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Abstract. Sanitization is a primary defense mechanism against injec-
tion attacks, such as cross-site scripting (XSS) and SQL injection. Most
existing research on sanitization focuses on vulnerability detection and
sanitization correctness, leaving the burden of sanitizer placement with
the developers. However, manual sanitizer placement is complex in realis-
tic applications. Moreover, the automatic placement strategies presented
in the literature do not optimize the number of sanitizer positions, which
results in inconsistent multiple-sanitization errors and duplicated code
in our experience.

As a remedy this paper presents an optimized automatic sanitizer place-
ment to reduce the number of positions where sanitization is required.
To that end, we analyze the dataflow of a program via static analysis. We
optimize the number of sanitizer positions by preferring nodes common
to multiple paths as sanitizer positions. Our evaluation displays equal
sanitization coverage as previous approaches with a reduced number of
sanitizers, and reduces the number of sanitization errors to 0.
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1 Introduction

Web applications are often vulnerable to script injection attacks, such as cross-
site scripting (XSS) and SQL injection. XSS vulnerabilities allow an attacker
to inject client-side scripting code into the output of an application which is
then sent to another user’s web browser [1]. The scripting code can be crafted
to send sensitive data, such as user login credentials, credit card numbers, to
a third party when executed in the browser. Likewise, SQL injection vulnera-
bilities allow an attacker to execute malicious SQL statements that violate the
application’s desired data integrity or confidentiality policies [2]. The predomi-
nant first-line approach to prevent such attacks is sanitization, the practice of
encoding or filtering untrusted inputs of an application. Existing research on
sanitization mainly deals with vulnerability detection [3,4]. These approaches
assume that an application is secure if sanitization is applied on all paths from
sources to sinks. However, this does not always hold as the sanitization process
itself might be buggy or incomplete. This triggered a line of research on sani-
tizer correctness [4,5]. Yet, having correct sanitizers is not enough to completely
mitigate scripting attacks; the sanitizers must also be placed correctly.
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1 main() {

2 exchange = getSource();

3 func1(exchange);

4 func2(exchange);

5 }

6 func1(exchange) {

7 exchange.getIN();

8 }

9 func2(exchange) {

10 exchange.getIN();

11 }

Fig. 1. Path decomposition due to flow-insensitivity (code and its data flow graph)

Sanitizer placement depends on how input data is being used [6], where it
originates from [7] and the context in which it is rendered [6,8]. Hence, manual
sanitizer placement is difficult and error prone [4,5]. On top of missing saniti-
zation, common errors are inconsistent sanitization (mismatch of sanitizer and
context) and inconsistent multiple sanitization (sanitizers may not be idempo-
tent) [9]. This motivated research on automatic sanitizer placement [8,6,9].

Automatic sanitizer placement techniques assume that the individual sani-
tizers are correct, and that the mapping of sanitizers to their contexts [8,9] or
source and sink policy [6] is given. The goal of the automatic placement strat-
egy is to place sanitizers on every program path between an untrusted input
and a possibly scriptable output of an application while preventing errors due
to inconsistent sanitization and inconsistent multiple sanitization. Currently, the
automatic placement techniques strive for this goal but do not try to optimize the
number of sanitizer calls in the code. In the worst case each path in the code may
have its own call to an appropriate sanitizer. However, due to the flow-insensitive
points-to-analysis characteristics, a single runtime path can be decomposed into
several paths that may lead to inconsistent multiple sanitization. Assuming the
policy of Figure 1 does not allow to put a sanitizer at node n6, nodes n4 and
n5 are selected as sanitizer positions according to existing research. However,
at runtime these two nodes are being executed subsequently, i.e. the value in
exchange is being sanitized twice. Our experiments (cf. Section 4) display an er-
ror rate of 20% for the non-optimized algorithm, i.e., 20% of all sanitizers might
suffer from erroneous inconsistent multiple sanitization. An alternative approach
that does not suffer from the shortcomings of flow-insensitivity analysis would
be to dynamically taint untrusted input data at runtime and to propagate these
taints during computation, but this may incur significant runtime overheads.

In this paper, we propose an optimized automatic sanitizer placement tech-
nique by statically analyzing the flow of tainted data. This analysis takes a
dataflow graph and the sanitization policy, that specifies the mapping of sanitiz-
ers with respect to source and sink combinations, as input. The goal is, then, to
automatically find sanitizer positions satisfying sanitization correctness, i.e., ev-
ery value that flows from a source to a sink must have the given type of sanitizer



applied exactly once. Our placement technique uses static node-based analysis,
and nodes that are common to several paths requiring the same sanitizer type
are proposed as the best candidate for optimized sanitizer positions. For the
data flow graph in Figure 1, our optimized approach selects node n1 as sani-
tization position, thus eliminating multiple sanitization and code duplication.
Our evaluation (in Section 4) shows that the reduction of sanitizers due to this
optimization reduces or eliminates the sanitization errors of previous approaches.

2 Sanitizer Placement Overview

This section presents background on dataflow graphs and sanitization policies
which are the input to the sanitization placement problem, followed by a clari-
fication of the placement problem.

2.1 Dataflow Graph and Sanitization Policy

A dataflow graph is a static representation of a program where nodes represent
statements/predicates and edges indicate data dependencies. When the program
performs a computation, values may only flow according to the data dependence
edges. To guarantee a secure flow of data, we require a sanitization policy that
defines an appropriate sanitizer for values that flow from a given source to a
given sink. The policy is usually given in the form of a table where sources and
sinks are displayed in rows and columns and sanitizers are given as the entries [6].
Throughout this paper, we use the dataflow graph and its sanitization policy in
Figure 2 as an example. Source types (⃝,△) are shown in the rows and sink
types (■,♦, ,▲ ) are shown in the columns. ⊘ represents data sources and
sinks that are irrelevant for security. We use metavariables P , I and O to range
over policies, sources and sinks, respectively. Particularly, we write P (I,O) for
the entry in policy P for the source I and sink O. For instance, for the policy
P in Figure 2, data originating from source type ⃝ going to sink type ■ should
have sanitizer S1 applied to it. If data that flow from source type I to sink type
O does not require sanitization, we represent its policy as P (I,O) =⊥.

2.2 Sanitizer Placement Problem

The challenge of sanitizer placement is to identify an appropriate sanitizer and
its position in the source code in order to prevent untrusted data flowing from a
source to a sink with dangerous scripts to be injected in the sink context. This
problem arises as the result of the source, sink and context-sensitivity property of
sanitization placement [6,8,7]. In large applications, with a multitude of nodes
and paths, manual sanitizer placement is hard to get right. Consequently, an
automatic decision procedure is required whose goal is to ensure correct saniti-
zation of data in an application given its dataflow graph and sanitization policy,
i.e., according to the correctness definition [6] (Definition 1).

Definition 1. Given a dataflow graph G = ⟨N,E⟩, sanitization for the graph
is valid for a policy P , if for all source nodes s and all sink nodes t:



■ ♦  ▲ ⊘
⃝ S1 S1 S4 S3 ⊥
△ S2 S2 ⊥ S3 ⊥
⊘ ⊥ ⊥ ⊥ ⊥ ⊥

Fig. 2. Dataflow graph example (sources on top, sinks at bottom) and sanitization
policy

– if P (s, t) = S, then every value that flows from source node s to sink node t
has sanitizer S applied exactly once, and no other sanitizer is applied.

– if P (s, t) =⊥, then every value that flows from source node s to sink node t
has no sanitizer applied.

The reason why sanitizers must be applied only once on a single path is
that they are not necessarily idempotent [3]. Specifically, applying a sanitizer
several times on a path may lead to inconsistent multiple sanitization errors [9].
However, untrusted input may be coming from a source in multiple contexts,
which implies different sanitizers might be required within a single path leading
to a sink. For this type of situation, multiple (potentially nested) sanitizers are
modeled as a single (composite) sanitizer [6].

3 Our Approach

To solve the sanitizer placement problem, we propose two types of static node-
based strategies: a less-optimized and a fully-optimized solution. The less-opti-
mized solution optimizes the number of sanitizer positions only when there is a
common node for all paths from a source to a sink. Other than that, it follows the
same approach as Livshits et al [6]. The fully-optimized solution, however, always
reduces the number of sanitizer positions by selecting nodes common to many
paths requiring the same sanitizer as a sanitization positions. This optimization
removes code duplication and the occurrence of inconsistent multiple-sanitization
error that could appear as the result of flow-insensitive static analysis. Due to
space limitation, we present detailed explanations only for the fully-optimized
solution. However, the result of both approaches is evaluated in Section 4.



Table 1. Si-possible and Si-exclusive nodes for Figure 2

Sanitizers Possible Exclusive

S1 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17 3, 7, 8, 9, 11, 12, 13

S2 2, 5, 10, 14, 16, 17 5, 10, 14

S3 1, 2, 4, 6, 15, 19 19

S4 1, 4, 15, 18 ∅
⊥ 2, 6, 15, 18 ∅

3.1 Fully Optimized Approach

For i, j ranging from 1 to k where k is the number of sanitizer types, a node
n is called Si-possible if it is found on a path from source s to sink t that
requires sanitizer Si, i.e., P (s, t) = Si. This implies that at least some of the
data traversing from source s to sink t through node n needs to be sanitized
with sanitizer Si. Likewise, a node n is called Si-exclusive if it is Si-possible and
not Sj-possible for all i ̸= j [6].

Definition 2. Node n ∈ N is Si-possible if there is a source node s and a
sink node t such that n is on a path from s to t and P (s, t) = Si .

Definition 3. Node n ∈ N is Si-exclusive if it is Si-possible and for all source
nodes s and sink nodes t, if n is on a path from s to t, then P (s, t) = Si.

For the dataflow graph example (Figure 2), the possible and exclusive nodes
for sanitizers S1, S2, S3, S4 and ⊥ are given in Table 1. According to the cor-
rectness definition (Definition 1), sanitizer nodes must be selected from the Si-
exclusive sets. However, sanitizer S4 has no exclusive nodes, hence values flowing
from source type ⃝ to sink type  cannot be sanitized statically. This is due
to the inability of static analysis to identify the source and/or destination of
input data at nodes that are not exclusive to a sanitizer type. Additionally the
correctness definition prohibits placing the same sanitizer more than once on
a single path. Hence, our solution selects the node that provides most optimal
placement if there is more than one exclusive node on a single path.

In addition to the Si-possible and Si-exclusive sets, we need the following
definitions to elaborate our approach.

Definition 4. The Si-node-frequency for a node n ∈ N is the number of
paths through n that satisfy P (s, t) = Si, for a source node s and s sink node t,

Definition 5. Node n ∈ N is Si-exclusive-pj-previous if it is Si-exclusive
and it is found on any of the paths traversed before path pj during the depth
first path search of path analysis.

Definition 6. Node n ∈ N on a path pj is Si-exclusive-pj-exclusive if it is
Si-exclusive and not Si-exclusive-pj-previous.

Definition 7. Node n ∈ N is called the Si-position if it is selected to be
sanitization node for sanitizer Si.

Definition 8. Si-backtracking-map collects the mapping of Si-position nodes,
at every path iteration, to paths requiring sanitizer Si.

For each path pj our fully-optimized placement algorithm traverses the Si-
exclusive-pj-exclusive nodes and selects the last node on that path with max-



imum Si-node-frequency as the temporary1 Si-position. However, more than
one sanitizer could be included on a single path with this strategy alone, which
violates the correctness definition (Definition 1). To resolve this problem, we
consider three conditions based on the number of previously identified sanitizer
position nodes Si on the current path pj .

First, if there is no Si-position on pj , we apply the strategy described above
and add pj into the Si-backtracking-map.

Second, there is exactly one Si-position on pj . Thus the current path pj
already has a Si-position node, hence we do nothing. However, that Si-position
node might be removed later due to backtracking in which case pj would lack a
sanitizer. For this reason, pj is entered into a map of skipped paths which will
be re-added to the iteration if its corresponding Si-position node is removed.

Third, when there is more than one Si-position node on pj , we backtrack
to find the paths that provided these nodes and assign a different sanitization
node for all except one path. To select that one, we consider the intersection of
the current path with all paths that have provided the Si-position nodes causing
multiple sanitization errors. Then, taking two intersection sets at a time starting
from the sink, we compare the number of incoming edges to the top node in the
bottom intersection set with the number of outgoing edges from the bottom
node in the top intersection set. After that, the path whose Si-position node in
the intersection set had the lower number is removed and another intersection
set is compared with the one that had the higher number. When all intersection
sets are considered, only the path that results in the maximum number remains
and serves as the source of Si-position for the current path, as well. The reason
behind this is that if the Si-position node is removed with the path, we have to
apply Si at all its previous/next nodes depending on its relative position in the
two intersection sets. Thus, it is preferable to remove the ones that have lower
in-/out-degrees. Lastly, these removed paths as well as the skipped paths that
contain these removed Si-positions are again included to the path iteration to
select another Si-position node.

To exemplify our fully-optimized solution, we use the Si-exclusive graph
shown in Figure 3. The path numbers in the graph indicate the iteration or-
der during the analysis to find a single Si-position node on every path. For p1
n3 is selected as sanitization node according to the first condition since it has
node frequency 3. Path p2 already contains n3 (second condition). Next, node
n8 is selected as Si-position for p3 (first condition).

The fourth iteration results in backtracking, as p4 contains two sanitization
nodes: n3 and n8. From the intersection of p4 with p3, we get the top node n5

and from the intersection of p4 with p1 we get the bottom node n3. Comparing
the out-degree of n3 (3 edges) with in-degree of n5 (2 edges), n3 is chosen to
remain sanitizer node. Finally n4 is selected as new sanitization node for path
p3 (subpath excluding n5 and n8) using condition one. Placing Si at nodes n3

and n4 is sufficient to sanitize all values that flow along these paths.

1 The Si-position for path pj can be changed later due to backtracking.



Fig. 3. Si-exclusive graph example for fully-optimized solution explanation

Table 2. Results of placement approaches

Fully-optimized Less-optimized

Sanitization Analysis Sanitization Analysis

N coverage errors numbers time (m) coverage errors numbers time (m)

1 50 % 0% 5 2:31 50 % 20% 8 2:40
2 90 % 0% 9 2:09 90 % 40 % 14 2:01
3 80 % 0% 8 2:44 90 % 40 % 14 2:42
4 80 % 0% 9 4:46 90 % 40 % 14 5:19
5 90 % 0% 9 9:30 90 % 40 % 14 9:02

In the end, the Si-position nodes using our fully-optimized solution for the
dataflow graph and the policy in Figure 2 are: S1 at nodes n11, n8, n9, S2 at node
n5 and S3 at node n19. S4 and ⊥ have no exclusive node, hence sanitization is
not statically possible. Using our less-optimized solution, n12 and n13 would be
selected for S1 instead of n8, similar to previous approaches [6].

4 Evaluation

We evaluate our approaches using WALA [10] on an application whose call graph
consists of 15,214 nodes, 119,026 edges, 14,070 methods, and 724,806 bytes. San-
itization coverage, sanitization errors, the number of sanitizer positions and time
taken by the analyses are used as evaluation parameters. The sanitization cover-
age indicates the ratio of untrusted inputs passed through the correct sanitizers.
The sanitization errors are multiple sanitization errors due to WALA’s flow-
insensitive pointer analysis that decomposes one path to multiple paths. Table 2
reports the result of the fully-optimized and less-optimized approaches on a Mac-
Book Pro with a 2.9 GHz Intel Core i7 processor and 16 GB RAM. N in the first
column indicates a call-string based context-sensitivity parameter. The ratio of
sanitization errors is relative to the required correct sanitizer positions.

Maximum sanitization coverage was achieved for N = 2 for both approaches,
and we took that for comparison as missing sanitization may have devastating



effects. The missing 10% are caused by paths lacking sanitizer-exclusive nodes.
However, for these paths runtime tracking of input data can be applied instead
of static sanitizer placement [6]. For example, in Figure 2 one might want to add
code that registers whether data was flowing to node 15 from node 4 or from
node 6. Then in node 18 one would be able to decide whether sanitizer S4 needs
to be applied (flow from 4) or not (flow from 6).

As expected, the number of sanitizer positions is reduced for the fully-
optimized approach since it always attempts to find common nodes for paths
that require the same sanitizer type. Unlike the less-optimized approach, which
is is only slightly more precise than previous work [6], the fully-optimized ap-
proach does not result in sanitization errors. The analysis time is almost identical
for each context-sensitivity value N . But the less-optimized solution can provide
its maximum coverage at a lower value of N , hence analysis time could be lower.

Note that the less-optimized solution follows exactly the same approach as
Livshits et al [6] in its non-optimized variant. Hence, the evaluation of the fully-
optimized solution with respect to the less-optimized solution also elaborates
on how our fully-optimized solution resolves the multiple sanitization error and
code duplication problems of existing research. The correctness (sanitization
coverage) of both our solutions is in sync with Livshits et al [6], since we use the
same node-based static analysis approach, i.e., every piece of data which flows
through a path that has at least one exclusive node is sanitized. This has been
confirmed using several test cases although we use only one application for a final
evaluation. The optimality of the fully-optimized approach is also confirmed in
a similar way, i.e., it finds the least sufficient number of sanitizer positions.

To the best of our knowledge, previous research does not consider optimiza-
tion of sanitizer placement and this paper is the first to report that such an
optimization has benefits beyond code clone elimination, namely a reduction in
the sanitization error rate.

5 Related Work

The automatic sanitizer placement of Livshits et al. [6] is closely related to our
approach. They propose two solutions: a static node-based solution, and an edge-
based solution based on static analysis and runtime taint tracking. The former
is similar to ours but does not attempt to optimize the number of sanitizer po-
sitions. Another research that shares our goal is presented by Samuel et al. [8].
They provide static type inference-based approach to automatically apply sani-
tizers. It is unclear whether type inference based analysis is scalable as they focus
on a small program (less than 4000 lines of code) in Google Closure. Saxena et
al. [9] propose SCRIPTGARD that can detect and repair incorrect placement
of sanitizers in ASP.NET applications. SCRIPTGARD assumes that develop-
ers have manually applied context-sensitive sanitization correctly. A dynamic
analysis detects and auto-corrects context-inconsistency errors in sanitization.
In contrast, our approach can correctly apply sanitizers in an application com-



pletely lacking developer-supplied annotations. Additionally, we leverage static
analysis in order to eliminate runtime overhead of dynamic analysis.

6 Conclusion

This paper presents an automatic sanitizer placement mechanism that optimizes
the number of sanitizer positions. Due to the reduced number of sanitizer posi-
tions we did not experience any inconsistent multiple sanitization errors. Hence,
the fully-optimized algorithm is a valuable solution for real world applications.
However, in some cases runtime information is required to identify the valid
sanitizer type. Thus, a hybrid analysis that leverages runtime tracking in such
situations is proposed to guarantee full sanitization coverage.
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