Tired of MPI?

The Pocket Guide to ZPL

ZPL is a parallel array The region is the key
pregramming language. abstraction underlying

ZPL arrays.

A global-view of data and explicit
contrel of communication! I can't — Hear that, Red!
believe I'm the star of this!

See back far

6

footnotes,
Regians are index Region IntR specifies Region Left is the
sets, RegionRis R's interior indices, first column of R,
ann x n index sef,
region n
N region
region IntR = i
R = [L..n,1l..n]; [2..n-1,2..n-1]; Tefrom fhaine Ll
Directions are of fset vectors used The preposition "in" creates a
to manipulate regions and array data. new region using a direction,
direction region
nerth = [-1, 0]; Left = west in R;
east = [0, 1]; @
south = [1, 0]; ﬂ
west = [0,-1];
L
ot St] Abstract!
ne = [-1, 1];
«=11,-1; BROG
se=[1, 1];
The "of " prepasition The "at” preposition The "by" preposition
creates a hew region creates a hew region creates a hew region
on the outside. shifted by a direction, strided by a direction,
Eagion Cugian direction
Smallleft = IntRLeft = steple Tl
west of IntR; IntkE at west; region
SE = R by step;

Parallel arrays are
declared over regions,

var
A, & : [R] double;
c : [IntR] double;

Regions contrel cemputation
on parallel arrays.

[IntR] A := &;

Biological computer simulation codes, such as
Conway's Game of Life, are easy to write in ZPL,

All communication is explicit, There
is no communication here,

[IntR] € := & + &;

Only a small set of
parallel operators induce
communication, This
provides a powerful
perfarmance medel.

L

WYSIWYG!

=

T

The at operator (@) shifts
data in a direction, inducing
point-to-point communication,

[IntR] C := Afwest;

i

The reduce cperator (op<<) computes
reductions using a combining operater
and induces reduction communication,,

[IntR] sum := +<< &;

wn ¢a

A partial reduction collapses
dimensions of an array.

[2..n-1,i] € := +<<[IntR] A;

H ¢

Reductions can be computed with many
built-in operators. User-defined
reductions are supported on
associative and commutative functions,

+<< (sum}) min<< (min) |<< (or)
*<< (times) max<< (max) &<< (and)
bor<< (bitwise or)
band<< (bitwisze and)
myraduce<< (user-defined) o

For parallel-prefix scans,
change "<<" to " |."

Comway's Game of Life simulates ¢ » die, and _‘h_uﬁw._”_._n ;...ﬁa_i_u..ﬁ

Rule It. (Birth) A cellis bom in any empty square with nru,..mc three live _._n_..m_._ra_...q..

It's a Complete
ZPL Program!

program Life;

config war
n : integer = 100;

region A configuration variable can

BigR = [0..n+l, 0..n+l be set on the command line.
R = [1..n, 1..n

direction
nw = [-1, =-1]; nerth = [-1, 0]; ne = [-1, 1];
west = [0, -1]; east = [0, 1];
W = [1, -1]; south = [1, 0]; se =[1, 1];

var
TW : [BigR] boolean; -- The World
NN : [R] integer; -- Mumber of Meighbors

procedure Life();
begin ; :
R trithiliee he woiid Count the live neighbars,
[R] repeat
NN = TWinw + TWianorth + TWine +
TWiwest + TWeast +
THE 5w + TWidsouth + TWAse;
TH := (TW & NN = 2} | (NN = 3);
until !{|<< TW);

end; Is this a bleak
metapher or what?

Update the world.

Boundary conditions are easy to
initialize and manipulate in ZPL,

Even periodic boundary
conditions are supported,

[north in R]
[zast in R]
[west in R]
[south of IntR]

Just use the wrap operator.

[north of IntR] wrap A;

i

A
A
A
A

This is usually a tedious and
error-prone part of parallel
scientific computing,

Unlike APL, ZPL
doesn’t have hundreds

Each parallel operator has dif ferent
communication requirements,

of aperators, though
there are a few more,

Phew!

@ @

Review

int-to-point
<< reduction
parallel prefix
broadcast

COne more!

Next Concept
all-te-all

The wrap-at operater (2+) alse
considers periodic boundaries,

The flood operator (>2)
replicates data across

[R] A := A@*nerth + A@*south;

one or more dimensions
of an array,

[R] A := >>[1..n,i] A;

The remap operator (#) moves data
between arrays as specified by map
arrays, Arrays can be transposed
with the Indexi constants,

Flood dimensions (*) efficientl
store replicated data, We can
take the cross product of the first
column and row of an array easily,

The Indexi arrays are built-in constants
which cenform to the compute region,,

[1..3, 1..3] bagin

1.

[#; %1

[R]

b B s |
: [1..n,*] double; 222
: [*,1..n] double; 1,1 (1,2) (1,3) Sas
*] Col := >>[1..n,1] A; (2,1) (2,2) (2,3)
n] Row := >>[1,1..m] A; saa
R N (3.1) (3,2) (3,3) B
123
b i |

end;

[R] B := B¥[‘ 1:

-

Flooded arrays can also be transposed.
Conveniently, the Indexi arrays are
flooded in all but the ith dimension.

[1..n,*] Col := Rowi[' 1:

il

Nete that Index2's use is legal since
Row is flooded in the first dimension.

Parallel Matrix Multiplication is a well-studied problem, Three wel

knawn algorithms are easy to write in ZPL

1. Cannen's Algorithm,

e

_s.e:_m__.:,mmn_:ia:“ "[R] B := >>[1..n,1] A * >>[1,1..n] A;"

Gven parallel arrays A, B, and C. matrix multiply A and 1 to get C.
region var
R=[i.ni.n]; A, B, - [R] double;
Cannon's

direction :

right = [0, 1]: AgrtThm

below = [1, 0]: .
var

i : integer: =

Skew first.

[R] begin

A#[Indexl, { (Index2-Indexl+n) in)+1] := A;

BE#[{ (Indexl-Index2+n)%n)+1,Index2] := H;

€ := A * B;
for i := 2 to n do
A := A@*right;
B := Bid“below;
C += A * B;
end;
end;

Then, repetitively
shift and multiply.

2, SUMMA Algorithm. 3. PSP or Bulk Communication Algorithm,

region
IJ = [l..n, 1..n, *];
JE = [*, 1..n, 1..n];
IXK = [l..n, 1, 1..n];
(8] begin IJK = [l..n, 1..n, 1..n];
€ = 0.0; s
for i := 1 to n do
i o . A3 : [1J] double;
m.+u > A1 A% 33[1,] B: B3 : [JK] double;
m:mu_. f €3 : [IK] double;
[IJ] A3 := A#[Indexl, Index2];
[J¥] B3 := Bf[Index2, Index3];
SUMMA [IK] €3 := +<< [IJK] (A3 * B3);
Algorithm [R] € := C3§[Indexl, 1, Index2];
PSP or Bulk
Algorithm .
ZPL is optimized for high performance and runs on 3

clusters as well as custom-designed supercomputers,

Don't wait! Download your copy today!

:3?_\\2!2.3.s__nm:_‘Swa:_m.n*:\ﬁnmnn_..n:xnu_

References

The Dasign and Implemantation of a Parallel Array Operator for the
Arbitrary Remapping of Data.

8.). Deiz, B. L Chamberiain, 5.-E Choi and L. Snyder.

In ACM Conference on Principles and Practice of Parallel Programming, 2003.

High-level Language Support for User-defined Reductions.
4. |. Deitz, B. L. Chamberlain and L. Snyder.
InThe Journal of Supercomputing, 23(1}, 2002.

A Comparative Study of the NAS MG Benchmark across Parallel
Languages and Architectures.

B. L Chamberiain, 5. |. Deicz and L. Snyder.

In ACM Conference on Supercomputing, 2000.

ZPL:A Machine Independent Programming Language for
Farallel Computers.

B.L Chamberiain, 5.-E Choi, E C. Lewis, C. Lin, L. Snyder, and
W D.Weathersby.

In |EEE Transactions on Software Engineering, 26(3), 2000,

Problem Space Promaotion and ks Evaluation as a Technique for
Efficient Parallel Computation.

B. L Chamberfain, E . Lewis and L Snyder.

I ACH International Conference on Supercomputing, 1999,

Regions:An Abstraction for Expressing Array Compuration.
B.L Chambertain, E. C. Lewis, C. Lin and L. Snyder.
In ACH Internaticnal Conference on Array Programming Languages, | 999,

ZPUsWYSIWYG Performance Model.

B.L Chambertain. 5.-E Choi, E.C. Lewis, C. Lin, L. Snyder and

W D Weathershy.

In IEEE Warkshop on High-Level Parallel Programming Models and
Supportive Enwironments, | 998,

ZPL Research Group

Department of Computer Science

University of Washington

Box 352350

Seattle, WA 98195-2350

zpl-infofcs.washington.edu
http://www.cs . washington. adu/research/zpl

