
Detecting Return-Oriented Programming on Firmware-Only
Embedded Devices Using Hardware Performance Counters

Adebayo Omotosho
University of Passau
Passau, Germany

adebayo.omotosho@uni-passau.de

Gebrehiwet B. Welearegai
University of Passau
Passau, Germany

gebrehiwet.welearegai@uni-
passau.de

Christian Hammer
University of Passau
Potsdam, Germany

christian.hammer@uni-passau.de

ABSTRACT
Return-oriented programming (ROP) relies on in-memory code se-
quences ending in return instructions to chain together arbitrary
malware. ROP is one of the most dangerous security exploits be-
cause, if wittingly crafted, it can be used to wreak havoc on the
system, network, and nodes connected to it. It is not surprising that
ROP has been studied on architectures such as x86 and ARM, mostly
with an operating system (OS). Xtensa is one of the most popular
industry standards for digital signal processors and it is present in
many resource-constrained firmware-based embedded WiFi home
automation devices, which operate by reading instructions directly
from flash memory. Despite leveraging no real OS, Xtensa is not
immune to ROP, and there have been reports of buffer overflow
vulnerability exploitations leading to ROP in Xtensa.

Therefore, we present the first detection of ROP, and its variant
Jump-oriented programming (JOP), in a firmware-only environment
using hardware performance counters (HPCs). Our approach discerns
the variations in the HPC micro-architectural events triggered by
ROP attacks and benign program execution.We implemented attack
scenarios using instrumented programs and exploits that perform
tasks similar to those in a known microprocessor benchmark pro-
grams. We recorded micro-architectural events to train a machine
learning binary classifier. The learned model identifies relevant
HPCs, which could serve as predictors of ROP/JOP execution even
in embedded firmware-only configurations, where features atypical
to conventional processors, like instruction memory and data mem-
ory, are available. Our evaluation results indicate a high precision,
recall, and accuracy of the classifier predictions.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; • Com-
puting methodologies→ Supervised learning; • Computer sys-
tems organization → Embedded and cyber-physical systems.

KEYWORDS
Microprocessor, Xtensa, ROP, JOP

ACM Reference Format:
AdebayoOmotosho, Gebrehiwet B.Welearegai, and ChristianHammer. 2022.
Detecting Return-Oriented Programming on Firmware-Only Embedded

SAC ’22, April 25–29, 2022, Virtual Event
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in The 37th
ACM/SIGAPP Symposium on Applied Computing (SAC ’22), April 25–29, 2022, Virtual
Event, https://doi.org/10.1145/3477314.3507108.

Devices Using Hardware Performance Counters. In The 37th ACM/SIGAPP
Symposium on Applied Computing (SAC ’22), April 25–29, 2022, Virtual Event.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3477314.3507108

1 INTRODUCTION
The Internet of Things (IoT) and embedded devices make use of
dedicated commercial off-the-shelf microprocessors and many of
these devices largely depend on firmware with a C-language code-
base and software development kit [2]. As expected, the battle of
wits between the engineers creating offensive and those inventing
defensive strategies is a never-ending one, and attackers are increas-
ingly and desperately bug hunting these devices using memory
corruption techniques such as buffer overflows and heap corrup-
tion, which are common in C applications, to find a way to evade
device security. Frequently, attackers technically use an approach
called Return-Oriented Programming (ROP) [10], one of the most
dangerous security exploit techniques to take advantage of soft-
ware weaknesses such as buffer overruns (e.g., in the C language),
overwriting the call stack, and gaining control over the program’s
control flow [32]. Omitting the need to inject malicious binary
code, the attackers meticulously select and execute multiple tiny
sequences of machine instructions (called gadgets) that are already
in memory [16, 28]. The attacker will construct a payload based on
the addresses of the selected gadgets and corrupt the stack such
that the return address of the topmost stack frame points to the first
gadget. Since each ROP gadget ends in a return instruction, gad-
gets can be chained together to build complex exploits by ensuring
that the next return address on the stack points to the succeeding
gadget. The major challenge to preventing ROP is that the gad-
get’s instructions are located in the executable memory area of
the original program and therefore ROP can circumvent mitigation
mechanisms such as data execution prevention and coarse-grained
address space layout randomization. A popular variant of ROP is
Jump Oriented Programming (JOP) that involves chaining gadgets
ending in a jump instruction and controlling the control flow via a
special gadget called the dispatcher gadget [5].

Most of the existing ROP countermeasure techniques focus on
ARM and x86 architectures e.g in [13, 14, 20, 24], processors for
embedded devices like the Xtensa core have only been investigated
rudimentary. Xtensa is a Tensilica processor platformmanufactured
by Cadence®, with highly customizable and configurable processors
that found wide application in HiFi audio and voice digital signal
processors. The Tensilica core family includes the Xtensa LX and
NX processors, and different versions of the core have been adopted
by vendors like Microsoft, AMD, and Espressif [30, 34]. Millions of

https://doi.org/10.1145/3477314.3507108
https://doi.org/10.1145/3477314.3507108

SAC ’22, April 25–29, 2022, Virtual Event Adebayo Omotosho, Gebrehiwet B. Welearegai, and Christian Hammer

IoT devices (including industrial IoT devices, e.g., eModGATE1 and
Moduino X Series2) and embedded systems using ESP 32 (LX6) and
its predecessor ESP 8266 (LX106)—which are economical and low-
power systems on a chip—are based on Xtensa core. Firmware-only
devices are characterized by deterministic interrupt-driven tasks
due to a lack of a scheduler (no OS). The firmware is typically stored
in rewritable, nonvolatile memory (flash), without fine-grain privi-
lege separation and execution isolation available in a conventional
OS [11]. Usually, they are supported by manufacturer header files,
and the absence of third parties drivers/firmware is believed to add
trust and control [19]. However, this restricted the use of custom
security, and being resource-constrained(e.g low memory/storage),
it is challenging to deploy a sophisticated solution against memory
corruption attacks on them.

Motivation: First, ROP attacks on Xtensa are not well docu-
mented, even though the chips are present in almost every WiFi-
based home automation device. However, pieces of evidence of
buffer overflow vulnerability exploitation leading to ROP exist. To
name a few, on Expressif’s ESP8266 (with Xtensa LX106 core), an at-
tack allowed bypassing the network credentials, making the device
perform unauthorized operations [29]. A similar memory exploita-
tion attack with the common vulnerabilities and exposure number
CVE-2019-12588 was used to crash Xtensa (LX106 and LX6) WiFi
devices, causing a denial of service to legitimate users [18].

Second, micro-controller devices are often resource-constrained
but there are very few studies on ROP on IoT platforms leveraging
no operating system but firmware executing directly from flash
memory. Likewise, almost all of the previous work on ROP detec-
tion using HPC considered devices with a full-blown configuration,
where it is possible to inspect the usual suspects in terms of hard-
ware events, like cache-level events or return misses [12, 26] that
are generally not available or inapplicable on embedded platforms.
Also, a most recent low-level detection study on a micro-controller
proposed the use of control flow integrity but did not provide imple-
mentation or results to support the feasibility of the approach [24].
In contrast, we investigate an alternative cost-effective approach
using HPC events on a low configuration Xtensa processor.

These shortcomings, together with the danger that IoT devices
may not receive security updates as frequently and lastingly as
personal computers or mobile devices, serve as the basis for this
research. This paper combines ML predictive capability using HPC,
which generally provide architectural characteristics of the un-
derlying hardware. Although HPCs were originally designed for
debugging during development, they have proven useful for per-
formance analysis and validation [33].

The objectives of this study are to 1) briefly explore the Xten-
sa architecture and define valid gadgets, 2) demonstrate how to
implement ROP and JOP attacks on Xtensa, 3) implement these
attacks on the Xtensa LX7 architecture running only firmware and
to uncover the HPC events indicative of an attack, 4) train a ML
model to automatically detect such behavior using HPC events,
and 5) evaluate the model’s performance on benchmark programs
running on Xtensa.

1https://iot-industrial-devices.com/category/esp32/
2https://moduino.techbase.eu/

Table 1: Registers in Call0 and Windowed Register ABI
Registers Call0 ABI Windowed Register ABI
a0 Return address Return address
a1 0 or (sp) Stack Pointer (callee-saved) Stack pointer
a2 - a7 Function Arguments Incoming arguments
a7 Callee’s stack-frame pointer (optional)
a12 - a15 Callee-saved
a15 Stack-Frame Pointer (optional)

1 main:

2 60000bcc: addi a1, a1, -16

3 60000bcf: s32i.n a0, a1, 0

4 60000bd1: l32r a2, 60000904 (600007b8 <

_clib_rodata_end>)

5 60000bd4: call0 60000c0c <printf>

6 60000bd7: movi.n a2, 0

7 60000bd9: l32i.n a0, a1, 0

8 60000bdb: addi a1, a1, 16

9 60000bde: ret.n

Listing 1: Call0 ABI assembly

The main contributions of this paper are: First, we show how
ROP and JOP attacks could be orchestrated on Xtensa processors.
Second, we present HPC events that distinguish ROP and non-
ROP program executions on Xtensa. Third, in contrast to existing
studies and to the best of our knowledge, this paper presents the
first practical work on detecting ROP and JOP in a firmware-only
embedded system using HPC.

Threat model: Our focus is on detecting memory corruption
attacks through buffer overflows in the firmware or application
that result in a ROP/JOP execution on bare-metal Xtensa. We as-
sume that the device has limited hardware functionality but can
be protected using a machine-learning classifier based on the HPC
events. The attacker is assumed to be able to access the device either
physically (through I/O) or through a network connection. Since
we are interested in the attack that takes place when executing
firmware from flash memory, the attacker uses a payload to execute
gadget instructions that are at the static address range. In practice,
gadgets in the Xtensa Boot ROM are mapped to the static range,
irrespective of the platform being used. Our approach feeds the cap-
tured HPC events from a potentially manipulated execution to the
machine-learned classifier to predict ROP/JOP behavior that may
arise when an attacker exploits a vulnerable firmware function.

2 XTENSA ARCHITECTURE AND REGISTERS
The Xtensa processor architecture is a Harvard architecture with
instruction and data memory separate that provide fast simultane-
ous access to both memories. The Xtensa processor architecture
targets embedded system-on-a-chip applications, and the Instruc-
tion Set Architecture (ISA) specifies a 32-bit RISC-like architecture
expressly designed for embedded applications. The Xtensa core ISA
is implemented as 24-bit instructions, providing about a 25% reduc-
tion in code size compared with 32-bit ISAs [8]. Instructions can
be represented as 16 or 24 bits, which results in high code density
and also means that any byte is a valid jump target. The instruc-
tions provide access to the entire processor hardware and support
special functions, such as a single-instruction compare and branch,
which reduces the number of instructions required to implement

https://iot-industrial-devices.com/category/esp32/
https://moduino.techbase.eu/

Detecting Return-Oriented Programming on Firmware-Only Embedded Devices Using Hardware Performance Counters SAC ’22, April 25–29, 2022, Virtual Event

various applications. Xtensa has three distinguishing features and
the first is extensibility. This addition of architectural enhancements
allows easy and efficient extension of the processor architecture
with application-specific instructions. The second is configurability,
which supports creating custom processor configurations that make
it easy to specify whether (or how much) pre-designed functional-
ity is required for a particular product. The third is retargetability,
which allows mapping of the architecture onto hardware to meet
the different speed, area, and power targets in different processes.
These features make Xtensa unique and in demand for embedded
systems design. Xtensa supports 16 address registers a0 to a15,
where the functionality of these registers differs slightly depending
on the application binary interface (ABI) in use. An ABI is a set of
rules describing what happens when a function is being invoked,
how its parameters are processed, and defining the stack layout
for the function call. Xtensa supports two ABIs: Call0 ABI and the
Windowed Register ABI, for which Table 1 presents the registers
and their functions. The Call0 ABI works with all Xtensa proces-
sors, and it has a better context switch time than the Windowed
Register ABI. ROP and JOP attack orchestration on both ABIs are
similar [21] despite the differences in register usage.

In this paper, our principal target is the Call0 ABI processor
configuration, which has been hit by some memory corruption
attacks in recent years. We, therefore, demonstrates ROP and JOP
on this ABI configuration to provide a foundational understanding
of Xtensa architectural behavior. The Xtensa architecture also has
a 32-bit program counter, which – similar to x86 and in contrast to
ARM – cannot be directly accessed. Generally, Xtensa’s instruction
format follows the pattern:

mnemonic <dest_reg >, <operand_1>,<operand_2>
The destination register dest_reg stores the result of the operation
specified by the opcodemnemonic on the first operand_1 and second
operand_2 operand. Xtensa’s instruction set is flexible in that not
all of the instructions set require all of the fields in this template.
More specific details about the Xtensa LX hardware instruction set
architecture can be found in [9].

2.1 Xtensa ABI Assembly
In this section, we briefly present the Call0 ABI assembly. To this
end, we leverage the configurability feature of the Xtensa processor.
We created, built, and installed a configuration for CALL0 ABI
using Xtensa Xplorer version 8.0.10.3000 running on Windows 10.
Xtensa Xplorer’s Integrated Development Environment is based on
Eclipse and comes with a pre-installed Software Development Kit
for processor configurations and programming. We then compiled
a simple helloworld.c program to illustrate the call0ABI assembly.
The corresponding assembly is shown in Listing 1.

It is worth noting that some instructions in the Call0ABI use
the .n suffix, which is the Xtensa processors’ optional code density
feature that provides 16-bit versions of some commonly used in-
structions. Technically, the compiler and the assembler use narrow
instructions where possible to achieve better code density [9]. In
line 1, the stack is decremented by 16 bytes (space allocation),
and in line 2, the return address is saved to the top of the stack
*(a1+0) . At the end of the assembly, the reverse is done before
ret.n, i.e. the return address is restored into a0 in line 7, and the

1 6000a383: 1148 l32i.n a12, a1, 4

2 6000a385: 4149 l32i.n a13, a1, 8

3 6000a387: 4128 l32i.n a14, a1, 12

4 6000a389: 3108 l32i.n a0, a1, 0

5 6000a38b: 30c112 addi a1, a1, 16

6 6000a38e: f00d ret.n

Listing 2: Return gadget

1 60000210: 0338 l32i.n a3, a3, 0

2 60000212: 7149 s32i.n a4, a1, 28

3 60000214: 0003a0 jx a3

Listing 3: Jump gadget

stack is incremented by 16 bytes (space deallocation) in line 8.
These two steps are similar in almost all Xtensa assemblies and will
serve as the basis for chaining gadgets.

The Xtensa assembly language opcodes used throughout this
paper will be limited to a small subset of the entire Xtensa instruc-
tion set. Our interest covers mainly the return (ret), jump (jx), call
(callx), load (l32i and l32r), store (s32i), move (mov), add (add),
and subtract instructions (sub).

3 XTENSA GADGETS
ROP and JOP gadgets in Xtensa usually end with a ret and jx in-
structions respectively. Although it is also possible to use codes end-
ing with an indirect callx and branch instructions to an address
stored in a register. For gadgets discovery, we extended the xrop
tool3 to extract and return valid Xtensa gadgets ending with the pre-
ferred instruction types. From our programs we extract and design
Turing complete gadgets that perform data movement, arithmetic
operations, branching, and function calls. The programs are com-
piled with Xtensa Xplorer, which outputs executable and linkable
format binaries supported by the Xtensa LX7 board. Assuming the
stack has been overwritten and preloaded with attacker-controlled
addresses and values, it is, e.g., possible to use the return gadget
in Listing 2 to load arbitrary values from the stack at a1+0, a1+8
and a1+12 into the registers a12, a13, and a14 respectively before
returning to the designated address.

Xtensa gadgets support very limited direct operations on mem-
ory addresses. Therefore, gadgets’ addresses must either be loaded
into a register from another register or the stack. One of the most
common instructions in Xtensa binaries allowing direct memory
operands is l32r, which can directly load the address of a string
literal from memory. Thus, gadgets used for exploits are usually
longer and with more side effects on registers, when compared to
ARM. For instance, an equivalent of the gadgets in Listing 2 in ARM
could be as short as:

0x00010578 : pop(r3, r4, r5, pc)
An example of a jump gadget, which loads the content of the

address stored in a3+0 into a3 and jumps to it is given in Listing 3.
Other types of instructions that can be used as gadgets are the

branch gadgets and the call gadgets, an example of the latter, which
performs an indirect call operation to a subroutine address in a

3https://github.com/jsandin/xrop

https://github.com/jsandin/xrop

SAC ’22, April 25–29, 2022, Virtual Event Adebayo Omotosho, Gebrehiwet B. Welearegai, and Christian Hammer

1 60000e01: 4108 l32i.n a0, a1, 16

2 60000e03: 0e4d mov.n a4, a14

3 60000e05: 0000c0 callx0 a0

Listing 4: Call gadget

gadget3:
60000c19: s32i.n a2, a1, 16
60000c1b: l32i.n a2, a1, 16
60000c1d: s32i.n a2, a1, 0
60000c1f: l32i.n a2, a1, 0
60000c21: l32i.n a0, a1, 4
60000c23: addi a1, a1, 32
60000c26: ret.n

gadget2:
60000c2d: s32i.n a2, a1, 16
60000c2f: s32i.n a3, a1, 20
60000c31: l32i.n a3, a1, 20
60000c33: l32i.n a2, a1, 16
60000c35: add.n a2, a2, a3
60000c37: l32i.n a0, a1, 0
60000c39: addi a1, a1, 32
60000c3c: ret.n

gadget1:
60000c45: l32r a2, 60000944 (600007f8
<_clib_rodata_end>)
60000c48: call0 60000c80 <printf>
60000c4b: movi.n a2, 0
60000c4d: l32i.n a0, a1, 0
60000c4f: addi a1, a1, 16
60000c52: ret.n

Buffer[15]

Buffer[0]

@address_of_gadget1

@address_of_gadget2

@address_of_gadget3

…

1

3

5

4

6

2
C

od
e

se
ct

io
n

St
ac

k
gr

ow
s

do
w

nw
ar

ds

High address

Low address

Figure 1: Xtensa ROP attack process.

register is shown in Listing 4. The l32i instruction loads an address
from the stack at a1+16 into a0 and then jumps via a procedure
call to that address.

3.1 Xtensa ROP Attack Process
Usually, more than one gadget is required to perform a complex ex-
ploit, the general process of chaining ROP gadgets is shown in Fig. 1,
which represents a stack that grows downwards (the buffer grows
in the opposite direction) from a higher memory address to a lower
memory address. The figure has two sections – the code section
(memory region that is non-writable but executable), and the stack
section (memory region that is writable but not executable). The
code section contains the executable gadgets while the stack sec-
tion stores the addresses of these gadgets (plus potentially values to
be read into registers by gadgets). Since we are exploiting a buffer
overflow vulnerability to hijack the program’s control flow via ROP,
the gadgets’ addresses must be placed behind the buffer starting

at the current stack frame’s return address. Let us assume that we
have a function that is not performing a bounds check and that the
function is using an unsafe C function like gets or strcpy to initialize
a 16 bytes buffer variable. We can exploit this function by feeding
it a payload that overflows the buffer and writes to the stack the
addresses of gadget1 (@address_of_gadget1), gadget2 (@address_
of_gadget2), and gadget3 (@address_of_gadget3) respectively. In
this example, these addresses will be 20 bytes, 24 bytes, and 28 bytes,
respectively, from the beginning of the buffer. More importantly,
the address of the first gadget (@address_of_gadget1) overwrites
the return address in a0 and the stack pointer a1 becomes the gad-
gets counter i.e the number of times a1 is incremented is equivalent
to the number of gadgets executed. This whole process is depicted
in Fig. 1. Each gadget executes, increments the stack pointer, and
returns to the address on the top of the stack until all the gadgets
in the ROP payload have been executed. The order of execution of
the instructions after the control flow is hijacked is labeled from
1 to 6. In the end, the execution of these gadgets prints a string,
adds the contents of two registers, and initializes a register with
a value from another register. If these gadgets were functions, it
would be important not to use the starting address at the beginning
of a function because this would result in infinitely returning to the
same function – we do not want the ret to chain a gadget to itself
repeatedly but to other meaningful gadgets. Essentially in Xten-
sa, the instructions occupying the first 5 bytes of every function
reserve space for the function on the stack. This characteristic is
the foundation of gadget chaining and simulating ROP behavior in
Xtensa. Therefore, we always skip these instructions and addresses
when crafting a payload for a ROP attack.

Besides, as shown in Fig. 1, the actual gadgets normally reside
in non-consecutive locations (as indicated by the dotted lines be-
tween them) in the code section of the memory, while the gadget’s
addresses could be in a consecutive location on the stack. Some
garbage addresses may be included as part of the actual gadget
addresses on the stack which solely serve the purpose of address
padding so that each gadget address is positioned at the top of the
stack. Likewise, within the executable gadgets, some instructions
exist as side effects, meaning they are not part of the intended
exploit but they can also alter register states. Examples of such
instructions were in the previous gadgets presented e.g the line 2
of both Listing 3 and Listing 4 were unintended.

3.2 Xtensa JOP Attack Process
JOP uses gadgets ending with an indirect jump to an address in a
register as demonstrated in Listing 3. However, the steps involved
differ, as jump gadgets cannot be redirected to the stack with a
return instruction, so to logically connect gadgets, we adopted the
JOP model from [5]. That approach recommends that a dispatcher
gadget is needed to link all jump gadgets, i.e., a trampoline gadget
that relays from one jump gadget (also called functional gadget)
to the next. In that scheme, the dispatcher gadget may maintain a
dispatch table, which stores the JOP gadget addresses that should
be executed sequentially, and each gadget must always point back
to the dispatcher after execution. Fig. 2 shows how these iterative
steps can be implemented for JOP in Xtensa, and the label 1 to
8 represents the order of execution of instructions once JOP is

Detecting Return-Oriented Programming on Firmware-Only Embedded Devices Using Hardware Performance Counters SAC ’22, April 25–29, 2022, Virtual Event

dispatcher_gadget

jx_gadget1

jx_gadget2

@address_of_dispatcher_gadget

jx_gadget3

Buffer[15]

Buffer[0]

@address_of_jx_gadget1

@address_of_jx_gadget2

@address_of_jx_gadget3

…

1

4

5

2

6

9

10
St

ac
k

gr
ow

s
do

w
nw

ar
ds

C
od

e
se

ct
io

n

High address

Low address

3

7

11

8

Figure 2: Xtensa JOP attack process.

1 60001525: addi.n a15, a15, 4

2 60001527: add.n a1, a1, a15

3 60001529: l32i.n a3, a1, 0

4 6000152b: sub a1, a1, a15

5 6000152e: jx a3

Listing 5: A dispatcher gadget

1 60001555: l32r a2, 600010ac

2 60001558: call0 60001688 <printf>

3 6000155b: jx a14

Listing 6: A functional gadget

initiated. Similar to ROP, a vulnerable function not performing
bounds checking can be used to launch the sequence, in that the
return address of the vulnerable function is overwritten to point to
the first jump gadget or the dispatcher, depending on the intent of
the attack. An example of a dispatcher gadget in Xtensa is shown
in Listing 5, this dispatcher gadget increases the value of a15 – a
regular register leveraged as an instruction pointer – by a constant
(4), then points the stack pointer (a1) to the next address, loads
the new address into a3, and jumps to this next functional gadget
every time it is executed. This means that the dispatcher gadget can
compute the addresses and jump to each of the functional gadgets
jx_gadget1, jx_gadget2, . . . , respectively.

An example of a gadget that could serve as a functional gadget
is shown in Listing 6. The functional gadget loads the address of
a string literal into a2, prints the string, and jumps back to the
dispatcher gadget at a14. Unlike ROP, the addresses of JOP gadgets

(other than the first) do not have to be placed on the stack, as they
can be computed by the dispatcher gadget, in which case there is
no need to retrieve the addresses of the executed instructions from
the stack.

4 HARDWARE PERFORMANCE COUNTERS
Many modern microprocessors are equipped with special-purpose
registers known as hardware performance counters (HPCs). These
registers serve as additional logic added to the CPU to track low-
level events within the processor accurately and with minimal
overhead when compared to software profilers. Their original pur-
pose was for debugging purposes, but they can be leveraged to
serve other purposes, such as detecting program modification at
a low cost [22, 33]. They have also been used extensively in non-
embedded processors for malware detection with high detection
accuracy [1, 23, 35]

HPCs are not standardized and they are therefore manufacturer
dependent; on a different microprocessor, even different models of
the same processor family, HPCs may have different names, num-
bers, and functionality. Even though modern processors support a
large number of events, only a fraction of these events can be mon-
itored at any time. The number of events that can be monitored
simultaneously is determined by the number of available HPCs
which is low compared to the overall number of possible events.
For example, ARM Cortex-A5 has just 2 HPCs and ARM Cortex-A8
only 4, meaning they can simultaneously monitor only 2 and 4
events, respectively. Additionally, some kind of kernel, operating
system or API level support will be required to setup and access
these counters. There are several libraries for manipulating HPCs
on Linux based embedded/IoT devices e.g perf 4, PerfSuite 5, and
PAPI 6. On Xtensa the performance monitoring library allows a
total of 8 events to be monitored simultaneously and they can be
accessed using the xt_perfmon API. Xtensa LX7 supports 30 main
events with a total of 125 masks or sub-events, which represent
the microarchitectural state triggered by the running program. A
counter will, however, increment only once (by one) if more than
one condition corresponding to a set mask bit occurs. The available
HPC events on Xtensa are shown in Table 2, and it should be noted
that the labels and arrangement of the HPCs are arbitrary. Also,
the two prominent sources of noise generally associated with HPC
readings are related to the program design – noise caused by other
internal or external instructions and programs – and the HPC access
– noise caused by the reading the HPCs. We aim at reducing these
noises as described in Section 5.0.2.

5 EVALUATION
In this section, we discuss research questions of interest, the evalu-
ation methodology, the experimental set-up, and the results of the
evaluation of the ML classifier.

5.0.1 Research Questions: We present the research question as
follows:

RQ1: What are the top HPCs in terms of indicating ROP and
JOP behavior on Xtensa? We do not intend to use all HPC events
4https://perf.wiki.kernel.org/index.php/Tutorial
5http://perfsuite.sourceforge.net/
6https://icl.utk.edu/papi/

https://perf.wiki.kernel.org/index.php/Tutorial
http://perfsuite.sourceforge.net/
https://icl.utk.edu/papi/

SAC ’22, April 25–29, 2022, Virtual Event Adebayo Omotosho, Gebrehiwet B. Welearegai, and Christian Hammer

Table 2: List of available HPCs on Xtensa
Label HPC: XTPERF_CNT_. . . Interpretation
F1 COMMITTED_INSN Instructions committed
F2 BRANCH_PENALTY Branch penalty cycles
F3 MULTIPLE_LS Multiple Load or Store
F4 INSN_LENGTH Instruction length counters
F5 CYCLES Count cycles
F6 PREFETCH Prefetch events
F7 INSN Successfully completed instructions
F8 PIPELINE_INTERLOCKS Pipeline interlocks cycles
F9 D_ACCESS_U1 Data memory accesses (load, store, S32C1I, etc; load-store unit 1)
F10 D_ACCESS_U2 Data memory accesses (load, store, S32C1I, etc; load-store unit 2)
F11 D_ACCESS_U3 Data memory accesses (load, store, S32C1I, etc; load-store unit 3)
F12 D_STORE_U1 Data memory store instruction (load-store unit 1)
F13 D_STORE_U2 Data memory store instruction (load-store unit 2)
F14 D_STORE_U3 Data memory store instruction (load-store unit 3)
F15 D_LOAD_U1 Data memory load instruction (load-store unit 1)
F16 D_LOAD_U2 Data memory load instruction (load-store unit 2)
F17 ICACHE_MISSES ICache misses penalty in cycles
F18 DCACHE_MISSES DCache misses penalty in cycles
F19 OUTBOUND_PIF Outbound PIF transactions
F20 OVERFLOW Overflow of counter n-1 (assuming this is counter n)
F21 D_STALL Data-related GlobalStall cycles
F22 I_STALL Instruction-related and other GlobalStall cycles
F23 BUBBLES Hold and other bubble cycles
F24 I_TLB Instruction TLB Accesses (per instruction retiring)
F25 EXR Exceptions and pipeline replays
F26 IDMA iDMA counters
F27 D_TLB Data TLB accesses
F28 I_MEM Instruction memory accesses (per instruction retiring)
F29 INBOUND_PIF Inbound PIF transactions
F30 D_LOAD_U3 Data memory load instruction (load-store unit 3)

even if we could, but only a minimal number that results in a
good prediction. Using fewer HPC events means requiring fewer
resources for detection.

RQ2: At what precision and recall accuracy can a classifier
predict unusual behavior caused by ROP/JOP within a running
firmware code using the HPC events? In reality, the HPC data for
positive attacks scenarios is just a small fraction of the actual appli-
cation data. In addition, we prefer detecting the malicious behavior
as soon as possible (before the end of the program’s execution),
therefore, a classifier that can predict malicious behavior with a
high true positive rate from the HPC events is desired.

5.0.2 Evaluation Methodology: Answering the first research
question requires recording the HPCs at the right place and cor-
rectly, though this step is important only for model learning and
would not matter during testing on the evaluation set. Usually, not
all of the instructions in a program under attack are malicious but
only a fraction, other instructions that are not affected by the attack
are regarded as noise. To address this question, we performed exper-
iments using instrumented code in which the approximate position
of the start of the attack marks the beginning of the ROP/JOP, and
the code preceding and succeeding the attack are marked as benign.
The benign section exhibits the program’s actual behavior and a
vulnerable function might be normal or malicious depending on
whether or not it is exploited. Targetting the HPC readings close to
where the ROP execution is initiated allows us to have less program
design noise, and fine-grained and accurate HPC measurement.
Each interrupt-driven program would usually run multiple times
as both normal and malicious, and the ML classification method
we use assigns binary labels to the HPCs associated with the dif-
ferent executions. Also, we discovered that constant noise values
were automatically added to our readings by accessing the HPC,
these noise values were accounted for in both the benign and ROP
execution. Our instrumented programs contain different numbers
of push-pop for ROP exploits and jump for JOP exploits, precisely 6.

To answer the second research question, the Xtensa ROP-JOP
classifier is evaluated using the following standard ML classification
metrics – precision and recall. The metrics are defined as follows,
where TP, FP, TN, FN refer to true positive, false positive, true
negative, and false negative respectively.

Precision: This measures the accuracy of the positive predictions
and for this, we want to know how many of the classified charac-
teristics, recorded as HPC belong to the positive class. This metric
is computed as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) (1)

Recall: This is also known as true positive rate, it is the ratio
of positive instances that are correctly predicted by the classifier.
In our case, we want to detect as many as possible samples in the
positive classes with a reasonable precision score. The recall is
computed as:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) (2)

5.1 Experimental Setup
The experimental setup consists of an Xtensa LX7 processor con-
figuration designed with Xtensa Xplorer version 8.0.10.3000. This
configuration runs on a Xilinx Zynq XCZ7020-1CLG484C7 System
on Chip (SoC) Module attached to a TE0703-068 carrier board. A
Tincan Flyswatter29 debugger, which provides an external Joint
Test Action Group (JTAG) standard interface is connected to the
carrier board for direct debugging of the programs. An SoC mod-
ule is necessary because we experimented with the latest Xtensa
processor generation, which was not available on the market at the
time of carrying out this research. The embedded hardware config-
uration used is also minimal as not all of the features available in
high-end IoT systems were available. The processor configuration
summary is online at GitHub10.

5.1.1 Programs and input: We train our model on breadth-first
search (BFS) algorithm-based programs, in which we instrumented
six versions of attack codes using varying ROP chains. This deci-
sion was based on observations from our several experiments that
merging and training with data from different programs introduces
unwanted statistical bias, which negatively affects model conver-
gence. Therefore, in these six programs P1, . . . , P6, with a ROP chain
length of 1, . . . , 6 are exploited, respectively. The programs were
written in the C language, compiled using the Xtensa C compiler xt-
xcc, and they run directly on the Xtensa processor. xt-xcc uses the
GNU preprocessor, assembler, and linker but in addition, it provides
a superior and smaller compiled code [7]. Malicious modification is
made to the programs by the addition of an extra function call that
simulates attacks such as buffer overflow and return-to-libc [28].
To flout the LIFO mechanism of the stack so that the program’s
control flow is hijacked, we corrupted the stack and modeled the
payload to not just include gadget addresses to divert the control
flow but also potential function arguments. Our design is mainly

7https://wiki.trenz-electronic.de/display/PD/TE0720+Resources
8https://wiki.trenz-electronic.de/display/PD/TE0703+Resources
9https://www.tincantools.com/product/flyswatter2
10https://github.com/dbayoxy/xtensa_config/blob/master/config.html

https://wiki.trenz-electronic.de/display/PD/TE0720+Resources
https://wiki.trenz-electronic.de/display/PD/TE0703+Resources
https://www.tincantools.com/product/flyswatter2
https://github.com/dbayoxy/xtensa_config/blob/master/config.html

Detecting Return-Oriented Programming on Firmware-Only Embedded Devices Using Hardware Performance Counters SAC ’22, April 25–29, 2022, Virtual Event

P1 P2 P3 P4 P5 P6
training programs

0.7862

0.7864

0.7866

0.7868

0.7870

0.7872

0.7874

0.7876

C
P

U
 c

yc
le

s
on

 X
te

ns
a

Figure 3: Training programs running time on Xtensa

targeted at buffer overflow attacks to exploit memory corruption
vulnerabilities because it is the most commonly used method, even
in IoT devices [3, 17, 27]. The aftermath of the attacks then launches
a ROP/JOP sequence that results in the execution of codes and func-
tions in the programs that were originally never invoked. In Fig. 3,
the execution time overhead in the training programs appears to
increase when there are more frequent indirect calls to functions
consisting of a few instructions. This instrumentation impact is
similar to what was obtained for the ARM embedded benchmark
used in [24].

To benchmark our model, we use a blend of 10 programs listed
in Table 3, each running with a different set of inputs and payloads.
Similar programs can be found in the CTuning suite11 andMiBench-
mark12.The total size of the 10 programs is ≈ 2.74 MB. In Table 3,
ET1, ET2, Ovd, #Rop, and O notation represents the original execu-
tion time, execution time with HPC measurement, instrumentation
overhead, the length of the rop/jop chain, and the time complexity
of the programs, respectively. The maximum and minimum over-
head recorded of 1.34% and 0.74%, respectively, look reasonable.
We do not directly compare these programs’ performance because
they differ in input and runtime complexities, our main goal is to
see how the ML model will perform against random programs like
these.

5.1.2 Data and model selection: We recorded the events that
were triggered duringmultiple executions of the exploited programs
for ROP and JOP attacks, respectively. TheHPC datawas recorded at
5 frequencies (≈ 10 * 212 to 50 * 212), which allows us to sample data
from a wide corpus of cycles, and thus provides a sufficient dataset
that best represents the behavior of the programs under attack. On
Xtensa, the frequency parameter is expected to be a multiple of 212
to prevent round-off errors. We started at ≈ 10 * 212 because this
frequency has been used to validate the integrity of program control
flow via HPC with some promising results [22]. For any given
program, the higher the frequency chosen, the lower the noise effect,
as well as the number of HPC sample size recorded. Our data shape
is (6061, 30), containing 6061 rows of event counts and 30 features.
The support vector ML (SVM) algorithm is preferred because it

11http://ctuning.org/
12https://vhosts.eecs.umich.edu/mibench/

Table 3: Benchmark programs
Program ET1 (𝜇𝑠) ET22(𝜇𝑠) Ovd(%) #Rop O notation
DFS 4421664 4481007 1.34 2 O(𝑉 + 𝐸)
Kruskal 2273937 2297769 1.05 3 O(𝐸 log𝐸)
RabinKarp 642475 647202 0.74 4 O(𝑚𝑛)
Huffman 2343248 2368711 1.09 5 O(𝑛 log𝑛)
Mergesort 933301 941449 0.87 6 O(𝑛 log𝑛)
LCS 677565 688501 1.61 1 O(𝑚𝑛)
Prim 1577938 1596889 1.20 2 O(𝐸 log𝑉)
BinaryS 507317 511553 0.83 4 O(log𝑛)
FloydWarshall 1748544 1765759 0.93 5 O(𝑛3)
BellmanFord 1448642 1460045 0.79 6 O(𝑉𝐸)

excels for data in high dimension spaces and it is relatively memory
efficient. SVM is an excellent binary classifier if data is balanced
but because the positive cases are less than the negative cases,
with about a factor of 7, we use a weighted SVM. The weighted
SVM modifes the SVM penalty parameter 𝐶𝑖 to fit the model for
each instance i, so that the weight 𝑤𝑖 is proportional to the class
distribution. We use 10-fold cross-validation, i.e., 10% of the data
is used for testing, which is a standard procedure to ensure the
validity of the learned classifier. The model performance measured
by the mean of the ROCAUC score is 0.94, which is well above 0.5,
this means the classifier has a predictive ability.

We conducted the ML experiments on a MacBook Pro with a 2.9
GHz Intel Core i7 processor and 16GB RAM.

5.2 Discussion
In this section, we discuss our findings and their contribution to
the research questions.

Important HPC events: Of the 30 main HPC events in Table 2,
feature engineering found that the readings for events F1, F3, F4,
and F7 are the same values irrespective of the number of times a
program executes either as benign or attacked code. An explanation
for the similarities in the HPC values could be that the low-level
events (masks) in these main events being accounted for occurred
at almost the same count rate. Therefore, F1, F3, F4, and F7 serve as
the pivot for the permutation with the remaining events, together
with all the sub-events, to determine which events are dependent on
them. Notwithstanding, the HPC values recorded are reproducible
for any given program, the reasons for the deterministic nature of
some of the counted and recorded events could be the result of (a)
running the programs on a bare board with no operating system
or kernel and (b) there are no running background services, which
reduces the effect of interference in the readings.

The distribution of the 8 candidate HPC events (used in our final
SVM model) in the benign and attack code is represented in Fig. 4
by violin plots, which are combinations of box-and-whisker plots
and probability density functions (PDF). The violin plot shows the
density and distribution of the readings for each of the 8 selected
HPC events. -1 and 1 represent HPC events in the benign and attack
executions respectively. Fig. 4a, Fig. 4b, Fig. 4c, Fig. 4d, Fig. 4e, Fig. 4f,
Fig. 4g and Fig. 4h are the distributions for F1, F2, F5, F8, F12, F15,
F25 and F27 respectively. While at a glance some features such as
F2, F12, F15, and F27 might look close for both the benign and ROP
runs, dropping them degrades the model’s performance (the overall
recall falls from 70% to 58%.) However, it may of course be possible,
in the future, to use fewer than 8 HPC events, but our interest at the

http://ctuning.org/
https://vhosts.eecs.umich.edu/mibench/

SAC ’22, April 25–29, 2022, Virtual Event Adebayo Omotosho, Gebrehiwet B. Welearegai, and Christian Hammer

moment is to identify the best events that Xtensa’s 8 performance
counter registers could monitor simultaneously, and which could
give a strong indication of ROP/JOP execution on an embedded
system running a firmware. In the sequel we give an overview of
the selected HPC events:

F1 in Xtensa is equivalent to the number of retired instructions
and it is the number of instructions reaching the W stage without
being killed at a given sampling interval. At theW stage, the effect
of an instruction on the architectural state is irreversible. The wider
PDF region of the ROP infected run, which is at the same time above
the third quartile of the benign run, is abnormal. The median of the
ROP run also lies above the boxplot of the benign run, meaning
that the two HPC data belong to a different group.The ROP run
HPC values occur frequently in one PDF region and this is as a
result of the execution of small gadgets performing little tasks and
leading to slightly more/faster-committed instructions per interval.

F2 relates to the number of branch penalty instruction events
in a given sampling interval. The pipeline will be stalled if more
branch instructions are executed than they are taken. All of the
branch instructions in the benign programs were correctly executed
while the malicious program executes only a few selected branch
instructions to accomplish its malicious intention. The boxplots
look like they are slightly in the same range and symmetrical but
the PDF region of the ROP-affected run shows the HPC values occur
more frequently and this can be attributed to the more mispredicted
branches.

F5 distribution appears to cover two and three PDF regions in
the benign and ROP-affected run respectively. For the ROP-affected
run, the median is almost identical to the third quartile which is
why they overlap, this is likely because of a large proportion of low
values of F5 events. The ROP-run skipped some instructions and
this could be responsible for the very low variance in this HPC.

F8 relates to the number of stalls in the pipeline in a sampling
interval. In Xtensa, the number of interlocks refers to the number
of R-stage holds arising from register dependencies and interlock-
specific instructions. Register dependencies are low because gadgets
skip several normal instructions. The median of the ROP-affected
run is also unsurprisingly outside the box of the benign run and
the boxes’ variance shows that this pipeline delay varies more in
the benign run than in the ROP-affected run.

F12 records the number of stored instructions events (such as
store misses and cached store) from the data memory in a sampling
interval. The ROP run has significantly more variance and inverted
PDF and this is likely caused by a reference to data not in the data
memory.

F15 records the number of the load instruction events (such as
load misses and cache load) from the data memory in a sampling
interval. The data memory, unlike the instruction memory, is both
readable and writeable. The normal run distribution have slightly
more variance than the ROP-affected run, however, the PDF is an
indication that the ROP-run performs data manipulation operations
and load data operation more frequently.

F25 can record, for example, the number of the exceptions, inter-
rupts, and replays resulting from TBL misses, load and store errors,
illegal instructions, etc. It is not surprising that despite the median
being the same for the two boxes, the ROP-affected run is severely
skewed and the unusual PDF width shows that the majority of the

-1 1

3.852

3.854

3.856

3.858

3.860

3.862

3.864

(a) F1
-1 1

3.320

3.325

3.330

3.335

3.340

3.345

3.350

3.355

(b) F2

-1 1

0.0003

0.0004

0.0005

0.0006

0.0007
+7.99

(c) F5
-1 1

2.35

2.40

2.45

2.50

2.55

2.60

2.65

2.70

(d) F8

-1 1

2.94

2.96

2.98

3.00

3.02

(e) F12
-1 1

3.22

3.24

3.26

3.28

3.30

(f) F15

-1 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(g) F25
-1 1

3.42

3.44

3.46

3.48

(h) F27
Figure 4: Box-and-whisker plots of the event counts for the benign
(-1) and ROP executions (1)

F25 HPC readings are in one region. This implies that the error
handling by this HPC occurs more frequently in the ROP-affected
run.

F27 records the number of lookups to the data translation looka-
side buffer (TLB). Unlike the von-Neumann architecture, the Har-
vard architecture can have separate memory access hardware -
instruction TLB and data TLB. Data TLB hit helps to reduce the
data access time from the data memory. This HPC for the two runs
appears to be in the same group but the PDF is irregular with a
high-frequency region for the ROP run, this is because each data
TLB miss leads to a computationally expensive page table lookup
for the physical addresses of data.

Model performancemetrics: Our classifier is trained to predict
if illegal instructions using returns and jumps have been exploited
and this is put to test against some benchmark programs. The model
is fed with HPC data of these programs running on the bare-metal
Xtensa (on the FPGA).

Fig. 5a and Fig. 5b show the individual precision and recall
of the classifier. In Fig. 5a the precision peaked for floydwarshall,
and bellmanford where a higher number of illegal instructions was
executed. While it is intuitive that the metrics improve with the
increase in returns/jumps, we found this not to be always true if
the exploited programs are different. That is why BinaryS with
4 rop/jop violations has lower precision (0.85) than Prim (1.00) and
LCS (0.94) with 1 and 2 violations, respectively. We verified this and
the metrics actually increase with more returns/jumps exploitation

Detecting Return-Oriented Programming on Firmware-Only Embedded Devices Using Hardware Performance Counters SAC ’22, April 25–29, 2022, Virtual Event

DFS Kruskal RabinKarp Huffman Mergesort LCS Prim BinarySearch FloydWarshall BellmanFord
0.0

0.2

0.4

0.6

0.8

1.0

(a) Precision

DFS Kruskal RabinKarp Huffman Mergesort LCS Prim BinarySearch FloydWarshall BellmanFord
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Recall
Figure 5: Evaluation on benchmark programs

in the same program. DFS has the lowest precision of 0.32, however,
this is not a problem as long as the recall is high, this is based
on the premise that in reality, the positive case is rare, and hence
the percentage of the positive instances that are correctly detected
should be optimized. The recall for DFS is almost twice as high, 0.60.
The top three recall values are for huffman (0.84), prim (0.83) and
bellmanford (0.78), these are very interesting because it means that
almost all of the ROP instances are correctly detected. However,
BinaryS has a low recall of about 0.30. We examined this and it
appears the BinaryS, which is already fast with O(𝑛 log𝑛) running
time, also ran on a small input array of length 12. From Table 3 it
appears that, even with the instrumentation overhead, it still runs
fast. It appears that the complexity of the program did affect the
capability of the classifier. However the overall detection average
accuracy of 0.79 is significant.

Threats to Validity. We identify the following potential threats
to validity:

• Examples of ROP/JOP exploit code for non-standard pro-
cessors are not easy to find in practice, and therefore the
instrumented programs used for our training may not be
representative of all ROP programs’ behaviors on Xtensa.
Notwithstanding, the size of our data together with the re-
sults obtained could reasonably justify the reliability of our
model in detecting attacks initiated through a buffer over-
flow, which is the most exploited vulnerability.

• Our ROP/JOP exploits do not consider specific attack cases
such as accessing a shell, which might be the final intention
of the attacker even though it may not be available in the
context of embedded/IoT devices, which often only contain
firmware.

6 RELATEDWORK
This section presents some selected literature related to the problem
addressed in our work.

ROP attack defense using HPC: Several works have justified
the use of HPCs in detecting abnormal program behavior. HPCs
can be used to detect ROP attacks by applying heuristics of ROP
behavior or via a ML-based approach. HDROP [36], SIGDROP [31],
and ROPSentry [12] are some of the papers that utilize HPCs to

build a defense against ROP exploits using heuristics. In contrast,
hadROP [26] and EigenROP [15] use ML-based approaches to learn
relevant hardware events distinguishing ordinary execution from
ROP gadget chain execution. Our approach also leverages HPCs
and ML to detect the ROP attack. Unlike our proposal, most of the
existing solutions were not targeted at low-level embedded devices
running only firmware and have overheads that are not resource-
constrained devices friendly, e.g., HDROP recorded an overhead as
high as 38% and SIGDROP requires an OS.

Code reuse attacks: Several techniques use existing code on
the system to craft exploit that attacks the system. These includes
ROP [10], JOP [5], string ROP [25], blind ROP [4] and signal ROP [6].
However, most of these attacks have been tested on x86 or ARM
processors rather than configurable processors dedicated to em-
bedded systems/IoT. In contrast, our paper implements ROP and
JOP attacks using compiled gadgets on the Xtensa LX7 architecture.
Moreover, we are the first to design JOP attacks using a dispatcher
gadget compatible with the Xtensa processor.

ROP on Xtensa: Little is public about how ROP works on Xten-
sa, but [21] presented a paper on the challenges of ROP on Xtensa
architecture. The authors showed that Xtensa can be attacked by
chained gadgets irrespective of the ABI in use. The authors addition-
ally proposed a linked list approach to chain gadgets for Xtensa’s
Call0 ABI. Since the approaches to attacking either ABI are similar,
we used the default ABI in our paper to demonstrate ROP/JOP on
Xtensa. Their paper is also different in that it did not cover attack
detection. Although based on a different method, a similar platform
to ours is used in [24] who propose a solution called FPGA CFI for
bare-metal ARM embedded devices. Their approach targets devices
that read firmware instructions directly from the flash memory but
unlike our work, ROP detection was not included in their work.
Additionally, CFI solutions’ memory requirements and overheads
are generally considered impractical to secure resource-constrained
embedded devices [31].

.

SAC ’22, April 25–29, 2022, Virtual Event Adebayo Omotosho, Gebrehiwet B. Welearegai, and Christian Hammer

7 CONCLUSION
In this paper, we have been able to demonstrate the possibilities
of how the Xtensa Call0 ABI processor configuration could be at-
tacked using gadgets from an executable linkable format binary of
user programs. We extracted valid gadgets, demonstrated gadget
chaining scenarios for ROP/JOP, and carried out experiments with
these attack scenarios on a minimal Xtensa hardware configuration
running as a bare-metal embedded system. Our hardware configu-
ration is minimal and targeted for low configuration embedded/IoT
devices running instructions from the flash memory. Furthermore,
we experimented with the available hardware performance counter
events and trained a support vector machine classifier based on
these HPCs to detect ROP and JOP readings in our test programs. By
evaluating the model on unseen HPC data, we obtained a high preci-
sion and recall. We also identified some HPC that help in predicting
the execution of these kinds of code reuse attacks. Our validation
results prove the feasibility of the SVM and HPC detection methods
for ROP/JOP on Xtensa from a functional perspective, thereby vali-
dating the capacity of this technique to detect code reuse behavior
on a firmware-only Xtensa processor.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Educa-
tion and Research (BMBF) under research grant number 01IS18065D.

REFERENCES
[1] Manaar Alam, Sayan Sinha, Sarani Bhattacharya, Swastika Dutta, Debdeep

Mukhopadhyay, and Anupam Chattopadhyay. 2020. RAPPER: Ransomware
prevention via performance counters. arXiv preprint arXiv:2004.01712 (2020).

[2] Mahmoud Ammar, Giovanni Russello, and Bruno Crispo. 2018. Internet of Things:
A survey on the security of IoT frameworks. Journal of Information Security and
Applications 38 (2018), 8–27.

[3] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M Koruyeh, Nael Abu-Ghazaleh,
Chengyu Song, and Mathias Payer. 2020. SpecROP: Speculative Exploitation of
{ROP} Chains. In 23rd International Symposium on Research in Attacks, Intrusions
and Defenses ({RAID} 2020). 1–16.

[4] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking blind. In 2014 IEEE Symposium on Security and Privacy. IEEE,
227–242.

[5] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security. ACM,
30–40.

[6] Erik Bosman and Herbert Bos. 2014. Framing signals-a return to portable shell-
code. In 2014 IEEE Symposium on Security and Privacy. IEEE, 243–258.

[7] Cadence. 2018. Xtensa® C and C++ Compiler User’s Guide. https://ip.cadence.
com/swdev

[8] Cadence. 2018. Xtensa® Microprocessor Programmer’s Guide. https://ip.cadence.
com/swdev

[9] Cadence. 2019. Xtensa® Instruction Set Architecture. https://ip.cadence.com/swdev
[10] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,

Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference on Computer and
communications security. 559–572.

[11] Ang Cui, Michael Costello, and Salvatore J Stolfo. 2013. When Firmware Modifi-
cations Attack: A Case Study of Embedded Exploitation. In 20th Annual Network
& Distributed System Security Symposium. 1–13.

[12] Sanjeev Das, Bihuan Chen, Mahintham Chandramohan, Yang Liu, andWei Zhang.
2018. ROPSentry: Runtime defense against ROP attacks using hardware perfor-
mance counters. Computers & Security 73 (2018), 374–388.

[13] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender: A
detection tool to defend against return-oriented programming attacks. In Proceed-
ings of the 6th ACM Symposium on Information, Computer and Communications
Security. 40–51.

[14] Christian DeLozier, Kavya Lakshminarayanan, Gilles Pokam, and Joseph Devi-
etti. 2020. Hurdle: Securing Jump Instructions Against Code Reuse Attacks. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems. 653–666.
[15] Mohamed Elsabagh, Daniel Barbara, Dan Fleck, and Angelos Stavrou. 2017. De-

tecting rop with statistical learning of program characteristics. In Proceedings
of the Seventh ACM on Conference on Data and Application Security and Privacy.
219–226.

[16] Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou. 2017. Strict virtual call
integrity checking for C++ binaries. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. ACM, 140–154.

[17] K Virgil English, Islam Obaidat, and Meera Sridhar. 2019. Exploiting memory
corruption vulnerabilities in connman for IoT devices. In 2019 49th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN). IEEE,
247–255.

[18] Matheus Eduardo Garbelini. 2019. Easily crashing ESP8266 Wi-Fi devices. https:
//matheus-garbelini.github.io/home/post/esp8266-beacon-frame-crash/

[19] Jin-bing Hou, Tong Li, and Cheng Chang. 2017. Research for vulnerability
detection of embedded system firmware. Procedia Computer Science 107 (2017),
814–818.

[20] Xin Huang, Fei Yan, Liqiang Zhang, and Kai Wang. 2020. HoneyGadget: A
Deception Based Approach for Detecting Code Reuse Attacks. Information
Systems Frontiers (2020), 1–15.

[21] Kai Lehniger, Marcin Aftowicz, Peter Langendörfer, and Zoya Dyka. 2020. Chal-
lenges of Return-Oriented-Programming on the Xtensa Hardware Architecture.
In EUROMICRO Conference on Digital System Design. 1–6.

[22] Corey Malone, Mohamed Zahran, and Ramesh Karri. 2011. Are hardware per-
formance counters a cost effective way for integrity checking of programs. In
Proceedings of the sixth ACM workshop on Scalable trusted computing. 71–76.

[23] Ganapathy Mani, Vikram Pasumarti, Bharat Bhargava, Faisal Tariq Vora, James
MacDonald, Justin King, and Jason Kobes. 2020. DeCrypto Pro: Deep Learn-
ing Based Cryptomining Malware Detection Using Performance Counters. In
2020 IEEE International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS). IEEE, 109–118.

[24] Nicolò Maunero, Paolo Prinetto, Gianluca Roascio, and Antonio Varriale. 2020. A
FPGA-based Control-Flow Integrity Solution for Securing Bare-Metal Embedded
Systems. In 2020 15th Design & Technology of Integrated Systems in Nanoscale Era
(DTIS). IEEE, 1–10.

[25] Mathias Payer and Thomas R Gross. 2013. String oriented programming: when
ASLR is not enough. In Proceedings of the 2nd ACM SIGPLAN Program Protection
and Reverse Engineering Workshop. 1–9.

[26] David Pfaff, Sebastian Hack, and Christian Hammer. 2015. Learning how to
prevent return-oriented programming efficiently. In International Symposium on
Engineering Secure Software and Systems. Springer, 68–85.

[27] Marco Prandini and Marco Ramilli. 2012. Return-oriented programming. IEEE
Security & Privacy 10, 6 (2012), 84–87.

[28] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM conference
on Computer and communications security. 552–561.

[29] Thotcon. 2016. The complete esp8266 psionics handbook. https://speakerdeck.
com/jsandin/the-complete-esp8266-psionics-handbook

[30] Gordon Mah Ung. 2013. Everything You Wanted to Know About AMD’s New
TrueAudio Technology. https://web.archive.org/web/20140711104556/http:
//www.maximumpc.com/everything_you_wanted_know_about_amd%E2%80%
99s_new_trueaudio_technology_2013

[31] XueyangWang and Jerry Backer. 2016. SIGDROP: Signature-based ROP detection
using hardware performance counters. arXiv preprint arXiv:1609.02667 (2016).

[32] Ye Wang, Qingbao Li, Zhifeng Chen, Ping Zhang, and Guimin Zhang. 2020.
A Survey of Exploitation Techniques and Defenses for Program Data Attacks.
Journal of Network and Computer Applications 154 (2020), 102534.

[33] Vincent MWeaver and Sally AMcKee. 2008. Can hardware performance counters
be trusted?. In 2008 IEEE International Symposium on Workload Characterization.
IEEE, 141–150.

[34] Chris Williams. 2016. Microsoft’s HoloLens secret sauce: A 28nm customized 24-core
DSP engine built by TSMC. https://www.theregister.com/2016/08/22/microsoft_
hololens_hpu/

[35] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, and Ajay Joshi.
2018. Hardware performance counters can detect malware: Myth or fact?. In
Proceedings of the 2018 on Asia Conference on Computer and Communications
Security. 457–468.

[36] HongWei Zhou, Xin Wu, WenChang Shi, JinHui Yuan, and Bin Liang. 2014.
HDROP: Detecting ROP attacks using performance monitoring counters. In
International Conference on Information Security Practice and Experience. Springer,
172–186.

https://ip.cadence.com/swdev
https://ip.cadence.com/swdev
https://ip.cadence.com/swdev
https://ip.cadence.com/swdev
https://ip.cadence.com/swdev
https://matheus-garbelini.github.io/home/post/esp8266-beacon-frame-crash/
https://matheus-garbelini.github.io/home/post/esp8266-beacon-frame-crash/
https://speakerdeck.com/jsandin/the-complete-esp8266-psionics-handbook
https://speakerdeck.com/jsandin/the-complete-esp8266-psionics-handbook
https://web.archive.org/web/20140711104556/http://www.maximumpc.com/everything_you_wanted_know_about_amd%E2%80%99s_new_trueaudio_technology_2013
https://web.archive.org/web/20140711104556/http://www.maximumpc.com/everything_you_wanted_know_about_amd%E2%80%99s_new_trueaudio_technology_2013
https://web.archive.org/web/20140711104556/http://www.maximumpc.com/everything_you_wanted_know_about_amd%E2%80%99s_new_trueaudio_technology_2013
https://www.theregister.com/2016/08/22/microsoft_hololens_hpu/
https://www.theregister.com/2016/08/22/microsoft_hololens_hpu/

	Abstract
	1 Introduction
	2 Xtensa Architecture and Registers
	2.1 Xtensa ABI Assembly

	3 Xtensa Gadgets
	3.1 Xtensa ROP Attack Process
	3.2 Xtensa JOP Attack Process

	4 Hardware performance counters
	5 Evaluation
	5.1 Experimental Setup
	5.2 Discussion

	6 Related work
	7 Conclusion
	Acknowledgments
	References

