therefore would like to
stress the importance of PIAnalyzer for library developers. Table 2 provides a
list of these libraries along with their contribution to the number of vulnerable
apps. Libraries are included as the dependencies in the build.gradle file 3. As

2 For explanations of the severity levels please refer to section 4.3
3 https://developer.android.com/studio/build/index.html

12 S. Groß et al.

Table 2. Libraries contribution to number of vulnerabilities

Library Description app vuln. Year

Google Messaging Library Cloud Messaging 39 2017

Cloud to Device Messaging Cloud Messaging 8 2016

TapJoy Marketing and Automation 3 2016

MixPlane Push Notification & In App Messaging 4 2016

LeanPlum Messaging, Variable, Analytics & Testing 2 2017

this file is not compiled into the APKs, we could not find the exact version of
the library. A tedious way to find the exact version of the library is to match
the app’s intermediate code with the intermediate code of the each version of
the library. We find that these versions of libraries are still in use in the recent
versions of applications. Thus, instead of providing the exact version of libraries
we provide their year of appearance in an application (in 1000 applications from
our experiment).

As mentioned, an attacker can escalate a PendingIntent vulnerability into
a privilege escalation attack and leverage the permissions of the vulnerable ap-
plications. We therefore analyzed the permissions of the applications for which
PIAnalyzer reported vulnerabilities. We find that 279 dangerous permissions [13]
and 273 normal permissions are used by these vulnerable applications. As dan-
gerous permissions are required for performing critical operations on the device,
an attacker may act maliciously in many of these instances, e.g., call a premium
number.

Table 3 provides a list of ten vulnerable applications (randomly selected)
along with their category and used dangerous permission groups. The permission
groups contain permissions organized into a device’s capabilities or features, e.g.,
PHONE group includes the CALL PHONE permission. 35% of the vulnerable
applications belong to the Business, Entertainment, or Education category.

In our experiment with 1000 real-world applications, the average execution
time of PIAnalyzer is close to 13 seconds with a minimum of 10 seconds and
the maximum time of 21 seconds. This time performance strongly demonstrates
the efficiency of PIAnalyzer and proves that it can easily be applied to a large
number of real-world applications.

To evaluate the precision and the soundness of PIAnalyzer, we manually
inspected the reported results of ten applications (out of 70 vulnerable appli-
cations). Manual inspection is time consuming as it requires analysis of many
SMALI code files. Out of ten applications, we find that nine times PIAnalyzer
reports correct vulnerabilities/warnings, indicating a high precision. In one case,
the base intent was manipulated dynamically and thus PIAnalyzer conservatively
overapproximated it as implicit intent.

In addition, we applied PIAnalyzer to the vulnerability in the Settings app
(described in the section 3.2) that led to privilege escalation to SYSTEM priv-
ileges. PIAnalyzer correctly reports the vulnerability and so PIAnalyzer could
have prevented the discussed vulnerability. Finally, we applied PIAnalyzer to

PIAnalyzer: A precise approach for PendingIntent vulnerability analysis 13

Table 3. Vulnerable applications with dangerous permissions

App Name App Category Dangerous Permission Group

SandWipPlus Communication Contacts, Phone, Sms, Storage

Reason News & Magazines Contacts, Location, Phone, Storage

Santa Dance Man News & Magazines Phone, Storage

SmartInput Keyboard Personalization Phone

drift15house Entertainment
Calendar, Contacts, Location,
Phone, Storage

Fishermens Entertainment
Contacts, Camera, Location, Mi-
crophone, Phone, Storage

Derek Carroll Photography
Camera, Location, Microphone,
Phone, Photography, Sms, Storage

ElleClub Business
Camera, Contacts, Location, Mi-
crophone, Phone, Sms, Storage

Chat Locator Productivity Location, Storage

Deptford Mall Lifestyle
Calendar, Contacts, Location, Mi-
crophone, Phone, Sms, Storage

multiple self-written demo examples that included PendingIntent vulnerabili-
ties. PIAnalyzer correctly reports each of them, indicating high recall.

5.1 Case Study: Vulnerability in the Google Cloud Messaging
(GCM) Library

PIAnalyzer finds a vulnerability in an outdated version of the Google Cloud
Messaging (GCM) Library, which is part of the Google Messaging Library and
still in use by many applications, e.g., Table Tennis 3D [1] or the Android De-
vice Manager. Among 1000 analyzed applications, we find that 37 out of 39
(cf. Table 2) applications still use this version of GCM. The vulnerability exists
in the file GoogleCloudMessaging.java of the GCM Library. Listing 1.7 shows
the code snippet of the vulnerable method send. On line 4, an implicit intent
named localIntent is created. On line 6, localIntent is passed to a method c. List-
ing 1.8 shows the code snippet for the method c. In this method, a PendingIntent
with an empty base intent is created (line 4). On line 5, this PendingIntent is
stored as extra data to the input parameter paramIntent. Later in method send
(listing 1.7), localIntent is broadcast to all registered receivers. Any Broadcast
Receiver, declaring this intent filter (com.google.android.gcm.intent.SEND) in
its manifest file, can receive this Intent and can easily extract the associated
PendingIntent. In this case the permissions of the attacker application are esca-
lated to the permissions of applications that use GCM. In our experiments, we
are able to intercept localIntent and to extract the associated PendingIntent. As
the base intent in the associated PendingIntent is blank, we set any arbitrary
action/component and trigger it with the same identity as the vulnerable ap-
plication. This enables us to perform arbitrary actions with the identity of the
vulnerable application, e.g., sending a malicious message to a different compo-

14 S. Groß et al.

Listing 1.7. Vulnerable Method

1 public void send(String paramString1, String paramString2,

2 long paramLong, Bundle paramBundle) {

3 // ...

4 Intent localIntent = new Intent("com.google.android.gcm.intent.SEND");

5 localIntent.putExtras(paramBundle);

6 c(localIntent);

7 localIntent.putExtra("google.to", paramString1);

8 localIntent.putExtra("google.message_id", paramString2);

9 localIntent.putExtra("google.ttl", Long.toString(paramLong));

10 this.eh.sendOrderedBroadcast(localIntent, null);

11 }

Listing 1.8. PendingIntent with an empty base intent

1 void c(Intent paramIntent) {

2 try {

3 if (this.xg == null)

4 this.xg = PendingIntent.getBroadcast(this.eh, 0, new Intent(), 0);

5 paramIntent.putExtra("app", this.xg);

6 } finally {}

7 }

nent of the vulnerable application and making it believe it was sent from within
the application (i.e. identity theft). In the worst case scenario, if this GCM ver-
sion were used by a system application with system permissions (GCM is an
official Google library), a malicious application could for example factory reset
the device (deleting all data). We tested several versions (4–7) of system APKs
from Google without such inclusions found. However, due to lacking availability
we could not check system APKs from other vendors.

5.2 Discussion

PIAnalyzer is a static analysis tool which shares common limitations with other
static analysis approaches. As the program behavior can depend on dynamic
input, every static analysis tool cannot be completely sound and precise. The
slicing analysis of PIAnalyzer is affected by these limitations. In theory, it is
possible to make an Intent implicit or explicit depending on external runtime
input. This could happen either by making the constructor used for intent cre-
ation or the usage of explicit transformation methods depend on external input.
When it is not clear at compile time whether an Intent is implicit or explicit,
PIAnalyzer conservatively assumes that it is implicit. Analogously, the slices
computed by PIAnalyzer are, by their nature, conservative approximations of
the actual control flow at runtime. In theory, it is also possible to make use of
Intents in Reflection or native code. PIAnalyzer neither supports reflection, nor
native code. We would like to stress that while the above mentioned cases are

PIAnalyzer: A precise approach for PendingIntent vulnerability analysis 15

possible in theory, they are rare in the real world and we could not observe a
single instance of these cases during inspection of many applications. Some of
the operations that require permissions cannot be performed directly via Intents
to system interfaces, e.g., the retrieval of a precise location. Thus an applica-
tion with only these permissions may not be vulnerable to PendingIntent related
attacks.

6 Related Work

To the best of our knowledge, there exists no approach that precisely detects the
described PendingIntent vulnerabilities at the time of this writing. In a concur-
rent effort Trummer and Dalvi [25] developed QARK, an Android vulnerability
scanner that also detects PendingIntent based vulnerabilities described in this
work. However, QARK ignores the flow of PendingIntents with implicit base
intents, so even PendingIntents that are never sent anywhere will be reported a
vulnerability. In our tool such a case would only be considered a vulnerability
if it flows there via another implicit intent. Additionally, they do not consider
whether an implicit intent is transformed to an explicit intent via further API
calls. In summary this leads to imprecise results as demonstrated in our eval-
uation, where we observed that these cases are highly relevant and frequently
occur in real-world applications. Their work [25] contains no result other than
the prototype tool, particularly no evaluation of their technique.

Bugiel et al. [4] proposed XManDroid, a reference monitor to prevent priv-
ilege escalation attacks. Their approach is focused on application permissions
and policies to model the desired application privileges. In contrast to our ap-
proach, XManDroid only regards PendingIntents as vehicle for inter-component
communication and does not consider the peculiarities and vulnerabilities of
PendingIntents.

SAAF [14], proposed by Hoffmann et al., is a tool to statically analyze SMALI
code. It recovers String constants from backward slices of method calls in order to
detect suspicious behavior. However, as it could not produce the expected results
in our experiments with current APKs we re-implemented a SMALI slicer.

Li et al. [16] analyzed vulnerabilities in Google’s GCM and Amazon’s ADM
mobile-cloud services. They discovered a critical logical flaws, concerning both
of these services. Additionally, they discovered a PendingIntent vulnerability
in GCM. Unlike our approach, they discovered this vulnerability by manual
code analysis and they do not provide an automated approach for discovering
PendingIntent vulnerabilities.

Apart from work considering PendingIntents, there is an extensive body of
work on general Intent analysis. One line focuses on Intent fuzzers for finding
Intent related vulnerabilities. For example, Yang et al. [27] developed an Intent
fuzzer for the detection of capability leaking vulnerabilities in Android applica-
tions. JarJarBinks, proposed by Maji et al. [17], is a fuzzing tool for Android
intents. By sending a large number of requests, the authors found robustness
vulnerabilities in the Android runtime environment. Sasnauskas and Regher [21]

16 S. Groß et al.

created an Intent Fuzzer. Their approach is based on static analysis and gener-
ates random test-cases based on the analysis results. In contrast to our approach,
their approaches do not consider PendingIntent related vulnerabilities.

Other work focuses on Intent based test case generation. For example, Jha
et al. [15] proposed a model that abstracts Android inter-component commu-
nication. From this model the authors derived test cases that facilitates the
software engineering process. Salva and Zafimiharisoa [20] proposed APSET, a
tool that implements a model-based testing approach for Android applications.
The proposed approach generates test cases that check for the leakage of sensi-
tive information. In contrast, our approach is focused on the security perspective
of PendingIntents.

As Intents are extensively used by malware, some approaches use Intent
analysis as a feature for malware detection. Feizollah et al. [7] proposed Andro-
Dialysis, a tool that uses Intents as indicating feature for Android malware. Tam
et al. [23] proposed CopperDroid, a monitor system which tracks events via vir-
tual machine introspection. CopperDroid considers PendingIntent as vehicle for
Inter Process Communication. In contrast, our approach is intended for finding
PendingIntent related vulnerabilities in benign applications.

Several approaches use various static information flow techniques for Intent
analysis. Sadeghi et al. [19] proposed COVERT, a static analysis tool for the
analysis of Intents. It computes information flows by static taint analysis. Us-
ing COVERT, the authors discovered hundreds of vulnerabilities in applications
from the Google Play Store and other sources. Yang et al. [28] proposed AppIn-
tent, an analysis tool for finding leakage of sensitive information via Intents. The
key idea of their approach is to distinguish intended information leakage from
unintended leakage considering user interface actions. The authors leverage the
Android execution model to perform an efficient symbolic execution analysis.
Unlike ours, both approaches do not consider PendingIntent related vulnera-
bilities. Arzt et al. [2] proposed FlowDroid, a taint analysis tool for the static
analysis of Android applications. It achieves precise and sound results by appro-
priately modeling the Android lifecycle and maintaining context, flow, field and
object-sensitivity. While FlowDroid is intended for detecting unwanted informa-
tion flows for the sake of confidentiality and integrity, PIAnalyzer focuses on the
detection of vulnerabilities that arise by the wrong usage of PendingIntent and
that can not be detected by FlowDroid.

Chin et al. [6] proposed ComDroid, a tool for detecting inter-component re-
lated vulnerabilities, e.g., Intent spoofing or Service Hijacking. Chan et al. [5]
proposed an approach to detect privilege escalation attacks in Android applica-
tions. As their approach does not include any kind of information flow control,
it overapproximates possible attacks leading to reduced precision. Again, both
do not detect security vulnerabilities caused by PendingIntents.

PIAnalyzer: A precise approach for PendingIntent vulnerability analysis 17

7 Conclusion

We described the first approach to analyze and detect PendingIntent-related vul-
nerabilities. We implemented our approach together with a generic SMALI slicer
in a tool called PIAnalyzer. PIAnalyzer is fully automated and does neither re-
quire the source code of the applications under inspection, nor any effort by the
analyst. We evaluated PIAnalyzer on 1000 randomly selected applications from
the Google Play Store to assess the runtime performance, precision and sound-
ness of PIAnalyzer. PIAnalyzer takes on average only approximately 13 seconds
per application, which scaled up well to large test sets. PIAnalyzer discovers
1288 warnings and 70 PendingIntent vulnerabilities. We manually investigated
some of the reports and elaborated on a privilege escalation vulnerability caused
by the usage of a prevalent Google library.

Acknowledgements

This work was supported by the German Federal Ministry of Education and
Research (BMBF) through the project SmartPriv (16KIS0760).

References

1. Table tennis 3d. Google Play store (April 2014)
2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,

Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. Acm Sigplan Notices 49(6),
259–269 (2014)

3. Brains, J.: Kotlin, https://kotlinlang.org
4. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: Xmandroid: A new

android evolution to mitigate privilege escalation attacks. Technische Universität
Darmstadt, Technical Report TR-2011-04 (2011)

5. Chan, P.P., Hui, L.C., Yiu, S.: A privilege escalation vulnerability checking system
for android applications. In: Communication Technology (ICCT), 2011 IEEE 13th
International Conference on. pp. 681–686. IEEE (2011)

6. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: Proceedings of the 9th international conference on Mo-
bile systems, applications, and services. pp. 239–252. ACM (2011)

7. Feizollah, A., Anuar, N.B., Salleh, R., Suarez-Tangil, G., Furnell, S.: Androdial-
ysis: Analysis of android intent effectiveness in malware detection. Computers &
Security 65, 121–134 (2017)

8. Freke, J.: Baksmali. https://github.com/JesusFreke/smali
9. Google: Android intent documentation. https://developer.android.com/

reference/android/content/Intent.html, accessed: May. 2017
10. Google: Dalvik byteycode documentation. https://source.android.com/

devices/tech/dalvik/dalvik-bytecode, accessed: May. 2017
11. Google: Pending intent documentation. https://developer.android.com/

reference/android/app/PendingIntent.html

https://kotlinlang.org
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/app/PendingIntent.html

18 S. Groß et al.

12. Google: Android os statistics (Feb 2018), https://developer.android.com/

about/dashboards/index.html#Screens

13. Google: Android permissions (April 2018), https://developer.android.com/

guide/topics/permissions/overview.html

14. Hoffmann, J., Ussath, M., Holz, T., Spreitzenbarth, M.: Slicing droids: Program
slicing for smali code. In: Proceedings of the ACM Symposium on Applied Com-
puting. SAC, ACM, New York (2013)

15. Jha, A.K., Lee, S., Lee, W.J.: Modeling and test case generation of inter-component
communication in android. In: Proceedings of the Second ACM International Con-
ference on Mobile Software Engineering and Systems. pp. 113–116. IEEE Press
(2015)

16. Li, T., Zhou, X., Xing, L., Lee, Y., Naveed, M., Wang, X., Han, X.: Mayhem in
the push clouds: Understanding and mitigating security hazards in mobile push-
messaging services. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 978–989. ACM (2014)

17. Maji, A.K., Arshad, F.A., Bagchi, S., Rellermeyer, J.S.: An empirical study of the
robustness of inter-component communication in android. In: Dependable Systems
and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on.
pp. 1–12. IEEE (2012)

18. Ryszard Wísniewski, C.T.: Apktool. https://ibotpeaches.github.io/Apktool/

19. Sadeghi, A., Bagheri, H., Malek, S.: Analysis of android inter-app security vul-
nerabilities using covert. In: Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on. vol. 2, pp. 725–728. IEEE (2015)

20. Salva, S., Zafimiharisoa, S.R.: Data vulnerability detection by security testing for
android applications. In: Information Security for South Africa, 2013. pp. 1–8.
IEEE (2013)

21. Sasnauskas, R., Regehr, J.: Intent fuzzer: crafting intents of death. In: Proceedings
of the 2014 Joint International Workshop on Dynamic Analysis (WODA) and
Software and System Performance Testing, Debugging, and Analytics (PERTEA).
pp. 1–5. ACM (2014)

22. Statcounter.com: Operating system market share worldwide. http://gs.

statcounter.com/os-market-share/mobile/worldwide (January 2018)

23. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: Copperdroid: Automatic recon-
struction of android malware behaviors. In: NDSS (2015)

24. Tao, W., Zhang, D., Yu, W.: Android settings pendingintent leak.
https://packetstormsecurity.com/files/129281/Android-Settings-Pendingintent-
Leak.html (November 2014)

25. Trummer, T., Dalvi, T.: Qark: Quick android review kit. DefCon 23 (August 2015),
https://github.com/linkedin/qark

26. Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4), 352–357 (Jul 1984)

27. Yang, K., Zhuge, J., Wang, Y., Zhou, L., Duan, H.: Intentfuzzer: detecting capa-
bility leaks of android applications. In: Proceedings of the 9th ACM symposium
on Information, computer and communications security. pp. 531–536. ACM (2014)

28. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., Wang, X.S.: Appintent: Analyzing
sensitive data transmission in android for privacy leakage detection. In: Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security.
pp. 1043–1054. ACM (2013)

https://developer.android.com/about/dashboards/index.html#Screens
https://developer.android.com/about/dashboards/index.html#Screens
https://developer.android.com/guide/topics/permissions/overview.html
https://developer.android.com/guide/topics/permissions/overview.html
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://github.com/linkedin/qark

PIAnalyzer: A precise approach for PendingIntent vulnerability analysis 19

A Appendices

A.1 Simplified SMALI code example

1 .method protected onCreate(Landroid/os/Bundle;)V

2 # 5 local registers are used in this method

3 .locals 5

4

5 # Declaration of a parameter register with a given name

6 .param p1, "savedInstanceState" # Landroid/os/Bundle;

7

8 # End of the method prologue. Start of the actual code.

9 .prologue

10

11 # A call to a super constructor

12 invoke-super {p0, p1},

Landroid/support/v7/app/AppCompatActivity;->onCreate(Landroid/os/Bundle;)V

13

14 # Declaration of a String in register v3

15 const-string v3, "android.intent.action.CALL"

16

17 # Creation of an Intent object in register v0

18 new-instance v0, Landroid/content/Intent;

19

20 # Invocation of the constructor of the intent object

21 invoke-direct {v0, v3},

Landroid/content/Intent;-><init>(Ljava/lang/String;)V

22

23 # Return of the method with no return value

24 return-void

25

26 .end method

	PIAnalyzer: A precise approach for PendingIntent vulnerability analysis

