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Abstract

SpiralS is a partial reimplementation of the SPIRAL program synthesis system in
Scala, covering the generation of fast numerical kernels for the discrete Fourier
transform. The main goal of SpiralS, however, is not (only) the pursuit of per-
formance but rather to propose a systematic and principled approach that allows
for a more maintainable and re-usable construction of such generators. In this
thesis, we follow these proposals and present a prototypical extension of SpiralS
by the domain of multigrid methods. Specifically, our multigrid solver accepts a
mathematical specification of a discretized square 2-dimensional Poisson equation
with Dirichlet boundary conditions and outputs performance-optimized code in C.
We focus on the implementation of the generator in particular and describe how
it was realized. We craft different domain-specific languages (dsls) to represent
algorithmic and domain-specific knowledge on multiple levels of abstraction. The
derivation of an appropriate solving algorithm for the given equation is driven
by recursively rewriting dsl expressions. The application of performance opti-
mizations is achieved by gradual refinement of the algorithm’s structure. For this,
we also discuss the translation between dsls and we demonstrate how stencil
codes can be used to improve both the implementation of the generator and the
performance of parts of the generated code. In the end, we present and analyze
the code output for various small example use cases.
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Chapter 1

Introduction and Motivation

The efficient solution of discretized partial differential equations (pdes) is a critical
part of many applications in the field of engineering and scientific computing [1,
p. 1, 2, p. 2]. This observation has led to a pursuit of creating ever faster solvers
for pdes. So called multigrid methods and stencil computations are widely used
in this context but the process of implementing them is extremely time-consuming,
especially when high performance and portability are desired [2, p. 2]. For this
reason, automatic program generation systems such as the ExaStencils project1

offer an appealing solution for this problem.
Encouraged by the success of earlier code generators, i.a. SPIRAL, the vision of

ExaStencils is that domain experts need only provide a high-level mathematical
description of the pde to solve, augmented with hardware specifications of the
target platform [2, p. 2]. The program generator then automatically synthesizes
highly efficient code for the particular scenario at hand.

However, developing such generators is considered a difficult and daunting
task due to the complexity of both the design and the actual implementation [3,
p. 125]. First, it requires the designer to gain expertise in the domain in question,
and second, code generators are compilers in their own right, which poses further
challenges of efficient compiler design, such as understanding low level details of
the target platform [4, p. 2].

To account for all this, ExaStencils follows a radically new approach: turning
away from general-purpose languages and moving towards multiple specialized
domain-specific languages (dsls) results in great expressive power for a small
domain of programs, i.e. stencil codes in this case, and refining programs gradually
while exploiting the domain-specific knowledge available at each step ultimately
enables high performance [5, pp. 554 sq.].

The success of program generators for high-performance code is measured in
the performance of the generated code, but elegance in design, re-usability and
maintainability of their implementation are often underrated [4, p. 2]. In all this

1 http://www.exastencils.org/

http://www.exastencils.org/
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respects, SPIRAL is known for the highly efficient code it generates but it has also
been opened up to the new domain of multigrid solvers. In this thesis, we try to
achieve a similar extension for SpiralS, a partial reimplementation of SPIRAL in
Scala.

Specifically, we build a small prototypical program generator focusing on a single
kind of pde only, namely discretized square 2-dimensional Poisson equations with
Dirichlet boundary conditions. Thereby, we follow the principled approach taken
by SPIRAL and ExaStencils while also being guided by SpiralS’ implementation
philosophy.

The rest of this thesis is structured as follows. The next chapter imparts the
background knowledge and theoretical foundation necessary for the reader to fully
comprehend the remainder of the thesis. This includes a brief overview of SPIRAL
and SpiralS, the formulation of multigrid methods in SPIRAL, the multi-stage
programming framework lms and the closely related Scala-Virtualized compiler.
Chapter 3 explains the implementation of the code generator in full detail. This
encompasses an architectural overview, the construction of two internal dsls,
the translation between those languages and the application of performance
optimizations. In this context, we also demonstrate how stencil computations can
be used to improve both the code quality of the generator and the performance
of the generated code. Chapter 4 presents various generator use cases, followed
by an analysis of the corresponding fixed-size numerical kernels output by the
generator. Chapter 5 concludes the thesis by summarizing the results and giving
an outlook of possible future work.



3

Chapter 2

Background and Fundamentals

2.1 The SPIRAL Code Generator

SPIRAL1 is a program generation system (in other words, a program that generates
other programs) used in the domain of digital signal processing (dsp). Its main
goal is to automatize the development of high-performance numerical kernels
for linear transforms [6, p. 1920], such as the prominent and ubiquitous discrete
Fourier transform (dft).

2.1.1 Key Concepts

Matrix FactorizationIn their overview paper [6, p. 1922], the creators of SPIRAL state that dsp
algorithms can be represented as matrix-vector multiplications. Both input and
output to the algorithm are encoded as vectors and the linear transform to perform
is embodied by a particular transformation matrix. Direct application of the matrix-
vector product would require O(n2) operations with regard to a problem size of n.
However, clever factorization of the transformation matrix reduces the algorithm’s
complexity to O(n log n). Depending on the concrete linear transform, there may
exist several different possible factorizations. For this reason, the challenge is to
choose the ones leading to optimal algorithmic performance.

spl and Symbolic Rewrit-
ing

SPIRAL uses a concise and expressive mathematical dsl known as Signal
Processing Language (spl) to capture algorithms for dsp transforms. The key
idea is as follows [6, pp. 1923 sq.]: matrix factorizations are considered domain-
specific knowledge and can be expressed as parameterized breakdown rules written
in spl. These rules are fed to the generator by domain experts up front. Using
the set of predefined rules, SPIRAL implements a recursive rewriting system.
Given a high-level description of the transformation matrix in spl, the program
generator successively applies each fitting breakdown rule to obtain possible
factorizations, which may in turn consist of “smaller” (i.e. less complicated)

1 http://www.spiral.net/

http://www.spiral.net/
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transformation matrices. Applying the rules recursively leads to a divide-and-
conquer approach, eventually delivering a fully expanded (i.e. no more breakdown
rules are applicable) description of the factorized transformation matrix. In order
to filter out the best of several factorizations, SPIRAL couples this process with
empirical autotuning [6, p. 1921].

Example For example [1, p. 2], a breakdown rule for the famous Cooley-Tukey factoriza-
tion of a dft transformation matrix DFTmn of size m · n is given by

DFTmn→ (DFTm⊗ In) T n
mn (Im ⊗DFTn) Lmn

m .

The exact definition of the components mentioned in this rule is not important for
our purposes. The key is that the matrix DFTmn left to the arrow→ is expressed
as factorization of other matrices to the right of the arrow, i.a. in terms of the
smaller transformation matrices DFTm and DFTn, utilizing matrix multiplication
and the tensor product “⊗”.

2.1.2 Multigrid Methods in SPIRAL

While the original motivation behind SPIRAL was to facilitate the automatic
generation of high-performance code for the restricted domain of dsp algorithms,
there have been successful efforts to push the generator beyond what was achieved
before. As mentioned before, many scientific applications require the solution of
pdes and multigrid-methods are widely used in this context.

Partial Differential Equa-
tions

The work [1] of Bolten et al. presents an extension to SPIRAL’s present set
of breakdown rules to support the generation of a small multigrid solver with
a Richardson smoother for a discretized 2-dimensional Poisson equation with
Dirichlet boundary conditions. Their paper provides the theoretical foundation of
this thesis. Mentioned pde in its continuous form [1, p. 4] is given by

−∆u(x) = f (x), x ∈ Ω := [0, 1]2,

u(x) = 0, x ∈ ∂Ω.

To allow for efficient solving on the machine, the standard procedure is to dis-
cretize such equations, yielding a linear system of the form [1, p. 4]

Ax = b, A∈ Rn×n, x , b ∈ Rn.

Multigrid Cycle Finding a direct solution (e.g. by Gaussian elimination) is costly. But the effort
can be reduced substantially by employing an iterative solution method such as
Gauss-Seidel or Richardson, starting from an initial guess x (0) and computing a se-
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quence of approximations x (k), k = 0, 1, . . .. The error e of such an approximation
is given by the solution of the system

Ae = b− Ax .

After a few iterations, e has not been reduced much but it is smooth. This process
is referred to as pre-smoothing. The error can now be well represented on a
coarser discretization grid (by use of restriction), which decreases the number
of unknowns considerably. For this reason, obtaining a solution on the coarse
grid is now easier. Afterwards, the approximation of the error is transferred
back to the fine grid (by use of prolongation) and the current approximation
of the solution is updated (called coarse-grid correction). This process usually
introduces undesired high-frequency error components, which can be eliminated
by additional subsequent smoothing steps (called post-smoothing). This completes
one multigrid cycle. [1, p. 5]

Multigrid MethodBut often times, the coarse problem is still too large to be solved directly [1,
p. 5]. Applying the procedure presented above recursively reduces the problem
further and further until it is small enough to allow for a direct solution. This
strategy is called multigrid-method. Implementing multigrid-methods in SPIRAL
requires us to reformulate a multigrid cycle in the language of linear algebra, that
is, as spl breakdown rules [1, p. 2]. We limit ourselves to the specification of
these rules while omitting the theoretical background.

Mathematical NotationBut first, let us define the mathematical notation [1, pp. 3 sq.] used in spl. The
identity matrix of size n× n is denoted by the symbol In. Similarly, we write 0n for
the n× n zero matrix. A general matrix M of size m× n is written as Mm×n but
the subscript is dropped if the dimension is clear from the context. Horizontal and
vertical stacking of compatible matrices A and B is denoted by

[A | B] and

�

A
B

�

,

respectively. The n-dimensional canonical basis vector with a 1 at the ith location
is denoted by en

i where 0≤ i < n. A scatter matrix SN×n
b,s is an N × n matrix and a

gather matrix Gn×N
b,s is an n× N matrix. They are defined as follows:

SN×n
b,s :=
�

eN
b

�

�

� eN
b+s

�

�

� . . .
�

�

� eN
b+(n−1)s

�

and Gn×N
b,s =
�

SN×n
b,s

�⊤
.

The interpretation is that SN×n
b,s scatters the entries x i of an input vector x =

(x i)0≤i<n ∈ Rn into a vector y ∈ RN at the locations b + is, while setting all
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other elements of y to 0. Gn×N
b,s performs the inverse operation, that is, it gathers

the data from an input vector x = (x0, . . . , xN−1)⊤ ∈ RN starting at base b with
stride s, resulting in the vector

�

xb, xb+s, . . . , xb+(n−1) s
�⊤ ∈ Rn.

The tensor product of two matrices Am×n and Bp×q is defined as follows:

Am×n ⊗ Bp×q = [ak,l B], where Am×n = [ak,l].

The result is a matrix of size mp× nq, where every entry ak,l of A is replaced with
the block ak,l B. The most notable cases are A= In or B = In. To illustrate:

In ⊗ B =





B
. . .

B



 and

�

a b
c d

�

⊗ I2 =









a b
a b

c d
c d









.

Tridiagonal matrices are given by

Tridiagn(a, b, c) =













b c
a b c

. . . . . . . . .
a b c

a b













∈ Rn×n.

These “elementary” matrices can be combined to form more complicated expres-
sions using the usual arithmetic operations for matrices, most notably

A+ B, A · B, A⊗ B, and
k−1
∏

i=0

Ai

for suitable matrices A, B and Ai.
Novel Breakdown Rules Table 2.1 presents the specification of a rewriting system for the multigrid solver

mentioned above. Thereby, a breakdown rule expands a non-terminal symbol into
a matrix formula that contains non-terminals itself and termination rules explain
a non-terminal in terms of aforementioned elementary matrices.

Entry point of the system is the non-terminal MGSolvePDEn,ω,r,m. Simply put, it
corresponds to m successive applications of a multigrid cycle MGCyclen,ω,r , which
is in turn translated to a Richardson smoother Richardsonn,ω,r and a subsequent
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Table 2.1: SPIRAL spl breakdown rules for a multigrid solver MGSolvePDEn,ω,r,m for an n × n discretized 2-
dimensional Poisson equation with Dirichlet boundary conditions and parameters ω, r and m. The solver
uses a Richardson smoother with parameter ω and r iterations and injection as restriction operator. It
performs m multigrid cycles. The table has been extracted from [1, p. 7].

MGSolvePDEn,ω,r,m → [In2 | 0n2] ·

�m−1
∏

i=0

MGCyclen,ω,r

�

·
�

0n2

In2

�

MGCyclen,ω,r → CGCn,ω,r ·Richardsonn,ω,r

CGCn,ω,r →
�

CoarseErrorn,ω,r
0n2 | In2

�

CoarseErrorn,ω,r → Interpolaten ·Scattern ·Solven,ω,r ·Gathern ·Residualn

Interpolaten → Tridiag(
p

2/2,
p

2,
p

2/2)⊗ Tridiag(
p

2/2,
p

2,
p

2/2)

Scattern → Sn×(n−1)/2
1,2 ⊗Sn×(n−1)/2

1,2

Solven,ω,r →







1
4 I1, n= 3

[I((n−1)/2)2 | 0((n−1)/2)2] ·MGCycle(n−1)/2,ω,r ·
�

0((n−1)/2)2

I((n−1)/2)2

�

, n> 3

Gathern → G(n−1)/2×n
1,2 ⊗G(n−1)/2×n

1,2

Residualn → [Tridiagn(1,−2,1)⊗ In+ In⊗Tridiagn(1,−2, 1) | In2]

Richardsonn,ω,r →
r−1
∏

i=0

�

ResidueLaplacen,ω ω In2

0n2 In2

�

ResidueLaplacen,ω,r → Tridiagn(ω, 0.5− 2ω,ω)⊗ In+ In⊗Tridiagn(ω, 0.5− 2ω,ω)

coarse-grid correction CGCn,ω,r . Note the flow of information from right to left in
the spl breakdown rules as vectors are applied from right to left. The breakdown
for CoarseErrorn,ω,r hard codes injection as choice for restriction. Similarly, the
rule Interpolaten states that linear interpolation is used for prolongation. The
non-terminal Solven,ω,r encodes the multigrid recursion. Base cases (n= 3) are
solved directly, whereas all other cases (n> 3) require additional multigrid cycles.
The symbol Residualn is used to compute the residual b−Ax and Richardsonn,ω,r
implements a Richardson smoother with parameter ω and r iterations. Note
that Residualn, Interpolaten and ResidueLaplacen,ω,r set the problem type to be a
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Poisson equation and the Dirichlet boundary condition is encoded via the entries
of the tridiagonal matrices. [1, p. 7]

This is all mathematical background it takes. The basic implementation of spl
in Scala is presented in Section 3.2. Implementing the rewrite system given by
Table 2.1 is discussed in Section 3.3.

2.1.3 SPIRAL in Scala

SpiralS2,3 is a partial reimplementation of a small subset of the SPIRAL code
generator in the programing language Scala4 which covers the generation of fixed
size C code for fast Fourier transforms.

Systematic Construc-
tion of Code Generators

In the accompanying publication [3], the authors claim that program generators
for high-performance libraries are often merely “ad-hoc collections of standalone
programs and scripts that are hard to extend, maintain and reuse”. The main
goal of their work [3, p. 125] was to (1) analyze already existing generators (i.a.
SPIRAL) in order to derive a common and systematic implementation approach,
and (2) conduct a case study using the example of SPIRAL to demonstrate how this
approach can be realized with high-level programming principles and techniques.
Their research on the first point led to the proposal of the implementation approach
sketched below [3, p. 126]:

• Describing problem and algorithmic knowledge through one or multiple
dsls of successively lower abstraction levels to allow for various phases of
program optimization.

• Specifying certain optimizations and algorithmic choices as rewrite rules on
dsl programs.

• Designing parameterized high-level data structures to support the generation
of multiple low-level representations and data formats.

• Relying on common infrastructure for recurring low-level transformations,
such as unrolling with scalar replacement or selective precomputation.

To achieve these points, any programming environment that provides the required
language features can be used. The authors of SpiralS relied on a combination of
the programming language Scala and the staging framework lms, a setup which
is also used in this work. The reasons for this particular choice are manifold [3,
p. 134]. For instance, Scala’s object-oriented programming paradigm turned out
to be beneficial for structuring the generator and implementing the dsls, while

2 http://www.spiral.net/software/spiral-scala.html
3 Source code available at https://github.com/GeorgOfenbeck/SpiralS
4 It is assumed that the reader already possesses a basic understanding of Scala. Some of its more

advanced features are explained as they come up on the way.

http://www.spiral.net/software/spiral-scala.html
https://github.com/GeorgOfenbeck/SpiralS
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functional programming concepts were used to express mathematical algorithms.
Furthermore, the support for pattern matching and extractors proved beneficial
with regard to dsl rewriting and translation.

The lessons learned and insights gained from the SpiralS project, i.a. which
software architectures and programming techniques to use when building the
program generator, served as major guidance for the implementation of this work,
which will be discussed extensively in Chapter 3.

To support program generation, the staging framework lms and the closely
related Scala-Virtualized compiler are put to work. They are integral part in the
implementation and are presented in greater detail in the following sections.

2.2 Lightweight Modular Staging

Lightweight Modular Staging (lms) is a dynamic multi-stage programming (msp)
approach for the Scala language, implemented as a compiler framework and
accessible at the library level. Its main goal is to simplify the process of developing
internal dsls and domain-specific compilers. Extensive information about lms
can be found in Tiark Rompf’s PhD thesis [7]; tutorials and example programs are
available online [8]. A brief introduction is given below.

2.2.1 Key Principles

Type-Driven StagingMany dedicated msp languages such as MetaOCaml rely on syntactic annotations
(in particular quasi-quotation) to mark program parts for staging [9, p. 121].
The first idea of lms is to break with this tradition and to use type signatures for
distinguishing between stages instead. For this purpose the higher-kinded type
Rep[_] is provided. The programmer has the responsibility to declare which stage
an expression should belong to by explicitly giving it a certain type [10, p. 102],
as demonstrated in the following Scala fragment:

val x: Int = ...
val y: Rep[Int] = ...

Variable x is a plain Int, hence its value is computed during the first stage, i.e.
when the program generator (the meta program) is run. Consequently, x becomes
a constant in the second stage (the object program). It is often said that x is
static. In contrast, variable y is of type Rep[Int]. The type constructor Rep[_]
turns y into a staged expression. The evaluation of y is deferred until the second
stage takes place, i.e. when the generated code is executed, where y appears as a
computation with result type Int. Hence, y is said to be dynamic.
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An important observation is that the generated code does not pay any runtime
cost for static variables [10, p. 102] due to precomputation. Moreover, program
generator and dsl code are both part of the same program, expressed in terms
of the same syntax. This principle is known as linguistic reuse and has many
benefits [7, p. 23]. To name one, since types are used to distinguish between
computational phases, we can leverage the Scala type system to automatically
ensure that well-typed meta programs lead to well-typed object programs as well.

Semantic Composi-
tion of Staged Code

Now that it is known how to make binding times of expressions explicit, the
next question that arises is how to manipulate staged program fragments. This
leads to the second idea of lms: operations on staged types are distributed as
(overloaded) operators, which are packaged as components in the form of Scala
mix-in traits [9, p. 122]. In conjunction with the first idea, this technique makes it
possible to combine staged code in a semantic way, rather than simply expanding
it syntactically [10, p. 94].

Example: Staged Power
Function

In order to clarify, let us take a look at the classic introductory example for
staging [7, pp. 23 sq.], namely the power function b 7→ bn where n ∈ N. A
straight-forward implementation in Scala is given below:

def power(b: Double, n: Int): Double =
if (n == 0) 1.0 else b * power(b, n - 1)

Imagine the scenario that a program will take many different numbers to the same
power. Therefore, we would like to specialize this function for fixed exponents of n.
In other words: n is statically known while the base b is only dynamically available.
Thus, we want to turn b into a staged expression. In lms, this circumstance is
reflected by changing the declared type of b from Double to Rep[Double]. Since
a part of the function’s input is now dynamic, the output can only be computed
dynamically as well. Hence, the new return type must be Rep[Double] instead of
just Double. This gives the implementation listed below:

def power(b: Rep[Double], n: Int): Rep[Double] =
if (n == 0) 1.0 else b * power(b, n - 1)

Staging the power function introduced only a comparatively low amount of
syntactic overhead: the function body remains unchanged, merely the signature
had to be slightly tweaked.

Composing Modules This code, however, does not compile yet. One problem is that both b and
power(b, n - 1) are no longer of type Double, which means they cannot be
combined using ordinary multiplication *. This is where component technology
and semantic composition come into play. lms provides several traits that define
operations on staged types as overloaded operators. For example, basic arithmetic
on staged primitives (such as Rep[Double]) is bundled in trait PrimitiveOps.
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This functionality can either be accessed directly through path-dependent types
and import statements:

val p: PrimitiveOps = new ... // instantiation of implementation trait
import p._ // bringing members into scope, i.a. Rep[_]
def power(b: Rep[Double], n: Int): Rep[Double] = ...

Alternatively, it can be requested indirectly using selftype annotations, which can
be seen as “the Scala way” of specifying needed components for dependency
injection [11, p. 660]. These annotations are preferred over path-dependent types
because they allow for higher modularity. In order to use selftypes, we have to
wrap the power function in its own trait, which we call Power. This way, Power
becomes a component itself and may in turn be reused as a mix-in for other traits.

trait Power { this: PrimitiveOps =>
def power(b: Rep[Double], n: Int): Rep[Double] = ... }

Special attention should be payed to the selftype annotation

this: PrimitiveOps =>

in the first line of the definition of Power. This very annotation causes that,
practically speaking, an instance of Power cannot be created without also mixing
in a concrete (but unspecified) instance of trait PrimitiveOps [9, p. 122].

In any way, we have now gained access to the operations supplied by trait
PrimitiveOps, which does not only provide a suitable definition for multiplication,
but also implicitly converts plain Doubles like 1.0 into their staged counterparts
of type Rep[Double]. Ultimately, the code listed above type checks.

Splitting Interface and
Implementation

Another important aspect of lms is that dsls are conceptually split into two
parts [10, p. 96]: an interface and one or possibly more corresponding implemen-
tations. Both parts can be combined from traits to form a complete definition of a
dsl. It is important to realize that dsl programs are written only in terms of the
given interface, while being completely unaware of the underlying implementa-
tion. For example, aforementioned staged power function relies on the interface
PrimitiveOps but is agnostic of its implementation PrimitiveOpsExp.

Not only is this conceptual separation demanded by common software engineer-
ing principles, e.g. to swap out an implementation for another without affecting
client code. But perhaps even more urgent is the concern for safety [7, p. 92]. If it
were possible for a dsl program to inspect and reason about its own structure (i.e.
implementation), optimizing rewrites that maintain semantical but not structural
equality could no longer be performed without risking to change the meaning of
the program.
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2.2.2 Inner Workings

The idea of separating interface and implementation is so fundamental that it can
be observed throughout the entire inheritance hierarchy of lms, which we shall
now examine.

Representing Staged
Code

At the root of the hierarchy is the interface trait Base [7, p. 57]. It declares
the well-known type constructor Rep[T] and an abstract method named unit,
which is intended to lift static values of type T and produce dynamic ones of
type Rep[T].

trait Base {
type Rep[T]
protected def unit(x: T): Rep[T] }

Every Scala program that wants to make use of staging has to mix in Base. The
interpretation of Rep[T] is that it represents a computation that yields a result
of type T in the next program stage [9, p. 122]. Interestingly enough, Rep[T] is
merely an abstract type and therefore the concrete intermediate representation
(ir) of staged expressions is left open.

Strings In fact, it is possible to treat staged program parts as plain strings by defining

type Rep[T] = String

However, this is arguably not the most useful representation since we would
like to obtain a more analyzable structure [9, p. 124], e.g. to check whether the
object program warrants certain guarantees or to perform optimizations before
unparsing to actual code.

Expression Trees For this reason, the lms core library gives a concrete ir in trait BaseExp [7,
p. 58], which is the implementation counterpart of Base:

trait BaseExp extends Base with Expressions {
type Rep[T] = Exp[T]
protected def unit(x: T) = Const(x) }

trait Expressions {
// atomic expressions
abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Sym[T](id: Int) extends Exp[T]
// composite definitions: Exp + Exp, Exp * Exp, ...
abstract class Def[T]
// statements: val x = Def
case class Stm[T](sym: Sym[T], rhs: Def[T])
// block scopes: { Stm; Stm; ...; Stm; Exp }
case class Block[T](stms: Stm[_], res: Exp[T]) }
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Figure 2.1: Expression trees as defined by BaseExp

This listing deserves further explanation. First of all, BaseExp extends the interface
Base. It defines Rep[T] in terms of expression trees5 Exp[T]. Therefore, BaseExp
also mixes in the Expressions trait, which contains a concrete implementation of
expression trees.

We observe four kinds of expressions: (1) atoms (subclasses of Exp[T]), which
are either constants Const[T] or symbols Sym[T], (2) composite definitions
Def[T], (3) statements Stm[T], and (4) block scopes Block[T]. Constants convert
static values of type T into their staged representation of type Exp[T]. For this
reason, BaseExp defines unit in terms of Const. Symbols, on the other hand,
embody unique identifiers referring to definitions. The latter are obtained by com-
bining atoms into more complex expressions utilizing (often times user-defined)
operators. No concrete subclasses of Def[T] are given because only dsl authors
themselves can have the knowledge to provide meaningful data types. The link
between definitions and symbols is established by statements Stm[T]. Finally,
(nested) scopes consisting of a series of statements stms and a final return value
res are modeled by class Block[T]. The ir is also depicted in Figure 2.1.

An Extensible irNote that Def[_] is left abstract by intent. It is encouraged to extend the ir
by providing own subclasses of Def[_] to further refine the semantics of dsl
expressions. Generic optimizers (e.g. the ones provided by the framework, c.f.
Page 36) may view the ir in terms of its base nodes (Exp[_] and Def[_]) while
user-defined domain-specific optimizers can leverage the richer semantics to view
the program on a higher level of abstraction [10, p. 97].

UnparsingCode generation is an explicit operation and will be presented in greater detail
in Section 3.8.

5 Actually, lms uses a directed graph (“sea of nodes”) that can be accessed via a tree-like inter-
face. [9, p. 124]
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2.2.3 Important Utility Functions

Now that we have a basic understanding of lms’ internal structure, let us exam-
ine the Expressions trait in greater detail, focusing on its most important and
practical utilities in particular.

From Syms to Defs Besides the abstract class Def, there is also a corresponding object with the same
name Def, i.e.

trait Expressions { ...
abstract class Def[T]
object Def { ... } }

Objects can be thought of as singletons which are Scala’s analogue to the concept
of static members of a class in Java. The object Def is intended to act as an
extractor for pattern matching [7, p. 67]. Given a symbol sym, it facilitates the
navigation to its associated definition as follows:

sym match { case Def(d) => ... }

After the arrow =>, the definition which sym refers to is bound to the name d.
This mechanism comes in handy when traversing and inspecting the ir, i.a. to
implement domain-specific rewrites or to translate between different dsls.

From Defs to Syms But how are definitions and symbols glued together in the first place? The
answer is, there exists a function toAtom for this sole purpose.

implicit def toAtom[T](d: Def[T]): Exp[T] = ...

As its name suggests, toAtom takes a composite definition d and converts it to an
atomic expression (i.e. a symbol referring to d). Behind the curtain [7, p. 67],
lms keeps track of already encountered definitions. If toAtom finds a previous
definition that is structurally equivalent to the given one, a corresponding symbol
has already been created, which is then simply returned. Otherwise, a fresh new
symbol is produced and linked with the current definition first (by creating a
corresponding statement Stm), before it is then returned.

Common Subexpression
Elimination

Since a definition may only refer to other definitions via their associated sym-
bols, every definition will be named [7, p. 58], effectively allowing for common
subexpression elimination (cse). This is an important optimization technique
that prevents unnecessary duplication of code. Note that cse is implemented
completely generic and independent of any particular dsl.

Furthermore, it should be highlighted that toAtom is marked with the implicit

keyword. This qualifies the function for so called implicit conversions [11, ch. 21.2].
Simply put, this causes that the conversion from definitions to symbols will take
place automatically.
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2.3 Scala-Virtualized

Scala is a purely object-oriented language, e.g. operators are not a special kind
of syntax but implemented as ordinary methods [11, ch. 5.4]. This is feasible
because valid identifiers may not only contain alphanumeric characters but also
symbolic ones, or even a combination of both. So +, unary_! and :: are in fact
legal method names. Furthermore, it is possible to use any method (no matter
whether it has a symbolic name or not) in operator notation. For example, the
foreach combinator on lists can be invoked in two ways:

List(1, 2, 3).foreach(println) // as method call
List(1, 2, 3) foreach println // infix operator

Both expressions are equal. Vice versa, the computation 1 + 2 is just syntactic
sugar for 1.+(2). In other words: There is a method named + defined in class Int
that takes an Int as argument and returns an Int as result:

abstract class Int { ...
def +(x: Int): Int // just to appease the compiler }

This high amount of syntactic flexibility proves beneficial when implementing
embedded dsls. Nevertheless, there are certain shortcomings of plain Scala which
are addressed in Scala-Virtualized [12], a small set of extensions to the regular
Scala compiler meant to further enhance its dsl hosting capabilities. In fact,
Scala-Virtualized has originally been developed for use in lms but is now used in
several other projects as well. A discussion of its main features follows below.

2.3.1 External Functions

In Section 2.2.2 it was mentioned that all (custom) operations on staged types,
such as the multiplication * seen in Section 2.2.1, are realized as operators on
type Rep[_]. Taking the introductory paragraph of this section into consideration,
one may suspect these operators to be implemented as instance methods of
Rep[_]. But then again, this is not possible because Rep[_] is just an abstract
type constructor independent of an underlying implementation.

To overcome this problem, Scala-Virtualized adds external functions [7, pp. 33 sq.]
to the repertoire, which provide an easy way of defining methods (operators) on
objects outside of their class.6 The idea is similar to operator overloading in C++.
Here’s how trait PrimitiveOps declares multiplication on staged Doubles:

6 To some extent, the same effect can be achieved in regular Scala, too, albeit in a more cumbersome
way using implicit functions. External functions may even override already existing members of a
class, which is not possible with implicit functions.
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trait PrimitiveOps {
def infix_*(lhs: Rep[Double], rhs: Rep[Double]): Rep[Double]
// further functions for addition, subtraction, etc. }

This function can be invoked in three ways [7, p. 34]:

infix_*(lhs, rhs)
lhs.*(rhs)
lhs * rhs

2.3.2 Language Virtualization

Regular Scala allows for extension of built-in language constructs, in particular
for-comprehensions7. Such expressions are translated into calls of map, flatMap,
withFilter and foreach [11, ch. 23.4]. For example, a for-comprehension
involving two generators such as

for { x <- List(1, 2, 3, 4, 5)
y <- List(’a’, ’b’, ’c’)

} yield (x, y)

is tranrsformed by the compiler into

List(1, 2, 3, 4, 5) flatMap { x =>
List(’a’, ’b’, ’c’) map { y => (x, y) } }

The point is that every user-defined data type that provides suitable combinators
can be used with for-comprehensions, making for a seamless integration as
first-class citizen.

Scala-Virtualized generalizes this idea by redefining all language constructs as
virtual methods to make them overloadable by the programmer. This principle
is called language virtualization8 [7, p. 5] and is especially helpful in the context
of dsls in order to create an idiomatic syntax that closely resembles the given
domain. Overloadable constructs [13] (loops, assignments and others) are defined
in trait EmbeddedControls, which is mixed into Predef9 and is therefore implicitly
available in every Scala program. If no custom implementation of language
constructs is given, the usual semantics apply.

For instance, the if-then-else control structure

if (c) t else e

is translated into the method

7 One may notice a close resemblance to Haskell’s do-notation.
8 Hence the name “Scala-Virtualized”.
9 It is the analogue to the module Prelude in Haskell.
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__ifThenElse(c, t, e)

and behaves exactly as one would expect. Several practical redefinitions are
imaginable, e.g. selecting between two branches of control flow based on a
dynamic condition. For illustration purposes, a somewhat peculiar redefinition is
given below.

override def __ifThenElse[T](c: => Boolean, t: => T, e: => T): T =
c match { case true => e; case false => t }

println(if (true) "success" else "failure")

The control structure requires three arguments, passed via call-by-name: a condi-
tion c, a then-branch t and an else-branch e. If the condition evaluates to true

the else-part is executed, otherwise the then-part is picked. For this reason, the
program prints "failure" and not "success".

2.3.3 Reifying Static Information

Finally, Scala-Virtualized is able to reify static information and make it available
in the generated program via Manifests and SourceContexts. They will be
discussed shortly.

Implicit ParametersBehind the scenes, a language feature called implicit parameters10 [11, ch. 21.5]
is put to work. The general idea is as follows: Given a curried function whose
last parameter list is marked with the implicit keyword, the caller only needs to
supply the arguments for the preceding parameter lists. The compiler then tries to
pass the remaining arguments for the implicit parameter list. To avoid ambiguities
and non-deterministic behavior, such implicit arguments are not summoned from
the nether land. They must already exist as unique value definitions in the current
context and be tagged implicit themselves. However, there are two exceptions
to this rule: when it comes to Manifests and SourceContexts, the compiler may
automatically create suitable instances and insert them on demand [7, p. 37].

Type InformationManifests provide runtime descriptors of data types. They see frequent use in
regular Scala programs in those cases where static information about polymorphic
types is lost due to type erasure on the Java Virtual Machine (jvm). In the context
of internal dsls they can be useful to generate efficient specialized code, e.g.
when the generator uses arrays of generic type, but the resulting dsl program
should be specialized to arrays of primitive types [7, p. 37].

An example for a function requiring a Manifest of element type T is given
below:

10 According to Scala’s creators, “implicit parameters were motivated by Haskell’s type classes; they
achieve analogous results in a more classical object-oriented setting.” [11, p. 62]
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def func[T](x: T)(implicit m: Manifest[T]) = ...

Notice the implicit parameter list (implicit m: Manifest[T]) in the declaration
of func. Within its body, the runtime manifest of T can be accessed via the
identifier m. Callers only need to provide the arguments for the first parameter list
of func, which solely consists of x in this case, e.g. func(42).

Often times, context bounds [11, ch. 21.6] are used as syntactic sugar for implicit
parameter declarations. The following definition of func is equivalent to the one
listed above:

def func[T: Manifest](x: T) = { val m = implicitly[Manifest[T]]; ... }

The notation [T: Manifest] is the context bound. It introduces a type parameter T
and an unnamed implicit argument of type Manifest[T], which has to be retrieved
by the implicitly function.

Source Information Implicit SourceContext objects provide a generated program with static source
code information which is otherwise impossible to recover once the object program
is run [7, pp. 37 sq.]. Programmers can request SourceContexts for methods in
the same way as Manifests using an additional implicit parameter:

def func[T](x: T)(implicit pos: SourceContext) = ...

Here, the source context of func’s invocation site, such as the file name, line
number and character offset, is available as pos. A common use case is to chain
implicit SourceContexts to reflect the static call path, thus allowing for better
error messages and improved debugging of dsl programs.
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Chapter 3

Implementation

This chapter covers the implementation of the code generator. We first provide
a small overview of the generator architecture. Afterwards, we proceed with
the implementation of the first dsl, namely spl. Next, we further refine spl
by implementing domain-specific optimizations. Subsequently, we tackle the
implementation of the second dsl, called cir. This is followed by a detailed
description of the translation process between spl and cir. Then, we demonstrate
how to boost efficiency of the generated code by means of stencil computations.
Finally, we show how to unparse to actual C code.

3.1 Overview of the Generator Architecture

This introductory section gives an overview of the generator architecture. Inspired
by the original SpiralS prototype, the fundamental design principle is to use
several dsls operating on different levels of abstraction. To be precise, we employ
(1) spl to capture algorithmic and domain-specific knowledge, and (2) cir as an
internal representation of C. Notice that each dsl operates on a different level
of abstraction and is thus fitted for different kinds of structural, algorithmic and
performance-based optimizations. Also, both dsls are embedded into Scala and
will therefore reuse large portions of its syntax and grammar.

As illustrated by Figure 3.1 on Page 20, the input to the generator is a fully fixed
static specification MGSolvePDEn,ω,r,m of the pde to solve. A suitable algorithm
in spl is obtained by recursively applying the breakdown rules of Table 2.1 to the
input. High-level structural optimizations are performed on-the-fly. Afterwards,
the structurally optimized spl program is translated into cir. This lowers the
algorithm’s level of abstraction. Low-level optimizations, such as algebraic sim-
plification or common subexpression elimination, take place while constructing
the cir program. Last but not least, the ir graph representing the optimized cir
algorithm is unparsed to C code.
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Figure 3.1:Program generator architecture for our small
multigrid solver
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3.2 Signal Processing Language

The implementation of spl is split into two parts: a representation of the matrices
found in Table 2.1, and the corresponding operators to manipulate them. We start
with matrices.

3.2.1 Matrices

Superclass SPL As mentioned earlier, Scala adheres to the object-oriented programming paradigm.
Hence, every spl matrix is naturally represented as a regular Scala class that
derives from a common abstract superclass SPL:

sealed abstract class SPL(val rows: Int, val cols: Int) {
require(rows > 0 && cols > 0)
def this(n: Int) = this(n, n) }

It captures two significant properties of a matrix, namely its number of rows rows
and columns cols. Furthermore, it also enforces that these are only set with
sensible values (i.e. positive integers to represent a dimension). For this purpose,
the require function is used, which is part of the Scala standard library. It throws
an IllegalArgumentException if the given condition is not satisfied. As a result,
an instance of SPL will not be constructed in case of a failing requirement. We
also define a secondary constructor to make the creation of quadratic matrices
more convenient. As we are going to perform (structural) pattern matching on
matrices, we declare SPL to be sealed. This causes that specializations of SPL can
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only be added in the same source file containing SPL itself and therefore enables
the compiler to issue a warning in case of non-exhaustive patterns [11, p. 323].

Concrete SubclassesIn similar fashion, every subclass of SPL introduces its own additional properties
and invariants. For example, the matrix MGSolvePDEn,ω,r,m is modeled by class
MGSolvePDE(n, omg, r, m). It makes sure that the number of iterations r for the
Richardson smoother and the number of multigrid cycles m are both positive.
Moreover, the size n of the square grid must be exactly one less than a power of
two, or more formally, be part of the set

N := {2k − 1 | k ≥ 2}= {3,7, 15,31, . . .}.

The latter condition can be tested efficiently with a bit of bit-twiddling. In binary,
every n = 2k − 1 ∈ N is composed solely of k occurrences of the digit 1. Its
successor n+ 1 starts with a leading 1, followed by nothing else but k times the
digit 0. Hence, taking the bitwise logical conjunction of n and n+ 1 yields the
number 0.

n = 2k − 1 ≃
k times
︷ ︸︸ ︷

111 . . . 111
n+ 1 = 2k ≃ 1000 . . . 000

n & (n+ 1) = 0000 . . . 000

If the result is not 0 we are dealing with an undesired number that is not element
of N . In Scala, this constraint is expressed as

require((n > 2) && (n & (n + 1) == 0))

Putting it all together, we obtain the following code:

case class MGSolvePDE(private val n: Int, omg: Double, r: Int, m: Int)
extends SPL(n * n) {

require((n > 2) && (n & (n + 1) == 0) && (r > 0) && (m > 0)) }

All other spl matrices are represented analogously. They are listed in Table 3.1
together with the corresponding SPL subclass. The next step is to define operations
on SPL to allow for actual useful work with the dsl.

3.2.2 Operators

The usual object-oriented approach suggests that every operator should be en-
coded as instance method of SPL. This would allow us to compute complex
expressions, such as breakdowns, statically during generator time. However, this
implementation falls short of the fact that the input vector is only dynamically
available, i.e. during the execution of a program that is yet to be generated. Hence,
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Table 3.1:Mapping of spl matrices to their appropriate SPL counterparts. The expressions above the thin line are
non-terminal, whereas the matrices below that line are terminal.

spl matrix SPL subclass rows × columns

MGSolvePDEn,ω,r,m MGSolvePDE(n: Int, omg: Double, r: Int, m: Int) n2 × n2

MGCyclen,ω,r MGCycle(n: Int, omg: Double, r: Int) 2n2 × 2n2

CGCn,ω,r CGC(n: Int, omg: Double, r: Int) 2n2 × 2n2

CoarseErrorn,ω,r CoarseError(n: Int, omg: Double, r: Int) n2 × 2n2

Interpolaten Interpolate(n: Int) n2 × n2

Scattern Scatter(n: Int) n2 × (n− 1)2/4

Solven,ω,r Solve(n: Int, omg: Double, r: Int) (n− 1)2/4 × (n− 1)2/4

Gathern Gather(n: Int) (n− 1)2/4 × n2

Residualn Residual(n: Int) n2 × 2n2

Richardsonn,ω,r Richardson(n: Int, omg: Double, r: Int) 2n2 × 2n2

ResidueLaplacen,ω,r ResidueLaplace(n: Int, omg: Double) n2 × n2

Sr×c
b,s S(rows: Int, cols: Int, base: Int, stride: Int) r × c

Gr×c
b,s G(rows: Int, cols: Int, base: Int, stride: Int) r × c

In I(n: Int) n × n

0n Zero(n: Int) n × n

Tridiagn(a, b, c) Tridiag(n: Int, a: Double, b: Double, c: Double) n × n

the resulting vector can only be computed dynamically as well. Consequently, one
must adapt the implementation for two separate stages of execution.

Staged Operators We employ lms for staging. For this reason, the correct approach is to define
operators in such a way that expressions of type Rep[SPL] are processed. As
explained in Sections 2.2 and 2.3, the common workflow is to use external
functions instead of ordinary methods, and to make a sharp distinction between
interface and implementation.

SPL Interface In accord with these principles, matrix operations are declared in a separate
interface trait SPLOps.

trait SPLOps extends Base { ... }

It mixes in the obligatory Base trait which literally serves as a base for every
custom dsl. Subsequently, for every operator that is to be used in an spl program,
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a corresponding infix function is provided. For example, matrix addition + is
realized as follows:

def infix_+(lhs: Rep[SPL], rhs: Rep[SPL])
(implicit pos: SourceContext): Rep[SPL]

Besides the two staged matrix expressions lhs and rhs, the operator also requires
an implicit SourceContext in a separate parameter list, making infix_+ a curried
function. The latter argument, however, is passed automatically by the compiler
so that clients need not be concerned with providing it themselves. Hence,
using the partially applied function lhs + rhs in client code suffices. Implicit
parameters entail quite a bit of syntactic overhead and they only portray a minor
implementation detail. For this reason, they are tacitly omitted from now on.

Internal AliasesIn order to achieve even looser coupling between interface and implementation,
we introduce an internal alias for every matrix operation, for instance:

def infix_+(lhs: Rep[SPL], rhs: Rep[SPL]): Rep[SPL] = spl_plus(lhs, rhs)
protected def spl_plus(lhs: Rep[SPL], rhs: Rep[SPL]): Rep[SPL]

The name infix_+ is intended for use in dsl programs, whereas spl_plus is
used in the program generator only, hence the protected modifier to hide it from
clients. This design allows us to change the syntax of operators in only one place
without affecting the rest of the generator’s code base.

Matrix addition exemplifies the general implementation strategy which also
applies to all other operators. Table 3.2 summarizes which operators are available
in spl programs.

Operator PrecedenceThere is one important note to make. When using external functions such
as infix_+ or infix_* in infix notation, Scala’s usual rules for operator prece-
dence [11, ch. 5.9] apply. For example, the symbol * has a higher priority than +.
This means that for an spl expression, in which A, B and C are suitable matrices,
the following holds:

A + B * C == A + (B * C) == infix_+(A, infix_*(B, C))

Syntactic SugarWhat we have achieved so far is that we can easily construct new SPL matrices,
and we can use the operators in a natural and idiomatic way. Though, when given
two matrices lhs and rhs of plain type SPL, we still have to perform the lifting to
Rep[SPL] ourselves, using the unit function. For example, consider the sum of
lhs and rhs:

unit(lhs) + unit(rhs)

This poses a slight inconvenience to clients, hence one may add additional over-
loaded variants for every operator and perform the conversion explicitly within
their body:
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Table 3.2: Supported matrix operations in spl programs. Placeholders for matrices are denoted by uppercase letters,
whereas lowercase letters stand for scalar values.

Operation Symbol Public SPL name Internal SPL name

Addition of matrices L + R infix_+(L, R) spl_plus(L, R)

Multiplication of matrices L · R infix_*(L, R) spl_times(L, R)

Multiplication of a scalar with a matrix s · M infix_*>(s, M) spl_stimes(s, M)

Tensor product of matrices L ⊗ R infix_tensor(L, R) spl_tensor(L, R)

Horizontal stacking of matrices [L | R] infix_hs(L, R) spl_hstack(L, R)

Vertical stacking of matrices
�

T
B

�

infix_vs(T, B) spl_vstack(T, B)

Exponentiation of a matrix
∏n−1

i=0 M infix_pow(n, M) spl_power(n, M)

def infix_+(lhs: SPL, rhs: Rep[SPL]) = spl_plus(unit(lhs), rhs)
def infix_+(lhs: Rep[SPL], rhs: SPL) = spl_plus(lhs, unit(rhs))
def infix_+(lhs: SPL, rhs: SPL) = spl_plus(unit(lhs), unit(rhs))

Not only is this approach tedious but it also obscures the implementation of the
generator with uninteresting and redundant details. Hence, an easier and more
elegant solution is to provide an implicit conversion function instead:

implicit def liftSPL(i: SPL): Rep[SPL] = unit(i)

This is all it takes. Now, it is no longer necessary to call unit explicitly, the
compiler will insert the appropriate call implicitly for us.

SPL Implementation Moving on with the implementation, trait SPLOpsExp gives a concrete definition
of SPLOps as follows:

trait SPLOpsExp extends SPLOps with BaseExp { ... }

Notice that BaseExp is also mixed in so that the members inherited from Base are
well-defined. Concerning the implementation of matrix operators, the idea is to
create a new composite node in the ir whenever the corresponding function is
invoked. We provide specific nodes for every kind of operator. When analyzing the
ir, this helps us to accurately trace back which operations have been performed
and will provide us with viable information when applying domain-specific op-
timizations. As an example, matrix addition spl_plus is represented by class
Plus.

trait SPLOpsExp extends SPLOps with BaseExp {
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case class Plus(lhs: Exp[SPL], rhs: Exp[SPL]) extends Def[SPL]
/* additional inner classes for the remaining operators */ }

Plus stores the left and right argument of the addition, which are now of type
Exp[SPL] instead of Rep[SPL]. For the compiler, this change is insignificant
because Exp[T] simply aliases Rep[T]. But for humans, it serves as a gentle
reminder that we are now working on the implementation part of spl. Since Plus

models a composite operation, it extends Def[SPL].
Avoiding illegal expres-
sions

However, a crucial point is to check whether it is legal to perform a composite
operation in the first place. The operands must be compatible with each other, that
is to say, their dimensions must match. This decision cannot be made in general,
but one has to take the currently considered operator into account. For example,
matrix addition requires its left and right argument to have the same row and
column dimension, while matrix multiplication demands the left expression to
have same number of columns as the number of rows of the right expression.

Refining the irThis concern highlights the need for an easy way of accumulating and extracting
domain-specific knowledge in the ir. Thus, the specialization SPLDef of Def[SPL]
is created:

trait SPLDef extends Def[SPL] {
def rows: Int
def cols: Int }

It stores the row and column dimension of a composite expression directly in the
corresponding ir node, making it readily available at our fingertips. Otherwise, we
would have to retrieve this information from atoms and recompute the dimensions
over and over again. Speaking of retrieval, we also write an auxiliary function
splDim which tells the dimensions of a given spl expression, returning them as a
pair of rows and columns.

def splDim(arg: Exp[SPL]): (Int, Int) = arg match {
case Const(spl: SPL) => (spl.rows, spl.cols)
case sym: Sym[_] => sym match {

case Def(s: SPLDef) => (s.rows, s.cols)
case _ => throw new IllegalArgumentException }

case _ => throw new IllegalArgumentException }

splDim demands an ir node of type Exp[SPL], which is either a Const or a Sym. In
the former case, Const is just a wrapper around an SPL instance spl whose fields
rows and cols can be accessed directly. In the latter case, the pattern extractor
Def is used to find the concrete instance s of SPLDef with which the symbol sym is
associated. Afterwards, the dimensions can be extracted from s. In all other cases,
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the given node does not represent an spl expression and we have no choice but
to throw an IllegalArgumentException.

After that, the implementation of all composite nodes, like Plus, needs to be
adapted to the recent changes:

class Plus(val lhs: Exp[SPL], val rhs: Exp[SPL],
override val rows: Int, override val cols: Int) extends SPLDef

We now extend the more refined SPLDef instead of Def[SPL]. For this reason,
the constructor of Plus takes two more arguments (rows and cols). Both of
them are actually defined as fields (hence the val keywords) that override the
corresponding parameterless methods declared in SPLDef (hence the override

modifiers). This is common practice in Scala and naturally arises from the so
called uniform access principle [11, p. 817]. It states that both fields and methods
should be accessible via a uniform syntax so that clients are unable to tell how
services are implemented (as computation or via storage).

Ensuring Correctness Returning to the original goal of avoiding illegal expressions, what still remains
to be done is to validate the dimensions before actually creating a composite node.
In that respect, the primary constructor of Plus is declared private:

class Plus private (val lhs: Exp[SPL], val rhs: Exp[SPL],
override val rows: Int, override val cols: Int) extends SPLDef

This causes that the constructor can only be accessed from within the class itself or
by its companion object [11, ch. 4.3], which is created in the next step. Remember
that a class and its companion object share the same name, e.g. Plus in this case.
Inside the object Plus, a factory method with the name apply is placed. The idea
is to task apply with the responsibility of checking the dimensions before passing
the arguments to the constructor of class Plus:

object Plus {
def apply(lhs: Exp[SPL], rhs: Exp[SPL]): Plus = {

val ((rowsL, colsL), (rowsR, colsR)) = (splDim(lhs), splDim(rhs))
require(rowsL == rowsR && colsL == colsR)
new Plus(lhs, rhs, rowsL, colsL) } }

The factory method extracts the dimensions from the given left-hand lhs and
right-hand argument rhs using the prior defined function splDim. Afterwards,
it checks whether matrix addition of lhs and rhs is possible by comparing their
dimensions. If and only if the matrices turn out to be compatible with each other,
apply passes lhs and rhs, as well as the correct row and column dimension to
the constructor of class Plus.
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Table 3.3: Summary of matrix operators and their appropriate ir nodes. By convention, uppercase letters denote
matrices and lowercase ones stand for scalars. The values rowsL and colsL refer to the number of rows
and columns of a matrix L. The same holds for rowsR and colsR for a matrix R, as well as rows and cols
for the matrix M.

Operation ir node class Constraints

spl_plus(L, R) Plus(L, R, rowsL, colsL) (rowsL, colsL) == (rowsR, colsR)

spl_times(L, R) Times(L, R, rowsL, colsR) colsL == rowsR

spl_stimes(s, M) ScalarTimes(s, M, rows, cols) —

spl_tensor(L, R) Tensor(L, R, rowsL*rowsR, colsL*colsR) —

spl_hstack(L, R) HStack(L, R, rowsL, colsL + colsR) rowsL == rowsR

spl_vstack(T, B) VStack(T, B, rowsL + rowsR, colsL) colsL == colsR

spl_power(n, M) Power(n, M, rows, cols) rows == cols && n > 0

For the remaining ir nodes other than Plus, the modus operandi is analogous.
Table 3.3 summarizes spl operators, their corresponding ir node classes and the
constraints that need to be satisfied.

More on Syntactic SugarScala treats methods named “apply” specially [11, p. 423]. When constructing
new instances of class Plus, it is possible to use the notation Plus(lhs, rhs) as a
shorthand for Plus.apply(lhs, rhs). It is worth emphasizing that clients may
only invoke the provided factory method. Calling the constructor explicitly via the
new keyword, i.e. new Plus(lhs, rhs, rows, cols), is forbidden as it is declared
private.

Structural Deconstruc-
tion

While apply is used to create new instances of a class, its dual unapply serves
the purpose of taking them apart again. It suggests itself to turn the companion
object of ir node classes, such as Plus, into an extractor for pattern matching [11,
ch. 26.2] by adding an appropriate definition of unapply:

object Plus {
def unapply(arg: SPLDef): Option[(Exp[SPL], Exp[SPL], Int, Int)] =

arg match {
case p: Plus => Some((p.lhs, p.rhs, p.rows, p.cols))
case _ => None }

def apply(lhs: Exp[SPL], rhs: Exp[SPL]): Plus = ... /* as before */ }

The function takes an ir node arg of type SPLDef. If arg conforms to the type Plus,
its sequence of constructor arguments is returned, wrapped in Some. Otherwise,
None is returned. Therefore, it is possible to inspect the structure of an ir node by
the help of pattern matching, for example:
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arg match {
case Plus(lhs, rhs, rows, cols) => // calls Plus.unapply(arg)
/* possibly more patterns */ }

Notice the relationship between the constructor of Plus and unapply:

arg == Plus.unapply(arg) match {
case Some(lhs, rhs, row, col) => new Plus(lhs, rhs, row, col) }

and

Plus.unapply(new Plus(lhs, rhs, row, col)) == Some(lhs, rhs, row, col)

Putting It All Together Last but not least, we have to wire operator functions and their respective ir
nodes together, as demonstrated by matrix addition:

protected def spl_plus(lhs: Exp[SPL], rhs: Exp[SPL]): Exp[SPL] =
Plus(lhs, rhs)

Simply put, every matrix operation yields an instance of the corresponding com-
posite node. However, there is more to it than meets the eye. The ir may only
consist of atomic nodes since type Rep[T] = Exp[T]. Therefore, spl_plus ought
to return an Exp[SPL] but the given node Plus is a composite expression of type
Def[SPL]. Therefore, it is imperative to convert definitions to symbols within
the body of operator functions such as spl_plus. Recalling Section 2.2.3, we
know that the implicit function toAtom will kick in to automatically accomplish
the desired conversion for us. Under the hood, the Scala compiler changes the
code given above into the following, inserting an appropriate call to toAtom:

protected def spl_plus(lhs: Exp[SPL], rhs: Exp[SPL]): Exp[SPL] =
toAtom(Plus(lhs, rhs))

This fact is important, because not only does this fix the type error, but it also
establishes the correspondence between the evaluation order of the program
generator and the generated program: “at the point where the generator calls
toAtom, the composite definition is turned into an atomic value [. . . ], i.e., its
evaluation is recorded now and played back later in the same relative order with
respect to others” in the dsl program. [7, p. 59]

This concludes the implementation of spl. We can now turn our attention to
the implementation of breakdown rules.

3.3 Breakdown Rules

Thanks to our efforts before, the implementation of spl breakdown rules is simple.
First, a new trait Breakdowns is created to house the rules.
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trait Breakdowns { this: SPLOps => ... }

In the spirit of modular mix-in composition, we use the self-type this: SPLOps =>

to denote that we require the methods defined in the dsl interface SPLOps.
A Top-Down ParserNext, a function breakdown is defined inside Breakdowns. It implements the

rewriting system specified in Table 2.1. The general working principle is as
follows [6, p. 1921]: given an arbitrary initial SPL matrix s, breakdown tries to
decompose s into a semantically equivalent, but structurally different expression
consisting of smaller (i.e. less complex) matrices, using one of the parameterized
breakdown rules. The small matrices in the resulting expression may in turn be
further expanded by applying one of the rules again. This strategy leads to a
recursive divide-and-conquer approach that fully expands the expression s until it
only consists of terminals. Note that, in our case, there is at most one matching
rewrite rule to accomplish one recursive step in the breakdown. But usually, there
are higher degrees of freedom involved. This means that several different rules
may match the given input or there may even be different parameterizations to
the very same rule. In this situation, one needs a mechanism to decide which rule
to use next, i.a. autotuning or machine learning.

For the remainder of this section, we exemplify the implementation of the break-
down rule Solven,ω,r . Out of all the rules in Table 2.1, it is the most interesting
one to consider due to its complexity: it distinguishes between a base case and a
recursive case.

SignatureBefore we start, let us think about the function signature of breakdown. A break-
down rule is made of two parts: a non-terminal matrix to the left of the arrow→
and a corresponding expansion to the right of the arrow. Expressions on the left
such as Solven,ω,r or MGSolvePDEn,ω,r,m are static in nature. Hence, the input
of breakdown should be of plain type SPL. Being fed with this input, breakdown
is supposed to return a fully expanded expression. The result represents code
that is to be executed during a later program stage. Therefore, it makes sense to
choose Rep[SPL] as result type of breakdown. This leads to the following function
declaration:

def breakdown(s: SPL): Rep[SPL]

ImplementationNow that we are provided with the scaffolding, it is time to flesh out the body
of breakdown. The key is to inspect the given argument s in a pattern match. The
matrix Solven,ω,r is represented by class Solve(n, omg, r). As there are two cases
in this breakdown rule, we need two patterns in the pattern match as well.
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Base Case Let us first tackle the implementation of the base case, which has a direct
resolution:

Solven,ω,r →
1
4

I1, n= 3.

The corresponding Scala code looks similar:

case Solve(3, _, _) => 0.25 *> I(1)

The pattern Solve(3, _, _) captures the condition of applicability. Not only
do we need an instance of class Solve but its dimension n must also equal the
value 3. Since the two fields omg and r are not referenced on the right-hand side
of the rule, it is not worth assigning special names to them. So, the wildcard
character “_” is used instead. Finally, the expression 0.25 *> I(1), corresponding
to 1

4 I1, is returned. There are two important points to notice. First, the Scala
code on the right-hand side of a rule is fully-fledged spl code. We may use
arbitrary SPL matrices, such as the identity I(1), and operators, such as the scalar
multiplication *>. Second, there is no need to explicitly lift static values, as the
implicit conversion unit will automatically take care of this. Hence, writing
0.25 *> unit(I(1)) is indeed formally correct but also unnecessarily noisy.

Recursive Case The recursive case

Solven,ω,r → [I((n−1)/2)2 | 0((n−1)/2)2] ·MGCycle(n−1)/2,ω,r ·
�

0((n−1)/2)2

I((n−1)/2)2

�

, n> 3

is essentially implemented in the same fashion:

case Solve(n, omg, r) if n > 3 =>
val dim = ((n - 1) / 2) * ((n - 1) / 2)
val left = I(dim) hs Zero(dim)
val right = Zero(dim) vs I(dim)
val mcgycle = breakdown(MGCycle((n - 1) / 2, omg, r))
left * mcgycle * right

There are subtle, but significant differences. For instance, the guard if n←-
> 3 is used in the pattern to express that only dimensions greater than 3 are
allowed. Moreover, breakdown calls itself recursively in the second last line to
further expand the expression MGCycle((n-1)/2, omg, r) before returning the
final result.

Abstraction Without Re-
gret

It is important to emphasize that arbitrary Scala features may be used in spl
code without affecting the generated code. The abstraction and runtime overhead
of such language features will have been translated away after the first program
stage. For example, instead of calculating the static dimension ((n− 1)/2)2 inline
multiple times, we assigned the result to a meaningful local variable dim, which
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we could then reuse. In the generated code, dim will be replaced with the actual
result of its evaluation.

The complete definition of breakdown is given below:

trait Breakdowns { this: SPLOps =>
def breakdown(s: SPL): Rep[SPL] = s match {

case Solve(3, _, _) => 0.25 *> I(1)
case Solve(n, omg, r) if n > 3 => ... // as before
// further cases are placed here, but omitted for simplicity
case _ => s /* No rule applicable */ } }

For every rule in Table 2.1, there is one corresponding case distinction (only the
two cases of Solven,ω,r are listed). Due to the inner workings of pattern matching,
specialized patterns need to be placed before more general ones. Finally, to handle
expressions for which no breakdown exists, the wildcard pattern case _ => s is
added as last rule. It matches any given expression and simply returns the lifted
variant of the input. This concludes the implementation of breakdown rules.

3.4 Applying Domain-Specific Optimizations

Performance IssuesAs seen in Section 3.2, matrix operators generally insert new nodes in the ir
whenever they are invoked. Yet, this behavior seems overly eager. For instance,
consider multiplications with the identity or zero matrix, such as An×n · In or
0n · Bn×n. Even though A and B are merely unknowns at this point, we do already
know the result of the multiplication, even before the dsl program is run: it is
An×n or 0n, respectively. This stems from fundamental algebraic rules, such as In
being the neutral element with regard to matrix multiplication.

Remedy: Eliminating
Operations

The general mindset is that the more operations a program has to perform, the
longer it takes to complete its execution [3, p. 133]. Since we strive for high
performance, it is advantageous to reduce the amount of unnecessary operations
as much as possible. With regard to the small example above, this means that
instead of registering a superfluous composite operation with lms, which causes
the creation of several ir nodes, we could simply insert a single atomic node.
This is safe because the result of the calculation is already fully determined
during generator time and therefore the semantics of the generated program
are not altered in any way. Notice that we cannot rely on the Scala compiler or
lms to apply these performance tricks for us because neither of them have the
domain-specific knowledge to do so. Only we do.

Our task now is to identify the cases where such optimizations are possible, as
outlined by the example given above.
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Performance-Optimized
spl

Proceeding with the implementation, the proper place to put these optimizations
is a separate trait SPLOpsExpOpt that specializes SPLOpsExp:

trait SPLOpsExpOpt extends SPLOpsExp { ... }

This way, it is still possible to choose whether it should be made use of the
optimizations, just by mixing in one trait or the other. For example, it is imaginable
to tailor certain optimizations for specific target platforms. In such cases, it is
best to provide a separate trait which is mixed in only when necessary. Figure 3.2
illustrates the current architecture of spl.

SPLOps

SPLOpsExp

SPLOpsExpOpt

Figure 3.2: spl archi-
tecture

Smart Constructors Next, a specialization of each matrix operation is created, thus overriding the
appropriate function in the super trait. The idea is that every such specialization
implements an optimized version of the corresponding operator. In order to do
so, it is mandatory to inspect the given arguments and react accordingly. In other
words, we create a smart constructor for the ir nodes. For instance, to avoid
multiplications with the identity or zero matrix:

override protected def spl_times(lhs: Exp[SPL], rhs: Exp[SPL]) =
(lhs, rhs) match {

// multiplications with the zero matrix
case (Const(Zero(_)), _) => lhs
case (_, Const(Zero(_))) => rhs
// multiplications with the identity matrix
case (Const(I(_)), _) => rhs
case (_, Const(I(_))) => lhs
// all other cases
case _ => super.spl_times(lhs, rhs) }

If lhs or rhs happens to be the zero matrix, this particular argument is yielded. If
any of them corresponds to the identity matrix, the other argument is returned.
This way, the construction of superfluous nodes in the ir is prevented right from
the beginning. Note that the pattern extractor Const needs to be employed in
order to access the wrapped SPL matrix. In all other cases, i.e. if neither of the
arguments match the zero or identity matrix, we delegate to the implementation
of spl_times in the super trait, which unconditionally produces a composite
node:

case _ => super.spl_times(lhs, rhs)

Although tempting, it is important not to write lhs * rhs here, since this notation
is merely syntactic sugar for spl_times in the current trait SPLOpsExpOpt and not
in the super trait. Hence, we would end up with an infinite recursion.
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Maintaining CorrectnessThis approach is simple, yet effective. However, we still face the problem of
avoiding illegal expressions. At the moment, the result of performing the im-
possible multiplication I(5) * Zero(1) is Zero(1) because it matches the second
pattern of spl_times. For the sake of correctness, there is no choice but to
validate the dimensions a second time, specifically for the optimizing rewrites.

In Section 3.2, the function splDim was used to find the dimensions of a given
spl expression. Yet, this function seems out of place in a pattern match. It is more
idiomatic to access the dimensions via a pattern extractor. For this purpose, the
object SPLExp is introduced in trait SPLOpsExp:

object SPLExp {
def unapply(arg: Exp[SPL]): Option[(Int, Int)] = arg match {

case Const(s: SPL) => Some((s.rows, s.cols))
case s: Sym[_] => s match {

case Def(x: SPLDef) => Some((x.rows, x.cols))
case _ => None }

case _ => None } }

The definition of unapply is almost identical to splDim. The only difference is that
instead of returning a pair directly, the result is now an optional value, represented
by Scala’s Option monad. Thus, a pair of dimensions is wrapped in Some, and None

is returned as opposed to throwing an exception. We simplify implementation of
splDim:

protected def splDim(arg: Exp[SPL]): (Int, Int) = arg match {
case SPLExp(rows, cols) => (rows, cols)
case _ => throw new IllegalArgumentException }

We may now correct the implementation of spl_times by means of SPLExp
and guards, as exemplified here:

override protected def spl_times(lhs: Exp[SPL], rhs: Exp[SPL]) =
(lhs, rhs) match {

case (Const(Zero(n)), SPLExp(rows, cols))
if rows == n && cols == n => lhs // 0n ·Bn×n = 0n

case (SPLExp(_, cols), Const(I(n))
if cols == n => lhs // An×n · In = A

/* more patterns... */ }

Note that, in the first case, it is imperative to test whether both row and column
dimension of the zero matrix and the right-hand argument equal as it is only
possible to encode zero matrices of quadratic shape.

TransformersAlternatively, one could also put lms’ transformer infrastructure to work instead
of smart constructors. The idea is to unconditionally create ir nodes first and



34 Chapter 3 Implementation

to analyze the resulting ir afterwards, while looking out for the opportunity to
remove unnecessary nodes, possibly in several traversals. This strategy eliminates
the need for duplicate dimension checks and was indeed employed in the SpiralS
prototype [3, p. 130]. However, in retrospect it was concluded that the usage of
“transformations that match and replace a whole subgraph of a given dsl [. . . ]
proved to be cumbersome. [. . . ] The lms transformers are not designed for this
use case, as they work in a peephole fashion. Matching on a subgraph, or having
conditional rewrites that depend on some state further up in the ir representation
inherently is accompanied by large code fragments” [4, pp. 53 sq.]. For this reason,
transformers are not considered in this work and the duplication of small code
fragments is accepted as the lesser of two evils.

Further Optimizations The previous example demonstrated how to apply algebraic simplifications to
spl code, but the same implementation technique can also be used for other
kinds of optimizations. For example, the addition of tridiagonal matrices can be
executed pointwise on the entries of corresponding diagonals:

Tridiagn(a, b, c) + Tridiagn(d, e, f ) = Tridiagn(a+ d, b+ e, c + f ).

This equation translates into the following Scala code:

override protected def spl_plus(lhs: Exp[SPL], rhs: Exp[SPL]) =
(lhs, rhs) match {

case (Const(Tridiag(n, a, b, c)), Const(Tridiag(m, d, e, f)))
if n == m => Tridiag(n, a+d, b+e, c+f)

case _ => super.spl_plus(lhs, rhs) }

This technique is commonly referred to as constant folding [7, p. 68], i.e. turning
multiple dynamic constants into a single one. Notice that, even though the matri-
ces themselves are dynamic, the entries on their diagonals are not because they
are of plain type Double, not Rep[Double]. Therefore, the results of performing
the computations a + d, b + e and c + f are already obtained during generator
time and will be inlined as constants in the generated code, which is an example
of precomputation.

Similar optimization potential can be identified for the tensor product, for
example:

In⊗ Im = In·m and 0n⊗Bn×n = 0n·m,

These rules are encoded as follows:

override protected def spl_tensor(lhs: Exp[SPL], rhs: Exp[SPL]) =
(lhs, rhs) match {

case (Const(I(n)), Const(I(m))) => I(n * m)
case (Const(Zero(n)), SPLExp(rows, cols))
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if rows == cols => Zero(n * rows)
case _ => super.spl_tensor(lhs, rhs) }

Encoding Domain-
Specific Knowledge

Attentive readers may rightfully point out that zero and identity matrices are
just special kinds of tridiagonal matrices, i.e.

0n = Tridiagn(0, 0, 0) and In = Tridiagn(0,1, 0).

Yet, a computation like Tridiag(3, 1, 2, 3) + I(3) is currently not optimized by
spl_plus. This is because the pattern extractor Tridiag only matches instances
of class Tridiag, and not of class I or Zero. To solve this problem, one could add
additional patterns in the body of spl_plus (and in all other smart constructors,
where necessary), such as

case (Const(Tridiag(n, a, b, c)), Const(I(m)))
if n == m => Tridiag(n, a, b + 1, c)

case (Const(Tridiag(n, a, b, c)), Const(Zero(m)))
if n == m => Tridiag(n, a, b, c)

However, there is a less obscuring and more scalable approach, namely modifying
the pattern extractor Tridiag itself. Just like any other subclass of SPL, Tridiag is
declared as case class which instructs the Scala compiler to automatically create
a companion object with suitable apply and unapply methods, amongst others.
But it is still possible to define one’s own implementation for these methods. We
just have to add an object Tridiag to the same source file in which class Tridiag
is defined:

object Tridiag {
def unapply(s: SPL): Option[(Int, Int, Int, Int)] = s match {

case t: Tridiag => Some(t.n, t.a, t.b, t.c)
case i: I => Some(i.n, 0, 1, 0)
case z: Zero => Some(z.n, 0, 0, 0)
case _ => None } }

We just provided the program generator with valuable domain-specific knowledge,
therefore allowing it to treat zero and identity matrices as special kinds of tridiag-
onal matrices. In other words, the pattern extractor Tridiag now also matches
instances of I and Zero, e.g.:

I(3) match { case Tridiag(n,a,b,c) => (n,a,b,c) } == (3,0,1,0)
Zero(7) match { case Tridiag(n,a,b,c) => (n,a,b,c) } == (7,0,0,0)

Therefore, we need not change the implementation of any operators and we
achieve the desired optimizations, too. Consequently, the computation

Tridiag(3, 1, 2, 3) + I(3)
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Table 3.4:Optimizing rewrites
for spl expressions. The sub-
script of A and B denotes
the (square) matrix size and
s refers to a real number as
scalar value. The symbol Tn
is used as a shorthand for
Tridiagn.

Operation Optimizations

Addition

0n + Bn = Bn

An + 0n = An

Tn(a, b, c) + Tn(d, e, f ) = Tn(a+ d, b+ e, c + f )

Matrix Multiplication

In ·Bn×m = Bn×m

An×m · Im = An×m

0n ·Bn = 0n

An · 0n = 0n

0n ·Bn = 0n

Tn(0, a, 0) · Tn(0, b, 0) = Tn(0, ab, 0)

Scalar Multiplication

0 · Bm = 0m

1 · Bm = Bm

s · Tn(a, b, c) = Tn(sa, sb, sc)

Tensor Product

In⊗ Im = Inm

0n⊗ Bm = 0nm

An ⊗ 0m = 0nm

is now simplified to Tridiag(3, 1, 3, 3). Further custom pattern extractors may
be added, in particular for I and Zero, but their implementation is omitted due to
space limitations.

Note that these extractors behave predictably. Internally, the unapply method
is invoked exactly once per pattern match. Moreover, the decision which pattern
matches is made completely deterministic, given that unapply is implemented
sensibly. Another benefit of extractors is that all domain-specific information is
listed in a central location (within the body of unapply) and not scattered across
the implementation of several operators.

Classic Compiler Opti-
mizations

All other optimizing rewrites, as summarized by Table 3.4, are implemented
analogously. On top of that, lms’ general optimizations [7, ch. 11.1], consisting
of cse, dead code elimination (dce) and code motion, are also enabled without
the need for any additional work by the programmer. These are showcased in
Section 4.2.
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Numerical ChallengesOverall, we resort to a rich set of compiler optimizations. Yet, there is still room
for improvement, especially with regard to precomputation or constant folding.
Since spl has been developed with a mathematical domain in mind, it is important
to consider the numerical flaws inherent to floating-point arithmetic. Currently,
we rely on Scala’s Double data type to represent real numbers x ∈ R, which is
problematic. For example, the entries on the diagonals of tridiagonal matrices are
Doubles. Let us assume a mathematician wants to compute

Tridiag3(0,
p

2, 0) · Tridiag3(0,
p

2/2,0).

Therefore, an spl programmer could write the following:

Tridiag(3, 0, math.sqrt(2), 0) * Tridiag(3, 0, math.sqrt(2) / 2, 0)

Ideally, the program generator replaces this entire line of code with the constant
I(3) as

p
2 ·
p

2/2 = 1 and Tridiag3(0, 1, 0) = I3. But it is unable to do so. A short
experiment in the Scala interpreter demonstrates the issue:

scala> math.sqrt(2)
res0: Double = 1.4142135623730951
scala> res0 * res0
res1: Double = 2.0000000000000004
scala> res1 / 2
res2: Double = 1.0000000000000002

The problem is that

math.sqrt(2) * math.sqrt(2) == 2.0000000000000004 != 2

Hence, the result is Tridiag(3, 0, 1.0000000000000002, 0) and not the actual
I(3). Tiny numerical offsets like this one are troublesome since they falsify cal-
culation results ever so slightly, which may accumulate to large errors over time.
Also, they prevent potential optimizations from being applied in subsequent com-
putations. For instance, multiplications with the identity matrix are superfluous
and can be left out, but this is not the case for said tridiagonal matrix. In summary,
it is best not to use Doubles.

Instead, we rely on a specialized numeric library called Spire1. It provides the
useful data type Real, which implements “computable real numbers” by represent-
ing them via “a function from a desired precision to the closest approximate value”,
which mitigates the numerical problems discussed above, since computations are
carried out symbolically, when possible. However, this change also requires us
to adapt the current implementation of numerous SPL subclasses, operators and

1 https://github.com/non/spire

https://github.com/non/spire
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ir nodes. Real integrates quite well into the Scala language so that changes are
restricted to merely replacing the type Double with Real where necessary, for
example

case class Tridiag(private val n: Int, a: Real, b: Real, c: Real)
extends SPL(n) { /* ... */ }

def infix_*>(n: Real, spl: Rep[SPL]): Rep[SPL] = spl_stimes(n, spl)
override protected def spl_stimes(n: Real, spl: Exp[SPL]): Exp[SPL] =
ScalarTimes(n, spl)

class ScalarTimes private (val n: Real, val spl: Exp[SPL],
override val rows: Int, override val cols: Int) extends SPLDef

And so on. One may also want to define implicit conversions of Ints and Doubles
to their Real counterparts in trait SPLOps:

implicit def int2Real(i: Int): Real = Real(i)
implicit def double2Real(d: Double): Real = Real(d)

Scala’s “native” data types Int and Double profit from literal value syntax. Implicit
conversions enable the same benefits for custom data types, like Real, which
allows for high convenience and compatibility.

3.5 An Internal Representation of the Programming
Language C

Motivation So far, we have only worked with spl, a matrix formalism that allows us to
express complex computations on a high level of abstraction. As laid out in
Section 3.4, this representation is also well suited to apply high-level domain-
specific optimizations, which helps for performance. But eventually, we would
like to execute spl programs on actual hardware, which usually requires a much
lower level of abstraction. To bridge this gap, spl code needs to be translated
into a semantically equivalent program that operates on a sufficiently low level of
abstraction, i.e. “closer to the machine”. Here, the target language of choice is C,
which is often considered a “portable assembly language”.

Representing C Code While it is possible to directly unparse the ir produced by an spl program to
C code, this would also mean to deliberately leave out the opportunity of applying
general low-level optimizations. Due to its high level of abstraction, spl is unfit for
the application of such low-level rewritings. This motivates the definition of a new
“intermediate” dsl which we call cir (C internal representation). In contrast to
spl, this particular dsl is intended as a means of representing code that operates
on the comparatively low abstraction level of the general purpose programming
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language C. Another crucial difference is that cir is not designed as user-facing
dsl. Users of the generator (such as mathematicians) may program directly in spl
but not in cir as the latter is meant for use within the program generator only.

InterfaceThe implementation of cir is analogous to spl, but requires less effort. First,
an interface trait CIR is created. lms comes with several ready-made dsl traits2

from which cir can be assembled. Each trait thereby represents a certain kind of
“functionality” to be made available in cir client code. In other words, we have
to explicitly white list language features by mixing in the corresponding traits. A
small subset of C already suffices for our purposes:
(a) complex spl computations on matrices are expressed in terms of rudimentary

arithmetic operations on numerical data types;
(b) spl vectors have no direct mapping as data type in C, hence the next best and

also most natural choice is to use arrays instead.
These considerations lead to the following interface definition:

trait CIR extends Base
with PrimitiveOps // Basic arithmetic required by NumericOps.
with NumericOps // More advanced arithmetic on numeric types.
with LiftPrimitives // Implicit conversions from Int to Rep[Int] etc.
with LiftNumeric // Automatically stages numeric expressions.
with Variables // Allows for use of (mutable) variables.
with LiftVariables // Automatically stages variables if needed.
with Effects // Enables operations with side effects.
with ArrayOps with SeqOps { // Supports arrays in the generated code.

def comment(msg: String): Rep[Unit] }

As usual, CIR extends lms’ Base trait to bring the Rep type constructor into scope.
Next, we only allow certain language features in cir code by mixing in the
appropriate traits, which are all of them already bundled by lms. In addition, a
custom function comment is provided. It creates a comment with the given string
msg as content in the generated code, which is helpful for both development and
debugging of the dsl. Its result type is Rep[Unit], which corresponds to void in
C code. Finally, to make CIR a non-userfacing dsl, we can use a Scala feature
known as “Scopes of Protection” [11, pp. 288–290] which allows for fine-grained
adjustment of visibility rules. The access modifiers private and protected can
be augmented with an additional identifier, i.a. denoting an enclosing package.
Assuming that the program generator is placed in the package spirals, we can

2 These traits are most often utilized to represent staged Scala code because lms has been developed
as msp framework for Scala, after all. But since the process of staging code is decoupled from
the act of generating code, the traits are general enough to model other target languages as well.
When unparsing, one just has to use C syntax instead of Scala syntax.
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restrict the visibility of CIR to the program generator by making the dsl “package
private”:

private[spirals] trait CIR extends ... // the rest as before

Unlike Java, Scala assumes the default visibility (that is, when no access modifier is
explicitly given) to be public. The syntax private[spirals] makes CIR accessible
only within the package spirals.

Integration of Real What was not mentioned yet is that a fair bit of boilerplate code is necessary to
enable support for Spire’s Real data type in cir code. The good news is that traits
like NumericOps do not hard code their underlying representation of numbers to
any particular data type, but rather rely on the general interface defined by Scala’s
Numeric type class. Hence, making Real an instance of Numeric3 already suffices
to make it available for use in cir:

implicit object RealIsNumeric extends Numeric[Real] {
override def plus(x: Real, y: Real): Real = x + y
override def times(x: Real, y: Real): Real = x * y
override def negate(x: Real): Real = -x
override def fromInt(x: Int): Real = Real(x)
override def compare(x: Real, y: Real): Int = x compare y
/* further methods not shown due to space limitations */ }

Implementation The next step is to give a concrete implementation of CIR in trait CIRExp:

private[spirals] trait CIRExp extends CIR with BaseExp
with PrimitiveOpsExp with NumericOpsExp
with VariablesExp with EffectExp
with ArrayOpsExp with SeqOpsExp {

case class Comment(msg: String) extends Def[Unit]
override def comment(msg: String): Exp[Unit] =

reflectEffect(Comment(msg)) }

Again, this is achieved simply by mixing in the corresponding implementation
traits, which we already have at our disposal in lms’ core library. The only real
work that remains is to define the comment function. Therefore, a suitable ir
node Comment is introduced, which holds the content of the comment as String
and, since it represents a composite operation, extends Def[Unit]. Consequently,
comment yields a new instance of this ir node. However, it is important to
observe that reflectEffect is used instead of toAtom to return an atomic value.
The reason is that comment introduces a side effect in cir programs, that is, it

3 Curiously enough, Spire defines its own type class for numeric data types which also happens to
be called Numeric, but refuses to provide an appropriate instantiation of Real for Scala’s own
Numeric type class.
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doesn’t produce code that yields an interesting result. It merely causes a string (a
comment) to be inserted into the generated code.

Handling Side EffectsThe function reflectEffect is defined in trait Effects. Its signature is identi-
cal to toAtom (c.f. Page 14):

def reflectEffect[T](d: Def[T]): Exp[T]

Until now, we have only considered purely functional dsl programs. But when side
effects come into play, special attention must be paid. For instance, remember that
toAtom eliminates duplicate code. If operations have side effects, this optimization
could alter the intended meaning of the dsl program. Furthermore, lms can
no longer safely apply code motion, i.e. changing the order of statements in the
object program to improve reuse of information, cache locality, etc. Thus, lms
requires the programmer to track side effects via reflectEffect, which allows the
framework to reason about the impact that dsl operations can have [7, ch. 9.4].
For example, reflectEffect causes that effectful operations are assigned a fresh
new symbol in any case.

OptimizationsFinally, an optimized implementation CIRExpOpt is put together. Realize that
these are precisely the optimizations that motivated the introduction of cir in
the first place. The definition of CIRExpOpt shows a recurring picture; composing
several preexisting lms traits is all it takes:

private[spirals] trait CIRExpOpt extends CIRExp
with PrimitiveOpsExpOpt with NumericOpsExpOpt
with VariablesExpOpt with ArrayOpsExpOpt

PrimitiveOpsExpOpt and NumericOpsExpOpt accomplish algebraic simplification
and constant folding with regard to addition, subtraction, multiplication and
division for numeric data types. These optimizations do not only apply for native
data types such as Int and Double, but also for Spire’s Real type, since we
have made it an instance of Scala’s Numeric type class. Said optimizations are
again realized using smart constructors, which were already shown extensively in
Section 3.4. For example, NumericOpsExpOpt defines addition as follows:

override def numeric_plus[T: Numeric](a: Exp[T], b: Exp[T]): Exp[T] = {
val num = implicitly[Numeric[T]]
(a, b) match {
// constant folding
case (Const(x), Const(y)) => Const(num.plus(x, y))
// algebraic simplification
case (Const(x), y) if x == num.zero => y // 0+ y = y
case (x, Const(y)) if y == num.zero => x // x + 0= x
// all other cases
case _ => super.numeric_plus(a, b) } }
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Furthermore, VariablesExpOpt eliminates redundancy in reads and writes of
variables, e.g. by copy propagation [7, p. 79], and ArrayOpsExpOpt achieves the
same for arrays in particular. Moreover, lms’ general optimizations (c.f. Page 36)
are also applied. They do not require any refined ir semantics and generally work
without the need of mixing in any optimization traits at all.

Section 3.6 covers the translation from spl to cir. During this process, all
domain-specific knowledge captured by spl will be translated away, too. Hence, it
was a good idea to perform domain-specific optimizations directly on spl code.
Had we decided to implement them only now, the low abstraction level of cir
would have made it much more difficult to achieve them.

3.6 Translation from SPL to CIR

As mentioned earlier, the translation from spl to cir is a fundamental step. The
challenge is to boil down complex spl matrix algorithms to cir programs that
make use of only rudimentary arithmetic operations manipulating scalar values.
In order to bridge this gap, the key insight is that every spl matrix M can be
represented as a cir function that takes a vector x , performs the computation
y := M · x and returns the resulting vector y . Table 3.5 outlines how to translate
M into basic sequential loop code.

Caveats Before we turn to the implementation, there are a few preliminary considera-
tions to make. As stated in Section 3.5, vectors do not have a direct representation
as data type in C. Hence, the next best solution is to use arrays. But in C it is
very problematic to return arrays, or more accurately, pointers since the array
in question might be a local variable. It is important to realize that all local
stack frames are popped once control flow runs out of the current scope, such
as the body of a function. For this reason, the returned pointer would refer to a
location in memory that has an undefined state. The problem could be avoided if
memory for the array is allocated on the heap rather than on the stack. But this
solution is taxed with heavy runtime overhead. A better approach is to let callers
of the function preallocate the required amount of memory for us. Therefore, we
introduce an additional formal parameter, namely a pointer that represents the
array to be yielded, and change the function’s return type to Unit (i.e. void in C).

Groundwork We provide a trait SPL2CIR that contains the facilities to translate from spl
to cir. During the translation process, it is mandatory to examine the internal
structure of a given spl program. Hence, we demand that users of SPL2CIR supply
an appropriate instance of SPLOpsExp. In order to produce cir code, it suffices to
gain access to the interface CIR, which must once again be given by users.
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Table 3.5: Translation of matrix formulas into Matlab-style pseudo code. The subscript of
matrices A and B specifies the (square) matrix size. The expression x[b:s:e]
denotes the subvector of x, starting at base b, ending at index e and extracted
at stride s. The table has been taken from [1, p. 3].

Matrix formula Matlab-style pseudo code

y = In x for (i = 0; i < n; i++)
y[i] = x[i];

y = 0n x for (i = 0; i < n; i++)
y[i] = 0.0;

y = Gn×N
b,s x for (i = 0; i < n; i++)

y[i] = x[b+i*s];

y = SN×n
b,s x

y = 0.0;
for (i = 0; i < n; i++)

y[b+i*s] = x[i];

y = Tridiagn(a, b, c) x

y[0] = b * x[0] + c * x[1];
for (i = 1; i < n-1; i++)

y[i] = a * x[i-1] + b * x[i] + c * x[i+1];
y[n-1] = a * x[n-2] + b * x[n-1];

y = (An + Bn) x y[0 : 1 : n-1] = A(x[0 : 1 : n-1]) +
B(x[0 : 1 : n-1]);

y = (An · Bn) x t[0 : 1 : n-1] = B(x[0 : 1 : n-1]);
y[0 : 1 : n-1] = A(t[0 : 1 : n-1]);

y = [An | Bn] x y[0 : 1 : n-1] = A(x[0 : 1 : n-1]) +
B(x[0 : 1 : n-1]);

y =
�

An
Bn

�

x y[0 : 1 : n-1] = A(x[0 : 1 : n-1]);
y[n : 1 : 2*n-1] = B(x[0 : 1 : n-1]);

y =
�

∏k−1
i=0 Ai

�

x
y = x;
for (i = 0; i < k; i++) {

x = y; y = A(i, x); }

y = (Im⊗An) x
for (i = 0; i < m; i++)

y[i*n : 1 : i*n+n-1] =
A(x[i*n : 1 : i*n+n-1]);

y = (Am ⊗ In) x for (i = 0; i < n; i++)
y[i : n : i+m*n-n] = A(x[i : n : i+m*n-n]);
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trait SPL2CIR {
val source: SPLOpsExp
val target: CIR
... }

The members source and target represent source and target languages for the
translation. Both are merely abstract at this point. They need to be concretely
defined when trait SPL2CIR is instantiated. Since we are now working with two
dsls, it is often necessary to explicitly refer to one dsl or the other in order
to prevent ambiguities. This is done via the source or target identifier, and
path-dependent types. For instance, the Rep type constructor occurs in both dsls,
hence it is convenient to define short aliases, like so:

type SRep = source.Rep[SPL]
type TRep[T] = target.Rep[T]

A Translation Function Thereafter, we begin with the implementation of an actual translation function,
which we call translate. It takes a staged spl expression, i.e. of type SRep,
and yields another function representing the corresponding cir code. In turn,
this particular function then requires two arrays and produces no interesting
result, that is of type Unit. It is vital to highlight that there is a crucial difference
between the types Rep[A => B] and Rep[A] => Rep[B]. The former represents a
staged function from some type A to another type B. Therefore, there will be
a function call in the generated code. In contrast, the latter stands for a static
function that operates on dynamic values of type Rep[A] and Rep[B]. In the
generated code, its body will be inlined. This is the desired behavior, so the proper
return type for translate is

(TRep[Array[Real]], TRep[Array[Real]]) => TRep[Unit]

Take note that the function itself is not staged, only its parameters and result
are. Also, TRep[_] must now be used instead of SRep. Putting it all together, we
obtain the following signature for translate:

def translate(x: SRep):
(TRep[Array[Real]], TRep[Array[Real]]) => TRep[Unit]

Since Scala is a full-fledged functional programming language, we can use a
lambda expression in the body of translate to create an anonymous function to
be returned:

def translate(x: SRep):
(TRep[Array[Real]], TRep[Array[Real]]) => TRep[Unit] =

(in, out) => ...

The syntax (in, out) => ... denotes the lambda expression. Its two formal
parameters are an input array in and output array out. Their respective type
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TRep[Array[Real]] is already inferred from translate’s signature. Inside the
lambda’s body, we need to inspect the structure of the given spl expression x in a
pattern match and react accordingly:

(in, out) => x match { ... /* case distinctions are put here */ }

3.6.1 Atomic Expressions

Zero and Identity MatrixFinding suitable cir functions is simple for atomic spl expressions. The easiest
cases are M = 0n and M = In. In the former one, multiplying 0n with a given
input vector x of size n results in the zero vector of size n. In the latter case, the
result of In · x is just x . As suggested by Table 3.5, we can use a for-loop to iterate
over the output array and set every of its entries to zero, or copy the values from
the input array, respectively:

case Const(Zero(n)) => for (i <- 0 until n) out(i) = 0
case Const(I(n)) => for (i <- 0 until n) out(i) = in(i)

Notice how cir reuses Scala’s syntax and language features, such as the for-loop.
Both the case distinctions in the pattern match and the for-loops are static con-
structs, which means they only appear during the present stage and will have been
translated away before the second stage takes place. But the assignments to the
output array out are dynamic as it is of type TRep[Array[Real]]. Consequently,
each loop will be unrolled in the generated code: for each iteration step, the loop’s
body is placed once in the object program. Thereby, the loop variable i is re-
placed with the value it attained during the corresponding iteration. Conceptually:

// Zero matrix:
out(0) = 0
out(1) = 0
...
out(n - 2) = 0
out(n - 1) = 0

// Identity matrix:
out(0) = in(0)
out(1) = in(1)
...
out(n - 2) = in(n - 2)
out(n - 1) = in(n - 1)

Tridiagonal MatrixRemembering Section 3.4, we find that 0n and In are just special kinds of tridi-
agonal matrices. Hence, a general implementation for Tridiagn(a, b, c) is sufficient
as it also covers aforementioned special cases. Multiplying Tridiagn(a, b, c) with
an n-dimensional vector x results in the following:
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An appropriate implementation is given below:

case Const(Tridiag(n, a, b, c)) =>
out(0) = b * in(0) + c * in(1)
for (i <- 1 until n - 1)

out(i) = a * in(i - 1) + b * in(i) + c * in(i + 1)
out(n - 1) = a * in(n - 2) + b * in(n - 1)

Computing the resulting components for the output vector is handled via a for-
loop. But the first and last component require special treatment as there are only
two multiplications and one addition to execute instead of three multiplications
and two additions. This is done in distinct statements outside of the loop. Even
though the constants a, b and c are static, the right-hand side of each assignment
also involves reads from the dynamic input array in. For this reason, the entire
right-hand side can only be evaluated dynamically. The generated code has the
structure shown below:

out(0) = b * in(0) + c * in(1)
out(1) = a * in(0) + b * in(1) + c * in(2)
...
out(n - 2) = a * in(n - 3) + b * in(n - 2) + c * in(n - 1)
out(n - 1) = a * in(n - 2) + b * in(n - 1)

The loop has been unrolled and the iteration variable is inlined as a constant. Note
that the optimizations defined in CIRExpOpt still apply. As a consequence, the
generated code for Zero(n) and I(n) is heavily simplified; in fact, it is identical to
the one created by the hand-crafted implementations presented at the beginning
of Section 3.6.1.

Gather Matrix As a last example, let us consider the gather matrix Gn×m
b,s . It extracts the entries

from an m-dimensional vector, starting at base b with stride s and yields an
n-dimensional vector:

case Const(G(rows, _, base, stride)) =>
for (i <- 0 until rows) out(i) = in(base + i * stride)

Just like before, this will result in unrolled code. For instance, G(3, 7, 1, 2) gives
the following:

out(0) = in(1)
out(1) = in(3)
out(2) = in(5)

Since the variables base, i and stride are all static, the computation base + i←-
* stride is performed statically, too, and its result is inlined as a constant. Note
that there is no way of enforcing or even testing whether the lengths of the input
array in and output array out actually conform to m or n, respectively. This is
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because we relied on callers to create these arrays for us. But at least we can
be sure that the correctness of spl expressions with regard to their dimensions
is ensured by the operators defined in trait SPLOpsExp. That is, it is impossible
to encounter an ill-formed spl expression because then it would not have been
created in the first place. In cir code, similar correctness guarantees do not exist
for input and output arrays.

3.6.2 Composite Expressions

Matrix MultiplicationHowever, the translation becomes more difficult if M is composite. For instance,
let M = A · B where A and B are atomic. As demonstrated before, it is easy to
find appropriate functions f and g for A and B, respectively. But it is very hard to
translate their product as a whole. In this particular case, the remedy is to harness
the associativity of matrix multiplication:

(A · B) · x = A · (B · x)
︸ ︷︷ ︸

=: z

= A · z = y.

By rewriting the equation, the composite operation (A · B) · x is broken down into
two calculations z = B · x and y = A · z containing only atomic spl expressions.
Notice that the output vector z of the first calculation serves as the input vector
for the second one. That is, composing f and g yields the desired function
corresponding to matrix M :

( f ◦ g)(x) = f (g(x)
︸︷︷︸

= z

) = f (z) = y.

If A or B are composite themselves, it is necessary to repeat this process recursively
until the equations only consist of atomic values. Apparently, this strategy also
changes the order of evaluation and therefore comes at the cost of having to
introduce additional storage for an intermediate result z. This fact is also reflected
in the implementation:

case Def(Times(lhs, rhs @ SPLExp(rowsR, _), _, _)) =>
val (l, r) = (translate(lhs), translate(rhs))
val tmp = NewArray[Real](rowsR)
r(in, tmp)
l(tmp, out)

Since we want to inspect an spl fragment that models a composite operation, the
pattern extractor Def needs to be used instead of Const. Next, we make use of the
custom extractors defined in Sections 3.2 and 3.4 for fine-grained deconstruction
of the given ir node. Matrix multiplication as represented by Times takes two
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operands lhs and rhs. The right-hand argument’s row dimension determines
the size of the intermediate storage. Thus, we need to further inspect rhs. For
this purpose, it suffices to use the extractor SPLExp. To avoid nesting another
pattern match within the present one, Scala offers variable bindings [11, p. 320]
as an alternative. The expression rhs @ SPLExp(rowsR, _) binds the right-hand
argument of the multiplication to the name rhs and also decomposes it at the
same time. Its number of rows can now be accessed via the identifier rowsR. Now
that the given spl expression is fully analyzed, we can translate lhs and rhs to
obtain the corresponding functions l and r. Afterwards, a temporary array tmp

is created, which will be used to store the intermediate result z. The command
NewArray defined by trait ArrayOps causes that the construction of the array is
delayed until the second program stage is executed. Next, function r reads the
values from in and stores the results in tmp, which then in turn serves as the input
for l. This function writes its own results into the final output array out, which
also happens to be the result of the entire matrix multiplication.

Matrix Addition For matrix addition, we resort to the same implementation techniques. Using
the law of distributivity, we obtain:

(A+ B) · x = (A · x)
︸ ︷︷ ︸

=: y

+(B · x)
︸ ︷︷ ︸

=: z

= y + z.

Vector x is multiplied with both A and B. This produces two intermediate results y
and z, which are added together to calculate the final result:

case Def(Plus(lhs, rhs, rows, _)) =>
val (l, r) = (translate(lhs), translate(rhs))
val resR = NewArray[Real](rows)
val resL = NewArray[Real](rows)
r(in, resR)
l(in, resL)
for (i <- 0 until rows) out(i) = resL(i) + resR(i)

Employing a for-loop, we simultaneously iterate over both intermediate arrays
resR and resL, compute the sum of every component and write the result to the
output array out.

Tensor Product The last example covers the tensor product of the identity matrix In with another
arbitrary matrix M of size p× q:

(In⊗ M) · x =
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























x0

x1
...

xn−2

xn−1













=













M · x0

M · x1
...

M · xn−2

M · xn−1













.
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The notation xk stands for chunks of the input vector x; more precisely, it rep-
resents the sub-vector of dimension q, starting at index kq and ending at index
(k + 1) · q − 1. The result of M · xk is a p-dimensional vector. The appropriate
implementation of In⊗ M is as follows:

case Def(Tensor(Const(I(n)), rhs @ SPLExp(rowsR, colsR), _, _)) =>
val f = translate(rhs)
for (k <- 0 until n) {

val (startIn, startOut) = (k * colsR, k * rowsR)
val (endIn, endOut) = (startIn + colsR, startOut + rowsR)
val subIn = in.slice(startIn, endIn)
val subOut = out.slice(startOut, endOut)
f(subIn, subOut) }

The pattern only matches if the left-hand argument to the tensor is the identity
matrix. After that, it suffices to translate the right-hand side rhs once, since it
is duplicated n-times. This yields the corresponding function f. Next, a for-loop
ranging from 0 to n - 1 is used to perform the computations M · xk. Within the
loop’s body, the starting and ending indices of the input and output sub-arrays
are determined with regard to the current loop counter k. As usual, the loop will
be unrolled and all static variables like the upper and lower index bounds we
just calculated will be inlined as constants. After that, we directly take suitable
chunks of the input and output arrays (subIn and subOut) using the function
slice, which is provided by trait ArrayOps, and pass them to f. It is important to
mention that slice demands a lower bound as first parameter, which is inclusive,
and an upper bound as second parameter, which is exclusive.

Unknown ExpressionsThese examples should have given a good insight to the translation process.
Finally, to handle spl expressions for which it is not known how to translate them,
we include the following as last pattern:

case _ => throw new GenerationFailedException

The wildcard matches any given input and a GenerationFailedException is
thrown to indicate that the translation failed.

Testing and DebuggingDuring development, it may be useful to know from which spl matrix certain
cir statements were created. For this purpose, the comment function comes in
handy. Putting it to work as laid out below causes that explanatory comments are
generated immediately before and after the corresponding cir code:

case Const(I(n)) =>
comment(s"begin I($n)")
for (i <- 0 until n) out(i) = in(i)
comment(s"end I($n)")
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When preceding the opening quote of a string, Scala interprets the prefix s as
string interpolation operator [11, ch. 5.3]. It causes that embedded expressions
marked with the dollar sign ($) are evaluated and the string representation of the
result is injected into the processed string. Hence, string interpolation commonly
serves as readable and concise alternative to string concatenation:

s"begin I($n)"
"begin I(" + n.toString + ")"

The expression in the first line uses a processed string literal, while the one in the
second line utilizes string concatenation and a call to toString. Both expressions
are equal, though. Besides that, string interpolation can be useful for other
applications as well, such as unparsing cir code to actual C code as demonstrated
in Section 3.8. In order not to clutter the implementation with too many details,
the comment function is no longer mentioned from now on.

3.6.3 Different Code Styles and Data Representations

Realize that the implementation of translate commits to a specific code style
and data representation, namely unrolled loop code with precomputation and the
use of arrays in the generated program. Essentially, this behavior can be altered
by strategically changing the types of certain expressions in cir code.

Conditional Loop Un-
rolling

Currently, all loops are unrolled unconditionally, which may be undesired if a
loop comprises a large number of iterations. Therefore, one may want enable the
generation of loops by explicitly mixing in the traits Loops and RangeOps to CIR.
Then, the key is to iterate over staged Range4 objects, that is

for (i <- (0 until n): Rep[Range]) ...

instead of

for (i <- (0 until n): Range) ...

As outlined in Section 2.3, such for-comprehensions are just syntactic sugar for
calls to the foreach combinator (among others):

for (i <- 0 until n) f(i) == (0 until n) foreach f

This assumes that function f has the type Int => Unit. With a bit of Scala wiz-
ardry5, we can use for-comprehensions to inline loops based on a static condition.
For that, we define an auxiliary function unrollIf:

4 In Scala, a Range, as created by the expression 0 until n, represents an integer-valued interval
ranging from 0 until n, exclusively, with a step size of 1. To illustrate: (0 until 5).toList ==←-
List(0, 1, 2, 3, 4).

5 Credits to Tiark Rompf: https://scala-lms.github.io/tutorials/shonan.html

https://scala-lms.github.io/tutorials/shonan.html
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def unrollIf(c: Boolean)(r: Range) = new {
def foreach(f: Rep[Int] => Rep[Unit]): Rep[Unit] = {

if (c) for (j <- (r.start until r.end): Range) f(j)
else for (j <- (r.start until r.end): Rep[Range]) f(j) } }

It takes a boolean c to decide whether the loop should be unrolled, and a range r

over which to iterate. Then, unrollIf returns an instance of an anonymous class
which contains a suitable definition of foreach. If c evaluates to true, we simply
iterate over the given static range, which unwinds the loop. Otherwise, r is turned
into a dynamic range, which preserves the loop in the object program. This makes
unrollIf helpful for use within the translation function, for example like so:

case Const(I(n)) => for (i <- unrollIf(n <= 7)(0 until n)) out(i) = in(i)

For “small” identity matrices, i.e. with a dimension n less than or equal to the
arbitrarily chosen 7, the loop is unrolled. This way, the overhead of evaluating the
loop condition is avoided in the generated code, which may improve performance.
However, this benefit is reversed for larger values of n. As code size grows linearly
with n, the instruction cache will be exhausted eventually once n becomes too big.
In this case, a loop is more efficient.

Current LimitationsHowever, program generation is currently limited to unrolled code as the present
set of breakdown rules (c.f. Table 2.1) is unfit for the generation of optimized
loops and recursive code. Adding the missing loop-level optimizations is an
ongoing research effort that requires further extensions of the code generation
and optimization engines to support the code patterns seen in multigrid solvers [1,
p. 9].

PrecomputationFurthermore, precomputation can be disabled simply by lifting the appropriate
variables, therefore delaying their evaluation until the next program stage takes
place.

Scalar ReplacementFinally, it is possible to replace computations involving arrays with ones that
operate on scalar variables, an optimization technique referred to as scalar re-
placement. Recall that the use of NewArray[T](n) causes the creation of dynamic
arrays (i.e. of type Rep[Array[T]]) with length n. In contrast, constructing static
arrays via new Array[Rep[T]](n) results in the generation of n distinct “scalar”
variables of type Rep[T]. Abstracting over the choice which data representations
and code patterns to use is possible by abstracting over staging decisions. Achiev-
ing this goal with help of type classes has been studied by Ofenbeck et al. [3] and
was subject to extended academic research by Ofenbeck [4] at the time of this
writing. However, a discussion about selective staging is beyond the scope of this
work.
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3.7 Stencil Computations

3.7.1 Current Limitations

It has been stated many times that In and 0n are specializations of Tridiagn(a, b, c).
Likewise, Tridiagn(a, b, c) is a special kind of Toeplitz matrix, that is, each de-
scending diagonal from left to right consists of the same constant values. We will
only consider quadratic Toeplitz matrices in this work. The breakdown rules in
Table 2.1 often resolve to the tensor product of Toeplitz matrices, which has an
interesting structure. In Section 3.6, we have already seen that

In⊗ T = Tridiagn(0,1, 0)⊗ T =













T 0n
0n T 0n

. . . . . . . . .
0n T 0n

0n T













,

where T = Tn×n is Toeplitz. Furthermore, let M := Tridiagn(a, b, c), A := a · M ,
B := b ·M and C := c ·M . Then,

M ⊗M =













B C
A B C

. . . . . . . . .
A B C

A B













.

In other words, the tensor product of tridiagonal matrices yields yet another “tridi-
agonal” matrix. But this time, the entries on the diagonals are matrices themselves
(2-dimensional entities) instead of scalar values (1-dimensional entities). The
same holds for the tensor product of general Toeplitz matrices.

However, the translation into cir code is currently unwieldy. For instance,
M ⊗ M requires specialized code involving nested for-loops: an outer loop to
iterate over the structure of the “outer” tridiagonal matrix, and an inner loop
to iterate over the “inner” tridiagonal matrices on the diagonals. Due to space
limitations, only an excerpt of the implementation is shown:

// tridiagonal matrices B and C on the first row
out(0) = ...
for (i <- 1 until n - 1) out(i) = ...
out(n - 1) = ...
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// tridiagonal matrices A, B and C on the middle rows
for (i <- 1 until n - 1) {

out(i * n) = ...
for (j <- 1 until n - 1) {

out(i * n + j) =
aa * in((i - 1) * n + j - 1) +
ab * in((i - 1) * n + j ) +
ac * in((i - 1) * n + j + 1) +
ba * in( i * n + j - 1) +
bb * in( i * n + j ) +
bc * in( i * n + j + 1) +
ca * in((i + 1) * n + j - 1) +
cb * in((i + 1) * n + j ) +
cc * in((i + 1) * n + j + 1) }

out((i + 1) * n - 1) = ... }

// tridiagonal matrices A and B on the last row
out(nn - n) = ...
for (i <- 1 until n - 1) out(nn - n + i) = ...
out(nn - 1) = ...

What makes this solution suboptimal is that the implementation for ordinary
tridiagonal matrices Tridiagn(a, b, c) is not reused. Instead, it is duplicated several
times and slightly modified on every occasion. What’s more, the implementations
for M⊗M and In⊗ M (c.f. Section 3.6) are completely different, even though both
of them are merely special parameterizations of the same kind of computational
problem, namely finding the tensor product of two Toeplitz matrices.

To overcome these issues, we have to restructure our code. In particular, we
have to change the encoding of Toeplitz matrices and tensor products of such
matrices. In cir code, their implementations always follow the same pattern,
which is well represented by so called stencil computations.

3.7.2 Fundamentals and Terminology

A stencil6 is a numerical kernel (i.e. a function) that captures the essence of a
recurring computational pattern, hence the name. Revisiting the introduction
to multigrid methods given in Section 2.1.2, we limit ourselves to stencils that
operate on a discretized finite 1- or 2-dimensional grid of variables. Each variable
(i.e. point in the grid) has the same relative relationship to its neighbors. The
concrete shape of this neighborhood is determined by the stencil. Next, the value

6 Also referred to as filter, particularly in the domain of signal processing.
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Figure 3.4:Depiction of a 2-dimensional 9-point stencil oper-
ating on a 5× 5 square grid of variables. Each circle repre-
sents a variable on the grid. The stencil is currently applied
to (0,0). The arrows denote the relationship of neighboring
points (drawn as solid black circles) to the point (0,0). In
contrast, there are no data dependencies between the white
circles and the point (0, 0).
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of each variable is obtained by applying the numerical kernel to it. Thereby, the
neighboring points of the current variable are usually taken into account as well.
In this context, a stencil involving p points is called a p-point stencil. Figure 3.4
illustrates a 9-point stencil operating on a 5× 5 grid. Furthermore, the stencil
may weigh neighboring points differently, i.e. certain variables may have a greater
impact on the computation than others.

In particular, problems arise when points on the boundaries of the grid are dealt
with; some of the neighbors referred to may not exist as they are located outside
of the grid. Thus, we have to define how such neighbors should be handled, or in
other words, we have to specify a boundary condition. In the Dirichlet case, it is
common to simply eliminate said points, i.e. we assume a constant value of 0 for
every point outside of the grid.

Applying the kernel function successively to each lattice point is called stencil
computation7. Such computations may require several iterations, i.e. repeated
applications of the stencil for every point in the grid.

3.7.3 Toeplitz Matrices

Mathematical Examina-
tion

The distinctive property of Toeplitz matrices is that each diagonal contains the
same entries. Formally, given a square matrix T = [t i, j]0≤i, j<n, the equation
t i, j = t i+1, j+1 holds. Therefore, T is fully characterized by (a) its size n× n; and

7 Mathematically speaking, we implement the convolution of a filter.
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(b) a list of 2n− 1 diagonal entries, also called the coefficient list. It contains the
entries

tn−1,0, tn−2,0, . . . , t1,0, t0, 0, t0,1, . . . , t0, n−2, t0, n−1

in that specific order. Note that the coefficient list is always odd-numbered. Thus,
we can well-define the center of such lists as t0,0. For example, the 3× 3 Toeplitz
matrix

M :=





c d e
b c d
a b c





has the coefficient list a, b, c, d, e. Its center is c. Now, let us consider the product
of M with a 3-dimensional vector x:

M x =





c d e
b c d
a b c









x0

x1

x2



=





c · x0 + d · x1 + e · x2

b · x0 + c · x1 + d · x2

a · x0 + b · x1 + c · x2



=:





y0

y1

y2



 .

We represent M ’s coefficient list as a row vector

cM :=
�

a b c d e
�

,

with center c printed in boldface for emphasis. We observe that

y0 = cM ·













0
0
x0

x1

x2













, y1 = cM ·













0
x0

x1

x2

0













, y2 = cM ·













x0

x1

x2

0
0













.

That is, M x can be interpreted as 3-point stencil computation with Dirichlet
boundary condition. Hereby, the input vector x serves as 1-dimensional 3 × 1
grid from which the kernel function reads. It takes the entries in cM , multiplies
them with the points in the grid, adds up the results to yield the new value of the
current point and writes the outcome to y . Note that the grid is always arranged
in such a way that the stencil’s center c is multiplied with the currently considered
point. For instance, y0 is the result of applying the stencil to x0.

Scala RepresentationTo implement stencil computations in the code generator, we drop the case
classes I, Zero and Tridiag in favor of the more general Toeplitz1. It represents
an n× n Toeplitz matrix via a coefficient list coeffs:

case class Toeplitz1(n: Int, coeffs: List[Real]) extends SPL(n) {
require(coeffs.length == 2 * n - 1)
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val center: Int = coeffs.length / 2 }

It is ensured that the length of coeffs is valid with regard to the given dimension n.
The center of the coefficient list is given by the constant center. Note that a
matrix Tridiag3(1, 2,3) must now be created as follows:

Toeplitz1(3, List(0, 1, 2, 3, 0))

This raises eligible doubts regarding ease of use and compatibility to previously
written spl code. But in most cases, these concerns can be sorted out by defining
a standalone Scala object Tridiag containing appropriate implementations of an
apply factory and unapply extractor method:

object Tridiag {
def apply(n: Int, a: Real, b: Real, c: Real): SPL = {

require(n > 1)
val zeros = List.fill(n - 2)(Real.zero)
val coeffs = zeros ++ List(a, b, c) ++ zeros
Toeplitz1(n, coeffs) }

def unapply(arg: SPL): Option[(Int, Real, Real, Real)] = ... }

The apply function has the same signature as the constructor of the former
case class Tridiag. It automatically builds the correct coefficient list from the
given arguments and returns a fitting instance of Toeplitz1. Therefore, the
matrix Tridiag3(1,2,3) can now be constructed via Tridiag(3, 1, 2, 3) again.
Also, pattern matching works as before. However, due to space limitations, the
implementation of unapply is not shown. The same abstractions are also provided
for zero and identity matrices.

Translation Next, the translation function in trait SPL2CIR is adapted. For this, we replace
the case distinction for tridiagonal matrices with one that covers all Toeplitz
matrices in general:

case Const(s @ Toeplitz1(n, coeffs)) =>
def input(x: Int): TRep[Real] =

if (x < 0 || x >= n) Real.zero else in(x)
for (i <- 0 until n) {

var res: TRep[Real] = 0
for (j <- 0 until coeffs.length)

res += coeffs(j) * input(i + j - s.center)
out(i) = res }

The input array in contains the variables on which the stencil operates. The grid
itself is modeled by a local function input which also implements the Dirichlet
boundary condition. Next, we use a for-loop to successively apply the stencil to
each lattice point. The result of such an application is given by the variable res.
Its value is determined by iterating over the list of coefficients, thereby multiplying
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each coefficient with the appropriate variable and adding the outcome to res.
Attentive readers will have noticed that res is a mutable variable because it is
declared using the var keyword. However, the generated code spares reassign-
ments: in the ir graph, lms makes effect dependencies between nodes explicit
by adding an invisible state parameter to them; this is similar in spirit to single
static-assignment (ssa) form and effectively turns the given cir program into a
functional one [7, p. 75].

OptimizationsFinally, we need to fix the optimizations in trait SPLOpsExpOpt. For example,
the sum of two Toeplitz matrices is given by the sum of their coefficient lists:

override protected def spl_plus(lhs: Exp[SPL], rhs: Exp[SPL]) =
(lhs, rhs) match {
case (Const(Toeplitz1(n, xs)), Const(Toeplitz1(m, ys))) if n == m =>

Toeplitz1(n, xs zip ys map { case (x, y) => x + y })
... }

Moreover, the scalar product can now be implemented as point-wise multiplication
of the given scalar with the coefficient list:

override protected def spl_stimes(n: Real, spl: Exp[SPL]) =
spl match {

case Const(Toeplitz1(n, cs)) => Toeplitz1(m, cs.map(n * _))
... }

Since we introduced the standalone objects I, Zero and Tridiag, the patterns in-
volving these extractors need not be changed. This concludes the implementation
of stencil computations on a 1-dimensional grid.

3.7.4 Tensor Product of Toeplitz Matrices

Recurring Structures in
Code

Section 3.7.1 briefly outlined the structure of a matrix M ⊗M where M is tridi-
agonal. The corresponding cir code contains a nested for-loop. The body of the
innermost loop is of particular interest:

out(i * n + j) =
aa * in((i - 1) * n + j - 1) +
ab * in((i - 1) * n + j ) +
ac * in((i - 1) * n + j + 1) +
ba * in( i * n + j - 1) +
bb * in( i * n + j ) +
bc * in( i * n + j + 1) +
ca * in((i + 1) * n + j - 1) +
cb * in((i + 1) * n + j ) +
cc * in((i + 1) * n + j + 1)
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We find that there is a fixed access pattern to the input array in. A possible
interpretation is that the outer loop variable i partitions in into disjoint chunks
as it is multiplied with n, and the inner loop variable j iterates over the elements
in each chunk. Additionally, the code hints at a relationship between the values
the two loop counters attain and the coefficients found in M ⊗M . Naturally, each
coefficient is a product of two factors. The first factor changes with i and the
second one with j. All this suggests an implementation as 2-dimensional stencil
computation. Therefore, we have to rearrange the variables given by the input
vector in such a way that a 2-dimensional grid is obtained. Incidentally, the array
access pattern conforms to the linearization of a matrix in row-major order.

Undoing Linearization Let us generalize this example and consider the tensor product M ⊗ N of two
Toeplitz matrices M = Mm×m and N = Nn×n. The upper bound of the outer loop
is given by m, which also happens to be the number of rows in aforementioned
linearized matrix. In similar fashion, the inner loop’s upper bound is determined
by n, which gives the number of columns in the matrix. To exemplify, let m= 3
and n= 2. Then, the input vector has the dimension m · n= 6. It represents the
linearization of a 3× 2 matrix:

�

x0 x1 x2 x3 x4 x5

�⊤ ↭





x0 x1

x2 x3

x4 x5



 .

That is, undoing the linearization of the input vector yields the rectangular grid
on which the stencil operates.

Coefficient Matrices Next, the challenge is to find a suitable coefficient matrix, which is the gener-
alization of coefficient vectors. It turns out that this matrix can be conveniently
constructed by multiplying cM with the transposition of cN . This yields an m× n-
matrix whose number of rows and columns is guaranteed to be odd. Hence, its
center point is well-defined at row index ⌊m/2⌋ and column index ⌊n/2⌋. To
illustrate, let us assume that

M :=





c d e
b c d
a b c



 and N :=

�

β γ

α β

�

.

Then, the respective coefficient vectors are

cM =
�

a b c d e
�⊤

and cN =
�

α β γ
�⊤

.

The coefficient matrix for M ⊗ N is given by cM · (cN )
⊤. Its center point has

the value cβ . Just like before, the stencil applies the coefficient matrix to the
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given 2-dimensional grid, while making sure to properly align the center point of
the matrix with the currently regarded point in the grid. The coefficient matrix
determines which neighboring points are taken into account and also tells their
respective weighting.

Boundary ConditionFinally, we have to define a boundary condition. For our purpose, Dirichlet is
once again the appropriate choice, that is, setting the values of all points outside
the grid to 0.

TranslationMoving on to the implementation in Scala, the tensor product of two square
Toeplitz matrices is represented by a new class Toeplitz2 that extends SPL.

case class Toeplitz2(nL: Int, nR: Int, coeffs: List[List[Real]])
extends SPL(nL * nR) {

require(coeffs.length == 2 * nL - 1 &&
coeffs.forall(_.length == 2 * nR - 1))

val centerRows: Int = nL - 1
val centerCols: Int = nR - 1 }

The properties nL and nR remember the dimension of the left-hand and right-hand
arguments to the tensor. The coefficient matrix is represented as 2-dimensional
list coeffs. Its row and column dimension are determined by nL and nR, and
are tested for correctness by the require function. For convenience reasons, the
index of coeffs’ center point can be accessed via centerRows and centerCols.

Similar to Toeplitz1, we have to add a new case distinction to the pattern
match within the translate function:

case Const(s @ Toeplitz2(n, m, css)) =>
def input(row: Int)(col: Int): TRep[Real] =

if (row < 0 || row >= n || col < 0 || col >= m) Real.zero
else in(row * n + col)

for (row <- 0 until n) {
for (col <- 0 until m) {

var res: TRep[Real] = 0
for (i <- 0 until css.length) {

for (j <- 0 until css(i).length) {
val r = row + i - s.centerRows
val c = col + j - s.centerCols
res += css(i)(j) * input(r)(c) } }

out(row * n + col) = res } }

The auxiliary function input is used to access the variables on the 2-dimensional
rectangular grid, thereby assuming the Dirichlet boundary condition mentioned
above. Next, we iterate over this grid using two nested for-loops. Within the
body of the inner loop, we declare a mutable variable res that stores the result
of applying the stencil to the current point on the grid. For this, we employ two
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more for-loops to iterate over the coefficient matrix, multiplying a coefficient with
the appropriate variable and adding the result to res. Finally, we update the
output array out with the result res of performing one iteration in the stencil
computation.

Noteworthy Benefits This gives common code for all tensor products M ⊗ N of arbitrary square
Toeplitz matrices M and N , which is noteworthy. What’s more, it also shorter
and less complicated than the specialized implementation for Tridiagn(a, b, c)⊗
Tridiagn(a, b, c) presented in Section 3.7.1. Perhaps most importantly, the over-
head of introducing stencil computations in the program generator does not pose
a performance penalty on the generated code. All abstractions, such as the nested
for-loops and the coefficient matrix, are translated away in the first program stage
and will no longer be present in the second stage. Calls to the input function are
replaced with array accesses and the index computations are inlined as constants.

Optimizations The last task that remains to be done is to fix the optimizations in trait
SPLOpsExpOpt. Firstly, the tensor product of two instances of Toeplitz1 yields an
instance of Toeplitz2.

override protected def spl_tensor(lhs: Exp[SPL], rhs: Exp[SPL]) =
(lhs, rhs) match {

...
case (Const(Toeplitz1(n, xs)), Const(Toeplitz1(m, ys))) =>

val css = xs.map(x => ys.map(y => x * y))
Toeplitz2(n, m, css) }

Remember to place this pattern after more specific ones. The coefficient matrix css
is obtained by multiplying the coefficient vector xs with the transposition of ys.
Next, we complete the implementation of spl_plus:

protected def spl_plus(lhs: Exp[SPL], rhs: Exp[SPL]) =
(lhs, rhs) match {

case (Const(Toeplitz2(n1, m1, xss)), Const(Toeplitz2(n2, m2, yss)))
if n1 == n2 && m1 == m2 =>

val css = (xss zip yss) map { case (xs, ys) =>
(xs zip ys) map { case (x, y) => x + y } }

Toeplitz2(n1, m2, css)
... }

In order to do so, the coefficient matrices need to have the same number of rows
and columns, which is tested by the guard. Taking the sum of two instances of
Toeplitz2 means taking the sum of the respective coefficient matrices; css is the
result of adding xss to yss point-wise. This mechanism effectively implements
constant folding and also causes that the expensive helper arrays mentioned in
Section 3.6.2 are no longer needed here. Last but not least, we turn our attention
to scalar multiplication spl_stimes:
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override protected def spl_stimes(n: Real, spl: Exp[SPL]) =
spl match {

case Const(Toeplitz2(m1, m2, css)) =>
Toeplitz2(m1, m2, css.map(_.map(n * _)))

... }

The implementation is straight-forward; multiplying a scalar and an instance of
Toeplitz2 is encoded by multiplying its coefficient matrix css with that scalar.

3.8 Unparsing to C Code

As mentioned in Section 2.2.2, the process of generating source code is decoupled
from the implementation of any particular dsl. Instead, code generation needs
to be triggered explicitly. This way, it is possible to unparse a given dsl program
to multiple target languages. When doing so, the common workflow is roughly
as follows: (1) traversing the ir graph of a given dsl program, (2) inspecting
each encountered ir node, and (3) properly unparsing it to code fragments of the
target language. lms simplifies this task by providing a general code generation
infrastructure. For instance, it already includes a scheduler and basic set of
unparsers, in particular for Scala and C-like languages. The scheduler uses
data and control dependencies encoded by the ir nodes to determine the order
in which statements must be output, thus coming up with a correct program
order [10, p. 97]. The only work for is to specialize existing unparsers for our
own domain-specific types and needs. This is realized in trait CGen:

trait CGen
extends CGenBase // Basic code generation infrastructure for C
with CGenPrimitiveOps with CGenNumericOps // Numeric computations
with CGenVariables with CGenArrayOps { // Variables and Arrays

val IR: CIRExp
import IR._

Using modular mix-in composition, CGen is built from several existing unparsers.
We also demand users of CGen to inject an implementation IR of cir, since we
need to examine the structure of cir programs.

Atomic ExpressionsSpire’s Real data type sees frequent use in cir code but there is no equivalent
data representation to be found in C. The next best offering is double. Thus, it
is imperative to convert a given Real value into the closest double value before
unparsing. For this, we override the function quote, which comes from trait CGen.
It takes an ir node (note the path-dependent type in the signature below) and
returns an appropriate string representation of that expression, i.e. it yields the
source code to be generated from the node:
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override def quote(x: IR.Exp[Any]): String = x match {
case Const(r: Real) => r.doubleValue.toString
case _ => super.quote(x) }

This means that
p

2 is still approximated:

val sqrt2 = Real(2).sqrt
quote(Const(sqrt2)) == "1.4142135623730951"

But (
p

2)2 is replaced with an exact result:

val two = sqrt2 * sqrt2
quote(Const(two)) == "2.0"

Similarly, we also have define a suitable substitute for the Real data type itself. In
other words, we have to remap Real to double:

override def remap[A](m: IR.Typ[A]): String = m.toString match {
case "spire.math.Real" => "double"
case _ => super.remap(m) }

Function remap is also inherited from CGen. Its input argument m is of type
IR.Typ[A], which serves as a runtime descriptor for the type A. We can now
successfully unparse atomic expressions.

String Interpolation In spirit of the string interpolation operator s introduced in Section 3.6.2, we
may employ the custom “source code” interpolator src provided by lms. It can be
used in the same way as s but it quotes embedded expressions of type IR.Exp[_]

and remaps ones of type IR.Typ[_] in lieu of simply inserting their canonical
string representation via toString.

Composite Expressions Atomic expressions rarely appear isolated in code. Rather, they are usually
combined to form more complicated statements, such as value definitions or dec-
larations. In lms, every definition has an associated symbol. Function emitNode

(inherited i.a. from GCenBase) produces target code for composite expressions.
It requires a symbol sym and the corresponding definition rhs. Its return type is
Unit as it expects us to write the unparsed code to a text-output stream named
stream.

override def emitNode(sym: Sym[Any], rhs: Def[Any]): Unit = ...

We inspect rhs in a pattern match and unparse accordingly. For instance:

case Comment(s) => stream.println(src"/* $s */")

If the right-hand side rhs represents a comment, we discard its symbol, enclose
the wrapped string s into the delimiters /* and */, and print the result. That
is, the cir expression comment("test") will be converted into the C fragment
/* test */.
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Next, trait CGenArrayOps assumes arrays to be wrapped inside a struct that
adheres to a certain interface. This does not apply in our case as we are going to
use plain arrays and pointer dereferencing/arithmetic instead. For this reason,
we have to customize the output for the ir nodes ArrayApply, ArrayUpdate,
ArraySlice and ArrayNew. We exemplify the latter:

case a @ ArrayNew(n) => stream.println(src"${a.m} $sym[$n];")

ArrayNew encodes the creation of a new array via NewArray. Its element type
is accessible via the identifier m and its length is given by the staged integer n.
Internally, the expression src"${a.m} $sym[$n];" rewrites to:

remap(a.m) + " " + quote(sym) + "[" + quote(n) + "];"

Quoting a symbol results in a unique identifier that is constructed from the
prefix "x" and the symbol’s id; that is "x0", "x1", "x2" etc. Thus, the cir
expression

val x = NewArray[Real](unit(42))

is translated into the declaration

double x0[42];

whereby the identifier name x0 may vary.
Finally, all other ir nodes are handled by super traits:

case _ => super.emitNode(sym, rhs)

Code generation for the entire dsl program is performed by invoking the
function emitSource, which is provided by trait CGenBase. It traverses the ir
graph in dependency order and calls emitNode for every encountered statement.
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Chapter 4

Use Cases

4.1 Setup

Guided by the principle of separating dsl interface and implementation, we place
spl programs in their own trait SPLApp. It only mixes in the interface SPLOps so
that spl programs are unable to reason about their own structure. Additionally,
trait Breakdowns is also mixed in to make the breakdown function accessible.

trait SPLApp extends SPLOps with Breakdowns {
def code: Rep[SPL] = /* SPL code */ }

Inside SPLApp, authors of an spl program have to implement an abstract method
named code with result type Rep[SPL].

To turn the code generator into an executable Scala program, we have to define
a main entry point for the program. Therefore, we create a standalone object Main
in which we put a method main with a proper signature:

object Main {
def main(args: Array[String]): Unit = {

val spl = new SPLApp with SPLOpsExpOpt
val cir = new CIRExpOpt { }
val translator = new SPL2CIR {

override val source = spl
override val target = cir }

val fun = translator.translate(spl.code)
... } }

Inside main’s body, the spl application SPLApp is instantiated as spl, thereby
mixing in the optimized implementation SPLOpsExpOpt, which is crucial. After-
wards, the optimized implementation for cir is instantiated as cir. To set up the
translation from spl to cir, we have to create a specialization of SPL2CIR and
define source and target languages. Next, we can pass the spl program, which is
available as spl.code, to the translate function of trait SPL2CIR. The result is a
cir function fun, which can then be unparsed as described in Section 3.8.
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4.2 Examples and Code Analysis

Identity Matrix Let us begin with a simple spl program for the 3 × 3 identity matrix. The
appropriate implementation for method code in trait SPLApp is as follows:

def code: Rep[SPL] = I(3)

spl programs are written in point-free style, that is, input and output vectors are
silently omitted. The implementation of cir will create two fresh new symbols x0
and x1 that represent the input and output array, respectively. This simple program
is expanded into the following C code:

void i3(double* x0, double* x1) {
double x3 = *(x0);

*(x1) = x3;
double x4 = *(x0 + 1);

*(x1 + 1) = x4;
double x5 = *(x0 + 2);

*(x1 + 2) = x5; }

Note the similarities to the pseudo-code given in Section 3.6.1. The code loads
the first component of the input vector via *(x0) and stores it in a variable x3,
which is then written into the first element of the output array x1. The same
strategy is applied to the remaining components. Arrays are accessed via pointers.
The output code complies with ssa form, which effectively copies array elements
into temporary variables to make them available for potential reuse. It also
removes false dependencies, thus enabling the compiler to perform better register
allocation and instruction scheduling [3, p. 132]. Reassignments in cir code
are turned into definitions of new variables in C code. The implementation also
commits to three-address code (tac), i.e. the right-hand side of an assignment
can only be a unary or binary operation, or in other words, assignments represent
the linearization of a syntax tree.

Optimizations All optimizations defined in SPLOpsExpOpt and CIRExpOpt are enabled. For
example, one may write an equivalent, but more convoluted program for I3:

def code: Rep[SPL] = { Zero(3); I(1 + 2) * I(3) + Tridiag(3, 0, 0, 0) }

Even though this code is deliberately suboptimal, the program generator still
outputs the same C program. First of all, the spl program is sequentially composed
of two matrix expressions. As Zero(3) does not contribute to the final result of
the program, it is translated away by dce. Furthermore, the multiplication
with I(3) is left out, as well as the addition with the tridiagonal matrix because
the generator is able to reason that Tridiag3(0,0,0) = 03. Also, the computation
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1 + 2 is evaluated to 3 during generator time. In the end, the only expression that
remains in the simplified spl program is I(3).

Handling Invalid Expres-
sions

Another important aspect is that the generator rejects illegal expressions such
as I(3) + I(42) or Zero(0). This is due to matrices and operators in spl investi-
gating as to whether the given arguments are valid. If this requirement fails, an
exception is thrown, which causes the program generator to terminate so that no
C code is produced.

Tridiagonal MatrixLet us continue with a more advanced example, namely the computational
kernel for a tridiagonal matrix Tridiag3(
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
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

A domain expert may write:

def code: Rep[SPL] = {
val sqrt2 = Real(2).sqrt
Tridiag(3, sqrt2 / 2, sqrt2, sqrt2 / 2) }

This yields the following C code:

void tridiag3(double* x0, double* x1) {

/* y0 =
p

2 · x0 +
p

2/2 · x1 */
double x3 = *(x0);
double x4 = 1.4142135623730951 * x3;
double x5 = *(x0 + 1);
double x6 = 0.7071067811865476 * x5;
double x7 = x4 + x6;

*(x1) = x7;

/* y1 =
p

2/2 · x0 +
p

2 · x1 +
p

2/2 · x2 */
double x10 = 0.7071067811865476 * x3;
double x11 = 1.4142135623730951 * x5;
double x12 = x10 + x11;
double x8 = *(x0 + 2);
double x13 = 0.7071067811865476 * x8;
double x14 = x12 + x13;

*(x1 + 1) = x14;

/* y2 =
p

2/2 · x1 +
p

2 · x2 */
double x16 = 1.4142135623730951 * x8;
double x17 = x6 + x16;

*(x1 + 2) = x17; }
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We notice that the overhead of extracting Real(2).sqrt into its own variable
sqrt2 is gone. Also, static computations like sqrt2 / 2 have been replaced with
their evaluation result and multiplications with 0 have been eliminated. The
encoding of real numbers as values of type Real is no longer present, either. The
C program uses an (approximated) double representation instead. Furthermore,
the for-loop used internally by the implementation of cir has been unrolled. And
although the code for both y1 and y2 requires the result of

p
2/2 · x2, we do

not perform this computation twice. Instead, cse kicks in and simply reuses the
variable x6 in the computation for y2.

Sum of Tensor Products Due to the use of stencil computations and constant folding in the generator,
complex expressions such as the sum of tensor products of Toeplitz matrices go
without any intermediate storage. We use

Tridiag3(1,−2, 1)⊗ I3+ I3⊗Tridiag3(1,−2, 1)

as an example. The result is a 9× 9 matrix




A I3 03

I3 A I3

03 I3 A



 where A := Tridiag3(1,−4,1) =





−4 1 0
1 −4 1
0 1 −4



 .

A matching spl implementation is given by

def code: Rep[SPL] = {
val (t, i) = (Tridiag(3, 1, -2, 1), I(3))
(t tensor i) + (i tensor t) }

This yields the following C code:

1 void f(double* x0, double* x1) {
double x3 = *(x0);
double x4 = -4.0 * x3;
double x5 = *(x0 + 1);

5 double x6 = x4 + x5;
double x8 = *(x0 + 3);
double x9 = x6 + x8;

*(x1) = x9;
double x10 = *(x0 + 4);

10 double x7 = *(x0 + 2);
double x16 = -4.0 * x5;
double x17 = x3 + x16;
double x18 = x17 + x7;
double x19 = x18 + x10;

15 *(x1 + 1) = x19;

double x11 = *(x0 + 5);
double x21 = -4.0 * x7;
double x22 = x5 + x21;
double x23 = x22 + x11;

20 *(x1 + 2) = x23;
double x12 = *(x0 + 6);
double x25 = -4.0 * x8;
double x26 = x3 + x25;
double x27 = x26 + x10;

25 double x28 = x27 + x12;

*(x1 + 3) = x28;
double x13 = *(x0 + 7);
double x30 = x5 + x8;
double x31 = -4.0 * x10;

30 double x32 = x30 + x31;
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double x33 = x32 + x11;
double x34 = x33 + x13;

*(x1 + 4) = x34;
double x14 = *(x0 + 8);

35 double x36 = x7 + x10;
double x37 = -4.0 * x11;
double x38 = x36 + x37;
double x39 = x38 + x14;

*(x1 + 5) = x39;
40 double x41 = -4.0 * x12;

double x42 = x8 + x41;

double x43 = x42 + x13;

*(x1 + 6) = x43;
double x45 = x10 + x12;

45 double x46 = -4.0 * x13;
double x47 = x45 + x46;
double x48 = x47 + x14;

*(x1 + 7) = x48;
double x50 = x11 + x13;

50 double x51 = -4.0 * x14;
double x52 = x50 + x51;

*(x1 + 8) = x52; }

Just as claimed, no temporary array storage is used, which is important for the
efficiency of the code generated from breakdown rules like ResidueLaplacen,ω.
Apart from that, the presented C program has the same structure and properties
as discussed before.

Interim ConclusionThe small numerical kernels considered so far are fairly high optimized, which
already makes them useful for practical applications [1, p. 8]: using a divide-
and-conquer approach, a recursive algorithm could break down a larger problem
into smaller ones; at some point, the recursion is terminated and aforementioned
small kernels are employed to implement base cases for both divide and conquer
phases; these kernels then usually make up most of the runtime as they contain
the majority of floating-point operations.

Matrix MultiplicationContrary to the sum of tensor products, the next use case requires intermediate
storage. We compute the product of two small tridiagonal matrices Tridiag2(1, 2, 3)
and Tridiag2(4, 5,6):

def code: Rep[SPL] = Tridiag(2, 1, 2, 3) * Tridiag(2, 4, 5, 6)

This translates into the following C code:

1 void f(double* x0, double* x1) {
/* Temporary storage */
double x3[2];
/* x3 = Tridiag2(4,5, 6) ·x0 */

5 double x5 = *(x0);
double x6 = 5.0 * x5;
double x7 = *(x0 + 1);
double x8 = 6.0 * x7;
double x9 = x6 + x8;

10 *(x3) = x9;
double x11 = 4.0 * x5;
double x12 = 5.0 * x7;

double x13 = x11 + x12;

*(x3 + 1) = x13;
15 /* x1 = Tridiag2(1,2, 3) ·x3 */
16 double x17 = *(x3);

double x18 = 2.0 * x17;
double x19 = 3.0 * x13;
double x20 = x18 + x19;

20 *(x1) = x20;
double x22 = 2.0 * x13;
double x23 = x17 + x22;

*(x1 + 1) = x23; }
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Notice the declaration of the local array x3. It serves as the output array for
Tridiag2(4, 5,6) and as input for Tridiag2(1, 2,3). Apparently, constant folding of
the tridiagonal matrices cannot be applied here, at least not with the current set of
stencil computations implemented, which means the creation of x3 is inevitable.

Array Scalarization One could still turn the array into scalar variables, though. However, this
optimization is currently not supported by the generator. The root cause is
that the translation function hard codes the use of dynamic arrays of type
TRep[Array[Real]] in its signature. But array scalarization would require arrays
of dynamic variables, i.e. Array[TRep[Real]]. Hard coding the latter is no
solution, either, as this would result in the generation of C functions with unwieldy
signatures: there would be one formal parameter of type double* for every
element in the input/output arrays. Addressing this issue includes restructuring
the implementation of the generator, in particular the introduction of a special
array data type that abstracts over the choice of staging decisions (c.f. the remarks
in Section 3.6.3). This way, one could provide runtime parameters to decide
whether to scalarize arrays in the generated code. The invocation of translate in
Section 4.1, which determines the signature of the generated C function, could be
advised to stage the arrays, while the recursive calls to translate in Section 3.6
could be parameterized to scalarize them.

Multigrid Cycle Finally, we present an spl program that yields code for a multigrid cycle
MGCycle3,0.125,1:

def code: Rep[SPL] = breakdown(MGCycle(3, 0.125, 1))

We only need to give an spl specification MGCycle(3, 0.125, 1) of the multigrid
cycle. Using the breakdown function as demonstrated above causes the specifi-
cation to be fully expanded until it consists solely of terminals. The resulting
C code is listed in Appendix A on Page 73. In comparison to SPIRAL [1, p. 9], our
generated code is much more extensive. The reason for this is twofold. Firstly,
SPIRAL does not convert to tac, i.e. the right-hand side of assignments can consist
of large expressions [1, p. 8]. But the more pivotal cause leads back to the lack of
further sophisticated optimizations in our implementation. Most notably, many
operations, such as matrix multiplication, addition or horizontal stacking, often
entail the generation of helper arrays to store intermediate computation results.
The lack of array scalarization as discussed above further contributes to this issue.
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Conclusions

SummaryIn this thesis we have demonstrated that it is possible to build a fully-fledged—
albeit very simple and highly specialized—code generator for a multigrid solver
using a dsl-centric approach, as pursued by SPIRAL and the ExaStencils project.

At the core of the generator sits a two-layered architecture of internal dsls
to represent algorithmic and domain-specific knowledge on different levels of
abstraction. Coupled with a rule-based rewriting system of dsl expressions, this
enables the synthesis of suitable solving algorithms from an abstract mathematical
problem specification as starting point. The application of domain-specific and
classic compiler optimizations is performed gradually on both dsl layers with
an intermediate translation step between those layers. Among the supported
optimizations are cse, dce, constant folding, algebraic simplification, copy propa-
gation and precomputation.

The generator outputs fully unrolled standard C code that complies with ssa and
tac form. We have shown that the generator is capable of producing code for an
entire multigrid cycle and also for simpler but in return more efficient numerical
kernels. As argued in Section 4.2, the latter could be useful for applications in
other program synthesis systems or high-performance libraries.

Future WorkAlthough we have seen encouraging results, the produced code for a multigrid
cycle is much more extensive than the SPIRAL-generated counterpart. The main
reason is that many frequently occurring operations, such as matrix multiplications,
require helper arrays to store intermediate results. Thus, it is desirable to fuse
such operations into a single matrix already during generator time. In the case
of sums of tensor products of Toeplitz matrices, this goal has been reached by
leveraging the structural regularity found in those matrices and the use of stencil
computations. This leads us to believe that similar results could be achieved for
other operations as well, likely with different kinds of stencils that are yet to be
investigated.

Another shortcoming is that we do not abstract over the choice of staging
decisions to support different code styles and data representations. Concretely,
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this would allow for scalarization of arrays based on runtime parameters, which
has the potential to enable more advanced and currently unfeasible optimizations.
Deriving such abstractions and accompanying meta programming techniques
has been an ongoing, independent research effort [4] at the time of this writing.
Incorporating these techniques into our generator could therefore prove beneficial.

Finally, the current set of rewrite rules does not have any degrees of freedom
involved. For this reason, implementing a simple top-down parser of dsl expres-
sions sufficed. However, as there are plans to support more complex multigrid
methods by developing a parameterized meta rule system [1, p. 10], we will
have to extend our implementation in such a way that it supports search over
algorithmic choices, e.g. via auto tuning or machine learning.
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Generated Code for a Multigrid Cycle

C code output by the program generator for the spl specification MGCycle3,0.125,1:

1 void mgcycle(double* x0, double* x1) {
double x3[18];
double* x5 = (x0 + 9);
double x6[18];

5 double x7[18];
double x10 = *(x0 + 9);
double x11 = 0.125 * x10;

*(x7) = x11;
double x12 = *(x0 + 10);

10 double x21 = 0.125 * x12;

*(x7 + 1) = x21;
double x13 = *(x0 + 11);
double x23 = 0.125 * x13;

*(x7 + 2) = x23;
15 double x14 = *(x0 + 12);

double x25 = 0.125 * x14;

*(x7 + 3) = x25;
double x15 = *(x0 + 13);
double x27 = 0.125 * x15;

20 *(x7 + 4) = x27;
double x16 = *(x0 + 14);
double x29 = 0.125 * x16;

*(x7 + 5) = x29;
double x17 = *(x0 + 15);

25 double x31 = 0.125 * x17;

*(x7 + 6) = x31;
double x18 = *(x0 + 16);
double x33 = 0.125 * x18;

*(x7 + 7) = x33;
30 double x19 = *(x0 + 17);

double x35 = 0.125 * x19;

*(x7 + 8) = x35;
double* x38 = (x7 + 9);

*(x38) = x10;
35 *(x38 + 1) = x12;

*(x38 + 2) = x13;

*(x38 + 3) = x14;

*(x38 + 4) = x15;

*(x38 + 5) = x16;
40 *(x38 + 6) = x17;

*(x38 + 7) = x18;

*(x38 + 8) = x19;
double x53 = *(x0);
double x54 = 0.5 * x53;

45 double x55 = *(x0 + 1);
double x56 = 0.125 * x55;
double x57 = x54 + x56;
double x59 = *(x0 + 3);
double x60 = 0.125 * x59;

50 double x61 = x57 + x60;

*(x6) = x61;
double x68 = 0.125 * x53;
double x69 = 0.5 * x55;
double x70 = x68 + x69;

55 double x58 = *(x0 + 2);
double x71 = 0.125 * x58;
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56 double x72 = x70 + x71;
double x62 = *(x0 + 4);
double x73 = 0.125 * x62;
double x74 = x72 + x73;

60 *(x6 + 1) = x74;
double x76 = 0.5 * x58;
double x77 = x56 + x76;
double x63 = *(x0 + 5);
double x78 = 0.125 * x63;

65 double x79 = x77 + x78;

*(x6 + 2) = x79;
double x81 = 0.5 * x59;
double x82 = x68 + x81;
double x83 = x82 + x73;

70 double x64 = *(x0 + 6);
double x84 = 0.125 * x64;
double x85 = x83 + x84;

*(x6 + 3) = x85;
double x87 = x56 + x60;

75 double x88 = 0.5 * x62;
double x89 = x87 + x88;
double x90 = x89 + x78;
double x65 = *(x0 + 7);
double x91 = 0.125 * x65;

80 double x92 = x90 + x91;

*(x6 + 4) = x92;
double x94 = x71 + x73;
double x95 = 0.5 * x63;
double x96 = x94 + x95;

85 double x66 = *(x0 + 8);
double x97 = 0.125 * x66;
double x98 = x96 + x97;

*(x6 + 5) = x98;
double x100 = 0.5 * x64;

90 double x101 = x60 + x100;
double x102 = x101 + x91;

*(x6 + 6) = x102;
double x104 = x73 + x84;
double x105 = 0.5 * x65;

95 double x106 = x104 + x105;
double x107 = x106 + x97;

*(x6 + 7) = x107;
double x109 = x78 + x91;
double x110 = 0.5 * x66;

100 double x111 = x109 + x110;

*(x6 + 8) = x111;
double* x114 = (x6 + 9);

*(x114) = 0.0;

*(x114 + 1) = 0.0;
105 *(x114 + 2) = 0.0;

*(x114 + 3) = 0.0;

*(x114 + 4) = 0.0;

*(x114 + 5) = 0.0;

*(x114 + 6) = 0.0;
110 *(x114 + 7) = 0.0;

*(x114 + 8) = 0.0;
double x127 = *(x6);
double x128 = *(x7);
double x129 = x127 + x128;

115 *(x3) = x129;
double x131 = *(x6 + 1);
double x132 = *(x7 + 1);
double x133 = x131 + x132;

*(x3 + 1) = x133;
120 double x135 = *(x6 + 2);

double x136 = *(x7 + 2);
double x137 = x135 + x136;

*(x3 + 2) = x137;
double x139 = *(x6 + 3);

125 double x140 = *(x7 + 3);
double x141 = x139 + x140;

*(x3 + 3) = x141;
double x143 = *(x6 + 4);
double x144 = *(x7 + 4);

130 double x145 = x143 + x144;

*(x3 + 4) = x145;
double x147 = *(x6 + 5);
double x148 = *(x7 + 5);
double x149 = x147 + x148;

135 *(x3 + 5) = x149;
double x151 = *(x6 + 6);
double x152 = *(x7 + 6);
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138 double x153 = x151 + x152;

*(x3 + 6) = x153;
140 double x155 = *(x6 + 7);

double x156 = *(x7 + 7);
double x157 = x155 + x156;

*(x3 + 7) = x157;
double x159 = x111 + x35;

145 *(x3 + 8) = x159;
double x161 = *(x6 + 9);
double x162 = *(x7 + 9);
double x163 = x161 + x162;

*(x3 + 9) = x163;
150 double x165 = *(x6 + 10);

double x166 = *(x7 + 10);
double x167 = x165 + x166;

*(x3 + 10) = x167;
double x169 = *(x6 + 11);

155 double x170 = *(x7 + 11);
double x171 = x169 + x170;

*(x3 + 11) = x171;
double x173 = *(x6 + 12);
double x174 = *(x7 + 12);

160 double x175 = x173 + x174;

*(x3 + 12) = x175;
double x177 = *(x6 + 13);
double x178 = *(x7 + 13);
double x179 = x177 + x178;

165 *(x3 + 13) = x179;
double x181 = *(x6 + 14);
double x182 = *(x7 + 14);
double x183 = x181 + x182;

*(x3 + 14) = x183;
170 double x185 = *(x6 + 15);

double x186 = *(x7 + 15);
double x187 = x185 + x186;

*(x3 + 15) = x187;
double x189 = *(x6 + 16);

175 double x190 = *(x7 + 16);
double x191 = x189 + x190;

*(x3 + 16) = x191;
double x193 = *(x6 + 17);

double x194 = *(x7 + 17);
180 double x195 = x193 + x194;

*(x3 + 17) = x195;
double x200[9];
double x202 = *(x3);
double x203 = -4.0 * x202;

185 double x204 = *(x3 + 1);
double x205 = x203 + x204;
double x206 = *(x3 + 2);
double x207 = *(x3 + 3);
double x208 = x205 + x207;

190 double x209 = *(x3 + 4);
double x210 = *(x3 + 5);
double x211 = *(x3 + 6);
double x212 = *(x3 + 7);
double x213 = *(x3 + 8);

195 double x214 = *(x3 + 9);
double x215 = x208 + x214;

*(x200) = x215;
double x217 = -4.0 * x204;
double x218 = x202 + x217;

200 double x219 = x218 + x206;
double x220 = x219 + x209;
double x221 = *(x3 + 10);
double x222 = x220 + x221;

*(x200 + 1) = x222;
205 double x224 = -4.0 * x206;

double x225 = x204 + x224;
double x226 = x225 + x210;
double x227 = *(x3 + 11);
double x228 = x226 + x227;

210 *(x200 + 2) = x228;
double x230 = -4.0 * x207;
double x231 = x202 + x230;
double x232 = x231 + x209;
double x233 = x232 + x211;

215 double x234 = *(x3 + 12);
double x235 = x233 + x234;

*(x200 + 3) = x235;
double x237 = x204 + x207;
double x238 = -4.0 * x209;
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220 double x239 = x237 + x238;
double x240 = x239 + x210;
double x241 = x240 + x212;
double x242 = *(x3 + 13);
double x243 = x241 + x242;

225 *(x200 + 4) = x243;
double x245 = x206 + x209;
double x246 = -4.0 * x210;
double x247 = x245 + x246;
double x248 = x247 + x213;

230 double x249 = *(x3 + 14);
double x250 = x248 + x249;

*(x200 + 5) = x250;
double x252 = -4.0 * x211;
double x253 = x207 + x252;

235 double x254 = x253 + x212;
double x255 = *(x3 + 15);
double x256 = x254 + x255;

*(x200 + 6) = x256;
double x258 = x209 + x211;

240 double x259 = -4.0 * x212;
double x260 = x258 + x259;
double x261 = x260 + x213;
double x262 = *(x3 + 16);
double x263 = x261 + x262;

245 *(x200 + 7) = x263;
double x265 = x210 + x212;
double x266 = -4.0 * x213;
double x267 = x265 + x266;
double x268 = x267 + x195;

250 *(x200 + 8) = x268;
double x272[1];
double x274 = *(x200 + 4);

*(x272) = x274;
double x278[1];

255 double x280 = 0.25 * x274;

*(x278) = x280;
double x284[9];
double x286 = *(x278 + 4);

*(x284) = x286;
260 double x290 = 2.0 * x286;

double x291 = *(x284 + 1);
double x292 = x290 + x291;
double x293 = *(x284 + 2);
double x294 = *(x284 + 3);

265 double x295 = x292 + x294;
double x296 = *(x284 + 4);
double x297 = 0.5 * x296;
double x298 = x295 + x297;
double x299 = *(x284 + 5);

270 double x300 = *(x284 + 6);
double x301 = *(x284 + 7);
double x302 = *(x284 + 8);

*(x1) = x298;
double x304 = 2.0 * x291;

275 double x305 = x286 + x304;
double x306 = x305 + x293;
double x307 = 0.5 * x294;
double x308 = x306 + x307;
double x309 = x308 + x296;

280 double x310 = 0.5 * x299;
double x311 = x309 + x310;

*(x1 + 1) = x311;
double x313 = 2.0 * x293;
double x314 = x291 + x313;

285 double x315 = x314 + x297;
double x316 = x315 + x299;

*(x1 + 2) = x316;
double x318 = 0.5 * x291;
double x319 = x286 + x318;

290 double x320 = 2.0 * x294;
double x321 = x319 + x320;
double x322 = x321 + x296;
double x323 = x322 + x300;
double x324 = 0.5 * x301;

295 double x325 = x323 + x324;

*(x1 + 3) = x325;
double x327 = 0.5 * x286;
double x328 = x327 + x291;
double x329 = 0.5 * x293;

300 double x330 = x328 + x329;
double x331 = x330 + x294;
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302 double x332 = 2.0 * x296;
double x333 = x331 + x332;
double x334 = x333 + x299;

305 double x335 = 0.5 * x300;
double x336 = x334 + x335;
double x337 = x336 + x301;
double x338 = 0.5 * x302;
double x339 = x337 + x338;

310 *(x1 + 4) = x339;
double x341 = x318 + x293;
double x342 = x341 + x296;
double x343 = 2.0 * x299;
double x344 = x342 + x343;

315 double x345 = x344 + x324;
double x346 = x345 + x302;

*(x1 + 5) = x346;
double x348 = x294 + x297;
double x349 = 2.0 * x300;

320 double x350 = x348 + x349;
double x351 = x350 + x301;

*(x1 + 6) = x351;
double x353 = x307 + x296;

double x354 = x353 + x310;
325 double x355 = x354 + x300;

double x356 = 2.0 * x301;
double x357 = x355 + x356;
double x358 = x357 + x302;

*(x1 + 7) = x358;
330 double x360 = x297 + x299;

double x361 = x360 + x301;
double x362 = 2.0 * x302;
double x363 = x361 + x362;

*(x1 + 8) = x363;
335 double* x370 = (x3 + 9);

double* x371 = (x1 + 9);

*(x371) = x214;

*(x371 + 1) = x221;

*(x371 + 2) = x227;
340 *(x371 + 3) = x234;

*(x371 + 4) = x242;

*(x371 + 5) = x249;

*(x371 + 6) = x255;

*(x371 + 7) = x262;
345 *(x371 + 8) = x195; }
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List of Acronyms

CIR C internal representation

CSE common subexpression elimination

DCE dead code elimination

DFT discrete Fourier transform

DSL domain-specific language

DSP digital signal processing

IR intermediate representation

JVM Java Virtual Machine

LMS Lightweight Modular Staging

MSP multi-stage programming

PDE partial differential equation

SPL Signal Processing Language

SSA single static-assignment

TAC three-address code
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