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and has been used to more accurately model uranium

plumes at DOE’s Hanford site.

The UNIC neutronics package developed by Mike

Smith and Dinesh Kaushik of Argonne National Labo-

ratory has run full reactor core simulations on ,

cores of the IBM Blue Gene/P. It supports both the

second-order Pn and Snmethods with dozens of energy

groups. It parallelizes simultaneously over the geometry

by means of domain decomposition and angles using

a hierarchy of MPI communicators and PETSc solver

objects.

Related Entries
�Algebraic Multigrid

�BLAS (Basic Linear Algebra Subprograms)

�Chaco

�Distributed-Memory Multiprocessor

�Domain Decomposition

�LAPACK

�Memory Wall

�METIS and ParMETIS

�MPI (Message Passing Interface)

�PLAPACK

�Scalability

�ScaLAPACK

�SPAI (SParse Approximate Inverse)

�SPMD Computational Model

�SuperLU

Bibliographic Notes and Further
Reading
The PETSc web site is the best location for up-to-date

information on PETSc []. A complete list of external

packages that PETSc can use is given in [].More details

of the applications developed by using PETSc can be

found at []. Further details on the design decisions

made in PETSc may be found in [].

Other related parallel solver packages include

TRILINOS [], hypre [], and SUNDIALS []. TRILI-

NOS is a large, general-purpose solver package much

in the spirit of PETSc and written largely in C++; it

currently has little support for use from Fortran. The

hypre package specializes in high-performance precon-

ditioners and includes a scalable algebraic multigrid

solver BoomerAMG. SUNDIALS specializes in nonlin-

ear solvers and adaptive ODE integrators; it expects

the required linear solver to be provided by the user

or another package. Many of the solvers in these other

packages can be called through PETSc.
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Definition
PGAS (Partitioned Global Address Space) is a pro-

gramming model suited for shared and distributed

memory parallel machines, e.g., machines consisting of

many (up to hundreds of thousands of) CPUs.
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Shared memory in this context means that the

total of the memory space is available to every pro-

cessor in the system (although access time to different

banks of this memory can be different on each proces-

sor). Distributed memory is scattered across processors;

access to other processors’ memory is usually through a

network.

A PGAS system, therefore, consists of the following

components:

● A set of processors, each with attached local storage.

Parts of this local storage can be declared private by

the programming model, and is not visible to other

processors.

● A mechanism by which at least a part of each pro-

cessor’s storage can be shared with others. Sharing

can be implemented through the network device

with system software support, or through hard-

ware shared memory with cache coherence. This,

of course, can result in large variations of memory

access latency (typically, a few orders of magnitude)

depending on the location and the underlying access

method to a particular address.

● Every shared memory location has an affinity –

a processor on which the location is local and

therefore access is quick. Affinity is exposed to

the programmer in order to facilitate performance

and scalability stemming from “owner compute”

strategies.

All PGAS programming languages contain the com-

ponents enumerated above, although the ways in which

these are made available to the programmer differ.

Every PGAS language allows programmers to distin-

guish between private and shared memory locations,

and to determine the affinity of shared memory loca-

tions. Some PGAS languages provide work distribution

primitives such as parallel loops based on affinity, or

program syntax to allow special handling of remote

(and therefore, slow) data accesses. The rest of this

entry expands some of these differences between PGAS

languages.

Discussion

Introduction
There exist a variety of choices for PGAS languages and

implementations. Some of these choices are about the

ubiquity of shared memory, the method of accessing

remote memory, or the choice of a parent program-

ming language. Consequently there is a wide variety of

PGAS-like languages and libraries:

● UPC [] (Unified Parallel C) is a language descended

from C. It extends C arrays and pointers with

shared arrays and shared pointers that address into

global memory. UPC also features a forall loop

that distributes iterations based on affinity of array

elements.

● Coarray Fortran [] is a Fortran-based language

that extends Fortran arrays with co-dimensions that

allow accessing arrays on other processes (called

images). A variant of Coarray Fortran is included in

the Fortran  standard, making it the only PGAS

language with ISO approval.

● Split-C [] is a C-based PGAS language that

acknowledges the latency of remotememory accesses

by allowing split-phase, or non-blocking, transac-

tions. This allows overlapping of remote accesses

with computation, hiding latency.

● Titanium [] is a Java-based PGAS language. Tita-

nium features SPMD parallelism, pointers to shared

data and an advanced distributed array model.

● ZPL [] is an array-based language featuring the

global view programming model.

● Chapel [] is Cray Inc’s flagship modern program-

ming language. It incorporates elements of ZPL but

also features themultiresolution paradigm, allowing

users to bore down to performance from an initial

high-level program.

● X [] is a PGAS language that provides task par-

allelism as well as data parallelism. The key feature

of X is asynchronous task dispatching.

● HPF [] (High-Performance Fortran) is an early

attempt to solidify concepts from global view array

programming in a Fortran-based language. It is one

of the bases from which the PGAS concepts grew.

● MPI [] (Message Passing Interface) is the de facto

standard for high-performance parallel program-

ming. It does not implement the PGAS program-

ming model, since it does not have the concept of

global memory: All inter-processor data exchange

is explicit. However, MPI contains many ideas and

concepts relevant to PGAS and that makes it worth

mentioning in this context.
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● OpenMP [] is a cross-language standard for

shared-memory programming used widely in the

high-performance computing world. The standard

allows loops to be annotated as executed in parallel,

and variables as shared or private; the newer stan-

dard has task-parallel features as well. OpenMP is

in a similar situation to MPI: not a PGAS language,

but containing many relevant concepts.

● Global Arrays [] is a library or parallel array com-

puting. It provides an abstraction of a shared array

but is backed by distributed memory. Actual mem-

ory operations are implemented by a one-sidedmes-

saging library called ARMCI.

● HTAs (Hierarchical Tiled Arrays) are another

library-based approach, providing the user with

an array abstraction embedded into the multiple

levels of a distributed system’s memory hierarchy.

HTAs can be laid out to reflect this hierarchy: levels

of cache, shared memory with affinity to partic-

ular processors, and of course nonlocal memory

accessed (under the covers) by messaging.

Local Versus Shared Memory
While all PGAS languages distinguish between local,

shared local and shared remote memory. However, the

default assignment ofmemory to the local versus shared

space greatly varies across the space of languages.

All memory in MPI (the Message Passing Interface

standard) is local, and the only way to convey infor-

mation to another process space is through messages.

In contrast all memory in OpenMP (a GAS program-

ming paradigm) is global, and the only way to make

memory locations safe fromother threads is to explicitly

denote it as thread private. InUPC,Coarray Fortran and

Split-C memory is declared as private by default, and

has to be made global with an explicit declaration mod-

ifier. In Titanium program stacks are thread-private, but

the heap is shared by default. In the array language ZPL

and in the HTA library all arrays are shared by default.

In X, memory is local and only accessible by send-

ing units of work (“asyncs”) to the remote locations to

execute.

Computation and Address Spaces
Parallelism implies multiple processing units execut-

ing a particular program. However, the relationship

between executing programs and address spaces differs

across programming languages. In UPC and Coarray

Fortran address, spaces are tightly bound to computa-

tion. Executionunits are called threads inUPC;Address

affinity is calculated relative to UPC threads. Titanium

calls the execution units processes, and locality is bound

to these implicitly. By contrast, in Coarray Fortran it is

the address spaces themselves that are named – images –

and the implication is that each image has computation

executing on it. X completely separates the notions

of address space and computation. Every address space

is called a place, and multiple computational threads

called activities are allowed to execute simultaneously,

subject to the capability of the hardware.

Messaging
The PGAS programming model does not make any

representation about the mechanics of accessing data

in nonlocal address spaces. On distributed-memory

hardware data exchange is done by exchanging mes-

sages across any network devices are available on the

hardware in question; PGAS programming models are

implemented on top of a messaging system.

The preferred messaging system for PGAS imple-

mentations is one sided:That is, one of the participants is

active and is responsible for specifying all parameters of

the exchange (identities of sender, receiver, addresses on

both ends, amount of data), while the other participant

is passive and contributes nothing but the data itself.

Active messages are also used preferentially by PGAS

languages. Active messages vary from one-sided mes-

sages in that the passive participant is called upon to

execute user code as part of receiving the message.

Every PGAS language makes a choice as to what

extent language syntax hides the underlying messag-

ing system. In Split-C messages look like assignments,

and provisions are made to hide the large latency of

such messages. In UPC, local and shared assignments

have the same syntax, making the indistinguishable;

however, the programmer is allowed to write explicit

one-sided messages into the program. Even third-party

messages are allowed (e.g., UPC thread A specifying

a data transfer between threads B and C). Coarray

Fortran and Chapel do not allow explicit messaging.

X exposes messaging to the programmer in the form

of asyncs which are very close in concept to active

messages.
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References to Remote Memory
Just as in the C language arrays and pointers are

two sides of the same coin, in PGAS languages there

is a close relationship between arrays and references

in global address space especially in those languages

rooted in C syntax, like Split-C and UPC. The syntax

and semantics of references to remote memory, includ-

ing pointer arithmetic, tends to follow that of nor-

mal pointers. The unique features of remote pointer

access revolve around hiding of access latency. Remote

accesses tend to be orders of magnitude slower than

local ones. The increased latency can be partially mit-

igated by posting remote operations as soon as the

initial conditions are met, e.g., both source data and

destination buffers are ready for transfer. However, the

operation need not be complete until the data is actu-

ally needed on the destination end. To implement this,

Split-C features the split assignment operator, and the

Berkeley UPC extensions (not part of the UPC stan-

dard) allow non-blocking remote memory operations.

Array Programming and Implicit
Parallelism
Array programming is a generic term describing a pro-

gramming environment suitable for the processing of

n-dimensional arrays. In these environments arrays are

first-class citizens, allowing compact declaration and

operators (unlike in conventional imperative program-

ming languages where arrays are handled by loops).

Some examples of array programming languages/envi-

ronments are APL, Fortran , MATLAB, and R.

The attraction of array languages is their ability to

express operations on large amounts of data with few

instructions. This has many benefits, including efficient

programming of vector processors (e.g., Intel SSE,

IBMAltivec) and graphics processors (NVIDIAGPUs),

but array languages also lend themselves to explicit

SPMDparallelism with the PGAS programmingmodel.

The programmer specifies the layout of array elements

in distributed memory. The compiler and/or the run-

time optimize array operations by staying as close as

possible to the owner compute rule, i.e., scheduling

computation on the CPUs closest to each array ele-

ment. The execution model of pure array languages is

SIMD; conceptually there is a single thread of control

acting on a large amount of data. PGAS languages have

borrowed heavily from the array processing paradigm.

The Fortran D and High-Performance Fortran (HPF)

languages allow users to specify data layouts with the

TEMPLATE and DISTRIBUTE commands. An HPF

template declares a processor layout (and hence the

structure of the partitioned address space). Global

arrays are distributed across this template. A large set

of intrinsic operators allow the concise expression of

operations like shifting/transposing/summing up array

slices.

In Coarray Fortran, array data distribution takes

the form of a co-dimension. Vector indexing in the

Fortran  style is permitted. The Chapel and ZPL lan-

guages offer a refinement of the Fortran /Matlab vec-

tor syntax by means of regions, or named subsets/slices

of arrays: shifts, reductions, dimensional floods (i.e.,

broadcasts), boundary exchanges can be expressed this

way. The partitioned global address space is set up by

means of distributions, an analogue of HPF templates.

The Titanium programming language also follows this

approach.

Less conventional runtime-only approaches include

the Hierarchical Tiled Arrays (HTAs) library a pure

runtime solution that provides multiple levels of data

decomposition, one for each level of non-locality in

a modern computer architecture. The Global Arrays

toolkit also allows programmers to specify and optimiz

their own array layouts. The Matlab Parallel Toolbox

uses the spmd keyword and specialized array distribu-

tion syntax to control data parallel execution.

There is a natural affinity between array processing

and parallelism. By putting arrays into global memory

one transcends the memory limitations of any single

CPU, while still allowing for quick access to the array

fromanywhere. Array operations are generally floating-

point intensive, and therefore natural candidates for

parallelization. The large number of operations causes

more granular computation, resulting in less parallelism

overhead and therefore fewer losses to Amdahl’s law.

Well-known parallel algorithms exist formany array

operators. Some of these algorithms have good scaling

properties (i.e., low cross-CPUcommunication require-

ments, good load balance) and can be coded into the

supporting runtime system or even the compiler, allow-

ing the programmer instant access to high-performance

parallel array operations.
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Parallel Loops and Explicit Data Parallelism
The parallel loop construct is an established way of

expressing explicit parallelism; Fortran’s DOALL state-

ment is one of the oldest such constructs. The essence

of the construct is to divide the iteration space of a loop

nest among processors, either statically or dynamically.

OpenMP in particular is known for a wide variety of

parallel loop options.

Several PGAS languages have their own versions of

parallel loops. Perhaps the most prominent of these is

the UPC forall construct which ties execution of

particular iterations to an affinity expression that can

depend on the induction variable of the loop. ZPL,

Chapel, X, andTitaniumallowparallel loops to be run

on affinity sets which implicitly determine which CPU

executes what iteration.

Collectives, Teams, and Synchronization
Collective operations in parallel programming lan-

guages denote operations that potentially involve more

than two participants. Collective communication con-

cepts were popularized by MPI, although basic ideas

like parallel prefix are considerably older.

Collectives are important in the context of par-

allel programming models for two major reasons.

First, collective communication primitives succinctly

express complex data movement operations, contribut-

ing to brevity and clarity in parallel programs. Second,

because of their relatively simple and well-studied

semantics, collectives are good optimization targets,

resulting in improved performance and scalability.

Collective operations are either pure data exchange

protocols (such as broadcast, scatter, and all-to-all

exchanges), or computational collectives (like reduc-

tions, where data are interpreted and recomputed dur-

ing the collective).

Another way to describe collectives is based on

whether they have synchronizing properties. For exam-

ple, the Alltoall collective causes synchronization

between every pair of tasks involved, since completion

of the collective involves bidirectional data dependen-

cies on every pair. Other collectives, like Scatter,

create much fewer data dependencies and therefore do

not cause global synchronization. Finally, Barrier is

an example of a collective that exchanges no data at all;

its only purpose is to effect a synchronization.

Collective communication is further categorized by

the number of participants. The simplest case is that of

every task in a job participating in a collective. However,

arbitrary teams of tasks (called communicators in MPI)

can be set up for collective communication.

There are several intriguing aspects that cause the

mapping of collective communication to be nonobvi-

ous in a PGAS context. The most immediate of these

involves data integrity. A natural way to think about

data integrity in collective communication is as follows:

Data buffers passed from the caller to a collective cannot

be touched (either read or written) by the user until the

collective completes. In other words, data buffers’ own-

ership changes when the collective is invoked and when

it terminates.

However, on a systemwith sharedmemory and one-

sided data access the invocation boundary is fuzzy. The

collective may be entered at different times on different

processors. For example, in the presence of one-sided

communication the calling process is unable to provide

a strong guarantee to the collective that the data buffer

will not be touched – since other processes may not yet

have entered the collective and may be in the middle of

a remote update to the very buffer being processed by

the collective.

UPC attempts to deal with this problem by allow-

ing the programmer to state pre- and post-conditions

on the boundaries of a collective operation with regard

to shared data.

Just like the PGAS model extends point-to-point

communication with non-blocking and split-phase

transactions, a similar extension can be envisaged for

collective communication. The evident advantage of

non-blocking collective communication is the ability to

overlap it with computation or other communication.

There is a case to be made for one-sided collectives.

Far from a contradiction in terms, one-sided collective

communication involves the address spaces of multiple

tasks, but possibly not every task participates actively in

the collective. An example would be a one-sided broad-

cast similar to a one-sided write operation but targeting

multiple address spaces.

Some PGAS languages, like Coarray Fortran, fea-

ture synchronization operation on teams of tasks des-

ignated on an ad hoc basis. This extends the MPI

notion in which MPI communicators are predefined
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and relatively heavyweight objects. Collective com-

munication exists in some of the PGAS languages

today. Titanium features teams and exchange, broad-

cast, reduction collectives. UPChas a usual complement

of collectives but no teams. Coarray Fortran features ad

hoc teams in its synchronization operations.Many array

languages feature array operations that are essentially

“syntax sugar” for collective operations.

Memory Consistency
The memory consistency model of PGAS programs

deals with the effect of writing to remote memory; i.e.,

under what conditions does a remotewrite become visi-

ble by the source, destination, or third parties. The gold

standard for memory consistency is sequential consis-

tency: In this model, the memory behaves as if it were

written by a single processor at a time.

Sequential consistency is expensive to implement in

a distributed memory system because performance can

be gated by the slowestwrite.Therefore,most PGAS lan-

guages implement aweak consistencymodel. For exam-

ple, Coarray Fortran’s consistency model is designed

to avoid conflicts and allows compiler optimization.

Ordering of memory accesses made to remote locations

is done explicitly by the programmer by breaking the

program into ordered segments. Conflicting writes in

the same segment are disallowed: The basic constraint

is that if a variable is defined in a segment, it cannot

be read or written by any other image in the same seg-

ment. UPC has two memory consistency modes, strict

and relaxed, where strict consistency is understood to

be sequential consistency. In Titanium, local dependen-

cies are observed. Shared reads and writes performed in

critical sections cannot appear to have executed outside.

Future Trends
The future of the Partitioned Global Address Space pro-

gramming model is difficult to predict. A variety of

programming languages based on the model have been

proposed, none meeting with universal approval. The

state of the art in parallel programming continues to

be MPI and OpenMP programming; it is safe to say

that the programming model has not yet fulfilled its

promise.

The face of parallel computing is continuously

changing. While single processor performance has

stopped following Moore’s law, peak performance on

the Top website continues to track an exponential

growth curve.This growth is achieved bymachines with

hybrid (shared and distributed memory) architectures,

forcing a change in programming technology. Also,

an increasing share of high-performance programming

also targets hybrid architectures of another kind: dedi-

cated accelerators based on, e.g., GPU compute engines.

OpenMP and MPI face some difficulty in coping with

these challenges, and may leave the field open for new

software technology.

Recognizing that PGAS languages are unlikely to

replace MPI, the current trend is to enhance inter-

operability, allowing coexistence of multiple languages

in the same executable. The challenge is both con-

ceptual and practical, and includes reconciliation of

the execution models, data representations, and execu-

tion semantics of different programming models. On

a practical level, the trend is toward shared infrastruc-

ture with MPI and an expression of PGAS functionality

through library calls to enable amultiplicity of language

implementations.
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Synonyms
Molecular evolution; Phylogenetic inference; Recon-

struction of evolutionary trees

Definition
Phylogenetics, or phylogenetic inference (bioinformat-

ics discipline), deals with models and algorithms for

reconstruction of the evolutionary history – mostly

in form of a (binary) evolutionary tree – for a set of

living biological organisms based upon their molec-

ular (DNA) or morphological (morphological traits)

sequence data.

Discussion

Introduction
The reconstruction of phylogenetic (evolutionary) trees

from molecular or morphological sequence data is a

comparatively old bioinformatics discipline, given that

likelihood-based statistical models for phylogenetic

inference were introduced in the early s, while

discrete criteria that rely on counting changes in the

sequence data date back to the late s and early s.

Computationally, likelihood-based phylogenetic

inference approaches represent a major challenge,

because of highmemory footprints and of floating point

intensive computations.

The goal of phylogenetic inference consists in recon-

structing the evolutionary history of a set of n present-

day organisms for which molecular sequence data can

be obtained. In some cases it is also possible to extract

ancient DNA or establish the morphological properties

(traits) of fossil records.

Input

The input for a phylogenetic analysis is a list of organism

names and their associated DNA or protein sequence

data. Note that the DNA sequences for distinct organ-

isms will typically have different lengths. In modern

phylogenetics, instead of using the raw sequence data,

a so-called multiple sequence alignment (MSA) of the

molecular data of the organisms is used as input. Multi-

ple sequence alignment is an important – generally NP-

hard – bioinformatics problem. The key goal of MSA is

to infer homology, that is, determine which nucleotide

characters in the sequence data share a common evo-

lutionary history. Because insertions and/or deletions

of nucleotides may have occurred during the evolu-

tionary history of the organisms (represented by their

DNA sequences), such events are denoted by insert-

ing the gap symbol - into the sequences during the

MSA process. After the alignment step, all n sequences

will have the same length m, that is, the MSA has m

alignment columns (also called: characters, sites, posi-

tions). A simple example for an MSA of DNA data for

the Human, the Mouse, the Cow, and the Chicken with

n =  species and m =  sites is provided below:

Cow ATGGCATATCCCA-ACAACTAGGATTC

Chicken ATGGCCAACCACTCCCAACTAGGCTTA

Human ATGGCACAT---GCGCAAGTAGGTCTA

Mouse ATGG----CCCATTCCAACTTGGTCTA

Output

The output of a phylogenetic analysis is mostly an

unrooted binary tree topology. The present-day organ-

ismsunder study (forwhichDNAdata can be extracted)

are assigned to the leaves (tips) of such a tree, whereas

the inner nodes represent common extinct ancestors.

The branch lengths of the tree represent the relative


