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ABSTRACT
JavaScript is the most popular programming language for web
applications. Static analysis of JavaScript applications is highly
challenging due to its dynamic language constructs and event-
driven asynchronous executions, which also give rise to many
security-related bugs. Several static analysis tools to detect such
bugs exist, however, research has not yet reported much on the
precision and scalability trade-off of these analyzers. As a further
obstacle, JavaScript programs structured in Node.js modules need
to be collected for analysis, but existing bundlers are either specific
to their respective analysis tools or not particularly suitable for
static analysis.

In this paper we propose a novel approach to compare the pre-
cision, scalability and code coverage of two widely-used static
analysis frameworks—WALA and SAFE—together with simplePack,
which analyzer-agnostically bundles dependent modules, enabling
a fair comparison. To appropriately evaluate the precision of the
analyzers, we select all equivalent user object and variable refer-
ences, and compute their properties’ average points-to set sizes.
Our evaluation indicates that SAFE provides higher precision and
better code coverage at the cost of a somewhat lower scalability.
Evaluating the simplePack bundler manifests that the static call
graph of its bundle is more precise compared to the bundle pro-
duced by Browserify, one of the most popular module bundlers.
Based on these results, we analyze the data flows of a hybrid app
(JS & native) provided by an industrial partner via taint analysis.
To that end we modeled the native (platform) functions of the app
in a DSL for SAFE and extended its taint analysis to support tainted
objects rather than only primitive type data. We show that there
is potential for injection attacks, as tainted objects may reach the
sink without being sanitized.
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1 INTRODUCTION
JavaScript is themost widely-used programming language for client-
side web applications, powering over 95% of today’s websites1. In
spite of its popularity, it also introduces various errors, vulner-
abilities, and ample challenges for program analysis: large-scale
libraries, asynchronous event flows via user inputs, interaction be-
tween iframes, and new analysis domains like MVC frameworks
and hybrid applications [32].

Researchers have proposed several static program analysis tech-
niques to help JavaScript developers overcome some difficulties.
Static analysis is challenging and imprecise due to dynamic lan-
guage constructs like run-time code generation and heavy use of
first-class functions [24]. Widely used static analysis frameworks
like WALA [23, 30] and SAFE [16, 20, 22] represent the state of the
art, however, little research assesses their strengths and weaknesses.
Ko et al. [15] report the number of callees per call site of these
frameworks but concentrate on the scalability gain of combining
WALA and SAFE rather than their comparison. A recently released
major rewrite of SAFE that aims at a more pluggable, extensible
and debuggable framework (SAFE 2.0 [22]2) raises the question
which framework to leverage for static security analysis, which
was the motivation for a thorough comparative analysis of WALA
and SAFE.

Recently JavaScript’s popularity also rose for server-side and
desktop applications due to Node.js, an open-source, cross-platform
runtime environment for executing JavaScript on the server-side3.
Node.js programs are structured into modules, and can also be used
in browsers by bundling up themodule dependencies using Browser-
ify [2], Webpack and CommonJS Everywhere. All these bundlers
follow a similar pattern in how they package modules, but none
of these are suitable for static analysis. Recently WALA and SAFE
included direct support for Node.js modules, but their solutions are
analysis-specific and thus not suitable for comparison. For example,
the model inWALA is relatively complete (except for the native core
modules), but SAFE’s very preliminary. Hence, it is indispensable
to have an analysis-agnostic bundler suitable for any static analysis
framework for a fair comparison.

JavaScript- and Node.js-based applications can be vulnerable to
various injection attacks [31]. Thus, security analyses like a taint
analysis [33] are indispensable. The state of the art reports dynamic,
static and hybrid taint analysis approaches [4, 26, 34]. However,
none of them are implemented in SAFE, which we selected for

1https://w3techs.com/technologies/details/cp-javascript/all/all
2From now onwards SAFE represents the version SAFE 2.0.
3https://en.wikipedia.org/wiki/Node.js
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our security analysis. SAFE supports taint analysis via a prototype
implementation [25], but only reports tainted primitive type argu-
ments such as strings that reach a sensitive sink, but not object
type arguments, which our industrial application makes use of.

In this paper, we present a thorough comparison of SAFE and
WALA, introduce simplePack to bundle module dependencies suit-
ably for static analysis, extend the taint analysis in SAFE, and ana-
lyze a real-world industrial app using SAFE. To extract appropriate
elements for comparison of the analyses, we integrate WALA’s
analysis into SAFE and select objects and global variables of the
user program that are registered for the same source location in
both analyzers. We compute the average points-to set sizes over
all object fields (i.e., pointer keys) to evaluate the precision of both
analyzers. We also evaluate their scalability and code coverage by
measuring the analysis time and number of non-empty object fields
(i.e. fields determined to point to an allocation site, e.g., for function
objects), respectively. Our evaluation illustrates that SAFE provides
higher precision and code coverage than WALA, but is less scalable.
However, SAFE’s lower scalability usually does not outweigh the
gains in precision and code coverage. Our evaluation also shows
that SAFE covers more code (determines receivers of function calls),
which may also be responsible for the higher runtimes. Hence, we
choose SAFE for our security analysis of the industrial app.

The hybrid industrial app is structured in the form of Node.js
modules that reside in different paths of the project and cannot
be analyzed by SAFE directly, as it requires all code to be present
in one directory. Thus, we contribute simplePack, a source code
transformation tool that bundles module dependencies in a way
that is more suitable for static analysis. We compare simplePack to
Browserify by measuring the precision and recall of their bundled
programs’ static callgraph in WALA. The evaluation shows that
simplePack displays better precision and recall overall. The hybrid
app, built on a middleware platform, includes more than 300 mod-
ules and contains more than 230,000 lines of code, which makes a
direct whole program static analysis almost impossible. Hence we
remove parts of the code not relevant to the main task of the app
while keeping its major semantics and features.

We analyze the security of the hybrid app by extending SAFE’s
taint analysis to identify tainted objects flowing to sinks. We also
model the JSON.stringify function, which acts as an input sanitizer
by changing the input value or object to a non-executable JSON
string. Note that this function just acts as a prototypical sanitizer to
evaluatewhetherwe can support sanitization in our analysis.Which
function may act as a sanitizer depends heavily on the semantics
of the sink and is beyond the scope of this research. We evaluate
the analysis on four components of the hybrid app and our taint
analysis identifies the tainted parameter object due to the existence
of a tainted primitive property in the objects’ property hierarchy. In
contrast, tainted values passed through the JSON.stringify function
before reaching a sink are correctly not reported as an illegal data
flow. The major contributions of this paper are:

• A comparison of WALA’s and SAFE’s points-to analysis us-
ing equivalent user-defined objects.
• A framework-agnostic module bundler suitable for static
analysis, which we compare against the off-the-shelf bundler
Browserify.

1 //url==https://...#name=<script>alert("xss")</script>

2 var url = document.URL

3 var pos = url.indexOf("name=")+5

4 document.write(url.substring(pos, url.length))

Figure 1: Taint analysis example

• A static taint analysis for a hybrid industrial app. To that end
we model the sanitizer JSON.stringify directly in SAFE, and
extended the taint analysis to complex objects rather than
tainted primitive values.

2 BACKGROUND
2.1 Points-to Analysis

A points-to analysis is a static code analysis that attempts to
determine the possible values of a pointer or heap reference in a
program. There are several pointer analysis algorithms, most of
which leverage Andersen-style analysis [3] expressed as subset con-
straints. A pointer-analysis algorithm can be either flow-sensitive
or flow-insensitive. The flow-sensitive analysis takes into account
the order in which the statements in the program may be executed.
The program is handled as a sequence of statements and the mem-
ory location where pointer expression may refer to is computed
for each statement, i.e., it is statement level analysis. On the other
hand, the flow-insensitive analysis does not take into account the
order rather the program is handled as a set of statements. Hence,
it computes the memory locations where pointer expressions may
refer to, at any time in the program execution, i.e., it is program
level analysis.

2.2 Taint Analysis
Taint analysis emerged as a useful technique for discovering secu-
rity vulnerabilities in web applications [33]. Security taint analysis
is an information-flow analysis that automatically detects flows of
untrusted user input to security-sensitive computations (integrity
violations) or flows of private information into computations that
expose it to public observers (confidentiality violations) [29]. The
starting point of taint analysis is typically a data source API call.
For instance, consider the code sample in Figure 1 which is vul-
nerable to a DOM-based XSS attack. The variable 𝑛𝑎𝑚𝑒 could con-
tain malicious JavaScript code in a script tag that is then executed
by document.write. Considering document.URL as a source and
document.write as a sink, the taint analysis raises an alarm that
untrusted user input is flowing into a sink. An application developer
can endorse untrusted inputs via sanitization functions, which the
taint analysis needs to consider, in order to reduce the number of
false positives.

2.3 Static Analysis Frameworks
Static analysis mechanisms automatically derive certain properties
from a program without executing it. Currently, there are four
frameworks that analyze JavaScript4 applications statically, i.e.,
TAJS [11], JSAI [13], WALA [23], SAFE [16, 22]. Reviewing the
4JavaScript analyses usually support a subset of a standard called ECMAScript (ES),
ES5 is now common, ES6 still new.
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1 function f1(v) {

2 return f2(v);

3 };

4 function f2(v) {

5 return v; }

6 var o1 = {};

7 var o2 = {};

8 var x = {};

9 x.p = f(o1);

10 x.q = f(o2);

(a) context-sensitivity

1 var x={};

2 for (var i=0;i<3;i++){

3 x[i]=i;

4 }

(b) loop-sensitivity

1 var TopString = (45).

toString(12);

2 var TopNum = Date.now()\

right)

(c) model-functions

Figure 2: Examples to illustrates context-sensitivity, loop
sensitivity and modeled functions

scientific literaturewe foundWALA and SAFE to bemost commonly
used, so we decided to investigate these frameworks in greater
detail. Additionally, the aim of this investigation was to identify
a static analyzer that precisely analyzes the hybrid industrial app.
We started out analyzing this app with WALA with low precision.
Hence, we decided to evaluate at least one more analyzer that is in
active development. Since the results with SAFE are promising we
refrained from re-implementing our ideas in the remaining tools.
Evaluating the precision of TAJS is subject to future work, JSAI is
no longer under active development.

WALA provides soundy [17] flow-insensitive static analysis for
both Java bytecode and JavaScript. However, JavaScript’s ability
to create and delete properties at runtime presents a great chal-
lenge for scalable and precise points-to analysis. Although WALA
provides correlation tracking [30], improving points-to analysis
scalability and precision via smart handling of for-in loops, scalabil-
ity remains a problem for inter-procedural, finite, distributive subset
(IFDS)-based analyzers. Therefore, WALA intentionally introduced
a new unsound but more scalable static analysis that constructs a
field-based (FB) call graph [9], i.e., uses one abstraction for all in-
stances of each property in the whole program. To further improve
the pointer analysis scalability and to eliminate calls to eval, Schäfer
et al. [27] proposed a dynamic analysis. However, the coverage of
the dynamic analysis may not be sufficient as the analysis observes
only one program execution at a time.

SAFE [16] is a flow- and context-sensitive static analysis frame-
work that provides both formal specification and its open-source
implementation for JavaScript. Analysis scalability is greatly im-
proved by using loop sensitivity (LSA) [20] that handles loops more
precisely, which turns out to be a determining factor in terms of
analysis precision as well. It also supports the with statement [19],
rewriting it to semantically equivalent code when it does not con-
tain any dynamically generated code. Recently, SAFE 2.0 [22] sup-
ports pluggability (ability to select analysis techniques at runtime),
extensibility (APIs for adding new phases) and debuggability (HTML
and console debugging), improving user-friendliness. In contrast
WALA’s source code repository is huge and complex. SAFE is able

Table 1: Points-to analysis result of program examples in
Figure 2. Columns with keys and avgPts headings represent
the number of pointer keys and average points-to values
respectively.

program
1-CFA and 0-LSA 2-CFA, 3-LSA

SAFE WALA SAFE
examples keys avgPts keys avgPts keys avgPts

a. 21 1.19 17 1.18 19 1.0
b. 2 1.0 3 2.67 5 1.0
c. 5 1.0 3 1.33 5 1.0

to analyze most ES55codes precisely. To analyze object proper-
ties more precisely, SAFE uses recency abstraction [6, 21] which
performs strong updates on recently allocated objects and weak
updates on joined old objects.

2.3.1 Motivating Example: The context- and loop-sensitivity,
and the coverage of modeled functions have a great effect on the
precision of static analysis frameworks. The three programs in
Figure 2 and their analysis results in Table 1 illustrate this issue. For
the context-sensitivity example (Figure 2a), the number of pointer
keys and average points-to set size in SAFE using 2-CFA is reduced
due to the redundant old allocation sites, which apply weak updates.
Particularly, using 1-CFA, the old allocation site of argument 𝑣 in
function 𝑓2 points to objects 𝑜1 and 𝑜2. But if we use 2-CFA or more
the old allocation does not exist and the recent allocation points-
to 𝑜2. Therefore, increasing the context-sensitivity leads to more
precise points-to analysis as theweak updates are themain source of
imprecision. However, WALA does not support context-sensitivity
greater than 1-CFA for JavaScript. Similarly, loop-sensitivity, which
is not supported in WALA except for correlation tracking for for-in
loops [30], is supported in SAFE and increases the precision by
differentiating the pointers that depend on the iteration number.
For instance, the x[i] pointer in Figure 2b varies and points to a
different value at each iteration when 3-LSA or more is used. Finally,
the difference in the number of pointer keys for the example in
Figure 2c is due to the fact that implicit primitive type conversion
is modeled in SAFE but not in WALA.

2.4 Application Setup
For our security analysis and evaluation of the static analyzers,
we use a real-world industry application which is structured into
Node.js modules. This section presents the Node.js platform in
general and the industry application setup in particular.

2.4.1 Node.js Platform: Node.js is an open-source, cross-platform
JavaScript runtime environment, built on Chrome’s V8 JavaScript
engine, for executing JavaScript server-side code [8]. It uses an
event-driven, non-blocking (asynchronous ) I/O model that makes
it lightweight and efficient. The node package manager (npm) is
used to install modules and manage code dependencies from the
command line. Node.js has built-in and user-defined JavaScript
modules. Modules structure a program into separate sub-programs

5However, not all of ES5 is currently supported (e.g. getter/setters are not modeled).
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1 // main.js

2 var A = require("./A.js");

3 var a = new A();

4 a.foo(2) // => false

(a) main module
1 // A.js

2 function A() {

3 this.foo = function (x) {

4 return x === 0; };

5 }

6 module.exports = A;

(b) dependent module

Figure 3: Node.js program example consisting of twomodules
that reside in the same directory.

to simplify the development and maintenance of complex appli-
cations. Each module has its own scope and cannot pollute the
namespace of other modules.

Figure 3 illustrates howmodules are used in Node.js. Module A.js
exports a function constructor and is required by the main module
main.js. In main.js we instantiate a new object from A and call
the method foo on it. The require function has diverse semantics,
e.g., loading built-in modules in Node.js or recursively searching
through directories for modules installed by npm.

2.4.2 Hybrid App: This section provides an overview of a practi-
cal Node.js hybrid web app developed by ApproLogic GmbH that
is used for our static analysis. The application is structured into
Node.js modules and makes calls to middleware platform functions
that are attached to the module scope during execution. Figure 4
shows an overview of the module dependencies in the hybrid app
from the LoginController slice6. The Platform module represents
the middleware platform and consists of several modules. The hy-
brid app includes more than 300 modules and contains more than
230,000 lines of code. The platform functions perform many inter-
actions with built-in library functions such as jQuery, Lodash and
Backbone.js.

3 IMPLEMENTATION
3.1 Average Points-to Set Computation
In this section, we present the general initial setup and the average
points-to set computation approach of both static analyzers.

3.1.1 Initial Setup. WALA uses a flow-insensitive Andersen-style
pointer analysis approach to compute the points-to set of each
pointer or heap reference for the whole program. In contrast, SAFE
supports flow-sensitive points-to analysis and the heap state is
different from statement to statement. Hence, we take the heap
status at the exit statement of the top-level function as the state to
compare the average points-to sets.

To have a more appropriate comparison, we integrate the WALA
analysis result into SAFE following the approach of Ko et al. [15],

6The other controllers are: RegisterController, SigninController and AssistanceController

Figure 4: Module dependence graph of the ApproLogic hy-
brid app. The nodes represent modules and the dashed edges
represent require dependencies.

i.e., we added the WALA project to SAFE’s and create a PointerAnal-
ysis object of the whole program using the JSCallGraphBuilderUtil
class in WALA. Then by traversing over the InstanceKeys of the
PointerAnlysis object we map the InstancesKeys’ source locations
to their creation sites. Similarly, by iterating over SAFE’s control
flow graph (CFG), we compute the mapping of source locations to
SAFE’s object allocation sites. Finally, we only consider the source
locations present in both maps and take the InstanceKeys objects
with their corresponding allocation site in SAFE.

As the set of the modeled built-in JavaScript functions in WALA
and SAFE are not the same, we only consider user-defined program
object locations. Additionally, the representation of local variables
and lexical variables differs between WALA and SAFE, and does
not provide similar numbers and types of pointers. Hence, only the
user-defined global variables, user objects and argument objects
are selected as appropriate candidates for our average points-to
comparison. For instance, the global objects 𝑜1, 𝑜2 and 𝑥 in Figure 2a
have the same source locations in both analyzers and they are
selected for the points-to comparison. The argument and function
prototype objects are compared and selected in a similiar fashion.

3.1.2 Average Points-to Set Computation in SAFE. To com-
pute the average points-to set in SAFE, we take the heap at the
exit statement of the top-level function. Since SAFE uses recency-
abstraction for allocations in the heap, we compute an average effect
of the old and recent objects of an allocation site to make it more
comparable to WALA that does not rely on recency-abstraction. Af-
terwards, we iterate over all user and global allocation site objects,
and compute the average points-to set of all properties. However,
only user-defined properties are considered while iterating over the
global object. Additionally, the length property and properties that
points-to undefined are ignored in all objects. The length property
indicates the number of arguments and is not relevant. The points-
to set for properties that point to undefined is zero in WALA and
can falsely increase the precision impact of other pointers that point
to more than one object. Hence, we ignore properties that point to
undefined in both analyzers. However, the number of undefined
properties are separately computed to estimate the percentage of
JavaScript constructs that are not modeled in SAFE and WALA.
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1 #Document.prototype: {

2 [[Class]]: "Document",

3 [[Extensible]]: true,

4 [[Prototype]]: #Node.prototype,

5 "write": <#Document.prototype.write, F, T, T>,

6 "URL": <string, F, T, T>

7 },

Figure 5: Modeling untrusted user input example

1 var url = strTop (tainted)

2 var input = {user: "user1", url: url}

3 var card = { header: headers, data: input}

4 sink1(url)

5 sink2(input)

6 sink3(card)

7 var sanitizedValue = JSON.stringfy(card)

8 sink4(sanitizedValue)

Figure 6: Tainted object flowing to sink

3.1.3 Average Points-to Set Computation inWALA. InWALA,
we compute the heap from the points-to set of the InstanceKeys
and select the heap objects which have a corresponding object in
SAFE. The source location is used for filtering. After identifying
the relevant objects, we iterate over all properties of each object to
compute the average points-to set. In addition to the properties of
these objects, the user-defined global variables and the callee func-
tion pointer variables are also considered. Because, unlike SAFE,
WALA does not include the callee property in the arguments object.
The same as in SAFE, the pointers pointing to zero (undefined)
are computed separately to extract the percentage of unmodeled
JavaScript constructs (functions).

3.2 Taint analysis
In this section, we extend SAFE’s taint analysis technique, which
models the sources of untrusted user inputs with the abstract value
string7 prototype value (see Figure 5), propagates it during the
analysis and finally checks whether a tainted value might be used
at the sink. In SAFE’s existing taint analysis, the arguments of the
sink functions are checked whether they are tainted (strTop) or not.
However, this does not work for objects that contain tainted values
in their property hierarchy, rather only for primitive values. Yet,
finding only primitive argument values passed to a sink is rare. We
did not encounter such a situation when analyzing the hybrid app
from our industry partner.

To illustrate our contribution, let us consider the code in Figure 6.
SAFE identifies taint flow only in 𝑠𝑖𝑛𝑘1 but not in 𝑠𝑖𝑛𝑘2 and 𝑠𝑖𝑛𝑘3.
In our implementation, we recursively iterate over the properties of
the sink’s argument objects and search for tainted values (strTop).
Accordingly, we can find the taint flow to sink2 and sink3.

7string represents the top string value (strTop) in the lattice, not a regular string value.
Other lattices could in principle be embedded into SAFE’s to enable disambiguating
more taint sources.

Some of the controllers in the hybrid app use JSON.stringfy to
change the input data into a non-executable JSON string. However,
this function is not currently modeled in SAFE. To analyze appli-
cations containing this function we extended SAFE’s model such
that our taint analysis approach correctly indicates that tainted
value is not flowing to 𝑠𝑖𝑛𝑘4, i.e., it supports the sanitization of
JSON objects using JSON.stringfy. The implementation of the taint
analysis and the analyzer comparison is available on Github8

3.3 SimplePack
Browsers do not support CommonJS9 module syntax. Hence, there
have been many ongoing efforts to make the utilities available
in npm accessible to the browser. Browserify is one of the most
popular tools able to bundle CommonJS modules for the browser
by concatenating the modules in a single file.

Although Browserify bundles CommonJs modules for browsers,
the bundles are not well suited for static analysis. Moreover, none of
the aforementioned static analysis frameworks supported programs
written in CommonJS module syntax at the time that we started this
research effort. Figure 7 depicts the Browserify bundle program for
the example in Figure 3. Although the bundle produced by Browser-
ify works for browsers, it is not well suited for static analysis. The
main problems with the analysis of Browserify bundles are:

(1) Flow-insensitive points-to analysis will determine that the
inner function may invoke module functions in any order.

(2) At least one level of call-string sensitivity is needed to distin-
guish between different required modules, as a require call
will first invoke the inner function.

(3) The additional function calls by the inner function renders
the call graph overly complex and thus also requires a more
context-sensitive static analysis.

Hence, we introduce simplePack, which bundles CommonJS mod-
ules in a more suitable way for static analysis frameworks. In our
approach we concatenate the module functions and transform the
require calls into the module functions to outer function calls, i.e.,
there is no inner function. Figure 8 illustrates the simplePack bundle
for the same example in Figure 3.

In our implementation, we first compute the set of module depen-
dencies by walking the dependency graph. In Node.js, the package
module-deps resolves dependencies using node’s module lookup
algorithm. The AST of the empty program and for each module
dependency is computed using the package esprima, which com-
putes a SpiderMonkey AST. Then a module is wrapped in a function
declaration and its AST is traversed using the estraverse package.
During traversal every require call that has a string literal as argu-
ment10 is replaced by a function call to that module. The potentially
modified AST is added to the program. In the end, a function call
to the entry module is added to the program and source code is
generated for it using the escodegen package. Our implementation
is available on GitHub11.

8https://github.com/ghiwet/safe/tree/ subdirectories taint, walaPointsTo, safePointsTo
9CommonJS is a project with the goal of specifying an ecosystem for JavaScript outside
the browser
10Dynamically computed arguments are currently not supported and were not required
for our analyses.
11https://github.com/MaxSchlueter/bundler
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1 (function outer (modules, cache, entry) { function

inner (name) {

2 if (!cache[name]) {

3 if (!modules[name]) throw "MODULE_NOT_FOUND";

4 var m = cache[name] = {exports:{}};

5 modules[name][0].call(m.exports, function(x){

6 var id = modules[name][1][x];

7 return inner(id ? id : x);

8 },m,m.exports);

9 }

10 return cache[name].exports;

11 }

12 inner(entry);

13 return inner;

14 })

15 ({1:[function(require,module,exports){

16 ... // code of A.js here

17 },{}],2:[function(require,module,exports){

18 ... // code of main.js here

19 },{"./A.js":1}]},{},2);

Figure 7: Simplified Browserify bundle for the Node.js mod-
ule example in Figure 3

1 function _mod_A(module) {

2 var exports = module.exports;

3 function A() {

4 this.foo = function (x) { return x === 0; };

5 }

6 module.exports = A;

7 return module.exports;

8 }

9 function _mod_main(module) {

10 var exports = module.exports;

11 var A = _mod_A({ exports: {} });

12 var a = new A();

13 a.foo(2) // => false

14 return module.exports;

15 }

16 _mod_main({ exports: {} });

Figure 8: Simplified simplePack bundle for the Node.js mod-
ule example in Figure 3

4 EVALUATION
4.1 Points-to Analysis Comparison:
In this section, we evaluate WALA’s and SAFE’s static program
analyzers answering three research questions. First, we describe the
research questions, evaluation methods and subjects (benchmarks).
Then, we discuss the results of the analyses.

4.1.1 Research Questions: We present the research question as
follows:

Algorithm 1: Pseudo Code for simple Pack
input :an entry module file
output :a bundle for file

1 modules← Compute set of module dependencies for file;
2 programast← Compute AST of an empty program; foreach

𝑚𝑜𝑑 ∈𝑚𝑜𝑑𝑢𝑙𝑒𝑠 do
3 ast← Compute AST for module mod;
4 fun←Wrap ast in a function declaration;
5 Traverse fun and replace every require call by a function

call to that module;
6 Add fun to programast;
7 end
8 Add function call to the entry module of programast;
9 program← Generate source code from programast;

RQ1. Precision: For the object properties (pointers keys) of
each subject, to how many object locations or values do they point
to on average? An analyzer that results in a lower average points-to
value is more precise (provided that both analyses are sound).

RQ2. Scalability: How much time does it take to analyze a
subject and how many subjects are fully analyzed within a given
timeout? An analyzer that finishes the analysis of a subject in less
time is more scalable.

RQ3. Coverage: How many pointer keys whose value is not
undefined12 does each analyzer identify for each subject? An an-
alyzer that results in a higher number provides better coverage
(unless it is less precise) as the points-to set is undefined when its
pointer refers to an API function or object that is not modeled in
the analysis.

4.1.2 Evaluation Methodology and subjects: To answer these
research questions we performed experiments using the WALA
and SAFE 2.0 analyzers. For evaluation subjects, we used a version
of the hybrid app from our industry partner and two benchmark
sets from different categories [14, 35]: addon (i.e., plugins for the
Firefox browser) and standard (i.e., from SunSpider and V8 browser
benchmark suites). Each category of our benchmarks contains seven
subjects [14, 35]. For all experiments, WALA used a 1-CFA sound
propagation-based (PB) analysis with correlation tracking. SAFE
analyzer uses 20-CFA and (10,5)-LSA, 10-length and 5-depth (to
distinguish nested loops) loop strings, with recency abstraction for
the hybrid app and the addon benchmark category. For the standard
benchmark category, SAFE used 20-CFA and 0-LSA because loops
are very complex and the analysis does not terminate in the given
timeout with loop-sensitivity. WALA does not handle loops in any
particular fashion except for for-in loops, which do not appear in
these benchmarks. In the version of the industrial partner’s app we
replaced libraries like Lodash and jQuery by equivalent JavaScript
code, and Promises by regular callbacks. We also removed certain
code that is independent of the core functionality. Also, there is no
model for platform-specific APIs that arewritten in a language other
than JavaScript. This allows fair comparison but may miss certain
security issues. Therefore, as part of future work we are planning
to extend our analysis in order to lift most of these restrictions. We
12In WALA undefined is called zero.
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Table 2: Precision, scalability and coverage of analyzers. Parenthesized numbers (SLOC) denotes the subjects’ line of code
without comments. The values under the scalability are time of analysis in seconds. Entries marked 𝜒 denote that the analyzers
do not finish analysis within the timeout of 10 minutes. The parenthesized numbers (% of undefined) measures the percentage
of pointers pointing to unmodeled API functions or objects

Subject (SLOC) Precision Scalability Coverage (% of undefined)
SAFE WALA SAFE WALA SAFE WALA

hybrid-app (1221) 1.005 1.48 117 2.35 2391 2835

ad
do

n

odesk-job-watcher (154) 1.012 2.04 4.25 1.76 159 (0%) 112 (12.5%)
chess (222) 1.02 1.34 8.4 2.1 265 (0.4%) 135 (1.2%)

coffee-pods-deals (358) 1.006 1.46 2.5 2.3 313 (0.6% ) 287 (1.7%)
pinpoints (537) 1.02 1.44 3.55 2.58 440 (0.9%) 339 (3%)
tryagain (590) 1.004 1.29 5.85 1.56 503 (1.4%) 555 (.54%)

less-spam-please (745) 1.028 1.29 11.2 2.6 725 (0.8%) 623 (11.4%)
live-pagerank (865) 1.03 1.29 62 3.2 818 (0.6%) 702(4.2%)

st
an
da
rd

access-nbody (170) 1.0 1.03 12.15 1.7 195 (1.51%) 150 (3.23%)
crypto-sha1 (177) 1.0 1.085 24.5 1.8 226 (0.04%) 59 (7.8%)

splay (201) 1.17 1.13 133 7.20 156 (0%) 20601 (0%)
richards (285) 1.48 5.79 206 2.8 339 (0%) 491(0%)
3d-cube (343) 1.11 3.97 380 4.88 1865 (0%) 3252 (0%)

3d-raytrace (408) 𝜒 1.31 𝜒 1.23 𝜒 564 (2.5%)
cryptobench (1297) 𝜒 𝜒 𝜒 𝜒 𝜒 𝜒

conducted the experiments on a MacBook Pro with 2.9 GHz Intel
Core i7 processor and 16GB RAM

4.1.3 Result and Discussion: In this section, we discuss the
precision, scalability and coverage result of the two analyzers. Table
2 depicts the evaluation result of the hybrid app, addon and standard
subject categories.

Precision: To compare the precision of the two analyzers, we
measure the average points-to size of object properties over all
user-defined locations (objects) and global variables. Although we
consider only user-defined objects and global variables, we expect
the results to be representative for the whole program. For all
subjects that finish execution within the timeout, SAFE provides
lower average points-to sizes thanWALA. For the odesk-job-watcher,
richards and 3d-cube subjects, WALA’s average points-to size ex-
ceeds SAFE’s by a factor of two. Considering the average over all
subjects, SAFE computes 1.017 pointers for the addon and 1.15 for
the standard category. In contrast, WALA determines 1.45 for addon
and 2.6 for standard. Last but not least, the average points-to size
over all subjects is 1.073 for SAFE and 1.93 for WALA. This demon-
strates that SAFE provides more precise analysis than WALA. The
improved precision of SAFE is due to its support for flow-sensitivity,
context-sensitivity and loop-sensitivity in its analyses

Scalability: We evaluated the scalability of both analyzers by
measuring the analysis time in seconds. For all subjects, WALA re-
quires less time to finish analysis, indicating that it is more scalable.
Analysis of 3d-raytrace in SAFE did not terminate within the given
timeout although it did in WALA. The scalability of the WALA
analysis is due to its flow-insensitive points-to analysis approach.
However, there is a cost in terms of precision which may be more
relevant for security analysis.

Coverage: To compare the coverage of the analyzers, we counted
the number of object properties for each subject. Properties point-
ing to non-undefined values, and those pointing to undefined are
counted separately. For the majority of the subjects, SAFE computes
higher non-undefined and lower undefined pointers, indicating that
it models more API functions. The model coverage and the loop
sensitivity has enormous effect on the number of pointers. In some
cases, the number of non-undefined pointers is higher in WALA
due to heap cloning, which creates different objects based on the
context, for the same object locations. However, this happened only
for around 30 % of the subjects. Therefore, this indicates that in
general SAFE provides better coverage.

Threats to Validity: The following are identified as threats to
validity.
• The subjects used for our analysis may not be representative
for other JavaScript applications.
• The analysis is based only on the user program and does
not consider local variables (as these are specific to the inter-
mediate representation), which might deviate the average
points-to set size over the whole application.

To generalize the comparison of both analyzers, we have listed
some of the comparison features in Table 3.

4.2 Taint Analysis
In this section, we evaluate our taint analysis by investigating
whether it identifies objects containing tainted values and considers
sanitization using JSON.stringify.

For our evaluation, we use the hybrid app. The hybrid app con-
tains different controllers for login (configuration setup and auto-
matic login using saved credentials) , signin (login by entering user
credentials), register and assistance. All these controllers take user
input and interact with the internet using HTTPS requests and post
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Figure 9: Precision and recall in percent for simplePack and Browserify bundles.

Table 3: Feature comparison of SAFE and WALA

Features SAFE WALA
Flow-sensitivity Flow-sensitive Flow-insensitive

Context-sensitivity Any number 0 or 1-CFA
Loop-sensitivity Any number Only for-in

Precision Relatively precise Imprecise
Code Complexity Easier to understand Complex to understand
Soundiness [17] Sound Sound(PB) and unsound(FB)

Scalability Less scalable More scalable

APIs. Hence, we took the program slice of each controller (i.e. all
the code that can influence its computation) bundling all modules
related to the respective controller’s semantics, creating four sep-
arate programs to evaluate our taint analysis on. The user inputs
at the respective controllers’ form fields are considered a source of
tainted value and the HTTPS request and post APIs are considered
to be sinks. We use the abstract value@StrTop to simulate a tainted
value.

Table 4 illustrates the result of the four program slices of the
hybrid app, which all have more than 4,000 lines of code (without
comments, SLOC). The result indicates that the tainted value is
identified at the sink in both the login and signin program slices.
Note that the application is still safe due to the way the tainted input
is sent to the database in the platform code, which we verified by
manual inspection. For the register and assistance program slices,
no tainted value is identified at the sink. Upon manual investigation,

Table 4: Taint analysis result of four program slices from the
real world hybrid app

program (SLOC) Tainted Sanitized min−depth
login (4788) yes no 1
signin (4890) yes no 1
register (4501) no yes 2
assistance (4730) no yes 2

we found that JSON.stringify is used to endorse the input before
reaching the sink. When we remove this call to JSON.stringify,
our taint analysis approach identifies the tainted input at the sink
in both cases. Our manual investigation shows that the depth of
the tainted properties in the parameter object is one or higher
in all slices, which means that it could not be identified using
SAFE’s existing taint analysis. However, our extended taint analysis
identifies the tainted objects.

4.3 simplePack
To evaluate simplePack, we compare the static call graph (CG) of a
bundled program to the dynamic one. This is done for programs
transformed by simplePack and by Browserify. The dynamic CG is
constructed by a Jalangi213[28] analysis records all the functions
that are invoked at a call site in one execution of the program.
A further restriction in this evaluation is that only user-defined
functions in the code are considered as call site targets. The static
CG is constructed inWALA and conservatively approximates all the
functions that can be invoked at some call site. The most precise
static CG is the union of the dynamic CGs over all (potentially
infinitely many) possible program executions.

The static and dynamic CGs are compared by computing the av-
erage precision and recall of all the call sites covered by the dynamic
CG as in [10]. For a given call site the precision is the percentage
of "true" function targets and recall is the percentage of correctly
identified true targets with respect to all targets. For the evaluation
we use five Node.js programs based on five different packages ob-
tained from npm considering the list of most-depended packages.
The selected packages have at least one module dependency, can
be transformed by Browserify and simplePack and the resulting
bundles are executed in node v0.12.x. Packages with dependency
cycles or dynamic requires are excluded14.

13https://github.com/Samsung/jalangi2
14This only happened for one package encountered in the list of most-depended
packages and never for our industry application.
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The average precision and recall of the bundles produced by
simplePack and Browserify are depicted in Figure 9. Precision and
recall are very high for the simplePack bundles of mkdirp, md5
and promise, achieving 100% recall and over 90% precision. The
Browserify bundles for mkdirp and promise also achieve 100% re-
call but have lower precision measures than in simplePack. Recall
and precision are particularly low for the md5 Browserify bundle
when compared to the one by simplePack. The precision and recall
measures for the mkdirp and optimist bundles are quite low and the
Browserify bundles seem to be far better than their corresponding
simplePack bundles. A recall measure less than 100% means that
some call sites or function targets are missing in the static CG com-
puted by WALA. Thus, the static analysis done by WALA for these
bundles is unsound. Recall is at 65% for the minimatch simplePack
bundle and at 69% for the corresponding Browserify bundle. Upon
manual inspection we found that WALA was unable to resolve the
same call sites and function targets in the Bundler bundle as in the
corresponding Browserify bundle. Three unresolved call sites and
their subsequent function calls lead to a low recall measure.

5 RELATEDWORK
JavaScript static analysis frameworks. TAJS [11], JSAI [13],
WALA [9, 23, 27, 30], SAFE [16, 20, 22] are JavaScript static analysis
frameworks among which WALA and SAFE are most commonly
used in research projects according to citation numbers. WALA pro-
vides soundy flow-insensitive static analysis supporting correlation
tracking [30] to improve the analysis scalability and precision. Addi-
tionally, WALA introduced a new unsound but more scalable static
analysis that performs field-based (FB) call graph [9]. SAFE [16]
is a flow- and context-sensitive scalable static analysis framework
which supports loop-sensitivity analysis (LSA) [20]. LSA enhances
the analysis precision in loops improving analysis scalability of
JavaScript applications. The current version SAFE 2.0 [22] supports
pluggability, extensibility and debuggability which makes it more
user-friendly than WALA and SAFE 1.0. SAFE leverages a recency
abstraction [6, 21], which performs strong updates on recently allo-
cated objects and weak updates on joined old objects.

Points-to Analysis Comparison. The average points-to set
size analysis is a convenient way to evaluate the precision of static
analysis frameworks. For instance, Wei et. al. [35] used the average
points-to comparison to systematically select a precise context-
sensitivity type (call-site, object, and parameter) per function. A
context-sensitivity type that provides the smallest average points-to
set size is selected for each function. This motivated us to evaluate
the precision and scalability trade-off between WALA and SAFE
using average points-to set sizes. However, both frameworks follow
different points-to analysis approaches and leverage different data
structure representations, which makes the comparison non-trivial.
Hence, we use the approach followed by Ko et al. [15] to integrate
the WALA analysis results into SAFE. This simplifies the selection
of comparable objects. Ko et al. [15] also evaluates the precision
of WALA’s FB, SAFE and their combinations based on the average
number of callees of the call sites. In contrast, we use the object prop-
erties and their points-to set to evaluate the precision of WALA’s PB
and SAFE. The object properties include the callees and other fields
which broadens our analysis scope. Moreover, unlike the related

paper, which integrates WALA with SAFE 1.0, we integrate WALA
with the latest, written completely from scratch, version SAFE 2.0
to identify the comparable objects in both analyzers.

Taint analysis. SAFE’s existing taint analysis [25] forms the
basis of our approach. However, it does not support primitive argu-
ments reaching the sinks, nor sanitizers. In contrast, our analysis
supports object arguments. Additionally, wemodeled JSON.stringify,
and our analysis correctly identifies when the tainted user input
is sanitized using this function. Taint analysis is well-established
for security purposes. In the domain of JavaScript, however, due to
its dynamic nature, there is only limited related work [4] leverag-
ing static analysis: Kannan et al. [12] and Saoji et al. [26] present
dynamic analyses to detect illicit taint flows, which can only as-
sert security for the given program execution. Wei and Ryder [34]
leverage a combination of static and dynamic analysis to identify
security vulnerabilities due to data integrity violations in JavaScript
codes in websites. Again, the dynamic analysis component may
miss certain security-relevant facts. Skoruppa et al. [5] detect se-
curity violations in an online voting client written in JavaScript
via pure static analysis with WALA. None of these approaches,
though, analyzes module-based code based on node.js, which in-
creases complexity significantly. Besides, we are the first to assess
the precision and scalability of different static analysis frameworks
precisely. This allows us to scale the analysis to even more complex
language features, which we are actively pursuing at the time of
this writing.

String analysis Costantini et al. [7] propose an abstract in-
terpretation-based framework for string analysis and instantiates
the framework for four different abstract domains. But they focus
on the theoretical aspects of string domains and do not discuss
string equality which is a key issue for dynamic field access. To
precisely analyze dynamic field access in JavaScript, Madsen and
Andreasen [18] present 12 string domains, among which 7 are new.
SAFE uses the string set domain, one of the 12 string domains, for
the string analysis. Recently, Amadini et al. [1] present SAFE𝑠𝑡𝑟
as an extension to SAFE and support a number of string analysis
domains, as well as arbitrary combinations of these domains. How-
ever, we use only the string set domain in our analysis as SAFE𝑠𝑡𝑟
is not included in the public SAFE repository.

6 CONCLUSION
We provide a thorough comparison of SAFE and WALA by inte-
grating the analysis result of WALA into SAFE and computing
the average points to set of pointers (object properties) consider-
ing user-defined objects, global variables and others comparable
elements only. The source location is used in both analyzers to
select the comparable objects and variables. The average points-
to set analysis result indicates SAFE is very precise at the cost of
some scalability. SAFE also provides better model coverage. For
static analyses, precision is often more crucial than scalability (as
long as it finishes execution in a given timeframe), especially for
security-related analysis. Hence, we selected SAFE to analyze a
real-world hybrid app from our partner company. However, the
app is structured in CommonJs modules and we design simplePack
that bundles the module dependencies into a single file suitable for
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SAFE analysis. SimplePack provides better precision and recall of a
static callgraph compared to Browserify.

To analyze the security of the hybrid app, we took some of its
program slices with independent sources and perform taint analysis
by simulating tainted values as @StrTop in SAFE. Since the existing
taint analysis in SAFE supports only primitive values, we extend
it to identify tainted objects as well. As the result, our extended
taint analysis tool correctly identified the flow of tainted values
from sources to sinks in the hybrid app. However, as there is only
one taint, our taint analysis cannot identify the exact source of the
tainted value at the sink, an extension for future work.

The significantly better precision of SAFE allows us to extend
static JavaScript analysis to domains that we ignored or manually
rewrote in this study, which we are actively developing for future
work. This is supported by the improved user-friendliness of the
SAFE 2.0 library, which eases code understanding and facilitates
contributions from external developers.
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